
1

Predicting the Price of a Stock

An Interactive Qualifying Project Report

submitted to the Faculty of

 WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Bachelor of Science

by

Andrew P. Murdza

Date: August 17, 2018

Project Advisor:

Mayer Humi, PhD

2

Abstract

Many have tried to master the inner workings of the American stock market to

reap great profits. In this project, we modeled stock prices to make short-term

forecasts. Another model was developed to measure stock volatility. This model

can be used to estimate the risk of model predictions for different stocks. We

hope that this model for stock prices and volatility index will help investors make

profitable business decisions.

3

Contents

Abstract .. 2

Executive Summary .. 5

Introduction .. 7

Research: Modeling Stock Prices ... 7

Notation .. 8

The Autocorrelation Coefficient .. 8

The Trend Line .. 10

Fourier Series .. 12

Using Fourier Series to Improve the Trend Line Model .. 12

The Margin of Error .. 14

A Summary of the Algorithm Used to Construct the Prototype Model ... 15

Improvements on the Prototype Model ... 16

Increasing Model Precision with Moving Averages .. 16

Increasing Model Accuracy Using Correlation with Market Indices ... 17

A Summary of the Algorithm Used to Construct the Index Model .. 19

Research: Measuring Stock Volatility .. 19

Dynamical Systems and State Space ... 19

Chaos and Lyapunov Exponents .. 20

The Lyapunov Spectrum ... 21

Embedding a Time Series ... 21

The Method of False Nearest Neighbors ... 22

Computing the Maximal Lyapunov Exponent from a Time Series ... 25

Results: Stock Models .. 27

Results: Measuring Volatility ... 29

Conclusion .. 35

References: ... 38

Appendix: Individual Stock Graphs .. 41

Interxion Holdings (INXN) .. 41

58.com (WUBA) .. 46

Progress Software (PRGS) .. 51

Black Baud (BLKB) ... 56

Commvault (CVLT) .. 61

4

Changyou (CYOU) ... 65

Imperva (IMPV) .. 69

Guidewire Software (GWRE) .. 73

Paycom (PAYC) ... 77

Talend (TLND) ... 81

Appendix: Matlab Code ... 86

DataGeneratorNew .. 86

DataGeneratorAvgs .. 88

get_yahoo_stockdata3 ... 90

DataCollector .. 97

DataCollectorAvgs .. 99

PrototypeModelDataNew .. 101

IndexModelDataNew ... 112

embed ... 121

falsenearest .. 122

lyapunovnew .. 123

Lyapunov2 .. 124

DataGeneratorLyapunov .. 125

5

Executive Summary

This Interactive Qualifying Project (IQP) focused on modeling stock prices using

signal analysis and measuring stock volatility with Lyapunov exponents. The goals

of this project were to create a model to predict short term stock prices and a

way to determine which stocks the model would predict most accurately. A more

accurate stock price model would help investors choose which stocks to invest in

and when to sell their stocks to achieve the greatest profit. A way to accurately

measure stock volatility would help investors avoid high-risk stocks that could

lead to significant losses in their portfolios.

During the first week of the project, 10 software stocks were selected for model

testing. During the next few weeks, a prototype model for stock prices was

implemented in MATLAB. Moving averages were later introduced to decrease the

noise in the model input data. The use of moving averages decreased the width of

the prototype model prediction band by 40.4%, on average, for the 20 stocks

tested. To account for factors which affected the entire stock subsector, the

prototype model was replaced with a weighted average of the models for the

stock prices and the S&P 500 index. On average, the index model accurately

predicted the stock price for 37.5% more days than the prototype model. The last

few weeks were devoted to measuring stock volatility with Lyapunov exponents.

The TISEAN package was used to compute the largest Lyapunov exponent of each

stock over various time intervals and embedding dimensions. It was hypothesized

that stocks with larger Lyapunov exponents would be more volatile. However, we

6

did not find a high correlation between a stock’s maximal Lyapunov exponent and

its volatility.

7

Introduction

In recent times, it has been difficult for casual investors to compete with

professionals. While big investors have access to expensive analysis packages,

advanced stock data, and insider information, smaller investors rely on only

general recommendations and their gut feeling. The goal of this Interactive

Qualifying Project is to develop tools that casual investors can use to select

profitable, low-risk stocks. The two tools that this project focused on were a

model to short term predict stock prices, and new a measure of stock volatility.

Accurate predictions of future stock prices can enable inexperienced investors to

make more profitable investment decisions than choices based on intuition and

expert recommendations alone. Small investors lack the capital to suffer major

losses. For this reason, an effective indicator of stock volatility which could

identify high-risk stocks would be of great help to amateur investors.

The model used to predict short term stock prices was a further development of a

formulated by a previous IQP team. The TISEAN package was then applied to

quantify the risk level of a stock. Small investors could use the TISEAN package to

identify low-risk stocks and then apply the model to decide which stocks to invest

in and when to buy and sell them.

Research: Modeling Stock Prices

We will model stock prices using time series analysis. Time series, which include

stock prices, are sets of data ordered from least recent to most recent. In the first

part of this section, we present several tools from time series analysis and

8

describe how they can be applied to predict stock prices. In the second part of

this section, we will use chaos theory to model the volatility of a stock. We start

by introducing some notation.

Notation

Throughout this paper, we will represent a time series of 𝑁 data points by the

sequence 𝑥1, … , 𝑥𝑁. We call each term in the sequence an observation. We

denote the times at which the observations 𝑥1,…,𝑥𝑁 occur by 𝑡1, … , 𝑡𝑁. Using this

notation, we may write a time series in the form (𝑡1, 𝑥1), … , (𝑡𝑁 , 𝑥𝑁). We define

the mean of the observations as

�̅� =
1

𝑁
∑ 𝑋𝑖

𝑁

𝑖=1

. (1)

Similarly, we define the mean of the observation times by

𝑡̅ =
1

𝑁
∑ 𝑡𝑖

𝑁

𝑖=1

. (2)

As previously mentioned, we will plan to model stock prices to make future

predictions. To construct these models, we will fit a curve to the closing prices of

the stock for some number of days in the past. In the following section we discuss

how we will use the autocorrelation coefficient to determine the ideal number of

days to use to generate our model.

The Autocorrelation Coefficient

The autocorrelation coefficient is a statistic that measures the similarity of the

current value of a time series to previous observations in the series. The

autocorrelation coefficient is computed at a specified number of lags. The

9

autocorrelation at lag 𝑘 quantifies the strength and direction of the relationship

between the first 𝑘 observations and the current observation. It is the correlation

between the time series and the time series after it is lagged 𝑘 times. It is

calculated with the equation

𝑟𝑘 =
∑ (𝑋𝑖 − �̅�)(𝑋𝑖+𝑘 − �̅�)𝑁−𝑘

𝑖=1

∑ (𝑋𝑖 − �̅�)2𝑁
𝑖=1

,

where �̅� is given by (1).

If the autocorrelation at lags 1, 2, …, 𝑘 are all positive, then there is some

relationship between the first 𝑘 observations and the current observation. From

this fact we obtain a way to determine the number of points we should use to

model our time series of stock prices. To find the optimal number of stock prices

to be used in our models, we first compute the autocorrelation of the stock prices

at lags 1 to the number of business days in the past year, 251. We then find the

largest number 𝑘 such that the autocorrelation at lags 1 to 𝑘 are all positive. The

value of 𝑘 represents the maximum number of business days from the present

during which all the stock price is relevant to the current stock price. Therefore,

we use the 𝑘 most recent stock prices for our models.

10

Graph of Autocorrelation for the Paycom (PAYC) Stock

The above figure displays the autocorrelation of the Paycom stock prices for lags

1-251. Note that lag 1 corresponds to 6/1/18 and lag 251 corresponds to the date

251 business days before 6/1/18, which is 6/2/17. The lag where the

autocorrelation becomes negative for the first time, lag 84, corresponds to the

date 84 business days before 6/1/18, 1/31/18. Stock data between 1/31/18 and

6/1/18 was used to generate the models for the Paycom stock price.

We will next present our first approach to modeling stock prices: the trend line.

The Trend Line

The trend line fit to a set of data is the line whose slope and y-intercept are

chosen to minimize the average squared distance between the line and the data.

It has the general form

𝑋𝐿(𝑡) = 𝑑0 + 𝑑1𝑡.

11

The slope of the trend line, 𝑑1, is calculated as

𝑑1 =
∑ [(𝑋𝑖 − �̅�)(𝑡𝑖 − 𝑡̅)]𝑁

𝑖=1

∑ (𝑡𝑖 − 𝑡̅)2𝑁
𝑖=1

,

where �̅� and 𝑡̅ are given by (1)-(2).

The y-intercept of the line, 𝑑0, is determined by

𝑑0 = �̅� − 𝑐1𝑡̅.

The above figure displays the (red) past and (blue) future stock prices of Paycom

and the (black) trend line fit to the past prices. A green dashed line separates the

past from the future.

A trend line generated from pairs of dates and stock prices gives a rough estimate

of the future direction of a stock. We want more accurate predictions than

12

offered by the trend line alone. To decrease the model error, we introduce

Fourier series.

Fourier Series

A Fourier series is a sum of a sine and cosine functions. They are useful in

modeling period and oscillatory data. An 𝑛𝑡ℎ order Fourier series has the form

𝑋𝑓(𝑡) =
1

2
𝑎0 + ∑ 𝑎𝑘 cos (

2𝜋𝑛𝑡

𝑇
)

𝑛

𝑘=1

+ ∑ 𝑏𝑘 sin (
2𝜋𝑛𝑡

𝑇
)

𝑛

𝑘=1

.

When an 𝑛𝑡ℎ order Fourier series is fit to a time series (𝑡1, 𝑒1), … , (𝑡𝑁 , 𝑒𝑁), the

coefficients are computed with the equations

𝑎0 =
1

𝑁
∑ 𝑒𝑖

𝑁

𝑗=1

,

𝑎𝑘 = ∑ 𝑋𝑖

𝑁

𝑖=1

cos (
2𝜋𝑘𝑡𝑖

𝑇
) 𝑒𝑖 ,

𝑏𝑘 = ∑ 𝑋𝑖

𝑁

𝑖=1

sin (
2𝜋𝑘𝑡𝑖

𝑇
) 𝑒𝑖

The variable 𝑇 is the period of the Fourier Series. We set it equal to the time

spanned by all the stock prices, 𝑡𝑁 − 𝑡1. The ideal number of terms of the Fourier

series we use depends on amount of data we generate it from. We are now ready

to describe how we can improve our trend line model with Fourier series.

Using Fourier Series to Improve the Trend Line Model
In this section we will incorporate Fourier series into the trend line to increase the

accuracy of the model predictions. We compute the difference between the

13

actual value of various stocks and the trend line, which we call the trend line

residuals. We see that the trend line residuals oscillate with time. It follows that

we should model these residuals with Fourier series. If there at least 60 data

points, we use a third order Fourier series to model the differences. If 40 or fewer

points are used, then we apply a second order Fourier series. If we have between

40 and 60 data points, then we fit both a second order and third order Fourier

series to the differences and choose the series with the higher 𝑅2 value for our

model.

The above figure displays the past (red) and future (blue) trend line residuals, and

the (black) Fourier model fit to the past differences. A green dashed line

separates the past from the future.

14

Combining the trend line with the Fourier Series produces an overall model of the

form

𝑋𝑝(𝑡) =
1

2
𝑎0 + 𝑑0 + 𝑑1𝑡 + ∑ 𝑎𝑘 cos (

2𝜋𝑛𝑡

𝑇
)

𝑛

𝑘=1

+ ∑ 𝑏𝑘 sin (
2𝜋𝑛𝑡

𝑇
)

𝑛

𝑘=1

We refer to this overall model as the prototype model. We call the errors in the

predictions of the prototype data noise, which represent fluctuations in prices

due to factors we haven’t accounted for in our model. The function 𝑋𝑝(𝑡) gives a

single value for the price of the stock at a given time 𝑡, which we call a point

estimate. Although a point estimate for the price of a stock at a given time is

useful, we also want a range of values in which the stock price is mostly likely to

be found. In the next section we will develop lower and upper bounds for stock

price at a given time. We will also describe how to measure the precision of our

models with the margin of error.

The Margin of Error
After we use our stock price data to construct our prototype model, 𝑋𝑝(𝑡), we

will add upper and lower bounds to the model. We set the model upper bound

equal to the sum of the prototype model and the maximum noise. Similarly, we

add the minimum noise to the prototype model to obtain the model lower bound.

This ensures that the entire time series used to generate the model is between

the upper and lower bounds. We call the region between the upper and lower

bounds the prediction band of the model.

The precision of the model predictions is measured by the model’s margin of

error. A low margin corresponds to a narrow prediction band and a precise

15

model. The margin of error can be computed as half of the difference of the

maximum and minimum noise or as the maximum of the absolute value of the

noise. We use the former method when we compute the margin of error,

although we would obtain similar results if we used the latter.

The above graph includes the (red) past and (blue) future stock prices of Paycom,

and the (black) prototype model fit to the past prices. A green dashed line

separates the past from the future and magenta dashed line indicates where the

model fails.

We next summarize how we determine the prototype model from a set of data.

A Summary of the Algorithm Used to Construct the Prototype Model
1. Compute the autocorrelation of the stock prices from the past year for lags 1

to 251.

2. Find the largest number 𝑘 such that the autocorrelations corresponding to lags

1 to 𝑘 are all positive.

16

3. Fit a trend line to the 𝑘 most recent stock prices.

4. Compute the difference between the 𝑘 most recent stock prices and the trend

line predictions.

5. Fit a Fourier Series to the differences.

6. Compute the predictions of the prototype model by summing the predictions

of the trend line and the Fourier series

7. Calculate the data noise by subtracting the model predictions from the 𝑘 most

recent stock prices.

8. Compute the model upper bound by adding the maximum noise to the model

predictions.

9. Calculate the model lower bound by adding the minimum noise to the model

predictions.

Improvements on the Prototype Model
Two measures of the effectiveness of a model are its accuracy and its precision. A

model is accurate if its prediction band contains the stock price for many

consecutive days in the future. A precise model has a narrow prediction band. We

want a model with correctly predicts the stock price for large time span and has a

low margin of error.

