The Rational Design and Synthesis of
Ionophores and Fluoroionophores for the
Selective Detection of Monovalent Cations

By
John S. Benco

A Dissertation
Submitted to the Faculty
of the
WORCESTER POLYTECHNIC INSTITUTE
in partial fulfillment of the requirements for the
Degree of Doctor of Philosophy
in
Chemistry
by

April 7, 2003

APPROVED:
Dr. W. Grant McGimpsey, Major Advisor Dr. James W. Pavlik, Committee Member
Dr. Robert E. Connors, Committee Member Dr. Joseph S. Foos, Outside Reviewer

Dr. James P. Dittami, Head of Department



Abstract

The rational design, synthesis and complexation characteristics of several monovalent
cation-selective ligands are described. Molecular modeling employing a combination of
dynamics, mechanics (AMBER94) and electrostatics was used to design ligands for the
complexation of ammonium, potassium, sodium and lithium ions. A modular technique
was used to synthesize an ammonium selective ionophore based on a cyclic depsipeptide
structure (8). The ionophore was incorporated into a planar ion selective electrode (ISE)
sensor format and the selectivity tested versus a range of metal cations. It was found that
the membrane containing the polar plasticizer NPOE (nitrophenyloctylether) in the
absence of ionic additive exhibited near-Nernstian behavior (slope = 60.1 mV/dec @

37°C) and possessed high selectivity for ammonium ion over lithium and the divalent

cations, calcium and magnesium (log K ;gfj =-7.3, -4.4, -7.1 for lithium, calcium and

magnesium ions, respectively). The same membrane also exhibited sodium and

potassium selectivity that was comparable to that reported for nonactin (log K 1524{; =-

2.1, -0.6 for sodium and potassium, respectively, compared to -2.4, -0.9 in the case of

nonactin).

N-(9-methylanthracene)-25,27-bis(1-propyloxy)calix[4]arene-azacrown-5  (10)  was
synthesized and tested as a fluoroionophore for the selective detection of potassium ions.
Compound 10 acts as an “off-on” fluorescent indicator for ion complexation as a result of
photoinduced intramolecular electron transfer (PET). Studies demonstrate that 10 is
selective for potassium over other alkali metal cations, with excellent selectivity over
sodium and lithium (log Kg n, ~ log Kx 1; < -3.5) and moderate selectivity over rubidium

and cesium (log Kk z» ~ log Kg cs ~ -1).

N-(9-methylanthracene)-25,27-bis(1-propyloxy)-4-tert-butylcalix[4]arene-azacrown-3
(11) was synthesized and tested as a fluoroionophore for the selective detection of
lithium cations. When exposed to lithium ions in a 75:25 dichloromethane/THF solvent

mixture, the molecule, which operates on PET, exhibited a >106-fold enhancement in



fluorescence emission intensity. Selectivity studies demonstrated that 11 effectively

discriminates against sodium and potassium ions log K;;x, <-3.8 and log K;;x <-2.3.

A fluorescent sodium optode based on a fluoroionophore consisting of aminorhodamine
B covalently-linked through an amide bond to a calix[4]arene has also been developed
(12). The optode, fashioned by incorporation of the fluoroionophore into a single
component polymer matrix, operates on the basis of PET. The fluorescence intensity
increased linearly with increasing sodium ion concentration in the range 0.01 M to 2.0 M,
exhibiting a three-fold enhancement over this range. The optode provides selectivity for
sodium ions compared to potassium ions that is sufficient for clinical determinations of

sodium ion concentration.
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I: Introduction

The design of ligands for the complexation of ions has become a major research area in
recent years as reflected in the numerous reviews that have been written on the subject.’”
""" This interest is due to the fact that ion-complexing ligands have applicability in a wide
range of fields. For example, ion-complexing ligands have spurred the development of
new catalysts, ' antibiotics, * artificial sensory systems’ and therapeutic agents in
chelation therapy.®® One of the major driving forces in the research of new ligands, or
ionophores, is sensor development, particularly for clinical diagnostic purposes and
attention has focused on attaining high selectivity and sensitivity to specific ions.>”'" In
particular, due to their significant importance in the clinical diagnosis of disease, research
has centered on the complexation of alkali and alkali earth metal ions as well as

metabolites such as ammonium ion. '

Typically, ionophores now in use for clinical purposes have been developed using
empirical, trial and error techniques. Although many useful ionophores have been
obtained this way an alternative, rational approach is called for in which the fundamental
requirements of complexation are considered. Such an approach takes into account the
specific guests and employs the modern techniques of molecular modeling. Rational
ionophore design followed by systematic structural modifications in iterative steps is
likely to yield not only more selective and sensitive ionophores but also a set of general

rules that can be applied to the design of other systems.
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To this end, it is the goal of this work to design novel ionophores for the complexation of
monovalent cations such as potassium, sodium, lithium and ammonium based upon the
fundamental requirements for stable and selective host-guest interactions. A further goal
is to corroborate these requirements with modern molecular modeling techniques and
thus provide a rational approach to the development of new ionophores. Using these
approaches, our specific aim is the design and development of new ammonium
ionophores that will be tested in potentiometric ion selective electrodes. An extension of
this work is the design new of fluoroionophores (fluorescent ionophores) for potassium,
sodium and lithium, which could be used in optically-based sensors. This work will be
presented in 7 major sections as follows; Basic Considerations in the Design of
Ionophores, Basic  Considerations in the Design of Fluoroionophores,
Ionophore/Fluoroionophore Design Approach, General Experimental, Results and
Discussion, Conclusions, and finally, Future Work. The Results and Discussion section
will be subdivided for each particular ionophore/fluoroionophore and will contain an
introduction, specific experimental details, a discussion of the results obtained and a

concluding summary.
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A: Basic Considerations in the Design of
Ionophores

The first step in the process of developing selective and sensitive ionophores is to
consider the thermodynamics of complexation. Ionophore selectivity can be discussed in
terms of the thermodynamic stability of the metal ion—ionophore complex, where more
stable complexes are indicative of more selective interactions.'” Thermodynamic stability
in these systems is a complex combination of enthalpic and entropic parameters that can
be understood in part, by considering steric size-fit parameters and pre-organization of
the ionophore. Table 1 gives a selection of thermodynamic values for alkali metal ion
binding to a series of crown ethers (shown in Figure 1) as reported by Bradshaw and co-
workers."” Examination of the table reveals that complexation is an enthalpically
favorable process and an entroptically unfavorable process and that there may be a
modest correlation between the free energy of complexation and the size match between
the ion and ionophore. Thus when the size matches closely, the metal ion is centered
within the cavity or pocket and experiences the most symmetrical electrostatic
interactions. A smaller ion will experience a proportionally smaller electrostatic
interaction and thus will not be as tightly bound. Conversely an ion that is larger cannot
fit within the pocket symmetrically and as a consequence will not benefit from all of the

electrostatic stabilizing interactions provided by the ionophore.
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Figure 1: Left to right, 15-crown-5, 18-crown-6, 21-crown-7

Ligand Cavity  Metal  Cation -AG -AH TAS
(A) ion ra(ﬁus (kJ/mol)  (kJ/mol)  (kJ/mol)

15-crown-5 0.86-0.92  Na (59)5 19.7 20.9 -1.30
K 1.33 21.3 322 -10.9

Cs 1.69 12.6 49.0 -36.4

18-crown-6 1.34-1.43  Na 0.95 25.1 31.4 -6.30
K 1.33 34.7 56.1 -21.3

Rb 1.48 30.6 50.7 -20.1

Cs 1.69 27.2 47.3 -20.1

21-crown-7 ~1.70 Na 0.95 10.0 43.5 -33.5
K 1.33 24.3 36.0 -11.7

Rb 1.48 27.6 40.2 -12.6

Cs 1.69 28.5 46.9 -18.4

Table 1: Thermodynamic values for alkali metal ion binding to a series of crown ethers
as reported by Bradshaw and co-workers."

This correlation is particularly clear in the case of the 18-crown-6 and the 21-crown-7
where the average pocket sizes are on the order of 1.39 and 1.70 A respectively. These
values nicely match the ionic radius of potassium (1.33 A) and that of cesium (1.69 A)
and as a result, the free energy of complexation for these two cations is the most

favorable (-34.7 and -28.5 kJ/mol) in comparison to the other cations.

15



The differences in the free energy of complexation can give a measure of the ability of an
ionophore to discriminate between various guests. This measure is the selectivity factor,
logK, and is the ratio of the equilibrium constants for the binding of individual guests.
This value can be calculated from the free energy of complexation, AG, as follows;

InK; = -AG/RT 1)

InK; = -AG;/RT 2)
Where K is the equilibrium constant (this is also called a binding, stability, complexation
or association constant), i is the ion of interest and j is the ion to be discriminated against,

i.e. the interfering ion and R, T and G are the standard thermodynamic quantities.

Obtaining the ratios and converting to log;
logK;; = Ki/K; 3)

gives logKj;, the selectivity factor (or coefficient).

For example, the 18-crown-6 ionophore has a AG of -25.1 and -34.7 kJ/mol for sodium
and potassium respectively (Table 1), yielding logKx y, = 1.68 or Kgn, =48.1 (at 25°C).
In other words the equilibrium constant for the binding of potassium is ca. 48 times larger
than that of sodium and thus the 18-crown-6 is 48 times more selective for potassium
than it is for sodium. It is this value, logK;, which drives the development of new
ionophores. The larger the difference in free energy of complexation between various
guests, 1.e. AAG, the larger the logK; and therefore the more selective and potentially

useful is the ionophore.
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It can also be concluded from the data in Table 1 that the overall thermodynamic stability
of the complexes, as indicated by the free energy of complexation, is not solely
dependent on enthalpic factors. Rather, in each case there are significant and multiple
entropic costs of complexation that contribute to decreased stability. For the ion alone,
there are both favorable and unfavorable entropy changes that occur. Upon binding the
ion undergoes an entropically favorable loss of its solvation shell(s) but at the same time
loses overall entropy, including a significant amount of translational entropy upon
docking with the ionophore. Complexation also involves a decrease in entropy of the
ionophore since it loses conformational freedom in the bound state. The reduction of
conformational freedom is imposed upon the ionophore by the formation of ion-dipole
interactions between the guest and the electron donors of the ionophore. These
interactions reduce the degree to which bond rotation can occur and therefore imparts a
more rigid structure upon the ionophore as compared to the unbound state. This overall
entropic cost can be minimized however, and the resulting complex can be made more
stable if the complexed and uncomplexed ionophore conformations are similar, i.e. if the
ionophore conformation is pre-organized. A prime example of this effect is the natural
antibiotic valinomycin in which six amide linkages force the cyclic depsipeptide structure
into a pre-organized conformation through hydrogen bonding. This leaves the six-
carboxyl carbonyls free to electrostatically complex K' in a three-dimensional octahedral
arrangement (Figure 2). The rigidity imposed upon valinomycin not only reduces the
overall entropic cost of complexation, it also prevents the structure from folding and

wrapping around smaller cations, such as sodium, an effect that reduces selectivity. In
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addition, the three-dimensional nature of the complexation pocket allows for enhanced
stability of cations requiring octahedral (spherical) coordination geometries since the ion
can be stabilized from above and below the plane of the ionophore, in contrast to crown
ethers which essentially complex only along the single plane of the ligand. The pre-
organized and rigid structure in combination with the three-dimensional binding site
results in the improvement of the difference between the free energies of complexation
for potassium and sodium (AAG = -18.43 kJ/mol, logKx va = 3.26 )'* in comparison to
18-crown-6 (AAG = -9.6 kJ/mol, logKx n, = 1.68 )" leading to a 38-fold improvement in

the selective binding of potassium over that of sodium.

Figure 2: Valinomycin structure showing hydrogen bonds (dotted lines) (oxygen: red,;
nitrogen: blue).

Another general class of molecules that possesses attributes similar to those of

valinomycin, i.e. pre-organization, rigid molecular structure and three-dimensional

18



complexation site, are container compounds such as calixarenes and calixarene-crown

ethers (Figure 3).

lower rim

upper rim

Figure 3: A tetraester calix[4]arene (left) and a 1,3-alternate calix[4]arene-crown-5
(right)

There are numerous reviews on these compounds and as a result, their structure and some
of their complexation behaviors are fairly well understood.'* Calixarenes possess a pre-
organized structure because the phenyl groups form a semi-rigid cone shape. In addition,
various substituents may be placed along the lower rim to enhance complexation and thus
increase selectivity. In addition, and like valinomycin, the binding site is three-
dimensional and therefore can complex cations more efficiently than simple crown
ethers which possess planar binding sites. In comparison to monensin esters, which are
traditional sodium ionophores (see for example, Figure 4), some very simple

11c,12

calix[4]arenes (Figure 5) such as tetraethylester-p-octylcalix[4]arene and

13

tetramethylester-p-tert-butylcalix[4]arene " exhibit higher selectivities (ca. one to two

orders of magnitude increase over monensin esters).
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R = ethyl, R' = octyl R = methyl, R' = t-butyl

Figure 5: Tetracthylester-p-octylcalix[4]arene ' (left) and tetramethylester-p-tert-
butylcalix[4]arene " (right)

Calixarene-based counterparts for potassium are also well known, e.g., the 1,3-alternate
calix[4]arene-crown-5 (Figure 3, right)." Although the molecule possesses the basic
calix[4]arene structure, the addition of the crown-5 moiety further increases the rigidity
of the molecule and thus the pre-organization. As a result, the pocket that is established
is fixed and possesses little flexibility. Therefore the pocket can not deform to effectively
stabilize cations that are smaller than potassium, such as sodium. In comparison to

valinomycin, a marked enhancement in the AAG of complexation between potassium and

20



sodium was found for this calix[4]arene-crown-5, -18.43 kJ/mol and -31.24 kJ/mol
respectively. The increase of AAG for the calix[4]arene-crown-5 in comparison to
valinomycin leads to improved selectivity for potassium over sodium, logKx y, = 5.53

and logKx v, = 3.26, respectively.

In general, two design features must be incorporated into the ionophore to achieve high
selectivity for a particular guest; the pocket of the ionophore must be an appropriate size
to bind the guest and a pre-organized structure is needed to reduce the entropic and
enthalpic costs of complexation. While these factors are primary drivers in the
complexation of alkali metal ions additional features are required to obtain high
selectivity for other cations, e.g. ammonium ion. In comparison to the alkali metal ions,
which prefer octahedral (spherical) coordination shells, ammonium ions prefer a
tetrahedral binding geometry. This is illustrated by the natural antibiotic nonactin, the

most widely studied ammonium ionophore (Figure 6).

I A
Nl

Figure 6: Nonactin

In the case of nonactin the ammonium cation is complexed through the four ethereal

oxygen atoms in a tetrahedral geometry. However, due to the flexibility of the ionophore
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various conformations can be adopted. As a result, nonactin can form “wrapping-type”
complexes with alkali cations through the deformation of the pocket and thus is not very
selective.” In particular, nonactin discriminates against potassium ion, which has a
similar ionic radius (1.33 A) to ammonium ion (1.43 R), only by an order of magnitude

(logK; ~ 1) .'%7

To address the limitations of nonactin, research has focused on creating an ionophore that
can supply a tetrahedral complexation geometry as well as a more rigid and potentially
pre-organized structure. Attention has also been paid to the importance of hydrogen
bonding. For example, Lehn et al. synthesized macrotricyclic cryptands (Figure 7) that
exhibited a substantial enhancement (>100 fold) in the binding of ammonium over that of

8 This enhancement was attributed to the

potassium, as determined by NMR studies.'
tetrahedral geometry provided by the ionophore and its ability to donate four hydrogen
bonds to stabilize the cation. This result pointed out the particular importance of

hydrogen bonding and symmetry considerations in the design of ammonium ion

recognition sites.
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Figure 7: Lehn’s cryptands
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Initial complexation studies of ionophores are typically completed in solution giving
association constants (also called binding or stability constants) of individual cations,
from which the selectivities are calculated, (Equations 1-3). However, one of the major
goals of developing new and more highly selective ionophores is the attainment of
sensors, which can be used in a variety of applications and in particular clinical
diagnostic instrumentation. In a sensor format the individual association constants are
not measured but rather the direct determination of the selectivity coefficient (logK;) for

the sensor over an interfering ion is made.

These sensors are based upon potentiometric ion selective electrodes (ISE’s) in which an
ionophore is doped into a plasticized-PVC membrane, which in some cases also contains

a lipophilc salt. The constructed membrane is then placed into an electrode body,
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typically called a Phillips body in which an internal electrolyte (usually .IM KCl) is
added. The electrode is connected through a potentiostat and the cell is completed by
using a reference electrode, (SCE or sat. Ag/AgCl). The two half cells can then be
placed into testing solutions and the potential difference measured as a function of

analyte activity, or concentration in dilute systems (Figure 8).

N
A
|-
.

potentiometer
T T
internal reference electrode
V'd
internal electrolyte
T
testing solution
_J .
~—
~— plasticized-PVC membrane
external reference electrode ion selective electrode

Figure 8: Basic construction of an ISE testing apparatus.

The operation of an ion selective electrode is dependent upon the establishment of a
potential difference between the solution side and the internal electrolyte side of the
electrode. This potential difference occurs at the solution-membrane interface. When
the membrane is doped with an ionophore that is primarily selective for one ion this

potential difference then becomes dependent upon the activity of this ion and is measured
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against an external reference electrode. The function of the potential difference and the

activity follow the well-known Nernst equation as shown;

E = E° - (2.303RT/nF)loga )

Where E is the electromotive force (emf) of the cell in volts, E° is the emf cell constant, F
is the Faraday constant, a is the activity of the analyte, n is the charge of the measured
species and R and T are the usual thermodynamic quantities. This equation is in the form
of y = mx + b and thus a plot of E verse loga will give a straight line with a slope of
2.303RT/nF. For the measurement of monovalent cations at 25°C, n = 1 and the slope
becomes 59.16 mV/dec. Thus for any ISE that measures monovalent cations and is

operating according to the Nernst equation a slope of 59.16 mV/dec would be expected.

For such systems, the selectivity of the ISE over other cations is one of the key
parameters, primarily driven by the selectivity of the ionophore, and may be measured in
one of several ways. The two typical methods are called the Fixed Interference Method
(FIM) and the Separate Solution Method (SSM).”  When these methods are used a
selectivity coefficient for the sensor is determined and given as IOngjPOT. The “POT”
refers to the fact that the selectivity value was determined potentiometrically and i =
primary ion of interest, j = interfering ion. The reported selectivities are given as
negative values and the more negative the better. For example, typical potassium ISE’s

possess selectivity values for potassium over sodium on the order of logKx na' 0" = -3.3.
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This is interpreted as the sensor being greater than three orders of magnitude more

selective for potassium than for sodium.

Ion selective electrodes have been in wide use since the 1970’s, particularly within the
field of clinical diagnostics and therefore are well established as critical tools in the
diagnosis of disease. The systems, employing the ISE technology, have changed little
during this time and are still designed today using the same complex architecture that was
developed over three decades ago and therefore has limited their applicability. To
overcome these limitations, research has begun to focus on optical techniques of
detection with a view to reduce overall complexity due to the fact that optically based
systems do not require external reference electrodes and expensive electronic potentiostat
equipment. In order to reach the goal of optically based clinical diagnostic systems new
sensors are needed that owe their response to photonic energy rather than electrical
differences. These sensors have been termed optodes and, in many cases, take advantage
of ionophores that have been covalently linked to a fluorescent molecule (fluorophore)
forming what is known as a fluoroionophore. Like their electrochemical counterparts,
various considerations are required to be taken into account in order to develop new,

highly selective and sensitive fluoroionophores.
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B: Basic Considerations in the Design of
Fluoroionophores

Over the past several years, there has been explosive growth in the development of
fluoroionophores based on a variety of optical effects. A comprehensive review of such
systems has been published by de Silva et. al.* One of the first considerations in the
design of fluoroionophores is sensitivity and thus the preponderance of recent work has
centered on the covalent linking of ionophores through an electron-donating group to
electron transfer-sensitive fluorophores. The basic photophysical process of such
molecules depends on an intramolecular electron transfer quenching mechanism in which
the excited state of the fluorophore is quenched by electron transfer from an electron
donating group in the fluoroionophore. This process is known as photoinduced electron
transfer or PET. A thermodynamic prediction of the feasibility of electron transfer can be
made by calculating the free energy of the process using the Rehm-Weller equation

(Equation 5).

AGpet = Eoxaip - Ercaia - AEqq - €*/4ner Q)
Where, Eoxap is the oxidation potential of the electron donor, E.ga is the reduction
potential of the electron acceptor, AE is the energy of the excited state that participates

in the electron transfer process, usually a singlet state, and the final term is the

Coulombic energy of the ion pair where e is the electron charge, € is the dielectric

27



constant of the solvent and r is the distance between the two ions. The process is

presented in terms of a frontier orbital energy diagram in Figure 9.

Uncomplexed State

A
LUMO ——
PET 1 L
E
HOMO
HOMO L
Fluorophore Electron donor

of ionophore

Figure 9: Frontier orbital energy diagram of fluorescence quenching in the PET
mechanism.

Simplistically, Figure 9 shows that the reduction potential of the fluorophore is lowered
in the excited state and is depicted in terms of the fluorophore HOMO being lower in
energy than the HOMO of the electron donor in the ionophore. This being the case, an
intramolecular electron transfer from the electron donor HOMO to the fluorophore
HOMO occurs and simultaneously an electron transfer occurs from the LUMO of the
fluorophore to the HOMO of the electron donor. As such, the radiative transition from

S,—S, is quenched and little or no fluorescence is observed.

Since these molecules incorporate a site for binding cations in which the electron-

donating group participates, perturbation of the electron transfer process would be
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expected upon complexation. Indeed, upon complexation the electrostatic field of the
cation makes electron transfer to the fluorophore less efficient and leads to enhanced
fluorescence emission, in effect turning the electron transfer off and turning the
fluorescence on.  This effect can be understood thermodynamically, i.e. the oxidation
potential of the electron donor is increased relative to that of the acceptor in the
complexed state. The process is presented in terms of frontier orbital energy diagram in

Figure 10.

In Figure 10, the ionophore has bound a cation and is in the complexed state where the
electron donor that participates in electron transfer is now involved in the complexation
of the ion. Due to this ion-dipole interaction, the oxidation potential of the donor has
increased and is shown in terms of the HOMO of the electron donor at a relatively lower
energy with respect to the HOMO of the fluorophore. This therefore makes the
intramolecular electron transfer thermodynamically less favorable and thus the radiative

transition, S,—S,, occurs and fluorescence is observed.
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Figure 10: Frontier orbital energy diagram of fluorescence enhancement in the PET
mechanism in the bound state.

