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Abstract

The motor protein kinesin-1 plays an essential role in transporting cellular cargoes within
eukaryotic cells. When bound to a microtubule in the presence of ATP, kinesin-1 motors
repeatedly take steps along the microtubule’s protofilaments. A group of kinesins “walking”
together can cooperatively transport various cellular cargo over relatively long distances.
While much is known about the transport by individual kinesin-1 molecules, very little
is known about the specific mechanisms of cooperative kinesin-based transport. Here, we
developed a two-dimensional stochastic model of cargo transport via multiple kinesins and
compared our simulation results with experimental data. The simulation focuses on the
modeling of quantum dot cargoes transported along a microtubule. We found that high
motor densities lead to increased run lengths, increased association times and decreased
velocities, and that our stochastic model recapitulates experimental data reasonably well.
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Chapter 1

Introduction

1.1 Transport in cells

Cells, the fundamental building blocks of life, are large collections of organelles held together
by a plasma membrane. These organelles, such as the mitochondria, Golgi apparatus, and
the nucleus found in eukaryotic cells, exist to carry out specific, vital functions within the
cell. Also contained within the plasma membrane is the cytoskeleton, a protein scaffold that
gives the cell structures and plays a large role in intracellular transport and cell division [14].
Figure 1.1 shows a typical cellular structure for an animal cell.

Nucleus

Muclear pore
Chromatin
Nuclear envelope
Mucleus
Mucleolus

Peroxisome
Microtubule
Lysosome

Free Ribosomes
Mitochondrion

Plasma membrane Intermediate Filaments

Golgi vesicles

(golgi apparatus)

Ribosomes

Rough endaplasmic reticulum

Smooth endoplasmic reticulum
Actin filaments

Cytoplasm
ecretory vesicle

Centrosome
[with 2 centrioles)

Flagellum

Figure 1.1: A cartoon revealing some of the various organelles that can be found inside
eukaryotic animal cells. Image by Ruiz [16].



Some prokaryotic cells, like bacteria, rely on diffusion for intracellular transport. The rel-
atively small size of a bacterium allows for efficient transport of waste products and nutrients
across the cell plasma membrane via diffusion. To demonstrate, consider the bacteria E. coli,
which typically has a diameter of 0.5 um and a length of 2 um [15]. With a diffusion constant
D ~ 103 um? /s [2], we can calculate the average time it would take for a small particle to
diffuse across the length of the cell to be ¢t ~ 20ms. By comparison, for a eukaryotic cell
with a length of 50 um, the same particle would take 1.25s to diffuse across the entire cell.
This shows that intracellular diffusion is ineffective over longer distances and with bigger
cargos, so larger cells require a more efficient transportation system.

Unlike bacteria, neuron cells in animals rely on a microtubule-based transport system to
distribute resources within the cell, and to send communications quickly through complex
neural networks. Within the cytoskeleton is a network of microtubules (MTs), along which
cellular cargo can be transported. Small motor proteins like dynein and kinesin walk along
MT protofilaments and carry neuronal cargoes to different parts of the cell at great speeds.
Huntington’s disease and other disorders are caused by defects in MT-based transport that
lead to accelerated decay rates of neurons [11].

Another important example of MT-based transport can be observed during cell divi-
sion, in which mitotic spindles are assembled by various motor proteins and organized into
two opposite polar sets. This bipolar organization is crucial in the separation of daughter
chromosomes during mitosis. Hundreds of Egb kinesin-5 motor proteins bind to two anti-
parallel MTs and step along each to create a driving force that helps separate the two sets
of chromosomes [3].

1.2 Microtubules

An important part of the cytoskeleton, MT networks provide the cell structure and a means of
intracellular transport. MTs typically emerge from a cell’s MT organizing center (MTOC)
and branch out into the cell. Motor proteins like dynein and kinesin can bind and walk
along individual MTs, allowing for transport of cellular cargoes to different parts of the
cell. Other proteins, like the MT-severing protein katanin, help regulate MT properties like
polymerization and depolymerization rates [12].

MTs are made up of a- and [-tubulin dimer subunits. These dimers are polymerized
end-to-end into chains known as protofilaments. A typical MT is essentially a hollow cylinder
composed of 13 associated protofilaments. Because they are made up of a3 heterodimers,
the MT also has a distinct polarity: the (-) end has S-tubulin exposed and the (+) end has
a-tubulin exposed. The cell’s MTOC stabilizes a MT’s minus-end, while the plus-end is sus-
ceptible to dynamic instability, a term describing the polymerization and depolymerization
of the MT from its plus-end [14].

The unique af-tubulin dimer protofilaments can also serve as tracks along which motor
proteins may transport cargo [14]. Because of the polarity and structure of MTs, different
classes of molecular motors can travel in different manners and directions, making MT-based
transport useful for a variety of tasks.
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Figure 1.2: A cartoon depiction of a MT’s structure and assembly. Thirteen protofilaments
bound together make up the MT. The polarity of the o dimers determines which end of
the MT is the (+) end and which is the (-) end. Image by Zlir’a [20].

1.3 Kinesin-1 molecular motors

Motor proteins are an essential part of MT-based transport. As the name suggests, molecular
motors move along MT protofilaments and have the ability to carry cellular cargos with them.
These proteins can be broken into two distinct families: dynein and kinesin motors. Dyneins
are complex, minus-end directed motors that assist in MT movement in flagella and cilia,
as well as organelle and vesicle transport. Kinesin motors are structurally simpler proteins
that assist in cell division and the transport of cellular cargo [6].
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Figure 1.3: A depiction of kinesin-1’s chemical structure. The head domain steps along a
MT protofilament, while the tail domain can bind to cellular cargo.

