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ABSTRACT 

 

This project was dedicated to the problem of improving a non-invasive blood 

glucose monitor being developed by the VivaScan Corporation. The company has made 

some progress in the non-invasive blood glucose device development and approached 

WPI for a statistical assistance in the improvement of their model in order to predict the 

glucose level more accurately.  The main goal of this project was to improve the ability 

of the non-invasive blood glucose monitor to predict the glucose values more precisely. 

The goal was achieved by finding and implementing the best regression model. The 

methods included ordinary least squared regression, partial least squares regression, 

robust regression method, weighted least squares regression, local regression, and ridge 

regression. VivaScan calibration data for seven patients were analyzed in this project. For 

each of these patients, the individual regression models were built and compared based 

on the two factors that evaluate the model prediction ability. It was determined that 

partial least squares and ridge regressions are two best methods among the others that 

were considered in this work. Using these two methods gave better glucose prediction.  

The additional problem of data reduction to minimize the data collection time was also 

considered in this work. 
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1. Introduction 

 
1.1 Diabetes Problem 

According to the Center for Disease Control and Prevention (CDC), the number 

of Americans with diabetes more than doubled from 1989 to 2002 – from 5.8 million to 

13.3 million. One in three Americans born after 2000 will develop diabetes in their 

lifetime [1]. People with diabetes have a shortage of insulin. This is a hormone that 

allows glucose, or sugar, to enter and be converted to energy. If left unchecked and 

uncontrolled, diabetes can lead to the serious conditions including heart attack, stroke, 

blindness, kidney failure, and blood vessel disease.  

Despite these severe health problems, diabetes can be controlled and it can be 

managed. A recent 10-year study showed that diabetics who kept their blood glucose 

under control could reduce their risk or slow down the development of health 

complications that can happen from diabetes by 50 percent or more [2]. 

Monitoring blood glucose levels is a necessary daily procedure for people with 

diabetes. The results from these observations show the effectiveness of medications, diet, 

and life-style. Diabetics should regularly test and record their blood glucose. The results 

of self-blood-glucose-monitoring allow people with diabetes and their health care 

providers to effectively adjust their diabetes plan. 

 

1.2 Blood Glucose Monitors 

Most current methods for self-blood-glucose-monitoring are invasive in that they 

require a blood sample for each test, usually obtained from a fingertip. Patients with 

diabetes must monitor their blood glucose level several times each day. The blood 
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sampling can be painful and cause calluses to form. It also increases the risk for warts 

and infections. Therefore, scientists have been trying to find new ways for people with 

diabetes to measure their blood sugar without needing a skin puncture to get a blood 

sample (i.e., non-invasive methods) [3]. 

 

1.3 Non-invasive Technologies 

Non-invasive technologies are those which do not penetrate into deep layers of 

tissue. The advantages of such technologies over the invasive ones are less intense and/or 

less frequent pain, as well as the reduced risk of infection. Thus, the non-invasive devices 

allow the diabetics to test their blood glucose more often and therefore maintain better 

health. Potential non-invasive ways to determine blood glucose levels include: measuring 

the energy waves (infrared radiation) emitted by the body, applying radio waves to the 

fingertips, using ultrasound, measuring glucose levels in saliva or tears, shining a beam of 

light onto the skin or through body tissues 

One main disadvantage of many non-invasive devices is the lack of accuracy of 

the measurement of the glucose relative to traditional invasive measurement devices. The 

reliable accuracy is important, such as adjusting the amount of insulin to take, will be 

based on the results of the device. Improving the accuracy of the non-invasive blood 

glucose monitor is a major problem for the device developers. 

 

1.4 VivaScan Non-invasive Monitor 

This project was sponsored by VivaScan Corporation (VSC). VivaScan is a 

company in Massachusetts that is developing a non-invasive, optical glucose sensor. 
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VivaScan’s device shines infrared light through the earlobe. The device uses two near-

infrared light beams, one tuned as a baseline to reject interfering substances and the other 

to register blood-sugar content according to how much light is absorbed by glucose just 

beneath the skin. The device gently compresses the earlobe to squeeze blood out of the 

tissue, and then releases the lobe to restore normal blood flow. Light-intensity readings 

are taken before, during, and after the squeeze [4].  

 

1.4.1 Data Collection and Calibration  

The data collection process for statistical analysis includes collection of 

measurements of light intensity (non-invasive device output). Data acquisitions are made 

every 15 minutes. Immediately after every (or every other) measurement, an invasive 

reference reading is taken. For the invasive reading the HemoCue glucose meter with 

high accuracy (±3.5%) is used.  If a measurement does not have a reference glucose 

value, then the linear interpolated glucose value between two neighboring points is used. 

Thus, each measurement produces one data point.  

The collected data include three main predictor variables which will be referred in 

this report as X1, X2, X3, and additional 17 variables that may be important for the 

prediction of the glucose level. The collected data were divided into two parts. One part 

is called the calibration data. These data are used to fit the ordinary least squares (OLS)  

regression model to establish the relation between the three predictor variables X1, X2, 

X3 and a reference glucose values. Second part is called prediction (test) data and is used 

to validate the built regression model performance in prediction of the blood glucose 

level.  
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The VSC non-invasive devise should be calibrated for each patient to cover the 

blood glucose range expected on the patient. During the calibration procedure three 

parameters are adjusted to optimize the model. Model is considered to be optimized when 

the correlation of the predictor variables X1, X2, X3 with glucose achieves the maximum 

possible value and the p-value of the regression model reaches 1% of statistical 

significance (p-value is 0.01). 

The calibration process starts when seven data point are collected. As seven 

points are collected, the OLS regression model is fitted. With the addition of a new 

measurement the regression model is fitted again and parameters are adjusted every time. 

These calibration measurements are accumulated until the criterion of 1% statistical 

significance is reached. When the criterion of 1% statistical significance for the 

corresponding regression model is obtained the adjusted parameters are fixed and we can 

say that calibration process is completed. Now the test data can be collected to validate 

the built regression model performance. 

 

1.4.2 Problem Statement  

As it was mentioned above, the non-invasive methods are biased in the blood 

glucose prediction. This is mainly the engineering problem, but it could be turned to the 

statistical problem of the data analysis. The goal of this project was to improve the ability 

of the non-invasive blood glucose monitor to predict the glucose levels more correctly by 

finding and implementing the best regression model. The following proposed regression 

methods were considered and compared with the ordinary least squares regression (OLS) 

results in the prediction of the glucose values using the actual VSC data. These models 
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are partial least squares regression (PLS), robust regression (ROBUST), weighted least 

squares regression (WLS), local regression (LOCAL), and ridge regression (RIDGE).  

