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Abstract 
The identity of each cell is defined by the genes it expresses, which is predicated by the three- 
and four-dimensional organization of chromatin in the nucleus. The nuclear pore complex (NPC) 
guides such gene expression by physically interacting with cell-type specific genes combinations. 
These genes are identifiable by DamID-fused nucleoporin, making the NPC a physical reference 
point. Guided by these nuclear waypoints, Hi-C data can be integrated to further models for 
organization of the genome at the nuclear periphery.  
 
For biological and computational reasons, analyzing Hi-C data is most effective for examining 
interactions between regions on the same chromosome – cis-interactions. Accordingly, 
visualization methods primarily focused on what is happening “along the diagonal”.  
 
We propose using kernel density estimation, a method frequently applied in ecology and 
epidemiology, as a chromosome-agnostic method for quantifying the probability of observing 
interactions at the “local” (gene) level. Subsequently, these densities are used to create contour 
plots that depict the regions most likely interaction along the respective lengths of the pair. 
Although such a targeted approach is not unique in the realm of chromatin capture as a whole – 
there exist targeted applications of such techniques – by its nature Hi-C data lends itself to a 
“global” perspective. Therefore, a framework for a “local” approach to Hi-C data analysis was 
constructed in conjunction with expanding our visualization toolbox. This framework will be used 
to integrate additional data-types and guide microscopy-based research of genome organization 
at the nuclear periphery.  
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That may be the most important thing to understand about humans. It is the 
unknown that defines our existence. We are constantly searching, not just for 
answers to our questions, but for new questions. We are explorers. We explore 
our lives day by day, and we explore the galaxy, trying to expand the boundaries 
of our knowledge. And that is why I am here. Not to conquer you with weapons, or 
with ideas. But to coexist... and learn. 

 
 

-DeepSpace9 s1e1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ready? 
 

Why do your people always ask if someone is ready right before you're going to 
do something massively unwise? 

 
Tradition. 

 
 

-Babylon5:s3e17 
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1 Introduction 
If we could look directly at the contents of the nucleus, the genome, the blueprint of life itself, it 
would more closely resemble mom’s spaghettii than an organized system of networks 
coordinating the underpinnings of life. Despite the appearance of disorganization, (most) cells 
can fulfill their needs either as individuals – such as yeast – or fulfill their roles within multi-
cellular organisms –– such as us. Given the need for functionality, it follows the organizational 
structure may be more akin to a refrigerator – the stuff you need fast up front and maybe some 
food near expiration in the back – as the stochastic drivers of evolution are unlikely to apply the 
“KonMari Method™ii” to genomic organization. This begs the question, which components(s) of 
the nucleus may be “pulling to the front” the information (DNA) a cell requires regular access to? 
Underpinning the work in this thesis is the 
hypothesis that the nuclear pore complex 
(NPC) has a role beyond that of transit 
authority for material traveling between the 
cytoplasm and the nucleus. In the NPC, we 
observe potential for an organizational 
force for genomic information, ensuring the 
necessary components for cellular function 
are at the ready. We explore this 
potentiality by integrating datasets derived 
from distinct experimental methods – 
DamID-seq, siRNA-seq, Hi-C – and a 
curated database of potential drug target – 
Open Targets – to predict NPC-associated 
patterns of genomic organization. The aim 
of such predictions is to guide the selection 
of probes for fluorescent microscopy. 
Doing so would allow the cell-by-cell 
collection of spatial data into our modeling 
framework that would allow us to connect 
the probabilistic inferences made using 
sequencing data to the point-spread 
functions at the heart of imaging data. 
Current methods in bioinformatics were 
deconstructed to find a path appropriate to 
our question to go from data processing 
and integration through analyses. 
Additionally, we undertook a careful 
assessment data context – the source 
(U2OS cell line), how it was obtained, what 
questions the data were originally collected 

 
i The lyrics to the award winning “Lose Yourself” by Eminem include: “His palms are sweaty, knees weak, 
arms are heavy / There's vomit on his sweater already: Mom's spaghetti / He's nervous, but on the 
surface he looks calm and ready”. This author was introduced to the nucleus-as-a-spaghetti-bowl imagery 
during a multiomics course given by EMBL. 
ii The KonMari method was established by Marie Kondo and initially popularize by her first book, “The 
Life-Changing Magic of Tidying Up,” which has been translated into 44 languages, according to her 
website. The method centers on only keeping such things that spark joy for an individual. 

 
Figure 1.1 Accidental Gerrymandering 
The term “Gerrymander” refers to the practice of legally 
altering the lines of voting districts to dramatically favor the 
electoral outcomes desired by one party such that said 
outcome is all but guaranteed. (a) A visualization of electoral 
districts drawn such that they favor a specific party, i.e. they 
are “gerrymandered” (top) versus proportionally representing 
the population of the district (bottom). (b) Although hardly a 
new practice, the term was coined after then Governor of 
Massachusetts, Elbridge Gerry, signed a redistricting bill on  
February 12, 1812. The new districts included one in his own 
home county of Essex that was of an especially peculiar 
shape. The infamous cartoon-map depicting a mythical 
dragon-like beast, the “Gerry-mander” appeared in the 
Boston Gazette after painter Gilbert Stuart added a head, 
wings, and claws to the new district map hanging over 
newspaper editor Benjamin Russsel’s desk. It is said he 
exclaimed, “That’ll do for a salamander,” to which Russel 
replied, “Better say a Gerry-mander.” 
 
Figures from (a) Klein. The Boston Globe. 2011;280(72). (a) 
M.boli et al. Wikipedia.org. 2022. 

https://konmari.com/
https://konmari.com/
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to answer, and so on – an important endeavor for any analysis but particularly so when using 
externally sourced datasets, such as those we used. For the analysis of “population data,” i.e. the 
set of transcribed genes, we went “back to basics.” Each gene was considered as an observed 
member of a population and the viability of statistical methods – as applied to this dataset – were 
assessed based on test and model assumptions. Elements that are easily (and understandably) 
taken for granted, such as characteristics of the reference genome, were carefully considered to 
identify potential confounders they may introduce. Existing tools for the analysis and visualization 
of Hi-C data were reviewed, both with broad strokes as well as through the lens of our specific 
objectives. We found that the current state of Hi-C analysis can be likened to [accidental] 
gerrymandering (Fig. 1.1). By establishing the start of binning at the start of each chromosome, 
the results are biased toward global features. We hence propose “redistricting” to favor local 
phenomena when investigating interactions between specific loci such as genes. Such 
redistricting is an essential step toward relating these genomic data from their “sequence” 
coordinate space into the “physical” space of the nanoscale distances used in microscopy. 
Returning to fundamentals throughout the process, particularly when faced with roadblocks, is a 
reoccurring theme of this research project. Knowing why something worked – or did not – was as 
important as the answers sought. Our method for aggregating gene assay data uniquely 
considered genes as a population. This approach allowed us to apply methods often employed 
by epidemiologists, viewing assays as one might view exposures and outcomes. Epidemiologists 
also have methods for finding the source or sources of an exposure, some of which correspond 
with those in the geoscience, such as topography. The traditional view of Hi-C is that of astronauts 
on the International Space Station, the global features of the world seen in their entirety in ways 
impossible to achieve on Earth. However, the answers we seek require more the bird’s eye view, 
as they can make out the undulations of the ground, the appearance of predators (or prey) – the 
local features of the landscape. To this end, our methodology applies topographical methods to 
seek local patterns of genomic interaction and organization; in this way, we posit that Hi-C data 
can be used to create a rough map of the gene-level perspective. Going forward, this rough map 
can be used to inform experimental design for quantitative fluorescent microscopy that will fill in 
the details. In tandem with our investigation of the NPC as an organizational force in the nucleus, 
we highlight the utility of publicly available data for preliminary data analyses as well as practical  
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considerations surrounding its use. 
  

 
Figure 1.2 Motivating factors for moving the anchor point for local binning strategies for Hi-C data 
Global binning, the standard methodology for Hi-C data analysis, does not account for the position of feature relative 
to its enclosing or dividing bin(s). Often, the length of the feature relative to the bin is also overlooked – in global 
binning, the feature IS the bin, rather than a biologically-based feature such as a promotor or a gene. By contrast, 
the local approach to binning accounts for the biological-feature by setting the anchor point at the start of the feature 
in question, with the ability to set a slightly broader search window (say, +/- 1kb) if desired. The parameters are 
subject to the requirements of the question asked of the data. Similarly, the use of global versus local binning 
depends on the question being asked. For global patterns indicating organizational structure, anchoring the bins at 
the first base pair of a chromosome makes sense. For relationships between biological features on a smaller scale, 
feature-location based anchoring is likely preferable. 
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2 Overview 
2.1 Don’t Take This Out of Context 
“Doing science” requires an understanding context. Context is what a high school physics teacher 
sets by establishing that “magic physics land”iii problems on an exam only respect a specified 
subset of physical laws. As far as this author can recall, that first taste of context consideration 
was never explicitly connected to a general need to consider the context in all scientific endeavors 
– and most of life.  In science, the context is the setting in which the phenomenon in question 
exists – for example, if studying cellular differentiation, the microenvironment in which a cell “lives 
in the wild” must be accounted for, either through emulation or explained as a study limitation. 
The experimental context can determine the fidelity of data collection – was data for a behavioral 
study collected via observations or self-reporting? Historical context can clue a researcher into 
whether not existing research may be biased and should be excluded, or at least read with 
trepidation – the prevalence of undergraduate students as sample populations in sociology 
research or the lack of female subjects in medical research are two examples that come to mind. 
For those researching entirely in a “dry lab”, it is easy to lose touch with the experimental and 
larger biological context within which data is collected. 

Considering context can aid researchers in avoiding, or 
at least accounting for, confounding variables. 
Confounding variables are those variables that are not 
measured by the data but affect both the exposure and 
the outcome. This may lead to misattribution of causality 
between two variables (Fig. 2.1). Confounding variables 
can result in surprising findings, such as the initial 
conclusion resulting from the Obesity Paradox.1 In some 
studies, obesity is associated with a higher chance of 
survival. However, this outcome is predominantly seen in 
situations where patients are admitted to the ICU. Thus, 
the protective effect associated with survival might be 
ICU admittance. We say might, as even selecting for ICU 
patients alone, obesity seems to have a protective. This 
correlation may be the result of further confounding, such 
as water retention associated with congestive heart 
failure leading to a higher BMI that is not caused by a 
higher percentage of body fat.  
Some disciplines touch upon the consideration of context 
as needed, it will come as no surprise that those pursuing 
professional degrees in public health are required to 
evaluate context until it becomes second nature. Such 
considerations include, but is not limited to, the relevant 
biological processes, stakeholder analysis and 
applicable models of health2. Models are scrutinized for 
confounding factors, variables that may disrupt any 

causal connections implied by experimental findings. Such variables may be inadvertently 
overlooked during study design or masked by model selection and interpretation, as may be the 
case in multiple studies attempting to establish what is, if any, a “safe” blood lead level3,4, a debate 

 
iii This is the semi-sarcastic name this writer’s high school honors and Advanced Placement physics 
teacher, Eugene Newman, JD,  used for a place without conditions such as drag and friction, unless they 
had been covered at that point in the course.  

 
Figure 2.1 Correlation, Causation and 
Confounding 
A classic example of confounding that is 
often used to illustrate “correlation is not 
causation.” (black arrows). The temptation 
is linking an increase in ice cream 
consumption with an increase in drowning 
deaths. However, hot weather is a factor 
that increases the incidents of both, making 
it a confounding variable. Say one studied 
the casual effect of hot weather on drowning 
(red arrows). If you wanted to add 
complexity, “access to public swimming 
areas” may be a “mediator”, a variable that 
is an intermediate step between exposure 
and outcome. 
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that continues, in various forms, to this day4,5. All these examples reinforce that looking only the 
numbers can be very misleading: context matters. With this reflection on context in mind, a 
significant amount of background information is included within each section. The aim is to 
promote a well-informed readeriv so they may follow the train of thought of the researchers, 
understand why decisions were made, and evaluate the results for themselves. 
 

2.1.1 Biological Models 
What does this model bring to the table? The good, the bad, the ugly… 
Mice are mutated to represent certain conditions, and while we control for what we can, this 
system is imperfect. The imperfections of this system are discussed further in Part I > Background 
in the context of biological models for rheumatoid arthritis. 
 
Overlooked experimental elements – “givens” – can impact the system under scrutiny. For 
instance, the impact that conditions under which laboratory animals are standardly kept can be 
taken for granted – until they are not. While caring for study subjects, a researcher noted the 
bedding used was bothering their respiratory system. Fortuitously, the researcher was studying 
the effects of prenatal exposure to pollutionv on behavior6. This coincidence inspired a new 
experiment, which compared the particulate matter (PM) generated by commonly used bedding 
substrates across common cage set-ups. The data indicated that all of the standard beddings 
substrates exposed rats to a substantial amount of PM2.5

7. Given PM2.5 inhalation8 is known to 
result in a multitude of negative health impacts, the implications of such findings are far reaching. 
Bedding substrates have likely contributed confounding or mediating variability in the countless 
prior studies that used rats as a model organism under standard laboratory conditions. 
It is unclear to what extent these findings have impacted current and future standards of care for 
laboratory animals, the points this outcome raises are clear: 1. the biological model can impact 
study results in both predictable and unpredictable ways, 2. the importance of cannot be 
understated.  
 
2.1.1.1 Cell lines 
Cell lines are commonly used biological models and are the biological model for the data analyzed 
in this thesis. Therefore, it is prudent to consider how the selection of a cell line can affect the 
relevance of results. To highlight the importance, let us consider the following example. 
To evaluate the expression of three specific non-coding mitochondrial RNA (ncmtRNA) in breast 
cancer, publicly available transcriptomic data from at least one breast cancer cell line was 
selected for analysis.9 The interest in these ncmtRNA was inspired by the prior findings that 
identified these transcripts in samples taken from cell lines derived from a multitude of tumor 
types. Differences in expression were described between the transcripts during G1 versus mitosis 
as well as when comparing tumorigenic cells to health cells of the same type. MCF-7 is a 
frequently used model for estrogen receptor alpha (ERα)-positive breast cancer. The association 

 
iv This author hopes this dissertation might be read by some seeking answers to questions she is able to 
answer, so she does not assume the reader has intimate familiarity with the specific problems or methods 
presented. That said, she understands and respects that some readers may have such familiarity. To 
those who wish to ask questions or submit critiques, the author welcome boths. 
v Pregnant mice were exposed to pollution, which was collected in Boston’s Chinatown area, in a uniquely 
designed chamber. After they matured, the behavior of the offspring was observed during tests targeting 
specific aspects of animal behavior.  
For those unfamiliar with the geography of Boston, Chinatown is located next to / below the exchanges 
between several major interstates (I-93, I-90) as well as a highly trafficked bus and train station (South 
Station). 
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between the presence of estrogen and changes in mitochondrial gene expression10 as well as the 
stimulating effect on cell division of 17β-estradiol (E2) binding to Erα receptors11 adds additional 
context to data collected using the MFC-7 cell line. In the aforementioned study, the data selected 
was publicly available RNA-seq data including E2 treated and untreated conditions and was 
specifically focused ncRNA, meaning they were unlikely to be filtered out during processing.12 An 
additional benefit of using data from frequently used cell line is the increased likelihood additional 
datasets from the same line will be available for future analysis and/or published results will be 
available for comparison. As we will see, similar considerations of the biological context as well 
as data availability were made when selecting and analyzing the datasets used in this thesis. 
As the amount of available data continues to grow and the construction of data-hungry deep 
learning models unlikely to subside, the characteristics of individual cell lines may be 
overwhelmed by the desire to feed the models. 
 

2.1.2 Experimental Methods 
Another potential victim of big data is an understanding of experimental methods. One point of 
big data driven concern is the risk of letting the limitations of research questions that can be 
answered with the given tools fall by the wayside. This overestimation of the worth of a dataset 
is a danger when analyzing survey data, for example. There is often a bias introduced by self-
reporting on surveys versus collecting information through observation. Depending on the mode 
of collection, surveys may also suffer from “social desirability bias” – the want to provide socially 
acceptable answers – which is of particular concern when another person is used as the collect 
instrument. Luckilyvi, cells do not care if they make researchers happy, but the experimental 
methods are equally as important to consider.  
Limitations are a consideration at multiple points in this thesis. For example, the detectable 
distance between chromatin loci is limited by the size of the cross-linking molecule and any 
stabilizing forces, such as proteins, to maintain the interaction (discussed in Part II > 
Background). 
On the flip side, experimental methods are often capable of providing researchers with more 
information than they are aware. This thesis would do a disservice to its origin in an optics-focused 
lab if the unrealized potential of microscopy as a quantitative method was left unstated. While 
photons do have limitations as do detectors and the like, there exist removable barriers to the 
potential of microscopy data that are too infrequently addressed. Currently, the reported values 
for microscopy data are in terms of relative percentages; this arbitrary value has no intrinsic value. 
However, reporting in a truly quantitative way is possible, but requires lowering the barrier to 
accessing such information. This barrier is surmountable with an aspect of calibration focused on 
determining the amount of light moving through the microscope and adjusting the reported values 
accordingly. Though the “behind the scenes” process is more complex, the efforts of the Grunwald 
Lab have made it easy for individual researchers to report their data in standard units: photons.13–

17 The hard part is getting everyone on board. 
Another aspect of microscopy that has its own set of considerations is sequencing technology. 
These days, omics data relies heavily on next generation sequencing (NGS) in one way or 
another. What is often overlooked is these data are the product of imaging. Imaging and the 
processing of those images, the standard “is it a spot” question being asked, is the step between 
data collection and preparation for sequencing and the sequences output by the sequencer. This 
reliance on imaging makes sequencers subject to the same potential perturbations as any other 
optical equipment. Although the impact may be minute, it does need to be acknowledged: 
sequencing data is not infallible.  

 
vi This is debatable. 
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The decisions made during the experimental design process as well as during experiments 
themselves, affect the questions the resultant datasets can be used to answer. This applies not 
only to the questions data were originally designed to answer but to their reusability in future 
investigations. 
 

2.1.3 What is your alignment?vii 
Alignment sits at the cross-road between data 
processing and analysis. Unless constructing a de 
novo alignment, this step  hinges on a reference 
genome. The human reference genome has 
undergone many revisions over the years. The 
major revisions result in new versions, while the 
minor revisions are often implemented as patches. 
The 2009 version of human reference genome, 
hg19, is purported to exclude the mitochondrial 
genome.viii It was then updated to include an older 
version of the mitochondrial genome. To make 
matters more complicated, versions of the human 
genome are stored in multiple locations, under 
accession numbers that differ by database, and 
with different properties. The current, generally 
accepted reference genome is Genome 
Reference Consortium Human Build 38 (GRCh38) 
published by the Genome Reference Consortium. 
GRCh38 is also referred to as hg38 in the UCSC 
Genome Browserix and as version 111 by 
Ensembl. The most recent patched version is 
GRCh38p14. This ontology  is slightly less 
confusing than the last build – which was named 
GRCh37, but hg19 by UCSC – and less confusing still than the release in 2009 – which was 
NCBI36/GRCh37 while referred to as 3c by GENCODE and UCSC but as version 56 by Ensembl. 
To add another level of complexity, there are subtle differences in the same reference genome 
between sources, even for “equivalent” genomes, which must be accounted for during analysis. 
These range from simple encoding issues – UCSC and GENCODE use “chr1” for chromosome 
1, while Ensembl uses “1” – to how they are annotated.19 Furthermore, what is included and the 
associated identification numbers may differ; for example, RefSeq more stringently defines genes 
and includes transcript sequences that are independent of the reference genome.19 
To add another layer of uncertainty, making the omics field that much less accessible, the 
information posted regarding a reference genome is often misleading. For example, the 
“ideogram” posted by the Genome Reference Consortium does not indicate GRC38.p14 contains 

 
vii This is a reference to the moral alignment system used in many tabletop and digital games, perhaps 
most widely associated with the Dungeons & Dragons, which has made notable changes to its alignment 
matrix when new editions of the main rulebook are published.18 
viii Validating this assertion has proven difficult. The original release notes for hg19 are nowhere to be 
found, which seems to be a result of NCBI’s data restructuring efforts. This author did have to add back 
the mitochondrial genome to the hg19 version of the transcriptome for prior work on the mitochondrial 
genome (through 2021) and it has been widely discussed on bioinformatics forums such as BioStars, but 
a formal indication thereof was not to be found.   
ixix This is not an “official” name for the build. 

 
Figure 2.2 Chromosomes included in GRCh38 
Ideogram of the current human genome reference 
assembly, GRCh38.p14, as published by the 
Genome Reference Consortium. 
 
Image from the Genome Reference Consortium > 
Data > Human Overview 

https://biostar.galaxyproject.org/p/24874/
https://www.ncbi.nlm.nih.gov/grc/human
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the mitochondrial genome, never mind which version it (might) include (Fig. 2.2). Determining 
what a reference contains requires an understanding of its origins as well as accepting that the 
information available at first glance is likely not the full story. As one goes beyond recognized, all-
inclusive reference genomes into the world of such things as transcriptomes, the complexity 
increases. At this point, considerations such as the sequencing source (direct RNA sequencing 
versus creation of a cDNA library) as well as what “ome” used to align (or pseudoalign20), genome 
or transcriptome, is dictated by the tool used. 
In terms of what is included in a pre-processed, pre-aligned dataset, even when it is known exactly 
which genome it was aligned to, that is not the full picture of what may be found within the dataset, 
experiment aside. Often rRNA reads are removed either during the experimental protocol or by 
filtering during sequence alignment. This is a reasonable procedure, they are so prevalent that 
their presence may dilute the pool so much so some transcripts may elude detection, this solution 
can be problematic if unknown to someone repurposing data to answer their own research 
questions. Though a well-seasoned bioinformatician may be aware of this data limitation and 
know what to look for when selecting a dataset, such considerations are not always obvious. Even 
the specific way and order of filtering can affect results.21 All that to be said, yet again, context 
matters. We will see another example of the importance of reference genome in Part II > Methods. 
  

2.1.4 Analytical Methods 
During the data analysis phase of any experimental investigation, there lies a minefield of 
conventions that are often accepted without examination. Frequently used statistical methods rely 
on underlying assumptions about properties of the data such as the distribution. For example, the 
𝑡-test is often applied in biology to look at the difference of means between samples; among its 
assumptions is samples follow a normal distribution and have homogeneity of variance.22  
Statistical tests are often incorrectly applied, poorly reported, and the results are frequently 
misinterpreted or misrepresented23–25; for example, odds ratios and relative riskx are often 
interchanged.26 Measures of statistical significance may make or break the publication of an 
article though they may not carry the weight attributed to them; the 𝑝-value is a well-understood 
yet maintained instance of an overvalued make-or-break measure of significance.27–29 
For the methods presented in this thesis, we strove to explain our decision-making process with 
respect to the methods employed. This view into our process includes the deluge of contingency 
tables in Part I > Results as well as addressing the anchor point problem in Part II. 
 

2.2 Speaking of Context… The Nuclear Pore Complex 
There are multiple theories for how eukaryotic cells evolved to possess nuclear envelope – such 
as the membrane curving and invagination theory30 – some with the “why” – such as the slow 
process of mRNA splicing31– muddled in along the way. Either way, it did. And embedded within 
it, so too did the nuclear pore complex (NPC) evolve. 
Though the NPC differs in composition between organisms, the individual nucleoporin (Nup) – 
protein subunits of the NPC – are conserved to varying degrees between species. The Nups 
under scrutiny in this work, Nup93 and Nup153, are conserved, Nup153 being highly conserved, 
potentially due to the evolutionary pressure of nucleic acids interactions.32–34 
 

 
x An odds ratio compares the number of individuals who experience an event to the number who do not. 
The relative risk compares the number of individuals who experience an event to the total number of 
people who were at risk of experience the same event, including those who did.  
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2.2.1 Generalities 
The nuclear pore complex is known for its role as transport authority between the cytoplasm and 
the nucleus. Contrary to what rudimentary biology textbooks would have one believe, the NPC is 
not a gaping hole through which molecules may travel freely35; it has been suggested that 
individual NPCs preferentially transport types of cargo.36 The density of NPCs in a given cell type 
is consistent as long metabolic state is consistent between cells.37–39 However, despite the 
contributions of surface area, volume, and DNA content to a cell’s total pore number (assuming a 
consistent metabolic state) these three parameters are not sufficient for predicting the number of 
nuclear pores a cell may have.40 What these relationships do indicate, however, is that there exists 
a link between cell identity and the NPC.  
 