In many cases, PET is highly efficient and the fluoroionophore is in an almost completely
quenched state. Upon complexation the fluorescence is considerably enhanced and thus
these systems have been given the term of “off-on” switches. This “off-on” PET
mechanism has been reported in 9-anthryl-azacrown-5 in which 9-methylanthracene is

covalently linked to the secondary amine of the azacrown moiety (Figure 11).>"

soNIg
SYale

Figure 11: 9-Anthryl-azacrown-5
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The free energy change for electron transfer in this molecule is estimated to be AGpgr =
-0.41 eV (assuming the azacrown is the electron donor with an oxidation potential of 0.89
eV,*" 9-methyl-anthracene is the acceptor with a reduction potential of -1.97 eV and E,,
= 3.17 eV, and the Coulombic term is 0.1 eV*®) .  Upon complexation of sodium

cations a >40 fold increase in the fluorescence quantum yield was observed.

Due to this high sensitivity, the majority of the early fluoroionophores have been
developed with the PET mechanism in mind and for several reasons have typically been
based upon crown ether structures. First, the synthetic flexibility offered by these
structures allows the incorporation of a variety of fluorophores as well as electron donors.
This allows for the tailoring of the fluoroionophore such that fluorophores and electron
donors with the appropriate thermodynamic properties can be combined yielding
potentially useful molecules. Also, these electron donor groups can be incorporated into
the crown structure in positions that are potentially in close proximity to both the ion
docking site and the fluorophore. For example the phenyl group in the crown structure of
calix-benzocrown ethers is comparable to 1,2-dialkoxybenzenes in its electron donor
behavior and in combination with a 9-cyanoanthracene (Figure 12) yields a

fluoroionophore that is selective for potassium ions.*
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Figure 12: 9-Cyanoanthryl-benzocrown-6

A further consideration in the design of fluoroionophores is the linkage architecture
between the fluorophore and the ionophore moieties.  In particular, a systematic
investigation of the effect of linker length on the “off-on” fluorescence mechanism was
reported by Ji et al. for a series of potassium sensitive pyrenyl aza-18-crown-6
fluoroionophores.” In these molecules the pyrene group was tethered to the azacrown
ionophore at the nitrogen atom by methylenic linkers with n = 1 - 4 methylene groups.
The initial quantum yields, ¢,, increased in the order n =1 <2 ~ 3 <4, 0.017, 0.024,
0.026, 0.072 respectively. As would be expected, the observed general trend is an
increase in the ¢, with increasing distance from the electron donor. The farther the
fluorophore is from the electron donor, the less efficient the electron transfer there is and
therefore the greater the ¢, However, there is a discontinuity in the trend when n = 3.
Here, the “n = 3 rule” was invoked to account for the fact that the ¢, for n = 3 was

approximately equal for n = 2. It was hypothesized that when n = 3, the alkyl chain can
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fold onto itself, thereby decreasing the end-to-end distance between the pyrene moiety
and the azacrown. Thus it was suggested that the pyrene moiety was folding over the
crown, forming a sandwich complex, and thereby coming into closer proximity to the
tertiary amine and consequently experiencing an enhancement of the electron transfer
process, likely by way of a through space mechanism. As a result of this the ¢, is lower
than expected. This effect illustrates that indeed fluoroionophores are multi-component

systems and that each piece needs to be considered in the design of new molecules.
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C: Ionophore/Fluoroionophore Design Approach

New ionophores and fluoroionophores have been developed for ammonium, lithium,
sodium and potassium ions, based upon the fundamental considerations for ionophore

and fluoroionophore design as discussed above.

Proposed motifs for ammonium ion are based upon the cation’s preference for tetrahedral
binding which is expected to bias the ionophore’s selectivity to ammonium ion over that
of cations that prefer octahedral (spherical) complexation. In addition, a pre-organized
and hence a rigid structure is designed into the target molecule. At the same time, the
synthetic route must be reasonable and amenable to further tuning of the complexation
properties of the ionophore. These criteria can potentially be met by using cyclic peptide
and depsipeptide structures. The classic example of this type of structure, as noted
above, is valinomycin, which possesses a pre-organized rigid structure and has been
synthesized with a combination of solution and solid phase techniques. Using
valinomycin as our inspiration, several target molecules have been designed and
investigated using a combination of energy minimization, molecular dynamics, and
docking energies to evaluate their potential as ammonium ionophores. One of these
candidates, a cyclic hexadepsipeptide, has been synthesized and tested in ion selective

electrodes and its potentiometric properties evaluated.

Lithium, sodium and potassium fluoroionophores have been designed based upon

calixarene and calixarene crown architectures, again due to their inherent pre-organized
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structures as well as their facile synthetic pathways. Respective candidates were
evaluated in the same manner as the ammonium ionophore targets with one additional
computational parameter, i.e. electrostatics, to determine at least qualitatively, the extent
of electron density redistribution upon complexation. This, in combination with AGpgr

calculations will help predict the ability of these candidates to act as fluoroionophores.
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I1: General Experimental

Mass spectra were performed by SYNPEP Corporation, Dublin, CA or by Bayer
Diagnostics, Medfield, MA. Melting points are measured in a Mel-Temp capillary
melting point apparatus and are not corrected. 'H- and "C- NMR spectra were recorded
with a Bruker Avance 400 in CDCl; unless otherwise noted. Optodes were housed in a
custom flow-through cell. IR spectra were obtained with a Perkin Elmer Spectrum One
FT-IR Spectrometer. All solvents and reagents were analytical reagent grade and used as
supplied from Aldrich Chemical Co. Poly(vinyl chloride) (PVC), nitrophenyloctylether
(NPOE), dioctyl phthalate (DOP), potassium tetrakis(4-chlorophenyl)borate (KtpCIPB)
and D-Hydroxyisovaleric acid were purchased form Fluka AG (Buch, Switzerland).
Amino acids L and D-valine-N-fmoc were purchased from Calbiochem-Novabiochem
Corp. Calix[4]arene was purchased from Acros. 4-p-tert-Butylcalix[4]arene-

tetraaceticacid-tetracthylester and 4-p-tert-butylcalix[4]arene was obtained from Fluka.

Buffers were prepared with deionized water (18 MQ-cm).

Fluorescence Measurements

Fluorescence emission and excitation spectra were obtained with a Perkin Elmer LS-50B
Fluorimeter. In the case of in situ studies, fluorescence was measured as a function of
metal ion concentrations where the metal ions were added as the acetate or

hexafluorophosphate salts. For sensor studies, aqueous solutions of the chloride salts
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were used. Fluorescence areas were determined by integrating the spectrum over a fixed

wavelength range.

Molecular Modeling Calculations

Molecular modeling was preformed on an SGI 320 running Windows NT. Calculations
were carried out using the Molecular Operating Environment (MOE) ver. 2000.02
computing package (Chemical Computing Group Inc., Montreal, Quebec, Canada.).
Structures were minimized first using the AMBER94 potential control under a solvent
dielectric of 5. PEF95SAC was used to calculate partial charges. Minimized structures
were then subjected to a 30 ps molecular dynamics simulation. The structures were
heated to 400 K, equilibrated at 310 K and cooled to 290 K in the dynamics thermal cycle
at a rate of 10 K/ps. The lowest energy structures obtained from these dynamics
calculations were then minimized again. Using the minimized structures, docking
energies of the cation complexes were calculated by employing the default parameters
supplied with the program. Electrostatic calculations were then preformed on the

molecules using the default parameters.
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III: Results and Discussion
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A: Ammonium Ionophore (8)

Metabolites such as urea and creatinine are important disease indicators® and for this
reason considerable effort has been expended in developing diagnostic tools for their
detection. Concentrations of urea and creatinine in biological media can be detected
indirectly by measuring the amount of ammonium ion generated upon enzyme-catalyzed
hydrolysis.** The measurement of the ion has traditionally been accomplished by the
use of ion selective electrodes (ISE) doped with the natural antibiotic nonactin.”?** A
serious drawback to the use of nonactin is that it is only about ten times more selective

for the ammonium ion than it is for the potassium ion.>**

This lack of selectivity is
particularly problematic when the concentration of ammonium ion generated from
creatinine is less than the background potassium concentration. This has led a number of
groups to develop new ammonium ionophores. For example, Chin and co-workers
synthesized 1,3,5-tri(3,5-dimethylpyrazol-1-ylmethyl)-2,4,6-triethylbenzene in which the
three pyrazole groups provide hydrogen bonding sites.”” An ISE incorporating this

molecule showed improvement in ammonium ion selectivity over potassium ion as

compared to nonactin (logK ;gf « =—2.6), illustrating the importance of hydrogen

bonding and symmetry. However, the limit of detection for this ionophore is two orders
of magnitude higher than for nonactin and therefore it is not sufficiently sensitive for
some applications. Kim et al. investigated the use of thiazole-containing benzocrown
ethers as ammonium ionophores and reported potassium selectivity comparable to

nonactin and enhanced selectivity for ammonium over sodium ion

39



(logK 2" . =-3.9). Similarly, others have used 19-crown-6 structures with decalino

blocking groups to control selectivity, reporting increased selectivity for ammonium over

both smaller and larger cations.*’

The approach taken here to the design and synthesis of ammonium ionophores has, like
Lehn'™ and others,””’ focused on the incorporation of hydrogen bond donors in
tetrahedrally-symmetric complexation sites. Given the structural complexity of some of
the synthetic ionophores reported, we have used a molecular motif that both lends itself
to straightforward synthesis and allows structural modifications to be incorporated
without substantial changes in synthetic strategy. Our experience to date, as well as that
of others,”* has shown that ionophores based on cyclic peptide and depsipeptide
structures, i.e., those that are similar to natural ionophores, can be readily synthesized in

high yield by either solution or solid phase methods.

In the work reported here we have taken valinomycin as our inspiration for the design of
a new ammonium ion specific ionophore. Valinomycin is a naturally occurring antibiotic
having high selectivity for potassium ions. It has a cyclic depsipeptide structure
consisting of alternating amide and ester units (six of each, twelve in total) and has been
synthesized on a solid phase support.*” Valinomycin pre-organizes through hydrogen
bonding of its amide carbonyl groups to form a pocket which presents its six ester
carbonyl groups as sources of electrostatic stabilization for potassium ions.” Thus, the
pocket provides an octahedral type complexation site with a size that is a close match to

the estimated ionic radius of potassium (1.33 A). We report here the synthesis of an
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ammonium ion-specific ionophore, 8, which has some of the same structural elements as
valinomycin. Compound 8 is a cyclic depsipeptide consisting of alternating amide and
ester groups (three of each, six in all) which is, in effect, one half of the valinomycin
structure. Compound 8 does not fold onto itself and therefore it provides a complexation
site that is approximately the same size as valinomycin, a necessary feature because the

ammonium ionic radius (1.43A) is comparable to that of potassium.'®

An important
difference though, is that 8 is not capable of providing an octahedral binding site.
However, it has hydrogen bond donors arranged tetrahedrally (necessary for ammonium

complexation) and it is this distinction that we expected to allow the ionophore to

discriminate efficiently between potassium and ammonium ions.

Below we describe the synthesis of 8; the incorporation of this ionophore into a planar
ISE sensor format; testing of the potentiometric response of the electrode in a commercial
clinical diagnostic ‘Point-of-Care’ instrument; and the results of selectivity studies for

ammonium versus other metal cations.
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Ammonium Ionophore Experimental

Synthesis of 3. (Scheme 1, see text p. 53)

Note: All NMR and Mass Spectroscopy data in Appendix Al.

L-Lactic acid benzyl ester (BzlO-L-lac, 1) (based on a modified procedure).” 10 g
(111 mmol) of L-lactic acid was dissolved in 150 mL of anhydrous benzyl alcohol. The
solution was saturated with HCl gas and stirred for 18 hr where upon the solution was
diluted with 200 mL CH,Cl,. The organic layer was washed 3 times with 100 mL 1 N
KOH, and then with 100 mL 10% citric acid and dried over Na,SO,. The CH,Cl, was
removed under vacuum at 40 °C. The benzyl alcohol was removed by vacuum
distillation (2.5 mmHg) and the product recovered as a colorless oil at 120°C, 10.3 g,
yield 51.3%. The NMR spectra conforms to the literature.* "H-NMR (400 MHz, CDCl,),
8 1.47 (s, 3H), 3.05 (s, 1H), 4.33-4.59 (m, 1H), 5.24 (s, 2H), 7.39 (m, 5H); "C-NMR (100
MHz, CDCL), 6 20.3 (CH;), 66.8 (CH), 67.2 (CH,), 128.2, 128.5, 128.6, 135.2 (Ar),

175.5 (C=0).

Bz10O-L-lac-D-val-N-fmoc (2). 19.4 g (57.2 mmol) of D-valine-N-fmoc was dissolved in
175 mL of CH,CI, to which 8.92 mL (1 eq.) of diisopropylcarbodiimide (DIPCDI) was
added. The solution was stirred for 25 min. where upon 10.3 g (1 eq.) of the formed L-
lactic acid benzyl ester (1) and .696 g (.1 eq) of 4-dimethylaminopyridine (DMAP) was
added. This mixture was then stirred for an additional 18 hr. The insoluble urea thus

formed was removed by filtration and the solution was washed once with 100 mL of

42



water, thrice with 100 mL saturated NaHCOQ;, thrice with 100 mL 10% citric acid and
then dried over Na,SO,. The CH,Cl, was then removed under vacuum at 40 °C to yield a
yellow gum. The product was obtained by recrystallization using cold ether to yield 22.6
g of a white solid, yield 79%. mp. 104-106 °C; Ry .43 (CH,Cl,); 'H-NMR (400 MHz,
CDCL), 6 .84 (d, J = 6.9 Hz, 3H), .91 (d, J = 6.9 Hz, 3H), 1.44 (s, 3H), 2.14-2.18 (m,
1H), 4.14-4.18 (m, 1H), 4.30-4.36 (m, 3H), 5.11-5.14 (m, 3H), 5.22 (d, /= 9.1 Hz, 1H),
7.24-7.34 (Ar, 9H), 7.53 (d, J = 7.4 Hz, 2H), 7.69 (d, J = 7.5 Hz, 2H); "C-NMR (100
MHz, CDCl), 8 15.9 (CH,), 16.4 (CH,), 17.9 (CH,), 30.3 (CH), 46.1 (CH ), 57.9 (CH,),
66.0 (CH), 66.1 (CH,), 68.3 (CH), 119.0, 124.1, 126.0, 126.7, 127.2, 127.4, 127.6, 134.1,
140.3, 142.7, 142.9 (Ar), 155.1, 169.0, 170.2 (C=0). ESI MS m/z (%) calcd. for
C;H:uNOs (M+H") 502.2, found 502.2 (15), M+Na" caled. 524.2, found 524.4 (100),

M+K" caled. 540.2, found 540.2(11)

L-Lac-D-val-N-fmoc (3). 22.6 g (45 mmol) of the formed BzlO-L-lac-D-val-N-fmoc (2)
was dissolved in 150 mL CH,Cl,. The benzyl ester group was removed by using 2 g of
Pd activated carbon, 10 wt%, and H, at atmospheric pressure over 3 hr. The spent
catalyst was removed by filtration and the solution was washed thrice with 100 mL
saturated NaHCO;. The aqueous phase was acidified with 3N HCI and extracted with
CH,Cl,. The organic layer was washed with 100 mL brine, dried over Na,SO, and
concentrated totally under vacuum at 40°C, to afford in quantitative yield the title
compound as a white crystalline solid, 18.5 g. mp 62-64 °C; R,.45 (9:1 CH,CL,/MeOH);
'H-NMR (400 MHz, CDCL;), 6 0.93 (d, J = 6.8 Hz, 3H), 0.99 (d, /= 6.8 Hz, 3H), 1.53

(d, J= 6.8 Hz, 3H), 2.25 (m, 1H), 4.22 (m, 1H), 4.37-4.42 (m, 3H), 5.17 (m, 2H), 5.33 (d,
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J=9.0 Hz, 1H), 7.29-7.41 (Ar, 4H), 7.59 (d, J = 7.4 Hz, Ar, 2H), 7.76 (d, J = 7.5, Ar,
2H); “C-NMR (100 MHz, CDCL,), § 16.9 (CH,), 17.5 (CH,), 19.0 (CH,), 47.0 (CH),
59.0 (CH,). 67.1 (CH), 69.0 (CH), 120.0, 124.9, 125.1, 127.1, 127.7, 141.3, 143.7, 143.8
(Ar), 156.4, 171.3, 174.4 (C=0). EIS MS m/z (%) caled for C,;HysNONa (M+Na') 434.2

found 434.2(100)

Synthesis of 6. (Scheme 2, see text p. 53)

D-Hydroxisovaleric acid benzyl ester (BzlO-D-hyval, 4). The title compound was
prepared in same the manner as L-lactic acid benzyl ester using 19.5 g (139 mmol) of D-
hydroxyisovaleric acid to yield 29.0 g, yield 84.4%. The NMR spectra conforms to the
literature.*>*® '"H-NMR (400 MHz, CDCl;), & 0.83 (d, J = 6.8 Hz, 3H), 1.00 (d, J = 6.8
Hz, 3H), 2.06-2.11 (m, 1H), 2.92 (d, J = 6.2 Hz, 1H), 4.08 (dd, J = 6.2, 3.5 Hz, 1H), 5.17
(d, T=12.1 Hz, 1H), 5.23 (d, J = 12.1 Hz, 1H), 7.31-7.38 (m, 5H); *C-NMR (100 MHz,
CDCl), 6 15.9 (CHj3), 18.8 (CH3), 32.2 (CH), 67.2 (CH,), 75.0 (CH), 128.4, 128.5,

128.6, 135.2 (Ar), 174.8 (C=0).

Bz10-D-hyval-L-val-N-fmoc (5). 24.0 g (70.7 mmol) of L-valine-N-fmoc, 14.5 g (1 eq.)
of the formed D-Hydroxisovaleric acid benzyl ester (4), 36.2 g (1 eq.) PyBop, 9.5 g (1
eq.) HOBT and 25 mL (2 eq.) of diisopropylethylamine (DIPEA) were added to 200 mL
CH,Cl,. This mixture was then stirred for 4 hr. The resulting solution was washed thrice
with 100 mL saturated NaHCO;, thrice with 100 mL 1N HCI and dried over Na,SO,. The
CH,CI, was then removed under vacuum at 40 °C. The product was obtained by flash

chromatography (Biotage Flash40 column 15 cm x 7 cm, hexane/ CH,CL/EtOAc
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60/35/5) to yield 19.0 g of a colorless oil, yield 51.5%. Ry .43 (CH,Cl,); 'H-NMR (400
MHz, CDCl,), 6 0.92-1.01 (m, 12H), 2.25-2.28 (m, 2H), 4.24 (d, J = 7.0 Hz, 1H), 4.38-
4.46 (m, 3H), 4.92 (d, J=4.2 Hz, 1H), 5.13-5.19 (m, 2H), 5.27-5.29 (m, 1H), 7.29-7.42
(Ar, 9H), 7.60 (d, J = 7.3 Hz, Ar, 2H), 7.77 (d, J = 7.5 Hz, Ar, 2H); “C-NMR (100 MHz,
CDCly), 6 17.1, 17.3, 18.8, 19.1 (CH,), 30.1, 31.3 (CH), 47.1 (CH), 59.1 (CH), 67.2
(2CH,), 77.9 (CH), 120.0, 125.1, 125.1, 127.1, 127.7, 128.4, 128.4, 128.6, 135.1, 141.3,
143.8 (Ar), 156.1, 169.0, 171.6 (C=0); EIS MS m/z (%) calcd. for C;,;H;sNOsNa

(M+Na") 552.2 found 552.2(100), calcd. M+K" 568.2 found 568.2(48).

D-hyval-L-val-N-fmoc (6). 14.5 g (27 mmol) of 5 was dissolved in 100 mL CH,Cl,. The
benzyl ester group was removed by using 2 g of Pd activated carbon, 10 wt%, and H, at
atmospheric pressure over 2 hr. The spent catalyst was removed by filtration and the
solution was washed thrice with 100 mL saturated NaHCO;. The aqueous phase was
acidified with 3N HCI and extracted with CH,Cl,. The organic layer was dried over
Na,SO, and concentrated totally under vacuum at 40°C, to afford the title compound as a
colorless gum, 9.6 g, yield 80%. Ry .59 (9:1 CH,Cl/MeOH); 'H-NMR (400 MHz,
CDCL), 6 0.92-1.04 (m, 12H), 2.27-2.30 (m, 2H), 4.23 (d, /= 6.9 Hz, 1H), 4.38-4.45 (m,
3H), 4.93 (d, /= 4.0 Hz, 1H), 5.35 (d, /= 9.0 Hz, 1H), 7.29-7.41 (Ar, 4H), 7.59 (d, J =
7.4 Hz, Ar, 2H), 7.76 (d, J = 7.5 Hz, Ar, 2H); “C-NMR (100 MHz, CDCl;), 8 17.0,
17.4, 18.9, 19.1 (CH,), 30.0, 31.1 (CH), 47.1 (CH), 59.2 (CH), 67.2 (CH,), 120.0, 124.0,
125.1, 127.0, 127.7, 141.7, 143.7 (Ar), 156.4, 171.7, 173.8 (C=0). EIS MS m/z (%)
calcd. for CysHyyNO¢Na (M+Na") 462.2 found 462.4(100), calcd. M+K" 478.2 found

478.2(48).

45



Synthesis of the acyclic depsipeptide, 7. (Scheme 3, see text p. 54)

Solid phase synthesis was carried out on 2.9 g of Wang resin (1.1 mmol/g loading). The
resin was prepared by adding 20 mL of DMF and mixing for 30 min. under N, at which
point the DMF was removed by aspiration. During which time, 3.28 g (2.5 eq. to resin
loading) of 3 was dissolved in 50 mL of CH,Cl, to which 1.25 mL
diisopropylcarbodiimide was added. This was stirred for 25 min. at which point the
CH,Cl, was removed under vacuum at 40°C giving a white residue. 10 mL of DMF was
added to the white residue and this solution was then added to the swelled resin. 40 mg
(0.1 eq) of 4-dimethylaminopyridine was also added and the mixture was mixed under N,
for 1 hr. The reaction solution was removed by aspiration and the resin was washed
thrice with 20 mL DMF, thrice with 20 mL MeOH and dried under vacuum. Loading
was tested by cleaving the fmoc protection group from a known mass of resin (20 mg)
with 20% piperidine in DMF and monitoring the UV absorption at 290 nm. Using a
molar extinction coefficient value of 4950 a loading of 50% was obtained. The process
was repeated in full to obtain 70% loading. The remaining resin was deprotected with
20% piperidine in DMF (30 mL, 10 min.). The solution was removed by aspiration and
the resin was washed thrice with 20 mL DMF, thrice with 20 mL MeOH, thrice with 20
mL DMF. 3.50 g. (2.5 eq) of 6 was added to 30 mL of DMF and 4.15 g (2.5 eq.) of
PyBOP, 1.08 g (2.5 eq.) HOBT, and .278mL (5 eq.) of diisopropylethylamine. This
mixture was then added to the resin and mixed under N, for 4 hr. The solution was
removed by aspiration and the resin was washed thrice with 20 mL DMF, thrice with 20

mL MeOH, once with EtOH and dried under vacuum. Complete coupling was confirmed
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by the Kaiser test for free amine. The general procedure was repeated again for the
addition of the final block, 3. The linear depsipeptide, 7, was cleaved from the dried
resin with TFA/H,O/TIS 95/2.5/2.5 over 2 hr. by mixing under N,. The cleavage mixture
was removed by aspiration and was concentrated to give a brown residue. The brown
residue was dissolved and concentrated twice more with toluene. The crude product was
purified by flash chromatography (Biotage Flash40 column 15¢cm x 7cm, CH,Cl,/MeOH
95/5) to obtain 380 mg of an off white powder, yield 88% based on 70% resin loading.
mp 144-146 °C; R, .49 (9:1 CH,Cl,/MeOH); 'H-NMR (400 MHz, DMSO-ds), & 0.72-
0.84 (m, 24H), 1.21-1.26 (m, 6H), 1.96-2.00 (m, 4H), 4.12-4.14 (m, 2H), 4.68 (d, J = 5.4
Hz, 1H), 4.74 (d, J = 7.0 Hz, 1H), 5.04 (d, 6.8 Hz, 1H), 8.12 (d, J = 8.4 Hz, INH), 8.37
(d, J = 8.5 Hz, INH); "C-NMR (100 MHz, DMSO-d,), 6 17.3, 17.5, 17.8, 18.2, 18.2,
18.3, 18.3, 18.9, 19.2, 19.3 (CHy;), 30.3, (2CH), 30.4 (2CH), 57.4, 57.6, 57.7, 69.8, 70.9,
78.1 (CH), 158.2, 158.6, 169.0, 169.7, 170.0, 170.8 (C=0); EIS MS m/z (%) calcd. for

CcHaN,0,0 (M+H") 560.3 found 560.4(100).

