
!
!Web!Service!Registry!

!!A!Major!Qualifying!Project!Report!

!!!!!!!!!Submitted!to!the!Faculty!of!

WORCESTER!POLYTECHNIC!INSTITUTE!

! !!!!In!partial!fulfillment!of!the!requirements!for!the!

Degree!of!Bachelor!of!Science!

!
Submitted!on!

!!!Monday,!January!12,!2015!

!

Project!Sponsor:!!!!!! JPMorgan!Chase!&!Company!

Submitted to:
!

OnPSite!Liaisons:!!!!!!Martin!Brownlie,!(VICE&PRESIDENT;&CORE&COMPONENT&ARCHITECTURE)&& !
!!!!!!!Michael!Wright,!(CORE&COMPONENT&ARCHITECTURE)& !

!

Project!Advisors:!!!!!!Prof.!Jon!Abraham,!Department!of!Mathematical!Sciences,!WPI!

!!!!!!!Prof.!Arthur!Gerstenfeld,!Department!of!Management,!WPI!

!!!!!!!Prof.!Micha!Hofri,!Department!of!Computer!Science,!WPI!

!!!!!!!Prof.!Xinmin!Huang,!Department!of!Electrical!and!Computer!Engineering,!WPI!

!!!!!!!Prof.!Kevin!Sweeney,!Foisie!School!of!Business,!WPI!

!

!

Submitted by:

John Bosworth, Computer Science

Ibraeim Bukhamsin, Industrial Engineering

Heather Jones, Actuarial Mathematics

Arin Kulvanit, Electrical and Computer Engineering

Jordan Wetzel, Computer Science

 i

Abstract

To assist JPMorgan employees in searching for a company created service application, our

team created an internal service registry from scratch to organize existing services in one central

location. Our team developed a user-friendly front-end web-based application that displays current

services as well as allows employees to add new services. We also focused on designing a back-end

for interfacing with our newly designed database that stores all information about current services.

Acknowledgement

We would like to thank Martin Brownlie and Michael Wright at JPMorgan Glasgow for their

advice and support throughout the completion of the project. We would also like to thank

Professors Jon Abraham, Arthur Gerstenfeld, Micha Hofri, Xinming Huang and Kevin Sweeney for

comments and suggestions offered during each week’s updates while we developed and completed

this project. We are thankful to all members of the Core Component Architecture (CCA) team

under the Assets Management group who helped us in the process of developing the Web Service

Registry. Finally, we would like to thank JPMorgan for the resources they have provided us to make

this project a success.

 ii

Exec Summary

 JPMorgan’s Asset Management line of business offers a variety of industry leading financial

services and manages roughly $1.7 trillion USD. To efficiently run their business, Asset Management

uses Service Oriented Architecture (SOA); this means it depends on roughly two hundred internal

applications (services) that support many day-to-day business operations. Asset Management has

multiple development teams that create new services based on business needs.

Currently, there is no organization of these internally created services. The only way for an

employee to know about a particular service is for the service to have been created specifically for

them or to hear about it from a colleague. When a business unit desires a new service, there is no

way for them to check if a similar application already exists. Within Asset Management many

business functions overlap and there is potential for services to be used across multiple business

units.

This project aimed to assist JPMorgan in organizing and cataloging their existing services as

well as creating a platform to add information about new services as they are developed. The goal of

the project was to build a front-end for our service registry that displays current services as well as a

back-end to store all information about services and their development teams. Our service registry

was designed to help organize the SOA and encourage more services to be developed.

To develop our service registry we focused on three main sections. First, we built a front-

end user interface using AngularJS, which is the standard web development language defined by

JPMorgan. Second, we designed a server in Java to effectively communicate between the front-end

and the database. Third, we constructed a database using SQL and Oracle to store all user entered

data about services and development teams. These three levels were integrated to form a

fundamental service registry.

 iii

The registry allows users to search through existing services for a particular business need.

The service registry interface was designed to be simple and intuitive to use. It allows an employee

to create and manage a service by first adding their team to the registry and then attaching a service

to their team. Connecting a service to its individual development team was important in order for a

service user to be able to obtain it from the team after finding it on the service registry. In addition,

if there are any issues with the service then a service user will know which team to contact. Services

can have multiple versions that can be cataloged on the registry as they are developed. One service

can also depend on another service; this relationship can be entered on the registry and viewed by all

users. Services and teams can be interactively managed through adding, editing, and deleting.

The service registry we created will greatly impact the Asset Management division of

JPMorgan. Our registry will be moved to the production phase of development one month after we

depart. The production phase will deploy the website and allow all employees to have access and the

ability to start adding their services. Our service registry assists employees by enabling them to find a

desired service from one central location so that they do not have to ask multiple teams if it has

been developed. The service registry facilitates a more efficient application development process

because the services are easy to find and can be more widely used. The service registry will assist

employees in finding new services that can be applied to their business unit and overall improve the

workflow by spreading SOA.

 iv

Authorship

The writers are listed to the right of the corresponding sections of this report. We edited each
section of the paper together.

Cover Page Arin Kulvanit
Exec Summary Heather Jones
Abstract Heather Jones
Acknowledgements Arin Kulvanit
1.0 Intro Heather Jones
2.1 JPMorgan Chase & Co Heather Jones
2.2 JPMorgan and Services Jordan Wetzel
2.3 Service Registry Arin Kulvanit
2.4 Technologies Review John Bosworth
3.0 Methodology Intro Heather Jones
3.1 User Focus Arin Kulvanit
3.2 Features Ibraeim Bukhamsin
3.3 Coding practices Heather Jones
3.4 User Interface John Bosworth
3.5 Java API Jordan Wetzel
3.6 Database Design and Implementation Ibraeim Bukhamsin
3.7 Administrative Reports Heather Jones
3.8 Summary Arin Kulvanit
4.0 Results Introduction Heather Jones
4.1 User Interface John Bosworth
4.2 Java Server Jordan Wetzel
4.3 Database Ibraeim Bukhamsin
5.0 Recommendations Introduction Heather Jones
5.1 Administrative Reports Heather Jones
5.2 Registering an External Service Ibraeim Bukhamsin
5.3 Notifications Tool Heather Jones
5.4 Education and Expansion Ibraeim Bukhamsin
6.0 Conclusion Heather Jones
Appendix A Heather Jones
Appendix B Arin Kulvanit
Appendix C-H All

 v

Table!of!Contents!

Abstract(...(i!

Acknowledgement(...(i!

Exec(Summary(...(ii!

Authorship(...(iv!

1.0(Introduction(..(1!

2.0(Background(...(4!
2.1(JPMorgan(Chase(&(Co.(...(4!
2.2(JPMorgan(and(Services(...(5!
2.3(Service(Registry(..(5!
2.4(Technologies(Review(..(6!
2.4.1!Languages!...!6!
2.4.2!Tools!...!8!
2.4.3!Language!Libraries!..!10!

3.0(Methodology(...(14!
3.1(User(Focus(..(15!
3.2(Features(...(15!
3.2.1!Main!Features!..!15!
3.2.2!Features!by!user!type!...!21!

3.3(Coding(practices(...(24!
3.3.1!Test!Driven!Development!..!24!
3.3.2!Pair!Programming!...!25!
3.3.3!Scrum!Planning!...!25!

3.4(User(Interface(..(28!
3.5(Java(API(..(30!
3.6(Database(Design(and(Implementation(..(32!
3.6.1!Requirements!analysis!..!32!
3.6.2!Logical!data!model!..!32!
3.6.3!Specifying!DBMSs!..!33!
3.6.4!Physical!data!model!..!34!

3.7(Admin(Reports(..(36!
3.8(Summary(...(36!