Increasing Model Precision with Moving Averages
One way to reduce the margin of error of a model is to reduce the data noise. This

can be accomplished with moving averages. A 𝑘 term moving average replaces

each data point with the average of the data point with the previous 𝑘 − 1 data

points. Because the variation between sample averages is less than the variation

between individual data points, we can use moving averages to reduce the size of

the data noise.

17

The above graph includes the (red) past and (blue) future stock price moving

averages of Paycom, and the (black) index model fit to the past moving averages.

A green dashed line separates the past from the future and magenta dashed line

indicates where the model fails. We see from the plot that using moving stock

averages in place of raw stock prices significantly decreases the size of the

prediction band.

Increasing Model Accuracy Using Correlation with Market Indices
To increase the accuracy of our model, we could account for factors which affect

the stock price. Stock market indices, such as the S&P 500, give rough

representations of the trend of the overall market. By incorporating the S&P 500

index into the prototype model, we can account for general factors, such as

unemployment and interest rates, which affect the stock prices of the whole

market. Our new model will be a weighted average of the prototype model for

the stock price and a prototype model for the S&P 500 index.

18

To prevent the S&P 500 value from overwhelming the stock value, both are

normalized by dividing them by their value at the present. The improved model

calculates the normalized stock price as a weighted average of the prototype

model predictions of the normalized stock price, �̃�𝑠𝑡𝑜𝑐𝑘, and the normalized index

model, �̃�𝑖𝑛𝑑𝑒𝑥. This weighted average is given by

�̃� = 𝛼�̃�𝑖𝑛𝑑𝑒𝑥 + (1 − 𝛼)�̃�𝑠𝑡𝑜𝑐𝑘,

where 𝛼 is the correlation between the market index and the stock prices. This

formula gives the index model a higher weight if it more closely follows the stock

price and a negative weight if its trend is opposite to the stock trend. We obtain

the index model 𝑋𝑖𝑛𝑑𝑒𝑥 by multiplying the normalized index model by the current

stock price

𝑋𝑖𝑛𝑑𝑒𝑥 = �̃�(𝑡)𝑋𝑝𝑟𝑒𝑠

The above graph includes the (red) past and (blue) future stock prices of Paycom,

and the (black) index model fit to the past prices. A green dashed line separates

19

the past from the future and magenta dashed line indicates where the model

fails. We see from the plot that the index model correctly predicts the stock price

for a substantially greater number of days than the prototype model.

A Summary of the Algorithm Used to Construct the Index Model
1. Normalize the stock prices

2. Determine the prototype model for the normalized stock prices

3. Normalize the S&P 500 index

4. Fit the prototype model to the S&P 500 index

5. Compute the correlation between the stock prices and the S&P 500 index

6. Construct the normalized index model with a weighted average of the stock

price and S&P 500 prototype models.

7. Multiply the normalized index model by the current stock price to obtain the

index model.

8. Calculate the noise by subtracting the index model predictions from the actual

stock prices

9. Compute the model upper bound by adding the maximum noise to the model

predictions.

10. Calculate the model lower bound by adding the minimum noise to the model

predictions.

Research: Measuring Stock Volatility

Dynamical Systems and State Space
Chaos theory based on dynamical systems. A dynamical system is a model which

predicts how a set of quantities evolve over time. We call each possible

20

combination of values of the quantities a state. We refer to the set of all possible

states as the state space of the dynamical system. The dimension of the state

space is defined as the number of quantities described by the space. We assume

that the system is deterministic, which means that if all the quantities of an initial

state are known exactly, it is possible to determine the state of the system at any

future time. We will now explain why it is difficult to predict the future state of

some deterministic systems.

Chaos and Lyapunov Exponents
The evolution of some dynamical systems is very sensitive to the initial state of

those systems. Chaotic dynamical systems have the property that very close

starting states will diverge exponentially for some short time. The rate of

exponential divergence is measured with Lyapunov exponents.

If two initial states are separated by a small distance 𝑠0, then for a small time

interval the separation will evolve according to the equation

𝑠(𝑡) ≈ 𝑠0𝑒𝜆1𝑡 . (3)

The value 𝜆1 is defined as the maximal Lyapunov exponent of the system. We see

that chaotic systems have a positive Lyapunov exponent and the sensitivity of a

system to initial conditions increases with 𝜆1. Systems with large maximal

21

Lyapunov exponents are difficult to predict because small errors in the current

state of the system are amplified over time. This fact suggests that Lyapunov

exponents can be used to measure the volatility of stock prices.

The Lyapunov Spectrum
As we will see later, a dynamical system with an 𝑛 dimensional phase space has 𝑛

Lyapunov exponents. The set of the 𝑛 Lyapunov exponents Each Lyapunov

exponent corresponds to “stretching” or “compressing” the distance between

two initial states in a particular direction that changes over time. We only concern

ourselves with the maximal Lyapunov exponent, since the “stretching” in its

direction dominates over the changes in the distance in other directions.

Embedding a Time Series
We define the attractor of a dynamical as set of states which neighboring states

converge to as time passes. It is important when studying the long-term behavior

of the system. We want to reconstruct the 𝑛-dimensional attractor from our one-

dimensional time series data. This is accomplished by embedding the time series

into a higher dimensional space, called the embedded space. The dimension of

the embedded space is called the embedding dimension. We construct a set of

embedded vectors 𝒙1, … , 𝒙𝑀 from time delayed values of the time series

𝑥1, … , 𝑥𝑁. We compute 𝒙𝑖 as

22

𝒙𝑖 = (𝑥𝑖−(𝑚−1)𝜏, 𝑥𝑖−(𝑚−2)𝜏, … , 𝑥𝑖),

where 𝜏 is the time delay and 𝑚 is the embedding dimension. We choose 𝜏 so

that there is no relationship between 𝑥𝑛−𝜏 and 𝑥𝑛. We set 𝜏 equal to the number

of lags before the autocorrelation of the time series decreases below
1

𝑒
. If the

embedding dimension 𝑚 is too low, then the attractor will not be accurately

reconstructed by the embedding series. If we use an embedding which is too high,

then there will be more Lyapunov exponents in the embedded system than the

original dynamical system. If one of the extra “spurious” Lyapunov exponents is

greater than the maximal Lyapunov exponent of the original system, then the

maximal Lyapunov exponent of the embedded space will be higher than it should

be. We will describe one method of determining the ideal value of 𝑚 in the next

section.

The Method of False Nearest Neighbors
If we use an embedding dimension which is too low, the embedded space is not

topologically equivalent to the attractor. Some points in such an embedded

space, called false neighbors, will appear to be closer than they are on the

attractor. False neighbors should be closer in the low embedding dimension than

they are in a higher embedding dimension which more closely resembles the

attractor. We denote the 𝑖𝑡ℎ 𝑚-dimensional state vector as 𝑌𝑖 and the 𝑖𝑡ℎ 𝑚 + 1-

23

dimensional state vector as 𝑌𝑖. We define the nearest neighbor of 𝑋𝑖, 𝑋𝑗𝑖
, as the

state vector which is the closest distance to 𝑋𝑖. We introduce 𝑌𝑗𝑖
 similarly. For

convenience, we set 𝑅𝑖(𝑚) and 𝑅𝑖(𝑚 + 1) equal to the distances between 𝑋𝑖 and

𝑋𝑗𝑖
 and 𝑌𝑖 and 𝑌𝑗𝑖

 respectively.

We say that the 𝑖𝑡ℎ nearest neighbor is false if

√
[𝑅𝑖(𝑚 + 1)]2 − [𝑅𝑖(𝑚)]2

[𝑅𝑖(𝑚)]2

rises above some tolerance 𝐷𝑡𝑜𝑙, i.e.

√
[𝑅𝑖(𝑚 + 1)]2 − [𝑅𝑖(𝑚)]2

[𝑅𝑖(𝑚)]2
< 𝐷𝑡𝑜𝑙 . (4)

We see that (4) holds if 𝑅𝑖(𝑚 + 1) and 𝑅𝑖(𝑚) differ by an amount which is large

relative to 𝑅𝑖(𝑚). This is consistent with our intuition of false nearest neighbors.

Noting that

𝑋𝑖 = (𝑥𝑖−(𝑚−1)𝜏, 𝑥𝑖−(𝑚−2)𝜏, … , 𝑥𝑖)

and

𝑋𝑖𝑗
= (𝑥𝑖𝑗−(𝑚−1)𝜏, 𝑥𝑖𝑗−(𝑚−2)𝜏, … , 𝑥𝑖𝑗

)

24

we see that

[𝑅𝑖(𝑚)]2 = ‖𝑋𝑖 − 𝑋𝑖𝑗
‖

2
= ∑ (𝑥𝑖−𝑘𝜏 − 𝑥𝑖𝑗−𝑘𝜏)

2
𝑚−1

𝑘=0

(5)

We similarly note that, because

𝑌𝑖 = (𝑥𝑖−(𝑚+1−1)𝜏, 𝑥𝑖−(𝑚−1)𝜏, 𝑥𝑖−(𝑚−2)𝜏, … , 𝑥𝑖)

and

𝑌𝑖𝑗
= (𝑥𝑖−(𝑚+1−1)𝜏, 𝑥𝑖𝑗−(𝑚−1)𝜏, 𝑥𝑖𝑗−(𝑚−2)𝜏, … , 𝑥𝑖𝑗

),

[𝑅𝑖(𝑚 + 1)]2 = ‖𝑌𝑖 − 𝑌𝑖𝑗
‖

2
= ∑ (𝑥𝑖−𝑘𝜏 − 𝑥𝑖𝑗−𝑘𝜏)

2
𝑚

𝑘=0

(6)

After substituting (5) and (6) into (4), we find that the 𝑖𝑡ℎ nearest neighbor is false

if

𝐷𝑡𝑜𝑙 < √
∑ (𝑥𝑖−𝑘𝜏 − 𝑥𝑖𝑗−𝑘𝜏)

2
𝑚
𝑘=0 − ∑ (𝑥𝑖−𝑘𝜏 − 𝑥𝑖𝑗−𝑘𝜏)

2
𝑚−1
𝑘=0

[𝑅𝑖(𝑚)]2

= √
(𝑥𝑖−𝑚𝜏 − 𝑥𝑖𝑗−𝑚𝜏)

2

[𝑅𝑖(𝑚)]2

Simplifying, we see that the 𝑖𝑡ℎ nearest neighbor is false if

25

|𝑥𝑖−𝑚𝜏 − 𝑥𝑖𝑗−𝑚𝜏|

‖𝑋𝑖 − 𝑋𝑖𝑗
‖

> 𝐷𝑡𝑜𝑙 . (7)

We also conclude that a nearest neighbor is false if they become too distant when

the embedding dimension is increased. We estimate that the radius of the

attractor, 𝑅𝐴, is approximately the standard deviation of the time series. If the

nearest neighbors are separated by a distance greater than twice the radius of the

attractor in a higher embedding dimension, then they are false, even if (7). We

express this second criterion as

𝑅𝑖(𝑚 + 1)

𝑅𝐴
> 2 (8)

If either (7) or (8) hold, we say that the nearest neighbor is false.

To determine the ideal embedding dimension 𝑚, we compute the percentage of

nearest neighbors which are false for increasing 𝑚 until it falls below some

threshold. The lowest value of 𝑚 for which the percentage of false neighbors is

below the threshold is our estimate for the ideal embedding dimension.

Computing the Maximal Lyapunov Exponent from a Time Series
We now discuss how to compute maximal Lyapunov exponents using the

algorithm developed by Rosenstein et al. To compute the maximal Lyapunov

exponent, we first embed the time series into a set of state vectors 𝑋1, … , 𝑋𝑀.

26

Noting that (3) is valid when the two initial states are close together, we find the

nearest viable neighbor to each state vector 𝑋𝑖. Two states are viable neighbors if

they occur at times separated by more than one time delay. We add this viability

requirement to avoid false nearest neighbors. We denote the nearest viable

neighbor of 𝑋𝑖 by 𝑋𝑗𝑖
. To determine how rapidly 𝑋𝑖 and its nearest neighbor, 𝑋𝑗𝑖

,

separate, we compute the distance between them after 𝑘 time steps

𝑑𝑖(𝑘) = ‖𝑋𝑖+𝑘 − 𝑋𝑗𝑖+𝑘‖.

To compute 𝑦(𝑡) after 𝑘 time steps, we require the logarithm of 𝑑𝑖(𝑘):

𝑦𝑖(𝑘Δ𝑡) = ln‖𝑋𝑖+𝑘 − 𝑋𝑗𝑖+𝐾‖

We take the average of the distances between each pair of nearest neighbors by

summing the distance 𝑑𝑖(𝑘) and dividing by the total number of pairs:

𝑦(𝑘Δ𝑡) =
1

𝑀 − 𝑘
∑ 𝑦𝑖(𝑘Δ𝑡)

𝑀−𝑘

𝑖=1

Only the pairs of the first 𝑀 − 𝑘 nearest neighbors are used because the there is

no data for the remaining neighbors after 𝑘 time steps. We compute 𝑦(𝑘Δ𝑡) for

𝑘 = 1, …, 𝐾, then fit a trend line to (∆𝑡, 𝑦(∆𝑡)), … , (𝐾∆𝑡, 𝑦(𝐾∆𝑡)). The slope of

the trend line is our estimation to the maximal Lyapunov exponent of the

27

dynamical system. This process is often repeated for increasing values of 𝐾 with

the hope that the Lyapunov exponent estimate converges to some value.

Results: Stock Models
Ten stocks were chosen to compare the accuracy and precision of the models. For

each stock, a prototype model, a prototype model using moving averages, an

index model, and an index model using moving averages were generated. The

models were tested with moving averages of between 5 and 15 terms, and the

five-term average performed best overall. The end results presented here were

generated with 5 term moving averages. The data set used for the stock models

ranged from 6/02/17 to 6/01/17. The models were compared to “future values”

between 6/02/18 and 8/9/18. The margin of error of each model and the number

of business days the model correctly predicted were computed for each stock and

organized in the below table:

Summary Table for Model Performance

28

The table contains the margin of error and the number of business predicted

corresponding to each stock and each model. The last two rows list the mean and

standard deviation of the margin of error and the number of days predicted for

each model

Introducing moving averages significantly decreased the average margin of error

of the respective prototype models from 4.56% to 2.72% (a relative decrease of

40.4%). It did not appreciably change the accuracy of the prototype model.