Synthesis of 8. (Scheme 3)

150mg (.276 mmol) of the acyclic depsipeptide, 7, was dissolved into 20 mL thionyl
chloride and mixed for 1.5 hr. at which point the solution was concentrated to give a
white solid. The residue was immediately taken up in 150 mL anhydrous benzene and
.144 mL (1.05 mmol) triethylamine and mixed for 18 hr. The solvent was removed under
vacuum, 40°C. The residue was taken up in 100 mL CH,CIl, and washed with 100 mL
10% citric acid, 100 mL saturated NaHCO;, dried over Na,SO, and the organic layer

concentrated totally to afford 75 mg of an off white powder, yield 50%. mp 96-98 °C; Ry
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.58 (CH,Cl,); 'H-NMR (400 MHz, CD,CN), & .85-.88 (m, 24H), 1.26-1.40 (m, 6H), 2.14
(m, 4H), 4.19-4.26 (m, 3H), 4.82 (d, J=4.3 Hz, 1H), 5.00 (m, 1H), 5.12 (m, 2H), 6.77 (d,
J=17.8 Hz, INH), 6.95 (d, J= 6.4 Hz, INH), 7.02 (d, J = 7.08 Hz, INH); "C-NMR (100
MHz, CDCly) ¢ 14.7, 16.1, 16.5, 16.9, 17.0, 17.6, 17.7, 17.9, 18.2, 18.5 (CH;) 29.0, 29.1,
29.4, 29.7 (CH), 56.0, 57.4, 57.6, 69.1, 70.8, 78.7 (CH), 168.0, 169.1, 169.6, 169.6,
170.6, 171.2 (C=0). EIS MS m/z (%) calcd. for C,;HyuN;OsNa (M+Na") 564.2 found

563.7(100), caled. M+K*580.2 found 579.7(40).

ISE Membrane and Electrode Preparation.

Four membrane cocktails were prepared to test 8. The specific formulations are as
follows: M1: 69/30/1 wt% of NPOE/PVC/8, M2: same as M1 with 50 mole % of
KtpCIPB to 8, M3: 69/30/1 wt% of DOP/PVC/8, M4: same as M3 with 50 mole %
KtpCIPB to 8. Membrane cocktails were prepared as 10 wt% solutions in THF. The base
electrodes were constructed in a thick film planar format' using a polymeric internal

electrolyte layer.**

A single wafer which is composed of 100 individual electrode
elements was used for the sensor construction. The polymer for the internal electrolyte
was prepared as a 10 wt% solution in EtOH and spun on to the planar wafer at 750 rpm
for 30 seconds and allowed to dry for 1 hour before membrane deposition. Internal
electrolyte thickness was ca. 3.5 um. The wafer was then quartered giving 4 wafers of 25
sensors each. Membrane cocktails were deposited (.9 mL) onto the wafers and allowed

to cure for 24 hours before use giving a membrane thickness of ca. 105 um. The planar

wafers were singulated by hand giving 25 sensors for each formulation.
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ISE Testing.

The sensors were housed in the proprietary flow through cell used with the Bayer
Diagnostics Rapidpoint 400 critical care system. This system uses a saturated Ag/AgCl
reference cell. Two flow cells were constructed which contained 3 sensors of each
formulation for a total of 12 tested sensors. Each cell was tested individually on the
Rapidpoint system, which maintains a 37 °C temperature for the cell. The sensors were
tested using solutions containing NH,CI1 (0.1 — 100 mM), 100 mM Tris buffer (pH 7.2)
and .05g/l Brij 700. Selectivity testing was based on the separate solution method

(SSM),***" where i =j = 0.1M.
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Ammonium Ionophore Results and Discussion

Ionophore Modeling and Synthesis

As we have noted, 8 possesses some structural similarities to valinomycin in that it
provides an appropriately-sized binding pocket for complexation of ammonium or
potassium cations (ionic radii: 1.43 A and 1.33 A, respectively)." However, instead of
providing an octahedral complexation geometry like valinomycin, 8 is only able to
stabilize ions with tetrahedral binding requirements such as ammonium ion. It is on this
basis that we predicted enhanced ammonium ion/potassium ion selectivity for 8 over that
of valinomycin. This is supported by Figure 13 showing the results of modeling the

binding of ammonium and potassium ions with 8.

Figure 13: Minimized structures of 8 complexed with potassium ion (left) and with
ammonium ion (right).
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These minimized structures (obtained as described above) show the ammonium cation
centrally located within the pocket and able to hydrogen bond with at least five of the
carbonyl groups in 8. In contrast, the potassium cation adopts a position that is shifted to

one side and therefore provides an unfavorable binding site for potassium.

Modeling of 8 also indicates that it may offer enhanced ammonium/potassium selectivity
over nonactin, the ammonium ionophore commonly used in ISE applications. Minimized

structures of nonactin with ammonium and potassium ions are shown in Figure 14.

Figure 14: Minimized structures of nonactin complexed with ammonium ion (left) and
with potassium ion (right).

The crown ether backbone of nonactin is quite flexible and allows for the formation of
wrapping-type complexes with both ions. In such complexes the ions are enveloped by
the nonactin structure and have multiple binding opportunities with the ethereal and/or
carbonyl oxygen atoms present. It is important to note that formation of this envelope is
essential for binding potassium ions because it is only in this conformation that an

octahedral binding geometry is provided. On the other hand the cyclodepsipeptide 8
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possesses a more rigid backbone structure that cannot easily form a “wrapping-type”
structure. As a result, an octahedral binding site is not provided and potassium ion
binding will not be favorable. However, since a tetrahedral complexation geometry is

available, ammonium ion binding can occur.

To estimate the efficiency of ammonium binding in 8 compared with that in nonactin,
docking energies were obtained for the ion/ionophore complexes in each case. In the case
of 8, the difference in docking energies between ammonium ion and potassium ion was
calculated to be 6 kcal/mol more negative than that calculated for nonactin. While these
calculations give relative values only, they indicate qualitatively that 8 should be at least

comparable to nonactin in terms of its ammonium/potassium ion selectivity.

Schemes 1-3 show the strategy used for the synthesis of 8. The same solution and solid
phase techniques reported previously for the synthesis of valinomycin* have been used
here with the exception that a Fmoc protection strategy was employed. This strategy
allows the synthesis to be carried out on a commercially available solid phase support
(Wang resin). Also, cleavage can be carried out under mild conditions. Thus, block
components 3 and 6 were synthesized in solution, 3 was loaded on a Wang resin coupled
with 6 and then again with 3 to yield 7 which was subsequently cleaved from the resin
and cyclized to form 8. Although 8 was synthesized from the same component groups
found in valinomycin (L-lactic acid, D-hydroxisovaleric acid, L- and D-valine), it is clear
that a variety of hydroxylated amino acid derivatives and natural amino acids can be used

in order to produce an ionophore with the appropriate binding site size and symmetry.
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(We note that the stereochemistry of the individual groups in valinomycin has been
preserved in the design of 8.) This approach, then, represents a flexible strategy that will
allow future systematic investigations of the effects of structure on the efficiency and

selectivity of ammonium ion complexation.
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Sensor Fabrication and Testing

With the advent of micro-fabrication techniques, planar type electrodes have become an
attractive alternative to traditional Phillips body ISE’s due to the ability to construct and
test many sensors at once. In addition, planar type electrodes make use of polymeric
solid internal contacts, which allow for the construction of an all-solid state ISE. The all-
solid state format has advantages over traditional Phillips body ISE’s such as ease of
construction, cost effectiveness and ability for miniaturization. Systems such as these
have been shown to be quite stable and have been shown to give potentiometric
selectivities that are comparable to traditional ISE’s.* In particular, ammonium sensors
have been constructed using the all-solid contact concept and have been shown to possess

selectivities that are typical of nonactin based Phillips body ISE’s.”

These advances have led to a substantial increase in the use of the planar format and has
prompted manufacturers to offer clinical diagnostic instrumentation that utilizes planar
ISE’s.***  Following this trend, 8 was incorporated into a planar ISE structure employing

a polymeric solid contact material*’*

and tested in a commercially available Point-of-
Care clinical diagnostic system. Figures 15 and 16 show an edge on and top view of the

planar electrode substrate and Figure 17 shows an actual sensor.
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Figure 15 presents a side cut-away view of a single ISE chip measuring ca. Smm X 5
mm. On the back side of the chip are printed gold electrical contacts (yellow) that
connect to the front side electrode (red) via holes in the substrate. A Ag/AgCl internal
electrode is electrically isolated with dielectric. Over this lies the internal polymeric
electrolyte and then the plasticized PVC membrane. Figure 16 shows the top view of this
configuration with additional dielectric (black squares) covering the holes. As a
comparison, figure 17 presents an actual ISE chip side by side with a penny to provide

scale. The alphanumeric designation on the chip is used for tracking purposes only.

Four membrane formulations were tested in order to determine which environment would
yield the best potentiometric properties of sensors constructed with 8. Each sensor
membrane consisted of plasticized PVC. Formulations differed as to the type of
plasticizer used and whether an ionic additive was present. NPOE (nitrophenyloctylether)
and DOP (dioctyl phthalate) were used as plasticizers since they have been used in other

ammonium sensitive electrodes and yielded good results.''

We also investigated the
effect of a lipophilic ionic additive, 1.e. KtpCIPB (potassium tetrakis(4-

chlorophenyl)borate), in combination with the two plasticizers.

Figure 18 shows the potentiometric responses of the four membrane formulations to

increasing concentrations of aqueous NH,CI.
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Figure 18: Potentiometric responses of planar ISE’s to ammonium ion (10 M to 10"M)
for membranes 1-4 based on 8.

Two effects can be observed in the data, one that we attribute to the plasticizer and a
second due to the ionic additive. It can be seen from Table 2, membranes containing the
plasticizer NPOE, both in the presence and absence of KtpCIPB, consistently produced
sensors with the highest slopes, i.e., the closest to the ideal Nernstian condition of 61.5
mV/dec at 37 °C. We attribute this effect to the higher polarity that NPOE (e = 24)
imparts to the membrane compared to DOP (g = 3.88).° It is known that depsipeptide
structures such as valinomycin (and likely 8) experience intramolecular hydrogen
bonding (H-bonding) interactions.” In the case of 8 these interactions would be expected
to interfere with the complexation of ammonium ions (since this complexation also

requires H-bonding). In a polar environment such as that provided by NPOE, the
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intramolecular H-bonding will probably be decreased thus allowing for more efficient

#37 Such would not be the case in lower polarity

ammonium ion complexation.
environments such as those produced by the presence of DOP. In fact, our NMR dilution
studies support this suggestion. In this study NMR spectra of 8 were obtained over a
concentration range of 2 — 20 mM in non-polar (CDCl;) and polar (MeCN-d;) solvents.
This concentration range brackets the concentration of 8 in the membranes tested. In the
non-polar environment, spectra of 8 at each concentration exhibited broad and

structureless NH resonances symptomatic of intramolecular H-bonding, while in the

polar medium, NH resonances were sharp, suggesting the disruption of H-bonding.

In addition to this apparent polarity effect, it was observed that a 50 mol% loading of the
ionic additive, KtpCIPB (in combination with either the NPOE or DOP), results in
significant deviations from Nernstian behavior and substantially reduces the selectivity,
particularly over the divalent cations (See selectivity data in Table 2). Although it has
been shown previously that modest numbers of anionic sites within liquid polymeric
membranes can improve the potentiometric properties of ISE’s, a low molar ratio of
ionophore to ionic sites can substantially degrade selectivity and decrease the slope.”*”*
This behavior is confirmed in the present study. It is likely that the deleterious effect on
selectivity by the ionic additive, which is present in the membrane in a 1:2 ratio relative

to 8, is due to non-specific ion exchange, likely through the formation of ion-pairs.***'

Table 2 shows the results of selectivity studies that were carried out using the separate

solution method™*' on four membrane preparations.
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Selectivity coefficients, log K ;2;},

Membrane® Li* Na” K* Ca* Mg*¥ Slope®
M1 -7.3 2.1 -0.6 -4.4 -7.1 60.1
M2 -1.9 -1.5 -1.0 -1.3 -1.5 55.8
M3 -5.0 -1.9 -0.6 -3.9 -7.3 45.8
M4 -3.2 -1.5 -0.4 -3.4 -3.9 39.4

Nonactin‘ -4.4% 247 097 -25%  -42% 59.3¢

* M1: 69/30/1 wt% of NPOE/PVC/8, M2: same as M1 with 50 mole % of KtpCIPB to 8,
M3: 69/30/1 wt% of DOP/PVC/8, M4: same as M3 with 50 mole % KtpCIPB to 8.°
Determined between10® M to 10" M cation, at 37°C. ¢ At 25 °C. ¢ Data for nonactin
taken from references indicated.

Table 2. Selectivity of 8 versus other Cations

It is clear from this data that the optimum potentiometric characteristics are obtained
using the NPOE plasticizer in the absence of added ionic sites. Membranes produced
with this formulation gave near Nernstian responses, i.e. near 61.5 mV/dec at 37°C, of
60.1 mV/dec. Taking membrane M1 as the best example, this formulation exhibited

excellent selectivity for ammonium ion over the divalent cations calcium and magnesium

as well as lithium, and good selectivity over sodium and potassium (log K ]’;2;]_ =21, -

0.6 respectively) that is comparable to nonactin (log K 11;2{,- 2.4, -0.9 for sodium and

potassium respectively).”* This selectivity dropped considerably for most ions with the
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addition of ionic additive and is reflected in the non-Nernstian slopes as previously noted.
Membranes that were formulated using DOP as the plasticizer exhibited substantial sub-
Nernstian behavior, making comparisons of selectivity less meaningful. As indicated
above this effect is likely induced by the low polarity of the polymeric solvent inducing
intramolecular hydrogen bonding and thus reducing the ability of the ionophore to
complex the cations. However, again, potassium selectivity was comparable to that of

nonactin.

The ionic selectivity pattern for M1, NH," > K" > Na" >> Ca™, >> Mg"" ~ Li’, indicates a
substantial improvement over that of nonactin with respect to the divalent cations as well
as lithium ion. The high ammonium/lithium selectivity can be attributed to a size fit
effect. As noted, the pocket of 8 is designed to accommodate the larger cations and this,
coupled to the fact that 8 cannot form wrapping type complexes, precludes the possibility
of favorable binding to lithium ion whose ionic radius (0.68 &) is much smaller than that

of ammonium ion.

High selectivity of 8 for ammonium ion over the divalent cations is likely due to two
effects, a size fit effect for both calcium and magnesium ions and in the case of calcium
ion, a low coordination geometry. The size-fit effect is straightforward since calcium and
magnesium ions have radii of 0.99 and 0.82 A respectively, and thus are too small to be
effectively complexed. The second effect specific to calcium ion can be attributed to the

fact that this ion has been shown to favor ligands with six coordinating groups such as
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ETH 1001.""° Compound 8 cannot present all six carbonyl groups at one face due to

dipole-dipole repulsion and therefore would not be able to stabilize the calcium ion.

The data presented shows that new ammonium ionophores based upon cyclodepsipeptide
motifs are an attractive alternative to others presented in the literature. While the
potentiometric data is comparable to nonactin, modifications to the ionophore backbone
are expected to enhance its selectivity. In particular, it has been shown that the addition
of bulky substituents to other ionophores has improved selectivities through steric
effects.”” This approach also has the added advantage of increasing the lipophilicity of
the compounds, thereby making them more compatible with non-polar membrane
environments. Due to the facile nature of depsipeptide synthesis, the introduction of
bulky groups such as phenyl or long alkyl chains will allow for additional tuning of the

ionophore’s potentiometric properties.
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Summary of Ammonium Ionophore work

We have reported here the modular synthesis of a new ammonium selective ionophore
based upon a cyclic depsipeptide motif. Like Lehn and others,'®**?7 this ionophore was
rationally designed to take advantage of the tetrahedral symmetry of the ammonium
cation in order to discriminate against cations requiring octahedral binding geometries.
This is particularly important where a size fit effect can not improve discrimination over
cations of similar size, notably potassium. In addition, the structure was designed with
the view of incorporating a rigid pre-organized backbone which has been shown to
enhance selectivity by reducing the enthalpic costs of complexation, a prime example of
which is the pre-organized structure of valinomycin.*® This approach yielded an
ionophore which, when incorporated into an ISE format, provides selectivity for
ammonium ion over potassium and sodium that is comparable to nonactin. We believe
that the flexible modular approach used here will enable us to tune the structure of

similar molecules so as to achieve higher selectivity and sensitivity characteristics.
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B: Potassium Fluoroionophore (10)

The use of crown ethers that are covalently-bound to calix[4]arenes to selectively

complex with specific ions has been studied exte,nsively.m’&'72

Reinhoudt et al. reported
selective binding of potassium ions (relative to sodium or lithium) with calix[4]arene-

crown-5 structures, noting that the K'/Na" selectivity was dependent on the

. . . 14,62
calix[4]arene-crown conformation (i.e., cone, partial cone or 1,3-alternate).

Since these early reports, studies have expanded to include benzocrown and azacrown
structures and their selectivity and sensitivity for binding a wide variety of metal cations
and their practical application as sensors, particularly optical sensors. For example,
Dabestani et al. reported the synthesis and characterization of an calix[4]arene-
benzocrown-6 structure consisting of a 9-cyanoanthryl fluorophore covalently-linked

24,63,64

through a methylenic bridge to the benzo group. This fluoroionophore acts as an

“off-on” fluorescence switch that is triggered by ion complexation. In the absence of
cation, the benzocrown group quenches the cyanoanthryl excited singlet state by
photoinduced electron transfer (PET), while in the presence of complexed cation, the
electrostatic field of the ion disrupts this PET process. This particular system exhibited
high sensitivity for cesium ions (important in the detection of radioactive contamination)
and relatively good selectivity for cesium over other alkali metal ions. Similar structures

212,65-72
& presumably because the

make use of azacrown rings instead of benzocrowns,
lower oxidation potential of the amine (1.15 V)" relative to the benzo group (1.45 V)"

allows greater flexibility in the selection of the fluorophore used in the system, i.e., the
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amine provides greater driving force for the electron transfer process. Kim et al. have
synthesized calix[4]arene-azacrown-5 compounds where the nitrogen of the azacrown is
substituted with benzyl or picolyl groups.” In the picolyl systems, selectivity for silver
ions was found to be an order of magnitude higher than for other cations measured. The

presence of the pyridinyl ring apparently contributes to the metal ion binding.

More recently, Dabestani and co-workers suggested that a structure consisting of separate
binding sites for cesium and potassium cations could function as a proton-activated logic
device.®  This structure consists of a calix[4]arene-benzocrown-6 covalently-linked
through the benzo group to an anthryl azacrown-6. The anthryl azacrown structures
(crown-5, crown-6) have been shown previously to be sensitive to sodium and potassium
cations among others, although the selectivity for these ions over other alkali metal ions

. 21a,22
is only modest.”™

Our focus in this work is the construction of fluoroionophores specific for potassium
cations that can be incorporated into solid-state optical sensors for clinical diagnostic
measurements. It is clear from the previous discussions that pre-organization, size fit
and a rigid backbone are key elements in the design of selective ionophores and
fluoroionophores. In contrast to other molecular architectures, calix[n]crown’s are ideal
motifs which embody these characteristics and offer the potential for developing novel
fluoroionophores for potassium. For example, 18-crown-6 structures possess a pocket
size that is 1.34-1.43 A and is appropriate for binding potassium (ionic radius, 1.33 A).'°

However, due to the high flexibility of the structure the ionophore discriminates against
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sodium by only about two orders of magnitude (logKxn, = 1.7)."° There are several
factors for this low specificity that are induced by the presence of the flexible backbone.
One such factor is the ability of the crown to form wrapping type complexes around
smaller cations, such as sodium. Due to this, there is a small difference in the enthalpy of
complexation between potassium and sodium (-56.1 and -31.4 kJ/mol respectively)
which is typically the main driver in the differences in specificity (see Table 1). In
contrast to this, calix[4]arene-crown-5 is able to discriminate against sodium with over
five orders of magnitude specificity.'* This dramatic increase is typically due to a large
difference in the enthalpy of complexation which is brought on by a rigid and hence pre-
organized state. With this in mind we have synthesized 10 (and its model compound 9),
which combines the known optical response of anthryl azacrown-6 to potassium ions
with expected enhanced selectivity provided by coupling the azacrown to a 1,3-alternate
calix[4]arene. Described here are the results of these initial studies, potentially promising

increased selectivity for potassium over sodium and other alkali metal.
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Potassium Fluoroionophore Experimental

Synthesis of 9 (by Kathy Dennen)

N-(9-anthrylmethyl)-monoaza-18-crown-6 (9). The synthesis of 9 was based on a
modified literature procedure.”’ 1-aza-18-crown-6 (0.515g, 1.95 mmol), 9-
chloroanthracene (0.400g, 1.76 mmol), and triethylamine (0.526g, 0.74 mL) were
refluxed in 1,4-dioxane (200 mL) for 24 hours. The solvent was evaporated, and the
product extracted with a 2:3 CH,Cl,/H,O mixture. The organic phase was rinsed three
times with water and then dried over anhydrous magnesium sulfate. Further purification
was done using thin layer chromatography preparatory plates in the dark (17:1
CH,CIL,/EtOH), to yield N-(9-anthrylmethyl) monoaza-18-crown-6 (0.176g, 0.388
mmol). The product was then recrystallized with CH,Cl,/ether to yield a yellow solid
(22%). 'H NMR (400 MHz, CDCl3). § 2.9 (t, 4H, J = 5.24 Hz), 3.7-3.5 (m, 20H), 4.6 (s,
2H), 8.6-7.4 (m, 9H). >C NMR (100 MHz, CDCls). § 52.4, 54.3, 70.6, 71.1, 71.2, 71.3

(CHy,), 124.8, 125.2, 125.7, 127.9, 131.8 (Ar).

