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Abstract

Imagine an encryption scheme where it is possible to add and multiply numbers without
any knowledge of the numbers. Instead one could manipulate encryptions of the numbers
and then the decryption of the result would give the result of the arithmetic on the original
numbers. Encryption algorithms with this property are called homomorphic and have various
applications in cloud computing. Homomorphic encryption schemes exist but are generally
so inefficient that they are not practical. This report introduces a toy cryptosystem called
Bubbles: a somewhat homomorphic encryption scheme created by Professor Martin and
Professor Sunar at Worcester Polytechnic Institute. We will show that the original scheme
is insecure and may be efficiently “popped”. We will then examine two variations of the
scheme that introduce noise to increase security and show that Bubbles is still vulnerable
except when parameters are carefully chosen. However these safe parameter choices make
Bubbles more inefficient than other recent homomorphic schemes.
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Chapter 1

Introduction

Cloud computing is a powerful new technology that empowers many people and companies
to utilize computation power and storage without the expense of buying and maintaining
shelves of servers. Large companies such as Netflix, Pinterest and Apple, along with many
smaller companies and individuals, all use cloud services to outsource hardware [1]. Cloud
services are currently a multi-billion dollar industry and the International Data Corporation
estimates that over $127 billion will be spent on cloud services in 2018 [2].

Cloud services allow companies to not worry about housing, maintaining and updating
racks of servers. However this great convenience comes at a cost. Introducing data to the
Internet always produces security concerns. Now data is sent over the Internet to a cloud
provider instead of being stored on site. This makes it significantly easier for an attacker to
access the data by either intercepting it as it is being sent over the Internet or by infiltrating
the cloud provider.

These concerns can be addressed by encrypting the data before sending it to the cloud
provider. As long as the encryption method is secure, the data may be sent, stored and
retrieved without a breach. This solution works for data storage but does not allow for data
processing. In the vast majority of encryption schemes such as AES or 3DES, data could
be encrypted when sent to the cloud but for any processing it must be decrypted, processed
and then encrypted again. This process is shown in Table 1.1 for a case where Bob wants to
add two numbers p1 and p2. These numbers are called plaintext and their encryptions are
called ciphertext.

Bob encrypts plaintext c1 = Enc(p1), c2 = Enc(p2)
Bob sends ciphertext to cloud
Cloud provider decrypts ciphertext p1 = Dec(c1), p2 = Dec(c2)
Cloud provider processes plaintext p = p1 + p2
Cloud provider encrypts result c = Enc(p)
Bob retrieves and decrypts ciphertext p = Dec(c)

Table 1.1: Process for cloud to process data

For many applications this is acceptable as the cloud provider can be mostly trusted and
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the data is not overly sensitive. However for very sensitive data, such as medical or financial
data, it is not acceptable for the cloud provider to ever have access to the decrypted data.
Consider the situation where Bob works at a hospital and wants to process medical data on
the cloud. The processing could be as simple as taking statistics of vital signs or processing
the raw results of an MRI to produce an image for a doctor to look at. In this case Bob
would like there to be a way for a cloud provider to manipulate the encrypted data without
ever seeing the actual numbers. This is what homomorphic encryption allows.

In a homomorphic encryption scheme there are efficient operations ⊕ and ⊗ such that

c1 = Enc(p1) =⇒ p1 + p2 = Dec(c1 ⊕ c2)
c2 = Enc(p2) p1 · p2 = Dec(c1 ⊗ c2).

The operation ⊕ allows the cloud provider to add plaintexts together without ever knowing
what they are. If Bob uses homomorphic encryption, he can change the process for a cloud
provider to add the two numbers p1 and p2 to look like that described in Table 1.2.

Bob encrypts plaintext c1 = Enc(p1), c2 = Enc(p2)
Bob sends ciphertext to cloud
Cloud provider processes ciphertext c = c1 ⊕ c2
Bob retrieves and decrypts ciphertext p = Dec(c) where p = p1 + p2

Table 1.2: Process for cloud to process data using homomorphic encryption

The idea for homomorphic encryption schemes was first proposed by Rivest et al. in
1978 [10]. Just a few months earlier the same Rivest along with Shamir and Adleman
had introduced the public key cryptosystem RSA. Then in [10] they showed that RSA is
multiplicatively homomorphic i.e. there is an operation ⊗ but not ⊕. Many homomor-
phic cryptosystems have been proposed since then and a variety of applications have been
suggested [7].

Until recently every scheme has only allowed so many additions or multiplications to be
performed on the ciphertexts. To talk about how many additions or multiplications a scheme
can support we look at arithmetic circuits. An additive circuit of depth d takes 2d ciphertexts
and computes their sum. This is illustrated in Figure 1.1. Similarly, a multiplicative circuit
of depth d computes the product of 2d ciphertexts.

A cryptographic scheme that can correctly decrypt the output of arbitrarily large addi-
tive and multiplicative circuits is called fully homomorphic. Many proposed homomorphic
schemes cannot do this. Most homomorphic schemes get security from adding small amounts
of noise. Someone with the secret encryption key can decrypt in spite of the noise as long as
it is small enough, but the noise obscures the plaintext to someone without the key. How-
ever combining too many ciphertexts in an arithmetic circuit will increase the noise above
the threshold where someone with the key can still decrypt correctly. Homomorphic cryp-
tosystems that only work with limited depth additive or multiplicative circuits are called
somewhat homomorphic.
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c1 c2 c3 c4

c1 + c2 c3 + c4

c1 + c2 + c3 + c4

Figure 1.1: Additive circuit of depth 2

Until 2009 all proposed schemes were somewhat homomorphic. Then in 2009 Gentry
proposed the first fully homomorphic encryption scheme [6]. While Gentry showed that a
fully homomorphic cryptosystem exists, the system he came up with is too inefficient to
be practical. Since Gentry’s breakthrough paper, multiple fully homomorphic schemes have
been proposed and suggestions made on how to make them more practical [7]. However no
improvement has made fully homomorphic encryption efficient enough to implement.

Even somewhat homomorphic encryption tends to be impractical. Some systems such
as Paillier’s scheme and NTRU have been implemented but have yet to see widespread use
[9, 3, 7]. There is still a while to go before somewhat homomorphic encryption, never mind
fully homomorphic encryption, is practical to be widely implemented. From now on we will
refer to partially homomorphic schemes as homomorphic.

In this paper we will look at Bubbles, a toy cryptosystem made by Bill Martin and Berk
Sunar at Worcester Polytechnic Institute [unpublished]. Bubbles is a partially homomorphic
encryption scheme based on Shamir’s secret sharing scheme [8, p. 526]. All knowledge of
the basic workings of this cryptosystem was via personal communication. Since we will
only be discussing Bubbles in this report, we will refer to partially homomorphic schemes as
homomorphic.

In its most basic form Bubbles is easily broken (the bubbles are popped!) but by adding
noise it can be made more secure. In Chapter 3, we will introduce the most basic version
of Bubbles and show why it is not secure. In Chapter 4, we vary the original scheme to
make it more secure by adding a type of noise we call chaff. We will then show how this
revision is still easily breakable using the same idea behind the algorithm to break basic
Bubbles. In Chapter 5, we introduce a different type of noise which is significantly harder
to break. In fact, some parameter choices make the system secure against all algorithms
we will introduce. However these parameter choices make Bubbles more inefficient than the
most recently proposed homomorphic encryption schemes.
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Chapter 2

Mathematical Preliminaries

In this section we introduce some notation, definitions, lemmas and propositions that will
be needed later. It is recommended that the reader glace through the next few paragraphs
to understand the notation we will use, but treat the rest of the chapter as a reference.

All work will be in Fq, a finite field of order q. We denote the ring of polynomials of a
single variable over this field by Fq[x]. The set Fq[x]k is a subset of Fq[x] that contains only
polynomials of degree less than k.

It is well-known that any polynomial of degree less than k can be reconstructed from
knowledge of any k or more values using Lagrange interpolation [5]. Let f(x) ∈ Fq[x]k and
f(xi) = yi for all i = 1, ..., k. Then Lagrange interpolation gives

f(x) =
k∑
i=1

yi
∏
j 6=i

x− xj
xi − xj

.

To see this note that the polynomial

gi(x) =
∏
j 6=i

x− xj
xi − xj

has degree k − 1 and gi(xj) = δij.
We use 1 to denote the all one’s vector and 0 to denote the zero matrix. The Hamming

weight of a vector v ∈ Fnq , denoted wH(v), is the number of non-zero entries of v i.e.
wH(v) = |{i | vi 6= 0}|.