Moving averages increased the number of days predicted by the model from 11

to 15. However, this increase is primarily due to the outlier Interxion Holdings.

The average number of days predicted for the index models and is 11.3 with

moving averages and 11.7 without moving averages, which is not a meaningful

change. However, adding moving averages to the index model decreases the

mean margin of error from 6.27 to 5.36 (a 14.5% relative decrease).

Stock Prototype Model Prototype Mov. Avgs Index Model Index Mov. Avgs

Name Symbol Days % ME Days % ME Days % ME Days % ME

Interxion Holdings INXN 5 3.5 7 2.67 8 6.38 48 6.64

58.com WUBA 6 5.96 7 3.97 17 9.53 19 8.24

Progress Software PRGS 14 8.58 12 3.57 13 11.07 16 10.42

Black Baud BLKB 17 4.75 10 2.75 17 4.68 10 3.51

Commvalut CVLT 7 2.27 9 1.49 8 2.19 9 1.64

Changyou CYOU 6 4.14 6 3.64 6 4.97 7 4.67

Imperva IMPV 8 3.76 10 2.72 8 3.96 8 3.47

Guidewire Software GWRE 4 2.86 5 1.44 5 3.85 7 2.33

Paycom PAYC 5 5.83 5 2.92 19 7.76 19 7.57

Talend TLND 4 3.91 7 2.00 9 8.3 7 5.06

Mean 7.6 4.56 7.8 2.72 11 6.27 15 5.36

Standard Deviation 4.4 0.92 2.3 0.44 5.1 1.41 12.6 1.4

29

Although incorporating correlation with the stock index to into the prototype

model increased the average margin of error from 4.56% to 6.27% (a relative

increase of 37.5%), it also increased the number of days predicted without

moving averages from 7.6 to 11 (a relative increase of 44.7%). It increased the

margin of error of the prototype model with moving averages from 2.72% to

5.36% (a 97% relative increase), but increased the number of days predicted from

7.8 to 11.7 (without the outlier), which corresponds to a relative increase of

50.0%.

We find that introducing moving averages substantially increases the model

precision and does not affect its accuracy. Incorporating correlation with a market

index increases the accuracy of the model but decreases its precision. According

to these results, one should apply moving averages to the model to increase its

precision. One should add market indices to the model if higher accuracy is worth

lower precision.

Results: Measuring Volatility
To model stock volatility, we applied Lyapunov exponents in four different ways.

1. Lyapunov exponents of the raw stock prices

2. Lyapunov exponents of the stock prices after moving averages were applied

30

3. A weighted average of the Lyapunov exponent of each stock’s prices and

the exchange index, given by

𝜆𝑖𝑛𝑑𝑒𝑥 = (1 − 𝛼)𝜆𝑠𝑡𝑜𝑐𝑘 + 𝛼𝜆𝑆𝑃500, (6)

where 𝛼 is the correlation between the stock prices and the S&P 500 index.

4. The Lyapunov exponents computed with (6), where 𝜆𝑠𝑡𝑜𝑐𝑘 and 𝜆𝑆𝑃500 were

calculated with moving averages.

We also attempted to model stock volatility with the normalized standard

deviation, given by

𝑠 =
𝜎

�̅�
,

where 𝜎 and �̅� are the standard deviation and mean of the stock prices used to

generate the model. We used the normalized standard deviation in four ways:

1. The normalized standard deviation of the raw stock prices

2. The normalized standard deviation of the stock prices after moving

averages were applied

3. A weighted average of the normalized standard deviation of each stock’s

prices and the exchange index, given by

𝑠𝑖𝑛𝑑𝑒𝑥 = (1 − 𝛼)𝑠𝑠𝑡𝑜𝑐𝑘 + 𝛼𝑠𝑆𝑃500, (7)

where 𝛼 is the correlation between the stock prices and the S&P 500 index.

4. The normalized standard deviation computed with (7), where 𝑠𝑠𝑡𝑜𝑐𝑘 and

𝑠𝑆𝑃500 were calculated with moving averages.

Correlation Between One-Year Lyapunov Exponents and Days Predicted

The below table displays the correlation between each type of maximal Lyapunov

exponent for embedding dimensions 1,2,3 and the days predicted by each stock

model. The Lyapunov exponents were computed with one year of stock prices.

The correlation was calculated with data from 20 stocks.

m=1 m=2 m=3 m=1 m=2 m=3 m=1 m=2 m=3 m=1 m=2 m=3

Prototype -0.293 -0.391 -0.514 -0.269 -0.291 -0.431 -0.112 -0.186 -0.451 -0.065 -0.123 -0.397

Moving Avgs 0.107 -0.16 -0.17 0.261 0.045 -0.102 0.114 0.133 -0.166 0.367 0.294 -0.034

Index -0.342 -0.304 -0.544 -0.353 -0.284 -0.475 -0.208 -0.133 -0.526 -0.187 -0.105 -0.463

Index Avgs -0.316 -0.178 -0.241 -0.411 -0.272 -0.272 -0.097 -0.201 -0.196 -0.241 -0.239 -0.24

Prototype Moving Averages Index Index Averages

Stock Model

One Year Lyapunov Exponent

31

We see that none of the correlations are large enough to be meaningful. From

this we realize that the Lyapunov exponents we used in this section do not

accurately model stock volatility. We now check if the results are better when the

Lyapunov exponents are computed from stock prices spanning two years with the

below table.

Correlation Between Two-Year Lyapunov Exponents and Days Predicted

The below table displays the correlation between each type of maximal Lyapunov

exponent for embedding dimensions 1,2,3 and the days predicted by each stock

model. The Lyapunov exponents were computed with two years of stock prices.

The correlation was calculated with data from 20 stocks.

We again find that there is not a meaningful relationship between Lyapunov

exponents and stock volatility.

We finally compare the stock volatility to the normalized standard deviation of

the stock prices throughout the past:

m=1 m=2 m=3 m=1 m=2 m=3 m=1 m=2 m=3 m=1 m=2 m=3

Prototype -0.407 -0.224 -0.012 -0.417 -0.157 -0.016 -0.302 -0.15 -0.046 -0.276 -0.098 -0.042

Moving Avgs -0.216 -0.032 0.102 0.003 0.148 0.216 -0.082 0.113 0.153 0.097 0.256 0.231

Index -0.346 -0.525 -0.396 -0.408 -0.454 -0.37 -0.212 -0.268 -0.215 -0.245 -0.187 -0.181

Index Avgs -0.35 -0.395 -0.274 -0.441 -0.413 -0.302 -0.301 -0.271 -0.207 -0.337 -0.262 -0.205

Stock Model

Two Year Lyapunov Exponent

Prototype Moving Averages Index Index Averages

32

Correlation Between Normalized Standard Deviation

Normalized standard Deviation

Prototype Moving Avgs Index Index Avgs

Stock Model

Prototype -0.109 -0.106 0.182 0.173

Moving Avgs -0.177 -0.065 0.29 0.368

Index 0.074 0.134 0.459 0.503

Index Avgs -0.133 -0.12 -0.129 -0.119

This table presents the correlation between the number of days predicted by each

model and each form of normalized standard deviation.

We conclude that these correlations are not large enough to suggest that there is

a strong relationship between the normalized standard deviation of a stock’s

prices and the its volatility.

To visually represent the lack of a relationship between the Lyapunov exponents

and the number of days predicted by model, we plot them in a scatterplot. The

Lyapunov exponents of the raw stock data with embedding dimension 3 were

graphed vs. the number of days the prototype model predicted correctly.

33

The scatterplot seems to show no association between the maximal Lyapunov

exponents and the number of days the prototype model correctly predicts.

We also plot the number of days predicted by the prototype model vs. the

normalized standard deviation of the raw stock prices:

34

We again see no pattern in the scatter plot. There seems to be an outlier with a

scaled volatility of over 0.2. It corresponds to the stock Nutanix (NTNX).

Although our analysis suggests that there is not a strong relationship between

Lyapunov exponents and stock volatility, there are two other variables which, by

themselves or addition to Lyapunov exponents, may be used to accurate model

stock volatility. The CBOE Volatility Index (VIX) measures the expected volatility of

the stock market based on data from S&P 500 index options. Although it

calculated for options rather than stocks, it could be combined with an estimate

35

of a single’s stock volatility using the correlation between the S&P 500 index and

the prices of the stock being modeled. The volume of a stock may also be used to

estimate its volatility. Stocks with high volume, which are traded more often than

lower volume stocks, tend to have a lower volatility than stocks with a lower

volatility. Future researchers should consider a stock’s volume and the VIX index

when modeling stock volatility.

Conclusion

During the first part of this project, the prototype stock price model was improved

by incorporating moving averages and market indices. The prototype model and

the three improved models were implemented in MATLAB and tested for 20

software stocks. The models were able to predict stock prices within a small

margin for a week or greater on average. We hope that this will help investors

estimate the future trend of a stock. The accuracy of the models varied based on

the volatility of the stocks, which motivated us to find a way to measure a stock’s

volatility. We applied Lyapunov exponents to estimate the volatility and

predictability of the 20 software stocks. We found that the Lyapunov exponents

were not effective in measuring stock volatility.

36

Below we list several some topics that we recommend for future researchers:

1. There are several ways to quantify a stock’s volatility other than Lyapunov

exponents and normalized volatility, such as the VIX index. Some of these

may be more effective measures than Lyapunov exponents.

2. One could also research other factors which explain the difference in

predictability of stocks, such as their volume.

3. One could vary the method used to compute the maximal Lyapunov

exponents. The predicted Lyapunov exponents differ based on how they

were calculated. Considering a different time spans and different ways to

determine the mean period and time delay may improve the accuracy of

the Lyapunov exponents.

4. There are many components of the stock market that affect a stock’s price

which have not been considered in this project. One could study the effect

external factors, such as interest rates, inflation, and tax levels. It is also

worth considering stock specific factors such as volume, dividend, and

yield.

5. Replacing the S&P 500 index with an indicator specific to the subsector of

the stock being studied may increase the accuracy of the index model.

37

6. The effect of social media on a stock’s price is another interesting research

topic.

7. One could test if investment decisions based on these models would

actually make a profit. If this topic is explored, commission fees for the

transactions should be taken into account.

8. It may be advantageous to find a different way to measure the accuracy of

the models tested. Although the index models generally predicted the stock

price for a greater number of days, this was, in many cases, due to the size

of the margin of error. One could try measuring the accuracy as the

standard deviation of the future noise or the mean of the absolute value of

the noise.

9. Although the Fourier series tend to closely follow the trendline residuals,

they often have difficulty modeling the differences in the future. This

happens because the differences are not periodic, at least not with a period

equal to the number of lags where the autocorrelation is positive. One

could try varying the period to a value that reflects seasonal changes in

stock prices, such as three months or six months. It may be possible to

develop some way to determine an ideal period using the stock prices in

addition to the time they span.

38

References:

1. Fillman, J. J. (2006, June 1). 1.3.5.12. Autocorrelation. Retrieved August 10,

2018, from https://itl.nist.gov/div898/handbook/eda/section3/eda35c.htm

2. Lynch-Stieglitz, J. (2005, Spring). Autocorrelation. Retrieved August 10,

2018, from

http://shadow.eas.gatech.edu/~jean/paleo/Meko_Autocorrelation.pdf

3. Korthauer, K. (n.d.). The Least-Squares Line. Retrieved August 10, 2018,

from http://bcb.dfci.harvard.edu/~keegan/stat324/STAT324_0414_SLR.pdf

4. Weisstein, E. W. (n.d.). Dynamical System. Retrieved August 10, 2018, from

http://mathworld.wolfram.com/DynamicalSystem.html

5. Cvitanovic, P. (2017, January 28). Lyapunov exponents. Retrieved August

10, 2018, from http://chaosbook.org/chapters/Lyapunov.pdf

6. M. T. Rosenstein, J. J. Collins, C. J. De Luca, A practical method for

calculating largest Lyapunov exponents from small data sets, Physica D 65,

117 (1993).

7. M. B. Kennel, R. Brown, and H. D. I. Abarbanel, Determining embedding

dimension for phase-space reconstruction using a geometrical construction,

Phys. Rev. A 45, 3403 (1992).

https://itl.nist.gov/div898/handbook/eda/section3/eda35c.htm
http://shadow.eas.gatech.edu/~jean/paleo/Meko_Autocorrelation.pdf
http://shadow.eas.gatech.edu/~jean/paleo/Meko_Autocorrelation.pdf
http://bcb.dfci.harvard.edu/~keegan/stat324/STAT324_0414_SLR.pdf
http://mathworld.wolfram.com/DynamicalSystem.html
http://mathworld.wolfram.com/DynamicalSystem.html
http://chaosbook.org/chapters/Lyapunov.pdf

39

8. Scheiber, T. (1999, January 6). Delay coordinates. Retrieved August 10,

2018, from

https://www.pks.mpg.de/~tisean/TISEAN_2.1/docs/chaospaper/node6.ht

ml

9. Cross, M. (n.d.). Lyapunov Exponents. Retrieved August 17, 2018, from

http://www.cmp.caltech.edu/~mcc/Chaos_Course/Lesson7/Lyapunov.pdf

10. INXN Historical Prices | InterXion Holding N.V. Ordinary Stock. (2018,

August 17). Retrieved August 17, 2018, from

https://finance.yahoo.com/quote/INXN/history?p=INXN

11. Kantz, H., & Scheiber, T. (2004). Phase Space Methods. In Nonlinear

Time Series Analysis (Second ed.). Cambridge, Massachusetts: Cambridge

University Press.

12. Kantz, H., & Scheiber, T. (2004). Instability: Lyapunov Exponents. In

Nonlinear Time Series Analysis (Second ed.). Cambridge, Massachusetts:

Cambridge University Press.