 

1.4.3 Measures  

The performance of each of the model was evaluated by two factors: Average 

prediction error in percentage (PAPE) and percent of acceptable points according to the 

“± 20% rule”.  Average prediction error (APE) is: 

APE= ∑
=

−
n

i
ii YY

n 1

1 |ˆ|                                                      (1.4.1) 

iY  – actual glucose value for ith observation 

iŶ  – predicted glucose value for ith observation 

 n is the number of the observations in the dataset 

 

Average prediction error in percentage (PAPE) can be written as following: 

 

PAPE= ∑
=

−n

i i

ii

Y
YY

n 1

100 |ˆ|%                                           (1.4.2) 

 

A point is accepted according to the “± 20%” rule if the prediction error is less than or 

equal to 20%: 

%%
|ˆ|

20100 ≤
−

i

ii

Y
YY

                                                (1.4.3) 
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For a good regression model, the value of PAPE should be small, while percent of 

acceptable points should be large. To compare the performance of the regression models 

the combination of these two values was considered. 

A Clarke graph can be used to demonstrate the “± 20%” criterion. This graph 

represents the error grid analysis and is usually used to evaluate the performance of the 

blood glucose monitor. On Clarke graph the reference blood glucose values (HemoCue 

output) are plotted against the values generated by monitoring system (VSC device 

output). Zone A represents glucose values that deviate from the reference by no more that 

20%. If a point falls into zone A, it is acceptable according to the “± 20%” rule. Values 

falling within this range are considered clinically accurate [5]. 

 

 
Figure 1.1: Clarke Error Grid 
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2. Methods Description 

 

2.1 Ordinary Least Squares Regression  

We assumed that there is a linear relationship between the glucose level and the 

independent (predictor) variables. This relation can be expressed in the ordinary least 

squares regression model (OLS) form: 

 

ipipiii XXXY εββββ +++++= −− 1122110 ,L                         (2.1.1) 

where: 

Yi are the true glucose values obtained with HemoCue invasive glucose meter 

110 ,...,, −pβββ  are regression parameters 

1,21 ,...,, −piii XXX are variables measured by the device (non-invasive device output) 

iε  are independent ),0( 2σN  

i=1,…n, 

p – number of regression parameters. 

The response function for the regression model (2.1.1) is: 

 

E{Y}= 1122110 −−++++ pp XXX ββββ L                            (2.1.2) 

 

The OLS regression model with normal error terms implies that the observed glucose 

values are independent normal variables, with mean E{Y} and with constant variance 2σ . 
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The regression parameters 110 ,...,, −pβββ  in (2.1.2) are unknown. In OLS 

regression method they are estimated using the least square criterion: 

∑
=

−−−−−−=
n

i
pipii XXYQ

1

2
1,1110 )( βββ L                (2.1.3) 

The least square estimators are those values of 110 ,...,, −pβββ  that minimize Q. 

When the regression parameters estimates 110 ,...,, −pbbb  are found, the OLS regression 

model can be used to predict the new glucose values. 

When a regression model is considered for an application, we want to be sure that 

the model is appropriate for the use. The OLS regression method suffers from the 

limitations and may not be the best model. One of the limitations is that the errors should 

be normally distributed. Also the OLS method is sensitive to the outliers and to the non-

constancy of the error variance. 

If the assumption about normality of the errors is violated, the regression OLS 

function may not be appropriate for the glucose prediction. When outlying observations 

are present in the data, it can seriously distort the estimated regression function and may 

affect the normality of the distribution of the error terms. The VSC data have relatively 

small number of observations. The presence of outlying cases in a small dataset can 

greatly impact the fitted regression function.  In the case when the error variance is not a 

constant, it causes variance of regression parameters estimates to be large, as well as p-

value of the regression model may be affected. 
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2.2 Weighted Least Squares Regression 

For OLS regression model, the error terms iε are assumed to be independent 

normal random variables, with mean zero and constant variance 2σ . When the error 

variance is not constant but varies in a systematic fashion, a direct approach is to modify 

the model to allow for this and use the method of weighted least squares (WLS) to obtain 

the estimators of the parameters. 

Denote the variances of the error terms iε  by 2
iσ  indicating that the variances of 

the errors are different.  The errors iε  are defined as: 

)( iii YEY −=ε                                                 (2.2.1) 

The residuals are the differences between the observed values iY and fitted values iŶ : 

iii YYe ˆ−=                                                   (2.2.2) 

So, ie reflects the properties assumed for iε . 

Suppose that the error variances are known, then the method of maximum 

likelihood can be used to obtain the regression coefficients in 2.1.2. The likelihood 

function from the OLS method is modified by replacing i2σ  with weights iω , where 

2

1

i
i σ

ω =                                                   (2.2.3) 

Now, we are minimizing a weighted sum of squares: 

∑
=

−−−−−−=
n

i
pipiiiw XXYQ

1

2
11110 )( ,βββω L               (2.2.4) 

In matrix notations the maximum likelihood estimators of the regression coefficients are: 

WYXWXXb TT
w

1−= )(                                       (2.2.5) 
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Where wb  is the vector of p estimated coefficients, and W is nn×  diagonal matrix 

containing the weights iω . 

When 2
iσ  are unknown, they can be estimated. Since 0=)( iE ε  by assumption, 

{ } { } { }2222
iiii EEE εεεσ =−= )(  . The squared residuals 2

ie  can be used to estimate 2
iσ , 

and the absolute residuals || ie can be used to estimate the standard deviation 2
ii σσ = .  

Thus, the variances can be estimated by fitting the regression model using unweighted 

least squares (OLS) and then regressing the squared residuals 2
ie  against the predictor 

variables. The standard deviations can be estimated by fitting the regression model using 

OLS and then regressing the absolute residuals || ie  against the predictor variables. 

The fitted values of variance function and the standard deviation function are used to 

estimate the weights: 

2

1
)ˆ( i

i s
=ω  , where iŝ  is fitted standard deviation 

i
i v̂

1
=ω , where iv̂  is fitted variance 

The estimated regression coefficient can be obtained now using (2.2.5). 

The residual plots where residuals plotted against the predictor variables or the 

fitted values iŶ  are used to investigate the constancy of the error variances. These plots 

for VSC data indicate that the variances of errors are increasing or decreasing in a 

systematic manner or vary in more complex fashion related to independent variables Xs 

or the predicted response E(Y). This fact denotes that the variances of the error terms may 

be not constant and using WLS method instead of OLS may be reasonable.  
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2.3 Partial Least Squares Regression 

Sometimes predictor variables tend to be correlated among themselves. The 

situation when the predictor variables are correlated among themselves is called 

multicollinearity. When multicollinearity exists, the estimated regression coefficients in 

the OLS model tend to vary from one sample to the next as well as they depend on which 

variables are included in the model and which are left out. Partial least squares regression 

(PLS) method helps to overcome the problem of multicollinearity. This method is also 

instrumental if there are many predictor variables.  

The goal of PLS method is to predict Y from X and to describe their common 

structure.  PLS regression is a method of using both the predictor matrix (matrix of 

independent variables) X and the response matrix Y (matrix of dependent variable) to 

extract a set of factors (latent vectors) with the constraint that these factors explain as 

much as possible of the covariance between X and Y [6]. The number of the extracted 

factor is usually specified to be less that the number of predicted variables Xs. The 

emphasis of PLS method is made on predicting Y and not necessarily on trying to 

understand the relationship between the variables.  