While motor structure varies within the kinesin family, the motor kinesin-1 shares many
structural characteristics with other kinesins. Kinesin-1 is a protein dimer composed of
two heavy chains bound to two light chains (see Figure 1.3.) The protein consists of three
distinct sets of domains: the two tail domains, the stalk, and the two head domains. The
tail domain includes the pair of light chains and is used to bind to cellular cargo. Kinesin-1’s
stalk domain is a coiled-coil domain that provides structure to the motor. The motor’s head
domain is made from heavy chains and allows the motor to bind to and walk along MT
protofilaments [6].
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Figure 1.4: Kinesin-1’s stepping cycle. In the presence of ATP, kinesin experiences a con-
formational change that results in a single ‘step’ forward. As this process repeats itself, the
motor’s cargo is transported along the MT. Image by Slagt [18].

All motor proteins use ATP hydrolysis to convert chemical energy to mechanical work,
usually in the form of walking or sliding along a MT. Each of kinesin-1’s two head domains
has one binding site for ATP and another for the MT. ATP hydrolysis causes a conformation
change between the head domain and the stalk, resulting in head movement (Figure 1.4) [6].
Kinesin’s head domains take turns stepping towards the MT’s minus-end and the tail domains
pull any bound cargo along for the ride. This biochemical process can be approximated by
the following reaction:

K+ ATP £ K. ATP ™ K + ADP (1.1)

where k, and k;, are reaction rate constants [17]. Kinesin-1’s stepping process can be de-
scribed as follows (shown in Figure 1.4:)

1. Kinesin’s unbound head domain diffuses toward the next available binding site.

2. An ATP molecule binds to the head domain that is diffusing forward, thus locking it
onto the binding site. This process occurs with a binding rate k,.

3. The trailing head domain detaches from its binding site by converting its ATP molecule
to ADP. This process occurs with a binding rate k.

4. Kinesin’s newly unbound head diffuses forward to the next binding site. This stepping
process continues as long as the motor is bound to a protofilament.
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This step cycle depends on the concentration of ATP available to the motor. The step size
for a kinesin-1 motor is 8 nm, so we can calculate the motor’s velocity v as a function of ATP
concentration c:

d

Tyt (kae) (12

v(e)

as shown by Schnitzer et al. [17].

Single molecule experiments provide evidence for kinesin’s “hand-over-hand” stepping.
Because of the 8 nm length of a tubulin-dimer, kinesin motors take 8 nm steps as they travel
along the MT. Single kinesin molecules have been shown to exert pulling forces of up to 5 pN
during cargo transport. Considering kinesin’s mechanical work and the energy available from
ATP hydrolysis, the efficiency of a single kinesin molecule’s step cycle is around 50% [6].

There are many aspects of kinesin based transport, particularly under crowded conditions,
that remain a mystery to researchers in the field. Computational models done in conjunction
with experiments are our best hope to fill this knowledge gap and understand the complex
interactions that occur during these processes.

1.4 Models of transport

Considering the mechanics and experimental data available on kinesin transport, various
research groups have attempted to model kinesin dynamics using computer simulations with
varying degrees of success. In the following section, we will discuss some of these models.

1.4.1 Lattice model

Perhaps the simplest model is the one-dimensional lattice model, such as the one imple-
mented by Leduc et al. [10]. In this model, the MT is represented as a single, one-dimensional
lattice with N motor binding sites. The motor proteins are then modeled as simple parti-
cles that can bind to sites on the lattice. Using discrete time steps, the simulation chooses
random binding sites and applies the following rules:

1. If a site is empty, a new motor attempts to occupy that site with a probability k.,
(proportional to the concentration of motors in the solution.)

2. If a site is occupied, the motor leaves the lattice with the probability k.g. If the motor
remains attached and the next site is unoccupied, it moves to that site.

Under these rules, motors are constantly associating, dissociating and stepping along the
MT. This type of lattice model is good for modeling small groups of motors without cargo,
but unfortunately doesn’t include calculations about forces or other motor dynamics.

1.4.2 Transition rate model

The Transition Rate (TR) model is a motor-based transport model introduced Klumpp and
Lipowsky [7]. The state-based model considers a cellular cargo being transported by fixed
number of motor proteins. These motors are permanently bound to the cargo, but may bind
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and unbind from the MT with effective binding and unbinding rates. Rather than modeling
the specific mechanics, the TR model uses probabilistic states to calculate properties like run
length, run duration, cargo velocity, average number of bound motors, etc. The TR model
operates on the cargo state-driven equation

5n+1Pn+1 = 7TnPn ) (13)

where for the state |n), in which n motors are bound to both the cargo and the MT, P,
is the probability the cargo is in state |n), &, is the unbinding rate of the a single motor
and 7, is the binding rate of a single motor. This equation simply shows how the opposing
binding and unbinding rates probabilistically change the state |n), €,. Using this, a general
expression is calculated as

N-1

e ”] (1.4

<Al‘b

Vi€i41

n=1 i=1

where N is the total number of motors bound to the cargo, n is the number of motors
bound to both the cargo and the MT, and v, is the cargo velocity with n bound motors
[7]. While this model provides a simplified view of kinesin transport, it neglects some of the
more complicated mechanical interactions in the system.

1.4.3 Mechanistic model

A more realistic model of cargo transport has been developed by Korn et al. [9]. The me-
chanicistic cargo transport (MCT) model (illustrated in Figure 1.5) uses a Langevin equation
approach that can calculate the two-dimensional position of a circular cargo as a function of
time. In the model, the cargo is covered with Ny, evenly distributed, permanently bound
kinesin motors. When bound to the MT, these motors take 8 nm steps with a foward step-
ping rate \Y and act as a spring that can apply forces and torques to the cargo. The motors
also experience a force-dependent escape rate e

e =¢gg exp(Fn/Fy) , (1.5)

where F}, is the force felt by the motor, € is the unstressed escape rate, and Fjy is the kinesin
detachment force [9]. Similarly, the kinesin motors are also modeled with a force-dependent
velocity

vmzvo<1—Fm), 0< F,, < F,, (1.6)
FS
with the unstressed velocity vy and the stall force Fj.