For a set S we write x ←u S to denote that x is chosen uniformly at random from the
elements in S. We denote the power set of S by P(S) and the set of all subsets of S of size
k by Pk(S). Frequently we will want a subset of the integers between 1 and n and so we will
abbreviate P({1, ..., n}) to P(n).

For A ∈ Fn×mq , α ∈ P(n) and β ∈ P(m) we define Aα (resp. Aβ) as the matrix derived
from A by deleting all rows (columns) other than those indexed by elements in α (β).
Similarly, for a ∈ Fmq we define aβ to be the vector derived from a by deleting all entries
other than those indexed by elements in β.
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Example 2.1. For α = {1, 4}, β = {3, 4}, and

A =


8 3 5 2
3 7 4 5
4 8 7 2
6 5 1 9
2 4 1 4


then

Aα =

(
8 3 5 2
6 5 1 9

)
, Aβ =


5 2
4 5
7 2
1 9
1 4

 , Aβα =

(
5 2
1 9

)
.

In Lemmas 2.2, 2.3 and 2.4 we refer to the matrix

V0 :=


x1 x2 . . . xn
x21 x22 x2n
...

. . .
...

xk−11 xk−12 . . . xk−1n


where k − 1 ≤ n and the field elements xi ∈ Fq are distinct and non-zero.

Lemma 2.2. rank(V0) = k − 1

Proof. If rank(V0) 6= k−1 then the rows of V0 are linearly dependent. Therefore there exists
f = (f1, ..., fk−1) ∈ Fk−1q such that fV0 = 0. This is equivalent to saying that the polynomial
f(x) := f1x + ... + ff−1x

k−1 = x(f1 + ... + fk−1x
k−2) has roots x1, ..., xn. However since

f(x) has degree at most k − 1 ≤ n and has 0 as a root, it cannot have n distinct non-zero
roots.

Lemma 2.3. For A ∈ Fm×(k−1)q , rank(AV0) = k − 1 if and only if rank(A) = k − 1.

Proof. If rank(A) 6= k − 1 then rank(A) < k − 1 because the rank of A may not exceed the
number of columns of A. Since rank(AV0) ≤ rank(A) then rank(AV0) < k − 1.

If rank(A) = k − 1 then A has k − 1 linearly independent rows. Consider the submatrix
A′ of A that consists of k − 1 linearly independent rows. Then A′ is is invertible and so
rank(A′V0) = rank(V0). By Lemma 2.2 rank(V0) = k − 1 so rank(A′V0) = k − 1. Thus
rank(AV0) ≥ k − 1 because adding on rows to a matrix cannot decrease its rank. Since
rank(AV0) ≤ rank(V0) = k − 1 we have rank(AV0) = k − 1.

Lemma 2.4. Let C ∈ Fk×nq be of the form C = FV0 + E. Let ρ = {i ≤ n | Ē{i} = 0} and
let β be the set of indices of the columns of C that end in 0. If there is a set ρ′ ⊂ ρ∩ β with
|ρ′| ≥ k − 1 then ρ ⊂ β.
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Proof. We will show that colsp(Cρ) is a subspace of colsp(Cβ). Since every column indexed
in β ends in 0 this will mean that every column indexed in ρ must also end in 0 and so ρ ⊂ β.

Since Eρ = 0 we have Cρ = (FV0)
ρ. Thus the column space of Cρ is a subspace of

colsp((FV0)
ρ) which is a subspace of colsp(FV0).

We know that rank(FV ρ′

0 ) = rank(F ) by Lemma 2.3 since ρ′ ≥ k − 1. Lemma 2.3 also

tells us that rank(FV0) = rank(F ) and so rank(FV ρ′

0 ) = rank(FV0). Clearly colsp(FV ρ′

0 )
is a subspace of colsp(FV0) and since these spaces have equal dimension colsp(FV0) =

colsp(FV ρ′

0 ).

We also know that FV ρ′

0 = (FV0)
ρ′ = Cρ′ and the column space of Cρ′ is a subspace of

the column space of Cβ because ρ′ ⊂ β. Therefore colsp(FV ρ′

0 ) is a subspace of colsp(Cβ).
Putting everything together gives

colsp(Cρ) ⊂ colsp(FV0) = colsp(FV ρ′

0 ) ⊂ colsp(Cβ).

Corollary 2.5. Let C ∈ Fk×nq be of the form C = FV0 +E. Let ρ = {i ≤ n | Ē{i} = 0} and
let β be the set of indices of the columns of C that end two 0’s. If there is a set ρ′ ⊂ ρ ∩ β
with |ρ′| ≥ k − 1 then ρ ⊂ β.

Proof. Let C ′ be the matrix C with the last row removed and define F ′ and E ′ similarly.
Now β is the set of indices of the columns of C ′ that end in 0 and so the result follows from
Lemma 2.4.

Definition 2.6. Let γ ∈ P(n) be a subset of the indices of the columns of C ∈ Fm×nq . Then
to row reduce C with respect to the columns indexed in γ we

1. Construct an n × n permutation matrix P whose first |γ| columns have the form
(0, ..., 0, 1, 0, ..., 0)T where 1 is the ith entry for i ∈ γ.

2. Apply Gaussian elimination to CP .

3. Multiply the result by P−1 on the right.

Lemma 2.7. If C̄ is the result of row reducing C with respect to the columns indexed in γ
then there is an invertible matrix M such that C̄ = MC.

Proof. Let P be the permutation matrix prescribed in Definition 2.6. There is an invertible
matrix M such that MCP is the result of applying Gaussian elimination to CP (cf. [5,
chap. 3]). Then C̄ = MCPP−1 = MC.

Lemma 2.8. For A←u Fm×nq where m ≥ n

Pr[rank(A) = n] =
n−1∏
i=0

1− qi−m
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Proof. Let Ai denote the submatrix of A formed by its first i columns. We proceed by
induction.

Pr[rank(A1) = 1] =
qm − 1

qm

since we must rule out the possibility of the first column being all zero.
For Ai to be full rank, Ai−1 must be full rank and the ith column of A must not be one

of the qi−1 linear combinations of the first i− 1 columns of A.

Pr[rank(Ai) = i] = Pr[rank(Ai−1) = i− 1] · q
m − qi−1

qm

Thus

Pr[rank(A) = n] =
n−1∏
i=0

qm − qi

qm

=
n−1∏
i=0

1− qi−m.
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Chapter 3

Basic Bubbles

To set up an encryption session we choose a finite field Fq of order q and integer parameters
k ≤ n < q. These are all parameters that we assume an adversary knows or could easily
find out. Each ciphertext will encrypt a single field element in a vector of length n. Usually
the parameter k � n for reasons that will soon be apparent. The key is a vector of distinct
nonzero field elements x = (x1, ..., xn) ∈ (Fq\{0})n where xi 6= xj for i 6= j.

To encrypt a plaintext p ∈ Fq we generate a random polynomial f(x) ←u Fq[x]k−1 and
set f̄(x) = p+ xf(x). We call f̄(x) the encrypting polynomial. Then the encryption of p is

Encx(p) = (f̄(x1), f̄(x2), ..., f̄(xn)).

Sometimes we will want to specify a specific polynomial g instead of having one generated
at random. We denote this by Encx,g(p) = (ḡ(x1), ḡ(x2), ..., ḡ(xn)) where ḡ(x) = p + xg(x)
as before. If a polynomial is not specified, i.e. Encx(p), then it is understood one should be
selected uniformly at random from Fq[x]k−1.

A ciphertext can be decrypted using Lagrange interpolation to reconstruct f̄(x) and then
it is easy to find the plaintext by computing p = f̄(0).

The encryption system is summarized in Algorithm 3.1.

Example 3.1.
Public parameters: Fq = Z11, n = 4 and k = 3
Key: x = (3, 5, 2, 10)
Plaintext: p = 7
Random polynomial: f(x) = 4 + 0x ∈ Z11[x]k−1

To encrypt p we set the encrypting polynomial f̄ = p+ xf(x) = 7 + 4x and so

Encx,f (7) = (8, 5, 4, 3).