13. Kantz, H., & Scheiber, T. (2004). Lyapunov Exponents II. In Nonlinear

Time Series Analysis (Second ed.). Cambridge, Massachusetts: Cambridge

University Press.

https://www.pks.mpg.de/~tisean/TISEAN_2.1/docs/chaospaper/node6.html
https://www.pks.mpg.de/~tisean/TISEAN_2.1/docs/chaospaper/node6.html
https://www.pks.mpg.de/~tisean/TISEAN_2.1/docs/chaospaper/node6.html
http://www.cmp.caltech.edu/~mcc/Chaos_Course/Lesson7/Lyapunov.pdf
http://www.cmp.caltech.edu/~mcc/Chaos_Course/Lesson7/Lyapunov.pdf
https://finance.yahoo.com/quote/INXN/history?p=INXN
https://finance.yahoo.com/quote/INXN/history?p=INXN

40

14. Mitra, A. K. (n.d.). Curve Fitting and Fourier Series. Retrieved August

17, 2018, from

http://www.public.iastate.edu/~akmitra/aero361/design_web/crvft.html

15. Strang, G. (n.d.). Fourier Series and Integrals. Retrieved August 17,

2018, from http://math.mit.edu/~gs/cse/websections/cse41.pdf

16. Weidman, M. (n.d.). Download Daily Data from Google and Yahoo!

Finance - File Exchange - MATLAB Central. Retrieved August 17, 2018, from

https://www.mathworks.com/matlabcentral/fileexchange/43627-

download-daily-data-from-google-and-yahoo-finance

http://www.public.iastate.edu/~akmitra/aero361/design_web/crvft.html
http://www.public.iastate.edu/~akmitra/aero361/design_web/crvft.html
http://math.mit.edu/~gs/cse/websections/cse41.pdf
https://www.mathworks.com/matlabcentral/fileexchange/43627-download-daily-data-from-google-and-yahoo-finance
https://www.mathworks.com/matlabcentral/fileexchange/43627-download-daily-data-from-google-and-yahoo-finance
https://www.mathworks.com/matlabcentral/fileexchange/43627-download-daily-data-from-google-and-yahoo-finance

41

Appendix: Individual Stock Graphs

Interxion Holdings (INXN)

42

43

44

45

The prototype model fails to predict the stock price after 5 business days. This

occurs because the Fourier series predicts an increase in the trend line residuals

after 6/1/18 (to mirror the increase after 1/19/18). In reality, the stock briefly

increases, then drops. The prototype model with moving averages fails for the

same reason. The index model fails later because it has a wider prediction margin.

It fails at the second peak in the stock price after 6/1/18. However, it correctly

predicts the stock price for almost all of the 48 business days after 6/1/18.

Introducing moving averages decreases the height of the peak, causing the index

model to predict all 48 days correctly.

46

58.com (WUBA)

47

48

49

50

Although the price of 58.com sharply drops, the prototype model fails before the

drop. This failure occurs because the Fourier Series predicts that the trend line

residuals will increase but they actually decrease. Because the index models have

a higher margin of error than the prototype models, they correctly predict the

stock’s price until the stock price drops sharply.

51

Progress Software (PRGS)

52

53

54

55

The Fourier model accurately estimates the past trend line residuals. However,

the oscillation of the trend line residuals is dominated by a larger change in the

trend line residuals due to the rapid drop in the stock prices shortly after 2/23/18.

This results in a substantial increase in the Fourier model until early July. Because

the actual stock price does not correspondingly increase, the model fails.

56

Black Baud (BLKB)

57

58

59

60

Both the prototype and index models perform well without averages, predicting

17 days correctly. They eventually fail when the stock price drops sharply. When

moving averages are introduced, the first future peak is amplified in size, causing

the models to fail before the peak. The prototype and index models were similar

because the correlation between the stock price and the S&P 500 was near zero.

61

Commvault (CVLT)

62

63

64

65

All the models fail when the Commvault stock price spikes. The Fourier Series was

not as accurate as for the other stocks because only 38 stock prices were used by

the model. This is likely the cause of the model’s inaccuracy.

Changyou (CYOU)

66

67

68

69

All the models have difficulty predicting the sudden downward trend of the

Changyou stock. Before 6/1/18, the stock did not have a substantial upward or

downward trend.

Imperva (IMPV)

70

71

72

73

The models all fail at the first peak of the Imperva stock price. The Fourier Series

predicts that the trend line residuals will decrease rather than peak. This caused

the models to fail.

Guidewire Software (GWRE)

74

75

76

77

The models fail when Guidewire Software stock price sharply drops.

Paycom (PAYC)

78

79

80

81

The prototype model without moving averages barely exceeds a distance 105% of

the margin of error from the stock price when it fails. With a slightly larger margin

of error, it would have failed when the stock sharply dropped. The prototype

model with moving averages failed early because the Fourier model predicted a

large peak in the price which did not occur in reality. The index models lasted until

the sharp drop in price because they had a wider margin of error than the

prototype model.

Talend (TLND)

82

83

84

85

The prototype model barely past a distance of 105% of the margin of error from

the stock price. It should have failed when the model peaked. The prototype

model with moving averages failed early because it had a margin of error that was

very small compared to the change in the stock within the time analyzed. The

index models failed when the stock price peaked.

86

Appendix: Matlab Code

DataGeneratorNew

%Generates Performance Data for the Various Models

close all;

clear all;

%stock symbols and names

stocks={'INXN','WUBA','PRGS','BLKB','CVLT','CYOU','IMPV','G

WRE','PAYC','TLND'};

stocknames={'Interxion Holdings','58.com','Progress

Software','Black Baud',...

 'Commvalut','Changyou','Imperva','Guidewire

Software','Paycom','Talend'};

fouriercutoff1=40;

fouriercutoff2=60;

%Defines number of terms of moving average

termsinavg=5;

%maximum embedding dimension

mmax=3;

%maximum number of iterations for Lyapunov

maxiter=10;

presentdate='09-August-2018';

tic

%Additional Data from Yahoo Finance

[paststockvalues,pastdates,futurestockvalues,futuredates,..

.

 paststockaverages,futurestockaverages,pastdatesavgs,...

 SP500values,SP500dates,SP500avgs,SP500datesavgs]...

 =DataCollector(stocks,termsinavg,'01-June-2018','01-

June-2018','02-June-2017',presentdate);

toc

tic

%Gets Data For Prototype Model

[percentmargins(1,:),meanmargins(1),stdmargins(1),dayspredi

cted(1,:),meandays(1),stddays(1),vol(1,:)]...

87

=PrototypeModelDataNew(paststockvalues,pastdates,futurestoc

kvalues,futuredates,fouriercutoff1,fouriercutoff2,stocks,st

ocknames,1,presentdate);

%Gets Data For Prototype Model with Moving Averages

[percentmargins(2,:),meanmargins(2),stdmargins(2),dayspredi

cted(2,:),meandays(2),stddays(2),volavg]...

=PrototypeModelDataNew(paststockaverages,pastdatesavgs,futu

restockaverages,futuredates,fouriercutoff1,fouriercutoff2,s

tocks,stocknames,2,presentdate);

%Gets Data For Index Model

[percentmargins(3,:),meanmargins(3),stdmargins(3),dayspredi

cted(3,:),meandays(3),stddays(3),correlation,volSP500]...

=IndexModelDataNew(paststockvalues,pastdates,futurestockval

ues,futuredates,SP500dates,SP500values,fouriercutoff1,fouri

ercutoff2,stocks,stocknames,1,presentdate);

%Gets Data For Index Model with Moving Averages

[percentmargins(4,:),meanmargins(4),stdmargins(4),dayspredi

cted(4,:),meandays(4),stddays(4),correlationavgs,volSP500av

gs]...

=IndexModelDataNew(paststockaverages,pastdatesavgs,futurest

ockaverages,futuredates,SP500datesavgs,SP500avgs,fouriercut

off1,fouriercutoff2,stocks,stocknames,2,presentdate);

percentmarginsdisplay=round(percentmargins*100,2);

numericaldata=[];

for cnt1=1:4

numericaldata=[numericaldata,dayspredicted(cnt1,:)',percent

marginsdisplay(cnt1,:)'];

end

save('numericaldata');

means=[];

 for cnt=1:4

means=[means,round(meandays(cnt),1),round(meanmargins(cnt)*

100,2)];

 end

stds=[];

for cnt=1:4

88

stds=[stds,round(stddays(cnt),1)',round(stdmargins(cnt)'*10

0/2,2)];

end

numericaldata=[numericaldata;means;stds];

save('alldata2')

xlswrite('ModelPredictionData2',numericaldata,'D4:K15');

xlswrite('ModelPredictionData2',stocknames','B4:B13');

xlswrite('ModelPredictionData2',stocks','C4:C13');

toc

DataGeneratorAvgs
close all;

clear all;

%stock symbols and names

stocks={'INXN','WUBA','PRGS','BLKB','CVLT','CYOU','IMPV','G

WRE','PAYC','TLND'};

stocknames={'Interxion Holdings','58.com','Progress

Software','Black Baud',...

 'Commvalut','Changyou','Imperva','Guidewire

Software','Paycom','Talend'};

fouriercutoff1=40;

fouriercutoff2=60;

%Defines number of terms of moving average

termsinavgs=5:15;

%maximum embedding dimension

mmax=3;

%maximum number of iterations for Lyapunov

maxiter=10;

presentdate='09-August-2018';

%Collects Additional Data from Yahoo Finance

tic

[paststockvalues,pastdates,futurestockvalues,futuredates,..

.

paststockaveragesall,futurestockaveragesall,pastdatesavgsal

l,...

SP500values,SP500dates,SP500avgsall,SP500datesavgsall]...

89

 =DataCollectorAvgs(stocks,termsinavgs,'01-June-

2018','01-June-2018','02-June-2017');

toc

tic

for cnt=termsinavgs

%Selects Information Corresponding to the Number of Terms

in the Moving

%Average

termsinavg=cnt;

index=cnt-termsinavgs(1)+1;

paststockaverages=paststockaveragesall{index};

futurestockaverages=futurestockaveragesall{index};

pastdatesavgs=pastdatesavgsall{index};

SP500datesavgs=SP500datesavgsall{index};

SP500avgs=SP500avgsall{index};

%Gets Data For Prototype Model

[percentmargins(1,:),meanmargins(1),stdmargins(1),dayspredi

cted(1,:),meandays(1),stddays(1),vol(1,:)]...

=PrototypeModelDataNew(paststockvalues,pastdates,futurestoc

kvalues,futuredates,fouriercutoff1,fouriercutoff2,stocks,st

ocknames);

%Gets Data For Prototype Model with Moving Averages

[percentmargins(2,:),meanmargins(2),stdmargins(2),dayspredi

cted(2,:),meandays(2),stddays(2),volavg]...

=PrototypeModelDataNew(paststockaverages,pastdatesavgs,futu

restockaverages,futuredates,fouriercutoff1,fouriercutoff2,s

tocks,stocknames);

%Gets Data For Index Model

[percentmargins(3,:),meanmargins(3),stdmargins(3),dayspredi

cted(3,:),meandays(3),stddays(3),correlation,volSP500]...

=IndexModelDataNew(paststockvalues,pastdates,futurestockval

ues,futuredates,SP500dates,SP500values,fouriercutoff1,fouri

ercutoff2,stocks);

%Gets Data For Index Model with Moving Averages

[percentmargins(4,:),meanmargins(4),stdmargins(4),dayspredi

cted(4,:),meandays(4),stddays(4),correlationavgs,volSP500av

gs]...

=IndexModelDataNew(paststockaverages,pastdatesavgs,futurest

ockaverages,futuredates,SP500datesavgs,SP500avgs,fouriercut

off1,fouriercutoff2,stocks);

90

numericaldata=[];

for cnt1=1:4

numericaldata=[numericaldata,dayspredicted(cnt1,:)',percent

margins(cnt1,:)'];

end

numericaldatas(:,:,cnt-termsinavgs(1)+1)=numericaldata;

end

toc

get_yahoo_stockdata3

function stock = get_yahoo_stockdata3(ticker,d1,d2,freq)

% Updated from v3 when in May 2017, yahoo went and changed

how stock data

% was shown on web pages. From Michael Weidman

%

% INPUTS:

%

% ticker <-- Yahoo ticker symbol for desired security.

This can be a char

% string for a single stock, or data can be

retrieved for

% multiple stocks by using a cellstr array.

%

% d1 <-- start date for data. Can be a matlab

datenumber or a date string.

% Default = 100 days ago

%

% d2 <-- end date for data. Can be a matlab datenumber

or a date string.

% Default = today

%

% freq <-- data frequency 'd' (daily), 'w' (weekly), or

'm' (monthly).

% Default = 'd'

%

% OUTPUT:

%

% stock <-- matlab data structure with output data.

%

% Examples:

91

%

% Get data for the past 100 days.

% stock = get_yahoo_stockdata3('goog');

% stock = get_yahoo_stockdata3({'goog', 'aapl', 'fb'});

%

% Get data from 01-Mar-2008 to now.

% stock = get_yahoo_stockdata3('goog','01-Mar-2008');

%

% Get data for the past 5 years.

% stock = get_yahoo_stockdata3('goog', now-5*365, now);

%

% Get data for specific date range, but weekly instead of

daily

% stock = get_yahoo_stockdata3({'goog', 'aapl', 'fb'},'01-

Jan-2009','01-Apr-2010','w');

%

% Captain Awesome, November 2017

if nargin<4

 freq = 'd';

end

if nargin<3

 d2 = now;

end

if nargin<1

 d1 = d2-100;

end

d1 = floor(datenum(d1));

d2 = floor(datenum(d2));

ticker = upper(ticker);

if d1>d2

 error('bad date order');

end

if isempty(ticker)

 error('No ticker given.');

end

if sum(strcmpi(freq,{'daily','day','d'}))

 freq = 'd';

elseif sum(strcmpi(freq,{'weekly','week','w','wk'}))

 freq = 'wk';

92

elseif sum(strcmpi(freq,{'monthly','month','mmowk'}))

 freq = 'mo';

else

 error('data frequency not recognized');

end

% If given a cellstr array of tickers, then this will

recursively call this

% function for each ticker, output will be a cell array of

stock data

% structures.

if iscell(ticker)

 stock = cellfun(@(x)

get_yahoo_stockdata3(x,d1,d2,freq),...

 ticker, 'uniformoutput', false);

 return

end

clear stockData

stock.ticker = ticker;

stock.dataSource = 'Yahoo Finance';

stock.dataUpdate = datestr(now,0);

stock.errorMsg = '';

stock.dataFreq = freq;

% Yahoo finance uses a unix serial date number, so will

have to convert to

% that. That's a UNIX timestamp -- the number of seconds

since January 1, 1970.

unix_epoch = datenum(1970,1,1,0,0,0);

d1u = floor(num2str((datenum(d1) - unix_epoch)*86400));

d2u = floor(num2str((datenum(d2) - unix_epoch)*86400));

site=strcat('https://finance.yahoo.com/quote/',ticker,'/his

tory?',...