2.2.2 And who? …are? …you? 
Given that metabolic state can change the NPC number in a cell as well as the factors established 
above, it is reasonable to hypothesize that the number of NPC is driven by cell type and need. 
The need is established based on external conditions as well as the ability of the cell to meet 
those conditions. Looking at the logic of this argument from the other direction, the laminar 
structure underpinning the nuclear envelop provides structural stability whereas certain 
chromosomes preferentially position themselves near the nuclear periphery in a cell-type 
dependent manner.41 These findings together suggest that NPCs are linked to cell identity. The 
(general) predictability of their number alongside their location along what is a stable structure in 
the cell indicate the NPC as a good reference point for spatial organization of the nucleus. To add 
to this, there is a growing pool of evidence supporting the NPC is a driver of cell identity – the 
binding of NPC components to cell identity linked super enhancers42 – as well as the influence 
specific nucleoporin have on development and disease.43–51 Physical association with 
components of the NPC driving cell identity, development, and being linked to disease further 
supports the use of the NPC as a spatial reference point in the cell as 
the location of genes in proximity to the NPC in a cell-type dependent manner can be verified 
through fluorescent microscopy. Once this link is established, a coordinate system on which to 
modeling the 4D architecture of the nucleus can be established. Deep below, foundational to 
perhaps, our underlying aim of predicting and designing probes for genes interacting at the 
nuclear pore complex, is the hypothesis that the nuclear pore complex is an ideal reference point 
for a coordinate system that links 1-d sequencing to 3- and 4- physical models of genomic 
organization. 
 

2.3 Considerations for Multiomic data Integration 
Multiomic data integration has more than one purpose and those purposes remains specific to 
the research questions that are being asked. To fully model an entire biological system alongside 
the environmental pressures required to adequately simulate its function would require resources 
and methods that we currently do not have.xi An addendum to the saying, “all models are bad but 
some are useful,” might be that no models can encompassed every aspect of a system and useful 
models are able to give insight into some questions.  

 
xi It also starts creeping us as a society a bit closer to testing some suppositions of arguments for and 
against simulation theory, which is most certainly out of scope for this thesis and far above the paygrade 
of this author.52 
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The most familiar way to model data is often taught – likely by “eyeballing” a line of best fit instead 
of using the statistically accepted “least square method” – in Algebra Ixii. In the jumble of confusion 
caused by finding such a line’s 𝑦-intercept and calculating its slope, the notion that these values 
are connecting a “most likely” outcome (𝑦) with a given condition (𝑥) is lost. This concept of a 
model does not stray far from the results of studying the relationship between enzyme activity and 
the concentration of its substrate, the dose-response relationship is modeled and visualized in 2D 
with a logistic curve.53 However, some types of modeling seem to stray further from the familiar, 
generally due to the number variables involved. 

 Multiomic data has an excess 
of variables, frequently more 
than it has samples. Still, 
some applications of these 
data seek the same 
input/output model; for 
example, the association 
between the status of various 
measures (inputs) such as 
gene expression (RNA-seq) 
and chromatin accessibility 
(ChIP-seq) may be used to 
model outcomes such as cell 
identity. 

The number of publications containing “Hi-C” and “Multiomics” has increased by an order of 
magnitude between 2019 and 2023 (3 to 33) (Fig. 2.3). This count is likely an underestimate, as 
the search did not include any umbrella terms that encapsulate Hi-C such as “chromatin capture,” 
nor names for any Hi-C adjacent technologies. Looking at these numbers, it is clear that 
understanding methods for data integration that include Hi-C and Hi-C-like datasets will be a 
necessary tool for bioinformatics research in the future. The sheer size of Hi-C data, along with 
its inherent sparsity, requires it be handled with an awareness of its limitations as well as the 
limitations imposed upon it by current analysis methods. Establishing our own awareness of these 
limitations as well as developing a new method for exploring Hi-C data is the major undertaking 
described in Part II. 
 

2.3.1 The Need for Metadata 
The “in silico lab” researchers are not often part of the data collection processes; often, they are 
only called in after the data exists to be analyzed. This post hoc involvement is inherently true 
when analyzing pre-existing, publicly accessible data. In this situation especially, metadata is 
necessary for success. Metadata places data into context, from sample origin to processing 
methods to instrumentation used. Contemplating the many reasons why the inclusion of metadata 
is advantageous brings to mind a frequently uttered piece of advice regarding coding, “comment.” 
Anyone who needs to use your code, including future-you, needs to comprehend the flow without 
reinventing the wheel. Similarly, metadata has the potential to convey what was done, how it was 

 
xii Secondary school math curriculum in the United States is a topic that can be either a topic of heated 
debate or swept under the rug by the same folks that scoff and blow off any truthful response this author 
gives to “what do you do for work,” with “well, I was never a math person anyway.” It is the opinion of said 
author that the latter would be a less frequently hear response if issues in the former, which are really 
issues that start in primary school mathematics education, were ever addressed in a sensible, systematic 
way that fostered an understanding of numbers, their relationships, and perhaps presented them through 
guided discovery. 

 
Figure 2.3 Increased inclusion of Hi-C data in multiomic analysis 
The results of a PubMed search for ‘“Multiomic” + “Hi-C”’ publications by 
year from 2013 through 2023 show a rise in publication every year after 
2018. 
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done and under what conditions, both for internal and external use and re-use of a dataset when 
it is properly implimented.54–58 
Beyond use and re-use, having metadata accompanying a dataset makes comparisons between 
studies more plausible; it is more clear what points of comparison exist to make. To go a step 
further, as multiomic approaches are being widely adopted, metadata informs the decisions 
regarding which datasets can be integrated and what steps, if any, must be taken to resolve any 
discrepancies. An example of this will be discussed in Part II > Methods. 
Alongside use and re-use by external researchers, lies reproducibility – defined as “strictly 
computational reproducibility” by the National Academy of Sciences, Engineering and Medicine.59 
Assessing reproducibility (as well as replicability) is crucial for “doing science”, which is addressed 
(in theoryxiii) through peer review, a process currently subject to scrutiny and redesign.60,61 
Unfortunately, reported methods in omicxiv datasets, such as RNA-seq62, tend to lack detailed 
enough methods, which hinders reproducibility.  To address this issue, the various subdisciplines 
of the biological sciences are making strides the adoption of metadata standards, often through 
community-based initiatives.13,54,55,63–67 
Though it may seem burdensome at first, recording parameters may inspire better data collection 
methods, leading to a higher degree of accountability. To alleviate a fair portion of the cognitive 
load and reduce the strain of adopting such practices, tools such as the Micro-Meta App13 have 
been created. Alongside metadata is the need for tracking data provenance. While it may initially 
be another burden on the researcher, a shift in societal norms would help the process move along. 
Can you imagine what would happen if researchers were as revered for well-produced datasets 
with high-fidelity metadata as they are for publishing in “the” journals with a high impact factor?    
The need for continued improvement of metadata practices is evidenced by the amount of data 
sourced externally. The demand for publicly available data for re-use/re-purposing is evident; as 
of writing this sentence (14-February-2024) 31878 citations were listed by NCBI GEO as third-
party usage citations.68 When posting processed data alongside raw data, the recommended 
practice is to post the processed data in the form used for analysis in the corresponding journal 
article.69 Several experiences described in the sections that follow highlight the sorts of issues 
that arise when such best practices are not followed. 
 

2.3.2 Application of Emerging Technologies: Metadata Strikes Again 
The pull of deep learning (DL) for research in biology is its ability to capture linear and non-linear 
relationships, which is idea for the layered nature of biological data. DL uses hierarchical feature 
extraction, which frees itself from reliance on a chosen kernel function for the “kernel trick” that 
many machine learning algorithms use to simplify solving the complex equations.xv Let us assume 
that creating a viable model is possible in the first place, which is not a proposition without its own 
issues in this space.xvi There is a concern surrounding the “black box” nature of DL models. These 
models may be able to successfully classify biological data, but the connections between 

 
xiii As a child, I thought that experiments were done by one group of scientists, written up, and then redone 
by another group to confirm the results. This belief was enforced by the “whiteboarding” of methods and 
results for discussion between groups in my physics courses (I was lucky enough to have modeling-
based instruction). Finding out otherwise was an unpleasant paradigm shift, worse even than realizing my 
health records weren’t something that could easily be accessed by doctors, no matter where I may get 
injured and need care.  
xiv For the purposes of this dissertation, omic(s) and multiomic(s) includes but is not limited to sequencing 
and imaging.  
xv Machine learning algorithms solving complex equations need to raise the dimensionality of a model to 
accommodate nonlinear relationships between variables, which leads using the kernel trick.70 
xvi Biological data, particularly omics data, tends to have high dimensionality – a high number of variables, 
which is not necessarily bad for DL – and low sample size – this is where the problem lies. 
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biological processes may not be discernable by humans given the complexity of DL-derived 
models. This mismatch between tool and objective raises the question, is it possible to extract a 
simpler model from these complex models–a “good enough” model that can function practically? 
The want for AI model transparency necessitates metadata, as explained by Pscal Heus of 
Postman Open Technologies in a recent editorial; he used HuggingFace’s Model Cards – which 
include datasets trained on and metrics evaluated on – and Data Cards – which include 
information about data content and context – as exemplars of potential solutions.71 What this 
means for us is that we, as researchers in the biologically adjacent sciences, must take heed of 
the precedent set by responsiblexvii purveyors of AI models and follow a standard of metadata for 
reporting both our data and our results.  
 

2.3.3 Finding a Common Language in Probabilities 
One of the (many) barriers to multiomic data integration is the lack of common language between 
datasets. This absence is not in reference to the ontological hell that the multitude of databases 
and disciplines put everyone through, though several instances of this word salad are discussed 
within this manuscript, particularly within Part II. The common language that is lacking is a way of 
quantifying the exposures and outcomes that we want to model using compatible units. We put 
forward probabilities as the common language that will allow the integration of data types. 
Conveniently, probability already exists as the backbone of machine learning.   
Probabilities are similar to proportions; it is helpful to consider that probabilities are to time as 
proportions are to space. We as humans are not as inherently good at thinking in probabilities – 
our brains have evolved to be risk sensitivity, ascribing a higher risk to things with lower certainty 
and vis versa72 – but the world we live in is well represented by probabilities.xviii 
Let us first consider modeling with proportions, which is reasonable to consider in terms of baking. 
In baking, proportions allow scaling up and down – cooking a meal for a family versus catering a 
100- or 1000-person event – or different products by using different proportions.xix Moving into 
probabilities: it may be that the probability of it raining (outcome) is predictable given the 
probability of being in a tropical climate (predictor) and the probability of it being monsoon season 
(predictor). In this imaginary scenario, a model could be constructed to see how the change in 
the probability of each predictor altered the probability of it raining. The rain would not ever be 
guaranteed, but its potential could be demonstrably higher depending on the predictors. 
Is this an oversimplified example? Perhaps. 
It does illustrate what we hope to achieve by moving the results of sequencing experiments, 
starting with Hi-C, from the realm of counts, frequencies, and even proportions, to the language 
of probabilities. We then seek to use such transformed data, now translated into the language of 
probability densities, to predict the position of point spread functions. As one of few labs that 
expresses imaging data using probabilities, it is fitting that we travel further down the path, linking 
sequencing data and imaging data within the same model. 
 

 
xvii This word is written with a notable amount of trepidation. 
xviii The author is resisting the urge to revisit her undergraduate thesis on free-will versus the existence of 
initial conditions, within which she found some haunting philosophical issues.  
xix This is entirely unlike Sims4, where the same cooking animation using the same ingredients results in 
many different cuisines. 

https://huggingface.co/docs/hub/model-cards
https://huggingface.co/docs/hub/datasets-cards
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2.4 This is the Way. xx 
Achieving our long-term goal of creating a multi-omic model of genome organization through the 
combination of imaging and sequencing data – enabled by translating both modalities into 
probabilistic language as well as using the NPC as a spatial reference point – will require quite a 
bit of mise-en-placexxi. The research presented within this thesis is part of that preparation.  
 
Fluorescent microscopy requires fluorescently labeled targets for them to “show up” in imaging 
data. Therefore, targets for labelling must be identified and a means of labeling them established. 
With respect to labeling the NPC, the Grunwald Lab has labeled the NPC by infecting cells with 
lentivirus carrying a tandem Tomato linked POM121 (POM121-tdTomato) in previous 
experiments.74 As our goal includes using the NPC as a spatial reference point, we will target 
genes that have come into close proximity with the NPC. For this purpose, we use DamID data 
as an indicator of a gene having come into physical contact with either Nup93 and/or Nup153, 
with genes that have positive DamID for both nucleoporin having the strongest evidence 
supporting physical association with the NPC. 
In Part I, we compare sets of genes based on their classification using pre-existing DamID and 
siRNA data for Nup93 and Nup153. This data was collected for a study that connected the NPC 
via these two nucleoporin to super enhancers42 identified as driving cell identity related gene 
expression.75 This was done to explore the connection between cell identifying genes, which are 
based on cell type, and the diseases that a specific cell line is used to model via potential drug 
targets as identified by the Open Targets Platform. We hypothesized that if genes indicated as 
changing expression after knockdown of the two nucleoporin and/or physically interacting with 
the same nucleoporin were associated with cell identity, these indicators are also linked to disease 
state. 

 
xx “This is the Way,” refers to the Way of the Mandalorian and is stated when orthodox members of their 
society follow their ideals.  
xxi “Mise-en-place” is a culinary term meaning everything is prepared and “in its place”. This skill is 
undervalued by culinary students but found of notable worth by graduates in the workforce.73 

 
Figure 2.4 Combining imaging and sequencing to explore 
genomic organization 
Sequencing technologies can be used to guide microscopy 
experiments by narrowing down where to look and for whom 
to look. Regions of chromatin that interact with the nuclear 
pore complex (NPC) can be identified using DamID, giving a 
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Having established a set of genes that 
have been in proximity to the NPC, we will 
then determine which genes have 
physically interacted with those genes 
interacting with the NPC (Fig. 2.4). Our 
initial work in identifying these genes was 
done using previously processed Hi-C data 
that has been binned at a resolution of 5kb. 
The details of this portion is not included 
within this manuscript. However, it is 
mentioned here to draw a connection 

between the results of our research that utilizes DamID and the method of exploratory analysis of 
Hi-C data  presented in this thesis. 
The need to  select regions for fluorescent labeling motivates our development an exploratory 
analysis method for Hi-C data. After a preliminary analysis of pre-processed Hi-C data, we sought 
a quote for the probes necessary to label the length of two genes. The total cost was in the 
hundreds of thousands of dollars for the full custom probe set.76 As such a financial investment 
was not practical, we sought an alternative. We considered the same data from an alternative 
perspective: the regions that we wanted to create probes for should be those most likely to interact 
as the interaction is what we want to image. Assuming that the areas with the greatest interaction 
frequency in existing data were indicative of the location the greatest chance of interaction in the 
future, we looked for a way to identify these areas of higher probability density. Additionally, we 
sought to circumvent the anchor point problem presented by chromosome-based binning as well 
as normalizations methods that hinge on global statistics for an approach that supports 
exploratory analysis of Hi-C data at the gene level.  In Part II, we hypothesize that kernel density 
estimation (KDE) can be used for exploratory analyses of gene-level features. We demonstrate 
that transforming count data into probability densities using KDE favors local conditions over 
global considerations when performing exploratory analyses. 
 
 
 

3 Multiomic Integration for Exploring Therapeutic Gene Targets 
 
Next generation sequencing dramatically expanded the territory available for exploration in many 
fields, including potential therapeutics. Researchers are no longer constrained to observing a 
select few variables upon perturbing a biological system with treatment or comparing drug 
response between cell types. Anyone’s who’s stared at a Roche pathway poster for long enough 
can appreciate the potential downstream effects of altering any one of the processes tasked with 
maintaining homeostasis, never mind the potential for a cascade off-target effects. 
 
Regardless of the end product, RNA or protein, the manifestation of DNA encoded information is 
at the heart of this biological network. The mechanisms for this data transmission do not come 
with a manual, yet a healthy cell promotes and suppresses expression of genes according to its 
needs. To do so, the cell not only must have means of information conversion, but ways of 
denoting what to convert. 
 
Genes are only available for transcription if their promoters are accessible to binding proteins 
such as transcription factors. Subsequently, chromatin condensation and other means packing 
the genome within the nucleus are a means of controlling gene expression. Genome organization 

combination of where (NPC) and for whom (identified region). 
Chromatin-chromatin interactions can be identified by 
chromatin-capture technologies such as Hi-C. This indicates 
for whom (the interaction regions) and the where can be 
established as local to the NPC if one of the interacting 
regions has been identified as interacting with or near a 
region that has been identified as interacting with the NPC via 
DamID. Regions are then targeted for florescent labeling 
(stars), whether by FISH in fixed cells or CRISPRainbow in 
live cells, and imaging elevates linear sequencing information 
into three – spatial for fixed cells – or four – spatiotemporal 
for live cells – dimensions. 

https://biochemical-pathways.com/#/map/1
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does not end with configuring everything such that it not only fits in the nucleus, but the “right” 
genes are accessible for transcription. Consider this: what good is organizing a kitchen if every 
time it is done, everything is put back in a different place? It may look good from the outside to 
have all things neatly stowed in cabinets, but it makes cooking inefficient to have no regularity to 
where the pans can be found. Likewise, the nucleus benefits from having some regularity in the 
spatial location of genes that are expressed – particularly for those genes with transcription factors 
in a predictable locations. Given gene expression is linked to cell identity, it follows that cell identity 
would drive at least some aspects of genome organization. 
 
Nuclear pores are posited to have a key role in cell identity, implicating them as principal 
organizers of the nucleus as evidence by patterns of physical contact with chromatin that differ by 
cell type. Given diseased cells often have different patterns of gene expression than their healthy 
counterparts, we propose that these patterns will alter the interaction of chromatin at the nuclear 
pore complex in ways that support such a change in gene expression. If the genes at these loci 
are identified, they may indicate novel therapeutic targets or increase the priority of investigating 
suspected therapeutic targets by providing supporting evidence of their relevance. 
 

3.1 Background 
The work herein began as an (essentially) back-of-the-napkin comparison between a list of RA 
associated genes and a list of genes that are thought to associate with the nuclear pore complex 
as well as cell identity in U2OS cells. From there, the study unfolded as contextual knowledge 
expanded and a more thorough interrogation of data began. In this section, the reader is 
presented with contextual information both regarding the disease, the molecular key players, and 
datasets in question. 
 

3.1.1 Rheumatoid Arthritis 
Rheumatoid arthritis (RA) is an autoimmune disease most commonly known for the chronic pain 
suffered by those afflicted, a group to which 0.6% of the US population belong.77 Of the affected, 
the prevalence is higher among women, with men experiencing later onset, leading to a closure 
of the incidence gender gap as age increases.78  
RA causes chronic inflammation of the synovia joints, leading to joint destruction and systemic 
complications79,80. The progression of RA is orchestrated by cell types from multiple body systems 
such as B-cells, T-cells, and osteoblasts (Fig. 3.1). This complexity makes the disease particularly 
hard to model in the laboratory. Moreover, it also makes it a computationally complex system to 
model in silico, although omic data for an increasing number of cell types and evolving 
computational tools make developing such a model more realistic. 
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 One of the sources of 
complexity for RA is the 
propagation of changes 
that are incited by an 
alteration in a single 
protein. For example, 
one of pathways 
leading to RA involves 
the citrullination of 
proteins, a process 
instigated by tissue 
specific isoforms of 
peptidyl arginine 
deiminase (PADIxxii); 
PADI2 and PADI4 are 
two isoforms expressed 
in cells associated with 
RA joint inflammation82. 
Citrullination plays a 
key role in development 
with PADI levels 
increased in cells 
undergoing terminal 
differentiation or 
apoptosis. These 

citrullinated proteins become epitopes recognized by autoantibodies, known as anticitrullinated 
protein antibodies (ACPA)xxiii84,  in the pre-clinical stages of RA. Subsequently, the recruitment of 
immune cells is triggered leading to an increase in inflammation in the area. Such RA-specific 
autoantibodies can be detected in laboratory tests, though percent of RA patients expressing a 
given autoantibody depends on the population and the specificity and sensitive, as well as the 
feasibility, depends on the biomarker indicated by the test.85 
 
Looking at the PADI association alone, the multitude of players in the pathway imply there are 
many entry points for the disruption of this system, leading to the development of RA. Yet, this is 
not the only pathway through which RA can manifest, it is ever more complicated than that. The 
components of the human leukocyte antigen (HLA) system, more broadly known as the of the 
major histocompatibility complex (MCH)xxiv, are encoded in the short arm of chromosome 6 

 
xxii PADI is also referred to as PAD in RA literature. Investigation into “PADI” versus “PAD” uncovered the 
latter’s use as an abbreviation for peripheral artery disease, potentially instigating the adoption of PADI. 
The prevalence of PAD in patients with RA81 may have contributed to a want to decrease confusion, 
particularly as the use of search engines for literature review grew more prevalent. 
xxiii Also referred to as Anti-cyclic citrullinated peptide antibodies (CCPA) in literature describing the 
diagnostic use of the level of these antibodies83 as a better biomarker for RA than Rheumatoid Factor 
(RF). However, in studies that use this measure, ACPA appears to be standard.  
xxiv Broadly in a phylogenic sense. Because the RA risk associated genes are indicated with gene 
symbols starting with HLA, both terms are introduced here. The association of the acronym “HLA” was 
assigned post hoc. The acronym was initially a compromise reached at a WHO conference regarding the 
naming conventions proposed by two different labs (“Hu” vs “LA”), both having studied leukocyte 
antigens.86  

 
Figure 3.1 Multiple systems are implicated in the progression of Rheumatoid Arthritis  
Rheumatoid arthritis is a complex disease involving multiple organ systems and a 
plethora of cell types. This makes it a difficult disease to model. The complexity of 
the intercellular signaling cascades shown is “only” the manifestation of complex 
interaction networks within each cell.   
 
From Aletaha & Smolen. JAMA. 2018;320(13). doi:10.1001/jama.2018.13103 
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(6p21).87 This region is thought to contain 30-50% of the genetic risk factors for RAxxv. However, 
this figure has conflicted with results from a twin study, which cites potential prior misattribution to 
potentially protective genetic factors in the MCH88 for the discrepancy.26 The MCH also includes 
a class II MHC gene expressed only on B-cells, activated T-cells, and antigen-presenting cells, 
HLA-DRB1 which has shared epitope (SE) alleles. These alleles have a 5 amino acid sequence 
motif found in the HLA-DRβ chain region89. Individuals that are SE-positive are observed to be 
ACPA-positive more frequently than those who are SE-negative. The APCA-positive phenotype 
has not only been associated with higher rates of joint destruction, it is seen in two-thirds of 
patients diagnosed with RA.84 RA symptoms arise through the interaction of a variety of genetic 
and environmental factors80, with environmental risk factors differing between APCA-positive and 
negative RA.84 In the words of the epidemiology Erin Welsh, “It’s complicated.”xxvi 
 
3.1.1.1 Biological Models 
Complicated multi-system processes result in trade-offs when it comes to selecting experimental 
models for research. RA is not at all immune to this issue. The polygenicity of the condition is a 
significant hurdle to modeling. It is a condition found in few animals used in research.  
Transgenic mice models provide options for studying specific aspects of disease progression or 
drug candidates but the scope of use for each mutation is a limited. RA-like conditions can be 
induced in mice and rat models. However, their use provides an incomplete picture. For example, 
induction via methylated bovine serum album (mBSA) can induce delayed hypersensitivity (DHS) 
arthritis in C57BL/6J strain mice, which shares features with RA.90 However, models such as this 
one do not allow researchers to follow the chronic disease progression as it occurs in humans nor 
do such models lend themselves to studying the full “omic” underpinnings of the disease. Non-
human primates (NHP) are also used to model RA through induction, which is slightly less limited 
given phenotypic similarities. One NHP, the macaque, may have an additional advantage as a 
model; not only does the macaque share 93% genomic similarity with humans but has been 
known to develop RA naturally with age.91 
 
Tissue models of RA are possible, and are utilized, they are not ideal. The complexity of RA goes 
beyond cell type into anatomic structures such as synovial capsules, joint cartilage, 
vascularization, and so on. These factors are beyond what (co)culturing tissues can provide while 
ex vivo cultures come with decreased longevity, small sample size, and the quagmire of donor 
specific conditions. There is, however, hope that state-of-the-art technologies such as lab-
constructed 3D multi-component joints92 and microfluidic “organs on a chip”93 may be further 
developed and applied to studying RA. 
 