In application of the PLS regression method, both the predictor and response 

matrices are decomposed, such that 

ETPX T
c +=  

FUQY T
c +=  

 

where P is the factor loading matrix, Q is the coefficient loading matrix, and E and F are 

factors in X and Y that are not described by the PLS model. In the above equations, cX  
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and cY represent the mean centered matrices of X and Y respectively. PLS method tries to 

find a score vector in the column space of cX  and a score vector in the column space of 

cY  such that 

wXt c=  

qYu c=  

to give the maximal squared covariance for 2)( tuT . That is, the process aims to maximize 

2)( wXYq c
T

c
T subject to |w|=|q|=1. The solution to this equation is given by an 

eigenvalue problem of c
T

c XY : 

wwXYq c
T

c
T λ=  

where λ  is the eigenvalue associated with w. Rather than linking measurements X and Y 

directly, the method tries to establish the inner relationships between latent variables T  

and U, derived from X and Y, respectively, i.e.: 

EUTBU +=  

where B is a diagonal matrix that has the regression weights as the diagonal elements,  

and EU  is an error term. When these error terms are ignored, we can obtain the 

predicted value of cY as 

T
c TBOY =  

 

In PLS the factors are extracted in order of significance. For a good PLS model, a 

set of the first few extracted factors explains much of the covariance between X and Y. To 

apply PLS method to the VSC data, we assumed X to be a predictor matrix of three 
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variables X1, X2, X3, and Y to be the response vector of the glucose values. After 

analyzing the PLS regression results for the VSC data, it was found that the PLS model 

with one extracted factor give a smaller average prediction error (APE) than the PLS 

method with two and three factors. 

 

2.4 Ridge Regression 

Ridge regression is another method along with partial least squares regression 

method that can help to overcome serious multicollinearity problem. The limitation of 

PLS method is that it may be difficult to obtain concrete meanings of the extracted 

factors and explain the relationship between the variables. Ridge regression uses 

modified method of ordinary least squares which allows one to obtain a linear 

relationship between the predictor variables. The PLS is preferred to the ridge method 

when it is necessary to substantially reduce the number of predictors to the small number 

of extracted factor. Ridge regression principle is based on the fact that the biased 

estimator of the regression coefficient with small variance may be preferred to unbiased 

estimator with large variance. 

Usually ridge regression is applied to the centered and scaled model. Consider the 

OLS model (2.1.1). The new standardized (centered and scaled) predictor variable and 

the response variable can be written as: 

k

kik
ik s

XX
X

−
=' , 

Y

i
i s

YY
Y

−
='  

where k=1,…,p-1, ∑ −=
i

kikk XXs )( , and ∑ −=
i

iY YYs )( . 

Then, the OLS now in the standardized form: 
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ipipiii XXXY '''''''' , εβββ ++++= −− 112211 L                        (2.4.1) 

The solution for (2.4.1) in matrix notations is in the form: 

YXXX TT 1)(b −=                                           (2.4.2) 

where b is )( 1×p  vector of the least squares estimated regression coefficient, 

XX T  is )()( 11 −×− pp correlation matrix of X variables, 

and YX T is 11 ×− )( p  vector of coefficients of simple correlation between Y and X. 

The ridge standardized regression estimates of 110 −p',...,',' βββ  are obtained by 

introducing a biasing constant 0≥c (also called shrinkage parameter) into the OLS 

model solution (2.4.2) in the following form: 

YXcIXX TTR 1)(b −+=                                              (2.4.3) 

where Rb  is the 11 ×− )( p  vector of the standardized ridge regression coefficients and I 

is the )()( 11 −×− pp identity matrix.  

The constant c reflects the amount of bias in the estimators. When c=0, the ridge 

regression coefficients in (2.4.3) reduces to (2.4.2). When c>0, the ridge regression 

estimators are biased but tend to be less variable than OLS estimators. 

The problem is to choose the optimum value of c for which the ridge regression 

estimator Rb  has a smaller mean squared error (MSE) than OLS estimatorb . A 

commonly used method of finding the biasing constant c is based on the variance 

inflation factors (VIF) and the ridge trace. The VIFs are referred to the problem of 

multicollinearity and widely used to detect this problem. These factors measure how 

much the variances of the estimated regression coefficients are inflated as compared to 

when predictors are not linearly related. A large VIF value (about 10) often indicates the 
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severe multicollinearity. The ridge trace is a plot, where the values of the 1−p  estimated 

ridge regression coefficients plotted against different values of c. Practically, c value can 

be found by analyzing the ridge trace and VIFs. In ridge trace we choose the minimum 

value of c after which the regression coefficients are moderately stable. For VIFs we 

choose c for which this factor becomes sufficiently small. The choice of c is a judgmental 

one. The full review of proper choices of c is given in Draper and Van Nostrand (1979) 

and Hocking (1976).  

 

2.5 Robust Regression 

Statistically, an outlier is an observation that lies outside the overall pattern of a 

distribution. The outlying cases may be a result of a recording error, measurement error 

or other extraneous effects, and hence should be discarded. Outliers can create great 

difficulty. When outlying observations are present, use of the least squares estimators 

may lead to serious distortions in the estimated regression function. However, not all 

outliers have strong influence on the fitted regression function. 

The robust regression methods have an advantage over the OLS model in damping the 

influence of outlying cases in an effort to provide a better fit for the majority of cases. 

Robust regression methods are also useful when automated regression analysis is 

required. For example, the VSC non-invasive devise uses a calibration procedure to 

adjust the parameters and to build an individual regression model for each patient. There 

may be no time or no possibility for identification of all outlying cases and analysis of 

their influence. Robust regression methods will automatically guard against undue 

influence of outlying cases in this situation. 
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Typically, three classes of problems have been addressed with robust regression 

techniques:  problems with outliers in response surface (Y), problems with multivariate 

outliers in the predictor space (X), and problems with outliers in both the response surface 

and predictor space. 

There are numerous robust regression methods. In statistical applications, the 

methods most commonly used today are Huber M estimation, high breakdown value 

estimation (LTS and S), and combinations of these two methods (MM). If an estimator 

can resist a large number of outliers, it is said that the estimator has a high breakdown 

value. M estimation is the simplest approach both computationally and theoretically. 

Although it is not robust with respect of the outliers in the predictor space, it is still useful 

in analyzing data for which the problem is mainly in the response (Y). Least Trimmed 

Squares (LTS) estimation is a high breakdown value method. S estimation is also a high 

breakdown value method. With the same breakdown value, it has a higher statistical 

efficiency than LTS estimation. MM estimation combines high breakdown value 

estimation and M estimation. It has both the high breakdown property and a higher 

statistical efficiency than S estimation. 