Synthesis of 10 (by Dr. Hubert Nienaber)

25,27-Bis(1-propyloxy)calix[4]arene. The preparation of dipropyl-calix[4]arene
followed a literature method.”” In a 250 mL round bottom flask 5.08 g (11.9 mmol)
calix[4]arene, 4.87 g (28.6 mmol) 1-iodopropane and 3.95 g (28.6 mmol) K,CO3; were
suspended in 150 mL dry acetonitrile and heated under reflux for 24 hours. The solvent

was removed in vacuo and 50 mL 2N HCI and 50 mL CH,Cl, were added and the phases
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were separated. The aqueous phase was extracted two times with 30 mL CH,Cl,, the
organic phases were combined, dried with Na,SO4 and the solvent removed in vacuo.
The crude product was recrystallized from methanol/CH,Cl, (5:1) and gave 4.37 g (72%)
of 25,27-bis(1-propyloxy)calix[4]arene as white crystals. The 'H NMR spectrum
corresponds to the published data.®” "H NMR (400 MHz, CDCl;) & 1.32 (t, J = 7.3 Hz,
6H), 2.08 (m, 4H), 3.40 (d, J = 12.9 Hz, 4H), 3.98 (t, J= 6.2 Hz, 4H), 4.35 (d, /= 12.9
Hz, 4H), 6.65 (t, J= 7.5 Hz, 2H, Ar), 6.74 (t,J= 7.5 Hz, 2H, Ar), 6.92 (d, /= 7.5 Hz, 4H,

Ar), 7.06 (d, J= 7.5 Hz, 4H, Ar), 8.30 (s, 2H).

2-(2-Chloroethoxy)ethyl-p-toluenesulfonate. Preparation was done according to a
standard procedure for the preparation of p-toluenesulfonic esters.”* In a round bottom
flask 9.53 g (50 mmol) of p-toluenesulfonylchloride were mixed with 7.47 g (60 mmol)
2-(2-chloroethoxy)ethanol in 50 mL CHCl;. The mixture was stirred and cooled below
5°C and 10.1 g (100 mmol) triethylamine were added drop-wise at this temperature.
After the addition was completed, the mixture was stirred for another 3h at room
temperature. At which point, a mixture of 50 g ice and 20 mL conc. HCI was added
carefully and stirred for 30 min. The chloroform phase was separated, washed three times
with 30 mL water, dried with Na,SO, and the solvent removed in vacuo upon which 12.5
g (90%) of a yellowish oil was obtained. The product was used without further
purification. "H NMR (400 MHz,CDCl;) & 2.45 (s, 3H), 3.55 (t,J= 7.4 Hz, 2H), 3.65 —
3.77 (m, 4H), 4.17 (t, J = 7.2 Hz, 2H), 7.42 (d, /= 7.5 Hz, 2H, Ar) , 7.84 (d, /= 7.5 Hz,

2H, Ar),

69



25,27-Bis(1-propyloxy)-26,28-bis(5-chloro-3-oxapentyloxy)calix[4]arene. A solution
of 2.54 g (5 mmol) 25,27-bis(1-propyloxy)calix[4]arene, 5.57 g (20 mmol) 2-(2-
chloroethoxy)ethyl p-toluenesulfonate and 3.36 g (10 mmol) Cs,CO; in 150 mL dry
acetonitrile was heated at reflux under nitrogen for 24 h. The solvent was removed in
vacuo and 50 mL 2N HCI and 50 mL CH,Cl, were added and the phases were separated.
The aqueous phase was extracted two times with 30 mL CH,Cl,, the organic phases were
combined, dried with Na,SO4 and the solvent removed in vacuo. The crude product was
recrystallized twice from methanol/CH,Cl, (5:1) and gave 3.07 g (85%) of 25,27-bis(1-
propyloxy)-26,28-bis(5-chloro-3-oxapentyloxy)calix[4]arene as white crystals. The 'H
NMR spectrum corresponds to the published data.®® "H NMR (400 MHz,CDCl3) & 0.93
(t,J=17.2 Hz, 6H), 1.65 (m, 4H), 3.50 — 3.80 (m, 28H), § 6.67 - 6.72 (m, 4H, Ar), 6.97

(d, J=7.6 Hz, 4H, Ar) and 7.05 (d, J = 7.6 Hz, 4H, Ar).

N-tosyl 25,27-bis(1-propyloxy)calix|4]arene-azacrown-5. A solution of 1.45g (2
mmol) 25,27-bis(1-propyloxy)-26,28-bis(5-chloro-3 oxapentyloxy)- calix[4]arene, 0.343
g (2 mmol) p-toluenesulfonamide and 1.38 g (10 mmol) K,CO3 in 70 mL dry DMF was
heated at reflux under nitrogen for 24 h. The solvent was removed in vacuo and 50 mL
2N HCI and 50 mL CH,Cl, were added and the phases were separated. The aqueous
phase was extracted two times with 30 mL CH,Cl,, the organic phases were combined,
dried with Na,SO4 and the solvent removed in vacuo. The crude product was purified by
column chromatography using ethyl acetate:hexane 1:4 (Rf = 0.4) to provide 1.15 g
(70%) N-tosyl 25, 27-bis(1-propyloxy)calix[4]arene-azacrown-5. The 'H NMR spectrum

corresponds to the published data.®® '"H NMR (400 MHz, CDCls) & 0.72 (t, J= 7.3 Hz,
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6H), 1.28 (m, 4H), 2.45 (s, 3H), 3.20 — 3.80 (m, 28H), 6.74 - 6.82 (m, 4H, Ar), 7.01 —

7.06 (m, 8H, Ar), 7.34 (d, 2H, J= 7.4 Hz, Ar), 7.74 (d, 2H, J = 7.4 Hz, Ar).

25,27-Bis(1-propyloxy)calix[4]arene-azacrown-5. The reductive detosylation of N-
tosyl 25,27-Bis(1-propyloxy)calix[4]arene-azacrown-5 followed the procedure described
by Quici et al.” Under nitrogen, 380 mg (10 mmol) LiAlIH, was added carefully to a
solution of 410 mg (0.5 mmol) N-tosyl 25,27-bis(1-propyloxy)calix[4]arene-azacrown-5
in 80 mL dry THF. The suspension was heated to reflux for 24h and then allowed to cool
to rt., and the excess LiAlH, was decomposed with a stoichiometric amount of water. The
aluminum oxide was removed by filtration and carefully washed with 80 mL THF and
the solvent evaporated. The crude product was purified on prep. TLC using ethyl
acetate:hexane 1:1 (Re = 0.2) to afford 203 mg (61%) 25,27-bis(1-
propyloxy)calix[4]arene azacrown-5 as a pale yellow solid. The 'H NMR spectrum
corresponds to the published data.®® "H NMR (400 MHz,CDCl;) 5 0.82 (t, J = 7.3 Hz,
6H), 1.52 (m, 4H), 2.77 (s, 4H), 3.43 — 3.60 (m, 16H), 3.77 (s, 8H), 6.78 (t, J = 7.5 Hz,
2H, Ar), 6.83 (t, J=7.5 Hz, 2H , Ar), 7.03 (d, J = 7.5 Hz, 4H, Ar) and 7.13 (d, J="7.5

Hz, 4H, Ar).

N-(9-methyl-anthracene)-25,27-bis(1-propyloxy)calix[4]arene-azacrown-5(10). Note:
NMR and Mass Spectroscopy data in Appendix A2. A solution of 100 mg (0.15 mmol)
25,27-bis(1-propyloxy)calix[4]arene-azacrown-5, 35 mg  (0.15 mmol) 9-
(chloromethyl)anthracene and 46 mg (0.45 mmol) triethylamine in 50 mL of dry dioxane

was refluxed for 24h. The solvent was removed in vacuo and 50 mL 2N HCI and 50 mL
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CH,Cl, were added and the phases were separated. The aqueous phase was extracted two
times with 30 mL CH,Cl,, the organic phases were washed once with 30 mL of 2N
NaOH, separated, dried with Na,SO4 and the solvent was evaporated in vacuo. The
crude product was purified on prep. TLC using CH,Cl, (R¢ = 0.3) to afford 23 mg (18%)
N-(9-methyl-anthracene)-25,27-bis(1-propyloxy)calix[4]arene-azacrown-5, the title
compound, as white crystals. mp 188-190; 'H NMR (400 MHz,CDCl3) 6 0.69 (t,J=17.4
Hz, 6H), 1.21 (m, 4H), 2.75 (d, J = 4.5 Hz, 4H), 3.27 (s, 8H), 3.38 (t, J = 7.3 Hz, 4H),
3.46 (s, 4H), 3.80 (s, 8H), 4.58 (s, 2H), 6.79 (m, 4H, Ar), 7.05 (dd, /= 7.4, 11.2 Hz, 8H,
Ar), 7.48 (t, J = 7.1 Hz, 2H, Ar), 7.57 (t, J = 7.1 Hz, 2H, Ar), 8.01 (d, J = 8.3 Hz, 2H,
Ar), 8.43 (s, 1H, Ar), 8.59 (d, J = 8.8 Hz, 2H, Ar). ">C NMR (100 MHz,CDCl;) & 10.4
(CH3), 22.8, 38.6, 54.2, 70.2, 71.2, 72.4, (CHy), 122.5, 122.7, 125.2, 125.7, 125.9, 129.4,
130.1, 130.2, 131.8, 134.2, 134.5, 157.2, 157.5 (Ar). MS m/z (%) calcd. for Cs;HeNOg

(M+H") 856.4 found 856.4(100).

72



Potassium Fluoroionophore Results and Discussion

Emission spectra of 9 and 10

Figure 19 shows the fluorescence spectra obtained for N-(9-anthrylmethyl)-monoaza-18-
crown-6, 9, in the absence and presence of added concentrations of potassium acetate in
dichloromethane. We consider 9 as a model for 10 since it contains the same
fluorophore/amine electron transfer system as 10 and the size and electrostatic
characteristics of the complexation sites are qualitatively similar in both compounds as
determined by molecular modeling. This model compound was synthesized in order to
serve as a baseline in the determination of whether the selectivity and sensitivity of the

azacrown moiety is increased by the incorporation of the calix[4]arene group.
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Figure 19: Fluorescence emission spectra (Aex 355 nm) of 9 (5.5 x 10° M) in
dichloromethane with added BTMAH (9.0 x 107 M) as a function of [K']. a: 0 uM, b:
1.25 uM, c: 2.5 uM, d: 5 uM, e: 7.5 uM, f: 10 uM, g: 11.3 uM.

The fluorescence behavior of 9 clearly demonstrates that the PET “off-on” switching
mechanism that occurs in response to ion complexation is operative. In the absence of
ions the anthryl fluorescence is at a minimum and increases linearly with addition of
potassium acetate up to a concentration marginally higher than the concentration of 9,
after which it begins to plateau. This indicates that the ion and ionophore are likely
forming a 1:1 complex in solution as expected given the reported behavior of similar
azacrowns.”' The results obtained show a ca. 50—fold enhancement of the fluorescence

intensity upon addition of potassium ions. This is consistent with previously published
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data®"® and certainly indicates sufficient sensitivity and dynamic range for further study

following incorporation of the calix[4]arene group.

Protonation of the nitrogen atom in the azacrown can potentially block the electron
transfer process and for this reason, the organic base, benzyltrimethylammonium
hydroxide (BTMAH), was added to minimize protonation. In fact, the addition of base to
solutions of 9 in the absence of potassium ions causes a 4-fold decrease in the
fluorescence intensity, consistent with this protonation effect. Nevertheless, some
fluorescence is still observed. It is difficult to unambiguously determine the origin of this
fluorescence, i.e. whether it reflects the intrinsic rate constants for fluorescence and
electron transfer in this molecule or whether there is a low background concentration of
potassium, sodium or other cations present as impurities. Indeed, the intensity of the
fluorescence emission in the presence of base and in the absence of added potassium is
somewhat variable and it is possible to reduce this intensity by using rigorously cleaned
glassware during sample preparation, suggesting that at least some of the effect is due to

impurity ions.

Figure 20 shows the fluorescence spectra obtained for 10 in the absence and presence of
added potassium acetate in dichloromethane solution. In order to compare directly the
behavior of 9 and 10, the spectrum for 10 in the absence of potassium ions was
normalized to that of 9 to account for differences in sample absorbance at the excitation

wavelength. As with 9, the fluorescence intensity of 10 in the presence of added base,
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increases dramatically with addition of potassium ions, although the dynamic range for

10 is considerably less than for 9, (8.5-fold and 50-fold increases respectively).
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Figure 20: Fluorescence emission spectra (Aex 355 nm) of 10 (1.1 x 10° M) in
dichloromethane with added BTMAH (1.0 x 10”7 M) as a function of [K']. a: 0 uM, b: .5
uM, c: 1 uM, d: 1.5 uM, e: 2 uM, f: 2.5 uM, g: 3 uM.

The reason for this reduced response is unclear. One potential explanation is that the ion
occupies a site in 10 relative to the electron lone pair on the azacrown nitrogen atom as
well as to the anthryl fluorophore that is different than in 9. For example, if the most
stable position of the ion in the complex is at a greater distance from the nitrogen lone
pair in 10, this could lead to a weaker electrostatic interaction and result in less effective

interference with the electron transfer quenching process. Such an effect could
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conceivably be caused by an interaction between the ion and the m-systems of the phenyl
rings of the calixarene group. The binding of cations through m-interactions has been
observed for other host-guest molecules as well as the 1,3 alternate calix[4]arene-crown-
5 used in the present study.'*”>”” In fact, electrostatics calculations on the potassium
ion-10 complex point out significant changes in charge density in the calixarene phenyl
rings upon complexation. Figures 21 and 22 present the results of the electrostatic
calculations where the electron density decreases in the order: red, green, blue. As
shown, in the uncomplexed state (Figure 21) there is a high electron density localized
around the calix[4]arene aromatic moieties as indicated by the substantial red coloration.
In contrast, Figure 22 shows that complexation causes the electron density in the
aromatic rings to be reduced significantly, as evidenced by the shift to a substantial blue
coloration.  Additionally, it was found that when the structure of 9 complexed with
potassium ion was minimized, a K'N distance = 3.00 A was optimal whereas a K''N
distance of 3.48 A was observed for 10. Therefore, a weaker interaction with the amine
electron donor and consequently a reduction in the fluorescence response would be
expected for 10 compared to 9. Figure 23 shows the minimized potassium-10 complex

with the calculated distances of the cation to the oxygen and nitrogen atoms.
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Figure 21: Electrostatic computational results for 10 in the uncomplexed state. The
magnitude of electron density decreases in the order: red>green>blue. 1, anthracene
fluorophore; 2, binding site; 3, calix[4]arene; 4, propyl substituents.

Figure 22: Electrostatic computational results for 10 in the complexed state. The
magnitude of electron density decreases in the order: red>green>blue.
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Figure 23: Minimized structure of 10 in the complexed state with potassium showing the
distances, in A, to the heteroatoms.

Selectivity

Since it is our eventual intention to use molecules similar to 10 in sensors for the
detection of potassium ions in blood samples, the selectivity of 10 for potassium over
other analytes is an important consideration. Given the structural similarities between 10
and 1,3-alternate calix[4]arenes it is reasonable to expect similar binding properties.14
Therefore, we expect that metal ion complexation in 10 is governed by electrostatic

interactions, particularly with the azacrown oxygen atoms, and through cation-nt
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interactions, but selectivity is controlled enthalpically from the pre-organized structure,
size fit effects and steric effects from the propyl substituents appended to the two rotated
aryl rings of the calix[4]arene.'* Figure 24 shows the dependence of the emission
intensity of 10 on cation concentration. (The values in the plot are normalized to the
fluorescence intensity in the absence of ion.) These results suggest high selectivity of 10
for potassium ion in comparison with the other alkali metal cations studied, including
sodium. This is an important property for blood analysis applications since sodium is

present in relatively high concentrations in whole blood.
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Figure 24: Emission area of 10 versus the concentration of various alkali metal ions: Li
(0), Na (A), K (#), Rb (W), Cs (x).

Selectivity was calculated by a method (illustrated in Figure 25) that is qualitatively

similar to the fixed interference method (FIM) and separate solution methods (SSM) used
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in ion selective electrode applications.”® Figure 25 shows a hypothetical plot of
fluorescence emission intensity as a function of ion concentration for primary and
‘interfering’ ions. Selectivity is calculated from Equation 6 and is represented as a

logarithmic value.

logK,, = 1og[ﬂ} ©)
’ [/]

Here, [j] is the concentration of the interfering ion in the plateau region of the plot and for
sensor applications is normally chosen to fall within a physiological concentration range
for that ion. This is the concentration of interfering ion that provides the maximum
fluorescence response; [i] is the concentration of the primary ion that produces the same
fluorescence response as the maximum fluorescence produced by the interfering ion and
as such represents a minimum unambiguous detection limit for the primary ion. From
Figure 24 it is clear that sodium and lithium ions produce virtually no response. These
results allow only a lower limit of the selectivity to be calculated using Equation 6. Thus
log Kikne ~ log Kgpi <-3.5, a value similar to that obtained for valinomycin and
considerably larger than obtained for 9. For cesium and rubidium, log Kk ¢ = log Kx rp
= -1.0, a value that is comparable to that obtained for the related 1,3 alternate
calix[4]arene-crown-5."* These results are summarized in Table 3. For comparison,
Table 3 also shows selectivity results obtained previously for the related calix[4]arene-

crown-5 and valinomycin.
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Figure 25: Hypothetical plot of fluorescence emission intensity as a function of ion
concentrations for primary (i) and interfering (j) ions.

Selectivity coefficients, log Kx;

Compound Li" Na" Rb" Cs'
9 i -1.3 - ]
10 <35 <-35 -1.0 -1.0
Ref 14° -4.84 -5.39 -0.48 2.25
Ref 14° -3.52 -3.26 -0.48 -0.38

a: 1,3 alternate calix[4]arene-crown-5 in CHCls. b: valinomycin in CHCls.

Table 3. Selectivity data (log Kjj) for 10 and related compounds.

Since the complexes apparently have a 1:1 ion/ionophore stoichiometry as suggested by

similar calix[4]arene-crowns and molecular modeling, ion concentrations much higher
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than the concentration of 10 do not result in further increases in fluorescence

147882 The concentration of 10 in turn is limited by the requirement that

intensity.
absorbances at the excitation wavelength in our fluorescence experiments must be less
than 0.04 in order to obtain a linear fluorescence response. Therefore, the concentration
of 10 used in these measurements is limited and by necessity the ion concentrations are
well below physiological norms. However, in the eventual sensor configuration,

considerably shorter path lengths will make much higher ionophore concentrations

possible, possibly giving sensitivity in the physiological range.

Solvent effects

Previous studies of analogous anthryl-calix[4]arene-benzocrowns indicated a
considerable and complex solvent effect on the intensity of fluorescence in such
compounds.®®  Specifically, addition of methanol to dichloromethane was observed
initially to cause an increase in the fluorescence presumably due to complexation of the
methanol with the oxygen atoms of the benzocrown ether, i.e., electron transfer was less
efficient. With continued addition of methanol, the increase in polarity in turn increased
the efficiency of electron transfer and led to a decrease in the fluorescence. Given this
reported medium effect and its potential importance in the operation of a sensor based on
this molecular structure, we have investigated the effect of solvent on 10, both in the
absence and presence of added potassium ions. In the absence of ions, the addition of
methanol to the dichloromethane solutions caused an increase in the fluorescence

intensity at small mole ratios of methanol to dichloromethane (ca. 0.17, 10% v/v, ca. 3M)
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and then a decrease as the methanol was increased further. This behavior is similar to that
reported for the benzocrown systems.** It is likely here that at low methanol
concentrations, the increase in fluorescence intensity is due to a hydrogen bond
interaction between methanol and the azacrown nitrogen. However, at higher methanol
concentrations the drop in fluorescence intensity observed can be ascribed to an increase
in the efficiency of electron transfer due to an increase in solvent polarity. This polarity
effect presumably overshadows the hydrogen bonding effect. Alternatively, hydrogen
bonding to the azacrown could be reduced due to self-association of the added methanol,

particularly since the concentration of methanol is quite high, ca. 3M.

In the presence of added potassium ions, an additional effect of solvent is observed.
Figure 26 shows the delta response of 10 as a function of the mole fraction of
dichloromethane in methanol. The delta response is determined from the slope of the
fluorescence intensity versus ion concentration curve at a specific solvent composition.
It is clear that as the mole fraction of methanol decreases, the delta response increases
dramatically. We ascribe this behavior to a solvation effect in that, as the solvent polarity
decreases with increased dichloromethane concentration, the potassium ions seek out a
more energetically favorable solvation environment, namely the complexation site in 10.
Solvation effects on complexation such as observed here have been noted in other
calix[4]arene systems.* This response to solvation is expected to have an important
impact on the composition of the membrane that is eventually chosen to host 10 in sensor

applications.
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Figure 26: Delta fluorescence response to K™ of 10 as a function of the mole fraction of
dichloromethane in methanol.
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Summary of Potassium Fluoroionophore work

The, N-(9-methyl-anthracene)-25,27-bis(1-propyloxy)calix[4]arene-azacrown-5 (10),
complexes with potassium ions in organic solution triggering a substantial increase in
anthryl fluorescence emission through the disruption of the PET quenching process.
Preliminary measurements indicate that the selectivity for potassium ions over other
alkali metal cations, particularly sodium and lithium, for 10 is increased dramatically
over that of the anthryl azacrown model compound, 9. This large increase in the
selectivity for potassium over sodium and lithium can be attributed to the rigid and pre-
organized structure of 10 such that the motif can not wrap around these smaller cations
without a large thermodynamic cost to complexation. This again is in contrast to the
flexible architecture of 9 where a small difference in enthalpies exists for the respective
potassium and sodium complexes. In addition, these preliminary solution phase studies
indicate a 1:1 complexation between 10 and the ion, suggesting that 10 could be sensitive
to potassium in the normal physiological concentration range once incorporated into a
sensor. Furthermore, the observed fluorescence response to changes in solvent polarity
suggests that the sensor substrate composition will have an important impact on the
efficiency of 10 as an ionophore and could allow further optimization of sensitivity and

selectivity.
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C: Lithium Fluoroionophore (11)

We have shown through our previous work, as well as that of others, that the
calix[4]arene-crown architecture provides an ideal framework for the development of
highly selective hosts.'*****7* For example, the calix[4]arene-crown-5 structures (see for
example Figure 3, right) are able to achieve higher selectivities than that of valinomycin,
the natural antibiotic that is used extensively as a highly selective potassium

ionophore.'**

As we have noted, in the calix[4]arene-crown structures the ion binding event occurs in a
relatively rigid, pre-organized pocket with electrostatic stabilization provided by the
oxygen groups in the crown as well as by cation-m interactions between the ion and the
phenolic aromatic rings of the calixarene. The rigidity of the binding pocket combined
with the possibility of varying the size of the pocket by changing the size of the crown
through straightforward synthetic methods suggested to us the possibility of developing a
systematic series of highly selective alkali metal ionophores and fluoroionophores that
are based on a simple size-fit criterion. To this end, we synthesized and tested 10, which
showed, as described above, excellent selectivity for potassium. These results led us to

our conception of a lithium fluoroionophore (11) based on a similar structure.