Studying omics requires a source of cells, whether that be patient samples, tissue cultures, or cell 
cultures. Patient samples come with a degree of variation that may not be easily balanced by 
number of specimens, at least not in the short term. The potential for gathering omic data from 
biopsies and aggregating the data over the long term is a possibility. As mentioned above, tissue 

 
xxv This statement was made in a paper citing another source, and the citation was made without reading 
what that source paper actually found: this percent was generally accepted, but the twin study presented 
did not agree with said generally accepted numbers, for which there was a citation. The author gave 
several possible sources for the discrepancy, ranging from a difference in analytical methods to potential 
protective factors that had been found in the same region. 
xxvi This Podcast Will Kill You hosts Erin Welsh, PhD and Erin Allmann Updyke, MD, PhD frequently 
acknowledge the complexity of disease processes and, because Leishmaniasis ex the complexity of host, 
pathogen(s) and unknown factors in predicting disease outcomes, used the phrase for the title of the 
s4e62 episode on Leishmaniasis. https://thispodcastwillkillyou.com/2020/12/15/episode-62-leishmaniasis-
relationship-status-its-complicated/  

https://thispodcastwillkillyou.com/2020/12/15/episode-62-leishmaniasis-relationship-status-its-complicated/
https://thispodcastwillkillyou.com/2020/12/15/episode-62-leishmaniasis-relationship-status-its-complicated/
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cultures also come with their own set of downsides. This leaves cell cultures, which are both at 
an advantage and disadvantage with their simplicity. There is an ease-of-use factor with cell 
cultures that is not present with tissue cultures, and the genetic variability is (in theory) decreased. 
However, commonly used cell lines for modeling RA are limited in the information they present 
and are derived from cells that are often derived from tumorigenic samples, which may bias that 
limited information. 
 
For example, the U2OS cell line originates from a interosseous biopsy of an osteosarcoma of the 
tibia removed from a 15-year old female patientxxvii in 1964.94 Straight away, there is one obvious 
source of bias: any Y-chromosome associated genetic variants or any limitations of having only 
one allele for X-chromosome genes will not be found utilizing this cell line.xxviii U2OS cells are 
tumorigenic when injected into immunodeficient mice, producing cells that are suited for modeling 
immune attraction based on follow-up xenografts.96 Discrepancies between the molecular profile 
of U2OS cells and that of mature osteoblasts have been observed – this includes a lack of markers 
such as osteocalcin (OC) or decorin while collagen types II, IV, IX and X, are present – potentially 
meriting classification as fibroblastic as well as osteoblastic.97 In a more recent study, U2OS cells 
were induced to differentiate into adipocytes but failed to differentiate in the osteoblasts or 
chondrocytes; however, tumors induced through subdermal injection of these cells in mice were 
shown to produce “abundant” osteoid (Os).96  Furthermore, the U2OS cell line has been notorious 
for polyploidy, which can vary between passages, since its inception.94 Despite its imperfection 
as a model for RA, this is still a cell line utilized to this end.  
 
Although there are many hurdles to modeling RA, various omics methods and the integration 
thereof are driving current RA research. The focus of governmental funding from the National 
Institute of Allergy and Infectious Disease (NIAID) as well as the National Institute of Arthritis and 
Musculoskeletal and Skin Diseases (NIAMS) has recently included efforts to leverage omics data 
to model RA and other autoimmune disease.98 Results of this have included advances in 
multimodal single-cell techniques to model the dynamics of HLA gene regulation, including cell-
type-specific expression quantitative trait loci (cis-eQTLs) in multiple cell types.99 It has also led 
to the identification of dynamic regulatory elements linked to cell-state, specifically states 
associated with autoimmune-driven inflammation, that may be indicative of heritability.100  
 
3.1.1.2 Genome-Wide Association Studies for Rheumatoid Arthritis  
As models catch up, efforts to determine the genetic variants responsible for RA continue. Lead 
by Kazuhiko Yamamoto, M.D., Ph.D., The Laboratory for Autoimmune Diseases at the RIKEN 
Center for Integrative Medical Sciences (IMS) has conducted genome-wide association studies 
(GWAS) for RA risk factors, each building on the lab’s prior work. In their meta-analyses, the group 
aggregated the results of multiple GWAS including studies sampling from ethnic and trans-Asian 
populations.101  One of their findings speaks to the difficulty of finding a comprehensive animal 
model for RA: approximately 80% of RA risk variants occur in non-coding regions.102 That finding 
in combination with the observation that associated SNPs (single nucleotide polymorphisms) are 
often highly correlated with a larger number of variants101, the GWAS was unable to conclusively 
identified a causal gene or causal variant. This further substantiation of RA’s standing as complex 

 
xxvii The procedure that made the sample available was an amputation of the young woman’s left leg. 
Unfortunately, the cancer had already metastasized, and she passed away eight months later. It is 
important we acknowledge she was an individual as well as her contribution to science. 
xxviii There exists a non-negligible potential for genetic sex to influence disease states, including cancer. As 
it turns out, this might negatively impact the understanding of disease progression in men.95 This leads to 
the question, how many cell lines are derived from genetically female cells and what impact does that 
have when translating findings from cell to male murine model to then the human male in clinical trials?  

https://www.riken.jp/en/research/labs/ims/
https://www.riken.jp/en/research/labs/ims/
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condition stemming from a polygenic, or multigenic – either or both? – is compounded by the 
impact of environmental factors such as smoking or infection.78 
 

3.1.2 The Open Targets Platform > Systematic Aggregation of Potential Therapeutic 
Targets 

Finding the genetic underpinnings of a condition such as Rheumatoid Arthritis is only the first step 
in translational research. One of the practical applications is to seek viable therapeutics that target 
these diseases to either ameliorate symptoms and/or reverse disease processes. The Open 
Targets Platform103 (OTP) is a curated database of therapeutic targets by disease association. 
These associations are substantiated and prioritized through the systematic weighting of evidence 
supporting the association of a target with a given disease. While targets go beyond protein-
encoding genes to include RNA and pseudogenes, they do not include protein-complexes or other 
targets comprised of more than one element. The aggregation of evidence extends beyond 
journal articles to include sources such as clinical signs and symptoms as well as various 
ontologies and text mining techniques. Associations are evaluated by multiple criteria, such as 
the strength and type of evidence connecting the target to the disease, scored, and ranked 
accordingly.  At the time of writing this (January 2024), the OTP is updated bi-weekly. While the 
platform continues to refine its data aggregation methods, curation of results, part of the initial 
draw of the platform for our lab, remains a part of the method refinement process. 
 

3.1.3 The Nucleoporins of Interest: Nup93 & Nup153 
Some chromosomes maintain a fairly consistent location relative to the nuclear periphery 
regardless of the cell type104, whereas this relative positioning varies between cell types for 
others105. Both scenarios serve as evidence of the non-random nature of chromatin organization 
relative to the nuclear membrane.41 One of the organizational instigators at the nuclear periphery 
is the nuclear pore complex (NPC). The position of an NPC correlates, for instance, with β-actin 
mRNA occupancy proximal to the nuclear envelope106 or spatial organization107. Growing 
evidence supports the role of NPCs as organizational hubs during development and 
differenciation108–112, the nuclear basket component Nup153 being a key player47,48. 
The number of NPCs installed in the nuclear member is cell-type specific113 and are evenly 
distribution across the throughout the nuclear envelope.38,40 This non-random distribution may be 
further indicative of their nature as an coordinator of chromatin organization. 
The large, multi-protein NPC connects the nucleoplasm to the cytoplasm, creating a tunnel 
through the double membrane of the nuclear envelope that primarily serves as a transport 
mediator. Each NPC is comprised of a membrane spanning pore – itself made up of a luminal 
ring, two outer rings, two inner rings and lined with FG Nups, which line the channel with Phe-Gly 
(FG) repeat motifs – as well as elements on the cytoplasmic side, and a basket that extends from 
the inner nuclear membrane into the nucleoplasm.35,36,114,115 These elements are formed by 
protein subcomplexes arranged in an eight-fold rotational symmetry. 
The proteins making up the subcomplexes are diverse in structure and function. The research 
presented herein utilizes data collected regarding two nucleoporins in particular, Nup93 and 
Nup153. These two nucleoporins were the selected by the Hetzer lab as indicators of NPCs 
physically interacting with super enhancer regions (SEs) on chromatin as corresponds with cell 
identity.42 As a component of the pore’s channel, Nup93 is more proximal to the NPC core than 
Nup15336; therefore, indicators of Nup93 interaction alongside those of Nup153 with the same 
region of chromatin may be used to strengthen the argument a chromosome locus for physical 
interaction with the NPC.42 
It is also noteworthy that both Nup93 and Nup153 show a high degree of conservation across 
vertebrates, with Nup93 distributed across all five supergroups,116 which raises the question, did  

https://www.opentargets.org/
https://www.opentargets.org/
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predecessors of Nup93 and other Nups play a role in chromatic organization at the early stages 
of NPC evolution in eukaryotes? However, answering such a question is outside the scope of this 
study. Nup93 plays roles in the cell over and above its structural one. It is pivotal to regulation of 
actin cytoskeleton remodeling, while overexpression seems to lend to permissible conditions for 
metastatic cell invasion via the extracellular matrix (ECM).43 In addition to the impact on the AC, 
Nup93 overexpression may also accelerate movement of transcription factors into the nucleus.117 
A potential HOXA repressor, Nup93 may exert its influence through physical contact as depletion 
of Nup93 uncouples HOXA gene cluster from the nuclear envelope.46 
Nup153 also serves a purpose beyond transportation facilitator with studies suggesting Nup153 
influences multiple aspects of cellular structure. Depletion of Nup153 affects not only the 3D 
structure of chromatin, patterns of differential expression are observed, particularly in those genes 
implicated in development.118 Furthermore, Nup153 has a key role in the regulation of NPC 
number.119  
 

3.1.4 DamID 
 DNA adenine methylase 
identification (DamID)120 is a 
method that indicates if and 
where a protein physically 
interacts with chromatin. By 
fusing an E. coli adenine 
methyltransferase (Dam) to the 
protein of interest, contact 
between chromatin and Dam-
linked protein are marked by 
adenine methylation at GATC 
sites;120 the constraints of local 
chromatin accessibility give this 
method a resolution of 1–
5kb.121,122 To link Dam to the 
protein of interest, modified cell 
lines are created with a Dam-
fusion transgene for the protein 

(Fig. 3.2). 
In this study, publicly available data is used that includes a DamID dataset. To produce this 
dataset, researchers created individual, U2OS-based cell lines with DamID fused proteins for 
Nup93 and Nup153 (exclusive) as well as Dam-GFP and Dam-LBR as references.42 A cell line 
expressing unlinked Dam was used as a control for calculating the relative local accessibility of 
chromatin. 
The regions of chromatin that interacted with Nup93 and Nup153 were identified using NGS. This 
is achieved via production of a transgenic cell line. Though DamID was originally developed for 
DNA binding proteins, it has been successfully applied to Nup153 and Nup93.42 In the study 
described as well as others113 the role of NPCs in maintaining chromatin structure and gene 
expression as it pertains to cell identity was further elucidated. 
 

 
Figure 3.2 DamID is used for chromatin-protein interaction identification 
(a) The DAM gene is connected to a gene copy of the protein target. This 
protein is transcribed and translated into a DamID-protein complex 
including a spacer. (b) The Nup153-DamID protein methylating chromatin 
at the basket of the NPC. (c) The Nup93-DamID protein methylating 
chromatin at the inner ring of the NPC. 
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3.1.5 siRNA 
Observing the effect of turning a gene “off” can reveal information regarding the biological 
networks that gene influences, either directly or indirectly. RNA interference (RNAi) is a method 
that leverages conserved biological mechanisms of cellular defense against dsRNAxxix to post-
transcriptionally silence genes (see Fig. 3.3).123,125 This method can be used to systematically 

examine cellular pathways through the effects of 
gene knockdown.126 The data utilized in this study 
was collected after siRNA was used to silence 
Nup93 and Nup153. To do so, lipid-based 
transfection of siRNA oligos (control, Nup93-
specific, and Nup153-specific) was performed on 
U2OS cell cultures.42 These oligos were 
recognized by the RNA-induced Silencing 
Complex (RISC) and integrated into the protein for 
utilization in sequence recognition. The RISC-
siRNA complex then recognizes and binds mRNA 
with the complimentary sequence to the siRNA. 
After binding, the mRNA is cut by RISC and 
degraded by the cell.127 In this way, translation of 
the targeted protein is blocked. Some evidence 
suggests that using CRISPR/Cas9 produces more 
“useful” results.128 Although this assertion is 
plausible given that CRISPR/Cas9 introduces a 
genetic mutation (knockout of the target protein) 
while siRNA hinges on degrading all mRNA before 
it can be transcribed (knockdown of the target 

protein), the “usefulness” of the method is contingent on the research question being addressed. 
For instance, a complete knockout of a protein necessary to cell survival may have such 
catastrophic effects that the more subtle understanding of WHY it is necessary for survival may 
be lost. 
 

3.1.6 Background Summary 
The integration of various data sources requires an understanding of their origin with respect to 
both the biological processes involved and experimental methods utilized. With the background 
information in mind, the current study investigates the correlation between gene interaction with 
the nuclear pore complex and genes implicated in disease as well as those viewed as potential 
therapeutic targets. We propose that physical association with the nuclear pore complex 
correlates with the “diseased” facet of cellular identity. 
To test this, rheumatoid arthritis (RA) will be our disease of interest and the U2OS cell line will 
provide the biological model. Our multiomic approach will integrate data from publicly available 
sources: DNA adenine methyltransferase identification (DamID) and small interfering (si) RNA 
experiments, the results of an intercontinental meta-analysis of RA GWAS, and a curated 
database, Open Targets. This assemblage of data will allow us to compare, respectively, 
indicators of interaction with NPCs, a “verified” list of RA gene risk factors, as well as potential 
therapeutic targets for select diseases, RA as well as three additional conditions for contrast. 

 
xxix For example, many viruses store their genome using dsRNA. dsRNA virus genera that act as human 
pathogens include: Rotavirus, infamous for Rotoviral enteritis, Orbivirus, which are transmitted via 
arthropods, and Orthreovirus, which may cause upper respiratory infections and enteritis.124   

 
Figure 3.3 Overview of siRNA knockdown 
This technology leverages endogenous RNA 
processing and degradation systems to bind and 
cleave mRNA that would otherwise be transcribed 
into the target protein,.  
 
From the RNA Therapeutics Institute @ 
UMassChan > What is RNAi?.123 

https://www.umassmed.edu/rti/biology/rna/how-rnai-works/
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Furthermore, identifying those genes that contribute to cellular identity, which we defined inclusive 
of disease state, with the NPC, which is experimentally represented by Nup93 and Nup153, we 
will reduce the number of genes from which we will select gene targets for microscopy 
experiments. 

3.2 Methods 
3.2.1 Omic Data Acquisition and Exploration 

 Before aggregating or integrating 
the data, the datasets are 
considered individually. 
Sometimes, this evaluation 
includes looking at summary 
statisticsxxx, other times it includes 
comparing a manually transcribed 
list one was provided alongside 
the original source. In the case of 
the RA GWAS data, digging 
through the supplementals and 
comparing it against the data 
visualization printed within the 
associated journal article proved 
invaluable to the integrity of the 
data. Extracted from the 
Manhattan plot included in the 
journal article (Fig. 3.4), the gene 
list used in preliminary analysis did 
not match the list published as part 
of the supplemental. One might 
consider the error that of an 
exhausted researcher (it likely 
was) the authors were also 
responsible via some poor 
decisions regarding the visual 
their visualization of the gene list. 
Not only does this highlight the 
importance of confirming one’s 
data, it provides an excellent 
example of what the position of a 
few lines can do to the 
interpretation of a plot. 
As the DamID and siRNA datasets 
are the only sets for which 
genomic coordinates are 

necessary, both of which were aligned to hg19, there is no need to consider if translating 
coordinates to align with any other processed data is required for this line of inquiry. For the sake 
of simplicity and because there is no need to do otherwise, a gene’s status on the GWAS gene 

 
xxx Unless otherwise noted, it can be assumed that any given calculation and/or statistical analysis was 
done using the R programming language129 (specifically, all code was updated to R version 4.3.1 (2023-
06-16) at the time of writing this manuscript).  

 
Figure 3.4 Manhattan plot of RA risk factors identified by a trans-ethnic 
meta-analysis 
This plot includes the significance of each single nucleotide 
polymorphism (SNP) associated with RA in a trans-ethnic meta-
analysis. From a data consumer standpoint, this figure has a pitfall. The 
way the lines demarcating chromosomes are inconsistently misleading. 
For example, “Chr 1” is placed underneath a gene that is on 
chromosome 2, while “Chr 7” is placed on a line underneath a gene that 
is on chromosome 7. 
 
From Okada et al. Annals of the Rheumatic Diseases. 2019; 78(4). 
10.1136/annrheumdis-2018-213678. 
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list will be considered a gene attribute rather than untangling the alignment status of each dataset 
that contributed to the meta-analysis that resulted in the list.  
 
3.2.1.1 Rheumatoid Arthritis GWAS  
A list of 105xxxi RA risk factors was extracted from the 2018 update of the multi-ethic meta-analysis 
of RA GWAS data enumerated by the Laboratory for Autoimmune Diseases at the RIKEN center 
for IMS.101 This list was expanded on a 2014 meta-analysis by the same group, which identified 
98 RA risk genes outside of the MHC region.102 The biological network of each of the 98 genes 
overlapped, either through direct interaction with their gene product (protein) or a protein within 
the product’s direct protein-protein interaction (PPI) network, with that of 27 genes targeted by 
therapeutic drugs approved for the treatment of RA. The list was expanded in their 2018 follow-
up study, which included the previously excluded MHC region using an imputation method130 to 
look at the complex web of genetic interactions found in this region of chromosome 6. 
 
3.2.1.2 NPC-associated DamID & siRNA Identified Genes 
For data regarding gene-NPC interactions, we utilized a subset of the multi-omic dataset 
produced by the Hetzer laboratory’s examination of physical contact between NPCs and super 
enhancers (SEs) as it pertains to cell identity.42 The full superset for the study included, but was 
not limited to: ChIP-seq (H3K4me3 and H3K27ac), DamID (Nup93 and Nup153), and RNA-seq 
(including the results of siRNA treatment for Nup93 and Nup153) datasets collected using the 
U2OS cell line. As mentioned in the Background, Nup93 was used to “back-up” evidence of 
chromatin- Nup153 association given their relative positions within the NPC structure: channel 
versus basket. For the purposes of the research presented here, data was imported from the 
supplemental files associated with the cited study.42 The data contained in the supplemental were 
aligned to hg19, NCBI37 (equivalent to GRCh37) as a reference genome. The results presented 
here are based on processed rather than raw data. The use of the raw datasets for future 
endeavors, as well as the drawbacks of using pre-processed data, will be addressed in the 
Overarching Discussion.  
 

 
Table 3.1  Data encoding and what it indicates in terms of regulatory effect on differential gene 

expression after treatment with siRNA. 

Encoding 
Effect on gene expression 
of siRNA targeting the 
indicated Nup 

If knockdown of a Nup is 
associated with… Regulatory effect 

1 Increase 

an increase in a gene’s 
expression, its presence will be 
associated with a decrease in 
expression of the same gene. 

Down 

0 No change 

no change in a gene’s expression, 
its presence will be associated 
with no change in gene 
expression of the same gene. 

None 

 
xxxi The figure caption indicated there were 106 genes; however, only 105 were listed in the figure. 
Clarification was sought from the author and has yet to be obtained. 
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-1 Decrease 

a decrease in a gene’s 
expression, its presence will be 
associated with an increase in 
expression of the same gene. 

Up 

 
The schema used for encoding the effect of siRNA on gene expression alongside how it translates 
biologically is shown in Table 3.1. This dataset included the direction of the change, but not the 
magnitude (think unit vector). While data was collected with a control siRNA, siRNA targeting 
Nup93 and siRNA targeting Nup153, the case where both nucleoporins were targets of siRNA 
was not tested. The experimental conditions are of note as so that appropriate statistical tests 
may be selected based on an alignment between assumptions and the nature of the collected 
data; in this case, mutually exclusive groups can be assumed, meaning an assumption of the Chi-
squared test, as will be discussed in Combinatorial analysis of sub-setting results. 
 
3.2.1.3 RA, OA, OS, BC Gene from Open Targets Platform103 
Data from the OTP was pulledxxxii Ffor four diseases, each serving a specific purpose. Rheumatoid 
Arthritis (RA) was the disease of interest.xxxiii Osteoarthritis (OA) was used as a control with 
respect to bone degeneration. Osteosarcoma (OS) is the type of tumor from which the U2OS cell 
line was derived. Breast Cancer (BC) was selected as a control for cancer related genes, which 
is along the same lines of using OA to control for non-RA specific bone degradation. 
 

3.2.2 Multiomic Data Aggregation 
Rooting a multiomic analysis in biological reality provides the boundary conditions necessary to 
inspire pragmatic methods and contextually relevant results. For example, this study requires a 
general understanding of risk factors for RA, the experimental methods employed for 
experimentation and data collection, and the structure of data on the OTP. Additionally, such 
analyses must be approached systematically. 
 
The process presented here begins with an understanding of the datasets employed, starting with 
the “limiting reagent” as it were. In this analysis, those genes with DamID and/or change in gene 
expression after siRNA treatment are the limiting reagent, as it is in these data the biological 
mechanism in question finds its foothold. From there, the RA GWAS gene list is explored and the 
overlap with the DamID and siRNA datasets examined. Finally, the DamID and siRNA datasets 
viewed through the lens of the OTP RA drug targets dataset, which will be juxtaposed with the RA 
GWAS list, alongside similar datasets for osteosarcoma (OS), osteoarthritis (OA), and breast 
cancer (BC). 
 
3.2.2.1 Statistical Methods 
Here we establish what statistical methods will be employed in the exploration and integration of 
datasets that follows. These methods include determining if sets are independent as well as 
modeling the relationships present in the datasets, individually and/or when integrated. 
 

 
xxxii These datasets were pulled in January 2021. The contents of the Open Targets Platform change over 
time, so should these analyses be done with current Open Targets data, the results are not expected to 
be the same. 
xxxiii The disease of interest was selected based on the appeal of the GWAS study findings, particularly the 
validity provided by associations with existing therapeutics. 
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3.2.2.1.1 Assessing Independence 
For the data that is categorical in nature, namely the siRNA and DamID assay results, testing for 
the null hypothesisxxxiv (H0) – that membership (or not) in one group is independent of membership 
(or not) in another group – employs Pearson’s Chi-squared (χ²) test 131 and, if indicated by the 
sample size, Fisher’s exact test rather than Yate’s continuity correction will be applied, though 
both tend to be more conservative.132 These are tests are often preceded by the construction of 
a contingency tablexxxv and assume the groups being compared (each represented by a cell in 

the  
contingency table) are mutually exclusive. The χ²-testxxxvi is applicable to 
contingency tables greater than 2 x 2; herein it was employed to look at 
both a 4 x 4 as well as 2 x 2 x 2 x 2 tables to consider potential 
dependency between subsets of genes as classified by assay results. 
The contingency table construct can be parlayed into odds ratios that 
compare the likelihood of one condition given another. In the case of a 2 
x 2 x 2 x 2 table, the χ²-test is applied by holding two conditions constant 
while calculating the odds ratios for each of the resulting four 2 x 2 
contingency tables. Although interpreting values such as the χ²-statistic 
with respect to the null hypotheses is an element of understanding data, 
it does not paint the most tangible, “human-friendly” picture. Odds ratios 
do provide (slightly) more interpretable results. However, explaining such 
results must be done with a grain of context, as they are highly dependent 
on what is held constant.xxxvii 
For a more nuanced picture of the relationships between the frequencies 
and the binary variables that characterize groups, log-linear analysis is 
employed.135 
 
3.2.2.1.2 Generalized Linear Models 
Before diving into the use of log-linear analysis in this study, we first 
outline the use of generalized linear models (GLMs). The reason for this 
is twofold: 1. log-linear analysis hinges on the use of a specific GLM, and 
2. another form of GLM is utilized when modeling the Open Targets data. 
A GLM frees the dependent (response) variable (𝑦") in linear 
regressionxxxviii from the constraints of the normal (Gaussian) distribution. 

 
xxxiv An H0 testable using the χ²-test: the set of genes that change expression after siRNA treatment for 
Nup153 is independent of the set of genes with positive DamID for Nup153; that is, being a member of 
the first set of genes makes a gene no more or less likely to be a member of the other set. 
xxxv Those familiar with machine learning are likely familiar with a special type of contingency table, the 
confusion matrix. This table compares actual and predicted to evaluate a model rather than conditional 
differences between classes (like exposure to a pathogen). Such confusion matrices look an awful lot like 
contingency tables used to determine sensitivity and specificity in applications like COVID test 
development – and not coincidentally. Unraveling inter (and intra) disciplinary jargon has been non-
negligible part of this author’s research journey. 
xxxvi The Cochran-Mantel-Haenszel Statisticxxxvi was also briefly considered; however, its use applies 
strictly to holding a third variable constant for a 2 x 2 table.133,134 
xxxvii To compare the difference between odds ratios when an alternative set of variables are held 
constant, compare Table 3.11 with Table S3.24 for an example of different ranges in odds as well as the 
ease with which one becomes tongue tangled when trying to verbalize the interpretation. 
xxxviii Yes, THAT linear regression, standardly taught in Algebra 1 as y = mx + b and progressively features 
more Greek letters as one gets older. 