M-estimator is the “maximum likelihood type” estimator. Instead of minimizing a 

sum of squares of the residuals in (2.1.3): 

∑
=

=
n

i
ieQ

1

2 , where βXYe −=  

M estimator Mβ̂  minimize 

∑
=

⎟
⎠

⎞
⎜
⎝

⎛=
n

i

ie
Q

1 σ
ρ                                                         (2.5.1) 
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with respect to the parameters 110 ,...,, −pβββ . Mβ̂  is also a solution of p equations of 

form 

∑
=

=⎟
⎠

⎞
⎜
⎝

⎛Ψ
n

i

i
ij

e
x

1
0

σ
, j=1,…,p-1                                 (2.5.2) 

If  σ  is unknown, it can be estimated using for example Huber or Tukey methods. 

With adding weight function, (2.5.2) becomes: 

∑
=

=⎟
⎠

⎞
⎜
⎝

⎛Ψ
n

i
i

i
ij w

e
x

1
0βσ

                                               (2.5.3) 

where βiw is a weight function that can be chosen from a number of weight functions that 

are available for this method. 

The least trimmed squares (LTS) estimate introduced by Rousseeuw (1984) is 

given by 

∑
=

h

i
ieMinimize

1

2
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                                                     (2.5.4) 

where 22
1 )()( nee ≤≤L  are the ordered squared residuals (note that the residuals are first 

squared and than ordered), and h is defined in the range 
4

131
2

++
≤≤+

pnhn  

 (p is the number of predictors). 

A new improved estimator was introduced recently by Yohai (1985) – MM 

method. Yohai’s estimator is defined in three stages. In the first stage an initial high 

breakdown estimate *β̂  is calculated, such as LTS or S. Then, an M-estimate of scale 's  

is computed on the residuals )ˆ( *βie . Finally, find a local minimum MMβ̂  of 

∑
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i
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e
Q
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)( ρβ                                                    (2.5.5) 
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which satisfy )ˆ()ˆ( *ββ MMMMMM QQ ≤ . 

In the VSC data most of the outliers from X-space are rejected at the calibration 

stage. Since the problem with the outliers in the VSD data may be connected with the 

response direction (Y) as well as some outliers in X  space may be left unattended, it is 

reasonable to employ the robust regression methods to the problem.  

All four robust estimation procedures mentioned above were applied to the VSC 

data. The performance of each method was evaluated by average prediction error in 

percentage (PAPE). It was found that the robust regression model with MM estimation 

gives the lowest PAPE among the other three robust regression models. However, the 

robust regression MM procedure yields similar results as OLS in estimation of PAPE. It 

may mean that ordinary least squares method is not unduly influenced by outlying cases. 

 

2.6 Local Regression 

Robust regression requires knowledge of the regression function. When the 

appropriate regression function is not clear, nonparametric regression may be useful. 

Nonparametric regression fits are useful to obtain estimates of mean responses without 

specifying the nature of the response function. 

The LOESS procedure implements a nonparametric method for estimating 

regression surfaces developed by Cleveland and Devin [8]. The LOESS method assumes 

that the predictor variables have already been selected, that the response function is 

smooth, and the error terms are approximately normally distributed with constant 

variance. The LOESS procedure allows great flexibility because no assumptions about 

the parametric form of the regression surface are needed. 
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Let i=1 to n, where n is the number of observations in the model. Then the ith value iy  of 

the response vector Y and the corresponding value ix  of the vector X of two predictors 

are related by  

iiii xxfy ε+= ),( 21                                                    (2.6.1) 

where f is the regression function that left unspecified and iε   are independent ),0( 2σN . 

The basic idea of local regression or LOESS method is that that near 

),( 02010 xxx =  the regression function f can be locally approximated by a member of a 

simple class of parametric functions. Such a local approximation is obtained by fitting a 

regression surface to the data points within a chosen neighborhood of the point 0x . 

  The LOESS method fits either a first-order model or a second-order model based 

on cases in the neighborhood. The radius of each neighborhood is chosen so that the 

neighborhood contains a specified percentage of the data points. 

The size of the local neighborhoods is determined by the smoothing parameter value s. 

This parameter also controls the amount of smoothing being performed (small s – more 

smoothing). When s < 1, the local neighborhood used at a point 0x  contains the s fraction 

of the data points closest to the point 0x . When 1≥s , all data points are used.  

Suppose q denotes the number of points in the local neighborhoods and 

qddd ,,, 21 L  denote the Euclidean distances in increasing order of the q points closest to 

0x . The weight function used in the LOESS method is defined as follows: 

[ ]
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qiqi
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dddd
w

                      0

)/(1 33

                                     (2.6.2) 

where i=1,…,n. 
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Thus, the weights are decreasing with distance. The points that are close to 0x  

receive maximum weights and cases outside the neighborhood receive weight zero. 

The regression coefficients in a firs order or a second order model can be estimated by 

minimizing the locally weighted sum of squares. 

In most cases, the local regression model based on VSC data cannot be used to 

predict all glucose values in the test VSC data. It happens because some points from the 

test VSC dataset are not contained in the box bounding the fitting data points. 
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3. Data Analysis and Diagnostics 

 

This chapter contains the analysis of VSC data. It was discussed before that the 

problems of  non-normality and non-constancy of the regression errors, presence of the 

outliers and influential observations, multicollinearity may affect the regression model, 

and thus may make the model unfit for the accurate prediction. The methods for detecting 

these problems for the VSC data will be discussed in this section. 

 

3.1 Checking for Normality of the Errors 

For the OLS model as well as for many other regression models considered in this 

project we assume that the error terms iε  in (2.2.1) are independently normally 

distributed. Since thee residuals ie  in (2.2.2) reflect the properties of iε , the normal 

probability plot of residuals is used to investigate the normality of the errors. In this plot 

each residual is plotted against its expected value under normality. Departure from 

normality is indicated by observations which do not lie close to the reference line. The 

normal plots of VSC data did not reveal serious departure from normality for most 

patients. 
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Figure 3.1: Normal Plot for Patient #7 
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Normal Plot of residuals for Patient #7 does not indicates serious departure from normal 

distribution.  

 

3.2 Outliers Detection 

Outliers and the problems that they may produce were described in Section 2.5. 

The outlying cases can occur both in calibration and in prediction (test) data. In 

calibration data that were used for model building such outlying observations may be 

detected and possibly discarded, while the outliers in the prediction data are usually hard 

or impossible to find. The presence of outlying observations in test data is very relevant 

when the regression model is built upon the Low/High glucose design. In this case 

outliers are connected with abnormally low or high predicted glucose values. 
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There are many different tools for detecting outliers in the calibration data. Some 

outlying observations may affect the fitted regression function. These cases are said to be 

the influential points. To measure the influence that ith observation has on iŶ the DFFIT 

value is used: 

iii

ii
i hS

YY
DFFITS −−

=
ˆˆ

 

where iŶ – predicted value, and iY−̂  –  is the predicted value when ith case is omitted. 

DFFIT measures the difference between the predicted value with and without the 

data point. A large value indicates that the observation is very influential. For small 

dataset like VSC data are, the absolute value of DFFIT greater than 1 indicates the 

influential case. 

All VSC data have outlying cases with different degree of influence. These cases 

may affect the regression equation, and thereby the prediction of the glucose value may 

be not accurate. So that application of the robust regression method to the data seems 

reasonable here. 