To decrypt with Lagrange interpolation we only need to use three x values because
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Setup:

1. Public parameters: finite field Fq, integers k ≤ n < q

2. Key: x ∈ (Fq\{0})n with xi 6= xj for i 6= j

Encryption of plaintext p ∈ Fq:

1. Generate random polynomial f(x)←u Fq[x]k−1

2. Set encrypting polynomial f̄(x) = p+ xf(x)

3. Ciphertext c = Encx,f (p) = (f̄(x1), f̄(x2), ..., f̄(xn))

Decryption of ciphertext c:

1. Use Lagrange interpolation to reconstruct f̄ from x and c

2. Calculate p = f̄(0)

Algorithm 3.1: Basic Bubbles encryption and decryption

deg(f) < k = 3. For a general ciphertext c, f is

f(x) = c1 ·
(x− 5)(x− 2)

(3− 5)(3− 2)
+ c2 ·

(x− 3)(x− 2)

(5− 3)(5− 2)
+ c3 ·

(x− 3)(x− 5)

(2− 3)(2− 5)

= c1 · (x2 + 4x+ 10) · 5 + c2 · (x2 + 6x+ 6) · 2 + c3 · (x2 + 3x+ 4) · 4
= x2(5c1 + 2c2 + 4c3) + x(9c1 + c2 + c3) + (6c1 + c2 + 5c3).

Then f(0) = 6c1 + c2 + 5c3. Note we went through substantially more computation than
is necessary. We do not need to reconstruct the entire polynomial f(x) since we only need
f(0). The alternative computation is

f(0) = c1 ·
5 · 2

(3− 5)(3− 2)
+ c2 ·

3 · 2
(5− 3)(5− 2)

+ c3 ·
3 · 5

(2− 3)(2− 5)

= 6c1 + c2 + 5c3

which is the same result. Using this we can decrypt the ciphertext (8, 5, 4, 3).

Decx((8, 5, 4, 3)) = 6 · 8 + 5 + 5 · 4 = 7

This is the original plaintext p that we encrypted.
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Bubbles gets its name because we can visualize the ciphertext as bubbles floating above
the x-axis as in Figure 3.1. Anyone with the key knows where the bubbles are “tied down”
and can use Lagrange interpolation to reconstruct f(0). Everyone else just sees the bubbles
floating. They know the height of each one but not the x coordinate.

x

f(x)

00 1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

Figure 3.1: Ciphertext as bubbles: x = (1, 5, 2, 6), f̄(x) = x2 − 6x+ 9, c = (4, 4, 1, 9)

3.1 Homomorphic

This system has redundancy since n (the length of ciphertexts and the key) only needs to be
equal to k (bound on the degree of polynomials) in order to decrypt. However we typically
set n� k. This is so that the system is multiplicatively homomorphic.

Recall that a system is homomorphic if

c1 = Encx(p1) =⇒ p1 + p2 = Decx(c1 ⊕ c2)
c2 = Encx(p2) p1 · p2 = Decx(c1 ⊗ c2)

for some efficient operations ⊕ and ⊗. In this case ⊕ is entrywise addition and ⊗ is entrywise
multiplication i.e. (1, 2, 3, 4)⊕(2, 1, 0, 1) = (3, 3, 3, 5) and (1, 2, 3, 4)⊗(2, 1, 0, 1) = (2, 2, 0, 1).
Proposition 3.2 says that if we add ciphertexts together we get an encryption of the sum of
their plaintexts and that c1 ⊗ c2 is an encryption of the product of their plaintexts

Proposition 3.2. If c1 = Encx,f1(p1) and c2 = Encx,f2(p2) then c1⊕c2 = Encx,f1+f2(p1+p2)
and c1 ⊗ c2 = Encx,f1·f2(p1p2).

Proof.
c1 = Encx,f1(p1) = (f̄1(x1), f̄1(x2), ..., f̄1(xn))

c2 = Encx,f2(p2) = (f̄2(x1), f̄2(x2), ..., f̄2(xn))

c1 ⊕ c2 = (f̄1(x1) + f̄2(x1), f̄1(x2) + f̄2(x2), ..., f̄1(xn) + f̄2(xn))

= (f1 + f2(x1), f1 + f2(x2), ..., f1 + f2(xn))

= Encx,f1+f2(p1 + p2)

10



because

f̄1(x) + f̄2(x) = p1 + xf1(x) + p2 + xf2(x)

= p1 + p2 + x(f1(x) + f2(x))

= f1 + f2(x)

The proof for multiplication is similar.

We can decrypt c1 ⊕ c2 and c1 ⊗ c2 by reconstructing f1 + f2 and f1 · f2 respectively and
evaluating at 0. This can be done without a hitch for f1 + f2 since deg(f1 + f2) < k ≤ n.
However deg(f1 · f2) = deg(f1) + deg(f2) so if deg(f1) = deg(f2) = k then deg(f1 · f2) = 2k
which can only be recovered if n > 2k. Thus the size of n limits the number of multiplications
that can be performed on the ciphertext.

Recall that in a multiplicative circuit of depth d, 2d ciphertexts are multiplied together.
This means that the encrypting polynomial of the product ciphertext is a product of 2d

polynomials. Figure 3.2 shows a circuit of depth 2 that shows the degree of the encrypting
polynomial of the ciphertext at each stage.

deg k deg k deg k deg k

deg 2k deg 2k

deg 22k

Figure 3.2: Multiplicative circuit of depth 2

To decrypt ciphertexts that are output from a circuit of depth d we must make

n ≥ 2d(k − 1) + 1. (3.1)

(Recall the encrypting polynomials have degree less than k.) Thus n � k if we want to
retain the ability to decrypt after ciphertexts have been multiplied with each other many
times. Table 3.1 shows the maximum possible depth of multiplicative circuits for various
values of n and k.

Throughout this paper we will only deal with cryptanalysis of ciphertexts that are the
output of the encryption function as opposed to the product of an arithmetic circuit. We
call such ciphertexts fresh. Being able to decrypt fresh ciphertexts constitutes a substantial
attack even though we may not be able to decrypt the result of an arithmetic circuit. For
instance consider the scenario where Bob is sending data to the cloud to be processed and
then retrieving the result. The fresh and processed ciphertexts are equally vulnerable and
an attacker could read any sensitive data as it was sent to the cloud.
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k
2 10 50 100 1000 10, 000

n

10 3 0
50 5 2 0
100 6 3 1 0
500 8 5 3 2
1000 9 6 4 3 0
106 19 16 14 13 9 6
109 29 26 24 23 19 16

Table 3.1: Maximum depth of multiplicative circuit

3.2 Linear Algebra Formulation

An alternative way of formulating the encryption process of Bubbles is through linear algebra.
It turns out that each ciphertext is a linear combination of rows of a Vandermonde matrix
and the space of all ciphertexts is the row space of a submatrix of the Vandermonde matrix.
We will use this fact to perform a known plaintext attack. While breaking the scheme we
will almost exclusively use the linear algebra formulation.

We assume an encryption session has been set up to work over a finite field Fq, has integer
parameters k ≤ n < q, and has secret key x = (x1, ..., xn) ∈ (Fq\{0})n where xi 6= xj for
i 6= j.

Construct the first k rows of a Vandermonde matrix

V =


1 1 1
x1 x2 . . . xn
x21 x22 x2n
...

. . .
...

xk−11 xk−12 . . . xk−1n

 .

Then to encrypt plaintext p we construct a vector

f = (p, f1, f2, ..., fk−1) where f1, ..., fk−1 ←u Fq.

Note that this vector also defines the polynomial f̄(x) = p + f1x + ... + fk−1x
k−1 and that

(f̄(x1), ..., f̄(xn)) = fV . So we can write

Encx(p) = fV.

As an example we rework Example 3.1 in terms of linear algebra.

Example 3.3 (Reworking of Example 3.1 in linear algebra terms).
Public parameters: Fq = Z11, n = 4 and k = 3
Key: x = (3, 5, 2, 10)

12



Plaintext: p = 7
Random polynomial: f(x) = 4 + 0x ∈ Z11[x]k−1

We set

f = (7, 4, 0) and V =

 1 1 1 1
3 5 2 10
9 3 4 1

 .

This gives
Encx,f (7) = fV = (8, 5, 4, 3)

which is exactly the ciphertext we got before.

This formulation makes it abundantly clear that the space of all possible ciphertexts is a
k dimensional subspace of Fnq . The space of all possible encryptions of 0 is a k−1 dimensional
subspace of Fnq equal to the row space of

V0 =


x1 x2 . . . xn
x21 x22 x2n
...

. . .
...

xk−11 xk−12 . . . xk−1n

 .

3.3 Cryptanalysis

The fact that the set of all ciphertexts is a subspace of Fnq makes bubbles wide open to a
known-plaintext attack. The general idea is that if we collect enough plaintext-ciphertext
pairs we can find a basis for all polynomials f with deg(f) < k and f(0) = 0. Then we
reduce any new ciphertext modulo this basis and end up with a constant polynomial which
is easy to decode.