 
Figure 3.5 Log-Normal 
Distributions 
Examples of log-normal 
distributions with 
different values set for 
the mean (μ) and 
standard deviation (σ) 
parameters. 
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This is done by transformation via a link function. 
Assume that the observed values, 𝑦 , come from a log-normalxxxix distribution (Fig. 3.5). Then we 
might use log as a transformation to better fit the data. This is done via a link function, 𝑔(𝑧). We 
also define the family of the GLM as Gaussian, given the observed values were sampled from a log-normal 
distribution. 
 For the GLMs used to model the 
Open Targets data in this analysis, 
the data is thought to have a log-
normal distribution, based on a 
comparison of the empirical 
(observed) cumulative density and 
the theoretical cumulative density function (CDF) of continuous distributions, as the dependent 
variable is continuous, as well as a comparison between q-q plot of empirical versus theoretical 
distributions. The overall association scores for each disease were modeled as dependent on the 
binary variables representing the assay results with GLMs constructed using stats::glm with 
parameters for Gaussian distribution, logarithmic link function, and sum contrasts. Sum contrasts 
recode categorical variables such that their sum is 0, similar to centering a continuous variable 
on the mean. In the case of binary variables, instead of the levels 0 and 1, the model uses -0.5 
and 0.5. In a model with no interactions, this means the two levels will have equal magnitude but 
opposite direction. As a result, interpretations of the main effect are relative to the intercept (β0), 
even if interaction terms are added (though they are not in this portion of the analysis). 
 
3.2.2.1.3 Log-Linear Analysis: Modeling associations without defining treatment and response 
variables 
Rather than looking at cell means, the log-linear model looks at cell frequencies. The focus of 
analysis is constructing a model for categorical outcomes that minimizes the difference between 
the expected – model predicted – and observed outcomes. An “ideal” log-linear model has a ratio 
of observed to expected (predicted) as close to 1 as possible – i.e. approaching no difference 
between observed and expected – while maintaining as much information as possible. This is 
done by step-wise optimization on the Akaike Information Criterion (AIC), a value which weights 
information loss against maintainingxl a ratio of observed to expect close to 1. The AIC is given 
by: 

 

𝐴𝐼𝐶 = 	−2 log 0ℒ2𝜃45𝑦67 + 2𝐾 
where ℒ2𝜃45𝑦6 is the maximized likelihood of a predicted unknown (𝜃4), given the 
estimator 𝑦, which is generated by the model under scrutiny, and 𝐾 is the number 
of estimable parameters in the “approximating” model.136,137 

(3) 

 
Log-linear analysis begins with a comparison of the simple model, which contains no interaction 
terms, and the saturated model, which contains all possible interaction terms. The log-linear 
model, as the name implies, is a linearization of a multiplicative independence model through the 
application of logarithms. 

 
xxxix In some fields, it is customary to say “log” when one means “natural log” with an utter disregard for 
the use of “log” with a base of 10 (or 2, for that matter) in other fields. In this manuscript, we will carry on 
this confusing tradition like some sort of right of ivory tower passage.  
xl The word maintained is used here because, as will be discussed, the algorithm starts with the fully 
saturated model, which has O/E = 1 BUT is, essentially, overfit. 

 𝑦" = 	𝛽! + 𝛽"𝑥" + 𝛽#𝑥# +⋯+ 𝛽$𝑥$ (1) 

 

𝑔(𝑦") = 	𝛽! + 𝛽"𝑥" + 𝛽#𝑥# +⋯+ 𝛽$𝑥$) 
 

where 𝑔(𝑧) = log(𝑧), therefore 
 

𝑦" = 	𝑒%!&%"'"&%#'#&⋯&%$'$ 

(2) 
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In other words, a multiplicative model such as, where 𝜏̂ is the “grand” geometric mean of the 
expected cell frequencies of the model, and 𝜏̂!" and 𝜏̂#$ are ratios of conditional expected 
frequencies and 𝜏̂: 
 
 𝐹!# =	 𝜏̂𝜏̂!"𝜏̂#$ (4) 

  
can be transformed: 
 
 log2𝐹!#6 = 	log(𝜏̂) + log2𝜏̂!"6 + log2𝜏̂#$6 (5) 

 
and is often written as: 
 
 log2𝐹!#6 = 	λ + λ!" + λ#$ (6) 

 
which looks an awful lot like an additive linear model – because, in this form, it is – hence, it is a 
“log-linear” model, which is a generalized linear model (GLM) This particular log-linear model, 
also known as a mutual independence model, contains no interaction terms and is considered a 
simple log-linear model. This simple model is one of two models with which one starts a log-linear 
analysis. The other model is the saturated model, which contains all possible interaction terms. 
For the scenario modeled in Eq.6, which has conditions A and B, the saturated model would be 
written: 
 
 log2𝐹!#6 = 	λ + λ!" + λ#$ + λ!"λ#$ (7) 

 
The saturated model always fits the data, but it may not be the best model for the data. To find 
the best fit (with respect to the inquiry at hand), the effect individual terms have on the overall 
model is considered. This evaluation is requires examining all possible log-linear models. 
Because log-linear models are (generally) hierarchical models, they must adhere to the following 
condition: for all variables in the highest-level interaction term, all possible lower-level interaction 
terms that involve that variable must be included. The inclusion of interaction terms ensures the 
model encompasses all effects of a variable for the maximum “way” at which it is included.  
For example, the following model is not acceptable: 
 
 log2𝐹!#%6 = 	λ + λ!

&'!(&) + λ#
*'!(&) +	λ%

+(' + λ!
&'!(&)λ#

*'!(&) + λ!
&'!(&)λ#

*'!(&)λ%
+(' (8) 

 
The variable age is present in a three-way interaction term but the two-way interaction terms that 
include age are not present. To fit the criteria, either the three-way interaction term would need to 
be removed, 
 
 log2𝐹!#%6 = 	λ + λ!

&'!(&) + λ#
*'!(&) +	λ%

+(' + λ!
&'!(&)λ#

*'!(&) (9) 
 
or the two two-way interaction terms that include age (interaction terms with weight and with 
height, respectively) 
 

 
log2𝐹!#%6 = 	λ + λ!

&'!(&) + λ#
*'!(&) +	λ%

+(' + λ!
&'!(&)λ#

*'!(&) + λ!
&'!(&)	λ%

+('

+ λ%
+('λ#

*'!(&) + λ!
&'!(&)λ#

*'!(&)λ%
+(' 

(10) 
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Significance for generalized linear models can be calculated using the χ²-likelihood ratio test (G2-
test)138,139, given by 
 

 𝐺, = 2A𝑂!# log'
𝑂!#
𝐸!#

 (11) 

 
Furthermore, models can be compared by calculating the 𝐺, value and determining if the overall 
model quality is improved based on an increase in the score, which itself comes with a 
corresponding p-value.  Individual estimated coefficients for each model have a calculated p-
value, via the z-score, which has been shown to be robust to skewed distributions, making it 
acceptable for Poisson distributions.140 
 
Log-linear models were constructed using stats::glm with parameters for Poisson distribution 
because the data is frequency-based, not continuous, a logarithmic link function, and (again) sum 
contrasts. As a result, interpretations of the main effect are relative to the intercept (λ) even as 
interaction terms are added, which is relevant in this portion of the analysis. 
 
To algorithmically assess the range of possible log-linear models for a given set of data requires 
weighing overfitting against information lost. Given the number of possible models to assess for 
systems involving more than two variables, algorithmic methods of converging on a suitable 
model have been developed. One such method employs the AIC to iteratively assess models 
while adding or removing terms (depending on whether the search starts from the simple or 
saturate model).137 To this end, stats::step is employed to obtain the best (or least-bad) log-
linear model to represent the data. 
 
In many gene-centric and genome-centric studies, the genes are each treated as an individual 
variable. This introduces a statistical hurdle known as the “Multiple Comparisons Problem”, which 
rests on the idea that the chance of encountering a spurious correlation via coincidence increases 
as the number of comparisons increases (i.e. a greater opportunity for Type I error: rejecting the 
null hypothesis when it is true). Such can be the case in transcriptome-wide RNA-seq analyses 
unless correction methods141 such as the Bonferroni correction142 are applied. This study avoids 
this problem by looking at genes as sets based on criteria rather than as individual variables, 
which lends to a smaller chance (comparatively) of uncovering meaningless, though statistically 
significant results. 
 
The possibility of encountering spurious correlations due to unseen factors is also at play, owed 
in part to what is referred to as the independence assumption – genes within a set are 
independent and can be assumed so for the purposes of statistical testing.143 This particular issue 
arises when sets of genes are pre-determined, presumably due to criteria related to the research 
question at hand, such may be the case when analyzing microarray data. Given the subsetting of 
the data is based on experimental results rather than driving the experimental results, this 
obstacle is avoided by this study.  
 
3.2.2.1.4 Is this [data] Normal? 
Normality – sampled from a normal distribution – is an assumption made by many statistical 
models. Before applying such parametric models, the normality of the data must be assessed.  
To test for normality, we visually inspect the data by plotting density plots of the scores as well as 
apply the Shapiro-Wilk Normality Test. The Shapiro-Wilk Normality Test has an upper limit to the 
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number of observations it can test, 3	 ≤ 𝑛 ≤ 5000.144,145 As a secondary method of testing 
normality, the Asymptotic One-Sample Kolmogorov-Smirnov test146 was applied. 
 
3.2.2.1.5 Comparing Group Means 
Non-parametric methods are used to compare group means to avoid the assumption data were 
normally distributed (they were not normal, as will be indicated in the Results). To make an overall 
comparison of the groups, i.e. is there any difference among this collection of groups, the Kruskal-
Wallis Rank Sum Test147 was used. When venturing into which groups among the collection 
significantly differ, Pairwise Wilcoxon Rank Sum Tests148,149 were run. 
 
3.2.2.2 Filtering of Genes by Experimental Results 
After importing and processing all datasets, an exploratory analysis focused on DamID and siRNA 
treatment assay results with respect Nup93 and/or Nup153 was performed. Contingency tables 
were used to compared subsets based on assay results. Conditions (in terms of assay results) 
that had greater contributions to test statistics were further interrogated using the statistical 
methods previously described. 
 
Additionally, odds ratios were used to compare groups when test-statistics indicated the sets 
compared were highly unlikely to be independent – in other words, the standard null hypothesis 
of χ²-testing was rejected. Odds ratios provide a view harmonious with the statistical method that 
follows next, which has can be interpreted using odds ratios.  
 
At this point, the analysis shifts from tests of independence to modeling association via log-linear 
analysis. Because log-linear regression does not expect variables to have roles [as in 
independent versus dependent variables in the model] it is well suited to considering the 
relationships between binary variables. The purpose of such a shift is to consider the effects of 
interactions between variables rather than “just” the main effects. Additionally, because the 
models that result from log-linear analysis can be interpreted in terms of odds ratios, they are 
unaffected by sample size or unequal distribution between margins (distribution between either 
row values or column values, if one pictures an R x C table, all else being held constant).135  
 
3.2.2.3 Integration of the RA GWAS Dataset 
The junction between each disease-based dataset as well as the NPC dataset and the RA GWAS 
gene list were found. These junctions were used to look at the overlap with the Nup dataset as 
subset by disease as well as the RA GWAS dataset. This analysis was done by visualizing the 
overlap using the eulerr150 and ComplexUpset libraries.  
 
3.2.2.4 Comparison with Potential Drug Targets 
Initially, the datasets were downloadedxli directly from the database via their browser-based GUI 
after searching for drug targets by disease. Subsequently, as a “proof-of-concept”, data regarding 
RA was pulled using the Open Targets API via SparkR151, an R library frontend for interfacing with 
databases built on Apache Spark.152 However, given the relative frequency with which the Open 
Targets database is updated and the want for a stable set of data for analysis, the data have not 
been refreshed regularly. For the purpose of this study, we used the original, manually pulled 
datasets for each disease of interest, which were downloaded in January of 2021. 

 
xli Initial downloads occurred on 12-Jan-2021 and 14-Jan-2021. The dates of download are significant due 
to updates Open Targets has undergone (and continues to undergo) on a regular basis. 
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The datasets were compared to the Nup93 and Nup153 assay data as well as the RA GWAS 
dataset using an UpSet plot to find the intersections. For the analysis that followed, only data that 
were in the intersection of each OT dataset with the assay dataset were included. The proportion 
of genes in the Nup subsets to the overall drug targets was calculated for each pairing for the 
overall NUP dataset as well as the subset. 
 
The distribution of association scores stratified by disease were visualized using box plots and 
the significance between the average disease association score was determined both overall as 
well as pairwise by disease. For each disease, a GLM with a Gaussian distribution and the log 
link function was used to model the overall association score in terms of binary assay result 
variables. These models were limited to observing the main effects between these variables, 
which was done by reflecting on the p-values of the individual correlation coefficients as well as 
that of the overall model. 
 

3.3 Results 
Using the framework established in the Methods section, we began our analysis by characterizing 
the DamID and siRNA datasets. After modeling the relationships between these assay results by 
looking at how these results subset a list of gene names (the genes were not considered 
individually), the associations between these assays, the RA GWAS risk gene list and the Open 
Targets datasets pulled for four different diseases were considered. 
 

3.3.1 Exploratory Analysis of the DamID and siRNA Datasets 
Of the 26392xlii genes assessed, roughly 38% (9938 genes) were associated with either Nup93 
or Nup153. Association was established by physical contact at the gene loci via DamID13 with at 
least one Nup93 and Nup153 and/or an observed change in gene expression after cells were 
treated with siRNA gene suppression targeting Nup93 or Nup153 (but not both simultaneously).xliii  
Chromatin has more often been methylated by DamID-Nup153 than DamID-Nup93; a randomly 
selected gene is 74.9% more likely to be associated with Nup153 than Nup93 in U2OS cells. This 
result is within the realm of biological plausibility given Nup153 can be found free within the 
nucleus as well as a component of the “basket” of the NPC, which extends into the nucleoplasm. 
In terms of siRNA, a randomly selected gene has only 26.4% a chance as likely of changing 
expression after treatment with siRNA against Nup153 (siRNA-Nup153) compared to changing 
expression after treatment with siRNA against Nup93 (siRNA-Nup93).  
 
The original study identified 1021 chromatin interaction sites for Nup93, which were in close 
proximity to the 1851 chromatin interaction sites indicated for Nup153. These data are available 
in a supplemental to the associated journal article. However, they are presented as binary 
variables in terms of genes, rather than counts ascribed to loci, leading one to conclude multiple 
interaction sites were ascribe to one gene if they occurred between its start and end coordinates. 
Using this gene-centric data, we found that 1966 (11.3%) genes were DamID-Nup93 and/or 
DamID-Nup153 positive. Of those genes 851 (3.2%) were DamID-Nup93 positive (478, or 1.8%, 
exclusively) and 1488 (5.6%) were DamID-Nup153 positive (1115, or 4.2%, exclusively). The 

 
xlii The study that provided the DamID and siRNA datasets, 29391 genes were assayed. Upon 
aggregation with the Open Targets datasets, two entries for PINX1 appeared. Initially, the temptation was 
to merge them; however, the osteoarthritis and breast cancer datasets had two entries for PINX1 with 
different Ensembl ID numbers. 
xliii Also known as exclusive disjunction 
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remaining 373 genes (1.4%) were positive for both DamID. The intersections of the gene subsets 
formed by the positive assays were then visualized alongside their representation on the RA 
GWAS gene list (Fig. 3.6), the detailed results of which are discussed later. By subsetting on the 
assays, we moved the view of the data from gene-centric to gene-set-centric with sets 
categorically defined by assay results. 

3.4 Testing for subset independence using χ²-statistics 
To test the independence of the gene subsets, contingency tables were constructed to perform 
χ²-tests, which are provided with the results. To ease the burden on the reader as they follow this 
analysis, purple and green outlines surround the same subset of genes in each table. The purple 
border indicates genes with neither a positive result for Nup93 nor Nup153 for either assay. The 
green border indicates genes with at least one positive assay for Nup93 and at least one positive 
assay for Nup153, whether it be DamID or change in expression after siRNA treatment. It is also 
worth noting that the direction of change in gene expression is not considered in this analysis; a 
change of expression in either direction indicated it was affected. In other words, up and down 
regulation were assigned as one value of a binary variable with no expression as its counterpart. 
As we progressed through looking at the independence of siRNA and DamID assay results, 
contingency table dimensions begin with the familiar 2×2 arrangement (Table 3.2), then progress 
to 4×4 (Table 3.3), and finally a 2×2×2×2 (Table 3.4), which can be considered as a whole as well 
as a set of 2×2 tables created by stratification on two dimensions (Table 3.5).  

 
Figure 3.6 Intersections of sets of genes as classified by siRNA, DamID, and a RA GWAS meta-analysis 
An Upset plot138 depicting the set unions of genes categorized by positive assays for DamID and siRNA with respect 
to Nup93 and Nup153 as well as the gene list presented in “Genetics of rheumatoid arthritis: 2018 status”.65 The 
number of genes in each set are represented by bars in the lower, left corner and the size of the intersections of 
each set are indicated by the bar graph along the top of what is called the “interaction matrix”. The interaction matrix 
indicates which sets are part of an intersection with black dots vertically aligned below the bar representing the 
intersection. Membership within a set is indicated by a black dot’s horizontal alignment with a set name. All 
intersections are exclusive, meaning no genes contained in one intersection are counted within another intersection. 
The basis for this method of presenting set intersection is less complex (and less error prone) than Euler diagrams, 
while retaining the encoding of relative set and intersection size.  
 
Graph created in R with ComplexUpset.139 By implementing UpSet plots within the ComplexHeatmap R package, 
the flexibility of the visualization method was increased beyond the scope of the original UpSetR package. This 
flexibility includes genomic intervals as a viable set type via GRanges. 
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The null hypothesis that physical association via DamID with Nup93 and/or Nup153 is 
independent of change in expression after treatment with siRNA for Nup93 xor Nup153 was tested 
using χ²-test (Table 3.2) and is not supported (χ²(1, N = 26392) = 92.709, p << 0.01). 
 
Table 3.3  4×4 Contingency table of siRNA treatment responsea versus DamID results with respect to 

either Nup93 xor as well as and Nup153b.  

  Change in Gene Expression after treatment with siRNA 
against…  

  Neither Nup93 Nup153 Nups 
93 & 153  

Physical 
association 
via DamID 
with… 

Neither 
16454 3461 1846 2665 24426 16260 3531 1867 2768 
2.309 1.38 0.231 3.847 92.55% 

Nup93 
286 81 40 71 478 318 69 37 54 
3.259 2.051 0.329 5.228 1.81% 

Nup153 
618 204 97 196 1115 742 161 85 126 
20.799 11.379 1.63 38.376 4.22% 

Nups 
93 & 153 

211 69 34 59 373 248 54 29 42 
5.604 4.219 1.059 6.62 1.41% 

 
17569 3815 2017 2991 

26392 
66.57% 14.46% 7.64% 11.33% 

χ²(9, N = 26392) = 108.320, p = 3.231 × 10-19 

For each cell:  Observed 
Expected (rounded to nearest integer) 

Table 3.2  2×2 Contingency Table of siRNA treatment response 
versus DamID results with respect to either Nup93 or Nup153a 

  
Change in Expression when 
treated with siRNA against either 
Nup 

 

  No Yes  

Ph
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A
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n 
w
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ei
th

er
 N

up
 

N
o  

16454 7972 24426  16260 8166 
2.309 4.597 92.55% 

Ye
s 

1115 851 1966 1309 657 
28.684 57.119 7.45% 

 

17569 8823 26392 66.57% 33.43% 
χ²(1, N = 26392) = 92.709, p = 6.057546 × 10-22 
For each 
cell: 

Observed 
 Expected (rounded to nearest integer) 

χ² contribution 
a Neither DamID nor siRNA treatment were applied to both Nups simultaneously. 
Count and χ² contribution reported for each cell. 
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χ² contribution 

The greatest contributor to the χ²-statistic was the 
set of genes that were physically associated with 
Nup153 and showed a change in expression after 
both siRNA treatments (orange box). 

a Neither DamID nor siRNA treatment were applied to both Nups simultaneously. 
b Change in gene expression was classified as a response without consideration of the direction (up or down). 
Assay results were used to assign genes to mutually exclusive subsets as encoded by two categorical variables, one per assay 
type. 

 
The null hypothesis remains rejected after the response to siRNA treatment and the DamID 
results were broken down into exclusive categories with respect to either assay: neither Nup93 
nor Nup153, only Nup93, only Nup153, and Nup93 as well as Nup153 (Table 3.3). The null 
hypothesis remains rejected after the transition from binary to categorical variables (χ²(9, N = 
26392) = 108.320, p << 0.01). The greatest contributor to the χ²-statistic when conditioned on 
DamID and siRNA class is the subset of genes positive for DamID Nup153 that change expression 
when treated with siRNA against Nup93 and Nup153 (χ²-contribution = 38.376, 35.43% of χ²(9, N 
= 26392); highlighted by a yellow border in Table 3.3). 
 
Given the top three χ²-contributors were three out of four of the subsets conditioned on DamID 
Nup153 being true, the potential for physical association with Nup153 being “protective” was 
considered. While the question, “What direction does the physical association with Nup153 go in 
terms of change in expression when either Nup is knocked down?” cannot be asked, given the 
information we have, what can be asked is, “are genes that are physically associated with Nup153 
more or less likely to change expression when treated with siRNA-Nup93 or siRNA-Nup153?” 
To answer this, we first ran the χ²-test DamID-Nup153 × siRNA Nup Class (χ²(3, N =26932) = 
94.101, p = 2.881 × 10-20), rejecting the null hypothesis that DamID-Nup153 is independent of 
siRNA-Nup response classification. Based on the same contingency table (not shown), a gene is 
36.8% more likely to show a change of expression after treatment with siRNA-Nup93 than siRNA-
Nup153. 
 
We then considered the effects of the separate treatments without considering the interaction 
between the two treatments, i.e. genes with a change in expression after siRNA-Nup93 may or 
may not also change siRNA-Nup153, and so on (tables also not shown). The χ²-statistics were 
calculated for DamID-Nup153 × siRNA-Nup93 (χ²(1, N =26932) = 76.924, p = 1.777 × 10-18) and 
DamID-Nup153 × siRNA-Nup153 (χ²(1, N =26932) = 49.761, p = 1.736 × 10-12), respectively. The 
odds a gene with a positive Nup153-DamID having a change in expression after siRNA-Nup93 is 
slightly higher (6.18%) than after siRNA-Nup153 (OR = 1.632, 95%CI:1.462–1.821 and OR = 
1.537, 95%CI: 1.351–1.793, respectively). 
 
To consider the interaction effects using χ²-tests, DamID-Nup153 × siRNA-Nup93 was calculated 
while the condition for siRNA-Nup153 was held constant (siRNA-Nup153(0): χ²(1, N = 21384) = 
37.601, p = 6.728362 × 10-10; siRNA-Nup153(1): χ²(1, N = 5008) = 6.984, p = 8.225 × 10-3). 
DamID-Nup153 positive genes that change expression with siRNA-Nup153 are less likely to 
change expression with siRNA-Nup93 than those who aren't DamID-Nup153 and do not change 
expression with siRNA-Nup153 (86.2% or -0.215x). As an alternative approach to untangling 
potential interactions between variables, we will apply log-linear analysis later in this section. 
 