 

3.3 Detecting Heteroscedasticity 

When )var( iε  is not a constant for i=1,..n, this condition is called 

heteroscedasticity (unequal error variances). This causes variances of parameter estimates 

to be large and can affect tests substantially (for example the general linear hypothesis 

test). To examine heteroscedasticity, the residual plots can be used. In these plots 

residuals are plotted against the fitted values iŶ  or against each of the predictor variables. 

Residual plots are also useful in detection of outliers in the data where outlying 
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observations are represented by cases that are separated from the group of points and are 

located far away from the reference zero line. Ascending or descending band of residuals 

indicates the existence of heteroscedasticity. The residual plots for patient #1,  #5, and #7 

of VSC data indicate the non-constancy of the error variances. 

 

Figure 3.2: Residual Plot for Patient #5 
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Residual plot for patient #5 displays the band of residuals narrowing to the right showing 

non-constant variance. 
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3.4 Detecting Multicollinearity 

Multicollinearity (or collinearity) may create great difficulty in estimation of 

regression coefficients. This problem and its effects were described in section 2.3. 

Variance inflation factor (VIF) is used to measure collinearity. The VIF exists for each X 

variable and measures the increase in variance compared to when the predictor variables 

are not linearly related. Variance inflation factors are the diagonal elements of  

1−)( WXX T  from (2.2.5), where W is nn×  diagonal matrix containing the weights iω . 

Large VIF value among all X variables indicates a serious multicollinearity. The VIFs for 

VSC data do not reveal severe multicollinearity: VIFs are greater then 1 but less that 10.  

 

Table 3.1: Variance Inflation Factors for Patient #7 

Variable DF 
Parameter 
Estimate 

Standard 
Error t Value Pr > |t| VIF 

 

Intercept X1 

X2  

X3 

 

1 

1 

1 

1 

 

118.30672 

326.11734  

8398.78327   

429.34856   

 

6.11315  

70.09382 

3423.76695 

123.86042   

 

19.35   

4.65   

2.45  

3.47   

 

<.0001  

0.0002   

0.0235  

0.0024   

 

0 

1.17620 

1.20403 

1.30737 

 

 

3.5 Summary 

In this project data for seven patients were analyzed. The diagnostics of the data 

did not reveal serious departure from normality of the error terms for most patients as 

well as severe multicollinearity. However, the presence of influential outliers was 

detected in each dataset. The heteroscedasticity in some VSC data was also found. 
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4. Methods Comparison 

 

This chapter contains the results of six regression methods in prediction of 

glucose values for seven different patients. For each patient the regression methods 

results were evaluated by comparison average prediction error in percentage (PAPE) and 

percent of acceptable points according to the “± 20% rule”. Tables in this chapter contain 

the results for six regression models. In each cell of the table the first number is the 

average prediction error in percentage and the number in parentheses is the percent of 

acceptable points according to the “± 20%” criterion. Graphs represent the predicted plots 

of three regression models along with the reference glucose polyline that shown in red. 

The regression models in the graphs are PLS, ridge and OLS. 

 

4.1 Data Designs 

Two data design methods were considered in this project. Original design is based 

on using all calibration measurements to build the regression model and use the rest of 

the data (test data) for glucose prediction. The calibration process may take several hours 

or even several days. During this procedure, the patients should be in the test room. The 

calibration data may contain up to 40 data points. Another design was considered in this 

work to reduce the number of observations that are used for the model building, to 

minimize the waiting time and number of tests for the patients. In this approach, the 

observations with only low and high reference glucose values from the calibration part 

were used for the modeling. This design is called Low/High glucose value design and 

may allow one to obtain the adequate regression model with a smaller number of the 
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observations. Original and Low/High glucose value designs were compared in this 

project in prediction of glucose levels.  

 

4.2 Patient #1 

The VSC data for patient #1 contains 58 observations:  40 are from calibration data and 

18 are from test data. The glucose range in the calibration part is within 49 to 244 mg/dl. 

The wide glucose range and the sufficient number of data points allow one to use 

High/Low glucose value design. 

 

Table 4.1: Regression Methods Comparison for Patient #1 

 Robust WLS Local Ridge* PLS OLS 

Original design       

Original data (40 obs.) 
32.38 

(38.89) 
35.18 

(50.00) 
34.82 

(50.00) 
36.12 

(44.44) 
34.12 

(50.00) 
34.77 

(50.00) 

w/o outliers 
25.41 

(41.18) 
25.42 

(47.06) 
26.30 

(47.05) 
27.17 

(47.06) 
25.34 

(47.06) 
25.88 

(47.06) 

High/Low design**       

5 low - 5 high 
27.23 

(41.18) 
27.96 

(47.06) 
30.88 

(38.46) 
32.72 

(29.41) 
34.05 

(41.18) 
27.23 

(41.18) 
* c=0.5 – biasing constant 
** one outlier from pred. is 
deleted       
 

As shown in Table 4.1, PLS and OLS models give similar results. Using the High/Low 

glucose value design allows to reduce the number of data points in the model from 40 to 

15 and obtain satisfactory prediction of the glucose. However, High/Low glucose values 

method produces one outlier in the prediction (Y) space. 
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Figure 4.1: OLS, PLS, and Ridge Models Performance for Patient #1 
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Figure 4.1 shows that the OLS and PLS are very close in the prediction of the glucose 

level. The models predict well for the glucose range of 90 to 150 mg/dl. 

 

4.3 Patient #2 

The VSC data for patient #2 contains 48 observations:  14 are from calibration data and 

34 are from test data. The glucose range in the calibration part is small – from 68 to 96 

mg/dl. High/Low glucose value design is not used for this patient, since the glucose range 

is small and the number of data points is not sufficient for this type of design. 
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Table 4.2: Regression Methods Comparison for Patient #2 

 Robust WLS Local Ridge* PLS OLS 

Original design        

original data (14 obs.) 
29.87 
(44.18) 

29.99 
(47.06) 

38.52 
(16.6) 

 29.82 
(41.18) 

29.58 
(41.18) 

29.88 
(44.12) 

* c=0.1 – biasing constant       
 

The results for robust, ridge, PLS and OLS regressions are very close, while weighted 

method gives the highest percent of acceptable points. 

 

Figure 4.2: OLS, PLS, and Ridge Models Performance for Patient #2 

GLUCOSE OLS PLS RI DGE

GLUCOSE

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

n

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
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Figure 4.2 shows that three models predict well in the glucose range of  40 to 150 mg/dl. 

Regression models do not predict accurately for high glucose level. Probably, this is due 

to the regression models built upon the data with low glucose values. 

 

4.4 Patient #3 

The VSC data for patient #3 contains 41 observations: 20 are from calibration data and 

21 are from test data. The glucose range in the calibration part is from 73 to 220 mg/dl.  