An important difference between this mechanistic approach and the previous models
is the inclusion of detailed physical interactions between the cargo, kinesins and MT. For
example, as the circular cargo rotates and moves in the model, bound motors may experience
relatively large forces and unbind from the MT, while new motors may intersect and bind to
the MT [9]. The computer simulations associated with this type of model may be significantly
more computationally expensive than the lattice or TR models, but they also include more
realistic mechanics.

12



Figure 1.5: A cartoon representation of the MCT model. N;,; motors are uniformly dis-
tributed onto the cargo, and any motors that intersect the MT can bind to it. Motors
bound to the MT take 8 nm steps along it, transporting the cargo along the MT until they
disassociate.
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Chapter 2

Experiments and modeling

2.1 Bead assay experiments under crowded conditions

Relatively little work has been done involving kinesin-1 motility at higher motor concen-
trations [4]. Instead, much of the current experimentation and modeling in the field has
been focused on understanding motility at lower densities, where it is often easier to in-
terpret experimental results. Kinesin crowding may involve more intricate dynamics that
do not apply to lower density situations, like motor entanglement, step synchronization, or
multi-protofilament transport.

The Ross lab at the University of Massachusetts-Amherst have recently performed in
vitro bead assay experiments with kinesin-1 under crowded conditions in order to shed some
light on these systems. In these experiments, they track streptavidin-coated quantum dots
as they are carried by kinesin-1 motor proteins along MTs. These motors are allowed to
associate and dissociate from the MT, just as they would in vivo. It was found that increasing
the motor concentration led to increased quantum dot association times, larger run lengths
before dissociating, and reduced transport velocities. This kinesin-1 density increase also
created distinct pauses during transport [4]. During these pauses, shown in Figure 2.1 the
cargo would not move for long periods of time, usually on the order of seconds.

The Ross lab also analyzed tracking data from single GFP-labeled kinesin-1 motors in
similar conditions. Individual kinesins showed similar behavior to the quantum dots, with
the exception that single kinesin tend to dissociate from the MT much more quickly. The
results suggest that the discrete pauses observed in both sets of experiments may be caused
by obstacles located on the MT’s surface: the motors are forced to wait until the obstacle
unbinds to proceed [4]. These results provide valuable insight into the complex interactions
that occur during kinesin-1 transport.

Another study done by [19] observed Kip3p motors at high densities on MTs. Kip3p is
a member of the kinesin-8 family, a group of motors known for being extremely processive.
Unlike kinesin-1, Kip3p specializes in MT depolymerization rather than cargo transport.
The researchers found that Kip3p’s off-rate at the end of the MT was dependent on the
concentration of Kip3p motors nearby. This effect was observed even when the MT’s plus
ends were stabilized, effectively eliminating any chance of depolymerization. Kinesin-1 mo-
tors were also found to have density dependent end off-rates but curiously, this effect was

14
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Figure 2.1: Sample kymographs at different kinesin concentrations [4]. As the motor density
increases, pauses in the quantum dot’s movement become more frequent.

not observed with a mix of Kip3p and kinesin-1 [19]. While the exact cause of this off rate
dependence is unknown, these types of experiments offer new ideas about motor interactions
at high concentrations and allow for direct comparison with existing motility models.

Unfortunately, many of the current kinesin transport models have been oversimplified
and may not apply to the higher density situations that have been observed. Regardless of
motor concentration however, the presence of obstacles on the MT plays a large role in cargo
transport. Most transport models ignore the important cases where motors are physically
blocked by stationary obstacles. It is likely that these sorts of obstacles are the primary
cause of cargo pauses during kinesin transport; if a MT’s protofilaments are blocked, the
motors cannot proceed until the way is cleared.

The obvious question is: what are these “obstacles” that block protofilaments? They
could be caused by a number of things: protofilament defects, defective motors, or anything
else that is able to bind to MTs. In the case of motor crowding during transport, it is conceiv-
able that some number of kinesin are defective or ‘dead” motors. Here dead motors simply
mean damaged motors, ie. due to purification, that may bind to MTs as other motors do,
but cannot step, effectively creating a temporary roadblock [5]. Dead motors will eventually
dissociate from the MT, allowing the paused motors to proceed again. Unfortunately, little
is known about these dead motors and their effects on cargo transport.

The potential presence of dead motors and other protofilament obstacles appear to play
a very important role in kinesin-based transport, and should not be overlooked in transport
models. Models that incorporate factors like dead motors, as well as properties of the imaging
system are necessary to develop a better understanding of these systems. In the next section,
we will explain how to take into account effects of the imaging sysstem into the simulations.
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2.2 Model convolution microscopy

In order to make accurate assessments between experiments and models, the data must be
presented and analyzed in a similar fashion. Model Convolution Microscopy (MCM) is a
practice in which simulation data is post-processed to emulate a microscope system [13].
Regrettably, many models omit this exercise, permitting researchers to unfairly compare
grainy experimental data with extremely precise theoretical predictions.

The first step in the MCM process is to create a two-dimensional contour image that will
represent a component of the system. This contour usually corresponds to the object being
tracked under the microscope. Next, the contour is placed on a grid and its interior is filled
within the grid. Grid cells with contour segments inside them may be included, provided a
large enough fraction of the cell is within the contour bounds (Fig. 2.2) [13].

After discretizing the contour, the Point Spread Function (PSF) is obtained either ex-
perimentally or theoretically. When obtained experimentally, the resulting PSF naturally
includes microscope lens abnormalities and other optical effects, but is constrained to the
same resolution used in the imaging system. However, a theoretical PSF can use any reso-
lution. Here is an example of a theoretical PSF using the Airy function

2
I '2J1(P) (2.1)
p
where or NA
p="r (2.2)

A is the wavelength of light, r is the radial distance from the origin and NA is the numerical
aperture [13]. Figure 2.2B shows a plot of the PSF as a function of the radial distance.

The next step in the process is the actual convolution of the image. This process projects
the light intensity of each pixel in the image onto its neighbors. These intensities are summed
over all of the pixels, giving the resulting image a blurred effect (Fig. 2.2) [13]. Finally, the
image’s mean and standard deviation signal are fitted to the experimental images. In order
to gather noise data, background portions of the experimental images are analyzed. Using
the background’s standard deviation, Gaussian noise is applied to the convolved image to
complete the process [13].