High selectivity in ionophores and fluoroionophores is particularly important for the

accurate detection of lithium ions in physiological media since ions that may interfere
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with lithium ion complexation, including sodium ion, are present at significantly higher
concentrations. It is generally accepted that for an ionophore to accurately measure
lithium ion concentration, it must have a selectivity ratio of lithium over sodium that is
greater than 10** Earlier studies of lithium ionophores involved a variety of crown
ethers, including dibenzo-14-crown-4.**  When incorporated into an ion selective
electrode (ISE) this system was found to be ~10 times more selective for lithium than
sodium ions. In another study, a ten-fold improvement in lithium/sodium selectivity was
attained by the incorporation of bulky substituents on a series of lipophilic derivatives of
13- through 16-crown-4 ethers.* It was suggested that these substituents sterically hinder
the complexation of larger cations while at the same time reducing the tendency of crown
ethers to form 2:1 sandwich-type complexes with larger cations. A similar improvement,
logKyin. = -2.15, was observed with the covalent linkage of benzyloxymethyl groups to

13- and 14-crown-4 rings.*

More recently, a marked enhancement in lithium/sodium
selectivity was achieved with the addition of a decalino subunit to a 14-crown-4, logKj;x.
= -3.0. A similar system exhibited an estimated selectivity logK;ix. < -4 when

incorporated into an optode.* However, when employed in an ISE, the same ionophore

attained a significantly lower selectivity, logK,y, = -2.5.Y

Here we describe the synthesis and testing of N-(9-methyl-anthracene)-25,27-bis(1-
propyloxy)-4-p-tert-butylcalix[4]arene-azacrown-3 (11). Compound 11 consists of a p-
tert-butylcalix[4]arene group combined with an azacrown-3 moiety to create a
considerably smaller binding pocket than in 10, the potassium-selective fluoroionophore

we discussed earlier. Our results show that 11 is highly selective for lithium ions over
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sodium and potassium ions. Described here are the synthetic details, fluorescence results

and the results of selectivity studies.
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Lithium Fluoroionophore Experimental

(Synthesis by Dr. Hubert Neinaber)

Note: All NMR and Mass Spectroscopy data in Appendix A3.

Dipropyl-4-p-tert-butylcalix[4]arene: CAS [137693-26-6]

In a 500 mL round bottom flask 6.489g 4-p-tert-butylcalix[4]arene (10 mmol), 4.10g 1-
iodopropane (24.1 mmol) and 4.14g (30 mmol) K,CO; were suspended in 300mL dry
acetonitrile and boiled under reflux for 24 hours. The solvent was removed in vacuo and
50 mL 2N HCI and 50 mL CH,Cl, were added and the phases were separated. The
aqueous phase was extracted two times with 30mL CH,Cl,, the organic phases were
combined, dried with Na,SO, and the solvent removed in vacuo. The crude product was
recrystallized from methanol/CH,CI, (5:1) and gave 5.57 g (76%) of dipropyl-4-p-tert-
butylcalix[4]arene as white crystals. 'H NMR (400 MHz, CDCL); & 1.03 (s, 18 H,),
1.26 (s, 24 H), 2.03 (m, 4H), 3.31 (d, 4H, J = 12.9 Hz), 3.95 (t, 4H, J = 6.4 Hz), 4.30 (d,
4H, J = 12.8 Hz), 6.88 (s, 4H, Ar), 6.93 (s, 4H, Ar), 8.00 (s, 2H). “"C NMR (100 MHz,
CDCL) ; 6 11.3 (CHs), 23.9 (CH,), 31.5, 32.1 (CH,), 32.3, 34.2, 34.4 (CH,), 78.5 (C),

125.5,125.9, 128.1, 133.3, 141.6, 147.1, 150.4, 151.3 (Ar).

25,27-Bis(1-propyloxy)-26,28-bis(2-chloroethoxy)-4-p-tert-butylcalix[4]arene
To a solution of 7.329g (10 mmol) dipropyl-4-p-tert-butylcalix[4]arene in 300 mL dry
acetonitrile, 9.39g (40 mmol) 2-chloroethyl-p-toluenesulfonate and 9.77g (30mmol)

Cs,CO; were added and the mixture was refluxed under nitrogen for 24 h. The solvent
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was removed in vacuo and 50 mL 2N HCI and 50 mL CH,Cl, were added and the phases
were separated. The aqueous phase was extracted two times with 30mL CH,Cl,, the
organic phases were combined, dried with Na,SO, and the solvent removed in vacuo.
The crude product was recrystallized from methanol/CH,CI, (3:1) and gave 4.89g (57%)
of 25,27-bis(1-propyloxy)-26,28-bis(2-chloroethoxy)-4-p-tert-butylcalix[4]arene as white
crystals. 'H NMR (400 MHz, CDCL,); 8 0.55 (t, 6H, J= 7.5 Hz), 0.93 (m, 4H), 1.26 (s, 18
H), 1.31 (s, 18 H), 2.60 (m, 4H), 3.30 (t, 4H, J = 7.5 Hz), 3.52 (m, 4H), 3.83 (m, 8H),
6.95 (s, 4H), 6.97 (s, 4H). "C NMR (100 MHz, CDCl;); 6 10.1 (CH,;), 22.4 (CH,), 31.5,
31.7 (CHs;), 34.9, 34.0, 39.1, 40.1, 68.8, 71.3 (CH,), 125.2, 125.6, 132.7, 133.0, 144.5,
144.6, 153.3, 155.0 (Ar). ESI MS m/z (%) calced. for Cs,H;sC1,O, [M+H'] 857.48 found
857.40(100), calcd. for [M+Na'] 879.48 found 879.43(95), calcd. for [M+K"] 895.45

found 895.29(43).

N-Tosyl-25,27-bis(1-propyloxy)-4-p-tert-butylcalix[4]arene-azacrown-3

A solution of 2.58g (3 mmol) 25,27-bis(1-propyloxy)-26,28-bis(2-chloroethoxy)-4-p-
tert-butylcalix[4]arene, 0.513g (3mmol) p-toluenesulfonamide, 4.89g (15mmol) Cs,CO;
and 0.17g (Immol) KI in 150mL dry DMF was heated at reflux under nitrogen for 24 h.
The solvent was removed in vacuo and 50 mL 2N HCI and 50 mL CH,Cl, were added
and the phases were separated. The aqueous phase was extracted two times with 30mL
CH,CL,, the organic phases were combined, dried with Na,SO, and the solvent removed
in vacuo. The crude compound was recrystallized from methanol/CH,CI, (4:1) and gave

1.45g (51%) of N-tosyl-25,27-bis(1-propyloxy)-4-p-tert-butylcalix[4]arene-azacrown-3
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as white crystals. 'H NMR (400 MHz, CDCl;); 6 0.56 (t, 6H, J = 7.5 Hz), 0.68 (m, 4H),
1.11 (s, 18 H), 1.26 (s, 18 H), 2.20 (m, 4H), 2.39 (s, 3H), 3.14 (m, 4H), 3.36 (m, 4H),
3.94 (m, 8H), 7.04 (s, 8H), 7.19 (d, 2H, J= 8.0 Hz), 7.48 (d, 2H, J = 8.2), "C NMR (100
MHz, CDCl;); & 10.1 (CH;), 21.9 (CH,), 31.7, 31.9 (CH;), 34.2,40.1 (CH,), 50.7 (CHs),
72.5, 74.2 (CH,), 126.5, 126.8, 127.2, 130.0, 132.5, 134.2, 137.0, 143.0, 144.0, 145.7,
155.0, 155.6 (Ar). ESI MS m/z (%) calcd. for CgqHgNOgSNa [M+Na'] 978.57 found

978.73(94).

25,27-Bis(1-propyloxy)-4-p-tert-butylcalix[4]arene-azacrown-3

To a solution of 1.2g (1.25 mmol) N-tosyl-25,27-bis(1-propyloxy)-4-tert-
butylcalix[4]arene-azacrown-3 in 80 mL dry THF was carefully added 1g of potassium
metal under nitrogen. The mixture was heated to reflux for 24 h, at which temperature the
potassium was molten, and then allowed to cool to rt. The main excess of potassium was
removed and the rest was carefully hydrolyzed with water. The solvent was removed in
vacuo and 50 mL 1N KOH and 50 mL CH,CIl, were added and the phases were separated.
The aqueous phase was extracted two times with 30mL CH,Cl,, the organic phases were
combined, dried with Na,SO, and the solvent removed in vacuo. The crude compound
was recrystallized from methanol/CH,Cl, (4:1) and gave 0.82g (82%) of 25,27-bis(1-
propyloxy)-4-p-tert-butylcalix[4]arene-azacrown-3 as white crystals. 'H NMR (400
MHz, CDCL); 8 0.55 (t, 6H, J = 7.5 Hz), 0.81 (m, 4H), 1.23 (s, 18 H), 1.27 (s, 18 H),
1.89 (m, 4H), 3.10 (m, 4H), 3.26 (m, 4H), 3.95 (m, 8H), 5.30 (s, 1H), 6.95 (s, 4H), 6.99

(s, 4H). “C NMR (100 MHz, CDCL); & 10.0 (CH,), 22.0 (CH,), 31.5, 31.6 (CH,), 33.9,
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34.0, 39.8, 47.8, 68.1, 72.7 (CH,), 125.9, 126.0, 132.4, 133.1, 143.9, 144.9, 154.0, 155.7

(Ar). ESI MS m/z (%) caled. for Cs,H,NO, [M+H] 802.56 found 802.52(100).

N-(9-methylanthracene)-25,27-bis(1-propyloxy)-4-p-tert-butylcalix[4]arene-
azacrown-3 (11)

A mixture of 200 mg (0.25 mmol) 25,27-bis(1-propyloxy)-4-p-tert-butylcalix[4]arene-
azacrown-3, 85 mg (0.37 mmol) 9-(chloromethyl)anthracene, 75 mg (0.75 mmol)
triethylamine and 17 mg (0.1 mmol) KI in 80 mL of dry dioxane was refluxed for 48h
under nitrogen and protected from light. The solvent was removed in vacuo and 50 mL
2N KOH and 50 mL CH,Cl, were added and the phases were separated. The aqueous
phase was extracted two times with 30mL CH,Cl,, the organic phases were combined,
dried with Na,SO, and the solvent removed in vacuo. The crude product (80 mg) of was
purified on prep. TLC using CH,CL/Et:;N (50:1) (R¢ = 0.25). This fraction was almost
pure and yielded after recrystallization from methanol/CH,Cl, (4:1) 26 mg (31%) of the
pure N-(9-methylanthracene)-25,27-bis(1-propyloxy)-4-p-tert-butylcalix[4]arene-
azacrown-3 as slightly yellow crystals."H NMR (400 MHz, CDCl;) ; & 0.55 (t, 6H, J =
7.4), 0.70 (m, 4H), 1.10 (s, 18H), 1.27 (s, 18H), 1.70 (m, 4H), 3.15 (m, 4H), 3.52 (m,
4H), 4.01 (m, 8H), 4.06 (s, 2H), 7.00 (s, 4H), 7.05 (s, 4H), 7.40 (m, 4H), 7.92 (m, 2H),
8.20 (m, 2H), 8.31 (s, 1H). "C NMR (100 MHz, CDCl;); 6 10.2 (CH;), 21.9 (CH,), 31.8,
31.9 (CH,), 34.2, 34.3, 40.2, 49.7, 51.4, 70.2, 74.5 (CH,), 125.1, 125.6, 125.7, 126.6,
126.8, 127.3, 129.1, 131.5, 131.7, 131.8, 132.2, 134.3 143.6, 145.3, 155.5, 155.9 (Ar).

ESIMS m/z (%) calcd. for CeuHgNO, [M+H'] 992.63 found 992.69(82).
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Fluorescence Measurements

Fluorescence emission and excitation spectra were obtained with a Perkin Elmer LS-50B
Fluorimeter in 75:25 dichloromethane:THF. 6uM Benzyltrimethylammonium hydroxide
was added as a proton scavenger. Fluorescence was measured as a function of metal ion
concentrations where the metal ions were added as the hexafluorophosphate salts.
Fluorescence areas were determined by integrating the spectrum over a fixed wavelength

range.
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Lithium Fluoroionophore Results and Discussion

Solvent effects

Previous studies of anthryl-benzocrown ether calixarenes indicated a considerable and
complex solvent effect on the intensity of fluorescence® and a similar effect was
observed in our study of  the N-(9-methylanthracene)-25,27-bis(1-
propyloxy)calix[4]arene-azacrown-5 (10) (see Figure 26). In both systems, in the
absence of ions, the addition of methanol to dichloromethane solutions of the
fluoroionophore caused an increase in the fluorescence intensity at small mole ratios of
methanol to dichloromethane (ca. 0.17, 10% v/v) and then a decrease as the methanol
concentration was increased further. It is likely that at low methanol concentrations, a
hydrogen bonding interaction occurs between methanol and the azacrown nitrogen atom,
disrupting the electron transfer quenching process and leading to the increase in
fluorescence emission intensity observed. Conversely, the polar environment provided by
higher methanol concentrations can increase the efficiency of electron transfer and cause
a decrease in emission intensity. Furthermore, it can be reasonably expected that the
polarity effect will dominate at high methanol concentration while a specific solute-

solvent interaction will be more important at low methanol concentration.
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Figure 27: Normalized emission area of 11 (hex 355 nm,1 x 10 M) as a function of the
mole ratio of MeOH in dichloromethane.

The effect of methanol on the emission of 11 is different. Figure 27 shows the
fluorescence emission of 11 as a function of the mole fraction of methanol in
dichloromethane solution. With only small additions of methanol there is a dramatic
decrease in the fluorescence quantum yield, i.e. there is no intensity increase at low
methanol concentration. The fluorescence is completely quenched by the addition of
methanol at a mole fraction of 0.15. This effect can be attributed to a more pronounced
stabilization of charge separation in 11 than in other anthryl-benzocrown- and anthryl-
azacrown-calixarenes. This is supported by the results of previously reported solution

82,89

thermodynamics studies of calix[4]arene crown-3 systems. In these studies, it was
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observed that molecules with the crown-3 structure can complex small neutral molecules,
such as nitromethane and malonitrile (and likely methanol) with relatively high stability
constants (logK, = 1-2 in CDCl;). '"H NMR data from this work show that an interaction
occurs between the guest molecule and the m-systems of the calix[4]arene aromatic

rings.*

At the same time it was suggested that larger systems (e.g., crown-5) have
weaker binding with neutral molecules due to the higher flexibility of the crown. This, in
combination with the previously reported NMR data, suggests that 11 is likely to be more
highly solvated in methanol than the larger crown-5 structures. Since higher solvation by

methanol can be expected to enhance the electron transfer efficiency, the observed

quenching effect of methanol on the emission intensity is understandable.

This solvent effect causes a practical problem in experiments on ion complexation since
it masks the effect of ion binding on the emission intensity. As a result, all subsequent
experiments on ion complexation were carried out in 75:25 (v/v) dichloromethane/THF
using the hexafluorophosphate salts of the alkali metals, which are reasonably soluble in

this solvent system.

Fluorescence Emission of 11

Figure 28 shows the fluorescence spectra obtained for 11 in the absence and presence of
added concentrations of lithium hexafluorophosphate in 75:25 dichloromethane/THF.
The fluorescence behavior of 11 clearly demonstrates that the PET “off-on” switching

mechanism occurs in response to ion complexation. In the absence of ions the anthryl
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fluorescence is at a minimum and increases with addition of lithium hexafluorophosphate

yielding a maximum 106-fold enhancement.
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Figure 28: Fluorescence emission spectra (hex 355 nm) of 11 (2 x 10° M) in 75:25
dichloromethane/THF with added BTMAH (6.0 x 10° M) as a function of [Li]. a: 0 uM,
b: 2 uM, c: 3 uM, d: 4 uM, e: 4.5 uM, f: 5.5 uM, g: 6.5 uM, h: 8 uM, i: 15 uM.

Other PET based systems exhibit dramatic increases in fluorescence intensity but few
have shown enhancements of this magnitude. The size of the fluorescence enhancement
is directly related to the magnitude of the charge density of the bound ion that is
experienced by the lone pair of the azacrown nitrogen atom, i.e., the electrons involved in

the PET process. This is best illustrated by a comparison of the results for 11 with those
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for 9 and 10, both of which are fluoroionophores that signal the binding of potassium

ions by the PET process (as we previously discussed above).

9 10

For 9 and 10, the fluorescence enhancements observed were 50-fold and 8-fold,
respectively. Modeling studies of 9 indicate that the most stable ion-fluoroionophore
complex possesses a KN distance = 3.0 A while for 10 this distance is 3.5 A. This
difference could be expected to result in significantly smaller charge density at the
azacrown nitrogen lone pair in complexes of 10 than in complexes of 9, producing
fluorescence enhancements consistent with those observed. The increased distance of the

cation from the amine in 10 can be attributed to interactions between the cation and the
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calixarene m-systems in 10, an effect that has been observed for other host-guest
molecules.””  Modeling of 9, however yields a minimized structure with a Li"N
distance = 3.8 A, considerably greater than either 9 or 10 and if taken on its own, counter
to the observed fluorescence behavior. However, the lithium ion possesses a much larger
intrinsic charge density, 1.47 versus 0.74 gA"' for lithium and potassium ions,

respectively, and this difference is sufficient to explain the observed enhancement.

Selectivity

While the strength of the metal ion-fluoroionophore complex in 11 is governed by
electrostatic interactions, particularly with the azacrown oxygen atoms, and through
cation-t interactions, selectivity is controlled primarily by a size fit effect and steric
effects from the t-butyl substituents appended to the two rotated aryl rings of the
calix[4]arene." Compound 11 was designed with the goal of excluding on a size-fit basis
all ions larger than lithium (ionic radius = 0.68 A). The structure of 11 was based in part
on 14-crown-4 derivatives which are an appropriate size match for lithium. This crown
was incorporated into 11 as an azacrown-3. In addition to providing an appropriately
sized pocket, we expected that the bulky nature of the calix[4]arene structure would
reduce the possibility of 2:1 sandwich-type complexes forming with larger cations. As
part of our design process, molecular dynamics calculations were performed to determine
the suitability of 11 for selectively binding lithium ion. Figure 29 shows the results of

molecular dynamics calculations for 11 in the complexed state with lithium ion (left) and
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sodium ion (right) (ionic radius = 0.95 A). The minimized structure shows the lithium
cation centered within the cavity with Li"O distances of 1.90, 2.02, 1.94, 1.95 A. This is
in contrast to sodium, which is positioned asymmetrically in the binding site (Na"O
distances of 2.85, 2.44, 2.12, 2.13 A) and is a considerably greater distance from the
azacrown nitrogen atom. (Na™N distance = 4.84 A versus Li*N distance = 3.80 A).
The calculations also indicate that the sodium complex is ca. 25 Kcal/mol less
thermodynamically stable than the lithium complex. As expected, calculations for
potassium ion (ionic radius = 1.33 A) complexes with 11 (not shown) yielded structures
in which the cation was pushed out of the binding pocket entirely (K" N distance of 5.98
A). Although these calculations are qualitative, they suggested that 11 should have a

high degree of discrimination over sodium and potassium cations.

Figure 29: Minimized structures of 11 with Li" (left) and Na" (right).
Figure 30 shows the dependence of the emission intensity of 11 on cation concentration

for lithium, sodium and potassium. (The values in the plot are normalized to the
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fluorescence intensity in the absence of ion.) These results suggest high selectivity of 11

to lithium in comparison with the other alkali metal cations studied.
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Figure 30: Emission area of 11 versus the concentration of various alkali metal ions: Li
(), Na (M), K(A).

From Figure 30 it is clear that for potassium and sodium ions, the integrated fluorescence
intensity as a function of added ion initially increases until it reaches a plateau, beyond
which it is constant up to the maximum concentration tested. In the case of lithium ions,
the fluorescence intensity increases, plateaus at ca. 10 uM and then begins to decrease
beyond 50 uM. This fluorescence quenching behavior is similar to other PET based

systems and has been attributed to a “medium effect” due to the increase of ionic
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h.222463-66 1t i also clear that the enhancement in fluorescence emission in the

strengt
presence of lithium ions is significantly larger than for sodium or potassium. The

selectivity was calculated from equation 8, where i = primary ion, j = interfering ion (as

above, see equation 6).

[£]

logk, ; = log[—J )]
J]

Here, [j] is the highest tested concentration of the interfering ion in the plateau region of
the plot, 20 mM and .5 mM for sodium and potassium ions, respectively. The primary
ion concentration, [i], is the concentration that produces the same fluorescence response
as the maximum fluorescence produced by the interfering ion and as such represents a
minimum unambiguous detection limit for the primary ion, (3.2 uM lithium and 2.8 uM
lithium for sodium and potassium, respectively). In the case of sodium, the calculation
yields a selectivity value for lithium versus sodium, log K;;n, = -3.8. However, this
concentration represents the solubility limit of the sodium salt used and therefore, this
selectivity should be regarded as a lower limit only. Similar results were obtained for
lithium versus potassium, log K;;x = -2.3. We note that again this is a lower limit. The
value quoted is less than that for lithium/sodium selectivity because the potassium salt
used was less soluble and we were limited to a maximum concentration of 0.5 mM.
However, as with sodium the actual selectivity is likely much higher. In fact, given that

the ionic radius of potassium is larger than that of sodium, and that from the molecular
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dynamics calculations the potassium complex is less stable than that of sodium, the
lithium/potassium selectivity is expected to be at least two orders of magnitude greater

than the lower limit quoted.
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Summary of Lithium Fluoroionophore Work

The N-(9-methylanthracene)-25,27-bis(1-propyloxy)-4-p-tert-butylcalix[4]arene-
azacrown-3 (11) acts as a fluoroionophore in the presence of the alkali metal ions
(lithium, sodium, potassium). In the absence of ion, fluorescence of the anthryl group is
substantially quenched by intramolecular electron transfer (PET) from the nitrogen atom
in the azacrown moiety. In the presence of complexed ion, the electric field of the ion
disrupts the PET process, thereby switching on the anthryl fluorescence emission. For

lithium, the enhancement in fluorescence is dramatic (>106-fold).