Now we outline the cryptanalysis process including explanation about what the steps
do. Algorithm 3.2 gives the same method much more concisely. We assume we have the
plaintexts p1, ..., pm, their encryptions c1, ..., cm and a ciphertext c that we wish to decrypt.

1. Construct a matrix C ∈ Fm×nq where the ith row is ci − pi1.

Each row of C is an encryption of 0. Using the linear algebra formulation C = FV0
for some F ∈ Fm×(k−1)q . Assuming m is large enough and F is sufficiently random, the
row space of C is the space of all possible ciphertexts encrypting 0.

2. Row reduce C and take all non-zero rows as a basis B′ of all possible ciphertexts
encrypting 0.

Here we can easily check that the row space of C is the space of all possible
ciphertexts encrypting 0 since if it is rank(C) = |B′| = k − 1.

3. Create the matrix B whose last row is the all ones vector and the rest of the rows are
the vectors in B′.

13



The row space of B is the space of all possible ciphertexts. This means that there
are some f1, ..., fk−1 such that (f1, ..., fk−1, p)B = c.

4. Solve the equation Ba = (0, ..., 0, 1)T .

5. The plaintext is ca.

This is because ca = (f1, ..., fk−1, p)Ba = (f1, ..., fk−1, p)(0, ..., 0, 1)T = p

Note that all but the last step can be done without c and are essentially precomputation.
We will find it convenient to define a function ω on (k−1)×k matrices where if the rows

of C ∈ F(k−1)×k
q are a basis for all encryptions of 0 then ω(C) is the precomputation of the

algorithm to break Bubbles i.e. steps 2 – 4.

Definition 3.4. To compute ω(C) augment the matrix C by adding a row of all ones on
the bottom of C and call this matrix C ′. If C ′ is not invertible then ω(C) = 0. Otherwise
ω(C) is the last column of C ′−1.

We can show that if the rows of C are linearly independent encryptions of 0, then the
product of a ciphertext with ω(C) is the plaintext.

Proposition 3.5. Let F ∈ Fk−1,k−1q be full rank. Then Encx(p)ω(FV0) = p where the xi in
V0 are the entries of x.

Proof. Set C equal to the matrix FV0 augmented with a row of ones on the bottom and set
F ′ equal to the matrix F augmented as shown

F ′ =


0
... F
0
1 0 ... 0

 .

Then C = F ′V and F ′ is invertible. What’s more the last column of F ′−1 is (1, 0, ..., 0)T .
Since Vandermonde matrices are invertible and the product of invertible matrices is invert-
ible, C is invertible and so

ω(FV0) = last column of C−1

= last column of V −1F ′−1

= V −1(1, 0, ..., 0)T .

Next note that Encx(p) = (p, f1, ..., fk−1)V for some f1, ..., fk−1 ∈ Fq and so

Encx(p)ω(FV0) = (p, f1, ..., fk−1)V V
−1(1, 0, ..., 0)T

= (p, f1, ..., fk−1)(1, 0, ..., 0)T

= p.
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Precomputation:

1. Collect m plaintext-ciphertext pairs (p1, c1), ..., (pm, cm) and set C as the matrix
whose ith row is ci − pi1.

2. Row reduce C and let α = {i | C{i} 6= 0} be the set of indices of all non-zero rows.

3. If |α| < k − 1 then go back to (1). Otherwise continue to (3).

4. Compute a = ω(Cβ
α) where β = {1, ..., k}.

Decryption of ciphertext c:

1. Calculate p = ca

Algorithm 3.2: Cryptanalysis of basic Bubbles

Using this function ω, we write the cryptanalysis method formally in Algorithm 3.2.
It is interesting to note that this attack can work even if no plaintext is known as long as

multiple ciphertexts encrypt each plaintext i.e. instead of plaintext-ciphertext pairs you have
ciphertext-ciphertext pairs where both ciphertexts are encryptions of the same plaintext. In
this case we just alter step 1. Instead of making the ith row of C ci− pi1, we make it ci− c′i.
Each row is still an encryption of 0.
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Chapter 4

Adding Chaff

The method of popping bubbles relies on the ciphertexts all living in a k dimensional subspace
of Fnq . The next two chapters describe different ways to take the ciphertexts out of this
subspace in the hope of making it secure. However we will see that an attacker can usually
put them back in the subspace and so these versions of bubbles are insecure except for when
the parameters are chosen well.

4.1 Encryption and Decryption

As a first attempt to take the ciphertexts out of their k dimensional subspace we expand
each ciphertext by inserting random entries called chaff in predetermined positions. These
positions are part of the key and kept secret. Now the ciphertexts are not restrained to a k
dimensional subspace of Fnq so the cryptanalysis method from Chapter 3 will no longer work.
However anyone with the key knows to ignore those positions when decrypting. This new
encryption and decryption scheme is shown in Algorithm 4.1 and an example is worked out
in Example 4.1.

Example 4.1 (Expansion of Example 3.1).
Public parameters: Fq = Z11, n = 4, k = 3, n′ = 7
Key: x = (3, 5, 2, 10) y = (1, 3, 7)
Plaintext: p = 7

As in Example 3.1 we randomly choose f(x) = 4 + 0x so that our encrypting polynomial
is f̄(x) = 7 + 4x. For each of the three coordinates specified in y we uniformly choose a
value from Z11, namely 4, 10 and 2. Then

Enc(7) = (4, 8, 10, 5, 4, 3, 2).
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Setup:

1. Public parameters: finite field Fq, integers k ≤ n < q and n′ ≥ n

2. Key: x ∈ (Fq\{0})n with xi 6= xj for i 6= j and y ∈ Pn′−n(n′)

Encryption of plaintext p ∈ Fq:

1. Generate random polynomial f(x)←u Fq[x]k−1

2. Set encrypting polynomial f̄(x) = p+ xf(x)

3. Set c = Encx,f (p) = (f̄(x1), f̄(x2), ..., f̄(xn))

4. Generate random ri ←u Fq for i ∈ y.

5. Ciphertext is c with ri inserted into the ith coordinate for i ∈ y.

Decryption of ciphertext c:

1. Remove the entries of c indexed by values in y.

2. Use Lagrange interpolation to reconstruct p = f̄(0) from x and c

Algorithm 4.1: Bubbles with chaff encryption and decryption

4.2 Cryptanalysis

To break this scheme all we have to do is figure out which locations are chaff. To do this we
construct a matrix C ∈ Fm×n

′
q as before where the ith row is an encryption of 0. When there

is no chaff, i.e. n′ = n, then C has rank k. Adding chaff adds a column to C that is most
likely linearly independent of the current columns and so raises the rank to k + 1. For now
we assume that this is always true and later will analyze the probability of it being false.
Because of this assumption we can also assume that any column is a linear combination of
other columns if and only if it is not a chaff column.

If 2k − 1 ≤ n we can find k non-chaff columns simply by row reducing C and taking
all of the non-pivot columns. These are guaranteed to be non-chaff since they are linear
combinations of other columns. There will be at least k of them because the space spanned
by the non-chaff columns is k − 1 dimensional and so only k − 1 non-chaff columns will be
pivot columns. This leaves n−(k−1) ≥ k columns as non-pivot columns. Now any ciphertext
can be decrypted as in the previous section by only considering the entries corresponding to
the selected non-chaff columns.

17



If 2k− 1 > n then the above method will not supply enough non-chaff columns. Instead
we can winnow out the chaff columns one by one by comparing rank(C) with rank(Ci) where
Ci is the matrix C without the ith column. Then rank(Ci) = rank(C) if column i is not chaff
and rank(Ci) = rank(C) − 1 if column i is chaff. This method requires more computation
but is guaranteed to find all non-chaff columns.

These methods depend on (1) n being larger than k and (2) the chaff columns being
linearly independent from the non-chaff columns and each other. If n = k then the set of
non-chaff columns are linearly independent. If (2) also holds, every single column will be
weeded out as chaff leaving no information that can be used to decrypt a ciphertext. This is a
success for Bob. However if n = k then Bob cannot decrypt the output of any multiplicative
circuit. He is restricted to additive circuits. Thus Bubbles with chaff may be secure if it will
only be used with additive circuits.

If we assume that Bob has designed the system so that he can decrypt the output of a
multiplicative circuit of depth at least 1 then we know that (1) holds. Then the probability
of (2) can be made as close to 1 as we want by increasing m, the number of encryptions
of zero, or q, the order of the field. The cryptanalyst does not have control over q but we
assume he can have as many known plaintext-ciphertext pairs as he wants and so he can
control the likelihood of success through m.