4.0(Results(..(38!
4.1(User(Interface(..(39!
4.1.1!Services!..!39!
4.1.2!Teams!..!41!

4.2(Java(Server(..(42!
4.3(Database(..(44!

5.0(Recommendations(..(46!

 vi

5.1(Administrative(Reports(...(46!
5.2(Registering(External(Services(..(46!
5.3(Notifications(Tool(...(47!
5.4(Education(and(Expansion(..(47!

6.0(Conclusion(...(49!

References(..(51!

Appendix(A:(Proof(of(Concept(..(53!

Appendix(B:(Sprint(Stories(..(55!

Appendix(C:(Service(Registry(Homepage(...(58!

Appendix(D:(Service(View(..(59!

Appendix(E:(Add(Team(Wizard(..(61!

Appendix(F:(My(Team(View(...(63!

Appendix(G:(Add(Service(Wizard(..(64!

Appendix(H:(Administrator(View(..(68!

 vii

Table of Figures

Figure 1: Service registry design .. 2!
Figure 2: Service registry development .. 14!
Figure 3: Add team flowchart .. 16!
Figure 4: Delete a team flowchart ... 17!
Figure 5: Add a service to the registry flowchart ... 18!
Figure 6: Delete an existing service flowchart .. 19!
Figure 7: Service version statuses .. 20!
Figure 8: Delete an existing version flowchart .. 21!
Figure 9: Features by user type .. 23!
Figure 10: Test driven development ... 24!
Figure 11: Scrum framework .. 26!
Figure 12: Scrum board layout ... 26!
Figure 13: Definition of done ... 27!
Figure 14: Model-View-Controller ... 29!
Figure 15: HTTP methods .. 31!
Figure 16: Database update process .. 35!
Figure 17: Service registry technologies ... 38!
Figure 18: RESTful API levels .. 44!
Figure 19: Database schema .. 45!

 1

1.0 Introduction

 JPMorgan is a leading financial services firm and banking institution in the United States and

internationally. JPMorgan develops many internal services to help them easily query large databases

for only specific information and to support business operations, for example retrieving necessary

country codes and current exchange rates from a database of worldwide information. Services

provide an added layer of security for the database because individuals do not access the database

directly and thus cannot unintentionally change the database or see information they do not have

access to. The Asset Management division within JPMorgan has many development teams that have

created services for different uses.

The Private Bank sector within Asset Management was looking for a way to catalog all of

their available internal services. Employees had no means to find a service or even know of its

existence unless they were part of the team that asked for its development. JPMorgan saw the

opportunity to raise awareness about available services in order to improve reusability and prevent

similar services from being created by multiple teams. A third-party vendor was found that offered a

service registry system to catalog the Private Bank’s existing services; however, this system lacked

features JPMorgan was looking for and it was extremely costly. The goal of our project was to

develop a brand new internal online service registry to improve the employee awareness of available

services, centralize information about them, and increase access to them.

We developed a user-friendly web-based application that displays current services as well as

allows employees to add a new service they have created. We designed a back-end for interfacing

with our newly designed database that stores all information about current services. We built the

service registry to have a web-based user interface that communicates to a server that connects to a

database as seen in figure 1. This three-part system allows the application to take in information

 2

about a service on the front end and send it to the database to be stored. Also, this system allows the

front end to effectively call the backend through the server and retrieve any needed information to

display.

Figure 1: Service registry design

The registry allows users to search through existing services for a particular business need.

The service registry interface was designed to be simple and intuitive to use. It allows an employee

to create and manage a service by first adding their team to the registry and then attaching a service

to their team. Connecting a service to its individual development team was important in order for a

service user to be able to obtain it from the team after finding it on the service registry. In addition,

if there are any issues with the service then a service user will know which team to contact. Services

can have multiple versions that can be cataloged on the registry as they are developed. One service

 3

can also depend on another service; this relationship can be entered on the registry and viewed by all

users. Services and teams can be interactively managed through adding, editing, and deleting.

The service registry we created will greatly impact the Asset Management division of

JPMorgan. Our registry will be moved to the production phase of development one month after we

depart. The production phase will deploy the website and allow all employees to have access and the

ability to start adding their services. Our service registry assists employees by enabling them to find a

desired service from one central location so that they do not have to ask multiple teams if it has

been developed. The service registry facilitates a more efficient application development process

because the services are easy to find and can be more widely used.

 4

2.0 Background

2.1 JPMorgan Chase & Co.

JPMorgan Chase & Co. is a leading financial services firm and one of the largest banking

institutions in the United States of America and worldwide. JPMorgan is included in the Dow Jones

Industrial Average and holds $2.4 trillion in assets along with $211.2 billion in stockholders’ equity.

Fortune named JPMorgan their number one “Most Admired Company” in the world among

Megabanks in 2012, 2013, and 2014. JPMorgan could not succeed as well as it does today without its

solid history of financial strength and leadership (JPMorgan Chase & Co., 2013).

 JPMorgan is built on over two hundred years of strong banking tradition with roots tracing

back to the Manhattan Company chartered in 1799 in the U.S. JPMorgan has endured and shown

leadership during times of economic growth and financial uncertainty. During the nineteenth

century, JPMorgan developed relationship banking, where customer loyalty is the key to success. JP

Morgan Chase & Co. is the result of many strategic mergers of financial companies allowing it to

survive in times of instability and grow to be the international company we know today (Company

History, 2014).

 JPMorgan is a current leader in investment banking, financial services for consumers and

small businesses, commercial banking, asset management, and private equity. Internationally,

JPMorgan has grown with roots in Europe tracing back to 1838 and in Asia since 1872. JPMorgan is

an industry leader in financial services as well as cutting edge technology; their European

Technology Center in Glasgow, Scotland recently celebrated its 15 year anniversary. JPMorgan’s rich

history has provided the firm with a strong foundation to lead the financial services and banking

industry today and maintain a strong brand name (JPMorgan Chase & Co., 2013).

 5

2.2 JPMorgan and Services

Services are created primarily for the purpose of obtaining information from a remote

storage location such as a database. Some databases are accessible directly from a client via the use

of SQL statements or other methods; however, services provide a layer of abstraction and

protection between the client and storage location. The client can make a call to a particular service,

such as an ISBN lookup for a library, and that service will take care of the retrieval of the specified

information from the storage location and return the result back to the client. This added level of

abstraction is useful for several reasons, mainly security and ease of use. On the security side,

services prevent the client from making direct interactions with the database by using predetermined

calls set by the creators of the service. Services also prevent users from accessing or modifying

unauthorized information by limiting the calls to ones that return a specific grouping of data. In

addition, services allow for much more user-friendly interactions with a database than if a client had

to provide the calls necessary to obtain the information directly.

 In JPMorgan, services are primarily used to query large data towers which house internal

information such as investment strategies for various products, business areas involved in these

strategies, company reference data, and currency codes. This data is useful to different lines of

business within the company, specifically internal application designers who need to include this

information in their own products. For example, developers at JPMorgan could query a service to

obtain data that would then be displayed in a drop-down menu for the user select.

2.3 Service Registry

Service registries are developed as a way to catalogue existing services to allow users to locate

these services; without the service registry, finding services is not always easy. As part of

 6

JPMorgan Assets Management, the Core Component Architecture (CCA) team seeks to build their

own service registry to organize their internal services. A service registry creates a central location

for which services can be accessed and relocates all useful information into a single application

(Treiber, 2007). If one is looking for a type of service, one can use a service registry as a search

engine by entering keywords. Each entry can contain connectivity information; in this case a service

will be connected to its development team (Bou-Ghannam, 2007). At first JPMorgan wanted to buy

a service registry from IBM; however, JPMorgan decided not to due to high expenses and lack of

flexibility regarding modifications. JPMorgan decided to create its own web service registry that

would improve delivery time, increase productivity, and allow for future expansion.