For a closer look at their dependency, the categorical variables in Table 3.3 were exchanged for 
Nup and assay specific binary variables. To illustrate how both tables display the same data as 
represented by different variable types – categorical versus binary – a purple border outlines the 
cells where all conditions are “No” (i.e. a negative assay result) while a green border outlines the 
cells where at least one “Yes” exists for an siRNA as well as a DamID assay. The result was a 
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four-way table (2×2×2×2) that tests for independence between four binary variables 
simultaneously (Table 3.4). This construction provides little pairwise information specific to the 
independence of any two variables, as is evident by the singular χ²-statistic calculated.  
 
Table 3.4  2×2×2×2 Contingency table of response to siRNA treatment against Nup153 xor Nup93a 

versus DamID for Nup153 xor Nup93. 
  

   Change in expression after treatment with siRNA 
against… 

 

     Nup93  

     No Yes  

     Nup153  

     No Yes No Yes  

Ph
ys

ic
al

 A
ss

oc
ia

tio
n 

vi
a 

D
am

ID
 b

y…
 

N
up

93
 

N
o 

N
up

15
3 

N
o  

16454 1846 3461 2665 24426 
16260 1867 3531 2768 

92.55% 
2.309 1641.318 31040.618 23521.256 

Ye
s  

618 97 204 196 1115 
742 85 161 126 

4.22% 
835.342 1.630 767.728 984.133 

Ye
s  

N
o 

286 40 81 71 478 
318 37 69 54 

1.81% 
2981.978 91.102 2.051 5.412 

Ye
s  

211 34 69 59 373 
248 29 54 42 

1.41% 
2362.277 67.511 4.059 6.620 

  

17569 2017 3815 2991 26392 66.57% 14.46% 7.64% 11.33% 
χ²(11, N = 26392) = 6888.299, p = 0 
a Neither DamID nor siRNA treatment were applied to both Nups simultaneously. 
b Change in gene expression was classified as a response without consideration of the direction (up or down). 
Assay results were used to assign genes to mutually exclusive subsets as encoded by four binary variables, one per Nup 
per assay type. 
Changing from categorical to binary variables changed the order of the values due to the hierarchical nature of displaying 
this way versus the flattened-by-categorization nature of the other display. 

 
The results of the χ²-test remain significant (χ²(11, N = 26392) = 6888.299, p = 0xliv) with the higher 
bar created by the χ²-distribution for 11 (versus 9) degrees of freedom. To test for dependence 
between the subsets comprising Table 3.4, χ²-tests were performed on a contingency table, Table 
3.5. This table (Table 3.5) represents the same subsets of data as (Table 3.4), now broken into 
four 2×2 contingency tables, one for each combination of the two binary variables being held 
constant. For example, the 1st quadrant contains a 2×2 contingency table representing the subset 

 
xliv Of course, the p-value is not truly equal to zero. That is how very low p-values are reported when the 
computer gives up on the calculation. A quick venture into the internet turns up numerous calculators for 
p-values, and as one from STAT200 at University of Illinois at Champagne-Urbana indicated, the statistic 
is out of bounds with respect to the distribution graph.  

http://courses.atlas.illinois.edu/spring2016/STAT/STAT200/pchisq.html
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of genes that demonstrated no change in gene expression after siRNA-Nup93 as well as no 
physical association with Nup93-DamID. 
 
Of note is the inability to reject the null hypothesis for two out of the four “sub”-χ²-tests performed 
after stratifying by Nup93 associated assays. The null hypothesis – change in expression after 
siRNA-Nup153 is independent of DamID-Nup153 – was not rejected for the set of genes that 
demonstrated no change in gene expression after siRNA-Nup93 and had positive DamID-Nup93 
(χ²(1, N = 571) = 0.320, p = 0.571). Similarly, the null hypothesis – change in expression after 
siRNA-Nup153 is independent of DamID-Nup153 – is not rejected for the set of genes that 
changed gene expression after siRNA-Nup93 and show negative DamID-Nup93, (χ²(1, N = 280) 
= 1.063 × 10-2, p =  0.918). 
 
Table 3.5  2×2×2×2 Contingency table of response to siRNA treatment against Nup153 stratified by 

response to siRNA treatment against Nup93a,b versus DamID for Nup153 stratified by DamID 
for Nup93. 

     Change in expression after treatment with siRNA against…  
     Nup93  
     No Yes  
     Nup153  
     No Yes  No Yes  

Ph
ys

ic
al

 A
ss

oc
ia

tio
n 

vi
a 

D
am

ID
 b

y…
 

N
up

93
 

N
o  

N
up

15
3  

N
o 16454 1846 18300 3461 2665 6126 

Ye
s 618 97 715 204 196 400 

 

17072 1943 19015 3665 2861 6526 

χ²(1, N = 19015) = 9.078, 
p = 2.586 × 10-3 

χ²(1, N = 6526) = 4.608, 
p = 3.182 × 10-2 

Ye
s  

N
o  286 40 326 81 71 152 

Ye
s 211 34 245 69 59 128 

 

497 74 571 150 130 280 

χ²(1, N = 571) = 3.200 × 10-1, 
 p = 0.571 

χ²(1, N = 280) = 1.063 × 10-2, 
p =  0.918 

a Neither DamID nor siRNA treatment were applied to both Nups simultaneously. 
b Change in gene expression was classified as a response without consideration of the direction (up or down). 
Assay results were used to assign genes to mutually exclusive subsets as encoded by four binary variables, one per Nup per assay 
type. 

 
What might be somewhat surprising about these results is the stark contrast in p-value between 
the 2×2×2×2 table (Table 3.5) tested for independence as a 4×4 table (Table 3.4) and the 
individual p-values when the same table is analyzed for what it is, a 2×2×2×2 table, and the results 
stratified by two of four of the variables. However, the difference in magnitude of the p-values 
does not indicate whether groups are more or less likely to be independent. The cut-off p-value 
for the null hypothesis, that the two groups are independent, is set prior for testing the hypothesis. 
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To look further at the question of how selecting variables to stratify on changes the results of 
testing for independence, a different set of variables were selected and more χ²-tests were 
performed. The original parameters selected were picked because their place on the “outside” of 
the 2×2×2×2 made the resulting tables visually consistent with prior contingency tables; they could 
be nested within the structure of the existing 4×4 table. Though other options would not produce 
visual consistency, additional stratification schema was tested (Tables 3.6a–e). 
 
Table 3.6a  2×2×2×2 Contingency table of response to siRNA treatment against Nup153 versus response to siRNA 
treatment against Nup93a,b stratified by DamID for Nup153 and Nup93 with conditional subsets for χ²-testing 
indicated by cell background color. 

 
Table 3.7b  2×2 Contingency Table of siRNA treatment 
response to Nup93 versus Nup153a without positive 
DamID for Nup93 or Nup153 

 Table 3.8c  2×2 Contingency Table of siRNA treatment 
response to Nup93 versus Nup153a without positive 
DamID for Nup93 and with positive DamID for Nup153. 

   

 

 

 
Table 3.9d  2×2 Contingency Table of siRNA treatment 
response to Nup93 versus Nup153a with positive DamID 
for Nup93 and without positive DamID for Nup153. 

 Table 3.10e  2×2 Contingency Table of siRNA treatment 
response to Nup93 versus Nup153a with positive DamID 
for Nup93 and Nup153. 
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a Neither DamID nor siRNA treatment were applied to both Nups simultaneously. 
b Change in gene expression was classified as a response without consideration of the direction (up or down). 

Assay results were used to assign genes to mutually exclusive subsets as encoded by four binary variables, one per Nup per assay 
type. 

 
Looking at the data from this perspective, the null hypothesis that genes subset based on results 
of treatment siRNA-Nup93 versus siRNA-Nup153 are independent was rejected regardless of the 
subset membership conditional on DamID (0 ≤ p ≤ 1 × 10-11, see Tables 3.6a–e for detailed 
results). 
 
To maintain consistency with the χ²-tests above, odds ratios were calculated while holding the 
DamID variables for Nup93 and Nup153 constant (Table 3.11). The genes most least likely to 
change gene expression after treatment against Nup153 were those who did not demonstrate a 
change after siRNA treatment against Nup93 and had no physical association with Nup93 or 
Nup153 (OR = 6.9, 95%CI = 6.4–7.36). 
 
Table 3.11  Odds ratios indicating the likelihood of a gene showing no change in gene expression after 
siRNA treatment against Nup153 after demonstrating no change in gene expression after siRNA 
treatment against Nup93 while holding the conditions for physical association with Nup93 and Nup153 
(as indicated by DamID) constant. 

DamID for Nup93 DamID for Nup153 
Genes with NO change after siRNA-Nup93 are _____-fold 
LESS likely to change expression after siRNA-Nup153. 
OR 95%CI 

None None 6.9 6.4 – 7.36 
None Yes 6.1 4.6 – 8.2  
Yes None 6.3 4.0 – 9.9 
Yes Yes 5.3 3.2 – 8.8 

 
The odds were also calculated for holding siRNA treatments constant and a similar trend was 
found, with the likelihood a gene will be physically associated with Nup153 being greatest when 
a gene shows change in expression after treatment with both siRNA against Nup93 as well as 
against Nup153 (Table S3.24). 
 
From odds and ratios, we shifted to modeling cell frequencies to develop a more holistic model of 
relationships between assay results, including any interactions that may exist among the 
conditions.  
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3.4.1.1 Log-Linear Analysis: Modeling Relationships between Subsets 
Log-linear analysis allows us to shift the focus from testing independence and cell means to 
modeling building based on cell frequencies as a means of further elucidating the relationships 
between assay results. The GLMs used in log-linear analysis were fit to the data using glm function 
of stat using the Poisson family of GLMs and a log link function. The Poisson distribution is 
generally used for count data; thus it is appropriate for modeling relationships that hinge on cell 
frequencies. The log link function is useful as it allows non-additive relationships to be modeled 
as a linear function, which will be explained in more detail as the method is expounded upon. 
To start, the null, or equiprobability, model is established. This model represents the case when 
no combinations of assay results is any more likely to occur than any other.   
 ln2𝐹)*4 = 	λ (12) 

The model is fit to the data, fitting the data under the assumption none of the four variables have 
any effect on the classification in any given subgroup, which are mutually exclusive and defined 
by the assay results encoded by four binary variables.  
 
Table 3.12  Estimated intercept of the null model for the frequency of 
classification into gene subsets defined by DamID siRNA treatment 
assays for Nup93 and Nup153 
 Coefficient SE z-value p-value 
Intercept 7.408 0.006 1203.591 0 
G2(15, N = 26392) = 76145, p = 0 
AIC = 76267 

 
Subsequently, the simplest model (Eq. 13) was constructed and fit to the data (Table 3.13). 
 ln2𝐹)*4 = 	λ + λ)

+,-.+	01234+	λ*
+,-.+	012"54 + λ6

7)809	01234+	λ:
7)809	012"54 (13) 

 
As expected, has an overall p-value of 0, meaning there is a significant difference between the 
observed and expected frequencies for each cell and the ratio between the two approaches 0.  
 

Table 3.13  Estimated coefficients of the simple log-linear model 
for the relative frequencies of gene subsets as classified by 
DamID siRNA treatment assays for Nup93 and Nup153 

 Coefficient SE z-value p-value 
λ 5.217 0.02190   238.38 0 
λiDamID Nup93 1.701 0.01740 97.62 0 
λiDamID Nup153 1.409 0.01330 105.58 0 
λksiRNA Nup93 0.726 0.00785 92.47 0 
λlsiRNA Nup153 0.529 0.00704 75.12 0 
G2(11, N = 26392) = 4541.708, p = 0 
AIC = 4671.2 

 
As a contrast to the simple model, the fully saturated model was also constructed (Eq. 14) and fit 
to the data (Table 3.14). 
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ln2𝐹)*4
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(14) 

 
Not surprisingly, the model has an overall p-value of 1, meaning there is no significant difference 
between the observed and expected frequencies for each cell – i.e. the ratio between the two 
approaches 1. This means that this model, the saturated model, is the best representation of the 
specific set of data used to construct it. However, it risks (almost guarantees) overfitting the data, 
making it less useful as a predictive model. 
 
Table 3.14  Estimated coefficients of the saturated log-linear model for the relative frequencies of 
gene subsets as classified by DamID siRNA treatment assays for Nup93 and Nup153 
 Coefficient SE z-value p-value 
λ 5.628 0.024 237.55 0 
λiDamID Nup93 1.229 0.024 51.891 0 
λjDamID Nup153 0.780 0.024 32.923 0 
λksiRNA Nup93 0.526 0.024 22.215 0 
λksiRNA Nup93 0.178 0.024 7.521 0 
λiDamID Nup93 λiDamID Nup153 0.679 0.024 28.638 0 
λiDamID Nup93 λksiRNA Nup93 0.016 0.024 0.685 0.493 
λiDamID Nup153 λksiRNA Nup93 0.042 0.024 1.778 0.075 
λiDamID Nup93 λksiRNA Nup153 0.021 0.024 0.903 0.366 
λiDamID Nup153 λksiRNA Nup153 0.057 0.024 2.395 0.017 
λksiRNANup93 λksiRNA Nup153 0.453 0.024 19.104 0 
λiDamID Nup93 λiDamID Nup153λksiRNA Nup93 0.028 0.024 1.161 0.245 
λiDamID Nup93 λiDamID Nup153 λksiRNA Nup153 0.042 0.024 1.756 0.079 
λiDamID Nup93 λksiRNANup93 λksiRNA Nup93 0.015 0.024 0.616 0.538 
λiDamID Nup153 λksiRNANup93 λksiRNA Nup93 0.018 0.024 0.741 0.459 
λiDamID Nup93 λiDamID Nup153 λksiRNANup93 λksiRNA Nup93 -0.003 0.024 -0.137 0.891 
G2(0, N = 26392) = -1.520 x 10-10, p = 1 
AIC = 151.49 

 
Comparing models via their goodness-of-fit by manually evaluating the benefit of adding or 
leaving out a term is possible; but it quickly becomes computationally prohibitive. In the case of 
four binary variables, there are more than one hundred possible models to compare. Thus, an 
algorithm was employed to find the balance between goodness-of-fit (without overfitting) while 
retaining as much information as possible by minimizing the Akaike Information Criterion (AIC). 
The resulting model from running stats::step starting with the saturated model (Eq. 14) is shown 
in Eq. 15 while the calculated values for the coefficients and their affiliated measures of 
significance can be found in Table 3.15. 
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(15) 

 
 
Table 3.15 Estimated coefficients of a log-linear model for the relative frequencies of gene 
subsets as classified by DamID siRNA treatment assays for Nup93 and Nup153 as 
algorithmically optimized using the Akaike Information Criterion (AIC). 
 Coefficient SE z-value p-value 
λ 5.611 0.021 264.246 0 
λiDamID Nup93 1.242 0.02 62.022 0 
λjDamID Nup153 0.777 0.021 36.949 0 
λksiRNA Nup93 0.546 0.017 32.582 0 
λksiRNA Nup93 0.161 0.021 7.585 0 
λiDamID Nup93 λiDamID Nup153 0.689 0.02 34.422 0 
λiDamID Nup153 λksiRNA Nup93 0.065 0.017 3.849 0 
λiDamID Nup93 λksiRNA Nup153 0.033 0.02 1.642 0.101 
λiDamID Nup153 λksiRNA Nup153 0.056 0.021 2.658 0.008 
λksiRNANup93 λksiRNA Nup153 0.479 0.008 56.423 0 
λiDamID Nup93 λiDamID Nup153 λksiRNA Nup153 0.050 0.02 2.496 0.013 
G2(5, N = 26392) = 3.779, p = 0.582 
AIC = 145.26 

 
When looking at the results of log-linear analysis, keeping in mind the null hypothesis being tested 
is helpful. The null hypothesis is that the parameters used to build the model and estimated 
response are independent, which mean the model had no predictive value. It is one of those rare 
occasions where p < 0.05 is not sought after. Therefore, the model could be worse (and likely 
could be better – the value of the model is in the eye of the inquirer). 
 
Both the saturated and optimized models are an improvement over the simple model (AIC = 
151.49, p = 1 and AIC = 145.26, p = 0.582, versus AIC = 4671.2, p = 0). It is counterintuitive to 
think taking things away would improve a model; it goes against human nature as we currently 
understand it.153–155 This method, however, demonstrates that the removal of extraneous 
interaction terms increases the chance that the contribution of those that will describe the 
relationships between the data. The contributions of each individual assay results is harder to 
interpret with this particular type of model, both because of the log-link function as well as the 
number of interaction terms. What it one can do easily is note the what has been removed: two 
interaction terms involving siRNA-Nup93. What this might suggest is that the effect siRNA-Nup93 
is less influential over the results of other assay results and/or that other assay results are less 
influential over siRNA-Nup93 outcomes.         
 
Table 3.16 Comparison of estimated coefficients of the saturated and “optimized” models of relative 
frequencies of gene subsets as classified by DamID siRNA treatment assays for Nup93 and Nup153 

 Coefficient SE z-value p-value 
 Sat.a Opt. Sat. Opt. Sat. Opt. Sat. Opt. 
λ 5.628 5.611 0.024 0.021 237.55 264.246 0 0 
λiDamID Nup93 1.229 1.242 0.024 0.020 51.891 62.022 0 0 
λjDamID Nup153 0.780 0.777 0.024 0.021 32.923 36.949 0 0 
λksiRNA Nup93 0.526 0.546 0.024 0.017 22.215 32.582 0 0 
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λksiRNA Nup93 0.178 0.161 0.024 0.021 7.521 7.585 0 0 
λiDamID Nup93 λiDamID Nup153 0.679 0.689 0.024 0.020 28.638 34.422 0 0 
λiDamID Nup93 λksiRNA Nup93 0.016 – 0.024 – 0.685 – 0.493 – 
λiDamID Nup153 λksiRNA Nup93 0.042 0.065 0.024 0.017 1.778 3.849 0.075 0 
λiDamID Nup93 λksiRNA Nup153 0.021 0.033 0.024 0.020 0.903 1.642 0.366 0.101 
λiDamID Nup153 λksiRNA Nup153 0.057 0.056 0.024 0.021 2.395 2.658 0.017 0.008 
λksiRNANup93 λksiRNA Nup153 0.453 0.479 0.024 0.008 19.104 56.423 0 0 
λiDamID Nup93 λiDamID Nup153λksiRNA Nup93 0.028 – 0.024 – 1.161 – 0.245 – 
λiDamID Nup93 λiDamID Nup153 λksiRNA Nup153 0.042 0.050 0.024 0.020 1.756 2.496 0.079 0.013 
λiDamID Nup93 λksiRNANup93 λksiRNA Nup93 0.015 – 0.024 – 0.616 – 0.538 – 
λiDamID Nup153 λksiRNANup93 λksiRNA Nup93 0.018 – 0.024 – 0.741 – 0.459 – 
λiDamID Nup93 λiDamID Nup153 λksiRNANup93 

λksiRNA Nup93 
-0.003 – 0.024 – -0.137 – 0.891 – 

 Saturated Model Optimized Model 
G2 (0, N = 26392) = -1.520 x 10-10 G2(5, N = 26392) = 3.779 

a Saturated Model (Sat.) 
b Optimized Model (Opt.) 

p = 1 p = 0.582 
AIC = 151.49 AIC = 145.26 

 

3.4.2 Integration of the RA GWAS Gene List 
Of the 105 genes on the RA GWAS gene list, 25 were not initially connected to results in the assay 
dataset. Of those 25, 16 were variants; this was determined by searching for a variation of the 
gene symbol, one which was truncated at the hyphen, among those genes for which there were 
assays results (n = 17) and confirming the result was on the same chromosome as that on the 
RA GWAS list (n = 16, as one was not). The total genes connected to genes in the Nup93/Nup153 
dataset rose back to 17 when an alias for C4orf52 (SMIM20) was found determined to be included 
in the assay dataset, as determined by HUGO’s Multi-Symbol Checker.156 In total, 8 genes were 
not linked to the assay dataset after searching for aliases via HUGO and/or did not have a 
truncated symbol that located on the same chromosome as the GWAS list indicated. 
 
Even with this truncated list (down from 105 to 97), there is a greater than 1.44-fold chance of 
drawing an RA GWAS gene  from the set of 1966 genes that are positive via DamID for at least 
one of the Nup93 or Nup153 than drawing an RA risk factor gene from the set all genes (.56% 
versus 0.39%). However, the null hypotheses of standard χ²-tests, that membership on the RA 
GWAS was independent of DamID classification (χ²(3, N = 26392) = 3.967, p = 0.2651) or siRNA 
classification (χ²(3, N = 26392) = 3.099, p = 0.3766), could not be rejected. 
 



 42 

 
Figure 3.7 Intersections of siRNA and/or DamID for Nup93 or Nup153 with Potential Target Genes grouped by 
disease as identified by the Open Target Platform 
Genes with at least one positive siRNA or DamID assay for Nup93 and/or Nup153 were compared with the gene 
target lists identified by the Open Targets platform. The lists for each disease were not mutually exclusive. Looking 
at set overlap was the first step in looking for possible associations between the positive assay results and 
association with disease. 
 
The data used was retrieved in January 2021. 

3.4.3 Integration with Open Targets Datasets 
The Open Targets datasets were examined for overlap alongside the RA GWAS gene list and 
Nup93/Nup153 siRNA and DamID assay dataset. These results were visualized using an UpSet 
plot (Fig. 3.7); the genes in the assay dataset that did not appear in any other dataset were not 
included in the graph as the number of such genes (15385) was approximately 3-fold greater than 
the next largest intersection, that of the assay dataset with the OT BC dataset (4715). Dividing 
the data by disease association, a χ²-test was performed per disease to test for independence 
between the assay results. In the case of all four diseases, the null hypothesis – DamID and 
siRNA assay results were independent – (remained) rejected (RA: χ²(9, 3061) = 31.80, p =  1.6 × 
10-4; OS: χ²(9, 3186) = 25.11, p =  2.8 × 10-3; OA: χ²(9, 2391) = 29.90, p =  4.6 × 10-4; BC: χ²(9, 
8850) = 58.56, p =  2.5 × 10-9). In all four tests, the top contributor to the χ²-statistic was the case 
when DamID-Nup153 was positive. 
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Figure 3.8 Boxplots depicting the distribution of overall association scores for genes in the intersection of 
the NPC assay datasets and Open Target data, stratified by disease. 
The distribution of overall association scores for the given disease (if it exists) for those genes RA GWAS gene list 
is also included, as indicated by the purple dots. The results of the Pairwise Wilcoxon Rank Sum Test are next to 
the bracket indicating the pair of diseases compared. A statistically significant result translates to a rejection of the 
null hypothesis that there is no difference in the means compared. 

 
Presented with continuous data (overall association scores) we visualized distributions of 
association scores by disease were depicted as box plots with genes in the RA GWAS dataset 
visualized as points on the boxplots (Fig. 3.8). The results of this were visually striking, with genes 
on the RA GWAS list showing strong association scores with both RA and BC. The median 
association score for BC was also greater than that of any of the other three diseases as was the 
interquartile range (Table 3.17).  
 
Table 3.17  Summary statistics for the distribution of 
overall association scores for each disease  
 median IQR mean 
RA  0.037 0.014 – 0.129 0.146 
OA  0.017 0.007 – 0.040 0.067 
OS  0.038 0.018 – 0.074 0.114 
BC  0.244 0.033 – 0.642 0.346 

 
As was expected, a greater percentage of the genes were shared between the Open Targets data 
and the RA GWAS gene list than any other group (91.75%), see Table 3.18 for all results.  
 
Table 3.18  Comparing the percent of RA GWAS genes included in each set of disease-specific genes  
 Genes in 

assay data 
Percent of NPC 
Genes (N = 26392) 

In RA 
GWAS 

% of RA GWAS in 
assay data (n = 97) 

% of gene targets shared 
with RA GWAS  

RA  3061 11.60 89 91.75 2.91 
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OA  2391 9.06 45 46.39 1.88 
OS  3186 12.07 43 44.33 1.35 
BC  8850 33.53 77 79.38 0.87 

 
The distribution of the association scores were checked for normality by visually inspected by 
plotting density plots of the scores as well as by the Shapiro-Wilk Normality Test, where possible 
(the Open Targets Breast Cancer dataset had too many members). The distribution of the scores 
was not found to be normal (p < 2.2 × 10-16). The Kruskal-Wallis rank sum test was performed to 
determine if, when stratified by gene membership on the RA GWAS list, the association scores of 
at least one Open Targets dataset was different from the others (Kruskal-Wallis χ²(3, N = 17488) 
= 2643.2, p < 2.2 × 10-16). To determine which groups significantly differed, pairwise comparisons 
using Pairwise Wilcoxon Rank Sum Test with continuity correction where made and Bonferroni 
correction for multiple comparisons applied (Fig. 3.8). The only groups that did not have a 
significant difference in means were RA and OS (p = 0.093). 
 