'period1=',d1u,'&period2=',d2u,'&interval=1',freq,'&filter=

history&',...

 'frequency=1',freq);

[temp, status] = urlread(site);

if ~status

 warning(['stock data download failed: ',ticker]);

93

 stock.errorMsg=['stock data download failed (',...

 datestr(now,0),'): ',ticker];

 return

end

%% Check that this is the right ticker data

C = strsplit(temp,'Ta(start) ')';

for k = 1:length(C)

 s = C{k};

 if sum(strfind(lower(s),lower('ticker=')))

 t = strsplit(s,'ticker=');

 t = t{2};

 t = textscan(t,'%s');

 t = t{1}{1};

 if ~strcmp(t, ticker)

 error('ticker mismatch');

 end

 break

 end

 clear s

end

clear k C

%% Get data from 'Historical Prices' section

C = strsplit(temp,'"HistoricalPriceStore":{"prices":[');

if length(C)==1

 % In this case all the data was displayed to the screen

and there was no

 % extra data in "HistoricalPriceStore"

 data = [];

 ddata = [];

 sdata = [];

else

 % In this case only some data was initially displayed and

the rest was

94

 % put in this "HistoricalPriceStore" section and a script

would display

 % it as the user scrolled down.

 C = strsplit(C{2},'},');

 n = length(C);

 data = NaN(n,7); % stock data

 ddata = NaN(n,3); % dividend data

 sdata = NaN(n,3); % split events

 for k=1:n

 s = C{k};

 if length(s)<13

 continue

 end

 if strcmp(s(1:13),'"eventsData":')

 break

 end

 if sum(strfind(lower(s),lower('"splitRatio"')))

 x = textscan(s,['{"date":%f "numerator":%f

"denominator":%f%*s'],...

 'delimiter',',','TreatAsEmpty','null');

 if sum(cellfun('isempty',x))

 error('badness');

 end

 sdata(k,:) = cell2mat(x);

 clear x

 elseif strcmp(s(1:8),'{"date":')

 x = textscan(s,['{"date":%f "open":%f "high":%f

"low":%f "close":%f "volume":%f "adjclose":%f}'],...

 'delimiter',',','TreatAsEmpty','null');

 if sum(cellfun('isempty',x))

 error('badness');

 end

95

 data(k,:) = cell2mat(x);

 clear x

 elseif strcmp(s(1:10),'{"amount":')

 x =

textscan(s,['{"amount":%f,"date":%f,"type":"DIVIDEND","data

":%f'],...

 'delimiter','','TreatAsEmpty','null');

 if sum(cellfun('isempty',x))

 error('badness');

 end

 ddata(k,:) = cell2mat(x);

 clear x

 end

 clear s

 end

 clear n k

 % data columns: date, open, high, low, close, volume,

adjclose

 data(isnan(data(:,1)),:) = [];

 data(:,1) =

datenum(datetime(data(:,1),'ConvertFrom','posixtime'));

 data = sortrows(data,1);

 % ddate columns: Amount, date, data

 ddata(isnan(ddata(:,1)),:) = [];

 ddata(:,2) =

datenum(datetime(ddata(:,2),'ConvertFrom','posixtime'));

 ddata = sortrows(ddata,2);

 %sdata columns: Date numerator demonitor

 sdata(isnan(sdata(:,1)),:) = [];

 sdata(:,1) =

datenum(datetime(sdata(:,1),'ConvertFrom','posixtime'));

 sdata = sortrows(sdata,2);

end

96

clear C

%% Assign data to output structure

if isempty(ddata)

 stock.dividends = [];

else

 stock.dividends.DateTime = ddata(:,2);

 stock.dividends.Amount = ddata(:,1);

end

if isempty(sdata)

 stock.splits = [];

else

 stock.splits.DateTime = sdata(:,1);

 stock.splits.numerator = sdata(:,2);

 stock.splits.denominator = sdata(:,3);

end

if isempty(data)

 stock.errorMsg=['No data found in stock data download

(',datestr(now,0),'): ',ticker];

 warning(['No data found in stock data download:

',ticker]);

 return

end

stock.range = [datestr(data(1,1),1),...

 ' to ',datestr(data(end,1),1)];

stock.varnotes={...

% Variable Units Description

Format

 'DateTime', '[EST]', 'Date of stock quote',

'yyyy-mm-dd';...

 'openPrice', '[$]', 'Opening price of stock',

'%.2f';...

 'highPrice', '[$]', 'High price of stock',

'%.2f';...

 'lowPrice', '[$]', 'Low price of stock',

'%.2f';...

97

 'closePrice', '[$]', 'Closing price of stock',

'%.2f';...

 'adjClosePrice', '[$]', 'Adjusted close price of

stock', '%.2f';...

 'volume', '[-]', 'Trading volume',

'%.0f'};

stock.DateTime = data(:,1);

stock.openPrice = data(:,2);

stock.highPrice = data(:,3);

stock.lowPrice = data(:,4);

stock.closePrice = data(:,5);

stock.volume = data(:,6);

stock.adjClosePrice = data(:,7);

end % function get_yahoo_stockdata3

DataCollector
function

[paststockvalues,pastdates,futurestockvalues,futuredates,..

.

 paststockaverages,futurestockaverages,pastdatesavgs,...

 SP500values,SP500dates,SP500avgs,SP500datesavgs]...

=DataCollector(stocks,termsinavg,present,present1,endpast,e

ndfuture)

%Collects Data From Yahoo Finance

%Preallocates Data for Arrays

paststockvalues=cell(1,length(stocks));

pastdates=cell(1,length(stocks));

futurestockvalues=cell(1,length(stocks));

futuredates=cell(1,length(stocks));

paststockaverages=cell(1,length(stocks));

futurestockaverages=cell(1,length(stocks));

pastdatesavgs=cell(1,length(stocks));

%Retrieves Data from Yahoo Finance

futureinfo=get_yahoo_stockdata3(stocks,present1,endfuture);

98

pastinfo=get_yahoo_stockdata3([stocks,{'^SP500TR'}],endpast

,present);

save('datafile');

%Determines past and future dates and stock values for each

stock

for cnt=1:length(stocks)

 paststockvalues{1,cnt}=pastinfo{1,cnt}.adjClosePrice;

 pastisnan=find(isnan(paststockvalues{1,cnt}));

 pastdatenumbers=round(pastinfo{1,cnt}.DateTime);

 pastdates{1,cnt}=(pastdatenumbers-pastdatenumbers(1));

 paststockvalues{1,cnt}(pastisnan)=[];

 pastdates{1,cnt}(pastisnan)=[];

futurestockvalues{1,cnt}=futureinfo{1,cnt}.adjClosePrice;

 futureisnan=find(isnan(futurestockvalues{1,cnt}));

 futuredatenumbers=round(futureinfo{1,cnt}.DateTime);

 futuredates{1,cnt}=(futuredatenumbers-

pastdatenumbers(1));

 futurestockvalues{1,cnt}(futureisnan)=[];

 futuredates{1,cnt}(futureisnan)=[];

 %Computes moving averages

paststockaveragesall=movmean(paststockvalues{1,cnt},[termsi

navg-1 0]);

futurestockaveragesall=movmean([paststockvalues{1,cnt}(end-

termsinavg+1:end-1);futurestockvalues{1,cnt}],[termsinavg-1

0]);

 %Removes the first few terms of the moving past moving

averages

 %because they do not correspond to actual moving

averages

paststockaverages{1,cnt}=paststockaveragesall(termsinavg:en

d);

futurestockaverages{1,cnt}=futurestockaveragesall(termsinav

g:end);

 pastdatesavgs{1,cnt}=pastdates{1,cnt}(termsinavg:end);

end

%Obtains S&P 500 values and dates

SP500values=pastinfo{1,end}.adjClosePrice;

SP500times=pastinfo{1,end}.DateTime;

99

SP500dates=(SP500times-SP500times(1));

%Calculates S&P 500 moving average

SP500avgsall=movmean(SP500values,[termsinavg-1 0]);

SP500avgs=SP500avgsall(termsinavg:end);

SP500datesavgs=SP500dates(termsinavg:end);

save('datafile1');

end

DataCollectorAvgs
function

[paststockvalues,pastdates,futurestockvalues,futuredates,..

.

 paststockaverages,futurestockaverages,pastdatesavgs,...

 SP500values,SP500dates,SP500avgs,SP500datesavgs]...

=DataCollectorAvgs(stocks,termsinavgs,present,present1,endp

ast)

%Collects Data From Yahoo Finance For Moving Averages with

a range of

%different terms

%Preallocates Data for Arrays

paststockvalues=cell(1,length(stocks));

pastdates=cell(1,length(stocks));

futurestockvalues=cell(1,length(stocks));

futuredates=cell(1,length(stocks));

paststockaverages=cell(1,length(stocks));

futurestockaverages=cell(1,length(stocks));

pastdatesavgs=cell(1,length(stocks));

SP500avgs=cell(1,length(termsinavgs));

SP500datesavgs=cell(1,length(termsinavgs));

%Retrieves Data from Yahoo Finance

futureinfo=get_yahoo_stockdata3(stocks,present1);

pastinfo=get_yahoo_stockdata3([stocks,{'^SP500TR'}],endpast

,present);

%Determines past and future dates and stock values for each

stock

for cnt=1:length(stocks)

 paststockvalues{1,cnt}=pastinfo{1,cnt}.adjClosePrice;

100

 pastisnan=find(isnan(paststockvalues{1,cnt}));

 pastdatenumbers=round(pastinfo{1,cnt}.DateTime);

 pastdates{1,cnt}=(pastdatenumbers-pastdatenumbers(1));

 paststockvalues{1,cnt}(pastisnan)=[];

 pastdates{1,cnt}(pastisnan)=[];

futurestockvalues{1,cnt}=futureinfo{1,cnt}.adjClosePrice;

 futureisnan=find(isnan(futurestockvalues{1,cnt}));

 futuredatenumbers=round(futureinfo{1,cnt}.DateTime);

 futuredates{1,cnt}=(futuredatenumbers-

pastdatenumbers(1));

 futurestockvalues{1,cnt}(futureisnan)=[];

 futuredates{1,cnt}(futureisnan)=[];

 for termsinavg=termsinavgs

 index=termsinavg-termsinavgs(1)+1;

 %Computes moving averages

paststockaveragesall=movmean(paststockvalues{1,cnt},[termsi

navg-1 0]);

futurestockaveragesall=movmean([paststockvalues{1,cnt}(end-

termsinavg+1:end-1);futurestockvalues{1,cnt}],[termsinavg-1

0]);

 %Removes the first few terms of the moving past

moving averages

 %because they do not correspond to actual moving

averages

paststockaverages{1,index}{1,cnt}=paststockaveragesall(term

sinavg:end);

futurestockaverages{1,index}{1,cnt}=futurestockaveragesall(

termsinavg:end);

pastdatesavgs{1,index}{1,cnt}=pastdates{1,cnt}(termsinavg:e

nd);

 end

end

%Obtains S&P 500 values and dates

SP500values=pastinfo{1,end}.adjClosePrice;

SP500times=pastinfo{1,end}.DateTime;

SP500dates=(SP500times-SP500times(1));

for termsinavg=termsinavgs

101

 index=termsinavg-termsinavgs(1)+1;

 %Calculates S&P 500 moving average

 SP500avgsall=movmean(SP500values,[termsinavg-1 0]);

 SP500avgs{1,index}=SP500avgsall(termsinavg:end);

 SP500datesavgs{1,index}=SP500dates(termsinavg:end);

end

end

PrototypeModelDataNew
function

[percentmargin,meanmargin,stdmargin,dayspredicted,meandays,

...

stddays,scaledvolatility,pastnoise,futurenoise,meanstockpas

t,...

meanstockfuture,stdpast,stdfuture,stdall]=PrototypeModelDat

aNew...