 

Table 4.3: Regression Methods Comparison for Patient #3 

 Robust WLS Local Ridge* PLS OLS 

Original design        

Original data (20) 
34.68 
(28.57) 

33.71 
(28.57) 

36.41 
(35.71) 

33.63 
(33.33) 

34.44 
(38.09) 

34.42 
(33.33) 

 
* c=0.5 – biasing constant       
 

According to Table 4.3, PLS and ridge are two the best methods: PLS gives the highest 

percent of acceptable points, and ridge method gives the lowest average prediction error.  
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Figure 4.3: OLS, PLS, and Ridge Models Performance for Patient #3 
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OLS, PLS, and Ridge predict in the glucose range of 100 to 160 mg/dl. 

 

4.5 Patient #4 

The VSC data for patient #4 contains 39 observations:  14 are from calibration data and 

25 are from test data. The glucose range in the calibration part is from 115 to 158 mg/dl.  

 

Table 4.4: Regression Methods Comparison for Patient #4 

 Robust WLS Local Ridge* PLS OLS 

Original design        

Original data (14) 
47.52 
(24.00) 

46.14 
(16.00) 

47.45 
(16.66) 

47.33 
(24.00) 

48.81 
(20.00) 

46.13 
(24.00) 

* c=0.1 – biasing constant       
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There is no substantial improvement over OLS model in the glucose prediction. 

 

Figure 4.4: OLS, PLS, and Ridge Models Performance for Patient #4 
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Regression models tend to overestimate the true glucose levels. This happens because the 

regressions were built upon the data with intermediate to high glucose values, but used 

for predicting low glucose values. 

 

4.6 Patient #5 

The VSC data for patient #5 contains 51 observations:  21 are from calibration data and 

30 are from test data. The glucose range in the calibration data is from 76 to 145 mg/dl.  
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Table 4.5: Regression Methods Comparison for Patient #5 

 Robust WLS Local Ridge** PLS OLS 

Original design       

Original data  (21) 
27.00 
(53.33) 

28.73 
(53.33) 

32.11 
(45.45) 

24.13 
(50.00) 

25.03 
(56.66) 

27.00 
(53.33) 

 
High/Low design*       

6 low - 5 high 
31.47 
(44.82) 

29.96 
(41.37) 

34.72 
(36.36) 

26.01 
(51.72) 

28.58 
(50.00) 

31.47 
(44.82) 

* one outlier is deleted 
** c=0.8 – biasing constant       
 

The obtained results show that PLS and ridge are the best methods in the glucose 

prediction. Use of High/Low glucose value design allowed to reduce the number of 

observations from 21 to 11 and obtain satisfactory prediction of the glucose values. 
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Figure 4.5: OLS, PLS, and Ridge Models Performance for Patient #5 
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Models have tendency to predict mainly in the glucose range of 110 to 140 mg/dl. 

 

4.7 Patient #6 

The VSC data for patient #6 contains 17 observations:  7 are from calibration data and 10 

are from test data. The glucose range in the calibration data is from 67 to 171 mg/dl.  

 

Table 4.6: Regression Methods Comparison for Patient #6 

  Robust WLS Local Ridge PLS OLS 

Original design       

original data (7) 
14.27 
(62.5) 

13.36 
(60.00) 

12.27 
(66.66) 

13.44 
(90.00) 

18.42 
(70.00) 

13.00 
(70.00) 

* c=0.5 – biasing constant       
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Ridge is the best method with 90% of acceptable points 

 

Figure 4.6: OLS, PLS, and Ridge Models Performance for Patient #6 
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4.8 Patient #7 

The VSC data for patient #7 contains 46 observations:  24 are from calibration data part 

and 22 are from test data. The glucose range in the calibration part is within 81 to 208 

mg/dl. The wide glucose range and the sufficient number of data points allows one to use 

High/Low glucose value design. 
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Table 4.7: Regression Methods Comparison for Patient #7 

 
 

Robust WLS Local Ridge* PLS OLS 

Original design       

original data (24) 
19.61 
(54.50) 

20.24 
(50.00) 

19.88 
(61.90) 

16.74 
(68.18) 

19.01 
(59.09) 

19.61 
(54.45) 

w/o outliers 
19.05 
(57.14) 

19.96 
(61.90) 

18.16 
(57.90) 

16.45 
(61.90) 

17.53 
(71.43) 

19.05 
(57.14) 

High/Low design**       

7 low - 7 high 
18.55 
(57.14) 

18.50 
(61.90) 

20.82 
(50.00) 

17.01 
(61.90) 

19.02 
(66.67) 

18.55 
(57.14) 

w/o outliers 
18.81 
(55.00) 

18.84 
(57.14) 

19.59 
(56.25) 

16.71 
(55.00) 

17.60 
(66.67) 

18.81 
(55.00) 

High/Low design**       

6 low - 6 high 
18.78 
(57.14) 

18.72 
(57.14) 

22.87 
(45.45) 

16.92 
(61.90) 

17.77 
(66.67) 

18.78 
(57.14) 

w/o outliers 
18.65 
(55.00) 

18.44 
(57.14) 

20.93 
(45.45) 

16.16 
(55.00) 

18.15 
(66.67) 

18.65 
(55.00) 

* c=0.5 
** one outlier is deleted       
 

According to the results for patient #7, ridge regression is the best method that gave the 

smallest PAPE and the largest percent of acceptable points. Use of High/Low glucose 

value design reduced the number of observations in twice and allowed to obtain good 

prediction of the glucose values. 
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Figure 4.7: OLS, PLS, and Ridge Models Performance for Patient #7 
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The models predict well in the wide glucose range of 70 to 180 mg/dl. 
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5. Conclusion 

 

5.1 Summary 

Based on the analysis of the results of six regression models for seven patients, 

PLS and ridge showed the best results in the glucose prediction. For five out of seven 

patients, PLS and/or ridge predict better than the other models analyzed in this project 

including OLS. Thus, use of PLS or ridge regression methods may reduce percent of 

average prediction error to 15%, and increase percent of acceptable points up to 22%. 

PLS and ridge regression models are close to OLS model, since they are just the 

improved modification of OLS. So, if OLS does not predict well, PLS and ridge may 

make the prediction more precise, but not too much. 

Regression models that were considered in this project predict well in some 

specific glucose range. For most patients this range is within 90 to 150 mg/dl. If the 

regression model built upon the data with small glucose range, this makes the built 

regression function useless in the prediction the glucose value outside this range. Thus, 

for accurate glucose prediction, it is important to use the data with wide range of the 

glucose values for the regression model building. 

Using Low/High glucose value design allowed to obtain an adequate regression 

model with a smaller number of the observations. The regression models built upon the 

data with low and high glucose values and a small number (14 or less) of the observations 

predicts relatively well: the average prediction errors and the percent of acceptable points 

are close or the same as in the original design model. One drawback of the Low/High 

glucose design is that it produces the outliers in the test data. These outlying cases are 
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connected with abnormally high (greater that 500) or low (less than 40) predicted glucose 

values. These abnormal predicted glucose values should not be considered as true values. 