To look for associations between the overall association scores for a disease and the assay results 
was sought to fit a GLM. The distribution and log link function were selected after looking at the 
distribution of scores using tools in the fitdistrplus package:157 plotting empirical versus 
theoretical cumulative sum functions, a qq-plot, and a Cullen and Frey plot of the square of the 
skew versus kurtosis.158 The overall picture was one of a log-normal distribution. As a result, a 
GLM with a Gaussian distribution and a log link function were used to model the disease 
association scores as a function of binary variables with values determined by assay results. 

 
𝑙𝑜𝑔(𝑦L) = 	𝛽- + 𝛽.+/0._23456𝑥.+/0._23456 	+ 𝛽.+/0._234786𝑥.+/0._234786 + 

 

𝛽9!:2"_23456𝑥9!:2"_23456 	+ 𝛽9!:2"_234786𝑥9!:2"_234786 + 
 

(16) 

 
Significance of the overall models was calculated using the likelihood ratio test with the null model, 
𝑙𝑜𝑔(𝑦L) = 	𝛽- , for comparison. 
 
Table 3.19  Generalized Linear Model of RA association 
scores as a function of siRNA and DamID assay results 
 Coefficient SE t-value p-value 
β0	 -1.825 0.071 -25.700 0*** 

β	DamID_Nup93	 -0.055 0.070 -0.777 0.437 

β	DamID_Nup153	 -0.072 0.054 -1.343 0.179 

β	siRNA_Nup93	 0.015 0.035 0.433 0.665 

β	siRNA_Nup153	 0.019 0.038 0.491 0.623 

pmodel = 0.454 *** p << 0.001 

 
Reduction of the model down to only include β0 and βsiRNA_Nup153	did not improve the model as 
determined by the likelihood ratio test. 
 
Table 3.20  Generalized Linear Model of OA association 
scores as a function of siRNA and DamID assay results 
 Coefficient SE t-value p-value 
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β0 -2.543 0.174 -14.637 0*** 

β	DamID_Nup93 0.290 0.174 1.662 0.097 

β	DamID_Nup153 -0.174 0.075 -2.309 0.021* 

β	siRNA_Nup93 0.019 0.055 0.341 0.733 

β	siRNA_Nup153 0.062 0.061 1.013 0.311 

pmodel = 0.149 * p < 0.05, *** p < 0.001 

 
Reduction of the model down to only include β0 and βsiRNA_Nup153 did not improve the model as 
determined by the likelihood ratio test. 
 
 
Table 3.21  Generalized Linear Model of OS association 
scores as a function of siRNA and DamID assay results 
 Coefficient SE t-value p-value 
β0 -2.093 0.067 -31.430 0*** 

β	DamID_Nup93 -0.008 0.067 -0.119 0.905 

β	DamID_Nup153 -0.126 0.05 -2.509 0.012* 

β	siRNA_Nup93 0.088 0.036 2.476 0.013* 

β	siRNA_Nup153 0.015 0.037 0.398 0.691 
pmodel = 0.008 < 0.01 * p < 0.05, *** p < 0.001 

 
Reduction of the model down to only include β0 and βsiRNA_Nup153 did improve the model, making 
its comparison to the null significant as determined by the likelihood ratio test. 
 
Table 3.22  Generalized Linear Model of OS association 
scores as a function of DamID-Nup153 
 Coefficient SE t-value p-value 
β0 -2.073 0.047 -44.431 0*** 

β	siRNA_Nup153 -0.115 0.047 -2.467 0.014* 
pmodel = 0.024 < 0.05 * p < 0.05, *** p < 0.001 

 
Reduction of the model down to only include β0 and βsiRNA_Nup93 (p = 0.549) did not improve the 
model nor did adding βsiRNA_Nup193 to the model 𝑙𝑜𝑔(𝑦L) = 	𝛽- +	𝛽.+/0._234786 (p = 0.945 > 0.05). 
 
Table 3.23  Generalized Linear Model of BC association 
scores as a function of siRNA and DamID assay results 
 Coefficient SE t-value p-value 
β0 -1.043 0.028 -37.145 0*** 

β	DamID_Nup93 0.026 0.027 0.955 0.340 

β	DamID_Nup153 -0.056 0.020 -2.830 0.0047** 

β	siRNA_Nup93 -0.011 0.012 -0.890 0.374 
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β	siRNA_Nup153 0.012 0.013 1.400 0.162 

** p < 0.01, *** p < 0.001 

Reduction of the model down to only include β0 and βsiRNA_Nup153 did improve the model, making 
its comparison to the null significant as determined by the likelihood ratio test. 
 
The coefficients for the resulting models are given in Tables 3.19–3.23. In three out of four 
models, the only binary variable with a significant correlation with the response variable (overall 
association score) was DamID-Nup153. Subsetting all four disease datasets to just include RA 
GWAS gene list observations came up with no significant correlation with any of the predictor 
variables. This lack of correlation was not surprising given the null hypothesis that membership 
on the RA GWAS was independent of DamID classification (χ²(3, N = 26392) = 3.967, p = 0.2651) 
or siRNA classification (χ²(3, N = 26392) = 3.099, p = 0.3766) via the standard χ²-test.xlv All four of 
the models, when compared to the null, did not stand up to scrutiny. When reduced to only the 
intercept and DamID-Nup153 term, the only model of note was that for the overall association 
score of osteosarcoma.  
 

3.5 Discussion 
There are many flavors of multiomic data integration, from the integration of single cell (sc) omics 
data159 to the exploration of metabolic networks160, multi-omic plant data161… the list goes on. As 
the amount of available data continues to grow, for those who have big questions that can only 
be answered by dissecting a few datasets and merging the carefully crafted results, it is like being 
a kid in the proverbial candy shop but, unlike a kid, researchers can afford the candy.xlvi 
 
So much of “doing science” hinges on the ability to compare and contrast different conditions, 
which makes the growing availability of public data all the more exciting. The ability to develop 
research questions through preliminary data analysis not only saves resources, but it broadens 
possibilities. These possibilities include crinkling up that hypothesis you wrote on the back of a 
napkin, not because it sounded stupid the next time you read it, but because you found some 
data, crunched some numbers, and realized it was likely a dead end. 
 
Funding sources are understandably risk adverse, so unless you’re someone like <insert the 
name of a tech billionaire here>, even if that now-smoothed-out napkin idea is that start of an 
innovative solution to a stubborn problem, the merit of the idea must be established before 
dedicating significant resources to it. Within this paper, we pursued just such an idea using publicly 
available datasets. As the data were integrated and analyzed, considerations for such exploratory 
analyses have been collected. It is through this lens that the results are discussed. 
 
We set out with the following train of thought guiding the research:  
If association with the nuclear pore complex (NPC) is linked to cell identity – both by their average 
density of insertion across the nuclear envelope as well as their physical association with cell-
type specific areas of active transcription – and disease-types are often (to some degree) cell-

 
xlv These results occurred despite being unable to reject the null hypothesis that all three were 
independent via the Cochran-Mantel-Haenszel Chi-Squared Test for Count Data (M2(9, N =26392) = 108, 
p << 0.001). This seemly odd result is not surprising, given the null hypothesis was rejected regarding the 
relationships between DamID and siRNA classification (see Table 3.3), but this author has been waiting 
for a chance to apply that test after being unable to earlier. 
 
xlvi Please do not look too hard at this metaphor, it will fall apart. 
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type specific, then the expression of genes associated with a disease process may be linked to 
the NPC. 
 
Rheumatoid arthritis was selected as our disease of interest because a list RA risk factor genes 
had been compiled, updated, and verified by considering the connections between genes on the 
list with existing drug targets through biological networks.101 With this list in hand, we sought data 
that connected cellular identity with physical contact with the NPC within a cell line used to model 
RA, which we found in the Nup93/Nup153 datasets.42 To connect disease identity to cell identity 
and these assays, we sought data with predictive association scores between genes and 
diseases, which is what the Open Targets Platform aggregates.103,162–164 Thus, the first step toward 
flushing out our research question was successful: we found data that connected the different 
parts of our (fairly broad) research question. 
 
The summary statistics gathered at the outset were promising and were copesetic with what is 
known about the structure of the NPC. For example, the higher incidence of methylation by 
DamID-Nup153 than DamID-Nup93 may be a result of: 1. The more accessible location of 
Nup153 as part of the nucleoplasm facing basket as compared to the channel constituent, 
Nup93165 and, 2. the reputation of Nup153 existing within the nucleus independent of the NPC.166 
It is possible that the fraction of DamID-Nup153 genes that are not associated with DamID-Nup93 
as well are those that exist freely within in the nucleus. 
 
Given that a higher number of genes are physically associated with Nup153 than Nup93, one 
might think that a higher percentage of genes would change expression with Nup153 knockdown. 
Instead, a higher percent of genes are knocked down with siRNA-Nup93 (25.8% versus 19.0%), 
with a greater odds of siRNA-Nup153 responsive if responsive to siRNA-Nup93 (OR = 6.829, 
95%CI=6.390095–7.298249). However, these results are not off-brand for Nup93, as it has been 
frequently indited as having a crucial role in gene regulation.43,43,44   
 
Juxtaposing the p-values associated with χ²-testing of genes subset through stratification by both 
DamID (Tables 3.6b–e) and those stratifying by response to siRNA-Nup93 and DamID-Nup93 
(Table 3.5), the role stratifying variables play in the results of testing for independence between 
groups is readily apparent (0 ≤ p ≤ 1 × 10-11 versus 10-4 ≤ p ≤ 1). This trend in p-values is 
noteworthy specifically because one stratification schema rejects the null in all cases while the 
other only rejects the null in some cases. While the comparative magnitudes of p-values are not 
indicative of the relative strength of any association, the influence of the assay type versus the 
Nup assayed is highlighted. The complexities of the relationships the relationships between 
DamID and siRNA conditional subsets are detailed in the Results; the main takeaway is the 
relationship between the two is far more complicated than comparisons between groups can 
describe. 
 
To model these intricacies, we applied log-linear analysis to develop a GLM that includes 
interaction terms. Although the model optimized on the AIC consisted primarily of terms making a 
significant contribution, the two- and three- way interaction terms make articulating the effect any 
one perturbation may have on frequency counts cumbersome. What can be said based on what 
was included in that specific model is that it appears siRNA-Nup93 may have fewer connections 
with the other three assay results. To flush out these relationships, a more quantitative analysis 
of the results may prove useful; that is, including the fold-change in expression or, at minimum, 
the direction of that change. A further direction to that end would likely superimpose the results 
thereof onto known biological networks to see what unconsidered connections may exist that 
influence the magnitude of these interactions (if any) or where they stem from: are the interaction 
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terms of the model representing a directly mechanistic relationship between Nup153 and Nup93 
or the result of perturbing this corner of the cellular network? 
 
Connecting Open Targets data as well as the RA GWAS data was less successful than we would 
have liked, though their analyses was not without merit. For all four diseases, the dependence 
between gene subsets as defined by DamID and siRNA remained. This persisting dependence 
does not say anything particular about the diseases, as the results were in U2OS cells. What it 
does add to is the strength of the argument that there is a link between gene expression and 
association with the NPC. Trying to model the overall disease association score as a function of 
DamID and siRNA assay results was almost entirely unremarkable. Within the context of our 
analysis up to this point, the correlation coefficient for DamID-Nup153 found in the models for OS, 
OA and BC (not in RA) was a significant contributor to the association score for each of these 
three diseases, respectively. However, none of these models held up when compared to the null 
via the likelihood ratio test; three out of four did not hold up when reduced to the intercept and the 
DamID-Nup153 term. Of note, and perhaps significant note, is that such model for the overall 
association score of osteosarcoma did past the muster of the likelihood ratio test. Given the U2OS 
cell line, from which these data were derived, is an osteosarcoma-based line, these results do 
support the efficacy of integrating data in this way. This methodology could be extended to enable 
tailoring of gene targets in similar experiments to a cell line of interest, specifically those derived 
from cells in a disease state. To improve upon this method, additional work that considers the raw 
data, such as the impact the degree of change in cell expression has on disease association (if 
any), as dependency on pre-processed results with an unknown thresholds is a current 
(surmountable) limitation of the methodology. 
 

3.6 Conclusion 
As researchers, it is frustrating to analyze data and find what, for the most part, seems to amount 
to nothing. However, what we found here was not nothing, it just does not definitively support our 
original hypothesis. Instead, the analysis present here suggests further analysis is merited, at the 
level of the raw data, and perhaps with the inclusion of alternative “omic” views of the problem 
space (e.g. ChIP-seq and Hi-C, given the focus on physical association and regions of active 
transcription). It also is a head nod to the understated importance of an appropriate biological 
model for the system being studied; the strong the need for models that reflex the complexity of 
diseases such as RA is also highlighted in these findings. This comes as no surprise to that 
community but perhaps underscoring this point will help we the over-eager data crunchers keep 
in mind the difference between statistically and practically significant. 
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3.7 Supplemental Materials 
 
a  

 

b 

 

 diagError ≈ 0.0158  diagError ≈ 0.00970 

c  

 

d  

 
 diagError ≈ 0.0288  diagError ≈ 0.0288 
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e 

 

f 

 

 diagError ≈ 0.135  diagError ≈ 0.0236 

Figure S3.1 Euler diagrams of gene sets 
Genes were categorized by positive assays for DamID and siRNA with respect to Nup93 and Nup153 as well 
as gene list presented in “Genetics of rheumatoid arthritis: 2018 status” (Fig. 3.4). The graphs were created 
using eulerr, an R package that has its underpinnings based on eulerAPE, which draws area-proportional 
circular and elliptical 3-Venn diagrams.  Specifically, the optimization of a cost function is driven by the 
convergence of the diagonal error to ε, which is defined as 10-6 for computational purposes. This method 
endeavors to calculate the size and arrangement of overlapping circles (or ellipses) representing sets such 
that set sizes and union sizes are represented by area. eulerr applies extends this method beyond 3-Venns, 
though the results are not always ideal. 
The application of this package to the data presented here was not successful. The diagError of all of these 
diagrams were >> ε. There were multiple discrepancies in visualization that resulted. (a) A Euler diagram 
depicting the same sets and intersections as shown in the Upset plot ultimately included in the manuscript. 
The union of genes positive for change after siRNA treatment for Nup153 and those on the RA GWAS list is 
indicated to have 8 members by the Euler diagram when said intersection contained 26 genes. 
 
 

Table S3.24  Odds ratios indicating the likelihood of a gene being physically associated with Nup153 if 
it is not physically associated with Nup93 (as indicated by DamID) while holding the conditions 
treatment with siRNA against Nup93 xor Nup153 constant. 

Change after 
siRNA against 
Nup93 

Change after siRNA 
against Nup153 

If a gene is not physically associated with Nup93, that gene 
is _____-fold less likely to be physically associated with 
Nup153. 

None None 19.6 
None Yes 14.4 
Yes None 16.2 
Yes Yes 11.3 

 
 

Table S3.25  Results of pairwise comparisons of all four Open Targets Datasets stratified by 
gene membership on the RA GWAS list using Wilcoxon rank sum test with continuity 
correction and Bonferroni correction for multiple comparisons. 
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4 Exploratory Analysis of Hi-C Data for Gene-Gene Interactions 
 
Gene expression is dictated by many factors including physical accessibility for transcription. 
Patterns of gene expression differ between cell types as do observable components of genome 
organization. It follows that genome organization drives cell identity.75 Evidence points to the 
nuclear pore complex (NPC) as a director of nuclear organization, with chromatin associated with 
them being under active transcription.42 This activity is a contrast to the adjacent dead zones of 
transcriptomic activity around the nuclear periphery that are considered “on brand” for the region. 
This reputation comes courtesy of nuclear lamina-associated domains (LADs) that are regions of 
inactive chromatin mainly located at nuclear peripheryxlvii.167 Therefore, it is reasonable to consider 
the nuclear pore as a regulatory mechanism influencing cell identity.168 
 
In our prior work, we examined the connection between the physical association of chromatin with 
NPCs and cell identity, which was inclusive of type and disease state. To represent the NPC, two 
nucleoporins, Nup93 and Nup153, were selected. Nup153 is more accessible as a constituent of 
the basket extending into the nucleoplasm, while Nup93 is in the channel. Chromatin contact with 
Nup93 in conjunction with Nup153 provides “2-Factor Authentication” for NPC association via 
DamID.  
 
Our objective is to capture information that may be lost by practices such as normalization rooted 
in global statistics and anchor points established at the “origin” (first base pair) of a given 
chromosome. Our proposed methodology combines an alternative way to visualization count data 
with a probabilistic framework that reflects our primary research question: 
How likely is it that these regions will touch? 
In principle, what is proposed here to address this question is extensible to any Hi-C dataset. 
 
By selectively filtering Hi-C data by DamID for analysis at the local level we anticipate adding 
another dimension to our understanding of genomic organization at the nuclear periphery. We will 
be adjusting the global-centric standard methods for Hi-C analysis to accommodate our local-
centric approach. This additional dimension allows us to refactor our primary research question, 
which becomes: 
How likely is it these regions will touch… here? 
The inclusion of NPC associated DamID data adds depth by establishing physical reference 
points (the NPCs) within the cell.  
 

4.1 Background 
Before addressing these questions, we set the stage by looking at the context within which the 
data was collected. After establishing the “how” of data acquisition, we will look at the way that 
data is structured as well as the existing means of visualizing Hi-C data. 
 

4.1.1 Cell lines 
If genomic organization influences cellular identity, then the results of any study thereof will yield 
cell type specific results, making the origin of a cell line key to interpreting the data collected. The 
origin of the U2OS cell line was discussed in Part I as it pertained to use as a model for 

 
xlvii This definition of LADs is not nearly as nuanced as the one presented in the cited paper but it does 
reflect prevailing thoughts of non-specialists with respect to transcriptional activity at the nuclear 
periphery.  
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Rheumatoid Arthritis (RA). The data analyzed in this study was collected from U2OS cells, which 
is not a coincidence. After initial discussions regarding the first study, we sought an orthogonal 
dataset that could be used for follow-up. To this end, we found a Hi-C dataset from the Hetzer lab, 
the same lab that originated the siRNA/DamID dataset, also collected from U2OS cells. Though 
the laboratory originating the data was not initially a consideration, it is fortuitous that these data 
were collected in the same lab, which means it is likely they originate from the same U2OS culture. 
As an immortalized cell line derived from tumorigenic cells, the potential for genetic mutations 
should not be overlookedxlviii. 
 
In our RA study, we observed that the genes that were associated with osteosarcoma had the 
most statistical significance when it came to modeling overall association scores as a function of 
siRNA and DamID assay results. Given the origin of the U2OS dataset, an osteosarcoma these 
results are not surprising. However, such results cannot be taken for granted; not all cell lines 
derived from (what appears to be) the same tumor-type behave in the same way.169  Another study 
compared the expression of osteoblastic markers between osteosarcoma cell lines and “normal” 
human osteoblasts, finding that U2OS cells do not present the standard osteoblastic cell markers 
such as osteocalcin (OC) and decorin.97 For example, some – not U2OS – have lost the ability to 
induce tumors in in vivo murine models.96  The microenvironment for cells in culture may select 
for more stable cells within the laboratory setting, leading to a loss in tumorgenicity. Additionally, 
there is likely an impact of tissue architecture on the “behavior” of cells in culture. Osteoblasts 
demonstrate density-dependent alkaline phosphatase (ALP) activity and change in labelling 
profile; U2OS cells show no ALP activity regardless of cell density nor was their labeling profile 
density dependent.97 Cells were also characterized by the cell types into which they could be 
enticed into differentiating. U2OS cells were induced to differentiate into adipocytes while not 
differentiating into osteoblasts and chondrocytes.96 Cell line characterization experiments are 
valuable, and their results must be considered as part of the “baggage” a cell line brings to a 
study. 
 

4.1.2 Gene Targets 
For our analysis, we aggregated the information for several sets of genes that fit different criteria 
by downloading their information from Ensembl via biomaRt for hg38 AKA GRCh38p14. These 
sets were not designed to be mutually exclusive. Based on our broader goal of establishing the 
NPC as an organizational reference point in the cell, we will be looking at those genes that are 
DamID positive for both Nup93 and Nup153 based on data from a prior study.42 In addition, we 
will be looking at data posted on dbSUPER170 of super enhancers (SEs) and their associated 
genes for three cell types: osteoblasts, adipocytes, and MCF-7 cells – an estrogen receptor (ER)-
positive breast cancer cell line.171 The osteoblasts are included as it was the sole representative 
of bone tissue in the database and U2OS likely has a profile similar to osteoblasts based on their 
origin. Adipocytes were included because they are the cell type U2OS cells were differentiated 
into in a study characterizing osteosarcoma derived cell lines.97 MCF-7 cells were included as a 
comparison with respect to cancer related genomic organization. The HOXA genes were included 
based on known association with Nup93.45,46   MYC and its associated enhancer/lncRNA, CCAT1 
as well as KITLG and its associated enhancer were also included based on evidence of their 
association with Nup93.172  
 

 
xlviii In practice, it is unclear whether or not this is considered; if it is, it’s one [of many] steps taken to be a 
given but not discussed, so debatable whether its assumption is merited – much like model assumptions 
in statistics.  
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4.1.3 Chromatin Capture (Generally Speaking) 
Chromatin conformation capture methods are sequencing protocols used to extricate clues 
regarding the 3D and/or 4D organization of chromatin within the nucleus. The fourth dimension, 
time, is not always measured; when it is, it is often relative to the cell cycle, which varies between 
cell types and conditions in standard units of time. Like evolution, while some outcomes (methods) 

Table 4.1 Overview of Chromosome Conformation Capture methods through the development of Hi-C 

 
Figures within the table adapted from the papers commonly associated with the introduction of each method. (3C) Dekker et al. Figure 
1A, Science. 2002; 295(5558). doi: 10.1126/science.1067799 (4C) Simonis, et al. Figure 1A, Nature Genetics. 2006; 38(11). doi: 
10.1038/ng1896 (5C) Dostie, et al. Figure 1, Genome Research. 2006; 16(10). doi: 10.1101/gr.5571506 (Hi-C) Lieberman-Aiden et 
al. Figure 1A, Science. 2009; 326(289). doi: 10.1126/science.1181369 
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may be considered “better”, in reality some improvements are “better” for responding (answering) 
to a different situation (question). A bird’s eye view of the four major methods, up to and including 
Hi-C, are outlined in Table 4.1. Although the concept behind 5C made genome-wide studies seem 
possible, it was not until Hi-C drew in NGS that it became reality. 
 
 
While there have been subsequent improvements in Hi-C technique as well as single-celled 
adaptations of Hi-C, these are outside the scope of what is necessary to provide context for this 
study. The data used in this study was collected using a Hi-C approach that does not stray far 
from what was established in 2009, which will be described in the next section. 
 

4.1.4 All-against-all Chromatin Capture: Hi-C 
 
Hi-C is distinguished from other methods by its application of next generation sequencing (NGS) 
to an “all-against-all” approach targeting the whole genome.  
 

 

Figure 4.1 A general overview of Hi-C data collection, including details specific to the Hi-C dataset utilized in this 
analysis. 
To capture chromatin-chromatin interactions, formaldehyde is used to crosslink chromatin. First, formaldehyde 
reacts with a nucleophile (labeled Nuc) at one chromatin locus (purple) to form a Shiff base.173 Then, the base reacts 
with another nucleophile (green) on the interacting chromatin, crosslinking the two chromatin loci. This process is 
reversible. Proteins such as cohesins  (yellow), which are involved in loop formation, may be present and mediate 
the reaction by stabilizing the chromatin position. Chromatin is cut into fragments by a restriction enzyme – MobI in 
this experiment174  – which leaves “sticky” ends. These sticky ends are then filled in with biotinylated bases. 
Spontaneous formation of circular DNA occurs at this step, as may spurious chimeric and self-ligated DNA 
fragments. The process often occurs at a high dilution to avoid such unwanted fragments (they produce noise that 
hides the signal, i.e. the strands that ultimately become pair-ended reads). The DNA is then ligated, in this case by 
T4 DNA ligase. After the DNA sample is cleared of other matter, the crosslinkers are reversed and the pair- ended 
reads are pulled down by capturing the biotin markers on streptavidin beads. Loose DNA is removed, and the 
trapped reads are sequenced, resulting in the pair-ended data found in a raw dataset. 
 