(paststockvaluesall,pastdatesall,futurestockvaluesall,futur

edatesall,...

fouriercutoff1,fouriercutoff2,stocks,stocknames,graph,prese

ntdate)

%Fits Prototype Model to Stock Data

%Generates Several Graphs if graph>0

percentmargin=zeros(1,length(stocks));

dayspredicted=zeros(1,length(stocks));

scaledvolatility=zeros(1,length(stocks));

meanstockpast=zeros(1,length(stocks));

meanstockfuture=zeros(1,length(stocks));

stdpast=zeros(1,length(stocks));

stdfuture=zeros(1,length(stocks));

stdall=zeros(1,length(stocks));

pastnoise=cell(1,length(stocks));

futurenoise=cell(1,length(stocks));

for stocknum=1:length(stocks)

 %Extracts the data for the particular stock being

studied

 paststockvalues=paststockvaluesall{1,stocknum};

102

 pastdates=pastdatesall{1,stocknum};

 futuredates=futuredatesall{1,stocknum};

 futurestockvalues=futurestockvaluesall{1,stocknum};

 %calculates autocorrelation and uses it to determine

how much data to use

[acf]=autocorr(flip(paststockvalues),length(paststockvalues

)-1);

 [~,datasize]=max(acf<0);

 datasize=datasize-1;

 if(graph>0)

 %plots autocorrelation

 figure('NumberTitle','off','Name',['Autocorrelation

from present (',stocknames{stocknum},')']);

 autocorr(paststockvalues,size(paststockvalues,1)-

1);

% xlabel('lags');

% ylabel('autocorrelation');

% title(['Autocorrelation of

',stocknames{stocknum},' (',stocks{stocknum},')']);

 %saves the graph as a .png file

 if(graph>1)

%print(['C:\Users\apmur\OneDrive\Documents\IQPGraphs\',stoc

ks{stocknum},'\autocorrelationavgs'],'-dpng');

 else

print(['C:\Users\apmur\OneDrive\Documents\IQPGraphs\',stock

s{stocknum},'\A'],'-dpng');

 end

 end

 %selects most recent "past" data for use in building

model

 selectedstockvalues=paststockvalues(end-

datasize+1:end);

 selecteddates=pastdates(end-datasize+1:end);

 %Determines linear model

linearmodel=fit(selecteddates,selectedstockvalues,'poly1');

 %Calculates differences between linear model and actual

stock prices

103

 differences=selectedstockvalues-

linearmodel(selecteddates);

 %Fits a Fourier Model to the Differences

 if(datasize<=fouriercutoff1)

fouriermodel=fit(selecteddates,differences,'fourier2');

 elseif(datasize>=fouriercutoff2)

fouriermodel=fit(selecteddates,differences,'fourier3');

 else

[fouriermodel1,gof1]=fit(selecteddates,differences,'fourier

2');

[fouriermodel2,gof2]=fit(selecteddates,differences,'fourier

3');

 if(gof1.rsquare>gof2.rsquare)

 fouriermodel=fouriermodel1;

 else

 fouriermodel=fouriermodel2;

 end

 end

 if(graph==1)

 %Evaluates linear model and fourier model at date

values for plotting

 numberofpoints=1000;

datevalues=linspace(selecteddates(1),futuredates(end),numbe

rofpoints);

 linearmodelpredictions=linearmodel(datevalues);

 fouriermodelpredictions=fouriermodel(datevalues);

 futuredifferences=futurestockvalues-

linearmodel(futuredates);

 plotdifferences=[differences;futuredifferences];

 %Generates a vertical line separating past and

future for trend

 %line plot

 numlinepts=100;

maxstock=max([max(differences),max(selectedstockvalues),max

(linearmodelpredictions)]);

104

minstock=min([min(futurestockvalues),min(selectedstockvalue

s),min(linearmodelpredictions)]);

 maxheight=maxstock+0.1*(maxstock-minstock);

 minheight=minstock-0.1*(maxstock-minstock);

 liney=linspace(minheight,maxheight,numlinepts)';

 linex=ones(numlinepts,1)*selecteddates(end);

 %Generates a vertical line separating past and

future for fourier

 %series plot

maxdiff=max([max(plotdifferences),max(fouriermodelpredictio

ns)]);

mindiff=min([min(plotdifferences),min(fouriermodelpredictio

ns)]);

 maxheightdiff=maxdiff+0.1*(maxdiff-mindiff);

 minheightdiff=mindiff-0.4*(maxdiff-mindiff);

lineydiff=linspace(minheightdiff,maxheightdiff,numlinepts)'

;

 %finds important dates

 presentnum=datenum(presentdate,'dd-mmm-yyyy');

 dates=[selecteddates;futuredates];

 middledatevalue=round((dates(1)+dates(end))/2);

 beginningofpast=presentnum-1-dates(end)+dates(1);

 present=presentnum-1-

futuredates(end)+futuredates(1);

 middledate=presentnum-1-round((dates(end)-

dates(1))/2);

 futureend=presentnum-1;

 datevectors1(1,:)=datevec(beginningofpast);

 datevectors1(2,:)=datevec(present);

 datevectors1(3,:)=datevec(middledate);

 datevectors1(4,:)=datevec(futureend);

 %orders the dates from oldest to newest

M=[selecteddates(1);selecteddates(end);middledatevalue;futu

redates(end)];

 [M,ia]=unique(M);

105

 datenums=datevectors1(ia,:);

 %turns the date into a string

 datelist1=cell(1,4);

 for i=1:size(M,1)

 yearstring=sprintf('%.0f',datenums(i,1));

 a=char(yearstring);

 yearshortened=string(a(end-1:end));

datelist1{i}=char(strcat(sprintf('%.0f',datenums(i,2)),'/',

sprintf('%.0f',datenums(i,3)),'/',yearshortened));

 end

 %plots linear model and stock prices

 figure('NumberTitle','off','Name',['Line Plot

(',stocknames{stocknum},')']);

plot([selecteddates(end);futuredates],[selectedstockvalues(

end);futurestockvalues],selecteddates,selectedstockvalues,l

inex,liney,'--

g',datevalues,linearmodelpredictions,'k','LineWidth',2);

 title(['Stock Prices and Trend Line for the Stock

',stocknames{stocknum},' (',stocks{stocknum},')']);

 %legend placed on whether the slope of the line is

positive or negative

 linearmodelcoefficients=coeffvalues(linearmodel);

 linearmodelslope=linearmodelcoefficients(1);

 %Puts in Legend. Positions them to avoid

overlapping with the graph

 %based on the line slope

 if(linearmodelslope>0)

 legend({'future prices','past

prices','past|future','Trend

Line'},'Location','NorthWest');

 else

 legend({'future prices','past

prices','past|future','Trend

Line'},'Location','SouthWest');

 end

 %labels important dates on x-axis

 xticks(M)

 xticklabels(datelist1)

106

 xtickangle(45)

 %labels axes

 legend('boxoff');

 xlabel('date');

 ylabel('stock price');

print(['C:\Users\apmur\OneDrive\Documents\IQPGraphs\',stock

s{stocknum},'\B',],'-dpng');

 figure('NumberTitle','off','Name',['Fourier Plot

(',stocknames{stocknum},')']);

plot([selecteddates(end);futuredates],plotdifferences(datas

ize:end),selecteddates,plotdifferences(1:datasize),linex,li

neydiff,'--

g',datevalues,fouriermodelpredictions,'k','LineWidth',2);

 title(['Differences and Fourier Model for the Stock

',stocknames{stocknum},' (',stocks{stocknum},')']);

 %labels important dates on x-axis

 xticks(M)

 xticklabels(datelist1)

 xtickangle(45)

 %labels axes

 legend('boxoff');

 xlabel('date');

 ylabel('difference');

 legend({'future differences','past

differences','past|future','Fourier

Model'},'Location','SouthWest');

print(['C:\Users\apmur\OneDrive\Documents\IQPGraphs\',stock

s{stocknum},'\C',],'-dpng');

 end

 %computes noise, maxnoise, minnoise

 noise=differences-fouriermodel(selecteddates);

 pastnoise{stocknum}=noise;

 maxnoise=max(noise);

 minnoise=min(noise);

107

 %computes margin of error and percent margin

 margin=(maxnoise-minnoise)/2;

 averagestock=mean(selectedstockvalues);

 percentmargin(stocknum)=margin/averagestock;

 %Computes model upper and lower bounds

upperbound=linearmodel(futuredates)+fouriermodel(futuredate

s)+maxnoise;

lowerbound=linearmodel(futuredates)+fouriermodel(futuredate

s)+minnoise;

 %Adds a little padding on each side of the prediction

band

 upperbound=upperbound+0.05*(maxnoise-minnoise);

 lowerbound=lowerbound-0.05*(maxnoise-minnoise);

 %Determines if the stock exceeds the upper bound

 exceeded=max(futurestockvalues>upperbound);

 %

 %Determines if the stock drops below the lower bound

 dropped=max(futurestockvalues<upperbound);

 %Determines when the stock leaves the prediction band

 if(exceeded>0&&dropped>0)

 [~,exceedtimeup]=max(futurestockvalues>upperbound);

[~,exceedtimelow]=max(futurestockvalues<lowerbound);

dayspredicted(stocknum)=min(exceedtimeup,exceedtimelow);

 elseif(exceeded>0)

[~,dayspredicted(stocknum)]=max(futurestockvalues>upperboun

d);

 elseif(dropped>0)

[~,dayspredicted(stocknum)]=max(futurestockvalues<lowerboun

d);

 else

 dayspredicted(stocknum)=length(futuredates);

 end

 %date where model fails

108

 faildate=futuredates(dayspredicted(stocknum));

 %computes the scaled volatility

scaledvolatility(stocknum)=std(selectedstockvalues)/mean(se

lectedstockvalues);

 %computes mean stock value

 meanstockpast(stocknum)=mean(paststockvalues);

 meanstockfuture(stocknum)=mean(futurestockvalues);

 %computes mean stock value

 stdpast(stocknum)=std(paststockvalues);

 stdfuture(stocknum)=std(futurestockvalues);

stdall(stocknum)=std([paststockvalues;futurestockvalues]);

 %computes noise for future data

 futurenoise{stocknum}=futurestockvalues-

(linearmodel(futuredates)+fouriermodel(futuredates));

 if(graph>0)

 %computes model predictions and model bounds for

graphing

 numberofpoints=1000;

datevalues=linspace(selecteddates(1),futuredates(end),numbe

rofpoints);

modelpredictions=linearmodel(datevalues)+fouriermodel(datev

alues);

 dashedtop=modelpredictions+maxnoise;

 dashedbottom=modelpredictions+minnoise;

 %forms a vertical line at the date dividing the

"past" and the

 %"future"

 numlinepts=100;

maxstock=max([max(futurestockvalues),max(selectedstockvalue

s),max(dashedtop)]);

minstock=min([min(futurestockvalues),min(selectedstockvalue

s),min(dashedbottom)]);

 maxheight=maxstock+0.1*(maxstock-minstock);

109

 minheight=minstock-0.1*(maxstock-minstock);

 liney=linspace(minheight,maxheight,numlinepts)';

 linex=ones(numlinepts,1)*selecteddates(end);

 %makes a vertical line where the prediction fails

 line1y=linspace(minheight,maxheight,numlinepts)';

 line1x=ones(numlinepts,1)*faildate;

 %assigns string dates to the oldest stock value

used in the model,

 %the time halfway between the oldest and stockvalue

furthest into

 %the future, the newest stock value used in the

model (the present

 %day), and the date of the stock value farthest in

the future

 presentnum=datenum(presentdate,'dd-mmm-yyyy');

 dates=[selecteddates;futuredates];

 middledatevalue=round((dates(1)+dates(end))/2);

 beginningofpast=presentnum-1-dates(end)+dates(1);

 present=presentnum-1-

futuredates(end)+futuredates(1);

 modelfails=presentnum-1-futuredates(end)+faildate;

 middledate=presentnum-1-round((dates(end)-

dates(1))/2);

 futureend=presentnum-1;

 datevectors(1,:)=datevec(beginningofpast);

 datevectors(2,:)=datevec(present);

 datevectors(3,:)=datevec(modelfails);

 datevectors(4,:)=datevec(middledate);

 datevectors(5,:)=datevec(futureend);

 %orders the dates from oldest to newest

M=[selecteddates(1);selecteddates(end);faildate;middledatev

alue;futuredates(end)];

 [M,ia]=unique(M);

 datenums=datevectors(ia,:);

 %turns the date into a string

 datelist=cell(1,5);

 for i=1:size(M,1)

 yearstring=sprintf('%.0f',datenums(i,1));

110

 a=char(yearstring);

 yearshortened=string(a(end-1:end));

datelist{i}=char(strcat(sprintf('%.0f',datenums(i,2)),'/',s

printf('%.0f',datenums(i,3)),'/',yearshortened));

 end

 %generates the figure and makes it fullscreen

figure('Name',stocknames{stocknum},'units','normalized','ou

terposition',[0 0 1 1])

 %plots the past stock values used in the model,

future stock values,

 %model predictions, model bounds, and vertical

lines

 if(dayspredicted(stocknum)>0&&(exceeded||dropped))

plot([selecteddates(end);futuredates],[selectedstockvalues(

end);futurestockvalues],selecteddates,selectedstockvalues,l

inex,liney,'g--',line1x,line1y,'m--

',datevalues,modelpredictions,'k',datevalues,dashedtop,'k--

',datevalues,dashedbottom,'k--','LineWidth',2);

 else

plot(futuredates,futurestockvalues,selecteddates,selectedst

ockvalues,linex,liney,'g--

',datevalues,modelpredictions,'k',datevalues,dashedtop,'k--

',datevalues,dashedbottom,'k--','LineWidth',2);

 end

 %labels important dates on x-axis

 xticks(M)

 xticklabels(datelist)

 xtickangle(45)

 %legend placed on whether the slope of the line is

positive or negative

 linearmodelcoefficients=coeffvalues(linearmodel);

 linearmodelslope=linearmodelcoefficients(1);

 %Puts in Legend. Positions them to avoid

overlapping with the graph

 %based on the line slope

 %Adjusts Legend based on whether the model

predicted the stock for

111

 %the whole time period

 if(dayspredicted(stocknum)>0&&(exceeded||dropped))

 if(linearmodelslope>0&&(exceeded||dropped))

 legend('future prices','past prices','past

| future','model fails','model','model

bounds','Location','NorthWest');

 else

 legend('future prices','past prices','past

| future','model fails','model','model

bounds','Location','SouthWest');

 end

 else

 if(linearmodelslope>0)

 legend('future prices','past prices','past

| future','model','model bounds','Location','SouthWest');

 else

 legend('future prices','past prices','past

| future','model','model bounds','Location','NorthWest');

 end

 end

 %labels axes

 legend('boxoff');

 xlabel('date');

 ylabel('stock price');

 %titles graph

 title(['Actual and Predicted Prices of

',stocknames{stocknum},' (',stocks{stocknum},')']);

 %saves the graph as a .png file

 if(graph>1)

print(['C:\Users\apmur\OneDrive\Documents\IQPGraphs\',stock

s{stocknum},'\E'],'-dpng');

 else

print(['C:\Users\apmur\OneDrive\Documents\IQPGraphs\',stock

s{stocknum},'\D'],'-dpng');

 end

 end

end

meanmargin=mean(percentmargin);

stdmargin=std(percentmargin);

112

meandays=mean(dayspredicted);

stddays=std(dayspredicted);

end

IndexModelDataNew

function

[percentmargin,meanmargin,stdmargin,dayspredicted,meandays,

...

 stddays,alphas,volSP500,pastnoise,futurenoise]=...