MCM is a powerful method that allows simulation and experimental data to be compared
more fairly. While few modern models use this technique, the model we have developed for
the subject of this paper does indeed utilize it. This simulation model aims to improve on
the weaknesses of current models and shed some light onto the complex dynamics that occur
during crowded kinesin-1 transport.

16



-200 200

-100 [] 100
RADIAL POSITION

Figure 2.2: A simple overview of the MCM process. (A) A predefined shape (in this case, a
circle) is discretized into individual pixels. (B) An example Point Spread Function (PSF) of
light as a function of the readial distance r. (C) The discretized shape from A is convolved
using the PSF. Each pixel’s light intensity is projected onto its neighbors and summed. (D)
The convolved image is matched to the experimental image and noise is added accordingly.
Figure adapted from Nguyen et al. [13].

2.3 The model

In order to explain the distinct pauses and observed run lengths in high-density kinesin-1
based transport, we developed a two-dimensional stochastic model. We found that existing
models worked well for relatively low kinesin motor concentrations, but failed to accurately
describe transport at higher concentrations. The model introduced here attempts to improve
these shortcomings, while introducing the use of MCM to allow more accurate comparisons
with experimental data. Our simulation is written using the Fortran programming language
and it uses discrete time intervals to update the system as it evolves.

Our model is most closely related to the MCT model described in Section 1.4.3. It
features a circular cargo placed on a MT with randomly distributed kinesin motors on the
surface. As a motor’s tail domain intersects the cargo, the motor binds to the cargo and
applies a force and torque as it steps along the MT. One of the primary differences between
this and the MCT model is that our model features motors distributed along the MT and
does not assume motors are permanently bound to the cargo. As the simulation progresses,
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Figure 2.3: A cartoon depiction of the cargo-assay model. Regular motors (seen in red) carry
the quantum-dot cargo along the MT. Dead motors (blue) cannot step, and can cause traffic
jams along the MT until they stochastically unbind. We believe that these dead motors are
the primary cause of pausing in crowded kinesin-1 motility assays.

motors bind and unbind to the cargo until it dissociates and the simulation ends.

2.3.1 Kinesin-1 motor dynamics

In our model, each molecular motor is modeled as a pseudo-spring of rest length [y. If a
motor is stretched, it exerts a restoring force; however, it has been shown that kinesin-1
may be modeled as a simple flexible polymer that exerts little or no restoring force when
compressed [9]. Thus, we chose to express our motors’ spring force as

F, = (2.3)

—Alk, ifAl>0
0, if Al<0’

where Al is the compression/extention distance and k is the motor’s spring constant.
Similar to the MCT model, our model features a force dependent motor unbinding rate
kot [9]
koﬁ = koﬂ70 exp(Fm/Fd) y (24)

where F), is the force felt by the motor, kogo is the unstressed escape rate, and Fy is the
kinesin detachment force. This equation essentially means that motors under stress are more
likely to stochastically unbind than unstressed motors. This is particularly significant as the
cargo experiences Brownian motion that can cause bound motors to unbind very quickly.

Similarly, kinesin-1 have also been shown to have a force-dependent velocity . The motors
in our model stochasticly take the typical 8 nm steps along the MT with a stepping rate A,
resulting in an average velocitiy v,, that varies with the motor force F, [6]. Our model uses
a linear force-velocity relationship given by

F,
vm:vo(l—F),O<Fm<Fs, (2.5)

with the unloaded velocity vy and the stall force F,. As a motor experiences a positive force,
it’s stepping rate Ay decreases linearly. Shown in Fig 2.4, a motor under a large enough load
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will “stall” and stop stepping completely. Motors under no load will step at the unloaded
stepping rate A2 [9].

U m

Uy

Fm, T

Figure 2.4: Plot of the force-velocity relationship of a single motor in our model (Eq. 2.5.)
Motors experiencing a positive force F), greater than or equal to the stall force F; cannot
step along the MT.

Our model defines 1) as the concentration of motors on the MT in a given simulation. We
choose the values of 1 such that they correspond to the concentrations used in experiments.
In order to understand the meaning of these values, we can roughly express ¢ in terms
of MT length, as shown in Figure 2.5 [4]. For example, this relationship shows that the
motor concentration ¢ = 100nM kinesin equivalent to 15.215 motors/um of a single MT
protofilament.

One important difference between our model and the previous models is the inclusion of
dead motors [7, 9, 10]. We define the ratio of dead motors by p. These motors cannot step,
but are otherwise treated as the other motors. Regular motors cannot step forward until the
binding site in front of them is cleared. A binding site occupied by a dead motor will only
free up once the dead motor stochastically unbinds.

2.3.2 Cargo dynamics

The cargo being transported in the model is represented by a simple circle of radius r that
is subject to the forces and torques exerted by the motors carrying it. In each time step of
the simulation, the program checks for new intersections between the motors and cargo. If
a motor on the MT intersects the cargo, this motor is considered bound to the cargo and its
tail domain is then fixed to the edge of the cargo nearest to its intersection point. Conversely,
motors bound to the cargo that stochastically unbind remain on the MT, where they may
rebind to the cargo.

Cargo movement is influenced by external forces acting on it. In the stokes limit, accel-
eration is negligible. One can therefore write the net force on the cargo as

Fiot =ma=~0. (2.6)

In the absence of inertia, forces on the cargo due to motors and thermal fluctuations are
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Figure 2.5: The relationship between motor concentration 1) and motor density per protofil-
ament from experimental estimates.

balanced by friction forces, shown by

np
0=> Fni+Fp—Fp, (2.7)

=1

where the frictional force Fz can be rewritten as
np
Cu = Z Foi+ Fp . (2.8)
i=1

The Gaussian distributed Brownian force Fz can be described by the following expressions
for average random force (Fiz) and the variance of the force (F3)

<FB,a> =0 (2.9)
(F,) = 2DAt, (2.10)

where o = x,y, z and the diffusion coefficient D is defined as

kT
¢

with the Boltzmann constant kg, the temperature of the medium 7' and the friction coeffi-

cient (. In the model, Egs. 2.9 and 2.10 are used to generate random forces on the cargo.