Adapted from Lieberman-Aiden et al. Figure 1A, Science. 2009; 326(289). doi: 10.1126/science.1181369 

 
4.1.4.1 Overview of Experimental Design & Data Considerations 
The choices made when designing a Hi-C experiment impact the data in non-negligible ways. 
Here, we introduce a few such factors and how they may impact the data.  
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Restriction enzymes are exogenous enzymes derived from bacteria that recognize a given 
sequence and cleave at that site. These enzymes recognize and cleave at a restriction site, which 
consists of a short sequence of base pairs. The restriction enzyme HindIII recognizes the 
sequence 5'-A A G C T T-3' and MboI recognizes the sequence 5'- G A T C-3'. For a 𝑘-mer 
– a DNA sequence of length 𝑘 – there exist 4𝑘 possible combinations of base pairs that could 
make up that sequence. For example, a 4-mer can have any one of 44 (256) possible base pair 
combinations and there 46 (4096) possible 6-mers. In other words, a specific 𝑘 -mer may be found 
roughly once in every of 4𝑘 stretch of random base pairs, assuming no additional factors are at 

play. Thus, the length of the restriction site an enzyme 
recognizes is a major determinant of how much it can 
“chop up” chromatin. Of course, considerations such 
as G/C content and chromatin accessibility also come 
into play.175 “Small” modifications of a sequence such 
as methylation render some restriction enzymes less 
likely or unable to fragment DNA at that location.176  
	

Resolution is a broadly used but vaguely-defined term 
that holds (somewhat) distinctive meanings in 
different spaces, not so much in the overall concept 
but in the underlying parameters. In microscopy, 
resolution is defined loosely as “what level of detail 
can be reliably discernedxlix in a given image” as 
characterized by labeling density and localization 
uncertainty.177 With respect to Hi-C data, the 
resolution is the size of the binl used. The size of the 
bin is used to increase coverage by spreading out the 
value of the fragments.178 (Fig. 4.2a–b). To increase 
the resolution while maintaining coverage, the read 
depth must be increased quadratically while the 
resolution increases linearly (Fig. 4.2c).  What 
determines the bin size? Great question. We were 
unable to find a tried-and-true heuristic, though some 
were suggested within methods sections, such as 
constructing the bins with a size that results in 80% of 
loci have at least 1000 contacts179; “The map 
resolution is meant to reflect the finest scale at which 
one can reliably discern local features when visually 
examining the data.” On the whole, however, it seems 
as though this is – as so many things are – context 
dependent.180 

 
Although binning itself seems to be a statistical exercise, the contacts that result in the binned 
fragments have spatial limitations. There are many physical constraints to chromatin interacting 
particularly for any duration of time. Two such factors are: 1. the nature of chromatin as a physical 

 
xlix If possible, this author would dive headfirst in the rabbit hole of what qualifies as “reliable” in terms of 
decerning and who is the observer doing the decerning, what are their technical limitations, and what 
improvements in computing may impact this. But, as it stands, to many rabbits have already been chase 
in the writing of this paper. 
l We will later observe that the interaction between two bins is visually represented by a square in a 
heatmap, which appropriately makes a heatmap look like a pixelated image. 

a. 

 

b. 

 

c. 

 

Figure 4.2 The relationship between bin size, 
coverage, and sequencing depth 
(a) Fragments (purple) have been aligned to a 
stretch of chromatin (black) that contains a gene 
of interest (teal). With a 1kb bin, only three 
counts are “assigned” to the gene. At this 
sequencing depth, the coverage is fairly low, but 
the sparsity of data can be improved by (b) 
increasing the bin size to 5kb, which increases 
the number of reads “assigned” to this bin. (c) To 
increase the resolution to 1kb, a linear 
improvement, the read depth needs to be 
increased quadratically (red).  
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entity, which is often modeled as a polymer and included in normalization calculations as part of 
the expected interaction frequency count, and 2. the limit imposed by the size of the crosslinking 
moleculeli, which is about 2 Å (0.2 nm) in the case of formaldehyde.181 The physical distance 
required for cross-linking is likely more of a limitation than the ability of DamID-fused proteins to 
interact with chromatin, which is something to keep in mind. However, further investigation is 
warranted before asserting this with any certainty. 
 
4.1.4.2 Data structure 
The raw sequencing data produced comes in strings of sequenced pair-ended reads, which 
require quality assessment, alignment, 
(re)pairing, and sorting before questions 
of counting, binning and normalization 
can be addressed. Between sorting and 
what is thought of as “processed” exists 
a sort of limbo: the point at which all 
fragments are arranged in an orderly 
fashion but have yet to be counted. This 
is akin to students before being assigned 
groups for a project. They are all there, 
(hopefully) orderly, and waiting for 
assignment. It is only after assigning 
fragments to bins that we arrive 
processed data. At this point, the data 
could be left as raw counts, though it is 
generally normalized.    
  
Processed Hi-C data comes in the form 
of a contact matrix containing a pair of 
interaction regions – bins – of the same 
base pair (bp) length – bin size – and the 
number of interactions counted for that 
combination, arrange in a sparse matrix. 
This dataset can also be structured into a dense matrix, which a row represents the ith bin, a 
column represents the jth bin, and the counts, cij, represent the number of interactions between 
the two genomic locations (Fig. 4.3). If the fourth dimension, time, is introduced, such data is 
collected by taking another sample of the same cell population and another dataset results. In the 
case of the dataset used in the work presented here, time was measured in minutes based on 
the expected trajectory of the U2OS cell population through the cell cycle, producing eight 
datasets per biological replicate (Fig. 4.7). 
 

 
li I did not find evidence of studies on any limitations imposed by cross-linking agents on establishing 
contacts between chromatin strands, nor was a researcher with the Dekker lab aware of any such 
research.  
lii Here is an example that epitomizes a jargon problem: opposing definitions for the same terms. The 
nomenclature used in this caption originations from Hi-C Data Formats, Chapter 6 of Hi-C Data Analysis 
(2022, Springer Nature), the dense matrix is an n x m matrix with n x m entries, a significant number of 
which are 0, and the sparse matrix only consists of non-zero values. At first glance, it seemed like a typo, 
until it was discovered others define these two terms this way.. as well as in the exact opposite manner. 
This conflict does not seem to have discipline specific borders.182–184 

 
Figure 4.3 Hi-C data is often organized into contact matrix with 
genomic coordinates represented by axis. 
(a) A dense matrix includes all possible combinations of 
loci/bins between two lengths of chromatin. The diagonal of the 
matrix indicates interactions between a location and itself. In 
each cell, denoted Cij, the number of contact points between the 
two loci represented by the row (i) and column (j) is stored. (b) 
Interactions can also be stored in a sparse matrix, which retains 
only information about those pairs of loci with non-zero 
contactlii.185 
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Binning is all well and good, but it cannot be done before defining an anchor point. Setting the 
anchor point comes down to asking: where to start counting? 
Counting, something we learn to do as children, is a deceptively difficult task.liii The “number” zero 
is not even considered natural. It should come as no surprise then that defining a point at which 
to start counting is non-trivial.liv Previously, the starting point was an emergent property of the 
technology used. The “one-versus-one”, “one-versus-many”, and so on that encapsulate the 
nature of each chromatin capture iteration, including the anchor point for counting interactions 
between genomic loci. Leaving no ambiguity, the “one-vs-one” loci comparison of 3C places the 
anchor point is the start of the gene. However, this starting point became more ambiguous as the 
scope of the technology broadened, leading to our current question: where do we start counting 
in the “all-vs-all” information provided by a Hi-C dataset? 
 
The answer to this question depends on what research question you are addressing.  
 
Currently, Hi-C data are processed with an anchor point set at the first base pair of each 
chromosome. From this point, bins of equal width are enumerated to which chromatin fragments 
will be assigned upon alignment. For looking at global organizational patterns such as A/B 
compartments, topological domains (TADs) and loops, this choice keeps the information scaled 
to a level appropriate to the inquiry. It also increases the effective coverage by decreasing the 
search space.178 However, this approach may lose information when applied to local features of 
the genome such as genes (Fig. 1.2 ). This is one of the issues that we address in the Methods 
section. 
 
Once aligned to a reference genomelv, fragments are assigned to these bins and a contact matrix 
is constructed. The signal, the “true” interaction counts, is contained in the contact matrix. The 
construct often undergoes adjustments to compensate for noise created by bias187 and is 
generally normalization with respect to the whole genome.188 Processed data is often log 
transformation prior to visualization. This transformation amplifies strong signals, such as intra-
chromosomal regions proximal to each other, while dampening weaker signals, such as those 
between inter-chromosomal regions, making patterns visually easier to distinguish.  
 
4.1.4.3 Bias & Normalization Methods 
Hi-C experiments come with many sources of potential bias, some which are known and 
accounted for during data processing. Often, methods for bias correction are baked into 
normalization methods.188 Such methods can be explicit, applying a priori information such as 
fragment length, GC content and mappability.187 They assume that biases can be known and 
taken into account. Others are implicit, using only the data collected during the experiment. 
Behind this approach is the notion that biases are equally applicable to all data collected in a 

 
liii “Counting is hard” was first read by this author in her sophomore year of college, haunting her ever 
since.186 Seven out of the thirteen students withdrew from the combinatorics course that semester. She 
was one of them. A majority of them had already defected from the physics department, seeking shelter in 
mathematics from the handwaving, making this but another rockface in their uphill climb.   
liv Programing languages don’t agree on this. For example, Python starts indexing at 0 while R begins at 
1. This makes sense when you consider R was designed for use in statistics, which is based in 
observations, of which having a zeroth observation makes very little sense outside of a patient-zero 
scenario. However, it remains a tripping hazard when jumping between both, especially when you realize 
not all bioinformatics software starts counting in the same place either. 
lv This author has not encountered the use of de novo alignment in the Hi-C space, the sparsity of the 
data does not inspire its use for such a task.  
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given experiment.lvi Explicit methods include HiCNorm and hicpipe. HiCNorm uses a Poisson 
regression model to account for things such as fragment length.189 hicpipe establishes that 
sources of bias for cis- and trans-interactions may differ and also accounts for bias introduced by 
random cleavage events (versus those induced by restriction enzymes).187 Sequential component 
normalization (SCN)190 and Iterative correction and eigenvector decomposition (ICE)191 are 
implicit methods. They draw upon scaling and iterative correction methods, respectively. It is worth 
noting that ICE does use external information for validation, though it a priori information is not 
included in calculations when applying the method. 
 
At this point, it is important to note that most, if not all, methods are focused on normalization on 
the global scale. Given the available resolution and the questions Hi-C datasets are generally 
used to address, this global scale normalization is appropriate. However, scaling in this way is not 
necessarily appropriate for looking at interactions at the local level. What is meant by local is not 
so much a gene and its nearest neighboring gene, although it could, but gene/gene interactions 
on the whole, a shift back toward the “one-versus-one” or “one-versus-many” perspectives gained 
by earlier chromatin capture technologies while using existing Hi-C datasets.  
 

4.1.5 The Exploration of Hi-C Data 
The purpose of modeling Hi-C data is to characterize features of genome organization. Typical 
Hi-C data analysis is not inclusive of all features of genomic organization; the focus tends to be 
on A/B compartments, topologically associated domains (TADs), lamina-associated domains 
(LADs), and chromatin loops. The conceptual model that is tethered to chromatin-chromatin 
interactions is Activity-by-Contact, which posits that physically associated chromatin regions may 
influence the expression of their respective genes.192 This model does not limit or require genes 
to touch directly, influence may also be exerted through shared enhancers, enhancer-promoters 
contacts and so on. The major mode of gaining insights as to the nature of such contacts and the 
structures they inhabit is through visualization, which is both the inspiration for and the standard 
against which analyses of Hi-C data is compared.193,194 
 

 

 
lvi While this broke stroke assumption might be reasonable to make regarding data from a single run, this 
author is dubious that it is reasonable to assume such a thing between runs. 
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Figure 4.4 Three standard representations of Hi-C contact matrices. 
(a) Square matrices represent two sets of genomic coordinates by bin, one on each axis, and the 
interaction counts or relative strength between the binned locations is using the color channel. (b) 
Triangular matrices are used to highlight patterns self-interaction between stretches of chromatin. Such 
a heatmap is derived from the square representation by cutting the plot along the diagonal, upper left to 
lower right, then retaining and rotating only the lower portion of the map such that the diagonal becomes 
the horizontal axis. (c) Arc diagrams visualize interactions between genomic locations by connecting 
them with an arc. The arc may be used to indicate the “strength” of interactions, based on the number 
of counts, through color or linewidth channels. An alternative form of this includes multiple chromosomes 
in a circular representation (not shown). 
 
Figures from (a) Shinkai, Onami, and Nakato. Figure 1A, Computational and Structural Biotechnology 
Journal. 2020; 18, doi: 10.1016/j.csbj.2020.08.014 (b) Lajoie, Dekker, and Kaplan. Figure 9, Methods. 
2014; doi: 10.1016/j.ymeth.2014.10.031 (c) Mifsud et al. Supplementary Figure 5, Nature Genetics. 
2015; 47(6), doi: 10.1038/ng.3286 

 
Hi-C visualizations often depend on transformation of sequencing pipeline output into a format 
that can fed into and visualized using available tools (i.e. a contact matrix). The R/Bioconductor1 
package GenomicInteractions195 crosses the bridge between standalone software (e.g. 
HOMER196) as well as packages developed for singular chromatin capture methods (e.g. 
diffHic197) to provide a standard data structure that can be used for visualization and further 
analysis Hi-C data. Further improvements to processing, manipulation, and visualization were 
necessitated by the increase in computation demands brought about by increasing Hi-C resolution 
and are addressed by HiCBricks, an R/Bioconductor framework198. 
 
4.1.5.1 2-Dimensional Visualization 
The standard for visualizing the contact matrix is the heatmap, in either a square or triangular 
form, and the arc diagram (Fig. 4.4a–c). Other representations include those built upon the initial 
plot with “tracks” – aligned by location relative to genomic sequence – informed by other omics 
data, and interpolated 3D models of chromatin structure. The latter is the least common, likely 
due to the computational expense of creating such models. 
 
As a result of how contact matrices are transformed during normalization – often preferentially 
amplifying intra-chromosomal interactions – most standard Hi-C visualization methods are better 
suited for exploring cis-interaction patterns. For example, TADs are easily identified through visual 
inspection of heatmaps as dark regions at the peaks of triangles where cis-interactions are plotted 
– along the diagonal of a square heatmap or along the base of a triangular heatmap (Fig. 4.4c).199 
Trans-interactions are not easily distinguished in traditional heatmaps, where they are washed 
out by the prevalence of intrachromosomal contacts. 
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Figure 4.5 Hi-C heatmaps visualized alongside tracks. 
(a) The Epigenome Browser displaying hallmarks of a loop formation (representation at the 
top) as found in different omic data laid out in tracks above a triangular heatmap and (b) a 
scalogram presented below a triangular heatmap contact maps to visualize the influence of 
neighboring genomic regions at different scales, which are orders of magnitude reported in 
kilobases. 
 
Figures from (a) Yardımcı & Noble. Figure 2A, Genome Biology. 2017; 18(26) 
10.1186/s13059-017-1161-y and (b) Lioy et al. Figure 1A&D, Cell. 2018; 172(4) 
10.1016/j.cell.2017.12.027 

 
Visualizations that build on linear genomic coordinates can be annotated with “tracks”, with 
additional information displayed on a parallel axis using the same genomic coordinates and scale. 
JuiceBox200,201 is an Hi-C data visualizer that incorporates the track-based Integrative Genome 
Viewer (IGV)202,203, which allows the aggregation of multiple genomic data-types for display with 
the corresponding Hi-C heatmap. Similarly, 2D data can be overlaid on the heatmap, allowing the 
identification of chromatin structures. For example, the directionality of a binding protein with 
respect to chromatin loops was determined by juxtaposing CTCF-binding motifs on Hi-C data 
(Fig. 4.5a).179 The scalogram can be used as a track to close the gap between scales by linking 
resolutions (Fig. 4.5b). Scalograms illustrate the “tightness” of a region by considering what 
percent of the signal in a bin comes from interacting with flanking region. As for the availability of 
multi-scale encoding, HiGlass and JuiceBox allow zooming and include gene symbol searches. 
Although visual encoding does not change based on the scale, the refinement level of the data 
shown increases as resolution permits. 
 
The 2D visualizations reviewed above, even those that are available to scale, largely focus on 
global rather than local effects, even when used to visualize features that trend toward the small 
scale such as loops. One potential exception to this is the arc diagram. However, the data itself 
is scaled globally, which has the potential to alter the perspective. Before further consideration of 
issues of scale, we consider an additional dimension as the genomic organization does not occur 
within the confines of 2D.  
 
4.1.5.2 3-Dimensional Visualization 
Visualization in three dimensions is inherently messy because of limitations in how we perceive 
information as three-dimensional. The information available along the z-axis diminishes as a 
result, making encoding in three-dimensions render more like two-and-a-half dimensions of 
information204, even when perception (linear as well as texture and size gradients), occlusion and 

http://epigenomegateway.wustl.edu/
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the kinetic depth effect are leveraged. As shapes become less familiar, the benefit of using these 
indicators decreases, making them less useful for the unfamiliar shapes organized chromatin take 
when visualized. These complications are compounded by the lack of a common coordinate 
system for the nucleus, which would otherwise allow integration of imaging and sequencing data. 
Such a common coordinate system is under development as one of the stated objectives of the 
4D Nucleome Data Coordination and Integration Center.205 As a result, visualizing Hi-C data 
layers its own set of challenges on top of those associated with 3D visualization. 
 
Although GrapHi-C206 workflow does not display Hi-C data in 3D, the representation of multi-way 
chromosomal interactions implies dimensionality beyond the 2D matrix. Representing a contact 
matrix with nodes and edges emerges naturally as a form of visualizing dense contact matrices 
(Fig. 4.3b). In its simplest form, coordinates may be used as nodes with each row indicating a 
connection between two nodes with the weight the connecting edge encoded by the 
corresponding value. The prediction of chromatin organization with multi-way contacts within the 
4D context of the nucleus requires a statistical means of extrapolating such interactions. This 
criterion contributes to the computational complexity of modeling genomic structure. Though 
statistical methods for predicting such interactions exist, they, along with other methods, are more 
applicable to intra-chromosomal interactions vis-à-vis the use of polymer models.207 
 
Where prior tools either visualized curated data only or were developed primarily for modeling 
protein structures (e.g. Chimera208), HiC-3DViewer209 allows researchers to import their own data 
into a graphical user interface (GUI) developed specifically for chromatin-centric data. The ability 
to overlay additional “omic” tracks such as ChIP-seq data is also included, strengthening HiC-
3DViewer’s efficacy for viewing trans-interactions. 
 

4.1.6 Implications of Current Methods 
More often than not, interaction counts between genome loci are normalized before any 
exploratory analysis or visualization take place. Generally, the normalization methods selected 
for Hi-C data are rooted in global, rather than local, characteristics of the dataset. Additionally, a 
polymer model is the foundation of calculating expected interaction counts, against which the 
observed are compared to establish significance. However, the polymer model isn’t applicable 
when considering trans-chromosomal interactions or cis-interactions over a certain distance. 
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As we’ve seen, normalized interaction data are 
most often visualized as a heatmap – essentially 
a two-dimensional histogram (Fig. 4.6) – which is 
not well suited to exploratory analysis at the gene-
scale. While more target-specific data collection 
methods such as 3C may be employed, those are 
also not appropriatelvii for the sort of exploratory 
analysis one may endeavor with a list of a few 
hundred potential target gene pairs. So, what is it 
about heatmaps for Hi-C that isn’t suitable for 
looking at interactions at a local scale? The nature 
of the underlying data and the normalization 
methods generally applied during processing 
decrease the usefulness of standard heatmaps 
for gene level data. This depreciation is in no 
small part due to the resolution available versus 
the length of a gene. To address this problem, we 
looked to other disciplines that ask questions of 
data structured around position and time.  
 
Heatmaps, probabilities, and tracking dynamic 
systems overtime are fundamental to geospatial 
data analysis. Beyond using heatmaps to explore 
raw data, geospatial data are often transformed 
and displayed as probability densities. These are 
frequently visualized using contour plots. Much 
like the epidemiologists who model areas of high-
to-low risk, computational biologists model 
chromatin contacts. It follows that methods drawn 
from geospatial analysis may be applicable to 
visually represent gene-to-gene interaction 
likelihood. As the protocols for Hi-C improve210, 

improving the overall resolution, and other chromatin capture techniques are developed the utility 
of exploratory analysis at the local level will become ever more necessary. 
 
We propose using kernel density estimation (KDE) as a means of visual exploratory data analysis. 
As a smoothing method, KDE is inherently a normalization method. Unlike the “usual” Hi-C 
normalization methods, which hinge on the summary statistics of the whole genome, KDE uses 
information regarding neighboring data to smooth – normalize – the data in a local-centric manner. 
Additionally, KDE circumvents the anchor point problem, which refers to the influence the starting 
point of binning has on the information conveyed by a histogram and heatmap.211 Furthermore, 
the dynamic nature of chromatin warrants a probabilistic approach to account for variation 
between individual cells; this approach is of particular importance for bulk-sequencing data such 
as that used in this research. This approach can be adapted to visualizing the persistence of 
signal over time, as chromosome organization is dynamic212, changing over the course of the cell 
cycle. 
 

 
lvii Furthermore, such methods assume the existence of specific data. In the case of a preliminary data 
analysis, it may be more pragmatic to use existing datasets, particularly given the high cost of such 
experiments. 

 

Figure 4.6 Visualizing Heatmaps ≣ 2-D Histograms 
Comparing a contact matrix for Genes A and B with 
1D histograms of counts for Gene A (x-axis) and 
Gene B (y-axis) flanking a heatmap of the same 
count data demonstrates the congruence of 
heatmaps and histograms.  
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4.2 Methods 
Our methods were divided into two parts: 1) the initial case study, which focused on a specific 
gene pair to devise a method for applying locally appropriate statistical methods and visualization 
for exploratory data analysis using pre-processed Hi-C data; and 2) a pipeline for applying the 
developed methods to a set of gene pairs utilizing raw Hi-C data processed using an adaptation 
of the 4DN pipeline. 
 

4.2.1 Hi-C Dataset 
The Hi-C dataset employed in this endeavor is a SubSeries (GSE141067) that exists as part of 
SuperSeries (GSE141139) hosted by the NCBI in the GEO database, where it is publicly 

available.213 The Hi-C experiments as well as 
other omic experiments used the U2OS cell line214, 
the same cell line underlying the data in Part I. The 
Hi-C dataset consists of 16 “runs”: time was 
measured in minutes based on the expected 
trajectory of the U2OS cell population through the 
cell cycle, producing 8 sets of pair-ended reads for 
each of 2 biological replicateslviii (Fig. 4.7). The 
restriction enzyme Mbol was used to cut the 
chromatin into fragments after cross-linking with 
formaldehyde (Fig. 4.1). 
 
During the original analysis, reads were aligned to 
hg38 via bwa-mem and prepared using 

Hypergeometric Optimization of Motif EnRichment (HOMER)196 to establish interaction counts 
and Juicer200 to create, balance, normalize the contact matrices (posted in hic format). In the 
original study, coordinates were lifted from hg38 to hg19 for juxtaposition with the other datasets 
in the SuperSeries, as those were aligned to hg19. For this initial case study, these processed 
data were retrieved from the NCBI GEO213 using the browser-based GUI. For the subsequent 
portion of this venture, the raw (unprocessed/unaligned) data were downloaded from the NCBI 
GEO database straight to the SCI in fastq format using curl215 after obtaining the urls from the 
metadata via ffq216, both via the command-line interface (CLI). 
 