IndexModelDataNew(paststockvaluesall,pastdatesall,futuresto

ckvaluesall,...

futuredatesall,SP500dates,SP500values,fouriercutoff1,...

 fouriercutoff2,stocks,stocknames,graph,presentdate)

%Fits Prototype Model to Stock Data

%Generates A Graph if graph>0

percentmargin=zeros(1,length(stocks));

dayspredicted=zeros(1,length(stocks));

alphas=zeros(1,length(stocks));

pastnoise=cell(1,length(stocks));

futurenoise=cell(1,length(stocks));

%calculates autocorrelation and uses it to determine how

much data to use

[acf]=autocorr(flip(SP500values),length(SP500values)-1);

[~,datasizeSP500]=max(acf<0);

datasizeSP500=datasizeSP500-1;

%selects most recent "past" data for use in building model

selectedSP500values=SP500values(end-datasizeSP500+1:end);

selectedSP500dates=SP500dates(end-datasizeSP500+1:end);

%Determines linear model for SP500

linearmodelSP500=fit(selectedSP500dates,selectedSP500values

,'poly1');

%Calculates differences between linear model and actual SP

500 values

differencesSP500=selectedSP500values-

linearmodelSP500(selectedSP500dates);

%Fits a Fourier Model to the Differences

if(datasizeSP500<=fouriercutoff1)

113

fouriermodelSP500=fit(selectedSP500dates,differencesSP500,'

fourier2');

elseif(datasizeSP500>=fouriercutoff2)

fouriermodelSP500=fit(selectedSP500dates,differencesSP500,'

fourier3');

else

[fouriermodel1,gof1]=fit(selectedSP500dates,differencesSP50

0,'fourier3');

[fouriermodel2,gof2]=fit(selectedSP500dates,differencesSP50

0,'fourier3');

 if(gof1.rsquare>gof2.rsquare)

 fouriermodelSP500=fouriermodel1;

 else

 fouriermodelSP500=fouriermodel2;

 end

end

for stocknum=1:1:size(stocks,2)

 %Extracts the data for the particular stock being

studied

 paststockvalues=paststockvaluesall{1,stocknum};

 pastdates=pastdatesall{1,stocknum};

 futuredates=futuredatesall{1,stocknum};

 futurestockvalues=futurestockvaluesall{1,stocknum};

 %calculates autocorrelation and uses it to determine

how much data to use

[acf]=autocorr(flip(paststockvalues),size(paststockvalues,1

)-1);

 [~,datasize]=max(acf<0);

 datasize=datasize-1;

 %selects most recent "past" data for use in building

model

 selectedstockvalues=paststockvalues(end-

datasize+1:end);

 selecteddates=pastdates(end-datasize+1:end);

114

 %Determines linear model

linearmodel=fit(selecteddates,selectedstockvalues,'poly1');

 %Calculates differences between linear model and actual

stock prices

 differences=selectedstockvalues-

linearmodel(selecteddates);

 %Fits a Fourier Model to the Differences

 if(datasize<=fouriercutoff1)

fouriermodel=fit(selecteddates,differences,'fourier2');

 elseif(datasize>=fouriercutoff2)

fouriermodel=fit(selecteddates,differences,'fourier3');

 else

[fouriermodel1,gof1]=fit(selecteddates,differences,'fourier

3');

[fouriermodel2,gof2]=fit(selecteddates,differences,'fourier

3');

 if(gof1.rsquare>gof2.rsquare)

 fouriermodel=fouriermodel1;

 else

 fouriermodel=fouriermodel2;

 end

 end

 %computes correlation between the stock and the S&P 500

index

alphas(stocknum)=corr(selectedstockvalues,SP500values(1:dat

asize));

 %Uses the S&P 500 model to approximate the S&P 500 at

the points where

 %we are using data for the model.

SP500model=linearmodelSP500(selecteddates)+fouriermodelSP50

0(selecteddates);

 %Normalized S&P 500 Model

115

 SP500modelnormalized=SP500model/SP500values(end);

 %Prototype Model

prototypemodel=linearmodel(selecteddates)+fouriermodel(sele

cteddates);

 %Normalized Prototype Model

prototypemodelnormalized=prototypemodel/paststockvalues(end

);

 %Computes Normalized Index Model

IndexModelNormalized=SP500modelnormalized*alphas(stocknum)+

(1-alphas(stocknum))*prototypemodelnormalized;

 %Computes Index Model

 IndexModel=IndexModelNormalized*paststockvalues(end);

 %computes noise, maxnoise, minnoise

 noise=selectedstockvalues-IndexModel;

 pastnoise{stocknum}=noise;

 maxnoise=max(noise);

 minnoise=min(noise);

 %computes margin of error and percent margin

 margin=(maxnoise-minnoise)/2;

 averagestock=mean(selectedstockvalues);

 percentmargin(stocknum)=margin/averagestock;

 %Uses the S&P 500 model to make predictions

SP500modelpred=linearmodelSP500(futuredates)+fouriermodelSP

500(futuredates);

 %Normalized S&P 500 Model

SP500modelnormalizedpred=SP500modelpred/SP500values(end);

 %Prototype Model Predictions

prototypemodelpred=linearmodel(futuredates)+fouriermodel(fu

turedates);

116

 %Normalized Prototype Model

prototypemodelnormalizedpred=prototypemodelpred/paststockva

lues(end);

 %Computes Normalized Index Model

IndexModelNormalizedpred=SP500modelnormalizedpred*alphas(st

ocknum)+(1-alphas(stocknum))*prototypemodelnormalizedpred;

 %Computes Index Model

IndexModelpred=IndexModelNormalizedpred*paststockvalues(end

);

 %Computes model upper and lower bounds

 upperbound=IndexModelpred+maxnoise;

 lowerbound=IndexModelpred+minnoise;

 %Adds a little padding on each side of the prediction

band

 upperbound=upperbound+0.05*(maxnoise-minnoise);

 lowerbound=lowerbound-0.05*(maxnoise-minnoise);

 %Determines if the stock exceeds the upper bound

 exceeded=max(futurestockvalues>upperbound);

 %Determines if the stock drops below the lower bound

 dropped=max(futurestockvalues<lowerbound);

 %Determines when the stock leaves the prediction band

 if(exceeded>0&&dropped>0)

 [~,exceedtimeup]=max(futurestockvalues>upperbound);

[~,exceedtimelow]=max(futurestockvalues<lowerbound);

dayspredicted(stocknum)=min(exceedtimeup,exceedtimelow);

 elseif(exceeded>0)

[~,dayspredicted(stocknum)]=max(futurestockvalues>upperboun

d);

 elseif(dropped>0)

117

[~,dayspredicted(stocknum)]=max(futurestockvalues<lowerboun

d);

 else

 dayspredicted(stocknum)=length(futuredates);

 end

 faildate=futuredates(dayspredicted(stocknum));

 %computes the scaled volatility of SP500

volSP500=std(selectedSP500values)/mean(selectedSP500values)

;

 %computes noise for both past and future data

 futurenoise{stocknum}=futurestockvalues-IndexModelpred;

 if(graph>0)

 %computes model predictions and model bounds for

graphing

 numberofpoints=1000;

 %dates used for graphing the index model

datevalues=linspace(selecteddates(1),futuredates(end),numbe

rofpoints);

 %Uses the S&P 500 model to approximate the S&P 500

at the points we are

 %using in the graph

SP500predictions=linearmodelSP500(datevalues)+fouriermodelS

P500(datevalues);

 %Normalized S&P 500 Model at graph points

SP500normalizedpredictions=SP500predictions/SP500values(end

);

 %Prototype Model at graph points

prototypemodelpredictions=linearmodel(datevalues)+fouriermo

del(datevalues);

 %Normalized Prototype Model at graph points

118

prototypemodelnormalizedpredictions=prototypemodelpredictio

ns/paststockvalues(end);

 %Computes Normalized Index Model at graph points

IndexModelNormalizedpredictions=SP500normalizedpredictions*

alphas(stocknum)+...

 (1-

alphas(stocknum))*prototypemodelnormalizedpredictions;

 %Computes Index Model at graph points

modelpredictions=IndexModelNormalizedpredictions*paststockv

alues(end);

 dashedtop=modelpredictions+maxnoise;

 dashedbottom=modelpredictions+minnoise;

 %forms a vertical line at the date dividing the

"past" and the

 %"future"

 numlinepts=100;

maxstock=max([max(futurestockvalues),max(selectedstockvalue

s),max(dashedtop)]);

minstock=min([min(futurestockvalues),min(selectedstockvalue

s),min(dashedbottom)]);

 maxheight=maxstock+0.1*(maxstock-minstock);

 minheight=minstock-0.1*(maxstock-minstock);

 liney=linspace(minheight,maxheight,numlinepts)';

 linex=ones(numlinepts,1)*selecteddates(end);

 %makes a vertical line where the prediction fails

 line1y=linspace(minheight,maxheight,numlinepts)';

 line1x=ones(numlinepts,1)*faildate;

 %assigns string dates to the oldest stock value

used in the model,

 %the time halfway between the oldest and stockvalue

furthest into

 %the future, the newest stock value used in the

model (the present

119

 %day), and the date of the stock value farthest in

the future

 presentnum=datenum(presentdate,'dd-mmm-yyyy');

 dates=[selecteddates;futuredates];

 middledatevalue=round((dates(1)+dates(end))/2);

 beginningofpast=presentnum-1-dates(end)+dates(1);

 present=presentnum-1-

futuredates(end)+futuredates(1);

 modelfails=presentnum-1-futuredates(end)+faildate;

 middledate=presentnum-1-round((dates(end)-

dates(1))/2);

 futureend=presentnum-1;

datevectors(1,:)=datevec(beginningofpast);

 datevectors(2,:)=datevec(present);

 datevectors(3,:)=datevec(modelfails);

 datevectors(4,:)=datevec(middledate);

 datevectors(5,:)=datevec(futureend);

 %orders the dates from oldest to newest

M=[selecteddates(1);selecteddates(end);faildate;middledatev

alue;futuredates(end)];

 [M,ia]=unique(M);

 datenums=datevectors(ia,:);

 %turns the date into a string

 datelist=cell(1,5);

 for i=1:size(M,1)

 yearstring=sprintf('%.0f',datenums(i,1));

 a=char(yearstring);

 yearshortened=string(a(end-1:end));

datelist{i}=char(strcat(sprintf('%.0f',datenums(i,2)),'/',s

printf('%.0f',datenums(i,3)),'/',yearshortened));

 end

 %generates the figure and makes it fullscreen

figure('Name',stocknames{stocknum},'units','normalized','ou

terposition',[0 0 1 1])

 %plots the past stock values used in the model,

future stock values,

120

 %model predictions, model bounds, and vertical

lines

 if(dayspredicted(stocknum)>0&&(exceeded||dropped))

plot([selecteddates(end);futuredates],[selectedstockvalues(

end);futurestockvalues],selecteddates,selectedstockvalues,l

inex,liney,'g--',line1x,line1y,'m--

',datevalues,modelpredictions,'k',datevalues,dashedtop,'k--

',datevalues,dashedbottom,'k--','LineWidth',2);

 else

plot(futuredates,futurestockvalues,selecteddates,selectedst

ockvalues,linex,liney,'g--

',datevalues,modelpredictions,'k',datevalues,dashedtop,'k--

',datevalues,dashedbottom,'k--','LineWidth',2);

 end

 %labels important dates on x-axis

 xticks(M)

 xticklabels(datelist)

 xtickangle(45)

 %legend placed on whether the slope of the line is

positive or negative

 linearmodelcoefficients=coeffvalues(linearmodel);

 linearmodelslope=linearmodelcoefficients(1);

 %Puts in Legend. Positions them to avoid

overlapping with the graph

 %based on the line slope

 %Adjusts Legend based on whether the model

predicted the stock for

 %the whole time period

 if(dayspredicted(stocknum)>0&&(exceeded||dropped))

 if(linearmodelslope>0&&(exceeded||dropped))

 legend('future prices','past prices','past

| future','model fails','model','model

bounds','Location','NorthWest');

 else

 legend('future prices','past prices','past

| future','model fails','model','model

bounds','Location','SouthWest');

 end

 else

 if(linearmodelslope>0)

121

 legend('future prices','past prices','past

| future','model','model bounds','Location','SouthWest');

 else

 legend('future prices','past prices','past

| future','model','model bounds','Location','NorthWest');

 end

 end

 %labels axes

 legend('boxoff');

 xlabel('date');

 ylabel('stock price');

 %titles graph

 title(['Actual and Predicted Prices of

',stocknames{stocknum},' (',stocks{stocknum},')']);

 %saves the graph as a .png file if(graph>1)

 if(graph>1)

print(['C:\Users\apmur\OneDrive\Documents\IQPGraphs\',stock

s{stocknum},'\H'],'-dpng');

 else

print(['C:\Users\apmur\OneDrive\Documents\IQPGraphs\',stock

s{stocknum},'\G'],'-dpng');

 end

 end

end

meanmargin=mean(percentmargin);

stdmargin=std(percentmargin);

meandays=mean(dayspredicted);

stddays=std(dayspredicted);

end

embed

function Y=embed(x,tau,m)

%Length of Time Series

N=length(x);

%Number of Embedding Vectors

M=N-m*tau;

%Computes Embedding Vectors

122

[U,T]=ndgrid(1:M,0:m-1);

X=ndgrid(x,x);

indices=U+T*tau;

Y=X(indices);

end

falsenearest

function percentfalse=falsenearest(x,mmax,tau,Dtol,Atol)

x=x';

%Intializes Variables

percentfalse=zeros(1,mmax);

%Length of Time Series

N=length(x);

%Initializes Vector Storing embedding vectors for each

embedding dimension

Ys=cell(1,mmax);

%Embedding Dimension 1 corresponds to original time series

Ys{1}=x;

%Standard deviation of time series; approximate radius of

the attractor

s=std(x);

%Minimum distances between nearest neighbors

mindistsq=cell(1,mmax);

%Locations of nearest neighbors

nearestpos=cell(1,mmax);

for m=1:mmax

 %Embedded vectors in next dimension

 Ys{m+1}=embed(x,tau,m+1);

 %Embedded vectors in current dimension

 Y=Ys{m};

 %Number of embedded vectors in current dimension

 M(m)=N-tau*m;