Molecular dynamics calculations predicted high selectivity of 11 for lithium ion over
sodium and potassium ions on the basis of a size-fit effect. This is confirmed by smaller
fluorescence enhancements for the latter two ions. Selectivity was calculated based on
the observed fluorescence behavior, yielding logK;; v, = -3.8. and log K;; x =-2.3. These
values are regarded as lower limits due to limited solubilities of the sodium and
potassium salts used in the experiments. Nevertheless, the observed selectivities indicate

that 11 is one of the most selective lithium ligands reported.
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D: Sodium Fluoroionophore (12) and
Optode Fabrication

In the preceding work with our potassium fluoroionophore 10 and our lithium
fluoroionophore 11, we reported on the photoinduced electron transfer (PET) mechanism
by which these molecules operate and on the solution phase complexation of cations. It
was shown that complexation of potassium and lithium ions in an organic solution
triggered a substantial increase in anthryl fluorescence emission through the disruption of
the PET quenching process for 10 and 11, respectively. It was also shown that the
molecules possess high selectivity for their primary ions over that of interfering ions,

(e.g. logKg na <-3.5, logKy;ne = -3.8 for 10 and 11, respectively)

In solution, we were limited to testing at fluoroionophore concentrations that do not
absorb beyond .04 in a 1 cm cell, i.e. < 10 uM. Since complexation follows a 1:1
stoichiometry, only micromolar cation concentrations could be tested. This value is far
below the physiological concentration range of important cations, i.e. mM range.
However, the ultimate intended use of fluoroionophores is in the construction of optically
based sensors where the fluoroionophore will be contained within a thin polymeric film.
Since these films will have a thickness on the order of microns, larger fluoroionophore
concentrations will be possible, potentially promising sensitivity with the physiological
range. A logical extension of the work described up to this point then, is the
incorporation of a fluoroionophore into an optically based format that is suitable for the

eventual application of a sensor in the clinical diagnosis of disease.
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The development of optical sensors, optodes, based on polymeric membranes has been
extensively studied.'**® For example, tetracthylester-p-tert-butyl-calix[4]arene (Figure
31) as well as the tetramethylester-p-tert-butyl-calix[4]arene (Figure 5, right) have been
incorporated as one of several components into an organic polymer membrane consisting
of PVC, various plasticizers, a pH sensitive fluorophore and in some cases a lipophilic
salt (e.g., KtpCIPB).”"' The operation of such an optode usually involves the partitioning
of the ion from the aqueous phase into the membrane organic phase followed by binding
of the ion to the calix[4]arene and then a release of a proton from the fluorophore, which
in the process alters the fluorescence intensity. This process is depicted in Figure 32
where ag and org denote the aqueous and organic phases respectively, I is the ion, L is
the ligand or ionophore, IL" is the ion-ionophore complex, C is the anionic fluorophore,
CH is the neutral fluorophore. The signaling mechanism has been referred to as cation
exchange and operates as follows: the cation, I', enters the membrane organic phase and
is bound by the ionophore, L,,, creating a positive charge site, IL",,; a proton is then
released from the fluorophore, CH,,, creating a negative charge site C,, , thereby
maintaining electrical neutrality within the membrane organic phase. The charged and
uncharged versions of the fluorophore have different spectroscopic properties enabling

the optical detection of ion binding.
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R = ethyl, R" = t-butyl

Figure 31: Tetracthylester-p-tert-butyl-calix[4]arene

Aqueous Organic

+ + +

I aq =1 org + Lorg IL org
+ + -

H aq —H org+ C org CHorg

Figure 32: Cation exchange process of bulk optodes

Despite exhibiting high selectivity, these multi-component systems are complex and
difficult to optimize. In addition to these drawbacks, since the signaling mechanism is
pH dependent, samples that are exposed to the optode must be buffered in order to
reliably measure the cation concentration independent from pH changes. This

significantly limits the utility and applicability of such optodes.
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These multi-component devices have been simplified by eliminating the two-component
ionophore/fluorophore couple and replacing it with the single fluoroionophore concept as
discussed above. For example, Waldner et al. synthesized a sodium selective
fluoroionophore consisting of acridine and the 26,27,28-tri-tert-butylester-p-tert-butyl-
calix[4]arene structure (Figure 33).” This new fluoroionophore was doped into a
commercial acrylate polymer (poly(hydroxybutyl acrylate)) and exhibited an increase in
fluorescence intensity of 3 fold over a sodium concentration range of 0 to 2 M range.
Despite the fact that no selectivity data was given and the fluorophore of choice is known
to be pH sensitive, thus limiting its use as a sensor in important applications such as
clinical diagnosis, the system employed a one component polymer matrix thereby

promising simplified sensor construction.

R = t-butyl

Figure 33: Acridine-tri-fert-butylester-p-tert-butyl-calix[4]arene fluoroionophore

Here we describe the development of a simple one-component sodium bulk optode using
fluoroionophore 12 which is based upon a tetraethylester-p-tert-butyl-calix[4]arene

covalently linked through an amide bond to a thodamine-B fluorophore. As mentioned
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above, the calix[4]arene structure is an established sodium ion selective ionophore with
good selectivity over potassium ion in the physiological range and therefore makes this

an appropriate candidate for the ionophoric moiety.

Our choice of rhodamine-B as the fluorophore was based on several considerations.
First, in order to make operative the “off-on” PET process in the fluoroionophore, it is
necessary to incorporate both the fluorophore and an electron donating group into the
molecule. Furthermore, the free energy of the PET process must be negative following
photoexcitation of the fluorophore. The free energy requirement is satisfied by linking
the rhodamine to the calix[4]arene by an amide bond. The redox potentials of the
rhodamine and amide and the excited state energy of the rhodamine combine to make

PET a thermodynamically accessible process. Another consideration in our choice of
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rhodamine is its insensitivity to pH in the human physiological range.” This obviates the
need for a complex multicomponent optode. Finally, the rhodamine excited state is
accessible to visible light, making the use of inexpensive light sources and detectors
possible. The result as described below is an optode with a wide dynamic response range

and sodium/potassium ion selectivity suitable for clinical measurements.

111



Sodium Fluoroionophore Experimental

Synthesis of 12 (by Dr. Hubert Neinaber)

4-p-tert-Butylcalix[4]arene-tetraaceticacid tetracthyl ester and 4-p-tert-
butylcalix[4]arene-tetraaceticacid triethyl ester were prepared as previously described.**
Rhodamine B amine was purchased from Sigma and purified by dissolving 500 mg in
200 mL dichloromethane and extracting the solution three times with 100 mL 2N HCI.
The aqueous phases were brought to pH 12 with 20% KOH and extracted three times
with 100 mL dichloromethane. The organic phase was dried over MgSO, and the solvent

removed in vacuo.

In a nitrogen atmosphere 650 mg (0.67 mmol) 4-p-tert-butylcalix[4]arene-tetraaceticacid
triethyl ester was dissolved in 5 mL SOCI; and refluxed for 15 min. After this the excess
SOCI, was evaporated, the residue was dissolved in 3 mL dry CH,Cl, and the solution
again evaporated to remove all SOCl,. The white crystalline residue (acid chloride) was
dissolved in 50mL dry CH,Cl, and at 0°C a mixture of 310 mg (0.68 mmol) Rhodamine
B amine and 202 mg (2 mmol) triethylamine in 5 mL dry CH,Cl, were added during a
period of 10 min. The mixture was stirred for another 16 h at room temperature, diluted
with 200 mL CH,Cl, and washed three times with 100 mL 2N HCI. The organic phase
was dried over MgSQy,, evaporated, and the resulting residue was purified by column
chromatography on silica with dichloromethane/methanol-mixtures of increasing polarity
(dichloromethane/methanol gradient: 10% to 25% methanol). The product was isolated

as 530 mg (56% yield) of a pink solid. mp 230-233°C (decomp.). MS m/z (%) calcd. for
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CysH106N3014 (M") 1404.7, found 1404.8(100). IR (KBr pellet, cm™): 3387cm™ (O-H),
2963 cm’' (C-H), 1753cm™ (C=0), 1698 cm™” (C=0), 1614 cm” (C=0), 1590 cm’

(C=0).

Optode 1 Preparation and testing

2 mL of MeOH was added to 6 mg of fluoroionophore 12 and 350 mg of a custom
copolymer of 40% hydroxybutylacrylate and 60% isopropylacrylamide (donated by Dr.
Robert Hatch, Bayer Diagnostics, Elkhart, IN). This composition was mixed for 18 hr
before use. 150 pL of the membrane solution was deposited onto 18 mm diameter glass
microscope slides. Using a P-6000 Spin Coater (Integrated Technologies, Inc.) the slides
were spun at 3000 rpm for 60 seconds. This produced sensors with membrane thickness
of ca. 10 pum. Membranes were dried under ambient conditions for 2 hours and stored in
the dark. The prepared optodes were housed in a custom flow-through cell and
positioned at ca. 45° relative to the excitation beam. Fluorescence emission spectra were
taken with A¢x = 540 nm. Time drives were obtained with Aeyem 540/585 nm. NaCl and

KCI were analytical grade and obtained from Aldrich. Aqueous test samples were

prepared in 18 MQ-cm deionized water.
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Sodium Fluoroionophore Results and Discussion

Principle of Operation

The fluoroionophore, 12, contains the three components that are typically employed in
PET-based systems, namely a fluorophore, a host-guest site and a spacer group. The
rhodamine fluorophore is particularly appropriate for this system since it is insensitive to
pH in the physiological range, thereby eliminating the need to correct for pH.” In
addition, its visible absorption (540 nm) and emission properties (585 nm) will allow the
use of readily available and relatively inexpensive commercial light sources, e.g., LED’s,
and detection systems in the final sensor instrumentation. To be operative the PET
mechanism must have a negative free energy change, AGper, and in this the rhodamine
group is again an appropriate selection. The amide linkage between the rhodamine and
the calixarene ionophore also serves as a source of electrons that can reduce the
rhodamine group following photoexcitation. The oxidation potential of the amide
group,” the reduction potential of the rhodamine ground state”” and the energy available
in the rhodamine excited singlet state (as determined from fluorescence excitation and
emission spectra) combine in the Rehm-Weller equation to yield an estimated value of
AGypr = -0.13 'V, indicating that electron transfer is a spontaneous process following

photoexcitation.

Indeed, electrostatic calculations on 12 show a substantial shift in the electron density

within the amide linkage upon complexation of sodium ion. Figure 34 presents the
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results of the calculations and as before, the magnitude of electron density decreases in
the order of red > green > blue. These results suggest that upon binding of sodium ion
the amide linkage will be involved in the complexation and thus increases the electron
donor’s oxidation potential relative to that of the rhodamine acceptor. This result, in
combination with the AGe calculations indicates that an enhancement in the

fluorescence would be expected upon complexation.

Figure 34: Electrostatic calculation results for 12 in the uncomplexed state (top) and
complexed state with sodium (bottom). The magnitude of electron density decreases in
the order of Red, Green, Blue.

The polymer membrane is also crucial to the functioning of the optode. In particular it is

desirable to use a matrix that is sufficiently hydrophobic so as to insure the long-term
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mechanical stability of the membrane in aqueous environments. However, it must also
be sufficiently hydrophilic to allow for water uptake and ion transport from the aqueous
phase into the organic phase of the membrane. In addition, the membrane must be
optically transparent at the excitation and emission wavelengths of the fluorophore.
Copolymers of acrylamides and alkyl acrylates have been applied in similar
applications,”™ and in this work we have chosen a copolymer of 40%

hydroxybutylacrylate and 60% isopropylacrylamide (Figure 35).
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Figure 35: Sodium optode membrane copolymer

Sensor Response

The new sodium optode was exposed to various concentrations of pure aqueous NaCl
spanning the range 0.025 to 2 M. Figure 36 shows the fluorescence emission spectra
obtained for these various concentrations. The fluorescence intensity was a linear (R* =
0.9996) function of the sodium ion concentration (Inset, Figure 36). Within this range, a
2.7 fold enhancement in the fluorescence was observed, comparable to the acridine-tri-

tert-butylester-p-tert-butyl-calix[4]arene fluoroionophore constructed by Waldner et al
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(3.1 fold).” Figure 37 shows the dynamic response of the optode to sodium within the
range of 0.01 - 0.2 M. The data indicate that response times of the optode are on the

order of 2 minutes with a maximum 30% increase in the fluorescence intensity.
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Figure 36: Emission spectrum of Optode with incorporated 12 (Aex 540 nm) as a function
of sodium concentration; a (.025M), b (.1M), ¢ (.2M), d (.3M), e (.4M), f (.5M), g (I1M),
h (2M). Inset showing linear correlation of Amax (585 nm) to sodium cation
concentration.
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Figure 37: Dynamic response of Optode to increasing concentrations of aqueous
solutions of sodium chloride (Aex/em 540/585 nm).

Selectivity

The tetraethylester-p-tert-butylcalix[4]arene ionophore has been shown previously in ion
selective electrodes (ISE’s) as well as in optically-based systems to be highly selective
for sodium ions compared to potassium ions.****”' For example, when incorporated into
ISE membranes composed of plasticized PVC, the sensors discriminate against potassium
by more than two orders of magnitude, logK = -2.5.** This relatively high selectivity is
attributed to the rigid calixarene skeleton providing a framework for the creation of a

pocket size that closely matches that of sodium (ionic radius, 0.95 A) and thus excludes
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larger sized cations such as potassium (ionic radius, 1.33 A). This size selection is also
reflected in the free energy of complexation, AG, where the sodium complex has been
shown to be 21.3 kJ/mol more favorable (negative) than that of potassium.*” These
factors again point to the notion that preorganization and size fit are key components in

the design of selective ligands.

Although calix[4]arenes are known to have good selectivity for sodium over potassium
ions, selectivity data for the previously reported acridine-calix[4]arene (Figure 33) based

sensor were not measured.” In this research we have measured the sodium/potassium

ion selectivity using the Separate Solution Method for optodes (log K, SSM), based on

the recommended procedure of Bakker et al.™

The SSM method is superficially different from the method employed to calculate the
selectivity for compounds 10 and 11. Specifically, the sensor is exposed to a specified
level of just the primary ion of interest [i], in this case sodium, and the fluorescence
output determined. The sensor is then exposed to a level of interfering ion, [j], that is as
high as required to achieve the same measured fluorescence emission as determined in
the presence of [i] alone. The selectivity is then calculated exactly as it is in equation 6
by taking the ratio of [i] to [j]. In this fashion the selectivity for sodium over potassium
was determined and compared to previous results of an optode® and ISE* system based
on the tetracthylester-p-tert-butyl-calix[4]arene ionophore as well as to the required

selectivity in extracellular media® (Table 4).
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log K ONpat,K

Required® -0.6
optode 1 -0.6
optode 2% 2.3
ISE* -2.5

Table 4: Selectivity data of optode 1, comparative optode 2, ISE and required selectivity.

Optode 2 operates on the cation-exchange mechanism and is composed of a
plasticized/PVC membrane incorporating tetraethylester-p-tert-butyl-calix[4]arene

(Figure 31), and a tetraphenylporphine (TTP) fluorescent dye™ (Figure 38).

Figure 38: Tetraphenylporphine (TPP) used in optode 2

While the TPP and ISE systems operate by a different mechanisms their selectivity is
quite comparable, i.e. discriminating against potassium by ca. 2 orders of magnitude,

indicating that the ability of calix[4]arene to discriminate between sodium and potassium
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is relatively unaffected by their environments. Based on these precedents it could be
expected that optode 1 would show comparable selectivity. Our preliminary results for
optode 1 show good selectivity, although somewhat lower than for the optode or ISE, -

0.6, -2.3, -2.5, respectively.

This reduction of selectivity may not be unexpected in light of other work conducted with
similar calix[4]arenes that have been substituted with bulky groups at the lower rim.
Indeed, Cadogan et al investigated the effect on the selectivity of a number p-tert-butyl-
calix[4]arenes showing that as the substituents became more bulky a corresponding
reduction in the selectivity was observed.” In particular fert-butyl and adamantyl
substituted calix[4]arenes provided ISE’s with logKy,x = -1.1 and -0.1 showing the
significant dependence on steric factors. In addition to this effect, it was observed that
the response times of these ISE’s also increased (up to ca. 60 seconds with adamantyl
substitution) with increased steric hindrance, indicating that the bulky substituents
reduced the rate of complexation. This fact may inpart explain the lengthy response time
noted for our optode. However, we note that optode 1 meets the selectivity requirement
for testing in extracellular media, e.g. whole blood, plasma and serum therefore making

this system of practical utility.
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Summary of Sodium Fluoroionophore work

In this work we have reported on the development of a new and simplified sodium optode
based on aminorhodamine B and calix[4]arene. This new fluoroionophore responded to
increasing concentrations of sodium (.025M — 2 M) with an increase in fluorescence
intensity, ca. 2.7 fold. Although the total change across this range is good, the delta
response in the physiological range (0.1-0.2 M) is limited (0.12 units/mM). This
becomes particularly relevant when millimolar changes are required to be resolved for
clinical diagnosis. Therefore further development is needed to enhance the signal-to-

noise ratio of this optode.

From an evaluation of the optode response, the sensor was able to reach equilibrium in
ca. 2 minutes. In most circumstances this would be an adequate response time, however
most modern day diagnostic instrumentation are able to provide an analytical result
within ca. one minute. Consequently additional effort is needed to improve this response

characteristic.

The response of the sensor is governed by two aspects; complexation of the cation and
diffusion of the cation into the polymeric membrane. The former is fixed for this system,
however the latter can be tuned. Specially, the response time of a sensor, dependent upon
diffusion into the bulk, is proportional to the square of the distance or thickness of the

membrane layer divided by the diffusion coefficient of the polymer (Equation 7)."
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tys = 1.13d/D (7)

Here ty5 is the time to 95% of the total response in seconds, d is the thickness of the
polymer layer in cm, and D is the diffusion coefficient in cm?*/s. Thus, increasing the
diffusion coefficient of the polymer can potentially reduce the response time of the
sensor. The diffusion coefficient in turn is controlled by the
hydrophilicity/hydrophobicity of the polymer. Hence higher hydrophilicity means more
water uptake and therefore faster diffusion of cations into the membrane. The polymer
chosen for this work is a copolymer of hydrophilic (40%, hydroxybutyl) and hydrophobic
(60%, isopropyl) monomers and therefore it could reasonably be expected that an
increase in the ratio of the hydroxybutyl/isopropyl moieties would lead to a reduction of

the sensor response time.

Since sodium concentrations within extracellular media, such as whole blood and plasma,
are relatively high (clinical range ca. 135-150 mM) compared to other potential
interfering cations such as potassium (clinical range ca. 3.5-5 mM), the selectivity burden
for sodium ionophores is small and is required to be logKy,x = —0.6.* In the selectivity
studies completed in this work it was found that the optode has the required

sodium/potassium ion selectivity for sodium ion determinations in extracellular media.
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IV: Conclusions

In this work we have taken a rational approach to the design of new ionophores and
fluoroionophores in which the fundamental requirements of complexation were
considered while employing the modern techniques of molecular modeling. This has
resulted in the synthesis and complexation studies of novel ionophores for the
monovalent: ammonium, potassium, sodium and lithium ions. The results of these
complexation studies were corroborated with molecular modeling predictions for
selectivity and thus provide a framework for the development of future ionophores and

fluoroionophores.

Specifically, we have reported here on the modular synthesis of a new ammonium
selective ionophore based upon a cyclic depsipeptide motif (8). This ionophore was
designed to take advantage of the tetrahedral symmetry of the ammonium cation in order
to discriminate against cations with requirements for a spherical coordination geometry.
Moreover, through molecular modeling, 8 was predicted to be more selective for
ammonium than potassium ions. In addition, the structure was designed with the view of
incorporating a rigid pre-organized backbone which has been shown to enhance
selectivity by reducing the enthalpic costs of complexation. This approach yielded an
ionophore which, when incorporated into an ISE format, provides selectivity for
ammonium ion over potassium (logK = -0.6) and sodium (logK = -2.1) ions that is

comparable to nonactin. We believe that the flexible modular approach used here will
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enable us to tune the structure of similar molecules so as to achieve higher selectivity and

sensitivity characteristics.

In addition to the ionophore 8, we have also designed, synthesized and tested
fluoroionophores for metal ion detection and in one case we have created an optical
sodium ion sensor from a fluoroionophore. Specifically, a potassium fluoroionophore
was designed, modeled and synthesized and shown to have high selectivity. N-(9-methyl-
anthracene)-25,27-bis(1-propyloxy)calix[4]arene-azacrown-5, 10, was shown by
modeling and dynamics calculations to exhibit appropriate size-fit behavior and to
possess a pre-organized structure conducive to binding potassium ions. In addition,
electrostatic calculations were shown to give good evidence for the redistribution of
electron density in 10 following binding. This evidence is particularly important for
predicting whether the photoinduced electron transfer (PET) mechanism, upon which the
function of 10 as a fluoroionophore is based, is operative. In fact, 10 was shown to
complex with potassium ions in organic solution triggering a substantial increase in
anthryl fluorescence emission through the disruption of the PET quenching process (8.5-
fold enhancement). Preliminary measurements indicate that the selectivity for potassium
ions over other alkali metal cations particularly sodium and lithium (logKx v, = logKk 1; <
-3.5) for 10 is increased dramatically over that of the anthryl azacrown model compound,
9, (logKk n, = -1.3) . This large increase in the selectivity for potassium over sodium and
lithium can be attributed to the rigid and pre-organized structure of 10 such that the
molecule can not wrap around these smaller cations without a large thermodynamic cost

of complexation. In addition, these preliminary solution phase studies indicate a 1:1
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complexation between 10 and the ion, suggesting that 10 could be sensitive to potassium
in the normal physiological concentration range once incorporated into a sensor.
Furthermore, the observed fluorescence response to changes in solvent polarity suggests
that the sensor substrate composition will have an important impact on the efficiency of

10 as an ionophore and could allow further optimization of sensitivity and selectivity.

The N-(9-methyl-anthracene)-25,27-bis(1-propyloxy)-4-p-tert-butylcalix[4]arene-
azacrown-3, 11, further illustrates the significant role that size-fit as well as pre-
organization criteria play in the selectivity of ionophores. By a reduction in the size of
the azacrown moiety we have created a binding site appropriate for the stable
complexation of lithium ions which excludes larger cations such as sodium and
potassium. We have shown that 11 acts as a fluoroionophore in the presence of the
lithium ions and that the enhancement in fluorescence is dramatic (>106-fold). Molecular
dynamics calculations predicted high selectivity of 11 for lithium ion over sodium and
potassium ions on the basis of a size-fit effect. This is confirmed by smaller fluorescence
enhancements for the latter two ions. Selectivity calculations yielded logK;; v, = -3.8. and
log Kz;x = -2.3. These values are regarded as lower limits due to limited solubilities of
the sodium and potassium salts used in the experiments. Nevertheless, the observed

selectivities indicate that 11 is one of the most selective lithium ligands reported.

A logical extension of the work described up to this point then, is the incorporation of a
fluoroionophore into an optically based format that is suitable for the eventual application

of a sensor in the clinical diagnosis of disease. In this work we have reported on the
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development of a new and simplified sodium optode based on a molecule that
incorporates aminorhodamine B as a fluorophore and p-fert-butylcalix[4]arene as the
ionophore (12). The p-tert-butylcalix[4]arene was chosen due to its relatively high
sodium ion selectivity which is attributed to the rigid calixarene skeleton providing a
framework for the creation of a pocket size that closely matches that of sodium (ionic
radius, 0.95 A) and thus excludes larger sized cations such as potassium (ionic radius,
1.33 A). These factors again point to the notion that pre-organization and size fit are key

components in the design of selective ligands.

