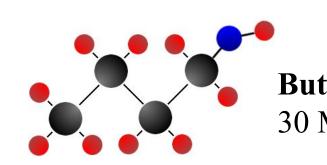

Abstract

The goal of this project was to model a butanol extraction process using supercritical carbon dioxide (CO_2) in Aspen Plus and then complete an energy analysis for various probable process models. A large part of modeling the process was determining an Equation of State (EOS) that accurately modeled the CO₂/Water/Butanol ternary system at critical conditions. Following the design of a process model and the completion of the energy analysis, recommendations were proposed on the best method of butanol production from an energy standpoint.

Background


Butanol has the potential to be a better renewable liquid fuel option than ethanol because of its superior energy density.

Gasoline 33 MJ/L

Supercritical extraction of higher alcohols implements supercritical fluids as solvents, most commonly CO₂, to extract an alcohol product. This method of extraction has been found to be a simpler and a more economic process than other extraction methods, and is recently receiving more attention because of this potential.

The Massachusetts Institute of Technology (MIT) recently discovered that a butanol producing bacteria (B. megaterium) can survive at CO₂ supercritical conditions. With butanol extraction using supercritical CO₂ now a possibility, butanol production has the potential to be energy efficient.

Objectives

- 1. Determine an EOS that accurately models the ternary system CO₂/Water/Butanol at supercritical conditions
- 2. Perform a sensitivity analysis on the basic process model to determine optimal parameters
- 3. Design different models for the butanol extraction process in Aspen Plus
- 4. Determine the most energy efficient and viable process design with heat integration and energy analysis
- 5. Provide recommendations for further research and development

References

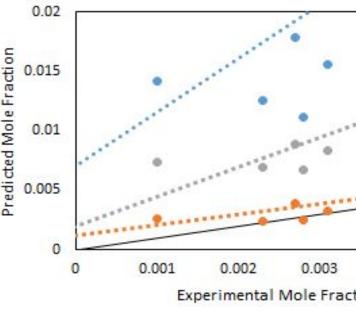
Bioalcohols. (2010). Retrieved April 19, 2017, from http://biofuel.org.uk/bioalcohols.htm

Cody, R., Sabo, V., & Vandenberg, H. (2016, April 28). Energy Analysis of Butanol Extraction [Scholarly project]. In WPI MQP report. Retrieved March 2, 2017.

Gasoline. (2017, April 18). Retrieved April 19, 2017, from https://en.wikipedia.org/wiki/Gasoline#/media/File:HAZMAT Class 3 Gasoline.png Picture

Laitinen, A., & Kaunisto, J. (1999). Supercritical fluid extraction of 1-butanol from aqueous solutions. *The Journal of* supercritical fluids, 15(3), 245-252.