 

5.2 Future Work 

Since there are many outliers and influential observations in the data and ridge 

regression method gave better results in the prediction of the glucose values, the next step 

of the work is to try the robust ridge regression. The robust ridge regression method is a 

combination of properties of the robust estimation and the ridge regression. This method 

allows to protect against outliers in the data and shrink the regression coefficients toward 

zero making the estimator variance smaller. There are several approaches to combine the 

properties of robust estimators with ridge estimators. For example, ridge regression based 

on the robust choice of shrinkage parameter c in (2.4.3.) can be used. 

In this project data for seven patients were researched in the prediction of the 

glucose level. For most patients PLS and Ridge are the best regression methods that 

allow to improve the accuracy of the glucose prediction. It would be interesting to 

determine in the future work if these methods give the same beneficial results in the 

prediction of the glucose level for more patients.  
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Appendix 

SAS codes 
 
 

Data Diagnostics 
 
data dat; 
infile patient7; 
input ID GLUCOSE X1 X2 V1-V7 V8 V9 X3 V10-V17; 
run; 
 
*Calibration data; 
data model; 
set dat; 
if _n_ gt 24 then delete; 
run; 
 
*Test data; 
data test; 
set dat; 
if _n_ le 24 then delete; 
drop glucose; 
run; 
 
*Outliers detection; 
proc reg data=model; 
model GLUCOSE=X1 X2 X3/influence ; 
output out=model1 r=resid p=predict; 
run; 
 
*Multicollinearity detection; 
proc reg data=model; 
model GLUCOSE=X1 X2 X3/vif ; 
run; 
 
*Normal Probability Plot of Residuals; 
goptions reset=all; 
title 'Normal probability plot of residuals'; 
symbol1 c=blue v=dot h=.8; 
proc capability data=model1 noprint; 
qqplot resid; 
run; 
 
*Constancy of the Error Variance; 
goptions reset=all; 
title 'Errors vs. Ppredicted'; 
symbol1 i=none v=dot c=red; 
proc gplot data=model1; 
plot resid*predict/vref=0; 
run; 
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Ordinary Least Squares Regression 

 
*Building the OLS regression model for the first 24 observations of the data, 
prediction the glucose values for the rest; 
 
*Obtaining  
- percent of acceptable points according to the "+/-20%" rule 
- average prediction error; 
 
data dat; 
infile patient7; 
input ID GLUCOSE X1 X2 V1-V7 V8 V9 X3 V10-V17; 
run; 
 
*Calibration data; 
data model; 
set dat; 
if _n_ gt 24 then delete; 
run; 
 
*Test data; 
data test; 
set dat; 
if _n_ le 24 then delete; 
run; 
 
proc reg data=model OUTEST=out; 
model GLUCOSE=X1 X2 X3; 
run; 
 
*Prediction glucose value for the test data; 
proc score data=test score=out out=pred type=parms; 
var X1 X2 X3; 
run; 
 
data pred; 
set pred; 
err=glucose-model1; 
err=abs(err); 
errperc=err*100/glucose; 
if errperc gt 20 then p=0; 
if errperc le 20 then p=1; 
run; 
 
*Computing percent of acceptable points according to the "+/-20%" rule; 
proc iml; 
use pred; 
read all var {p} into y; 
n=nrow(y); 
acc=t(y)*y; *acc - number of acceptable points; 
accpct=acc*100/n; *accpct - percent of acceptable points; 
print acc accpct; 
run; 
 
*Computing average prediction error; 
proc means data=pred; 
var errperc err; *errperc - average prediction error in percentage; *err - average prediction error; 
run; 
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Weighted Least Squares Regression 
 
*Building the WLS regression model for the first 24 observations of the data, 
prediction the glucose values for the rest; 
 
*Obtaining  
- percent of acceptable points according to the "+/-20%" rule 
- average prediction error; 
 
data dat; 
infile patient7; 
input ID GLUCOSE X1 X2 V1-V7 V8 V9 X3 V10-V17; 
run; 
 
*Calibration data; 
data model; 
set dat; 
if _n_ gt 24 then delete; 
run; 
 
*Test data; 
data test; 
set dat; 
if _n_ le 24 then delete; 
run; 
 
proc reg data=model; 
model GLUCOSE=X1 X2 X3; 
output out=b2 r=resid p=pred; 
run; 
 
*Computing the absolute and squared residuals; 
data b2;  
set b2; 
absr=abs(resid); 
sqrr=resid*resid; 
run; 
 
proc reg data=b2;  
model absr=X1 X2 X3; 
output out=b3 p=shat; 
 
*Computing weights; 
data b3;  
set b3; 
wt=1/(shat*shat); 
 
*Wieghted regression; 
proc reg data=b3 OUTEST=wmodel; 
model GLUCOSE=X1 X2 X3; 
weight wt;  
run; 
 
*Prediction glucose value for the test data; 
proc score data=test score=wmodel out=pred type=parms; 
var X1 X2 X3; 
run; 
 
data pred; 
set pred; 
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err=glucose-model1; 
err=abs(err); 
errperc=err*100/glucose; 
if errperc gt 20 then p=0; 
if errperc le 20 then p=1; 
run; 
 
*Computing percent of acceptable points according to the "+/-20%" rule; 
proc iml; 
use pred; 
read all var {p} into y; 
n=nrow(y); 
acc=t(y)*y; *acc - number of acceptable points; 
accpct=acc*100/n; *accpct - percent of acceptable points; 
print acc accpct; 
run; 
 
*Computing average prediction error; 
proc means data=pred; 
var errperc err; *errperc - average prediction error in percentage; *err - average prediction error; 
run; 
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Partial Least Squares Regression 

 
*Building the PLS regression model for the first 24 observations of the data, 
prediction the glucose values for the rest; 
 
*Obtaining  
- percent of acceptable points according to the "+/-20%" rule 
- average prediction error; 
 
data dat; 
infile patient7; 
input ID GLUCOSE X1 X2 V1-V7 V8 V9 X3 V10-V17; 
run; 
 
*Calibration data; 
data model; 
set dat; 
if _n_ gt 24 then delete; 
run; 
 
*Test data; 
data test; 
set dat; 
if _n_ le 24 then delete; 
drop glucose; 
run; 
 
data all; 
set model test; 
run; 
 
proc pls data=all nfac=1; 
model GLUCOSE=X1 X2 X3; 
output out=pred p=predgluc; 
run; 
 
data pred; 
set pred; 
if _n_ le 24 then delete; 
keep id predgluc; 
run; 
 
data glucose; 
set dat; 
if _n_ le 24 then delete; 
keep id glucose; 
run; 
 
data predicted; 
merge glucose pred; 
err=glucose-predgluc; 
err=abs(err); 
errperc=err*100/glucose; 
if errperc gt 20 then p=0; 
if errperc le 20 then p=1; 
run; 
 
*Computing percent of acceptable points according to the "+/-20%" rule; 
proc iml; 
use predicted; 
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read all var {p} into y; 
n=nrow(y); 
acc=t(y)*y; *acc - number of acceptable points; 
accpct=acc*100/n; *accpct - percent of acceptable points; 
print acc accpct; 
run; 
 