With these equations, we can write the velocity of the cargo as
dr . Z?ilFm,z—i_FB

— =

dt ¢

D : (2.11)

(2.12)
Using this relation, we can calculate the cargo’s position by Euler integration.
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2.3.3 Model visualization

In order to visualize the events occuring in our model, we designed our simulations to peri-
odically create raw OpenDX graphics files [1]. These files include position, orientation and
shape data for all simulation objects and are later processed into individual movie frames
(see Fig. 2.6 for an example.) To visualize motor forces, the DX files are configured to vary
a motor’s color with the force experienced by it. Similarly, dead motors are rendered as
white. This process allows us to visualize some of the complex interactions that occur in the
simulation and also to verify that the model is working properly.

Figure 2.6: A single video frame from a DX visualized cargo-assay simulations [1].

The second visualization method used in our simulations is the MCM process described
in Section 2.2 [13]. The cargo’s position is periodically written to a file and processed into
individual movie frames (see Fig. 2.7 for an example.) The point of this visualization process
is to directly simulate experimental data, so that the model and experiment can be fairly

compared.
10 pn{ IIIIIIIIIII'IIIIIIIIII
—
568

Figure 2.7: A sample montage from a cargo-assay simulation run using the MCM technique.
This process allows simulation data to mimic the properties of the imaging system into the
simulation data, allowing direct comparison with experimental results. Each frame in the
montage represents 5.6 seconds of simulation time.

2.3.4 Model psuedocode

Below is the psuedocode outline of the our simulation. The simulation was written in the
Fortran programming language. The random number generator algorithm is a variant of the
Subtractive Method algorithm from Knuth [8].
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Model Initialization: Run once at the beginning of each simulation

1. Calculate the total number of motors in the simulation N in accordance with the
desired motor concentration.

2. Place the first motor directly beneath the cargo and initiate binding.

3. Randomly place the remaining N — 1 motors on the MT. Mark some percentage of the
motors as dead motors in accordance with the dead motor percentage p.

Main Loop: Run every time step until the simulation ends

1. Check all motors for tail domain intersections with the cargo. If an intersection is
found, move its tail position to the edge of the cargo and mark it as “bound.”

2. Calculate the spring forces of each bound motor and the random Brownian forces on
the cargo.

3. Update the cargo’s position and rotation due to these forces. Update the tail positions
of any bound motors accordingly.

4. Loop over all motors and determine if they will stochastically unbind from the MT.
Unbound motors are randomly placed elsewhere on the MT to keep the motor concen-
tration constant.

5. Loop over all non-dead motors and determine if they will step. A step is automatically
rejected if the binding site in front of the motor is filled.

6. Write motor and cargo data to external files. Convolution and/or OpenDX data writing
also occurs at this step.

7. End the simulation if no motors are bound to the cargo.

8. Increment the time ¢t by At.

2.3.5 Summary

In this chapter, we examined the experimental findings of kinesin transport at high concen-
trations. Various models of kinesin-1 transport were explored and analyzed. We developed
a model that builds upon the weaknesses of prior models and can simulate kinesin trans-
port at high concentrations using mechanistic modeling and MCM processing to emulate
experimental results.
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Chapter 3

Results

In the following sections, we outline three variants of our stochastic transport simulations:
the Mechanistic Cargo Transport (MCT) model, single motor (SM) model, and Improved
Mechanistic Cargo Transport (IMCT) model. The MCT model is compared with model data
from Korn et al. [9], while the single motor and IMCT models’ results are compared with
experimental data from Conway et al. [4].

3.1 Analysis of simulation data

In this section we briefly discuss the terminology used in the simulations and the techniques
used to obtain them. In all three models presented in this paper, the simulation continues
indefinitely until the cargo (or GFP-labeled motor, in the case of the SM model) dissociates
from the MT. We refer to the net x-distance traveled by the cargo during the simulation as the
run length Az;,. The net time from beginning of the simulation start to cargo dissociation is
refered to as the association time At,. Using these two values, we can also calculate the mean
run velocity (vp). During the simulation, we record the number of MT- and cargo-bound
motors ny for each timestep.

In addition, the IMCT simulations use a model convolution subroutine to emulate ex-
perimental results. These convolution movie frames are processed with a MATLAB script
by collaborator Derek Woods of the Ross lab. This script analyzes cargo movement and
determines when and for how long pauses in transport occur.

3.2 Mechanistic cargo transport simulation results

The MCT simulations in general produced persistent and fast cargo transport with hundreds
of motors permanently bound to the cargo (parameters shown in Table 3.1. Figure 3.1
illustrates this concept very clearly. The number of permanently bound motors varies from
120 to 440. The results show that the run length increases roughly exponentially with the
total number of motors bound to the cargo Nyu.
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Figure 3.1: Measured relationship between the mean cargo run length and total motors
bound to cargo Ny, for the MCT simulations we preformed and published data. The purple
data points show the original MCT simulation results and the orange data points show our
implementation of model [9].

Figure 3.2 exhibits a similar behavior with the cargo’s association time.

The lowest

number of bound motors Ny, = 120 yields a association time of 6 seconds, while N;,; = 440
stays bound for almost 700 seconds.
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Figure 3.2: Measured relationship between the mean cargo association time and total motors
bound to cargo Ny, for the MCT simulations.
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Parameter Typical Value Meaning

R 1 pm Cargo radius

T 293 K Ambient temperature

n 1,...,7.6,...,100mPa s Viscosity

h 4,...,14nm Height from cargo bottom to MT
Foft0 1s1 Unstressed escape rate
Tad 557! Binding rate

Niot 120, ...,440 motors Motors bound to cargo
Fy 3pN Detachment force

k 1075,...,107%,... /1073 N/m Kinesin spring constant
) 8 nm Kinesin step size

Vg 1 um/s Maximum motor velocity
A= vg/d 12557t Forward stepping rate
F 5,...,6,....,8pN Stall force

lo 65 nm Unstressed motor length
At 1ps Simulation time step

Table 3.1: Simulation parameters used in the MCT model. If a range is given, the value in
bold was the one used in the simulations unless otherwise specified. All parameters taken
from [9].