 The creation of an in house service registry began with the proof of concept developed by

former summer interns at JPMorgan. The proof of concept lacked useful desired features such as

team view, team members, and service version. The interns’ design failed to incorporate desired

technologies to develop the service registry, thus requiring an entirely new registry to be created. A

service registry is an important part of improving JPMorgan’s service-oriented architecture.

2.4 Technologies Review

 Numerous technologies were used throughout the development and completion of the

project. A brief literature review of each tool and language is provided below.

2.4.1 Languages

Java

 Java is an Object-Oriented programming language designed around the ideal “write once,

run anywhere.” In this project, Java is used as the server language connecting the front-end and the

database. Java’s Object-Oriented ideals allow for access to the database with less risk of exposing

details of the database to malicious users. Java’s versatility and compression of complicated tasks,

 7

such as garbage collecting, has made it one of the most popular languages used in software

development today.

JavaScript

 JavaScript is a prototype-based scripting programming language with support for Object-

Oriented, imperative, and functional programming styles. JavaScript’s primary use is for dynamic

interactions with websites. With the popularization of JavaScript, websites have become faster and

more interactive because they don’t have to load new pages in order to display minor changes.

JavaScript can make requests to servers and dynamically display the server response. JavaScript,

beyond name, has no relation to Java, following very different paradigms, syntaxes, and semantics.

SQL

 Structured Query Language (SQL) is a special-purpose programming language designed for

maintaining data held in database systems. SQL handles all interactions between the server and the

database including but not limited to: a search query around specific criteria; inserting new

information into a database; or deleting unwanted information from a database. There are many

variations of SQL, such as MySQL and T-SQL, but they all follow similar syntaxes.

HTML

 Hypertext Markup Language (HTML) is the standard markup language for the creation of

webpages, but is not considered a programming language. HTML arranges webpages using nested

tags that hold many attributes. A web browser is able to parse the HTML tags and display the results

according to a semi-standardized list of rules. Every browser treats HTML slightly differently

 8

especially with the onset of HTML5. The lack of standardization between web browsers can cause

display issues and make a fully functional webpage in any web browser difficult to create.

CSS

 Cascading Style Sheets (CSS) is a style sheet language used for the stylization of HTML

pages, but is also not considered a programming language. CSS is a list of instructions for browsers

to follow when displaying an HTML page and provides the majority of the look and formatting of a

web page. CSS can be used to help mitigate any cross-browser display issues from pure HTML5.

However, there is also a lack of standardization between web browsers on the reading of CSS,

forcing developers to often create different CSS files for different web-browsers.

2.4.2 Tools

Eclipse

 The Eclipse Integrated Development Environment (IDE) acts as an editor, debugger,

compiler, and interpreter for computer programmers, best known for working with the Java

language which comes pre-installed with the Eclipse software development kit (SDK). Eclipse is a

free and open source program used to develop applications including web servers. Eclipse allows

programmers to work in a single environment with all the tools they need; any tools not pre-installed

can be downloaded as plug-ins. Eclipse is also able to integrate itself with other tools, such as the

Tomcat web server, and the Maven build tool which includes the Junit testing and code coverage

suite (Are you ready for Java, 2014).

Maven

 Maven is a software project management and build automation tool for Java projects

maintained by the Apache Software Foundation. Maven tracks both how the software is built and

 9

any dependencies that the software may require. The automation allows for consistency across

computers and simplifies the process by collecting dependent libraries and building the project.

Maven also automates testing, reporting, and documentation across the project, allowing for

developers to easily run all unit tests in a project and identify errors (Maven, 2014).

Sublime Text

 Sublime Text is a text and source code editor, and syntax highlighter for many languages.

Sublime Text is used in this project mainly for the editing of HTML, CSS, and Javascript files.

Though possessing no ability to build and execute code, or report errors, Sublime Text is useful for

increasing code readability by consistently highlighting alike syntaxes and maintaining proper

whitespace (Sublime Text, 2014).

Squirrel SQL

 Squirrel SQL is a graphical Java program that allows the user to view tables of the database

and browse the data of these tables. Squirrel SQL allows the user to run SQL commands containing

the structure of the database and view a graphical representation of all tables, relationships, and keys.

In addition, Squirrel SQL supports visual database testing by allowing the user to observe the impact

SQL statements have on tables (Squirrel, 2014).

DBMSs

 A Database Management System (DBMS) is a computer program that enables the user to

store, modify, and extract information from the database. A DBMS is where the final design of the

database is implemented to allow interactions with the server. An example is Hyper SQL

(HSQLDB), which is a small size database that runs in-memory to allow fast data transactions by the

 10

user. Another example is Oracle database, which is reliable for a large amount of data in a multiuser

environment.

PowerDesigner

 PowerDesigner is a collaborative enterprise-modeling tool for windows with a plugin for

Eclipse. PowerDesigner allows users to design database architecture in an easy, visual manner. Once

the data structure is created visually, it can be exported into the SQL database language and the

design imported into the project database. When a developer makes changes to the database in

PowerDesigner, instead of attempting to rebuild the entire database, PowerDesigner will create SQL

update code for the database to prevent loss of data already stored (Powerdesigner, 2014).

2.4.3 Language Libraries

JUnit

 JUnit is a unit-testing framework for the Java language. Unit testing is a software testing

method, characterized as being a collection of tests of the smallest testable parts of an application

while still testing expected functionality (JUnit, 2014).

AngularJS

 AngularJS, short for Angular Javascript and often referred to as Angular, is an open-source

web application framework created by Google. Angular is designed to help overcome many of the

challenges in developing a dynamic web page. Angular uses the Model-View-Controller architecture

to organize its code by first reading an HTML page with embedded Angular tags and attributes, and

 11

then interpreting the directives and binding JavaScript variables to HTML. As the JavaScript

variables change, the display of the HTML changes as well (AngularJS, 2014).

Karma

 Karma is an open-source unit testing JavaScript library, which extends AngularJS and allows

a user to easily test the functionality of their JavaScript code. The unit tests aim to be easy to read

and give useful responses in the event of a failed test. Karma allows a web developer to develop in a

test-driven manner, a previously near-impossible task.

Bootstrap

 Bootstrap is an open-source toolkit intended to help simplify and streamline the process of

creating a website’s layout and style. The toolkit is comprised of HTML and CSS templates for

components such as forms, buttons, and columns. Many sites developed since Bootstrap’s release in

2010 utilize the pre-created components, most notably being the social media site Twitter

(Bootstrap, 2014).

Protractor

Protractor is a tool used for AngularJS end to end testing, which tests the interactions of

different components of a system and ensures that they work together properly. The tests are

written in Javascript and used by Protractor to simulate user actions in a web browser and

determines if this created any errors in the application.

 12

JSON

JavaScript Object Notation (JSON) is a text format that is used for transmitting data objects

between a server and a website. JSON is human readable and smaller in size when comparing to

corresponding text formats, such as XML. Also, files that have the extension of .JSON are

noticeably faster when parsing to natural language or computer language (JSON, 2014).

MyBatis

MyBatis is a Java framework that links Java objects with stored SQL statements. MyBatis

eliminates the manual writing of all the Java Database Connections (JDBC) that handles the setting

of parameters. MyBatis utilizes simple XML or Annotations for configuration and map primitives.

Spring Framework

 The Spring Framework is an open source application framework for Java. Spring’s main

features can be called by any Java application. This framework has extensions for building web

applications based on the Java EE platform. The web extension uses a model-view-controller

framework to provide code annotations for development and customization of web applications and

RESTful web services.