4.2.1 Probability of Success

We now calculate the probability of a successful decryption assuming that (1) holds i.e. we
calculate the probability of (2). Consider the probability that a vector of length m is linearly
independent of the columns of a matrix with m rows and rank k over a field of order q. We
denote this probability as

Prm,qk := Pr[v /∈ colsp(C)| rank(C) = k,v←
u

Fmq ].

If a vector v and the columns of C are linearly dependent then the vector is one of the qk

vectors in the column space of C. Since there are qm possible values for v the probability v
is dependent is qk−m. Therefore

Prm,qk = 1− qk−m.

If there are s < m−k chaff columns then the probability they are all linearly independent
w.r.t. each other and the non-chaff columns is

s−1∏
i=0

Prm,qk+i =
s−1∏
i=0

1− qk+i−m >
(
1− qk+s−1−m

)s
If we want to be able to separate the “wheat” from the chaff with probability τ then we

need at least
m = k + s− 1− logq

(
1− s
√
τ
)
< n− logq

(
1− s
√
τ
)

ciphertext plaintext pairs.
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Chapter 5

Adding Error

Bubbles is easily broken in its original form and adding chaff does not increase its security.
Bubbles with chaff was easily broken because all spurious entries were always in the same
positions. What would happen if random values were inserted at random places in the
ciphertext? As an attacker collected more and more encryptions of 0 (plaintext-ciphertext
pairs), more and more columns of the matrix C from the chaff decryption algorithm would
contain errors. In a well designed system, close to every column of C would have an error
by the time an attacker had enough encryptions of 0. This renders the attacker’s decryption
algorithm in Chapter 4 useless.

However introducing errors in random locations also prevents Bob (someone who has the
key) from decrypting using any algorithm introduced so far. Bob needs a way to recognize
which entries are noise and recover the original ciphertext. This is the study of error cor-
recting codes. Fortunately for Bob, all ciphertexts encrypted using a single key are precisely
generalized Reed-Solomon code words [11].

Reed-Solomon codes are error correcting codes used extensively in CD’s, DVD’s, bar-
codes, RAID storage architecture etc. They have the property that if a limited number
of entries of a codeword are corrupted (i.e. changed to a different value) then the original
codeword can be recovered efficiently. The interested reader may consult [11] for a thorough
explanation of Reed-Solomon decoding. We will only need the following proposition which
we state without proof.

Proposition 5.1. Let c = Encx,f,ε(p), n = length(x) = length(ε) and k = deg(f) + 1. Then
Reed-Solomon decoding can reconstruct f̄ from x and c if wH(ε) < n−k

2
.

The encryption function Encx,f,ε(p) will be defined soon. For now it suffices to know that
the vector ε ∈ Fnq is a vector of errors we add to the ciphertext.

Anyone with the key can use Reed-Solomon decoding to decrypt the ciphertext but
the cryptanalysis methods of the previous sections no longer work. However an algorithm
based on the same principles as in the previous sections will break Bubbles with errors for
some parameter choices. While some parameter choices leave Bubbles with errors resistant
to this attack, we will see that those parameter choices make Bubbles very inefficient and
impractical. At this time virtually all homomorphic encryption systems are impractical so
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this may not seem like a big deal. However these safe parameter choices make Bubbles less
efficient than the most recent inefficient schemes.

5.1 Bob’s Perspective

First we look at the system from the perspective of Bob wanting to encrypt and decrypt. The
set up is the same as before except we also choose a parameter e < n−k

2
. This is the number

of errors per ciphertext. For each encryption we select a polynomial f(x) ←u Fq[x]k−1 as
before. We also select an error vector ε = (ε1, ..., εn) uniformly at random from the set of all
vectors in Fnq with Hamming weight e. We denote the ciphertext resulting from these choices
f and ε by

Encx,f,ε(p) := (f̄(x1) + ε1, f̄(x2) + ε2, ..., f̄(xn) + εn).

If f and ε are not specified we write Encx(p) and assume f and ε are chosen uniformly at
random.

To decrypt a ciphertext c = (f̄(x1) + ε1, ..., f̄(xn) + εn), Bob can use generalized Reed
Solomon decoding to reconstruct f̄(x) and then compute p = f̄(0). By Proposition 5.1 this

works as long as x is known and wH(ε) < n−deg(f)−1
2

.
These encryption and decryption algorithms are summarized in Algorithm 5.1.

Setup:

1. Choose public parameters: finite field Fq, integers k ≤ n < q and e < n−k
2

2. Choose secret key: x ∈ (Fq\{0})n with xi 6= xj for i 6= j

Encryption of plaintext p ∈ Fq:

1. Generate random polynomial f(x)←u Fq[x]k−1

2. Set f̄(x) = p+ xf(x)

3. Generate random vector ε←u {ε ∈ Fnq | wH(ε) = e}

4. Ciphertext c = Encx,f,ε(p) = (f̄(x1) + ε1, f̄(x2) + ε2, ..., f̄(xn) + εn)

Decryption of ciphertext c:

1. Use Reed-Solomon decoding to reconstruct f̄(x) from x and c

2. Calculate p = f̄(0)

Algorithm 5.1: Bubbles with errors encryption and decryption

20



Bob can decrypt any fresh ciphertexts. However he runs into issues whenever dealing
with additive or multiplicative circuits of depth greater than 0. The non-zero ε are not
restricted to the same positions in different ciphertexts like the chaff as described in Chapter
4. Let c and c′ be ciphertexts with wH(ε) = e and wH(ε′) = e′. Their sum and product have
up to e + e′ values corrupted. If multiple ciphertexts with e errors are input to an additive
or multiplicative circuit of depth d then the resulting ciphertext has 2de errors. Therefore to
ensure correct decryption of the output of an additive circuit of depth d, e must be bounded
by

e ≤ n− k
2d+1

. (5.1)

In a multiplicative circuit we must also factor in how the degrees of the encrypting
polynomials f grow when the ciphertexts are multiplied. Bob must be able to decrypt a
message encrypted with a polynomial of degree up to 2d(k − 1). This means

e ≤ n− 2d(k − 1)− 1

2d+1
(5.2)

to ensure Reed-Solomon decryption will correctly decode the message.

5.2 Cryptanalysis

The upper bounds on e in (5.1) and (5.2) will allow an adversary to break the scheme. We
will find that for any choices of n, k, and q and for all τ ∈ (0, 1) there is a value D such
that an adversary can perform a known plaintext attack with probability of success greater
than τ if d ≥ D. Note that this is trivially true if D is set to be the maximum multiplicative
circuit depth possible for a given n and k. In this case e = 0 and so the methods of Chapter
3 guarantee success. Our goal is to make D as small as possible. Loosely we will find that
D is about half of the maximum multiplicative circuit depth.

5.2.1 Algorithms

The basic idea of the method is that to decrypt a fresh ciphertext we just need k entries in
the ciphertext that are error free as well as k− 1 linearly independent encryptions of 0 with
the same k entries being error free. If we have this we can decrypt using the method from
Chapter 3.

However we do not know which entries are error free. Instead of proceeding with certainty
we must guess. If we guess many times we will get multiple potential plaintexts. Some will
be wrong because errors messed up our computation but most likely the correct plaintext
will also show up. In fact the correct plaintext will most likely show up more frequently than
any other value if d ≥ D. By guessing enough times we can control the probability that the
most frequently occurring value is the correct plaintext.
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Precomputation Method 1:

1. Collect m plaintext-ciphertext pairs (p1, c1), ..., (pm, cm) and set C as the matrix
whose ith row is ci − pi.

2. For i = 1, ..., λ

(a) (αi, βi)←u Pk−1(m)× Pk(n)

(b) ai = ω(Cβi
αi

)

(c) Store ai and βi

Precomputation Method 2 (if ke < n−k+1
2

):

1. Collect k plaintext-ciphertext pairs (p1, c1), ..., (pk, ck) and set C as the matrix with
k rows whose ith row is ci − pi.

2. For γ ∈ Pk−1(n)

(a) Row reduce C with respect to the columns indexed in γ and call the resulting
matrix C̄.

(b) If over n+k−1
2

of the columns end in two 0’s go to step 1.

(c) If over n+k−1
2

of the columns end in one 0

i. Set β to be the set of indices of columns of C̄ that end in 0.

ii. Break to step 3.

3. For i = 1, ..., λ

(a) βi ←u Pk(β), α = {1, ..., k − 1}
(b) ai = ω(C̄βi

α )

(c) Store ai and βi

Decrypting ciphertext c:

1. Calculate the product pi = cβiai for i = 1, ..., λ.

2. The plaintext is the value p which maximizes |{i : pi = p}|.

Algorithm 5.2: Two methods for breaking Bubbles with errors
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Figure 5.2 contains two algorithms to break Bubbles with errors. Each algorithm performs
different precomputation on encryptions of 0 but process a ciphertext in the same way.
Precomputation Method 1 exactly follows the method sketched above. Precomputation
Method 2 spends time and computation weeding out many of the corrupted terms similarly
to how we winnowed out the chaff. However these extra steps only make sense if ke < n−k+1

2
.