It is important to note that, our MCT implementation features a consistent decrease in
cargo velocity as the number of bound motors increases. These results, shown in Figure 3.3,
differ from velocities of the original MCT simulations [9]. A similar effect is observed in the
run length as shown in Figure 3.1. This decrease may be due to the increased local crowding
with larger numbers of bound motors. Each motor cannot step until the one in front of it
does, which may lead to the reduced velocities we see as the number of motors increases.

We also performed analysis on the factors contributing to the increased processivities in
the MCT simulations [9]. In Fig. 3.4, we show that the average number of motors bound to
the MT at a given time increases with the number of motors on the cargo. The exponential
run length and association time increases may be attributed to this increase in mean bound
motors with N,,;. While there may be hundreds of motors attached to the cargo at any time,
only a handful are within range of the MT and stay consistently bound. Increased numbers
of bound motors allow the cargo to be transported much more consistently; if a motor falls
unbinds from the MT, there are others that continue to carry the cargo until that motor
can stochastically rebind to the MT. This effect leads to increased association time and thus
increased run lengths.
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Figure 3.3: Mean run velocity of the cargo as a function of number of motors bound to the
MT ny for different viscosities n. The purple data points show the published data and the
orange data points show our MCT implementation [9].

It is important to note that while our MCT simulations results were generally similar to
the published MCT model, there were some significant differences in our results. Specifically,
the original MC'T model featured a nearly constant cargo velocity with V;,, while our version
showed a sharp decrease in velocity (shown in Fig 3.3) [9]. This effect is likely caused by a
difference in stepping algorithms in the models. The original MCT model ignored the motor’s
head domain and allowed each motor a binding radius. If this binding radius intersected a
predetermined M T binding site, the motor is considered bound to the MT [9]. Conversely, our
model calculates the head position of a motor on the cargo explicitly as extending radially
outward from the circular cargo. If this motor’s head intersects the MT), it is considered
bound to the MT at that point.

An important distinction here is that our MCT implementation does not currently have
predetermined binding sites, rather motors can bind anywhere and may step only if no other
motor is within 6 = 8nm. In actuality, MT has distinct binding sites spaced 8 nm apart.
It is currently unclear whether our binding site approximation has any significant effects on
the simulation.
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Figure 3.4: Average number of motors bound to the MT as a function of the total motors
on the cargo Ny,;. The purple data points show the published MCT simulation results and
the orange data points show our MCT implementation [9].

3.3 Single motor simulation results

The second model we considered was a single motor model, in which a single GFP-labeled
kinesin is simulated as it steps along a MT. The parameters for these simulations are given
in Table 3.2. A sample kinesin trajectory along the x-axis is shown in Figure 3.5. The single
motor steps are calculated at random intervals from its forward stepping rate

0o_ Yo
Ay = 5 (3.1)
Figure 3.6 shows a comparison of our simulation results and the experimental mean
run lengths obtained by the Ross lab [4]. Our simulations recapitulate the experimental
data reasonably well, as both sets of data feature a distinct change around ¢ ~ 20nM. It
is possible that this is caused by the slowing effects of motor crowding outweighting the
motor’s unloaded velocity vy.
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Parameter Typical Value Meaning Ref.

R 10 nm Cargo radius [4]
T 293 K Ambient temperature

n 7.6mPas Viscosity [4]
h 25nm Height from cargo bottom to MT
Foft0 1/3s71 Unstressed escape rate

P 5,...,200nM Kinesin Motor Concentration [4]
p 0%, ...,10%,...,20% Ratio of dead motors

Fy 2.5pN Detachment force [9]
k 1075,...,1.5x107%,..., 1073 N/m Kinesin spring constant 9]
J 8nm Kinesin step size [6]
Vg 413nm/s Maximum motor velocity

A =g/ 51.6s71 Forward stepping rate

F, 5,...,8pN Stall force [6]
lo 35 nm Unstressed motor length

At 1ps Simulation time step

Table 3.2: Simulation parameters used in the single motor model. If a range is given, the
value in bold was the one used in the simulations unless otherwise specified.
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Figure 3.5: Sample position data for a single kinesin along the x-axis in the SM simulations
without dead motors. (Parameters: ¢ = 5nM, p = 0%.)
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for the single motor simulations. The red data points represent our simulation data, while
the blue points represent the corresponding single motor experimental data [4].

We can see a similar change in the experimental data, shown in Figure 3.7. The exper-
imental association time appears to be increasing until the value ¢y = nM, after which it

begins to decline [4]. By contrast, our simulations give a relatively constant association time

of 3 seconds, about the same as the expected escape time kypro=1/3 s71.
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Figure 3.7: Mean cargo association time as a function of the motor concentration . The
red data points are our simulation data, while the blue points are the corresponding single
motor experimental data [4].
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The difference between our simulation and experimental association time has some im-
portant implications. We would expect a single kinesin’s association time to remain constant
as there are presumably no forces acting on it. However, the experimental mean association
time experiences an increase and decrease in this value, suggesting that there are additional
factors not included in our simple model. We speculate that there may be motor entan-
glement or other forces introduced at higher motor concentrations. The experimental mean
association time also suggest that the unstressed escape rate of the specific kinesin-1 mo-
tors may be closer to korro = 1/9 s71, rather than the value koffo = 1/3 s~ used in our
simulations and in the experiments[4].