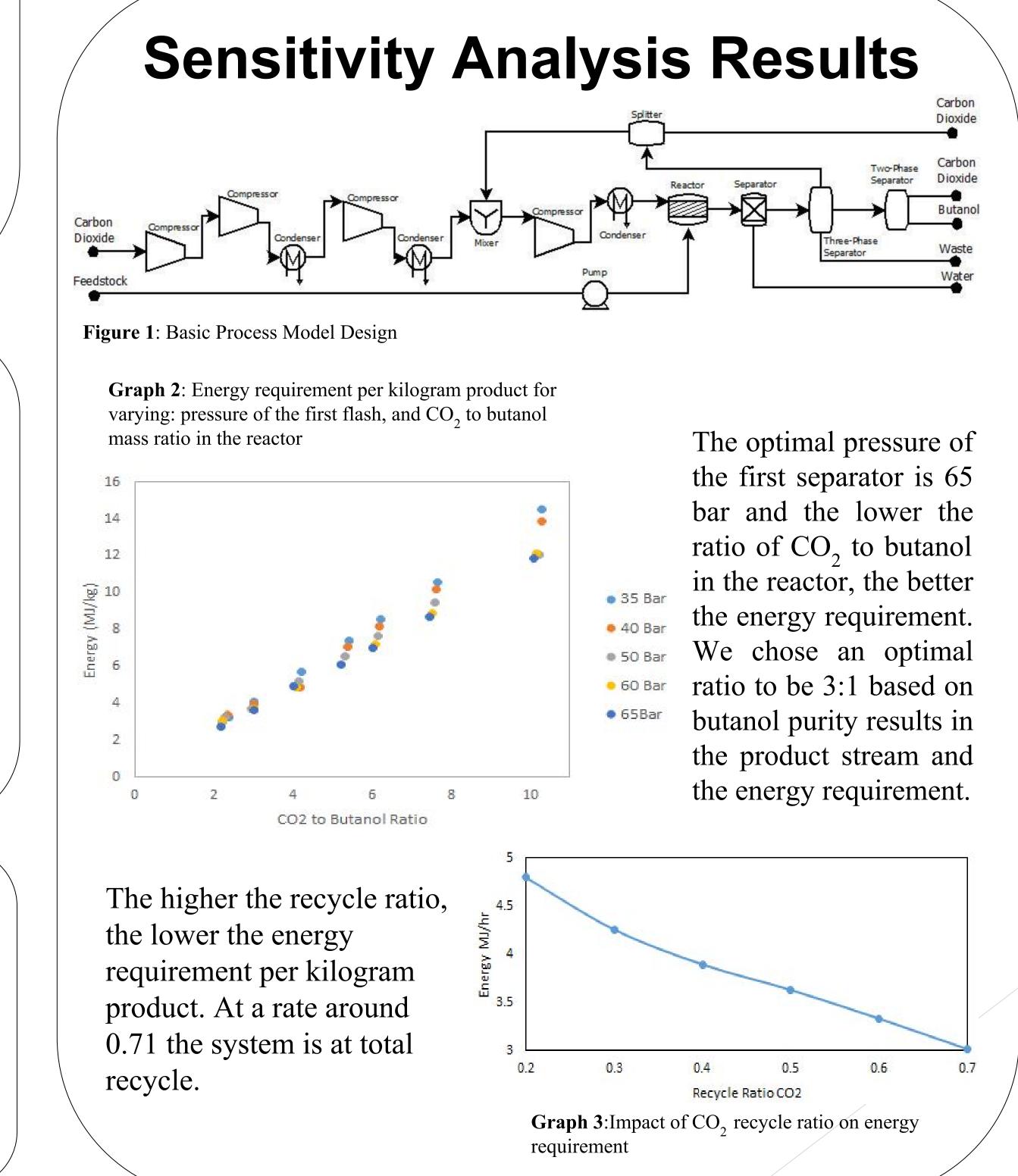
Energy Analysis of Butanol Extraction Using Supercritical Carbon Dioxide Audrey Allen (ChE) and Sarah Muse (ChE) Advisor: Michael Timko (ChE)


Butanol 30 MJ/L

We explored three equations of state (EOS) that we predicted would best model the ternary system CO₂/water/butanol at our desired temperature and pressure: LK-PLOCK, SRK, and PENGROB.