Thus Method 2 can only be applied in some cases and has the cost of more computation but
is more likely than Method 1 to decrypt correctly.

5.2.2 Probability of Successful Decryption Using Method 1

We now calculate τ1 the probability of a successful decryption using Precomputation Method
1. Suppose c is an encryption of p∗. If over half of the pi equal p∗ then we are guaranteed
successful decryption and so

τ > Pr[|{i : pi = p∗}| > λ/2].

We define π1 as the probabilities that pi = p∗ for i ←u {1, ..., λ} when Precomputation
Method 1 is used. In all future probabilities we shall assume that i←u {1, ..., λ}. Since the
choices of (αi, βi) are independent events, so is the event that pi = p∗. This means we can
write

Pr[|{i : pi = p∗}| = r] = πr · (1− π)λ−r
(
λ

r

)
which gives

τ1 > Pr [|{i : pi = p∗}| > λ/2] =
λ∑

r=bλ
2
c+1

πr1 · (1− π1)λ−r
(
λ

r

)
(5.3)

If π1 > 0.5 we can force τ1 to be within epsilon of 1 by increasing λ. So it is possible to
break the scheme if π1 is larger than 0.5. To give an idea of the relationship between these
numbers Table 5.1 shows the lower bound on τ1 given by equation (5.3) for a few values of
π1 and λ.

λ
10 30 50

π1

.3 0.047349 0.0063703 0.00093318

.4 0.16624 0.097057 0.057344

.5 0.37695 0.42777 0.44386

.6 0.6331 0.82463 0.90219

.7 0.84973 0.98306 0.99763

.8 0.96721 0.99977 1.00000

.9 0.99837 1.00000 1.00000

Table 5.1: Lower bound on τ1 given by equation (5.3)
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Derivation of π1

We now calculate π1. We can write

c
1×n

= [p∗ f
1×(k−1)

] · V
k×n

+ e
1×n

and
C
m×n

= F
m×(k−1)

· V0
(k−1)×n

+ E
m×n

.

In the encryption process f and the rows of F were chosen uniformly at random from Fk−1q

and e and the rows of E were chosen uniformly at random from the vectors in Fnq with
Hamming weight e. The matrices V0 and V have the form

V :=


1 1 1
x1 x2 . . . xn
x21 x22 x2n
...

. . .
...

xk−11 xk−12 . . . xk−1n

 and V0 :=


x1 x2 . . . xn
x21 x22 x2n
...

. . .
...

xk−11 xk−12 . . . xk−1n

 . (5.4)

where the xi are the entries of the secret key used to encrypt all ciphertexts.
By Proposition 3.5, pi = cβiω(Cβi) = p∗ if eβi = 0, Eβi

αi
= 0 and rank(Fαi) = k−1. These

are all independent events so

π1 ≥ Pr[eβi = 0] · Pr[Eβi
αi

= 0] · Pr[rank(Fαi) = k − 1]. (5.5)

Since e has length n and Hamming weight e

Pr[eβi = 0] =

(
n−e
k

)(
n
k

)
>

(
n− e− k + 1

n− k + 1

)k
=

(
1− e

n− k + 1

)k
. (5.6)

Using similar logic and knowing that the rows of E are independent of each other gives

Pr[Eβi
αi

= 0] =

((
n−e
k

)(
n
k

) )k−1

>

(
1− e

n− k + 1

)k(k−1)
. (5.7)

By Lemma 2.8 since Fαi is (k − 1)× (k − 1) we know that

Pr[rank(Fαi) = k − 1] =
k−2∏
i=0

1− qi−k+1 >

(
1− 1

q

)k−1
. (5.8)
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Substituting equations (5.6) - (5.8) into (5.5) gives

π1 >

(
1− e

n− k + 1

)k2 (
1− 1

q

)k−1
.

Recall that e is bounded above to ensure that someone with the key can correctly decrypt
the output from an additive or multiplicative circuit of depth d. See (5.1) for the bound for
an additive circuit and (5.2) for the bound in multiplicative circuits. Also, q > n since the
key x consists of n distinct xi ∈ Fq. We can use these bounds to bound π1 below in terms of
just n, d and k. If the ciphertexts are designed to work in a multiplicative circuit of depth
d then

π1 > π×1 (n, d, k) :=

(
1−
bn−2

d(k−1)−1
2d+1 c

(n− k + 1)

)k2 (
1− 1

n

)k−1
. (5.9)

If they can be decrypted after an additive circuit of depth d then

π1 > π+
1 (n, d, k) :=

(
1−

b n−k
2d+1 c

(n− k + 1)

)k2 (
1− 1

n

)k−1
. (5.10)

Table 5.2 (resp. Table 5.3) shows the worst case values for π×1 (resp. π+
1 ) for various

values of n and d < log2 n (see (3.1)). For each n, d pair software was used to find the k
that minimizes π×1 (resp. π+

1 ). Then k was set to the integer nearest this value. This k was
used to calculate π×1 (resp. π+

1 ) so that Table 5.2 (resp. Table 5.3) represents a worst case
scenario from the perspective of an attacker. The tables in Appendix A show these choices
for k and the corresponding maximum value for e. In all tables, any number smaller than
10−100 is written as 0.000000.

This imitates the parameter choice of someone setting up an encryption session. From
the perspective of someone encrypting perhaps the most important parameters are n and d
since n is the overhead and d the utility of the system. Each ciphertext is n times the size
of the plaintext and d is the maximum depth of a multiplicative circuit that can process
the ciphertexts. The parameter k affects the amount of computation time to encrypt and
decrypt.

Recall that once π1 > 0.5 we can increase the algorithm’s probability of success τ1 by
increasing the number of samples λ. Hence Table 5.2 shows that for n = 100 ciphertexts
designed for an additive circuit of depth 4 or more can be decrypted by this algorithm with
probability τ < 1. Thus someone encrypting is restricted to circuits of depth at most 3.
Similarly, if n = 1000 then the greatest circuit depth ciphertexts can be designed for is 5. If
n = 106 then the max circuit depth is 12. Finally, if n = 109 then the max depth is 18.

It is reasonable to suppose that the scheme may fare better if we just consider additive
circuits since when ciphertexts are added the degree of the encrypting polynomial does not
increase. This means that there can be more error terms which makes it harder to break.
However Table 5.3 shows us that for each of the given n an additive circuit can only have
depth one greater than the maximum safe depth of a multiplicative circuit. This is not a
significant increase so just considering additive circuits does not increase the usability of
Bubbles with error.
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n
100 1000 106 109

d

1 1.043314 · 10−64 0.000000 0.000000 0.000000
2 3.748847 · 10−05 0.000000 0.000000 0.000000
3 0.155564 9.864651 · 10−68 0.000000 0.000000
4 0.739350 3.593685 · 10−9 0.000000 0.000000
5 0.970299 8.214621 · 10−2 0.000000 0.000000
6 0.990000 0.775151 0.000000 0.000000
7 0.971304 0.000000 0.000000
8 0.998001 0.000000 0.000000
9 0.999000 0.000000 0.000000
10 1.216064 · 10−30 0.000000
11 1.778075 · 10−04 0.000000
12 0.340336 0.000000
13 0.872445 0.000000
14 0.982473 0.000000
15 0.998044 0.000000
16 0.999691 0.000000
17 0.999971 5.139106 · 10−15

18 0.999998 1.642708 · 10−02

19 0.999999 0.597796
20 0.937945
21 0.992045
22 0.998989
23 0.999875
24 0.999984
25 0.999998
26 0.999999
27 1.000000
28 1.000000
29 1.000000

Table 5.2: Lower bound on π1 given by equation (5.9) (d is depth of multiplicative circuit)
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n
100 1000 106 109

d

1 0.000000 0.000000 0.000000 0.000000
2 4.825043 · 10−35 0.000000 0.000000 0.000000
3 4.510746 · 10−5 0.000000 0.000000 0.000000
4 0.328208 6.919062 · 10−55 0.000000 0.000000
5 0.822048 1.118197 · 10−7 0.000000 0.000000
6 0.990000 0.158691 0.000000 0.000000
7 0.818199 0.000000 0.000000
8 0.981122 0.000000 0.000000
9 0.999000 0.000000 0.000000
10 0.000000 0.000000
11 4.417561 · 10−26 0.000000
12 6.585117 · 10−04 0.000000
13 0.397272 0.000000
14 0.891018 0.000000
15 0.985658 0.000000
16 0.998194 0.000000
17 0.999801 3.703848 · 10−97

18 0.999981 8.833603 · 10−13

19 0.999999 3.113657 · 10−2

20 0.648420
21 0.947287
22 0.993225
23 0.999150
24 0.999895
25 0.999987
26 0.999998
27 0.999999
28 1.000000
29 1.000000

Table 5.3: Lower bound on π1 given by equation (5.10) (d is depth of additive circuit)
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5.2.3 Probability of Successful Decryption Using Method 2

We will now calculate a lower bound for τ2, the probability of decrypting correctly using
Precomputation Method 2.