Jersey

 Jersey is an open source RESTful web services framework. This production quality

framework supports JAX-RS APIs. Jersey provides its own API that has additional features and

utilities to further simplify RESTful service and client development (Jersey, 2014).

 13

Moneta

 Moneta is an internal JPMorgan collection of libraries that utilizes a number of industry

leading libraries combined with additional code to provide many additional features. Moneta assists

with authentication and validation in Java. Moneta also provides flexible logging across deployment

environments along with integration throughout to assist in data handling.

 14

3.0 Methodology

 This project resulted in the delivery of an internal service registry to assist JPMorgan

employees in the search for a company created service application. The Assets Management division

at JPMorgan originally looked into purchasing a service registry from an outside vendor but that

proved to be too costly and did not provide all the functions they wanted. Figure 2 shows the

service registry’s progression from an idea to reality. The idea of creating a service registry was then

passed to the Core Components and Architecture (CCA) team to develop. The CCA team’s interns

developed a proof of concept that was used to prove feasibility of building the registry. Next our

project focused on building the entire service registry as highlighted in figure 2. Our service registry

was moved to the production phase after we departed and it is scheduled to launch in January, 2015.

Figure 2: Service registry development

The service registry we created took into account the needs of all possible users to develop

its functionality. In six weeks, our team developed a user-friendly front-end web-based application

that displayed current services and their development teams as well as allowing employees to upload

a new service they have created. We designed a back-end for interfacing with our database that

 15

stored all information about current services and teams. The service registry gathers all company

created services in one central location to make it easy for users to find the service they are looking

for.

3.1 User Focus

This project based its objective on the satisfaction of user stories. User stories are statements

used in everyday or business language that illustrates what users need to do as part of their job. For

example, if a service owner wants to build a team for services management then its user story would

be, “As a service owner, I would like to create my team to allow me to manage my services”. Our

sponsor provided us with a base set of user stories to build our project from. These user stories

focused on the needs of the expected users of our service registry. The more the project satisfied the

end user, the more the service registry was going to be easily recognized. The end-user would prefer

an interface that is easy to learn and use.

3.2 Features

Features of the service registry were obtained from user stories. We simplified these features

in order to understand all the steps required for implementation. Access to features of the service

registry depends on the user type, which is distinguished by an authentication process.

3.2.1 Main Features

The main features that JPMorgan desires in a service registry are: [1] searching and browsing

services; [2] creating a new team; [3] editing or deleting an existing team; [4] adding a new service; [5]

 16

editing an existing service and adding a new service version; [6] assigning a dependency for a service

version; [7] deleting a service; and [8] deleting a version.

Searching and browsing services are basic features of the service registry. All users can

search for a service and read its description without any authentication process.

A team is defined as a group of employees, comprised of two or more owners and any

number of members, who are providing a service. A team can upload one or more services to the

service registry allowing it to be searchable by other teams. Each team only has control over the

services it has created, which prohibits modifications of other teams’ services. The process of adding

a team to the service registry is illustrated in figure 3.

Figure 3: Add team flowchart

 17

Editing an existing team is a feature that is restricted to the team owner only. This is the only

condition for editing a team. On the other hand, deleting a team is a more complex process that is

illustrated by figure 4.

Figure 4: Delete a team flowchart

Adding a new service to the service registry is an essential feature and is shown by figure 5.

 18

Figure 5: Add a service to the registry flowchart

Editing an existing service and adding new service versions are restricted features to the

team owner; however, a service version might depend on the existence of other versions. Dependent

versions might belong to different services or to the same service. The dependent can be viewed as a

 19

child that is linked to a parent version, which is called the dependency. The process of linking two

service versions is called assigning dependencies and it is exclusive to the team owner. This process

allows subscribers of a service to receive notifications about updates such as deletion, changed

status, and availability of new versions.

Figure 6: Delete an existing service flowchart

As seen in figure 6, an existing service can be deleted if and only if all of its versions have

been deleted as well. Understanding the status of a service version is important to the process of

deleting a version. As displayed in figure 7, the status of a version is written in the description so all

users are informed about its current condition. Once all dependencies of a service are removed, the

version can then be deleted, as shown in figure 8.

 20

Figure 7: Service version statuses

 21

Figure 8: Delete an existing version flowchart

3.2.2 Features by user type

Features of the service registry are distinctive based on the user type. There are four user

types: [1] business analyst; [2] team owner; [3] team member; and [4] administrator. Users will have

to be authenticated in order to access specific views of the website containing the designated

features of their user type. Each user type and their associated features are displayed in figure 9.

 22

 A business analyst is any JPMorgan employee who is not authenticated as an administrator,

team member, or team owner. In addition, a business analyst can be any user who does not log in to

pass the authentication process. This type of user is limited to searching and browsing services.

 A team owner is a leader of the team who has access to extra features such as creating and

deleting services; whereas, a team member has more limited access to the team’s features.

 Finally, an administrator is the person who is responsible for controlling, monitoring, and

maintaining the service registry. Administrators have access to all features due to their critical role.

 23

Figure 9: Features by user type

 24

3.3 Coding practices

3.3.1 Test Driven Development

For our project we followed the Test Driven Development (TDD) style of programming.

TDD allowed our group to efficiently write code by providing constant feedback on our code’s

functionality. TDD is the process of writing simple failing tests before writing the functional code to

complete these tests. The next step is to write just enough functional code to pass the new tests.

Once the tests pass the next step with TDD is to restart the cycle and write another simple failing

test. Figure 10 shows the TDD process from start to finish. Development cycles until all

functionality requirements are completed.

Figure 10: Test driven development

 25

The main goal of TDD is to require a programmer to write code using small steps and

prevent excess code. Traditional programming is done by writing code first, then writing tests that in

theory should pass. When using traditional methods, debugging a failed test can be very time

consuming due to difficulty finding the problematic code. TDD allows the code design to adapt to

the programmers changing understanding of the problem more easily than traditional development.

Test Driven Development allowed our group to stay focused on small tasks at a time and progress

in an iterative manner. We used TDD over the course of our entire project as long as the situation

allowed.

3.3.2 Pair Programming

 Our group used pair programming to write our code, which involved two of our group

members sharing one computer and writing code together. The programmer at the keyboard is

called the “driver” and the other individual is the “navigator”. Pair programming allows both

individuals to share knowledge, exchange ideas, and help each other stay focused on the current

task. Pair programming greatly improved our design process and code quality by forcing discussion,

and allowing questions to be raised, on the best practices to complete a task. Two sets of eyes were

always looking at the code, which reduced the number of errors and improved our programming

efficiency.

3.3.3 Scrum Planning

 Our team used the Scrum framework to plan out and execute our project. The Scrum

framework outlines the process to successfully complete a complex problem as shown in figure 11.

 26

Figure 11: Scrum framework

 The first step is to write up all user stories necessary to complete the project. Our sponsor

created user stories to fulfill the ultimate design and functionality for the service registry based on

user requirements. The Scrum framework groups the stories into sections called sprints which, for

our project, lasted two weeks each. We assessed the stories by difficulty and assigned relative values

to each story. In Scrum, each sprint should ideally have stories with comparative levels of difficulty.

Also, the stories within each sprint are organized by dependencies on other stories to provide a clear

path for completion. During each sprint there are daily meetings called stand-ups where each

member of the team says what they accomplished yesterday and what they plan to do today; as well

as, any current problems they are having in accomplishing their story. Figure 12 displays the layout

of the scrum board and demonstrates the movement of tasks as they are completed. The daily scrum

meeting allowed our team to discuss the status of the stories.

Figure 12: Scrum board layout

Before a story can be moved into the done category on the board it must meet the

requirements that our team agreed upon. Figure 13 illustrates the steps that must be completed in

order to meet our team’s definition of done. During our sprint-planning meeting, we also discussed

 27

the steps in figure 13 and decided that integration tests are optional to meet the definition of done

because they are not always feasible for a particular story.