This new fluoroionophore, when incorporated into an optode, responded to increasing
concentrations of sodium (0.025 — 2 M) with an increase in fluorescence intensity of ca.
2.7 fold. Although the total change across this range is good, the delta response in the
physiological range (0.1-0.2 M) is limited (0.12 units/mM). This becomes particularly
relevant when millimolar changes are required to be resolved for clinical diagnostics.
Therefore further development is needed to enhance the signal-to-noise ratio of this
optode. From an evaluation of the optode response, the sensor was able to reach
equilibrium in ca. 2 minutes. Since sodium concentrations within extracellular media,
such as whole blood and plasma are relatively high (clinical range ca. 135-150 mm)
compared to other potential interfering cations such as potassium (clinical range ca. 3.5-5
mM), the selectivity burden for sodium ionophores is small and is required to be logKy.x
=-0.6." In the selectivity studies completed in this work it was found that the optode
has the required sodium/potassium ion selectivity (logKy.x = —0.6) for sodium

determinations in extracellular media.
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V: Future Work

A: Ammonium Ionophore

The ammonium ionophore, 8, when tested in an ion selective electrode (ISE) proved to
be selective for ammonium ions over alkali and alkali earth metal ions. This observed
behavior demonstrates that cyclic depsipeptides can be used as the basis for new
ionophores. This is also illustrated by the cyclic depsipeptide valinomycin which is

highly selective for potassium ions.

In designing 8 and in going forward with future ammonium ionophores based on
depsipeptide structures it is important to recognize that the depsipeptide backbone

structure will play an important role in the ionophore’s selectivity.'*'*

For example,
analogs of valinomycin, in which changes in the chirality of the valine residues were
made, have been synthesized and they typically show drastic reductions in the ability to
bind potassium.'”'”" Presumably, these chirality changes disrupt the hydrogen bonding
network typically present in the parent valinomycin (see figure 2) resulting in molecules
which contain only five N-H~O=C hydrogen bonds as compared to six for valinomycin.
As a result the structures became asymmetric, poorly pre-organized and exhibit two

orders of magnitude reduction in the binding constant for potassium ions in comparison

to valinomycin.
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In light of the above discussion, it is clear that systematic investigation into the effect of
chiral substitution within 8 is warranted. Since 8 is modular in terms of its synthesis,
simple replacement of the various residues will lead to a series of new compounds. In
addition, the sequence of the alkyl substituents can be modified, leading to further
understanding of the mechanism of complexation within 8. For example, the L-lactic
acid residue used to form compound 1 (see Scheme 1) can be changed to either L or D
Hydroxyisovaleric acid leading to two variations of 8 (see Figure 39 for compound 13 as
an example using L-Hydroxyisovaleric acid). These compounds will be tested within
ISE’s and the selectivity for ammonium over other ions determined. The results of these
selectivity studies will be compared to theoretical molecular modeling predictions of the

various compounds.
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Figure 39: Compound 8 (left) and proposed derivative 13 (right)
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B: Bicyclic Ammonium Ionophore

The selectivity displayed by 8 was achieved by designing the ionophore such that
tetrahedral cations (ammonium ion) would be stabilized whereas cations requiring a
spherical coordination geometry would not, e.g. sodium and potassium ions. However, it
is desirable to have ammonium ionophores that can achieve far greater discrimination
over potassium and sodium ions, than exhibited by 8, for use in new measurement
technologies. This is particularly important in the measurement of creatinine (Figure 40)
in biological media where the normal physiological levels, 0.7 — 1.3 mM, are far below

the concentration of potassium (3 — 5 mM) and sodium (135 — 150 mM).
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Figure 40: Creatinine

To date, the most commonly used ammonium ionophore is nonactin. Nonactin based
ISE’s have been modified to contain an enzyme layer over the polymeric membrane.
These layers encapsulate enzymes which can convert metabolites, such as urea and
creatinine, into ammonium and thus give a measure of the urea or creatinine
concentration (1 mole of urea is converted to 2 moles of ammonium ion whereas 1 mole

of creatinine is converted to 1 mole of ammonium cation). However, since nonactin
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based ISE’s are only ten times more selective for ammonium over potassium ion, a
correction, which contributes error to the measurement, must be made to adjust for the
interference by potassium. Thus more selective ammonium ionophores would eliminate
the need for this correction and therefore enable a more precise measurement of the urea

or creatinine concentration.

In order to accomplish the desired goal of more selective ammonium ionophores we first
have had to develop a metric by which to judge if the resulting molecule would
potentially be more selective or not. This work involved modeling several known
ammonium ionophores in the complexed state with ammonium and potassium ion. These
complexes were examined computationally and their docking energies (Ep) calculated.
The energy of the ammonium complex minus the energy of the potassium complex (to
give AEp) was then compared to the experimentally derived selectivity coefficients for

ammonium over potassium ions (log K Specifically, we chose nonactin and the

NH; K* ) :
Lehn cryptands (Figures 6 and 7 and shown below in Table 5) since data for all these
compounds were presented in one manuscript and their selectivity coefficients were

determined under the same conditions.'® This data is shown in Table 5.
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Compound log K AEp (Kcal/mole)

NH} K*

nonactin 0.20 -4.0

JAAAA L,
N

f% ﬂw 0.40 -12
% U

1.8 -18

D
ONOj
)
1
C
Co 43

Table 5: Selectivity data for various ammonium ionophores and
AE}p of the ammonium/potassium ion complexes.

2.7 -20

Table 5 shows the results of the modeling calculations for the various ammonium
ionophores. The data suggests that a trend exists where larger (and more negative)
differences between the energies of ammonium and potassium ion complexes are
indicative of higher selectivity coefficients for ammonium over potassium ions. Indeed,
molecular modeling has proved successful in reproducing experimental results for other
ionophores such as valinomycin, nonactin and crown ethers, although it has been

cautioned that such calculations should be taken as qualitative due to the approximations
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involved.”  However, it is proposed that these qualitative calculations can be

prospectively used as a guide in the development of new ionophores.

Here we propose the design of new ammonium ionophores with a view to obtaining
improved selectivity over potassium and sodium ions based on a bicyclic depsipeptide
structure. Using the above modeling results as a guide, we have designed several
ionophores which are predicted to be superior to 8 and potentially better than nonactin in
terms of their ammonium/potassium ion selectivity. These compounds are based on the
backbone of 8 and the bi- and tri-cyclic structures of Lehn’s cryptands. Our previous
work indicated that 8 discriminated against potassium but it was clear that it could be
improved. We reasoned that if we could introduce an additional site for hydrogen
bonding to an ammonium ion and yet make the site inaccessible to cations requiring
octahedral or spherical binding geometry we would see an improvement in the
selectivity. Ideally, if this site could also be introduced through a bridge, thus forming a
bicyclic structure, we would obtain additional rigidity in the molecule and perhaps
increase pre-organization thus potentially improving selectivity further. Keeping 8 as our
base molecule we introduced a bridge that can be synthesized from readily available
amino acids, i.e. lysine and glutamic acid giving compound 14 (Figure 41). In Figure 41,
it is shown that the same sterochemistry is retained as in 8 and that a bridge has been

added using a derivative of glutamic acid.
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Figure 41: Proposed bicyclic depsipeptide 14

Molecular modeling calculations were carried out on the ammonium and potassium
complexes of 14 resulting in AEp = -19 Kcal/mol and therefore is 15 Kcal/mol more
negative than ammonium/potassium ion complexes of nonactin (see Table 5). If the data
in Table 5 is predictive, we would expect that 14 would be one to two orders of

magnitude more selective than nonactin for ammonium ion over potassium ion.

Figure 42: Modeling results for compound 14
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The synthesis of this molecule has begun in our laboratory but is long (20+ steps). The
length of this synthesis is partly due to the many protection and de-protection steps that
are required to build the structure. In light of this we have also investigated an all-amide
version of 14. This compound, 15 (Figure 43), can be synthesized directly by solid

phase techniques and only 3 solution phase steps will be required.
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Figure 43: Proposed all amide bicyclic ammonium ionophore, 15

Molecular modeling calculations on 15 indicated that this compound can potentially have
better selectivity than nonactin (ca. one order of magnitude) but less so than 14.
Calculations show AEp = -16 Kcal/mol making 15 an intermediate structure in our series.

The synthesis of this molecule has also begun in our laboratory.

Upon completion of these molecules, they will be incorporated into ion selective
electrodes in the same manner as 8 and the potentiometric properties investigated. The

results of these tests will then be compared to the modeling data. These results will then
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be used to fine-tune the molecular modeling calculations to improve upon any
inconsistencies. This new model will then be verified on additional molecular structures
eventually providing a platform with which the rational design of new ionophores can be

accomplished.
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C: Alternative Fluorophores

In this work we have presented the design, synthesis and testing of two fluoroionophores
based on calix[4]arene-azacrown structures covalently linked to an anthracene
fluorophore, 10 and 11. These compounds employ the same fluorophore and therefore
excitation of each can be accomplished with A, = 355 nm. However, there are two
limitations to using fluorophores that are excited at 355 nm. First, the instrumentation
for which these molecules have been created uses LED’s as excitation sources (for cost
considerations) and at the present time there are no commercially available inexpensive
LED’s that emit below ca. 390 nm. Second, the samples measured with this instrument
are whole blood, constituents of which absorb and emit in the 350 — 400 nm region. This
will introduce interfering signals and reduce signal-to-noise. In order to overcome these
issues a new fluorophore in place of anthracene will need to be used, preferably one

which absorbs >450 nm light and yet still would provide for a negative AGpgr.

Here we propose the modification of our fluoroionophores, 10 and 11 with an alternative
fluorophore that will satisfy the above requirements of long wavelength excitation (>400
nm) and negative AGpgr. Two fluorophores have been identified that will yield
fluoroionophores with the desired characteristics that can overcome the limitations noted
above. One of these compounds, 16 (Figure 44), is a chloromethyl derivative of 4,4-

difluoro-4-bora-3a,4a-diaza-s-indacene and can be purchased from Molecular Probes.
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Figure 44: Proposed replacement fluorophore, 16, for anthracene

This compound has Acyem ~503/513 nm,%’103 and therefore can be excited by
commercially available LED’s.  Also, excitation in the 500 nm region would
substantially reduce any background fluorescence from whole blood samples and
therefore will improve the reliability of analyte measurements. In addition to the longer
wavelength excitation, the molecule has been coupled to a simple azacrown forming a
fluoroionophore and shown to operate through the PET mechanism.'® Compound 16, is
also an appropriate choice since it is available as a chloromethyl derivative and thus can

directly replace the 9-chloromethyl-anthracene in the synthetic strategies of 10 and 11.

The other potential chromophore is tetramethylrosamine, 17 (Figure 45), which has
Aexiem = 550/574 nm’® and again can be excited by commercially available LED’s,
beyond the region where whole blood absorbs. In addition, it is reasonable to expect that
the reduction potential will be within the same range (ca. —0.54 e¢V) as the rhodamine
fluorophore that we described in our sodium optode work , and therefore will also be

expected to participate in a PET type mechanism.
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Figure 45: Proposed replacement fluorophore, 17, for anthracene

One literature reference presents a synthetic route to a haloalkyl derivative (i.e.
chloromethyl) that will allow a direct replacement of the 9-chloromethyl-anthracene in
the synthetic strategies of 10 and 11."” This method was modified to give a bromomethyl
version, 22, and is shown in Figure 46. The synthetic strategy is shown in Scheme 4 and

the synthesis of this compound has been briefly explored (see Appendix A4 for details).

Br

Figure 46: Bromomethyl derivative, 22, of 17
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In general, the synthesis of these compounds was not straightforward. In particular it was

found that each intermediate was not stable under ambient light conditions since it was
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observed that the products, beginning as slightly pink to white in color, turned to deep
red and purple while exposed to ambient light. In addition it was found that on TLC
plates this reaction appeared to proceed at an even more rapid rate, turning bright pink
immediately after exposure to the UV light source. The intermediate products, 19-21, are
not fully conjugated while the final product, 22, is and has been reported to be bright red
in color compared to the slight pink/white color of 19-21. Given this color difference and
the observations noted above, it was speculated that 19-21 were photo-oxidizing to a
fully conjugated system. Thus, after initial attempts all reactions were carried out in the
dark. It was also found that the intermediates photo-oxidized on silica gel during column
chromatography and adhered to the silica causing the products to bleed off the column.
However, even with these problems reasonable amounts (gram quantities) of the
intermediates could be obtained except for 21 for which a 16% yield was achieved after
chromatography on silica gel. This low yield was due to the fact that the product adhered
to the silica gel. However by TLC, the reaction appeared to be nearly quantitative.

Modification of the purification procedures is likely to improve on these initial attempts.
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D: Ammonium Fluoroionophore

The analysis of ammonium cations in aqueous or biological media has traditionally been
accomplished through the use of ISE’s. In contrast, sensors that operate on optical
detection schemes are few and rely on indirect methods of signal transduction.
Essentially all schemes are tied to a pH sensitive chromophore that is either protonated or
deprotonated by the presence of ammonium cations through the cation exchange
mechanism. Thus, in all cases the response of the sensors are also dependent upon the
sample pH which in turn necessitates the control of this parameter. This limits the utility
and practicality of the proposed optodes. More recently, optical sensors based upon
neutral ionophores, i.e. nonactin coupled with pH sensitive fluorophores have been

developed.'**'%®

Upon exposure to ammonium cations the nonactin ion selective
membrane binds the cations while the pH sensitive fluorophore deprotonates, thus
maintaining electrical neutrality (Figure 32). Deprotonation of the dye induces a change

in the spectroscopic properties of the fluorophore which is proportional to the ammonium

cation concentration and is typical of cation exchange mechanisms.

Based on our above work, we propose to design, synthesize and test an ammonium
fluoroionophore that directly binds ammonium ions and that is pH independent. In our
previous work, we reported on the design and synthesis of a new ammonium ionophore
and its application in a planar ion selective electrode (ISE).  This ionophore was based

upon a cyclo-depsipeptide structure, a structure that lends itself to facile synthetic
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modification and seemed an appropriate starting point for developing a new ammonium
fluoroionophore. Based upon our success with this ionophore and our previously
reported work with fluoroionophores it was reasonable to conclude that with an
appropriate modification to the parent cyclo depsipeptide backbone, covalent linkage of a
fluorophore will yield the desired target. In particular, the backbone can be modified
such that a carboxylic acid moiety will be available as an attachment site. Given the
work with our calix[4]arene aminorhodamine fluoroionophore, 12, where the fluorophore
linkage was through an amide, we concluded that aminorhodamine B will be a good
choice for attachment to the modified depsipeptide, particularly since thermodynamic
calculations indicate that the rhodamine fluorophore attached through an amide linkage
will operate via the PET mechanism (AG,, = 0.13V). The rhodamine fluorophore is also
appropriate since it is known to be pH insensitive and thus will yield, when coupled to
the depsipeptide, the first pH independent fluoroionophore that directly responds to the
ammonium cation. To this end, we have investigated the feasibility of our proposal
beginning with the synthesis (Schemes 5-7) of the modified cyclo depsipeptide structure
(28). We have also attempted covalent attachment of aminorhodamine B (see Appendix

A5 for details).
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Scheme 7
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The synthesis of compound 28 was reasonably straightforward, yielding 445 mg of
product. The final step was the attachment of a fluorophore to give the fluoroionophore.
The first attempts at coupling a fluorophore were with aminorhodamine B, the same
fluorophore used for compound 12. Three standard coupling strategies were used;

conversion of 28 to an acid chloride and coupling under basic conditions (Et;N); the
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carbodiimide method as used for 23, and standard peptide coupling strategy as used for

25. However, TLC and Mass Spectral analysis showed that no product was formed.

One assumption is that steric interference was to blame for the lack of product
formation. Therefore, we synthesized a derivative (29, Figure 47) of 28 that involved
replacement of the aspartic acid residue in the formation of 25 with a glutamic acid
residue yielding a monocyclic depsipeptide with a —R(CH),COOH attachment site as

compared to a —RCH,COOH site in 28.

CHj
o
et HJQHB
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0 §
(6]
O
(0]

H3C|||-.

NH CHs
o)
NH
3 0
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2 CH3
0
HO HaC

o
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Figure 47: Glutamic acid derivative (29) of 28

This change was made assuming that the additional methylenic linkage would reduce any
steric interference. However attempts to couple the fluorophore using the same
procedures for 28 again yielded no product. This, in combination with the above result,
suggested that the fluorophore, aminorhodamine B, was the reason for the lack of product

formation.
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To confirm if the aminorhodamine B fluorophore was the issue we chose to investigate a
different fluorophore, a 7-nitrobenzofurazan which is commercially available as an N-
methyl-4-hydrazino-7-nitrobenzofurazan (Figure 48). This fluorophore has also been

shown to operate on a PET mechanism.'*'"?

NO,

Figure 48: N-methyl-4-hydrazino-7-nitrobenzofurazan

Covalent linkage through the primary amine and the free carboxylic acid group on the
cyclic depsipeptide would yield the desired product. Again, attempts to couple this
fluorophore to both 28 and 29 using either the carbodiimide or peptide coupling strategy
failed. However, using an acid chloride intermediate and coupling under basic conditions
(Et;N) we obtained some detectable product (via Mass Spectral analysis) from both
cyclic depsipeptides 28 and 29, although the recovered amounts were small and impure,
ca. 2 mg each (5% yield) and ca. 50% pure. This result is inconclusive, due to the low
yield of product, and does not provide any significant insight into the reasons for the lack

of product formation.

It is clear from these results that additional investigation into the coupling of a

fluorophore to either 28 or 29 is warranted. Specifically, coupling of fluorophores to
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model compounds, such as fully protected aspartic and glutamic acid residues may prove

beneficial in the elucidation of these reaction mechanisms.
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E: Sodium Fluoroionophore I1

We, as well as others, have shown that the modification of the ring size in azacrown
calixarenes is effective in controlling the selectivity of these ligands. In particular,
Dabestani et al. has shown that calix[4]arene-azacrown-6 structures are selective for

63-66

cesium®® while here we have shown that calix[4]arene-azacrown-5 and -azacrown-3

systems are selective for potassium and lithium ions, respectively.

By extrapolation, we propose that an calix[4]arene-azacrown-4 covalently linked to a
anthracene fluorophore will possess high sodium selectivity over other alkali metal ions
and offer a new and highly selective fluoroionophore for sodium. Indeed, calix[4]arene-
crown-4 structures are known and have been shown to possess some of the highest

sodium/potassium selectivities known, (logK™" y,x = -5.0).!"e!>!*

This new fluoroionophore should have both higher selectivity and sensitivity for sodium
than compound 12 (see above). Specifically, as already noted, selectivity will be
improved due to a rigid binding site of appropriate size as well as sensitivity because the
PET mechanism is more favorable thermodynamically ( AGpgr -0.41V based on 10 vs. -
0.13V for 12). Thus, have we proposed the synthesis and testing of 34 (Figure 49 and

Scheme 8).
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R = tButyl

Figure 49: Proposed sodium fluoroionophore 34
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Scheme 8
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The synthesis of this compound has been explored in our lab, but with mixed results. We
expected that the structure of the calix[4]arene system would yield the 1,3-alternate
conformer after the initial alkylation to 30 and 31 based on our previous results with 12,
the lithium fluoroionophore discussed above. However, we found that we obtained a
mixture, presumably of 1,3 alternate and partial cone conformers which were not
separable. Since it is known that the different conformers of calix[4]arene crowns give a
range of selectivities we speculate that the same will be true for our fluoroionophore as
well. This introduces significant uncertainty in experimental results that will be obtained
from a mixture of conformers. In addition, quantification of the relative ratio of

conformers is likely to be problematic since the NMR signals overlap to a great extent.

To overcome these issues we propose a new sodium fluoroionophore (40) that would be
based on a diisopropyl-4-p-tert-butylcalix[4]arene (or di-tert-butyl-) rather than the
dipropyl-p-tert-butyl-calix[4]arene of 34. It has been found that rotation about the aryl
rings is suppressed by bulky substituents leading to the cone conformation in high

115

yields. Thus, we suggest that diisopropyl-4-p-tert-butylcalix[4]arene, 35, will ensure
that alkylation to 36 and 37 will result in the cone conformer rather than a mixture of

partial-cone and 1,3-alternate as obtained with 34. The proposed synthetic pathway is

shown in Scheme 9.
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Scheme 9
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Appendix

Appendix Al:
NMR and Mass Spectroscopy data for compound 8
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Appendix A2:
NMR and Mass Spectroscopy data for N-(9-methyl-anthracene)-25,27-bis(1-

propyloxy)calix[4]arene-azacrown-5(10)
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Appendix A3:

NMR and Mass Spectroscopy data for 11
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Dipropyl-(di-2-chloroethoxy)-4-tert-butylcalix[4]arene
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Appendix A4:

Experimental, NMR and Mass Spectroscopy data for 21, based on a modified procedure.'*

4-carboxydihydrotetramethylrosamine (19)

To a 115 ml solution of 3:3 H,SO,/H,0 was added 12.5 g (9.1 mmol) of 3-
dimehtylaminophenol and 6.84 g (4.6 mol) of 4-carboxybenzaldehyde. This was stirred
under light reflux for 18 hr. The pink suspension was neutralized with 90% KOH to pH
7.0. The resulting purple suspension is obtained by filtration, washed with water and
dried. The 4 g of the crude product was taken up in EtOAc and purified on silica gel
(EtOAc). This gave 3.2 g of light pink product, yield 34%. No yield was given in original
synthesis. Recrystallization from DCM/Hexane also proved to be effective. Ry =.74
(EtOAc). H' NMR (400 MHz, MeOD-d,) 6 2.80 (s, 12 H), 4.98 (s, H), 6.32-6.35 (m, 4H),

6.74 (d, J=28.1, 2H), 7.02 (d, /= 8.2, 2H), 7.70 (d, J = 8.2, 2H).

dihydro-4-(hydroxymethyl)tetramethylrosamine (20)

2.2 g of 19 (5.66 mmol) was dissolved into 100 ml dry THF to which .43 g (11.3 mmol)
of LiAlH4 was added. This was stirred under N, for 2.5 hr. at which point the excess
LiAlH4 was destroyed with stoichiometric amounts of water. The oxide was then filtered
off and the solvent removed in vacuo to give 1.6 of a pink solid, yield 75.5%. This was
used without further purification. R, = .50 (1:1 hexane/EtOAc). H' NMR (400 MHz,
CDCL) 6 2.93 (s, 12H), 4.62 (s, 2H), 5.05 (s, 1H), 6.38 (d, J = 8.4, 2H), 6.44 (s, 2H), 6.83

(d, J=8.4,2H), 7.18 (d, J = 6.3, 2H), 7.24 (d, J = 7.60, 2H).
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4-bromomethyldihydrotetramethylrosamine (21)

100 mg (.27 mmol) of 20 was dissolved in benzene t which .6 eq of PBr; was added.
This was stirred under reflux for 4 hr. at which point the solvent was removed in vacuo.
The residue was taken up in EtOAc and purified by chromatography on silica gel (1:1
hexane/EtOAc) yielding 16 mg of product. R,= .84 (1:1 hexane/EtOAc). ). H' NMR (400
MHz, CDCl;) & 2.93 (s, 12 H), 4.44 (s, 2H), 5.07 (s, 1H), 6.38 (d, J = 8.5, 2H), 6.44 (s,
2H), 6.83 (d, J=8.5, 2H), 7.15 (d, J = 8.0, 2H), 7.25 (d, J = 8.0, 2H). ESI MS m/z calcd.
for CasHaeBr’N,O [M+H'], 435.102, found 435.081(55), for CasHaeBr**N,O [M+H'],

437.092, found 437.034(55).
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4-bromomethyldihydrotetramethylrosamine (21)
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Appendix AS:
Experimental details, NMR and Mass Spectroscopy data for compound 28

BzO-L-lac-D-val-N-tBoc (23): Based on a modified procedure.” On an ice bath, 20.6 g
(.0948 mol) of HO-D-valine-N-tBoc was dissolved in 150 DCM to which 14.8 ml (1 eq.)
of DIPCDI, 1.16 g DMAP (.1eq.) and 17.1 g (leq.) of BzO-L-lactic acid (1, prepared as
previously described) was added. The reaction mixture was then allowed to return to RT
after 1 hr. and stirred for an additional 17 hr. The insoluble urea thus formed was filtered
off and the organic phase washed thrice with 10% citric acid, thrice with saturated
NaHCO:;, once with brine, dried over Na,SO, and concentrated totally to give a colorless
oil, 35.54 g, yield 96%. 'H-NMR (400 MHz, CDCL;), 6 .90 (d, J= 6.9 Hz, 3 H), .97 (d,
J = 6.8 Hz, 3H), 1.45 (s, 9H, t-Butyl), 1.51 (d, J= 7.0 Hz, 3H), 2.19 (m, 1H), 4.31 (m,
1H), 5.00 (d, J= 8.9 Hz, 1H), 5.17 (m, 3H), 7.33 (m, 5H). *C-NMR (100 MHz, CDCl;)
5 16.9, 17.4 (CHs), 28.3 (t-Butyl), 31.2 (CH3), 58.5 (CH), 67.1 (CHy), 69.2 (CH), 79.8

(C), 128.4, 128.5, 128.6 (CH, Ar), 135.1 (C, Ar), 155.5, 170.1, 171.5 (C=O).