As in Method 1 let us write

C
k×n

= F
k×(k−1)

· V0
(k−1)×n

+ E
k×n

for the matrix C generated in step 1 of the algorithm. By Lemma 2.7 there is a matrix
M ∈ Fk−1×kq such that C̄ = MC. We set F̄ = MF and Ē = ME so that C̄ = F̄ V0 + Ē.

Similarly to Method 1, pi = p if eβi = 0, Ēβi
α = 0 and rank(F̄α) = k − 1. The bound for

Pr[eβi = 0] in (5.6) still holds. However the other two probabilities have changed.
First consider rank(F̄α). This is constant over i instead of changing over i like it did in

Method 1. This means we will want to calculate Pr[pi = p∗ | rank(F̄α) = k − 1] instead of
Pr[pi = p∗]. Therefore we write

τ2 > Pr[|{i : pi = p∗}| > λ/2]

= Pr[|{i : pi = p∗}| > λ/2 | rank(F̄α) = k − 1] · Pr[rank(F̄α) = k − 1]

and define π2 = Pr[pi = p∗ | rank(F̄α) = k − 1].
We will later show that Pr[rank(F̄α) = k − 1] > (1− q−2)k−1. Note that (1− q−2)k−1 =

1 + O(q−2). For large q this is very close to 1 in which case Table 5.1, which gives lower
bounds for τ1 for different values of π1, also applies to τ2 and π2 for all practical purposes.
Thus our goal is to make π2 > 0.5.

We set

ρ := {i ≤ n | Ē{i} = 0},
P := |ρ|,
P ′ := |{i ∈ β | Ē{i} = 0}|,
L := |{i ≤ n | Ē{i} 6= 0}| and

L′ := |{i ∈ β | Ē{i} 6= 0}|.

Thus ρ is the set of indices of “pure” columns of C̄ which can be used to correctly decrypt
a ciphertext and L is the number of corrupted columns which may “lie” about what the
plaintext is. We note that P + L = n, P ′ + L′ = |β|, P ′ ≤ P , L′ ≤ L and e ≤ L ≤ ke.

Remember that we only consider using Method 2 if ke < n−k+1
2

. We will show that this
guarantees that P ′ = P > n+k−1

2
.

Since L ≤ ke < n−k+1
2

, and P = n− L we have that P > n+k−1
2

. Now we just need that
P ′ = P .

We have that |ρ| = P > n+k−1
2

, |β| > n+k−1
2

, and ρ, β ⊂ P(n). Therefore |ρ ∩ β| > k − 1
and by Lemma 2.4 ρ ⊂ β. This means that P ′ = P . In other words β contains the indices
of all pure columns.
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Derivation of Pr[rank(F̄α) = k − 1]

We can now calculate a lower bound for the probability that rank(F̄α) = k − 1.

Lemma 5.2. rank(F̄α) = rank(F )

Proof. The last row of C̄ρ is 0 since ρ ⊂ β. Because Ēρ = 0 we have that C̄ρ = F̄ V ρ
0 and so

the last row of F̄ V ρ
0 is 0. But the rows of V ρ

0 are linearly independent by Lemma 2.2 since
|ρ| > k − 1. This means that the last row of F̄ is all zeros. Since F̄α is F̄ without its last
row we have rank(F̄α) = rank(F̄ ).

Since F̄ = MF and M is invertible rank(F ) = rank(F̄ ). Therefore rank(F̄α) = rank(F )

By Lemma 2.8 the probability that F is full rank is greater than (1− q−2)k−1. Therefore
Lemma 5.2 gives that

Pr[rank(F̄α) = k − 1] > (1− q−2)k−1.

Derivation of π2

We now calculate a lower bound for π2, the probability that pi = p∗ for i←u {1, ..., λ} when
Precomputation Method 2 is used given that rank(F̄α) = k − 1. So far we have

π2 ≥ Pr[eβi = 0] · Pr[Eβi
α = 0]

>

(
1− e

n− k + 1

)k
· Pr

[
Ēβi
α = 0

]
. (5.11)

Note that if L′ = 0 then Ēβi
α = 0 so

Pr
[
Ēβi
α = 0

]
≥ Pr [L′ = 0] .

There is a q−1 probability that a corrupted column lies in the (k − 1)-dimensional space
spanned by the columns of C̄β and so

Pr[L′ = 0] =

(
1− 1

q

)L
.

Since n < q and L ≤ ke we have

Pr[L′ = 0] >

(
1− 1

n

)ke
.

Therefore

π2 >

(
1− e

n− k + 1

)k (
1− 1

n

)ke
. (5.12)
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Like we did when calculating π1 we can write e in terms of k and d where d is the depth
of a multiplicative or additive circuit. In this way we define

π×2 (n, d, k) =

(
1−
bn−2

d(k−1)−1
2d+1 c

n− k + 1

)k (
1− 1

n

)kbn−2d(k−1)−1

2d+1 c

(5.13)

and

π+
2 (n, d, k) =

(
1−

b n−k
2d+1 c

n− k + 1

)k (
1− 1

n

)kb n−k
2d+1 c

. (5.14)

Again Tables 5.2 and 5.3 contain the lowest bound for π×2 and π+
2 , respectively. For each n

and d combination, computer software was used to minimize π×2 and π+
2 with respect to k

and then that k was used to calculate the value of π×2 and π+
2 . The tables in Appendix B

contain these values for k along the values values for e.
We can compare the probabilities of success for Methods 1 and 2 by comparing the π1

tables (Tables 5.2 and 5.3) with the π2 tables (Tables 5.4 and 5.5). Whenever Method 2 can
be used (when ke < n−k+1

2
) then π2 ≥ π1. This is as expected since Method 2 introduces

more precomputation to increase the probability of success. Also note that whenever we
cannot use Method 2, Method 1 is very unlikely to work so Method 2 is our best bet at
successfully decrypting a ciphertext.

These results are perhaps not quite as satisfactory as the results from the previous chap-
ters because there are parameter choices that leave Bubbles with errors resistant to our
attacks. However these parameters make Bubbles have a larger blow up factor than some of
the most recent homomorphic cryptosystems. There is a homomorphic cryptosystem that
can handle an arithmetic circuit of depth 20 when the ciphertext is 26.4 ·106 times the size of
the plaintext [4]. This is a smaller ciphertext blowup than Bubbles with errors requires. To
find the minimum ciphertext blowup Bubbles will have while supporting a depth 20 arith-
metic circuit, we minimize n with the constraint that π×2 (n, 20, k) < 0.5. Computer software
gives n ≈ 1013.
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n
100 1000 106 109

d

1 – – – –
2 – – – –
3 0.645258 – – –
4 0.902480 – – –
5 1.000000 0.775452 – –
6 1.000000 0.947174 – –
7 0.990025 – –
8 1.000000 – –
9 1.000000 0.384769 –
10 0.788044 –
11 0.941963 –
12 0.985110 –
13 0.996236 –
14 0.999048 0.394015
15 0.999776 0.792297
16 0.999936 0.943459
17 0.999990 0.985551
18 1.000000 0.996370
19 1.000000 0.999090
20 0.999773
21 0.999943
22 0.999985
23 0.999996
24 0.999999
25 0.999999
26 1.000000
27 1.000000
28 1.000000
29 1.000000

Table 5.4: Minimum value for π×2 given by equation (5.13) for given ciphertext size n and
multiplicative circuit depth d.
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n
100 1000 106 109

d

1 – – – –
2 – – – –
3 – – – –
4 0.781712 – – –
5 0.921592 0.375510 – –
6 1.000000 0.797584 – –
7 0.952926 – –
8 0.992016 – –
9 1.000000 – –
10 0.385899 –
11 0.787647 –
12 0.941963 –
13 0.985104 –
14 0.996286 –
15 0.999070 0.394039
16 0.999776 0.792293
17 0.999952 0.943459
18 0.999992 0.985554
19 1.000000 0.996370
20 0.999092
21 0.999773
22 0.999943
23 0.999985
24 0.999996
25 0.999999
26 0.999999
27 1.000000
28 1.000000
29 1.000000