Figure 13: Definition of done

At the end of each two-week sprint our goal was to have a deliverable that can be presented

in its entirety with all the stories completed. We aimed to present a demonstration (demo) to our

sponsor at the end of each two-week sprint. Also, at the end of a sprint our team has a retrospective

that reviews how the sprint went. For this discussion each team member wrote down actions they

wanted the group to stop doing, do less of, keep doing, do more of, and start doing. Then we would

discuss each category (Stop, Less, Keep, More, and Start) as a group and set goals about how we

wanted to improve the next sprint.

 Our project involved using the Scrum framework to create an internal service registry for

JPMorgan employees to use when looking for a company created service application. Our team was

responsible for building a web-based application that will display current services; as well as, allow

 28

employees to upload a new service they have created. Also, we focused on designing a back-end for

interfacing with our newly designed database that stores all the information about current services.

We broke our project up into three sprints that were each two weeks long. For the first

sprint, we focused on setting up the database schema in Powerdesigner and creating the framework

for database interactions using Java. For the second sprint, we worked on setting up the user

interface and connecting it with the back-end. For the third sprint, we concentrated on adding more

functions to our service registry. The Scrum framework kept our team focused and gave us a clear

plan of the order to complete tasks in.

3.4 User Interface

 In order for our project to achieve its overarching goal of easily informing users of available

services and allowing access to them, we provided an intuitive, web-based Graphical User Interface

(GUI) to interact with our service registry. The challenge with designing a GUI is accounting for the

time required to program it. If a GUI is being designed for a web-based business, then a functional

and visually appealing GUI makes every detail of an artist’s design required; however, our project is

not being designed for a web-based business. Our project is focused more on being functional than

being displayed in a fanciful manner. In fact, unlike most web development projects, our project

lacks a designer entirely. Instead, we were tasked with creating a bare bone user interface that

properly displayed functionality in a user-friendly manner that would not take much time to develop.

 To achieve a functional GUI we used the built in constructs of Bootstrap, the HTML toolkit

discussed in section 2.4.3. Following Bootstrap’s default design patterns: curved edges; similar color

schemes; and the layout of navigation bar, title area, main content area, and footer from top to

bottom respectively, we were able to create a functional and user friendly website in minimal time.

 29

 However, a sleek and user friendly GUI is only half of the front-end. The other half deals

with the interactions of the user and the web page. To deal with the user interactions we

incorporated Bootstrap into an AngularJS framework. Angular follows the Model-View-Controller

Computer Science paradigm as seen in figure 14; of which, Bootstrap handled the view, what is seen

by the user. Angular and Javascript handled the model, where information is stored, and the

controller, where information is manipulated and the view updated.

Figure 14: Model-View-Controller

 30

 Approaching this project, we spent much of the focus of the frontend working in Angular,

an area we were the least familiar with. A large amount of time was devoted to learning Angular as

fast as possible. As the front end was programmed, it quickly became clear that there was much we

did not know about Angular, and we were forced to spend more time learning than originally

anticipated. We chose to use Angular for a large portion of our project, despite knowing little of its

workings, because it was an indisputable requirement of the project upon arrival. Our sponsor

required the use of Angular because it is a newer technology that is quickly gaining popularity among

web-developers.

 The integration of Bootstrap and Angular gave our project a modular design, allowing

common code to be abstracted and used in many locations. Abstraction is important for code

understandability, consistency, and future expansions.

 The last aspect of our front-end design was unit and end to end testing, which is not part of

the GUI. Testing was handled entirely by Angular plugins and used to ensure that changes to code

keep desired functionality. If a test fails, then the code is no longer acting as expected and needs to

be fixed. Testing is a vital part of the user experience, though the user will never actually see it

reflected in the GUI.

3.5 Java API

 To create an effective method of communication between the user interface and the

database system, we designed a RESTful application programming interface (API) which links the

two elements. REST (representational state transfer) is an architectural style used to develop

software and web applications. For web applications such as our service registry, the design involves

a base URL with links to various extensions that call standard HTTP methods such as GET, POST,

 31

PUSH, and DELETE as shown in figure 15. These calls send a JSON (JavaScript Object Notation)

string with the request type and any relevant data to a RESTful API that processes the request and

tells the database how to act. Once the database returns the query results, it is sent back through the

API to the front-end of the web application.

Figure 15: HTTP methods

We decided to use the Java programming language because of its object-oriented capabilities.

Java allowed us to capture data from the user interface or the database in an easily understandable

format, by creating instances of individual objects with specific properties. In addition, Java objects

can be quickly translated into formats that are readable by both the database and front-end with the

use of Spring Dependency Injection. Spring gives the capability to annotate Java code with tags that,

when compiled, tell the program where and how to send its information.

Another important reason we chose Java was the testing capabilities that the language

provides. With the JUnit testing suite, instances of objects such as services and teams can be created

each time a new test is run. Scenarios can then be built up which test how the code handles

successful outcomes, validation, and error checking.

 32

3.6 Database Design and Implementation

3.6.1 Requirements analysis

Requirements analysis specifies what the database is required to do in order to be considered

complete based on JPMorgan’s needs. The core goal of our requirements analysis was to fully

understand all needs by using business language instead of technical language. Our requirements

analysis included two main activities, collecting and recording requirements. Requirements analysis

was applied several times during the process of our database design in order to clarify unclear

language, and remove redundant or unimportant details (Buxton, 2009).

The collecting phase included both data and functional requirements. The data requirements

specified all user groups and application areas as column names in the database, called attributes; as

well as, operations that were applied to the data; such as, adding, deleting, and updating. Data

requirements are important because they are used as the basis of the database. On the other hand,

functional requirements specified all the tools and software that were used in the process of

designing and implementing the database. Our group analyzed the collected requirements by holding

several meetings to discuss and focus our thoughts.

Recording requirements is the process of documenting requirements in various forms. We

recorded our collected requirements by creating user stories in easily understandable business terms.

3.6.2 Logical data model

The logical data model (LDM) describes the structure of the collected requirements. The

LDM includes criteria such as attributes’ details, key statuses, and relationship types (Database

Design Essentials, 2011). Before the implementation of the physical database, our group designed an

LDM on paper. We began our design of the logical data model by separating the collected data into

 33

child and parent tables. A child table includes the data that is dependent on the data of a parent

table. Once all tables were constructed, primary keys were specified for all tables.

The primary key is a unique attribute that identifies each record in a table (Buxton, 2009).

We used three methods of specifying tables’ primary keys in the design of our database. First, we

looked for a unique attribute within each table to assign this attribute as the primary key. Second,

when a table did not include any unique attributes, then we used the server to automatically generate

a unique sequence to be used as the primary key. When this was the case the generated primary key

was added as an additional attribute to the table. Third, if a table had two or more attributes that

uniquely identified the table’s records, a compound of them was used as the primary key.

 A foreign key is an attribute in one table that references the primary key of another table.

The main goal of assigning a foreign key is to be used as a retrieval key for the data of the parent

table. The process of assigning a foreign key creates a relationship between a child and parent table.

A one-to-many relationship means that a single record of a table is connected to many

records of a second table through a foreign key. In other words, the foreign key recorded in the

second table can be used to reference a record in the first table. Our group designed the database to

have one-to-many relationships between all tables because it was the simplest and most useful

relationship (Moss, 2014).

3.6.3 Specifying DBMSs

A Database Management System (DBMS) is computer software used to organize, store, and

retrieve data of the database. A DBMS is where the final design of the database is implemented to

allow interactions with the server such as creation, querying of data, and maintenance of the

database. Our group decided to use two types of DBMSs, Hyper SQL for the development phase

and Oracle DB for the production phase.