The comparison of the GFP-labeled kinesin’s mean run velocity for the experimental
and simulation data is shown in Figure 3.8. As expected, both data sets show a decrease
in velocity as the motor concentration increases [4]. We speculate that this slowing of the
single kinesin may be due to increased crowding and pausing due to dead motors. Unfor-
tunately, the experimental data provided to us by our collaborators contained no data on
pause frequency or duration for single kinesins.
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Figure 3.8: Measured relationship between the mean cargo velocity and motor concentration
1 for the single motor simulations. The red data represent our simulation data, while the

blue represent the corresponding single motor experimental data [4].

3.4 Improved mechanistic cargo transport simulation
results

In Fig. 3.10, we show a example DX visualization from two different motor concentrations

in the IMCT simulations. Observe that cargo transport strongly depends on the density

of motors nearby, as well as the proximity of any dead motors. This figure shows a visual
example of relatively high and low motor densities; the picture on the left has a motor
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Parameter Typical Value Meaning Ref.

R 10 nm Cargo radius [4]
T 293 K Ambient temperature

n 7.6mPas Viscosity [4]
h 25nm Height from cargo bottom to MT
Foft0 1/9s71 Unstressed escape rate

P 5,...,200nM Kinesin Motor Concentration [4]
p 0%, ...,10%,...,20% Ratio of dead motors

Fy 2.5pN Detachment force [9]
k 1075,...,1.5x107%,..., 1073 N/m Kinesin spring constant 9]
J 8nm Kinesin step size [6]
Vg 413nm/s Maximum motor velocity

A =g/ 51.6s71 Forward stepping rate

F, 5,...,8pN Stall force [6]
lo 35nm Unstressed motor length

At 1ps Simulation time step

Table 3.3: Simulation parameters used in the IMCT model. If a range is given, the value in
bold was the one used in the simulations unless otherwise specified.

density of 3motors/um, while the picture on the right shows a more dense configuration
with 30.0 motors/pm.

We can see a sample trajectory of a single motor during cargo transport in Figure 3.9.
The motor moves its head domains in discrete stochastic steps, while its tail domain follows
the cargo in a fluctuating manner. The source of this random motion experienced by the
motor’s tail is due to the chaotic Brownian forces experienced by the cargo. As this motor
is attached to the cargo, any position or rotation changes experienced by it also affect the
motor’s tail.

An important result in the IMCT simulations was the role of motor density on other
factors like run length, association time and run velocity. Figure 3.11 shows the relationship
between motor concentration and run length. We found that increased densities (¢ >
100 nM) led to longer run lengths until a critical value after which a decline is observed. The
reason behind this regime change is likely due to the effects of crowding and dead motors at
larger densities. Increased numbers of motors mean faster transport and longer association
for the cargo, and it would appear that the negative effects of crowding and dead motors
outweigh the benefits of increased motor density at the densities 100nM or higher in our
simulations [4].
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Figure 3.9: Sample position data for a single kinesin during cargo transport in the IMCT sim-
ulations without dead motors. The red data points show the motor’s head domain position,
while the blue data points show the motor’s tail domain attached to the cargo. (Parameters:
¥ =5nM, p=0%.)

Figure 3.10: Generated video frames from the DX visualization of the IMCT simulations.
In (A) we can see a cargo being transported at the relatively low kinesin-1 density of
3.0motors/pum (B) shows a much higher motor density of 30.0 motors/um, where increased
crowding and traffic jams occur, resulting in distinct movement pauses.
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Figure 3.11: Mean cargo run length as a function of motor concentration ¢ for the IMCT
simulations. The orange data points show the simulation data, while the blue shows the
experimental results [4]. (Dead motor percentage, p = 10%.)

We preformed a similar analysis on the effects of motor density on association time.
Figure 3.12 shows effects similar to those previously described in Figure 3.11: a distinct
regime change above the motor density ¢» = 100nM. Although the error bars in the figure
are relatively large, they do show an increase in velocity up until this point, when it begins to
decline or perhaps remain constant. We expect that this is due to the increased processivity
of the cargo being outweighted by the additional forces introduced by the dead motor-induced
pausing [4].

We repeated the motor density dependence analysis with the quantum-dot’s average
velocity. Average velocity values were recorded during short time intervals (70 ms) and later
divided into two parts: with and without pauses included. Note that the velocity decreases
consistantly as the motor density increases. This result is expected, as increased motor
concentration v leads to increased pausing due to dead motors and increased crowding.
We note that even with cargo pauses excluded from our analysis, the cargo velocity still
decreases with the motor concentration. This effect may be attributed to the increased
motor crowding, meaning that more motors cannot step because they are waiting for the
binding site in front of them to be cleared, thus a decrease in cargo transport velocity [4].

33



10
H - ¢ - Experimental data
H - © - Simulation data

(Aty) (s)

10" ¢

10_1 1 Lol 1 vl 1 Lol 1 Lol

10" 10° 10" 10° 10°

) .. 1 (nM kinesin-1) ]
Figure 3.12: Mean cargo association time as a function of motor concentration v for the

IMCT simulations. The orange data points show the simulation data, while the blue points
show the experimental results [4]. (Dead motor percentage, p = 10%.)
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Figure 3.13: Mean cargo run velocity as a function of motor concentration ¢ for the IMCT
simulations. The orange data points show the simulation data with (solid line) and without
pauses (dotted line,) while the blue points show the experimental results with (solid line)
and without pauses (dotted line) [4]. (Dead motor percentage, p = 10%.)

Taking into account the distinct decreases in run length and association time observed at
1 > 100nM and the decreasing cargo velocities throughout, Figures 3.14 and 3.15 shows the
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expected increase in pauses as motor density increases. These figures effectively normalize
the number of pauses over a run’s association time and run length. Both plots show that
the frequency of pausing generally increases as the motor density increases [4].