Table 5.5: Minimum value for π+
2 given by equation (5.14) for given ciphertext size n and

additive circuit depth d.
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Appendix A

Lower bounds for π1

These tables contain the values for k and e that minimize π×1 and π+
1 for a given circuit

depth d. Any number smaller than 10−100 is written as 0.000000.

d k e π×1
1 34 8 1.043314 · 10−64

2 20 2 3.748847 · 10−5

3 9 2 0.155564
4 5 1 0.739350
5 4 0 0.970299
6 2 0 0.990000

d k e π+
1

1 48 13 0.000000
2 25 9 4.825043 · 10−35

3 13 5 4.510746 · 10−5

4 7 2 0.328208
5 4 1 0.822048
6 2 0 0.990000

Table A.1: n = 100

d k e π×1
1 493 3 0.000000
2 191 29 0.000000
3 88 18 9.864651 · 10−68

4 43 10 3.593685 · 10−9

5 22 5 8.214621 · 10−2

6 11 2 0.775151
7 5 1 0.971304
8 3 0 0.998001
9 2 0 0.999000

d k e π+
1

1 500 125 0.000000
2 250 93 0.000000
3 111 55 0.000000
4 63 29 6.919062 · 10−55

5 32 15 1.118197 · 10−7

6 16 7 0.158691
7 8 3 0.818199
8 4 1 0.981122
9 2 0 0.999000

Table A.2: n = 1000
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d k e π×1
1 499997 1 0.000000
2 249998 1 0.000000
3 124998 1 0.000000
4 62497 1 0.000000
5 31248 1 0.000000
6 15614 5 0.000000
7 7749 32 0.000000
8 3689 109 0.000000
9 1278 338 0.000000
10 642 167 1.216064 · 10−30

11 337 76 1.778075 · 10−4

12 173 36 0.340336
13 77 23 0.872445
14 42 10 0.982473
15 22 4 0.998044
16 10 3 0.999691
17 5 1 0.999971
18 3 0 0.999998
19 2 0 0.999999

d k e π+
1

1 500000 125000 0.000000
2 250000 93750 0.000000
3 125000 54687 0.000000
4 62500 29296 0.000000
5 31250 15136 0.000000
6 15625 7690 0.000000
7 7813 3875 0.000000
8 3907 1945 0.000000
9 1208 975 0.000000
10 977 487 0.000000
11 489 244 4.417561 · 10−26

12 245 122 6.585117 · 10−4

13 123 61 0.397272
14 62 30 0.891018
15 31 15 0.985658
16 16 7 0.998194
17 8 3 0.999801
18 4 1 0.999981
19 2 0 0.999999

Table A.3: n = 106
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d k e π×1
1 499999992 4 0.000000
2 249999996 2 0.000000
3 124999998 1 0.000000
4 62499998 1 0.000000
5 31249998 1 0.000000
6 15624998 1 0.000000
7 7812498 1 0.000000
8 3906248 1 0.000000
9 1953123 1 0.000000
10 976559 2 0.000000
11 488262 10 0.000000
12 244099 21 0.000000
13 121837 117 0.000000
14 60233 401 0.000000
15 26066 2226 0.000000
16 10146 2556 0.000000
17 5066 1282 5.1391 · 10−15

18 2564 625 1.6427 · 10−2

19 1268 320 0.597796
20 625 164 0.937945
21 314 81 0.992045
22 157 41 0.998989
23 72 24 0.999875
24 41 9 0.999984
25 21 4 0.999998
26 10 2 0.999999
27 4 2 1.000000
28 4 0 1.000000
29 2 0 1.000000

d k e π+
1

1 499999992 125000002 0.000000
2 249999996 93750000 0.000000
3 124999998 54687500 0.000000
4 62499999 29296875 0.000000
5 31250000 15136718 0.000000
6 15625000 7690429 0.000000
7 7812500 3875732 0.000000
8 3906250 1945495 0.000000
9 1953125 974655 0.000000
10 976563 487804 0.000000
11 488282 244021 0.000000
12 244141 122040 0.000000
13 122071 61027 0.000000
14 61036 30515 0.000000
15 30518 15258 0.000000
16 10544 7629 0.000000
17 7630 3814 3.7038 · 10−97

18 3815 1907 8.8336 · 10−13

19 1908 953 3.1137 · 10−2

20 954 476 0.648420
21 477 238 0.947287
22 239 119 0.993225
23 120 59 0.999150
24 60 29 0.999895
25 30 14 0.999987
26 15 7 0.999998
27 8 3 0.999999
28 4 1 1.000000
29 2 0 1.000000

Table A.4: n = 109
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Appendix B

Lower bounds for π2

We only consider using Precomputation Method 2 when ke < n−k+1
2

. If there are k and e
values that violate this inequality, π×2 and π+

2 are undefined.

d k e π×2
1 47 1 –
2 21 2 –
3 7 3 0.645258
4 5 1 0.902480
5 4 0 1.000000
6 2 0 1.000000

d k e π+
2

1 50 12 –
2 25 9 –
3 10 5 –
4 4 3 0.781712
5 4 1 0.921592
6 2 0 1.000000

Table B.1: n = 100

d k e π×2
1 497 1 –
2 245 2 –
3 107 9 –
4 29 17 –
5 14 9 0.775452
6 9 3 0.947174
7 5 1 0.990025
8 3 0 1.000000
9 2 0 1.000000

d k e π+
2

1 500 125 –
2 250 93 –
3 125 54 –
4 63 29 –
5 32 15 0.375510
6 16 7 0.797584
7 8 3 0.952926
8 4 1 0.992016
9 2 0 1.000000

Table B.2: n = 1000
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d k e π×2
1 499997 1 –
2 249994 3 –
3 124987 6 –
4 62472 14 –
5 31190 30 –
6 15498 63 –
7 7544 134 –
8 3337 285 –
9 978 488 0.384769
10 492 242 0.788044
11 245 122 0.941963
12 125 60 0.985110
13 65 29 0.996236
14 34 14 0.999048
15 14 8 0.999776
16 8 4 0.999936
17 5 1 0.999990
18 3 0 1.000000
19 2 0 1.000000

d k e π+
2

1 500000 125000 –
2 250000 93750 –
3 125000 54687 –
4 62500 29296 –
5 31250 15136 –
6 15625 7690 –
7 7813 3875 –
8 3907 1945 –
9 1954 974 –
10 977 487 0.385899
11 489 244 0.787647
12 245 122 0.941963
13 123 61 0.985104
14 62 30 0.996286
15 31 15 0.999070
16 16 7 0.999776
17 8 3 0.999952
18 4 1 0.999992
19 2 0 1.000000

Table B.3: n = 106
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d k e π×2
1 499999992 4 –
2 249999996 2 –
3 124999986 7 –
4 62499967 16 –
5 31249929 35 –
6 15624850 75 –
7 7812181 159 –
8 3905832 209 –
9 1952240 442 –
10 974689 937 –
11 484312 1985 –
12 235732 4204 –
13 104261 8905 –
14 30554 15241 0.394015
15 15333 7592 0.792297
16 7644 3807 0.943459
17 3820 1905 0.985551
18 1908 953 0.996370
19 954 477 0.999090
20 483 235 0.999773
21 242 117 0.999943
22 119 60 0.999985
23 62 29 0.999996
24 31 14 0.999999
25 13 8 0.999999
26 8 3 1.000000
27 4 2 1.000000
28 4 0 1.000000
29 2 0 1.000000

d k e π+
2

1 499999992 125000002 –
2 249999996 93750000 –
3 124999998 54687500 –
4 62499999 29296875 –
5 31250000 15136718 –
6 15625000 7690429 –
7 7812500 3875732 –
8 3906250 1945495 –
9 1953125 974655 –
10 976563 487804 –
11 488282 244021 –
12 244141 122040 –
13 122071 61027 –
14 61036 30515 –
15 30518 15258 0.394039
16 15259 7629 0.792293
17 7630 3814 0.943459
18 3815 1907 0.985554
19 1908 953 0.996370
20 954 476 0.999092
21 477 238 0.999773
22 239 119 0.999943
23 120 59 0.999985
24 60 29 0.999996
25 30 14 0.999999
26 15 7 0.999999
27 8 3 1.000000
28 4 1 1.000000
29 2 0 1.000000

Table B.4: n = 109
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