 34

We used the Hyper SQL database (HSQLDB) for the development phase. HSQLDB is a

small database engine with in-memory and desk-based tables that supports embedded and server

modes. Since HSQLDB is loaded into memory with a fresh set of tables every time it is started, it is

more easily implemented into the development cycle than a standard database such as Oracle. Also,

HSQLDB allows multithreading, which is the ability to manage its use by more than one user at the

same time (HSQLDB, 2014). Due to these reasons, we used HSQLDB as our DBMS in our

development phase.

We chose the Oracle database for the production phase because of its well-known

reputation among enterprises. The Oracle database can be relied on to manage a large amount of

data in a multiuser environment, so that many users can concurrently access stored data. The Oracle

database offers high performance and a high level of standards regarding data security (Oracle,

2014).

3.6.4 Physical data model

The physical data model (PDM) defines how the data will be stored in a pre-specified DBMS

(Connolly, 2014). We used the PowerDesigner software to design the PDM, which translated the

LDM into a language that could be understood by the DBMS. The physical data model specifies

data types, field constraints, and alternate keys. Data types are a way for the database to understand

the form of data entered by users, such as integers, characters, and boolean values. Setting field

constraints is the process of specifying a set of certain entries to a data value. For example, our

PDM utilized these constraints to restrict entries of a service’s version status to invest, divest, or

maintain. An alternate key is similar to a primary key in that it must be unique for each entry in a

table, and is used as a secondary method for preventing the duplication of data.

 35

After adding all configuration details to the database design, PowerDesigner allowed for the

generation of multiple SQL files for the specified type of DBMS. Two SQL files were generated for

our DBMSs, one for the HSQLDB and the other for the Oracle Database. The SQL file for

HSQLDB was then inspected using a software tool called Squirrel SQL, a graphical Java program

that allowed viewing and browsing of database tables. The inspection was essential to guarantee

valid connectivity between the DBMS and the server; as well as, remove SQL statement errors

before proceeding to the real connection process. After the inspection, HSQLDB was connected to

the server in order to start the development phase. The database was updated several times during

the project, and the process of updating the database design is illustrated in figure 16.

Figure 16: Database update process

 36

3.7 Admin Reports

 One focus of this project was to create functions on our service registry that can generate

administrative reports and spreadsheets about the uploaded services and teams. These reports will

be useful to track available services and teams that are actively creating services. One example is a

report that shows service versions with unachievable Service Level Agreement (SLA) time due to

their dependencies. This report would allow a risk operative to see the team that created the service

in order to contact them and have them updated the service to reflect the proper SLA. Another

example is the generation of an administrative report that can be used to warn individuals and teams

that depend on a particular service if that service happens to temporarily stop working. The warning

will help to keep the proper workflow and prevent any unexpected business losses. Reports, such as

those highlighted in the previous examples, will help administrators, risk operatives, and project

managers to monitor internal JPMorgan services and keep all information up to date. Administrative

reports will be useful to many individuals at JPMorgan and help to improve the use of services.

3.8 Summary

Within the timeframe of six weeks, split into three sprints, we created the service registry

which satisfied many user stories by incorporating required features. The features included the

customization of services, service versions, and teams; as well as, assigning dependencies for

services. All users: business analysts; teams; team members; and administrators, should be able to

make adjustment for their specific needs. To accommodate the specifications of our sponsor, we

first had to plan out how to approach the development process.

 We accomplished the tasks in each sprint by using TDD, pair programming, and scrum

planning concepts. TDD allowed us to autonomously test the code and thus save time debugging.

Additionally, pair programming improved the design quality, satisfaction, and learning process.

 37

Scrum planning introduced effective iterations and leveraged team efforts for successful sprints.

Furthermore, a retrospective at the end of the sprint allowed for group discussions, improved

awareness of task challenges, and provided recommendations for the next sprint.

 The user interface allows the users to interact with the service registry in a simple manner.

Our project focused more on functionality than design; hence, we relied on Bootstrap’s default

templates to promptly create a standard website. Our team took the time to learn Angular because it

is a new web-development tool, providing invaluable experience and assistance for designing a web

application. Before front-end design could be considered done, unit testing, provided by Angular

plugins, was implemented to ensure desired functionality and make sure that the code was working

properly. Whenever the user interface wants to communicate with the database, our RESTful API

will answer the request. This API was implemented with Java due to the language’s object oriented

capabilities. An SQL query would then perform all the database related tasks.

 Requirements analysis, the collection and recording of requirements, helped us to

understand our sponsor’s needs, remove unimportant details, and distinguish data and operations

during the database design. A logical data model (LDM) is an abstract design that describes the

structure of the collected requirements. We used primary keys and foreign keys to connect child and

parent tables in our database. We specified two types of DBMS, HSQLDB for the development

phase, and the Oracle database for production phase. The physical data model (PDM) focused on

translating the LDM into a language that can be understood by DBMSs. After we created the PDM,

PowerDesigner generated the SQL for our DBMSs.

 Administrative reports would keep the data monitored and help the data be kept up to date.

Administrators, risk operative, and project managers would be able to regularly understand the usage

of services and make any necessary changes.

 38

4.0 Results

 The result of our project was a basic service registry designed for the internal use of

JPMorgan employees. Our service registry was developed in three tiers, as seen in figure 17: a front-

end, which acts as the view for the user; a server, which handles information from the frontend and

database; and a database, which stores information. The user interface is the front-end of the

application, built in AngularJS, that creates the website of the service registry. The server was built

using Java to effectively pass information from the user interface to the database. The database

stores all information added to the service registry about existing services and teams. All three parts

of our design constantly interact with one another to create our functional service registry.

Figure 17: Service registry technologies

Approaching this project, our team was aware that its completion was unlikely. Our sponsor

estimated that the project would take a minimum of ten weeks to complete and we were only able to

work on it for six. In the six weeks we had, we completed 21 stories, mostly completed 5 stories, and

did not begin 10 stories. The 5 mostly completed stories were left unfinished because they had

pieces that depended on the completion of at least one story we did not start. The 21 completed

stories were often composed of many smaller tasks that needed to be finished in order to complete

 39

the story. Supporting our completed and mostly completed stories were 97 JUnit tests providing

90% code coverage of coverable Java code, 86 Karma unit tests, and 12 Protractor end-to-end tests.

4.1 User Interface

Our user interface, from a computer science perspective, is separated into three reasonably

distinct sections: the model, the view, and the controller. The view is handled by Bootstrap, HTML,

and CSS, with elements of Angular that interact with both the model and the controller. The model

is handled by Angular, particularly by Angular defined services which are created into objects for

information storage. The controller is similarly handled by Angular, particularly by Angular defined

controller classes, which handled all interactions with the view. Following the Model-View-

Controller paradigm allowed for common code to get reused and for quick expansion of

functionality when needed.

From a user perspective, our front end is separated into several functional views that each

contains multiple layers based on user type. The functional views are focused on the different

aspects of the service registry, such as services or teams; whereas, the user layers alter the display of

the view based on the privileges of the current user. Ideally, users would only see functionality that is

accessible by their privilege level; however, currently all user types can see the links to all functional

areas of the web page. Due to time constraints, the ability to hide higher privileged areas was

considered non-vital, and replaced with the less time consuming method of redirecting

underprivileged users to an access-denied page.

4.1.1 Services

Viewing, browsing, and searching for services is allowed for all user types: business analyst,

team member, team owner, or administrator. The bottom section of the front page of the website,

as seen in Appendix C, displays a list of current services, with pagination and the option of

 40

increasing the length of the displayed list. Above the list of services is a search bar, for easily

browsing the contents of the list. Typing into the search bar will filter the services by all fields,

including those that are not shown.