BzO-L-asp(TCE)-N-tBoc. Based on a modified procedure.(Matthews, J. L., Gademann,
K., Jaun, B., Seebach, D. J. Chem. Soc.,Perkin Trans. 1 1998, 3331-3340.) On an ice
bath, 20 g (.0618 mol) of BzO-L-asp(OH)-N-tBoc was dissolved in 150 mL DCM to
which, 9.7 ml (1eq) of DIPCDI, .755 g (.1 eq) DMAP and 5.93 ml (1 eq.) 2,2,2-trichloro
ethanol and was stirred for 1 hr. at which point it was allowed to return to RT and stirred
for an additional 17 hr. The insoluble urea thus formed was filtered off and reaction

mixture was washed thrice with 10% citric acid, thrice with saturated NaHCO;, once with
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brine, dried over Na,SO, and concentrated totally to give 20.5 g of a white solid, yield
72.9%. Ry =.57 (3:1 Hexane/EtOAC), mp = 46-48 °C, The NMR conforms to the
literature values. "H-NMR (400 MHz, CDCl;), & 1.43 (s, 9H, t-Butyl), 3.02 (dd, J = 4.7,
17.2 Hz, 1H), 3.17 (dd, J = 4.6, 17.2 Hz, 1H), 4.66 (m, 3H), 5.19 (d, J = 7.1 Hz, 2H),
5.50 (d, J = 8.2 Hz, 1H), 7.37 (m, Ar, 5H). >C-NMR (100 MHz, CDCl5) & 28.7 (CHj, t-
butyl), 36.9 (CH), 50.3 (CH,), 68.1 (CH>), 74.5 (CH>), 80.7 (C), 94.9 (C), 128.8, 128.9,
129.0 (CH, Ar), 135.4 (C, Ar), 155.7, 169.7, 170.9 (C=0). ). ESI MS m/z calcd. for

C,sH,,CLL1NOgNa [M+Na'], 476.04 found 476.2.

BzO-D-Hval-L-asp(TCE)-N-tBOC. 15.7g (.0346 mol) of BzO-L-asp(TCE)-N-tBoc was
de-protected using 2g of Pd/C 10 wt% with atmospheric H, in DCM for 3 hr. The
catalyst was filtered off, the organic phase concentrated totally and the intermediate thus
formed in quantitative yield was used without further purification. The residue was taken
up into 150 ml DCM and cooled on an ice bath. To the solution was added 5.42 ml
(leq.) DIPCDI and mixed for .5 hr. at which time 7.2 g (1 eq.) of BzO-D-Hval-OH (4,
prepared as previously described) and .423g (leq.) of DMAP was added. This was
allowed to return to RT and mixed for an additional 17 hr. The insoluble urea was filter
off from the brown solution and the organic was washed thrice with saturated NaHCOs,
thrice with 10% citric acid, once with brine, dried over Na,SO4 and concentrated totally.
The product was fractionally recrystallized from hexane to give 12.0 g of a white solid,
yield 62.5%. "H-NMR (400 MHz, CDCl;), 6 .91 (d, J = 6.8 Hz, 3H), .95 (d, J = 6.9 Hz,
3H), 1.45 (s, t-butyl, 9H), 2.28 (m, 1H), 3.09 (dd, J=4.7, 9.0 Hz, 1H), 3.17 (dd, J = 4.4,

9.0 Hz, 1H), 4.75 (m, 3H), 4.94 (d, J = 4.2 Hz, 1H), 5.18 (q, 2H), 5.52 (d, J = 8.2 Hz,
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1H), 7.37 (m, Ar, 5H). C-NMR (100 MHz, CDCl3) & 17.4 (CHs), 19.1 (CHs), 28.7
(CH3, t-butyl), 30.5 (CH), 36.7 (CH), 50.2 (CH,), 67.5 (CH,) 74.6 (CH,), 78.2 (CH), 80.7
(C), 94.9 (C), 128.8, 128.9, 128.0 (CH, Ar), 135.6 (C, Ar), 155.6, 169.3, 169.7, 170.8

(C=0).

BzO-L-lac-D-val-D-Hval-L-asp(TCE)-N-tBoc (25). 2.54 g (6.7 mmol) of BzO-L-lac-
D-val-N-tBoc (23) was dissolved in 40 ml 1:1 TFA/DCM and stirred for 1 hr. at which
point the solvent was removed in vacuo. The residue was taken up into toluene twice and
concentrated to remove excess TFA. The intermediate amine salt (BzO-L-lac-D-val-
NH; TFA’, 24a) was used immediately without further purification. 2.81 g (6.05 mmol)
of the HO-D-Hval-L-asp(TCE)-N-tBoc acid was prepared in same manner as above and
was added to a 0 °C stirred solution of 3.15 g (leq.) PyBop, .818 g (1 eq.) HOBT, and
2.21 ml (2 eq.) DIPEA. To this was added the intermediate amine salt (BzO-L-lac-D-val-
NH3+TFA') and stirred for .5 hr. at which point it was allowed to return to RT and mixed
for an additional 18 hr. The organic was then washed thrice with NaHCOs3, thrice with
10% citric acid, dried over Na;SO4 and concentrated totally. The product was purified by
flash chromatography (Biotage), 3:1 hexane/EtOAC to afford 2.65 g of a colorless gum,
yield 60%. Ry = .40 (3:1 hexane/EtOAC). 'H-NMR (400 MHz, CDCl;), 6 .93 (m, 12H),
1.45 (s, t-butyl, 9H), 1.48 (d, J = 7.1 Hz, 3H), 2.30 (m, 2H), 3.05 (dd, J= 4.7, 9.0 Hz,
1H), 3.20 (dd, /= 4.4, 9.0 Hz, 1H), 4.60 (m, 1 H), 4.70-4.78 (m, 3H), 5.08-5.18 (m, 4H),
5.72 (d, J = 8.1 Hz, 1H), 6.85 (d, J = 8.2 Hz, 1H), 7.31-7.37 (m, Ar, 5H). C-NMR (100
MHz, CDCl3) 8 17.2, 17.3, 19.2, 19.4 (CH3), 28.7 (CH3s, t-butyl), 30.8 (CH3), 31.0, 31.1

(CH), 36.7 (CHa), 50.3, 57.5 (CH), 67.4 (CH,), 69.6 (CH), 72.4 (CH,), 79.9 (CH), 80.8

215



(C), 94.8 (C), 128.6, 128.7, 128.8 (CH, Ar), 135.5 (C, Ar), 155.6, 169.4, 170.3, 170.4,

170.5, 170.6, 170.9 (C=0).

BzO-L-lac-D-val-D-Hval-L-asp(TCE)-L-lac-D-val-N-tBoc (26). 2.65 g (3.65 mmol)
of BzO-L-lac-D-val-D-Hval-L-asp(TCE)-N-tBoc (25) was treated with 40 ml of 3:1
TFA/DCM for 1.5 hr. at which point the solvent was removed in vacuo and the residue
taken up twice in toluene and concentrated to remove excess TFA to give the
tetradepsipeptide amine-TFA salt, BzO-L-lac-D-val-D-Hval-L-asp(TCE)-NH; TFA".
This was used without further purification. 1.5 g (3.95 mmol) of BzO-L-lac-D-val-N-
tBoc (23) was deprotected as above in 100 ml DCM with .5¢g Pd/C 10 wt% in
atmospheric H, over 3 hr. The catalyst was filtered off and the organic concentrated
totally. The HO-L-lac-D-val-N-tBoc acid was used without further purification and was
dissolved into a 100 ml, 0 °C DCM solution to which, 2.05 g (leq.) PyBop, .535 g (leq.)
HOBT, 1.52 ml (2.2 eq) DIPEA and the amine-TFA salt, BzO-L-lac-D-val-D-Hval-L-
asp(TCE)-NH; ' TFA™ was added. This was stirred for .Shr and allowed to return to RT
and mixed for an additional 18 hr. The organic was then washed thrice with saturated
NaHCO;, thrice with 10% citric acid, dried over Na,SO4 and concentrated totally. The
product was purified by flash chromatography (Biotage), 3:1 hexane/EtOAC to give 2.40
g of a colorless gum, yield 73.3%. Ry = .40 (3:1 hexane/EtOAC). 'H-NMR (400 MHz,
CDCL) 6 .96-.99 (m, 18H), 1.43 (s, t-butyl, 9H), 1.48-1.50 (m, 6H), 2.05 (m, 1H), 2.30
(m, 2H), 3.05 (dd, /= 7.8, 11.6 Hz, 1H), 3.33 (dd, J = 8.0, 11.4 Hz) 3.98 (t, 1H), 4.50 (t,
1H), 4.74-4.82 (m, 3H), 5.04 (d, J = 3.5 Hz, 2H), 5.13-5.21 (m, 3H), 5.33 (d, J = 8.2 Hz,

1H), 7.07 (d, J = 8.5 Hz, 1H), 7.33-7.37 (m, Ar, 5H), 7.73 (d, J= 8.2 Hz, 1H). "C-NMR
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(100 MHz, CDCl3) & 17.1, 17.2, 17.7, 18.7, 18.9, 19.3, 19.3, 19.5 (CHj), 28.7 (CH, t-
butyl), 30.7, 30.8, 30.9 (CH), 35.8 (CHa), 49.8, 58.1, 60.1 (CH), 67.4 (CH,), 69.6, 70.6
(CH), 74.6 (CH,), 80.0 (CH), 81.0 (C), 94.9 (C), 128.6, 128.8, 129.0 (CH, Ar), 135.7 (C,
Ar), 156.5,169.4, 169.6, 169.6, 170.6, 170.9, 171.3, 171.9 (C=0). ESI MS m/z calcd. for

C3H;ssCLN;0,,Na [M+Na"] 918.3 found 918.4.

Cyclo (-L-lac-D-val-D-Hval-L-asp(TCE)-L-lac-D-val-) (27). 2.4 g (2.7 mmol) of
BzO-L-lac-D-val-D-Hval-L-asp(TCE)-L-lac-D-val-N-tBoc (26) was dissolved in 100
DCM to which 1g of Pd/C 10wt% was added. This was stirred for 3 hr. with atmospheric
H, at which point the catalyst was filtered off and the organic concentrated totally. The
white residue was taken up into 40 ml, 3:1 TFA/DCM and stirred for 1 hr. The organic
was concentrated totally and dissolved twice more with toluene to remove excess TFA.
This was used without further purification. The white residue was taken up in 50 ml
SOCI, and mixed for 1 hr. whereupon the acid chloride was concentrated. The acid
chloride intermediate was then taken up in benzene and concentrated again to remove
excess SOCl,. The residue was dissolved into 250 ml benzene by stirring to which 1 ml
of Et;N was added. After 2 hr. the benzene was removed in vacuo and the residue taken
up in DCM whereupon the organic was washed once with 10% citric acid and then once
with saturated NaHCOs. The aqueous phases were extracted twice more each with DCM,
the organic phases were combined and concentrated totally to give .55 g of a white foam,
yield 31.4%. 'H-NMR (400 MHz, CDCl;) 6 1.00-1.02 (m, 18H), 1.4-1.57 (m, 6H), 2.00
(m, 1H), 2.10-2.29 (m, 2H), 3.22 (m, 2H), 4.17 (t, 1H), 4.60 (t, 1H), 4.77 (m, 2H), 5.08

(d, J= 5.6 Hz, 1H), 5.20 (d, J= 7.0 Hz, 1H), 5.30 (m, 2H), 6.47, (d, J = 8.0 Hz, 1H), 6.79
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(d, J = 7.3 Hz, 1H), 7.53 (d, J = 7.0 Hz, 1H). "C-NMR (100 MHz, CDCl;) & 15.7,
17.9,18.0, 18.3, 18.9, 19.4, 19.4, 19.7 (CH3), 30.2, 30.5, 31.5 (CH), 35.2 (CH,), 49.4,
57.2, 60.2, 70.1, 72.3 (CH), 74.6 (CH,), 80.8 (CH), 95.0 (C), 169.0, 169.9, 170.0, 170.3,
171.0, 171.7, 172.4 (C=0). ESI MS m/z calcd. for Cy,H,CI;N;0,,, [M+H'] 688.17 found

688.2, for [M+Na*] 710.6 found 710.2.

Cyclo (-L-lac-D-val-D-Hval-L-asp(OH)-L-lac-D-val-) (28). .55g (.85 mmol) of the
cyclo-depsipeptide 27 was dissolved in 20 ml acetic acid to which 1 g of Zn powder was
added. This was mixed vigorously for 24 hr. The Zn powder was filtered off and the
solution was concentrated totally. The residue was taken up in benzene and concentrated
again to remove excess acid to give in quantitative yield .445 g of the free acid as a white
solid. Ry= .35 (9:1 DCM/MeOH), mp188-190 °C, 'H-NMR (400 MHz, CD;CN) 6 .67-
.81 (m, 18H), .98-1.02 (m, 6H), 2.66-2.78 (m, 2H), 4.08 (m, 2H), 4.69 (m, 2H), 4.98 (m,
2H), 6.88 (b, INH), 7.35 (b, INH), 7.61 (b, INH). *C-NMR-DEPT135 (100 MHz,
CDsCN) & 15.7, 16.4, 16.6, 17.1, 17.2, 17.3, 17.5, 21.8 (CH3), 42.0 (CH,). *C-NMR-
DEPT90, & 30.5, 30.7, 31.0, 49.6, 58.4, 59.2, 71.1, 71.8, 80.3 (CH). >C-NMR & 157.2,
168.8, 169.4, 169.8, 170.2, 170.5, 170.7 (C=0). ESI MS m/z calcd. for C,;H:N;O,,

[M+H"] 558.27 found 588.3.

Chromophore attachment (28a). Aminorhodamine B was prepared as previously
reported. .11 g (.197 mmol) of cyclo-depsipeptide free acid, Cyclo (-L-lac-D-val-D-
Hval-L-asp(OH)-L-lac-D-val-), 22, was dissolved in 50 ml SOCI, and mixed for 1 hr. at

which point it was concentrated totally. The residue was taken up in benzene and
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concentrated to remove excess SOCL. The residue was dissolved again in benzene to
which a 10 ml benzene solution of .12 g (.243 mmol) of the purified aminorhodamine B
and .3 ml Et;N was added. This was mixed for 48 hr. whereupon the solvent was
removed in vacuo and the red residue taken up in DCM. The organic was washed four
times with 100 ml 1N HCI and dried over Na,SO, and concentrated totally. The crude
mixture was chromatographed by preparative TLC, 9:1 DCM/MeOH. Fractions were

isolated and Mass Spec. analysis was preformed. No product was found.

This was repeated using .1 g of the cyclo-depsipeptide free acid and DIPCDI (1 eq.),
DMAP (.1eq.) with 1 eq. of the chromophore in benzene solvent system. This was
reacted for 24 hr. and the organic phase was treated and washed as above. Again

purification on TLC and Mass Spec. analysis showed no product formed.

This was repeated again using standard amino acid coupling techniques using 1 eq. of the
cyclo-depsipeptide free acid, 1 eq. each of the chromophore, PyBop and HOBT and 2 eq.
DIPEA in a DMF solvent system. This was reacted for 24 hr. and treated as above.

Again no product was found in the crude mixture or from prep. TLC fractions.

Chromophore attachment II Cyclo (-L-lac-D-val-D-Hval-L-asp(MNBD)-L-lac-D-
val-) (28b). .1 g of the cyclo-depsipeptide free acid was dissolved in 20 ml SOCI, and
mixed for 1 hr. at which point it was concentrated totally. The residue was taken up in

benzene and concentrated to remove excess SOCL,. This was taken up in 10 ml anhydrous

MeCN to which 1 eq of 4-(N-methylhydrazino)-7-nitro-2,1,3-benzooxadiazole (MNBD)
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and 3 eq. Et;N was added. This was stirred for 24 hr. at which point the solvent was
removed in vacuo and the organic phase was washed thrice with saturated NaHCO;,
thrice with 10% citric acid, dried over Na,SO,. This was chromatographed on
preparative TLC (9:1 DCM/MeOH) and 2 fractions were found, isolated and analyzed via
Mass Spec. Fraction 2 with Ry = .50 contained a small amount of the desired product,

caled. [M+H'] (%) 749.25 found 749.26 (12).

This was repeated using the general DIPCDI and PyBop methods as above. In both cases

no product was found in the Mass Spec.

Cyclo (-L-lac-D-val-D-Hval-L-glu(MNBD)-L-lac-D-val-) (29a). The glutamic version
was formed using the same general procedure used for Cyclo (-L-lac-D-val-D-Hval-L-
asp(MNBD)-L-lac-D-val-) except that BzO-L-glu(OH)-N-tBoc replaced BzO-L-
gasp(OH)-N-tBoc. 68.3 mg (.119 mmol) of the cyclo depsipeptide free acid was
dissolved in 20 ml SOCI, and mixed for 1 hr. at which point it was concentrated totally.
The residue was taken up in benzene and concentrated to remove excess SOCI,. This was
taken up in 10 ml anhydrous MeCN to which 25 mg (1 eq) of 4-(N-methylhydrazino)-7-
nitro-2,1,3-benzooxadiazole (MNBD) and 3 eq. Et;N was added. This was stirred for 24
hr. at which point the solvent was removed in vacuo and the organic phase was washed
thrice with saturated NaHCO;, thrice with 10% citric acid, dried over Na,SO,. This was
chromatographed on preparative TLC (9:1 DCM/MeOH). The fraction with Ry = .55 was

isolated and gave 2 mg of a brown solid. This was analyzed via Mass Spec. which
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showed the product was formed but was impure, [M+Na'] (%) calcd. 785.24 found

785.15 (80).
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John S. Benco
139 Rolling Meadow Dr.
Holliston, MA 01746
508-429-4655
john.benco.b@bayer.com

Education

2003 Worcester Polytechnic Institute, Worcester MA.
Ph.D., Chemistry
Dissertation; The Rational Design and Synthesis of Ionophores and
Fluoroionophores for the Selective Detection of Monovalent Cations.

2000 Worcester Polytechnic Institute, Worcester MA.
MS.; Chemistry
Thesis; Singlet-Singlet and Triplet-Triplet Energy Transfer in Polychromophoric
Peptides.

1993  Framingham State College, Framingham MA.
BS.; Chemistry
Thesis; Photo-degradation of organic acids by semiconductor systems.

1989 Franklin Institute, Boston, MA.
Assoc., Automotive Technology

Professional Experience
Bayer Corporation; Medfield, MA

Research Scientist (2000-present)

e Designed, synthesized and developed optical based sensors for the detection of whole
blood electrolytes to be used in clinical diagnostic systems.

e Designed, synthesized and developed novel ammonium cation ionophores for ion selective
electrodes and optically based systems.

Senior Associate Research Scientist (1998-2000)

e Assisted in the successful commercial launch of a new Point of Care blood gas and
electrolyte clinical diagnostic system.

e Member of lead multidisciplinary scientific team for product development.
e Provided expert scientific consultation on various electrochemical sensors.

e Determined root cause and corrective action of sensor and instrumentation technologies.
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Chiron Diagnostics; Medfield, MA

Assistant Scientist (1995-1998)

Collaborated with lead mechanical electrical and software engineers in the integration of
sensor technologies into clinical diagnostic instrumentation.

Developed ion selective electrodes for differential partial carbon dioxide measurements.

Collaborated with peer scientists on the development of amperometric glucose and
oxygen electrodes.

Developed a new conductivity based hematocrit sensor.

Worked intimately with manufacturing personal in the technology transfer of
electrochemical sensors.

Developed, in conjunction with formulation chemists, instrumentation calibration and
quality control materials.

Ciba Corning Diagnostics; Medfield, MA

Associate Scientist (1993-1995)

Developed metal-metal oxide pH electrodes for whole blood partial carbon dioxide
determinations

Collaborated with peer scientists on the development of pH, sodium, potassium, and
calcium ion selective electrodes.

Technologist (1992-1993)

Assisted senior level Ph.D. chemists in the development of thick film planar electrochemical
sensors for the clinical analysis of blood gases.

Prepared aqueous and whole blood test solutions for sensor development.
Designed and executed test protocols.

Instrumentation Laboratories; Lexington, MA

Research Assistant (1990-1992)

Assisted senior chemists in the development of ion selective electrodes for calcium and
blood urea nitrogen.
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Publications

Benco, J.S., Nienaber, H.A., McGimpsey, W.G.; Synthesis of an Ammonium Ionophore
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