In Figure 3.16, we can see an increase in bound motor numbers at higher motor densities.
These larger numbers of bound motors lead to longer association times and increased load
sharing between motors [4]. As mentioned previously, more motors bound to the cargo means
more crowding, which can reduce the cargo’s mean velocity. One effect observed from our
OpenDX visualizations was that cargos tend to gather extra motors during their pauses.
Because the cargo cannot move, motors behind it walk directly into the cargo, becoming
bound to it in the process.
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Figure 3.14: The number of pauses per mean cargo association time as a function of motor

concentration ¢ for the IMCT simulations. The orange data points show the simulation
data while the red data points show the experimental results [4]. (Dead motor percentage,
p=10%.)
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Figure 3.15: The number of pauses per mean cargo run length as a function of motor

concentration ¢ for the IMCT simulations. The orange data points show the simulation
data while the red data points show the experimental results [4]. (Dead motor percentage,

p=10%.)
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Figure 3.16: Mean number of cargo-bound kinesins as a function of motor concentration .
(Dead motor percentage, p = 10%.)

Figure 3.17 shows the relationship between percentage of time spend paused and motor
density. This graph further supports the concept of a change at ¢p > 100nM, as there
is a reduction in time in this range. Again, this result is expected as increased motor
concentrations lead to increased crowding and dead motors, which are the main source of
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pausing during cargo transport in our simulations.

Overall, we found that our models match the corresponding published data sets reason-
ably well. In the MCT and IMCT models, we found a few disputes in our results, specifically
the distinct velocity decreases with ). The single motor published data differs notably from
our single motor model for run length and association time. A non linear experimental as-
sociation time seems to suggest that there may be additional forces occuring during cargo
transport that are not captured in the current models.
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Figure 3.17: Average percent of cargo association time spend paused for different values of
motor concentration 1. The orange data points represents the simulation results, while the
red data points represent the analogous experimental data [4]. (Dead motor percentage,

p=10%.)
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3.4.1 Analysis of forces

In order to understand some of the complex motor-cargo interactions that occur during
cargo transport, we did a brief analysis of the forces involved. Figures 3.18, 3.19 and 3.20
show the distribution of motor forces during cargo transport without dead motors present
for different motor concentrations. These histograms are relatively symmetrical, and do not
seem to vary much between motor densities. The charts show that during cargo transport,
the cargo experiences motors pulling both from the front and from the back. Note that this
distribution of forces may be quite different if the cargo did not experience Brownian motion,
as this is one of the prominant causes of kinesin stretching.
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Figure 3.18: The distribution of motor x-forces during cargo transport with a motor concen-
tration of ¢y = 5nM in the IMCT simulations. (Dead motor percentage, p = 0%.)
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Figure 3.19: The distribution of motor x-forces during cargo transport with a motor concen-

tration of ¢y = 100nM in the IMCT simulations. (Dead motor percentage, p = 0%.)
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Figure 3.20: The distribution of motor x-forces during cargo transport with a motor concen-

tration of ¢y = 200nM in the IMCT simulations. (Dead motor percentage, p = 0%.)

We also analyzed the average motor detachment forces during transport, in Figures 3.21, 3.22
and 3.23. It is important to note that the detachment force F; = 2.5 pN in these simula-
tions. As expected, most of the detachment forces appear to be below this value. Forces
larger than 2.5 pN can be explained by the cargo’s Brownian motion, causing large position
jumps which then can cause large motor stretching that occurs briefly before the motor is
dissociated. Although Fig. 3.21 (¢» = 10 nM) is noisier than the others, all three figures
appear to follow the same trends.
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Figure 3.21: The distribution of motor detachment forces during cargo transport with a

motor concentration of ¢» = 5nM in the IMCT simulations. (Dead motor percentage, p =

0%.)
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Figure 3.22: The distribution of motor detachment forces during cargo transport with a

motor concentration of ¢ = 100nM in the IMCT simulations. (Dead motor percentage,
p=0%.)
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Figure 3.23: The distribution of motor detachment forces during cargo transport with a

motor concentration of ¢» = 200nM in the IMCT simulations. (Dead motor percentage,
p=0%.)

We observe similar behavior in Figures 3.24, 3.25 and 3.26, which show the distribution
of motor detachment lengths during cargo transport. The shape of the histograms appears
to match the corresponding detachment force histograms. Note that the most common
detachment lengths are relatively close to the unstressed motor length [j = 35 nm. These
plots also demonstrate the pseudo-spring modelling of kinesins in our simulations; most of
the motors experience detachment with lenghts [ > [y. The few motors that are compressed
exert no forces on the cargo.
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Figure 3.24: The distribution of motor detachment lengths during cargo transport with
a motor concentration of ¥ = 5nM in the IMCT simulations. (Dead motor percentage,
p=0%.)
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Figure 3.25: The distribution of motor detachment lengths during cargo transport with a

motor concentration of ¢» = 100nM in the IMCT simulations. (Dead motor percentage,
p=0%.)
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Figure 3.26: The distribution of motor detachment lengths during cargo transport with a
motor concentration of ¢ = 200nM in the IMCT simulations. (Dead motor percentage,
p=0%.)
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Chapter 4

Conclusions and Future Directions

We developed a coarse-grained two-dimensional stochastic model of cargo transport via
kinesin-1 motor proteins and compared it with experimental results at high motor con-
centrations. This technique eventually branched into three distinct models: Mechanistic
Cargo Transport, single motor and Improved Mechanistic Cargo Transport. We found that
our improved model recapitulated the available experimental results relatively well.

In the future, we hope to expand this model to include additional mechanics that might
occur during cargo transport. One feature we have been investigating is the existence of
multiple protofilaments. Motors from diferent tracks may be able to bind to and carry
cargo simultaneously, which will have effects on processivity and pauses during transport.
Additionally, some of the single motor experimental results suggest that there may be ad-
ditional forces felt by individual motors at higher motor concentrations. These forces could
be introduced by some sort of motor entanglement.

We also hope to extend our model to include additional cargo types. In its current
form, the mechanistic model only includes circular cargos, but we hope to implement other
cargo shapes into the model. It would also be possible to extend this model to include
other processive motors in the kinesin family. This feature would allow us to simulate cargo
transport with different types of motors at the same time, each with its own stepping rate,
compliance, stalk length, etc.
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