When users find the service they are looking for, they can select the service name and will be

directed to a page containing more information on that service, as seen in Appendix D. On the

service view page, users can view more detailed information of a service including version

information. The service version information is displayed on the bottom half of the page in

Appendix D and allows users to see information on each version including dependencies and

dependents of the version with links to all dependencies and dependent services. The dependency

and dependent views can be seen in Appendix D. Due to time constraints, the view shown in

Appendix D is lacking several fields of information, such as links to documentation, as the

incorporation of uploading documentation was not implemented by the end of our time with the

project.

The privilege of adding a service is given to team owners and administrators. In order to add

a service, the user must select a valid SEAL ID. SEAL is a catalog of applications used by

JPMorgan, and a valid SEAL ID must be entered when creating any service on the registry. The

SEAL selection screen has a visible dropdown menu as seen in Appendix G. The next page of the

add a service wizard, as shown in Appendix G, allows the user to enter information about the

service, such as the service name and the team associated with it. Ideally, only team owners would be

able to create services for teams they are a part of; however, the prerequisite of user validation was

completed too late in the project, and the limiting of which teams can be selected was put on the

backlog for after our departure. The front end checks for the correct format of the data and, if any

errors exist, will not allow the user to proceed until the problem is corrected. Once valid service

information has been entered the user will be able to progress to the version information page as

 41

seen in Appendix D. Ideally, the version information page would have fields for uploading

documentation, but as stated earlier, the functionality of uploading documentation could not be fully

implemented due to time limits. Once all information has been entered, the user is sent to a

confirmation screen, as seen in Appendix G, where the user can submit the service to the database

and be brought to the service view page of the newly created service.

 Users can add or delete service versions along with dependencies on those versions;

however, editing a service is currently largely unimplemented. The view of a service page with

privileges to edit can be seen in Appendix H. Adding a service version is not fully implemented, due

to time constraints, and lacks of version validation. Ideally, a service can only have two different

major versions, attempting to add a third major version would result in the deletion of the oldest

major version, but this functionality was put on the backlog for after we leave because the

prerequisites required to implement it were not completed until our final sprint. Adding a

dependency is almost fully implemented, but lacks small validation preventing dependencies to

multiple versions of the same service. Finishing the validation of dependencies should not be a

difficult task, but it was put on the backlog due to being considered less vital for completion before

we left. The deleting of both service versions and dependencies are fully implemented.

4.1.2 Teams

The view teams page, as shown in Appendix F, is accessible by any team member, team

owner, or administrator, each with slightly different functionalities. Team members and team owners

can view any team they are assigned to via the view teams page. Team members may not edit team

information; whereas, team owners can edit only teams they are owners of, and administrators can

edit any team, as shown in Appendix H. Currently, teams can be searched for by team name, but the

table cannot be order alphabetically by team name. Due to time constraints, our sponsor considered

 42

the functionality of ordering the team view table by team name as too time-consuming and

insignificant.

The add a team page, as shown in Appendix E, allows any user to create a team. A team

must have a valid and unique name as well as at least two team owners. The add a team page has a

button to allow users to add as many members to their team as is required. The add a team page is

fully functional and has visual error checking on all fields.

4.2 Java Server

 To begin the design of our API, we utilized the Moneta Services template created by the

CCA team at JPMorgan. As mentioned in the Technologies Review, Moneta contains libraries and

tools to implement a RESTful service in Java. JPMorgan also provided an example of a Moneta

service on which we based our design. The example emulated a service that dealt with the passing of

information between a database and a client related to libraries, books, and authors. Creating a

template about a subject that was simple to understand allowed our team to quickly apply the

information to a new service based around our needs. The documentation that the CCA team

provided on the Moneta website, included a walkthrough on how to create a service and add

resources, also proved to be very useful.

In our Java code, we created multiple layers of abstraction to clearly separate the flow of data

from the user interface to the database system and vice versa. The main purpose for this abstraction

was to allow the addition of components within the application in the case of future modifications

by JPMorgan. The abstraction also separates error checking into levels that prevent propagation of

data in the event of a problem. In addition, the separate layers make the code much more readable in

 43

the event that JPMorgan employees outside of our team need to make changes to the service

registry.

 As shown by figure 18, data from the client is originally received at the resource level. This level

decides where to pass the data based on the type of HTTP message the client is sending. The

structure of the resource level was developed by using Jersey to annotate our code with tags that,

when compiled, tell Java which resource method to use. The data is then passed to a service level

that serves only as a buffer between the above and below levels. In the event that changes need to

be made to either, the opposite level will require minimal modifications to continue functioning

properly. From there, the data continues to the database access object (DAO) which contains

various calls to the database in order to retrieve, post, or modify data and also provides error

checking that can be passed up to the user interface in the case of invalid requests or input. Finally,

the data arrives at the database mapper, which uses MyBatis to transform the request into an SQL

query that performs the correct action at the database level. We chose MyBatis because it integrates

well with the Spring framework used to connect many other aspects of our server.

 44

Figure 18: RESTful API levels

4.3 Database

Database design included seven tables, which are services, service versions, lead design

authority (LDA), dependencies, teams, members, and administrators. The table of administrators

was not connected to any other table because there was no need to interact with its data. The table

of administrators served as a source to authenticate administrators when they access the website.

All other tables were connected by one-to-many relationships as shown in figure 19.

 45

 Figure 19: Database schema

After constructing the tables, we assigned a primary key for each table using the three

methods stated in section 3.6.2. First, an automatic generated primary key was assigned to tables that

do not include any unique attribute such as employee ID. Second, we used employee ID as a

primary key in tables where it exists as an attribute because it is unique for each record. Third, a

combined primary key was used in the member table, which includes both employee ID and Team

ID. The combined primary key was necessary in order to not duplicate an entry of a member on the

same team. After that, foreign keys were assigned by placing primary keys in other tables for the

purpose of retrieving records. An alternate key was assigned to each table to prevent duplicate

entries to the said tables. Alternate keys were usually constructed of more than one attribute since

one attribute might not guarantee the preventing of duplicated entries.

 46

5.0 Recommendations

 While this project resulted in a basic service registry for JPMorgan, several recommendations

can be made: adding the capability to pull administrative reports; to send notifications to teams;

registering external services; educating employees about the registry and expanding the use of the

registry beyond Asset Management.

5.1 Administrative Reports

 We strongly recommend that the CCA team at JPMorgan continue to improve the service

registry by adding a feature to create administrative reports. Originally we planned on implementing

this feature while working at JPMorgan, but due to time constraints it was out of the scope for our

project. Based on the needs of administrators, risk operatives, and project managers we see high

value in creating reports to help them view the current services and all information about them. One

example is to create a report that shows dependencies on a particular service. In the event of a new

service version being created the administrator can contact the appropriate team leaders to alert

them of the change. As services continue to be developed at JPMorgan the service registry allows

employees to find what they are looking for and administrative reports will help keep everything

monitored and up to date. Without these reports it would be very time consuming for administrators

to go through each service or team to find what they are looking for; however, an automatically

generated report can display desired information in a simple format such as a spreadsheet. Based on

user needs we highly recommend adding a feature to the service registry to create diverse reports.

5.2 Registering External Services

 In addition to registering internal services, we highly recommend adding the functionality of

registering external services from third-party vendors. Adding this functionality would limit the

 47

amount of duplicate external services because they are grouped in a central location. When a team

depends on an external service, the team would be able to register their usage of the service. If other

teams need to assign their dependencies of the same external service, the service will be discoverable

through the registry. Registering external services will increase the use of the registry since teams can

keep track of all types of services whether internal or external.