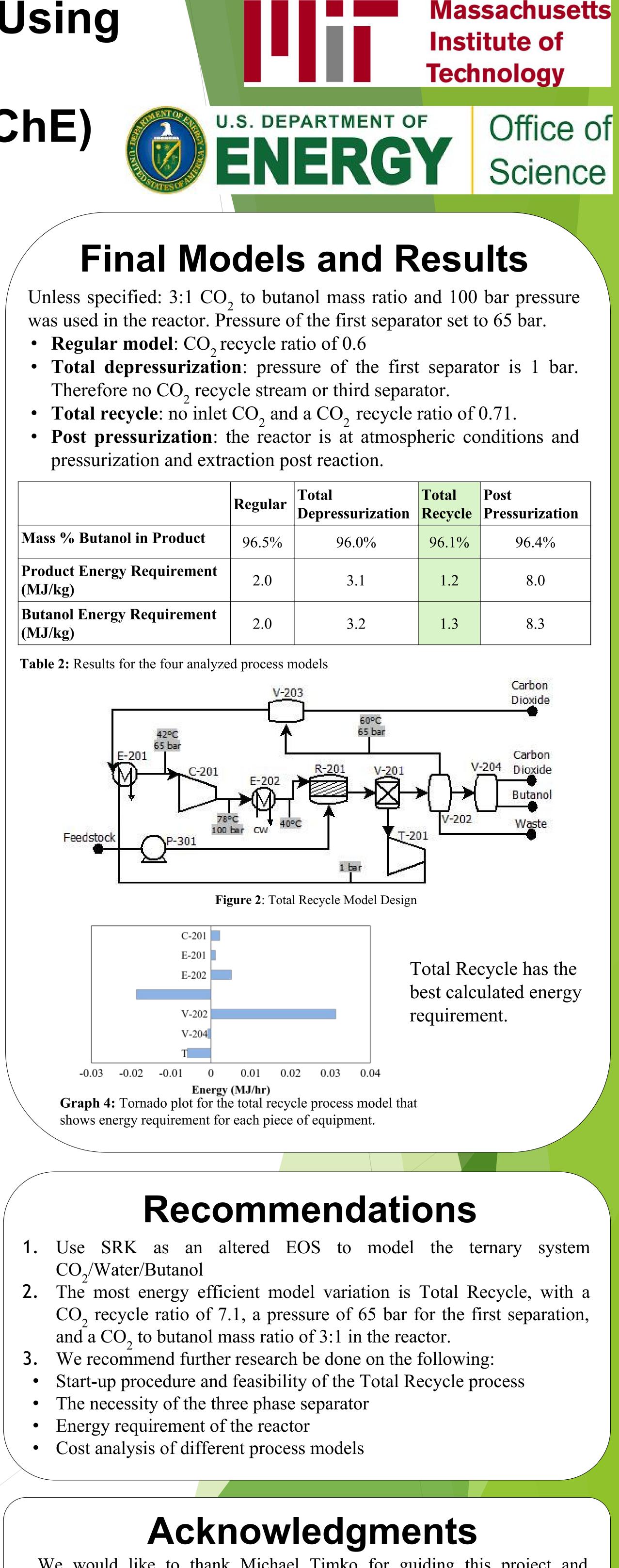
	SRK Absolute	SRK Absolute	
Compound	Average Relative	Average	
	Deviation (%)	Deviation	
Gas			
CO2	0.92%	0.009	
Butanol	98%	0.007	
Water	42%	0.010	
Liquid 1			
CO2	14%	0.020	
Butanol	8%	0.018	
Water	7%	0.031	
Liquid 2			
CO2	46%	0.001	
Butanol	15%	0.005	
Water	0%	0.003	

 Table 1: Altered EOS analyzed for accuracy of
representing CO₂/water/butanol system at critical conditions


Graph 1: Comparison of experimentally found compositions versus calculated compositions for the Liquid 2 phase of CO₂ with a unity line (example graph)

SRK equation of state accurately predicts the phase composition of the CO₂/water/butanol at our desired temperature and pressure

Absolute Average Relative Deviation $= (abs(\bar{x}_{calc} - \bar{x}_{exp})/\bar{x}_{exp}) * 100\%$


Absolute Average Deviation $= abs(\bar{x}_{calc} - \bar{x}_{exp})$

Equation of State Results

LK-PLOCK SRK PENGROB

	Regular	Total Depressurization	T R
Mass % Butanol in Product	96.5%	96.0%	
Product Energy Requirement (MJ/kg)	2.0	3.1	
Butanol Energy Requirement (MJ/kg)	2.0	3.2	

We would like to thank Michael Timko for guiding this project and showing his support throughout its completion. In addition, we would like to thank DOE for funding the project and MIT for collaborating with us.