 %square of the distances between each pair of embedded

vectors

 distancessq=zeros(M(m));

 for cnt=1:m

 %computes pairwise distances between embedded

vectors

 [Ygrid,Ygrid2]=ndgrid(Y(:,cnt),Y(:,cnt));

 distancessq=distancessq+(Ygrid-Ygrid2).^2;

 end

123

 %makes it so the nearest neighbor cannot be the vector

itself

 distancessq=distancessq+10^6*eye(M(m));

 %finds nearest neighbor

 [mindistsq{m},nearestpos{m}]=min(distancessq);

end

for m=1:mmax

 %distances between nearest neighbors

 Rim=mindistsq{m}(1:M(m));

 %distances between neighbors in original time series

 dist1=abs(x(m*tau+1:end)-x(nearestpos{m}+m*tau));

 %check if the ratio of distances are below tolerance

 D=dist1./Rim;

 Dokay=D<Dtol;

 %distances in next dimension

 Rim1=Rim.^2+dist1.^2;

 R=Rim1/s;

 %checks if distances are too far

 Rokay=R<Atol;

 %When both conditions indicate neighbors are true

 okay=Dokay.*Rokay;

 %percent of false nearest neighbors

 percentfalse(m)=1-sum(okay)/M(m);

end

end

lyapunovnew

function lyap=lyapunovnew(t,x,m,tau,meanperiod,maxiter)

%used to compute Lyapunov exponents with Rosenstein's

Algorithm

%Constructs Embedded Vectors

Y=embed(x,tau,m);

%Length of time series

N=length(x);

%Number of embedded vectors

M=N-tau*m;

%distance between pairs of embedded vectors

distancessq=zeros(M);

%minimum distance between viable neighbors

radius=floor(meanperiod/2);

%computes squares of distances between points

for cnt=1:m

124

 [Ygrid,Ygrid2]=ndgrid(Y(:,cnt),Y(:,cnt));

 distancessq=distancessq+(Ygrid-Ygrid2).^2;

end

%prevents neighbors closer than one mean period from being

chosen as

%nearest

A=10^6*ones(M);

A=A-triu(A,radius+1);

A=A-tril(A,-radius-1);

distancessq=distancessq+A;

%find distances between nearest neighbors

[~,nearestpos]=min(distancessq);

%Initializes mean logarithm of distances

meanlogs=zeros(1,maxiter);

for k=1:maxiter

 %Number of embedding vectors used in calculation

 maxindex=M-k;

 %locations of nearest neighbors

 indicies=find(nearestpos(1:maxindex)<=maxindex);

 %distances between nearest neighbors after k time steps

 distances=vecnorm(Y(indicies+k,:)-

Y(nearestpos(indicies)+k,:));

 %computes mean of logs of distances

 logdistances=log(distances);

 meanlogs(k)=mean(logdistances);

end

%fits a least squares line

leastsquaresline=fit(t(1:maxiter),meanlogs','poly1');

%finds line slope=lyapunov exponent

linecoefficients=coeffvalues(leastsquaresline);

lyap=linecoefficients(1);

Lyapunov2
function lyaps=Lyapunov2(t,x,mmax,maxiter)

%Computes Lyapunov Exponents for a range of embedding

dimensions

%calculates autocorrelation and uses it to determine how

much data to use

[acf]=autocorr(flip(x),length(x)-1);

[~,datasize]=max(acf<exp(-1));

%determines delay time and mean period

125

tau=datasize-1;

meanperiod=tau;

lyaps=zeros(1,mmax);

for m=1:mmax

 lyaps(m)=lyapunovnew(t,x,m,tau,meanperiod,maxiter);

end

end

DataGeneratorLyapunov

%Generates Lyapunov Exponent Data and Writes it to an Excel

File

%Saves Scatter Plots

close all;

clear all;

tic

%Fourier Series fit to data with fewer than this number of

points is 2nd Order.

fouriercutoff1=40;

%Fourier Series fit to data with at least than this number

of points is 3rd

%Order

fouriercutoff2=60;

%Defines number of terms of moving average

termsinavg=5;

%maximum embedding dimension. If this is changed, the excel

region should

%be correspondingly changed.

mmax=3;

%maximum number of iterations for Lyapunov

maxiter=10;

%Forces the late future date to be the day before this date

presentdate='09-August-2018';

%stock symbols

stocks={'INXN','WUBA','TSG','MTCH','PTC','PRGS','CTXS','BLK

B','CVLT','MDSO','CYOU','RP','IMPV','GWRE','SPLK','PCTY','P

AYC','NTNX','TLND','MFGP'};

%stocknames. A placeholder since no graphs are generated

stocknames=stocks;

126

%Data From Yahoo Finance

[paststockvalues,pastdates,~,~,paststockaverages,~,pastdate

savgs,...

 SP500values,SP500dates,SP500avgs,SP500datesavgs]...

 =DataCollector(stocks,termsinavg,'01-June-2018','01-

June-2018',...

 '02-June-2017',presentdate);

%Calculates Scaled Standard Deviation of Stock Prices

[~,~,~,~,~,~,vol]...

=PrototypeModelDataNew(paststockvalues,pastdates,futurestoc

kvalues,futuredates,fouriercutoff1,fouriercutoff2,stocks,st

ocknames,1,presentdate);

%Calculates Scaled Standard Deviation of Stock Averages

[~,~,~,~,~,~,volavgs]...

=PrototypeModelDataNew(paststockaverages,pastdatesavgs,futu

restockaverages,futuredates,fouriercutoff1,fouriercutoff2,s

tocks,stocknames,2,presentdate);

%Gets Correlation Between Stock Prices and Index and Scaled

Standard

%Deviation of S&P 500

[~,~,~,~,~,~,correlationavgs,volSP500avgs]...

=IndexModelDataNew(paststockvalues,pastdates,futurestockval

ues,futuredates,SP500dates,SP500values,fouriercutoff1,fouri

ercutoff2,stocks,stocknames,1,presentdate);

%Gets Correlation Between Stock Prices and Index and Scaled

Standard

%Deviation of S&P 500 for Moving Averages

[percentmargins(4,:),meanmargins(4),stdmargins(4),dayspredi

cted(4,:),meandays(4),stddays(4),correlationavgs,volSP500av

gs]...

=IndexModelDataNew(paststockaverages,pastdatesavgs,futurest

ockaverages,futuredates,SP500datesavgs,SP500avgs,fouriercut

off1,fouriercutoff2,stocks,stocknames,2,presentdate);

%Intializes One Year Lyapunov Exponents

lyapexp1yr=zeros(length(stocks),mmax);

lyapexp1yravg=zeros(length(stocks),mmax);

127

%Computes One Year Lyapunov Exponents

for stocknum=1:length(stocks)

lyapexp1yr(stocknum,:)=Lyapunov2(pastdates{stocknum},pastst

ockvalues{stocknum},mmax,maxiter);

lyapexp1yravg(stocknum,:)=Lyapunov2(pastdatesavgs{stocknum}

,paststockaverages{stocknum},mmax,maxiter);

end

lyapexp1yrSP5001yr=Lyapunov2(SP500dates,SP500values,mmax,ma

xiter);

lyapexp1yrSP5001yravg=Lyapunov2(SP500datesavgs,SP500avgs,mm

ax,maxiter);

%%%%% TWO YEARS

%Collects Additional Data from Yahoo Finance For 2 years

[paststockvalues,pastdates,futurestockvalues,futuredates,..

.

 paststockaverages,futurestockaverages,pastdatesavgs,...

 SP500values,SP500dates,SP500avgs,SP500datesavgs]...

 =DataCollector(stocks,termsinavg,'01-June-2018','01-

June-2018','02-June-2016',presentdate);

%Calculates Scaled Standard Deviation of Stock Prices

[~,~,~,~,~,~,vol]...

=PrototypeModelDataNew(paststockvalues,pastdates,futurestoc

kvalues,futuredates,fouriercutoff1,fouriercutoff2,stocks,st

ocknames,1,presentdate);

%Calculates Scaled Standard Deviation of Stock Averages

[~,~,~,~,~,~,volavgs]...

=PrototypeModelDataNew(paststockaverages,pastdatesavgs,futu

restockaverages,futuredates,fouriercutoff1,fouriercutoff2,s

tocks,stocknames,2,presentdate);

%Gets Correlation Between Stock Prices and Index and Scaled

Standard

%Deviation of S&P 500

[~,~,~,~,~,~,correlationavgs,volSP500avgs]...

=IndexModelDataNew(paststockvalues,pastdates,futurestockval

ues,futuredates,SP500dates,SP500values,fouriercutoff1,fouri

ercutoff2,stocks,stocknames,1,presentdate);

128

%Gets Correlation Between Stock Prices and Index and Scaled

Standard

%Deviation of S&P 500 for Moving Averages

[percentmargins(4,:),meanmargins(4),stdmargins(4),dayspredi

cted(4,:),meandays(4),stddays(4),correlationavgs,volSP500av

gs]...

=IndexModelDataNew(paststockaverages,pastdatesavgs,futurest

ockaverages,futuredates,SP500datesavgs,SP500avgs,fouriercut

off1,fouriercutoff2,stocks,stocknames,2,presentdate);

%Intializes Two Year Lyapunov Exponents

lyapexp2yrs=zeros(length(stocks),mmax);

lyapexp2yrsavg=zeros(length(stocks),mmax);

%Computes Two Year Lyapunov Exponents

for stocknum=1:length(stocks)

lyapexp2yrs(stocknum,:)=Lyapunov2(pastdates{stocknum},pasts

tockvalues{stocknum},mmax,maxiter);

lyapexp2yrsavg(stocknum,:)=Lyapunov2(pastdatesavgs{stocknum

},paststockaverages{stocknum},mmax,maxiter);

end

%Computes Lyapunov Exponent of S&P 500

lyapexp1yrSP5002yrs=Lyapunov2(SP500dates,SP500values,mmax,m

axiter);

lyapexp1yrSP5002yrsavg=Lyapunov2(SP500datesavgs,SP500avgs,m

max,maxiter);

%Computes One-Year Index Lyapunov Exponents

lyapexpindex1yr=lyapexp1yrSP5001yr.*correlation'+lyapexp1yr

.*(1-correlation)';

lyapexpindexavg1yr=lyapexp1yrSP5001yravg.*correlation'+lyap

exp1yravg.*(1-correlation)';

%Computes Two-Year Index Lyapunov Exponents

lyapexpindex2yrs=lyapexp1yrSP5002yrs.*correlation'+lyapexp2

yrs.*(1-correlation)';

lyapexpindexavg2yrs=lyapexp1yrSP5002yrsavg.*correlation'+ly

apexp2yrsavg.*(1-correlation)';

129

%Computes Index Scaled Standard Deviation

volindex=volSP500.*correlation+vol.*(1-correlation);

volindexavgs=volSP500avgs.*correlationavgs+volavg.*(1-

correlation);

volmatrix=[vol',volavg',volindex',volindexavgs'];

%Reorganizes Lyapunov Exponents for Correlation Calculation

lyapunovexps1yr=[lyapexp1yr,lyapexp1yravg,...

 lyapexpindex1yr,lyapexpindexavg1yr];

lyapunovexps2yrs=[lyapexp2yrs,lyapexp2yrsavg,...

 lyapexpindex2yrs,lyapexpindexavg2yrs];

%Computes correlation between One Year Lyapunov Exponents

and Days Predicted

%by each model

corrmatrix=zeros(4,size(lyapunovexps1yr,2));

for i=1:4

 for j=1:size(lyapunovexps1yr,2)

corrmatrix(i,j)=corr(lyapunovexps1yr(:,j),dayspredicted(i,:

)');

 end

end

%Computes correlation between Two Year Lyapunov Exponents

and Days Predicted

%by each model

corrmatrix2=zeros(4,size(lyapunovexps2yrs,2));

for i=1:4

 for j=1:size(lyapunovexps2yrs,2)

corrmatrix2(i,j)=corr(lyapunovexps2yrs(:,j),dayspredicted(i

,:)');

 end

end

%Computes correlation between scaled standard deviation and

days predicted

corrvol=zeros(4,4);

for i=1:4

 for j=1:4

corrvol(i,j)=corr(volmatrix(:,j),dayspredicted(i,:)');

130

 end

end

%Calculates Row and Column Averages

corrcolavgs=mean(corrmatrix,1);

corrrowavgs=mean(corrmatrix,2);

corrcolavgs2=mean(corrmatrix2,1);

corrrowavgs2=mean(corrmatrix2,2);

corrvolcolavgs=mean(corrvol,1);

corrvolrowavgs=mean(corrvol,2);

%Scatterplot of Days Predicted vs. Lyapunov Exponent

figure(1)

scatter(lyapexpindex2yrs(:,1),dayspredicted(1,:))

xlabel('lyapunov exponent');

ylabel('days predicted');

title('Accuracy of Lyapunov Exponents');

%saves the graph as a .pdf file

print('C:\Users\apmur\OneDrive\Documents\MATLAB\IQP\Volatil

ity\lyapunovplot','-dpng');

%Scatterplot of Days Predicted vs. Scaled Standard

Deviation

figure(2)

scatter(vol,dayspredicted(1,:))

xlabel('scaled standard deviation');

ylabel('days predicted');

title('Accuracy of Scaled Standard Deviation');

print('C:\Users\apmur\OneDrive\Documents\MATLAB\IQP\Volatil

ity\stdovermeanplot','-dpng');

%Writes Results to Excel File

xlswrite('ModelPredictionData4',round(corrmatrix,3),'D28:O3

1');

xlswrite('ModelPredictionData4',round(corrcolavgs,3),'D32:O

32');

xlswrite('ModelPredictionData4',round(corrrowavgs,3),'P28:P

31');

xlswrite('ModelPredictionData4',round(corrvol,3),'D36:G39')

;

xlswrite('ModelPredictionData4',round(corrvolcolavgs,3),'D4

0:G40');

xlswrite('ModelPredictionData4',round(corrvolrowavgs,3),'H3

6:H39');

131

xlswrite('ModelPredictionData4',round(corrmatrix2,3),'D88:O

91');

xlswrite('ModelPredictionData4',round(corrcolavgs2,3),'D92:

O92');

xlswrite('ModelPredictionData4',round(corrrowavgs2,3),'P88:

P91');

save('Lyapdata')

toc