4.2.2 Preliminary Case Study 
A case study was the initial approach to develop the methods presented here. Our original 
objective was to select probes for the fluorescent tagging of two genes. 
The criteria for selection were: 

1. DamID for Nup93 and Nup153 suggest both genes interact with the NPC complex at 
the nuclear periphery, and 
2. Hi-C data suggests the two genes interact with each other.  
 

 
lviii Although from the same cell line, the replicates were two different “populations” that underwent 
separate synchronizing arrests, releases, and data collection. This differs from technical replicates, which 
are samples from the same population taken to assess variability among measurements. The 
classification was confirmed by the lab that original performed the experiments as this author found it 
difficult to determine as originally described.  

  
Figure 4.7  Sampling Schema for Hi-C data 
acquisition 
Points during the cell cycle at which samples were 
collected from U2OS cell culture as indicated in 
minutes as well as relative to the state of the cells.174 
 
From Kang et al. Figure 1A, Genes & Development. 
2020;34(13-14). doi:10.1101/gad.335794.119 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE141139
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The cis-chromosomal gene pair used as an exemplar, ZNF438 and PARD3, was selected during 
preliminary data exploration of the pre-processed data from this dataset.lix PaintSHOP217 was 
used to design probes for chromosome walking218 along both genes.lx Labeling the entire length 
of each gene was not practical76 – the quoted price was greater than that of a modest home in 
the area at the time of writing. To reduce the number of oligos necessary, and thus reduce the 
cost, we sought a method of selecting the region(s) with the highest potential for interaction. 
 
We determined sustained interaction would be an indicator of a high potential for interaction in 

future experiments as well as a 
characteristic beneficial to fluorescent 
microscopy experiments.  
 
We posit that bins with interaction 
counts that existed at multiple time 
points and/or between replicates would 
indicate the region(s) of the genes most 
likely to interact in the same cell line.lxi 
In other words, the most persistent 
signal over time and/or between 
replicates is likely just that, signal, not 
noise. 
 
4.2.2.1 Heatmaps 
Initially, contact matrices for the 
selected target genes, ZNF438 and 
PARD3, were visualized as traditional 
heatmaps with the addition of 
hierarchical faceting by replicate and 
time. As far as we know, there is not a 
standard way of visualizing Hi-C data 
over time. The counts for each cell (𝐶𝑖𝑗) 
are encoded using color, depicting all 
possible 𝑖th and 𝑗th bin combinations 
along the length of both genes, an 
intuitive approach given the “all-against-
all” nature of Hi-C data. 
 
To reduce clutter and gain a clearer 
picture of any underlying patterns of 
contact such as signal persisting across 

time, we considered both genes individually (Fig. 4.8).  Heatmaps were generated that plotted 
the sum of interactions of each binned loci of one gene with any part of the opposing gene. Such 
plots were constructed for both genes and facetted by replicate. 
 

 
lix As it turns out, they likely aren’t a pair suitable for our long-term objectives, but the methods developed 
here are and the results with respect to this pair is consistent within its biological context. 
lx Chromosome walking is a bit of a misnomer in this situation; the “walk” would have been limited to the 
length of each gene rather than the whole chromosome. 
lxi The merit of this prediction has been left for a future paper. 

 
Figure 4.8 A different perspective on contact matrices: “One-
versus-Any”  
(a) Visualization of interactions between Gene A and B, as seen 
between a hypothetical gene pair. The resulting gene matrix (an 
example of a dense matrix) is then split such that: (b) the 1 × 2 
matrix carries information regarding the two Gene A bins 
interacting with any location on Gene B, and (c)  the 6 × 1 matrix 
holds information regarding the six Gene B bins interacting with 
any location on Gene A. 
 
The binning in this figure uses an anchor point situated at the 
start position of each gene. While not significant to the purpose 
of this diagram, in this hypothetical, the contact assignment 
ambiguity is minimized to zero. If the genes did not (conveniently) 
have a length that is a multiple of the bin length, the only potential 
ambiguity would exist in the last bin of the gene(s). 
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For selecting genomic regions for labeling with probes, as is our goal for imaging experiments, 
narrowing down the target area for each probe set is beneficial. That target area needs to be the 
areas that have the greatest probability of coming into contact in the future based on the 
distribution of signal between the two regions at rest. To do this, we need to add back the 
previously condensed element of one-to-one specificity (as far as Hi-C resolution allowed). To do 
so, we look to geospatial analysis for a potentially applicable method. 
 
Application of Geospatial Methods 
Two methods often considered for creating surfaces from discrete data points in the geospatial 
analysis space are inverse distance weighted interpolation (IDW) and kernel density estimation 
(KDE). IDW creates a surface between sampled points using the distance between the points as 
weights.219 KDE uses a kernel, such as Gaussian distribution, to estimated probability densities 
such that the total probability around any given point is 1, which results in a probability density 
surface.219 Because Hi-C collects all-against-all data, rather than sampling, KDE was the more 
appropriate choice. 
 
4.2.2.2 Kernel Density Estimation 
Given 𝑛 is the number of datapoints, 𝐾 is a kernel function and 𝐇 is the bandwidth, a symmetric, 
positive definite, 𝑑	 × 	𝑑 matrix, the kernel density estimator is defined as: 
 

𝑓Y(𝒙;𝐇) = 𝑛;7A 𝐾𝐇(𝒙 − 𝑿!)
=

!>7
 

 
The bandwidth 𝐇 controls the magnitude and direction of the smoothing applied by the kernel 
function: 

𝐾𝐇(𝒙) = |𝐇|;
7
,	𝐾(𝐇;7,𝒙) 

 
Two-dimensional KDE was implemented in R using the ggplot2 library, which imports the kde2d 
function from the MASS library220 to perform the underlying calculations.221 This function uses a 
bivariant normal kernel, which is aligned with the x- and y-axes, on a grid. The default bandwidth 
is selected via normal reference distribution, the accepted “rule-of-thumb” method for use with 
Gaussian kernels.222 The surfaces were plotted, faceted by time and with replicates presented in 
separate plots. 
 
Evidence supports the (relative) stability of global chromosome architecture during G1, though 
changes in epigenetic markers as well as movement on the megabase scale.223 Therefore, we 
aggregated at the same data three different ways: all samples aggregated, regardless of 
timepoint; only samples during taken during G1, excluding cytokinesis; and only samples taken 
during mitosis, including cytokinesis.  
 
For an alternative look at the change in interaction probability throughout the cell cycle, the ks 
library was used, which has the capacity to perform KDE in up to six dimensions. The result was 
plotted calling the plot function, a base R function extended by ks using the plot3D library (Fig. 
Error! Reference source not found. ). Interactivity was achieved by opting for rgl extension of the 
base plot function rather than plot3D, which allows the user to rotate the graph in three 
dimensions. This makes examining the surfaces easier.  
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4.2.3 Pipeline Development 
4.2.3.1 Data Processing 

“… space is generally cheaper than time.” 
 
Whoever wrote thislxii has not worked with Hi-C data. 
 
The processing pipeline used was adapted from the 4DNucleome Hi-C Processing Pipeline.224 
The raw Hi-C data was transferred from NCBI GEO to the Scientific Computing for Innovation 
Cluster (SCI),1 a high-performance computing (HPC) cluster, in the fastq format using curl.lxiii 
The accession-based URLs for transferring the files, expected file sizes and other metadata were 
retrieved using the ffq python library.216 
 
The raw data was aligned to hg38226 via bwa mem.227 The aligned fragments were parsed and 
sorted into read-pairs using pairtools.228 It is at this point we began to diverge from the 4DN 
pipeline. Pairs were not deduplicated using pairtools as we plan to look more closely at the 
characteristics of the duplicates in a future study. The two replicates were not merged, as would 
this is not appropriate to do with biological replicates. It is at this point we fully deviated from the 
4DN-recommended pipeline; we did not bin, matrix balance, or normalization the read-pairs.  
 
When contemplating the allocation of resources, we began by determining the set of genes from 
which we would draw gene pairs, which hinged in part on how many gene pairs would arise from 
a given set. Multi-choose k – combinations with replacement and without repetition –  was used 
for this calculation: 

 ^0
𝑛
𝑘
7_ = 	

(𝑛 + 𝑘 − 1)!
𝑟! (𝑛 − 1)!

 (17) 

For example, if all possible genes (𝑛		= 26392) in the siRNA/DamID dataset were paired (𝑘	= 2), 
the result would be 691,610,048 combinations of genes. Given that many of these combinations 
will be “duds” with respect to the phenomenon under investigation – interaction in the immediate 
vicinity of NPCslxiv – and that this was a pilot study of applying KDE to minimally processed 
sequencing data, we opt to narrow this list down to only those genes double positive for interaction 
with Nup93 and Nup153 via DamID. 
 
At this point, we began by using pairtools select to filter out reads by gene. This turned out to 
be exceedingly inefficient, both in terms of time as well as hard drive space. Thus, we sought a 
better approach and considered alternative tools for extracting reads from the read files. We 
began by examining the relationships between the start and end of the genes we to get a better 
handle on their distribution between chromosomes (Fig. 4.9). In this data, we saw clusters of 
genes, so k-means clustering was applied. This application greatly reduced the number of queries 
by clustering genes by relative position on each chromosome.  

 
lxii The readr documentation for write_rds() states, “write_rds() does not compress by default as space is 
generally cheaper than time.” 
lxiii The recommended fastrq failed to transfer these files, even if proceeded with pre-fetch.225 
lxiv It was VERY tempting to calculate the volume of the nucleus and compare it to the shell formed 
between the envelope and the distance away from NPCs within which a given section of chromatin is 
likely to interact with an NPC considering density of NPCs within the membrane; but this rabbit hole 
seemed a bit more of a distraction than a benefit, particularly given the number of cell-type dependent 
variables. 

https://data.4dnucleome.org/resources/data-analysis/hi_c-processing-pipeline
https://www.umassmed.edu/it/services/research-technology/basic-science/high-performance-computing2/
https://www.umassmed.edu/it/services/research-technology/basic-science/high-performance-computing2/
https://www.umassmed.edu/it/services/research-computing/high-performance-computing/
https://readr.tidyverse.org/reference/read_rds.html
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Figure 4.9  Revision of search queries to reduce search space 
(a) The start and end points of the set of DamID-Nup93 DamID-Nup153 double positive genes were plotted after 
stratification by chromosome and clustering was observed. k-means229 clustering was used to balance reducing the 
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number of searches with decreasing the search space when extracting gene-gene interactions from Hi-C data after 
alignment and pairing. (a) The Elbow Curve for genes on chromosome 1 used to select the number of clusters (k) 
based on the total within-cluster sum of squares calculated for all values of k, where {k ∈ Z | 1 ≤ k ≤ 10}. The number 
of clusters is then selected visually by choosing the value at the point where the “elbow” bends, k = 3 in the graph 
shown. (b) The results of k-means clustering encoded with color applied to the scatterplot of the start versus end 
position of DamID-Nup93 and DamID-Nup153 positive genes on chromosome 1(from a). 

 
With the number of queries reduced, we sought help from Open2C regarding using pairtools for 
extraction; they suggested using pairix instead. This application indexes each pairs file before 
any queries are made, greatly reducing the amount of time needed to extract matches as well as 
the resources used to store the results. 
 
These intermediate .pairs files were imported into RStudio run in a singularity instance using an 
interactive job on the SCI. As these files contained information regarding clusters of genes rather 
than individual genes, they were run through a rudimentary search algorithm that used rounded 
coordinates as well as a margin on either side of the expected start and end of a gene to attribute 
reads to genes. This method can be applied to any pair of sequence-based features if provided 
with the chromosomes and base pair range within which to search for reads. 
 
After creating data frames connecting gene information to read pairs, we first tested the 
visualization method developed in the case study to the raw reads extracted from replicate 1 for 
PARD3 and ZNF438 with respect to G1 time points for comparison. 
 

4.3 Results 
4.3.1 Preliminary Case Study 
4.3.1.1 Heatmaps 

Distinguishing interaction “hotspots” from these plots was limited (Fig. 4.10); the resultant gene-
level heatmaps were not rich with easily distinguishable visual patterns such as the traditionally 
observed triangles as compared to the global-scoped heatmaps traditionally used to see patterns 
such as loops and TADs. 

 
Figure 4.10 Heatmaps of PARD3 interacting with ZNF438 with hierarchical faceting by biological replicate 
and sampling time. 
It is difficult to distinguish any patterns at the “local” (gene) level using a traditional heatmap. 
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Compared to the interactions for replicate 1, the interactions for replicate 2 were sparse. Both 
replicates had relatively persistent signals over time in regions of each gene (for example, PARD3 
in the region near 34,800kb) (Fig. 4.11). 

 
Figure 4.11 The use of traditional heatmaps to depict an alternative perspective of contact matrices: “One-versus-
Any” 
Heatmap visualization of interactions over time between binned locations on individual genes (ZNF438 and PARD3) 
with any region of a second gene (PARD3 and ZNF438, respectively), faceted by replicate. 

 
4.3.1.2 Kernel Density Estimation 

 
Figure 4.12 Two-Dimensional Kernel Density Estimation of PARD3 versus ZNF438, facetted by biological replicate 
and time 
Kernel density estimation gives the probability density of an event occurring within a given space and/or time, in this 
case a chromatin-chromatin interaction occurring within a certain span of two gene loci.  

KDE plots of PARD3 versus ZNF438 were made after faceting data by replicate and time. These 
plots show consistent “hotspots” in some regions over time, such as that seen in the lower left 
quadrant, which persists across most time points for both replicates.  
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Figure 4.13 Kernel density estimate plots of the interactions between ZNF438 and PARD3 with time 
“flattened” 
i.e. multiple timepoints aggregated rather than plotted separately,: (a) All time points aggregated; (b) 
aggregation of only timepoints where chromatin condensation is not expected (i.e. predominantly taken 
during G1, excluding Cytokinesis/G1 (samples taken at 90 minutes and beyond; and (c) aggregation of only 
timepoints where chromatin condensation is expected (up to and including the sample at 60 minutes). See 
Fig. 4.7 for the sampling timeline. The KDE plot represents the probability density independent of the 
number of fragments contributing to each level. The concept of fragments contributing to each level differing 
by plot is expounded upon in using raw fragments in Fig. 4.13.  

As expected, the plots displaying data collected during mitosis and cytokinesis has more area 
covered in the top 20% of the probability density, meaning the area where an interaction is likely 
to happen is less specific – the points of interaction underlying the kernel density estimation are 
more evenly distributed over a larger area, they are more spread out. The contrast between the 
mitosis and G1 is more evident in replicate 1 than in replicate 2. 

 
As expected, and consistent 
with prior plots, the 
probability of contact was 
higher during mitosis. The 
plot for replicate 1 also 
indicates the potential for 
interaction at 240 minutes 
that is not present for 
replicate 2.  
 
 

4.4 Pipeline 
Development 
The initial results of 
constructing KDE plots from 
lightly processed sequencing 
data provide a series of plots 
with consistent regions of 

 
Figure 4.14 Three-Dimensional Kernel Density Estimation Plots, faceted by 
biological replicate 
(replicate 1, left; replicate 2, right). Most of the interactions between these two 
genes were seen during the prometaphase through cytokinesis, which was 
consistent between replicates. 
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interaction across the five visualized time points. These plots are overlaid with datapoints 
representing where the first base pair of a fragment aligns with the reference genome. Future 
iterations of this visualization, which are already under development, will be constructed as a 
shiny app and will include the ability to extract fragment information through interaction with the 
plot. 
 

 
Figure 4.15 Two-Dimensional Kernel Density Estimation using raw Hi-C data for one biological replicate 
of G1 of the cell cycle in U2OS cells, stratified by time.  
The data used in these plots was aligned, paired, by not binned or normalized, nor were duplicates 
removed. Although the colors are the same for each level, they represent the percent relative to the 
sample size (n, located in the upper right corner of each plot). Listed next to the probability density are 
the number of fragments from the raw data contributing to each level. 

 

4.5 Discussion 
Viewing the same Hi-C dataset from different perspectives benefits researchers. Each 
visualization method can be used to highlight different features of chromatin organization with 
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degrees of success hinging, in part, on the scale. For example, an arc diagram suffers from visual 
clutter when taking a macrolevel view of the entire chromosome. However, it can be useful for 
looking at genes within the same biological network and/or the same region of a chromosome. 
The different visualization methods can also be used to complement each other, both when 
juxtaposed (ex. IGV tracks laid alongside an arc diagram and heatmap) and when used in new 
configurations (ex. nodes and edges used to present a 3D representation of inter-chromosomal 
interactions). 
Traditional use of heatmaps to visualize Hi-C data does not account for the interactions between 
neighboring bins. Furthermore, the bins are arbitrarily assigned, with the first bin set relative either 
to the overall coordinate system of the chromosome or the beginning of a region of the 
chromosome. The interactions assigned to a bin not only depend on the resolution of the data, 
which influences bin size selection, there is a dependence on where the bins start – the anchor 
point. Depending on the location of the bin, the interactions attributed to that bin may affect 
neighboring bins more or less. To circumvent this issue, we extracted raw data and circumvented 
the use of the bin entirely. However, this leaves a massive gap between not binned and globally 
binned data. To address this gap, one of our immediate next steps include the implementation of 
a local binning schema to connecting of not-binned to binned data at differing resolutions. In this 
local schema, the first base pair of a feature will be set as the anchor point. To bridge the gap 
further, the fragments associated with the bin as well as appropriate summary statistics for those 
fragments within the been will be available to users. Allowing access to information such as C/G 
content at this level of granularity facilitates the assessment of the quality of the reads specific to 
the features of interest. Normalization abstracts the identity of the fragments within a bin away 
from the count attributed to the bin. Therefore, this access is only possible when interactions are 
looked at without normalization.  
 
Initially we sought to step away from traditional normalization techniques to reduce the influence 
of the counts between disparate portions of the genome. Running this train of thought in reverse, 
we realized that including the influence of interactions between contiguous regions might be 
beneficial. This potential impact brought to mind infectious disease epidemiology, which looks for 
point sources by back tracing through interactions. 
 
Epidemiology applies spatiotemporal analysis to examine the probability of an event, such as 
exposure from a point-source, over time. The effect of neighboring regions is accounted for by 
such methods, as the proximity in both space and time are considered non-negligible parameters 
to such models.  
 
Now that these methods are “on the radar”, the next step would be to apply this methodology to 
exploring the relationships outlined in the overarching introduction (Fig. 2.4). Furthermore, a 
comparison between local and global binning, specifically looking at information loss and read 
quality as it varies by gene would guide method selection as it depends on the research question. 
These methods can also be compared to current methods with respect interactions that are not 
well suited to the most commonly used methods of analysis, namely long range and trans-
interactions. Additionally, this method of exploration can be applied to probe selection, as 
originally intended. This includes the ability to look at fragement level or probability density level 
information when determining the section of a gene to target. These techniques can be used to 
begin unlocking the potential of NPCs as spatial reference points for the study of genome 
organization within the nucleus. 
 
The limitations of this study may be better understood through a narrative describing one of the 
many issues that arose during the research process that hardly seem unique, and yet also seem 
to remain unaddressed. 
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For the sake of posterity, we went back to the pre-processed data and tried to repeat the 
procedure we had repeated previously, but with new information in hand. Over the course of 
writing, a few details regarding the reference genome originally used to align the Hi-C data came 
to light, as did the (still a bit unclear) normalization status of the data. To resolve the confusion, 
the lab group that originated the data was contacted. They graciously answered our inquiries, 
including those regarding inconsistencies in their methods that made it difficult to decern what 
was done to arrive at the pre-processed data, as well as providing code that was referenced 
simply as “in-house code”. What still does not “sit quite right” is with regards to the reference 
genome originally used to align the data, the implementation of liftOver to “downgrade” the 
results from hg38 to hg19, and to which version of the genome were the pre-processed hic files 
aligned to at the time they were posted to NCBI GEO. While the answers I was given were 
delivered with certainty, the fact remains: when I erroneously used hg19 coordinates to search for 
interactions between PARD3 and ZNF438 in the original data, the result of which can be found in 
Figs.4.10–4.13, there were interactions between the two genes. Given they are in close proximity 
on chromosome 10, the interactions between the two being consistent during mitosis and all-but-
non-existent otherwise, holds up to scrutiny. However, having realized the erroneous assumption 
made previously, the pre-processed hic files was revisited with hg38 coordinates to reproduce the 
results with the correct coordinates. No interactions came up, though self-with-self interactions 
did come up for both genes. Even more curious is the pair did not lack read-pairs when the 
unbinned fragments extracted after aligning the raw reads (replicate 1 contains over 200k read-
pairs for the gene pair). 
 
Thus far, the investigation into this peculiar occurrence has not arrived at any answers, but it has 
come to a conclusion: documentation is exceedingly important both for reproducibility as well as 
reuse of data.  
 
 

4.6 Conclusion 
Visualizations based on such methods can be applied to Hi-C datasets to depict regions of 
probability for gene interactions, signal, as well as the persistence of signal over time. We 
demonstrated this use case by exploring cis-chromosomal interactions between two genes, 
ZNF438 and PARD3, inspired by a need to reduce the number of oligo probes designed for 
fluorescent imaging.  With the potential interaction space now translatable into probabilities rather 
than counts, the applications for imaging of this methodology go beyond informing probe design. 
It is our intent that this research be the first step in bringing together sequencing and imaging 
data. 
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5 Overarching Discussion 
 

“Trust the Process.” 
 
This phrase was the first thought this author had when sitting down to write these final words. 
Except “when sitting down” is a bit of a lie, as she has been at this for over twenty-four hours. 
That duration was not intentional, but it does speak to the somewhat obsessive nature that this 
process, the process of squeezing potentially useful information out of imperfect data, requires. 
Something prolific that ties together all of the research within these pages, and perhaps some of 
what did not make it onto these pages, is what traditionally goes at the end of a dissertation. 
However, with no certainty can grandiose proclamations of having discovered anything 
specifically noteworthy go here. Then again, who is to say what is of note.  
 
The pages of this dissertation include a hypothesis that did notlxv find support, per say. However, 
the lack of support of the hypothesis can support that the method used to arrive at that conclusion 
–that is, the methodology resulted in a conclusion that was biologically substantiated. Such was 
the case in Part I, Multiomic Integration for Exploring Therapeutic Gene Targets. The results of 
this part came with (at least) one clear message: Sometimes the only result available is the most 
obvious one. If nothing else, at least coming to an obvious conclusion through a myriad of 
calculations means the methodology itself is worth applying in the future. As trite as it sounds, we 
found that osteoblasts, regardless of their tumorigenicity, will identify as osteoblasts. Furthermore, 
the assertion that disease state may be considered a part of cell identity was well enough 
indicated that it may warrant pursuit using the same methodology in additional cell lines. The 
result of refining this multiomic analysis may result in process for choosing gene or chromatin 
locus targets for methodology research. 
 
In terms of selecting probes, it is not yet clear if the results of Part II, Exploratory Analysis of Hi-C 
Data for Gene-Gene Interactions are successful, as this will require in vitro verification. The 
behind-the-scenes process involved in this portion of our research. highlighted that exploring new 
methods of exploration is incredibly messy, which was in no small part due to side effects of bigger 
issues within the scientific community at large. We are going to be funding the storage of a lot of 
data that will not produce robust models if metadata standards are not agreed upon, and 
compliance verified. But this author will step off that soap box for the time being, as she stood on 
it long enough in the introduction.  
From the messy data and the months (years) of learning to extract information from Hi-C datasets, 
came an idea that looks promising as an alternative method for analyzing Hi-C data. It may extend 
the usefulness of these large datasets, as they can be used as preliminary analysis for answering 
questions regarding specific interactions between genes before applying more targeted 
approaches. This will facilitate a reduction in expenses by reducing the genomic search space. 
In terms of microscopy, once the gene set is narrowed down by other means, such as those in 
Part I, the methods of Part II can be applied to the subset of a Hi-C dataset inclusive of the genes 
of interest. The interactions between those genes can then be looked at in the local context, which 
can guide probe selection for fluorescent imaging. 
On the whole, it is the process itself that we come away with, which has laid the groundwork for 
our future work of integrating sequencing and imaging data. It is no small feat to undertake, which 
is more apparent having done the work herein, but it is ours to carry forward. 

 
lxv This sentence almost stopped about here with the words “come true.” But really, isn’t that part of doing 
research? Really hoping your hypothesis comes true, while the rest of academia hopes you’re honest 
enough to admit when it doesn’t. 
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6 Additional Notes 
 
 
The code specifically associated with the analyses within this dissertation are available by 
request. Additional code related to the methods will be available as it relates to future 
publications. The author does not recommend downloading the raw data associated with these 
analyses unless the reader has multiple terabytes available – more if you want to run the Hi-C 
analysis as the intermediate files are also rather large. 
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