*Computing average prediction error; 
proc means data=predicted; 
var errperc err; *errperc - average prediction error in percentage; *err - average prediction error; 
run; 



 

 47

Ridge Regression 
 
*Building ridge regression model for the first 24 observations of the data, prediction the glucose values for the rest; 
 
*Obtaining  
- percent of acceptable points according to the "+/-20%" rule 
- average prediction error; 
 
data dat; 
infile patient7; 
input ID GLUCOSE X1 X2 V1-V7 V8 V9 X3 V10-V17; 
run; 
 
*calibration data; 
data model; 
set dat; 
if _n_ gt 24 then delete; 
run; 
 
*test data; 
data test; 
set dat; 
if _n_ le 24 then delete; 
run; 
 
proc reg data=model OUTEST=out; 
model GLUCOSE=X1 X2 X3/ridge = 0.500; 
output out=model2 r=resid p=predict; 
run; 
 
data out; 
set out; 
if _RIDGE_ = . then delete; 
run; 
 
*prediction glucose value for the test data; 
proc score data=test score=out out=pred type=ridge; 
var X1 X2 X3; 
run; 
 
proc print data=predicted; 
run; 
 
data pred; 
set pred; 
err=glucose-model1; 
err=abs(err); 
errperc=err*100/glucose; 
if errperc gt 20 then p=0; 
if errperc le 20 then p=1; 
run; 
 
*computing percent of acceptable points according to the "+/-20%" rule; 
proc iml; 
use pred; 
read all var {p} into y; 
n=nrow(y); 
acc=t(y)*y; *acc - number of acceptable points; 
accpct=acc*100/n; *accpct - percent of acceptable points; 
print acc accpct; 
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run; 
 
*computing average prediction error; 
proc means data=pred; 
var errperc err; *errperc - average prediction error in percentage; *err - average prediction error; 
run; 
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Robust Regression 

*Robust regression with MM method and Yohai's optimal function for MM estimate; 
 
*Building robust regression model for the first 24 observations of the data, 
prediction the glucose values for the rest; 
 
*Obtaining  
- percent of acceptable points according to the "+/-20%" rule 
- average prediction error; 
 
data dat; 
infile patient7; 
input ID GLUCOSE X1 X2 V1-V7 V8 V9 X3 V10-V17; 
run; 
 
*Calibration data; 
data model; 
set dat; 
if _n_ gt 24 then delete; 
run; 
 
*Test data; 
data test; 
set dat; 
if _n_ le 24 then delete; 
run; 
 
*Robust regression MM method; 
proc robustreg data=model method=mm(chif=yohai) outest=rmodel; 
model GLUCOSE=X1 X2 X3; 
run; 
 
proc score data=test score=rmodel out=pred type=parms; 
var X1 X2 X3; 
run; 
 
data pred; 
set pred; 
model1=_; 
err=glucose-model1; 
err=abs(err); 
errperc=err*100/glucose; 
if errperc gt 20 then p=0; 
if errperc le 20 then p=1; 
run; 
 
*Computing percent of acceptable points according to the "+/-20%" rule; 
proc iml; 
use pred; 
read all var {p} into y; 
n=nrow(y); 
acc=t(y)*y; *acc - number of acceptable points; 
accpct=acc*100/n; *accpct - percent of acceptable points; 
print acc accpct; 
run; 
 
*Computing average prediction error; 
proc means data=pred; 
var errperc err; *errperc - average prediction error in percentage; *err - average prediction error; 
run; 
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Local Regression 

 
*Building local regression model for the first 24 observations of the data, 
prediction the glucose values for the rest; 
 
*Obtaining  
- percent of acceptable points according to the "+/-20%" rule 
- average prediction error; 
 
data dat; 
infile patient7; 
input ID GLUCOSE X1 X2 V1-V7 V8 V9 X3 V10-V17; 
run; 
 
*Calibration data; 
data model; 
set dat; 
if _n_ gt 24 then delete; 
run; 
 
*Test data; 
data test; 
set dat; 
if _n_ le 24 then delete; 
run; 
 
proc loess data=model; 
SCORE data=test ID=(X1 X2 X3)/print;  
ods output ScoreResults=pred;  
model GLUCOSE=X1 X2 X3; 
run; 
 
data pred; 
set pred; 
err=glucose-p_glucose; 
if err=. then delete; 
run; 
 
data pred; 
set pred; 
err=abs(err); 
errperc=err*100/glucose; 
if errperc gt 20 then p=0; 
if errperc le 20 then p=1; 
run; 
 
*Computing percent of acceptable points according to the "+/-20%" rule; 
proc iml; 
use pred; 
read all var {p} into y; 
n=nrow(y); 
acc=t(y)*y; *acc - number of acceptable points; 
accpct=acc*100/n; *accpct - percent of acceptable points; 
print acc accpct; 
run; 
 
*Computing average prediction error; 
proc means data=pred; 
var errperc err; *errperc - average prediction error in percentage; *err - average prediction error; 
run; 
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 P-values Plot 
 
*obtaining p-values for the first 5,8,...n observations; 
 
data dat; 
infile patient7; 
input ID GLUCOSE X1 X2 V1-V7 V8 V9 X3 V10-V17; 
run; 
 
*Macro to perform p-value calculating for 5,8,...n observations; 
 
%macro pv; 
data pval; 
run; 
%do l = 5 %to 46; 
  
      data model&l; 
      set dat; 
      if _n_ gt &l then delete; 
      run; 
 
      proc reg data=model&l; 
      model GLUCOSE=X1 X2 X3; 
      run; 
 
*p-value calculating; 
proc iml; 
 use model&l; 
 read all var {X1 X2 X3} into x; 
 read all var {GLUCOSE} into y; 
    n=nrow(x); 
 p=ncol(x); 
 x=J(n,1)||x; 
 
 xpx=t(x)*x; 
 ixpx=inv(xpx); 
 
 H=x*inv(t(x)*x)*t(x); 
 betahat=ixpx*t(x)*y; 
 resid=(I(n)-H)*y; 
 
 sse=t(resid)*resid; 
 mse=sse/(n-p-1); 
 
 ssr=t(y)*(H-J(n,n,1/n))*y; 
 msr=ssr/p; 
  
 alpha=0.05; 
 fstar=msr/mse;  
 fcrit=finv(1-alpha,p,n-p-1); 
 pvalue=1-probf(fstar,p,n-p-1); 
 create pval&l var{fstar, pvalue};  
 append;  
    close pval&l; 
 
run; 
 
data pval; 
set pval pval&l; 
run; 
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%end; 
data pval; 
set pval; 
if _n_=1 then delete; 
run; 
%mend; 
%pv; 
 
 
data pval; 
set pval; 
N=_n_+4; 
run; 
 
*ploting p-value vs. number of observations in the model; 
goptions reset=all; 
title 'p-value vs. number of observations in the model'; 
symbol1 i=joint v=dot c=red; 
proc gplot data=pval; 
plot pvalue*N/vref=0.01; 
run; 

 