5.3 Notifications Tool

We recommend adding the functionality to send email notifications from the service registry

to reach out to users and inform them of any important changes with services they use. For

example, when a service gets marked as divest the registry would send out notifications to all

services that are dependent on it. This notification would let the dependents know that they should

update to a newer service version because the one they currently depend on is outdated. These

notifications will allow the registry to stay updated and give users warning before service versions are

deleted.

5.4 Education and Expansion

One reason that JPMorgan’s reputation is increasing from year to year is the amount of

courses provided to employees. Example of these courses are understanding fraud transactions,

understanding corruption in stock market, learning a new programming tool or coding style, and

learning a new technology used in the firm. Courses have mutual benefits for both the firm and the

employees; therefore, we strongly recommend providing a short online course to educate employees

 48

about the service registry. The course will educate employees of the service registry’s existence as

well as explain the advantages and outcomes of using it.

 49

6.0 Conclusion

The internal service registry created a platform to organize existing services, search through

existing services, and record newly developed services and development teams. The service registry

allows JPMorgan to track all current versions of services and their availability. When adding a new

service to the registry all information provided by the user is validated for correctness, and for

certain fields the registry calls other databases to validate the information.

Before the existence of the service registry, a JPMorgan employee would have no way to find

new services except for asking colleagues. Services created for a specific team were only used within

that team when they could potentially be expanded for use throughout the company. The service

registry we created will hold information about all the services developed for Asset Management in

one central location. The service registry will allow employees to easily find new services that can be

applied to a business process they use. The service registry promotes the use of existing services and

encourages employees to further develop a service oriented architecture.

Throughout the project our team built a service registry from the ground up which will be

moved to production after we depart. Our team combined our knowledge from each of our

different areas of study to collective build the service registry. Approaching the project from a

computer science, actuarial mathematics, industrial engineering, and electrical and computer

engineering prospective allowed our group to develop and discuss the best ideas for how the service

registry would operate. Once the service registry is deployed in the production phase, it will be open

for all employees to use and add services to. We built a basic model for this service registry, but

there are still some additions to be done in the future. The service registry can be improved with

additions such as adding the capability to upload documentation on the service, to create

administrative reports, and to send notifications to a team when necessary. Finally, the service

 50

registry is only for employees in the Asset Management department of JPMorgan and we suggest

expanding the service registry company wide.

 51

References

AngularJS. (n.d.). Retrieved December 20, 2014, from https://angularjs.org/

Are you ready for Java™ 8? (2014). Retrieved December 20, 2014, from https://eclipse.org/

Bootstrap. (n.d.). Retrieved December 20, 2014, from http://getbootstrap.com/

Bou-Ghannam, A. A., Creamer, T. E., Moore, V. S., Narayan, V., & International Business Machines

Corporation. (2007).Telecommunication service registry

Buxton, S. (2009). Database design: Know it all. Amsterdam: Morgan Kaufmann /Elsevier. Retrieved

December 19, 2014.

Company History. (2014). Retrieved from https://www.jpmorgan.com/pages/company-history

Connolly, T., & Begg, C. (2005). Database systems: A practical approach to design, implementation, and

management (4th ed.). Harlow, Essex, England: Addison-Wesley. Retrieved December 19,

2014.

Database Design Essentials. (2011, April 1).SQL Server Magazine. Retrieved December 19, 2014

HSQLDB. (n.d.). Retrieved December 19, 2014, from http://hsqldb.org

Jersey. (n.d.). Retrieved December 20, 2014, from https://jersey.java.net/

JPMorgan Chase & Co. (2014). 2013 complete annual report of JPMorgan Chase & Co. Retrieved from

http://investor.shareholder.com/JPMorganChase/annual.cfm

JSON. (n.d.). Retrieved December 20, 2014, from http://www.json.org/

JUnit - About. (n.d.). Retrieved December 20, 2014, from http://junit.org/

Maven. (n.d.). Retrieved December 20, 2014, from http://maven.apache.org/

MOSS, K. (n.d.). The Entity-Relationship model. WEB Site Simulations4Teaching.co.uk, 6-6. Retrieved

December 19, 2014, from http://ieeexplore.ieee.org/Xplore/home.jsp

Oracle | Hardware and Software, Engineered to Work Together. (n.d.). Retrieved December 19,

 52

2014, from http://www.oracle.com/index.html

PowerDesigner. (n.d.). Retrieved December 20, 2014, from http://www.powerdesigner.de/en/

Squirrel. (n.d.). Retrieved December 20, 2014, from http://squirrel-sql.sourceforge.net/

Sublime Text. (n.d.). Retrieved December 20, 2014, from http://www.sublimetext.com/

Treiber, M., Treiber, M., Dustdar, S., & Dustdar, S. (2007). Active web service registries. IEEE

Internet Computing, 11(5), 66-71. doi:10.1109/MIC.2007.99

 53

Appendix A: Proof of Concept
 Homepage:

Search page:

 54

Upload service page:

 55

Appendix B: Sprint Stories

Role Service Owner Business
Analyst

Project
Leader

Others

 Sprint 1 Create a team to
allow service
management

Browse all
available
services

Add a brand
new service

Assign a team to
a service

 Delete a team I
own

 Add a new
version of
my service

I would like to
add the Swagger
documentation
related to my
service version.

 Delete unused or
old service
versions

 Register
Dependencies
my services may
have on other
services

 See which teams
have registered a
usage of my
services.

 56

Role Service Owner Business Analyst Others

 Sprint 2 Promote my
service version
from Test to
Production

Find services by
words in either
their name or
their description
(Filtering)

I would like to
upload the WSDL
and schema
information
associated with my
service version.

 Delete a service
that has
dependencies

 As an Operate
member, I want to
understand the
dependents of a
service so I
understand the
impact in the event
of an outage.

 Display all clients
that are dependent
on my service

 As part of the
service team, I
would like to edit
my service.

 Mark a service as
divest so that I can
start to migrate all
clients to a new
version

 As a client of a
service, I would like
to register my
service usage to
allow me to be
informed when
services are being
changed or retired.

 Edit my team

 See all services I
own

 Upload examples
on how to use my
service

 57

Role Service Owner Risk Operative Project
Leader

Others

Sprint 3 Want swagger
documentation
built into his
development
cycle via
maven.

Understand
which services
have
unachievable
SLAs so that
this can be
remediated

Register
external
services or
vendor
service, so
that I can
subsequently
register my
dependencies
on the service.

As a Project
Management
Operator user,
I would like to
run various
reports.

 Create and
Maintain
Administrative
Team

 58

Appendix C: Service Registry Homepage
Homepage:

 Homepage Search by Name:

 59

Appendix D: Service View
Service View Main:

Service View Second Version:

 60

Service View Dependencies:

Service View Dependents:

 61

Appendix E: Add Team Wizard
Add Team Main View:

Add Team With Error Checking:

 62

Add Team Multiple Members:

 63

Appendix F: My Team View
My Team Main View:

My Team Editing:

 64

Appendix G: Add Service Wizard
Add Service SealID:

Add Service SealID Error Checking:

 65

Add Service General Information:

Add Service Drop Down of Available Teams:

 66

Add Service Error Checking:

Add Service Version:

 67

Add Service Version Error Checking:

Add Service Conformation Page:

 68

Appendix H: Administrator View
Admin Services View:

Admin Service View:

 69

Admin Add Version:

Admin Add Version Information:

 70

Admin View Deleting a Version:

Admin View Add Dependency:

 71

Admin View Add Dependency Select Service:

Admin View Add Dependency Select Version and Submit:

 72

Admin View with New Dependency:

Admin View Deleting a dependency:

 73

Admin Team View:

Admin Team View Collapsed:

