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Abstract 
 

The rational design, synthesis and complexation characteristics of several monovalent 

cation-selective ligands are described.  Molecular modeling employing a combination of 

dynamics, mechanics (AMBER94) and electrostatics was used to design ligands for the 

complexation of ammonium, potassium, sodium and lithium ions. A modular technique 

was used to synthesize an ammonium selective ionophore based on a cyclic depsipeptide 

structure (8).  The ionophore was incorporated into a planar ion selective electrode (ISE) 

sensor format and the selectivity tested versus a range of metal cations. It was found that 

the membrane containing the polar plasticizer NPOE (nitrophenyloctylether) in the 

absence of ionic additive exhibited near-Nernstian behavior (slope = 60.1 mV/dec @ 

37˚C) and possessed high selectivity for ammonium ion over lithium and the divalent 

cations, calcium and magnesium (log POT
jNHK +

4
 = -7.3, -4.4, -7.1 for lithium, calcium and 

magnesium ions, respectively).  The same membrane also exhibited sodium and 

potassium selectivity that was comparable to that reported for nonactin (log POT
jNH

K +
4

 = -

2.1, -0.6 for sodium and potassium, respectively, compared to -2.4, -0.9 in the case of 

nonactin).  

 

N-(9-methylanthracene)-25,27-bis(1-propyloxy)calix[4]arene-azacrown-5 (10) was 

synthesized and tested as a fluoroionophore for the selective detection of potassium ions. 

Compound 10 acts as an “off-on” fluorescent indicator for ion complexation as a result of 

photoinduced intramolecular electron transfer (PET). Studies demonstrate that 10 is 

selective for potassium over other alkali metal cations, with excellent selectivity over 

sodium and lithium (log KK,Na ~ log KK,Li ≤ -3.5) and moderate selectivity over rubidium 

and cesium (log KK,Rb ~ log KK,Cs ~ -1).  

 

N-(9-methylanthracene)-25,27-bis(1-propyloxy)-4-tert-butylcalix[4]arene-azacrown-3 

(11) was synthesized and tested as a fluoroionophore for the selective detection of 

lithium cations. When exposed to lithium ions in a 75:25 dichloromethane/THF solvent 

mixture, the molecule, which operates on PET, exhibited a >106-fold enhancement in 
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fluorescence emission intensity.  Selectivity studies demonstrated that 11 effectively 

discriminates against sodium and potassium ions log KLi,Na ≤ -3.8 and log KLi,K ≤ -2.3. 

 

A fluorescent sodium optode based on a fluoroionophore consisting of aminorhodamine 

B covalently-linked through an amide bond to a calix[4]arene has also been developed 

(12).  The optode, fashioned by incorporation of the fluoroionophore into a single 

component polymer matrix, operates on the basis of PET. The fluorescence intensity 

increased linearly with increasing sodium ion concentration in the range 0.01 M to 2.0 M, 

exhibiting a three-fold enhancement over this range.  The optode provides selectivity for 

sodium ions compared to potassium ions that is sufficient for clinical determinations of 

sodium ion concentration.  
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I: Introduction 

 
The design of ligands for the complexation of ions has become a major research area in 

recent years as reflected in the numerous reviews that have been written on the subject.1-

11  This interest is due to the fact that ion-complexing ligands have applicability in a wide 

range of fields.  For example, ion-complexing ligands have spurred the development of 

new catalysts, 1 antibiotics, 3 artificial sensory systems4 and therapeutic agents in 

chelation therapy.6,9   One of the major driving forces in the research of new ligands, or 

ionophores, is sensor development, particularly for clinical diagnostic purposes and 

attention has focused on attaining high selectivity and sensitivity to specific ions.6,9,11  In 

particular, due to their significant importance in the clinical diagnosis of disease, research 

has centered on the complexation of alkali and alkali earth metal ions as well as 

metabolites such as ammonium ion. 11     

 

Typically, ionophores now in use for clinical purposes have been developed using 

empirical, trial and error techniques.  Although many useful ionophores have been 

obtained this way an alternative, rational approach is called for in which the fundamental 

requirements of complexation are considered.  Such an approach takes into account the 

specific guests and employs the modern techniques of molecular modeling. Rational 

ionophore design followed by systematic structural modifications in iterative steps is 

likely to yield not only more selective and sensitive ionophores but also a set of general 

rules that can be applied to the design of other systems. 
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To this end, it is the goal of this work to design novel ionophores for the complexation of 

monovalent cations such as potassium, sodium, lithium and ammonium based upon the 

fundamental requirements for stable and selective host-guest interactions.  A further goal 

is to corroborate these requirements with modern molecular modeling techniques and 

thus provide a rational approach to the development of new ionophores.  Using these 

approaches, our specific aim is the design and development of new ammonium 

ionophores that will be tested in potentiometric ion selective electrodes.  An extension of 

this work is the design new of fluoroionophores (fluorescent ionophores) for potassium, 

sodium and lithium, which could be used in optically-based sensors.  This work will be 

presented in 7 major sections as follows; Basic Considerations in the Design of 

Ionophores, Basic Considerations in the Design of Fluoroionophores, 

Ionophore/Fluoroionophore Design Approach, General Experimental, Results and 

Discussion, Conclusions, and finally, Future Work.  The Results and Discussion section 

will be subdivided for each particular ionophore/fluoroionophore and will contain an 

introduction, specific experimental details, a discussion of the results obtained and a 

concluding summary.  
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A: Basic Considerations in the Design of  
Ionophores 

 

The first step in the process of developing selective and sensitive ionophores is to 

consider the thermodynamics of complexation.   Ionophore selectivity can be discussed in 

terms of the thermodynamic stability of the metal ion–ionophore complex, where more 

stable complexes are indicative of more selective interactions.10  Thermodynamic stability 

in these systems is a complex combination of enthalpic and entropic parameters that can 

be understood in part, by considering steric size-fit parameters and pre-organization of 

the ionophore. Table 1 gives a selection of thermodynamic values for alkali metal ion 

binding to a series of crown ethers (shown in Figure 1) as reported by Bradshaw and co-

workers.10  Examination of the table reveals that complexation is an enthalpically 

favorable process and an entroptically unfavorable process and that there may be a 

modest correlation between the free energy of complexation and the size match between 

the ion and ionophore.  Thus when the size matches closely, the metal ion is centered 

within the cavity or pocket and experiences the most symmetrical electrostatic 

interactions.  A smaller ion will experience a proportionally smaller electrostatic 

interaction and thus will not be as tightly bound.  Conversely an ion that is larger cannot 

fit within the pocket symmetrically and as a consequence will not benefit from all of the 

electrostatic stabilizing interactions provided by the ionophore. 
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Figure 1: Left to right, 15-crown-5, 18-crown-6, 21-crown-7 
 

 

Ligand Cavity 
(Å) 

Metal 
ion 

Cation 
radius 

(Å) 

−∆G  
(kJ/mol) 

−∆Η 
(kJ/mol) 

T∆S 
(kJ/mol) 

15-crown-5 0.86-0.92 Na 0.95 19.7 20.9 -1.30 

  K 1.33 21.3 32.2 -10.9 

  Cs 1.69 12.6 49.0 -36.4 

18-crown-6 1.34-1.43 Na 0.95 25.1 31.4 -6.30 

  K 1.33 34.7 56.1 -21.3 

  Rb 1.48 30.6 50.7 -20.1 

  Cs 1.69 27.2 47.3 -20.1 

21-crown-7 ~1.70 Na 0.95 10.0 43.5 -33.5 

  K 1.33 24.3 36.0 -11.7 

  Rb 1.48 27.6 40.2 -12.6 

  Cs 1.69 28.5 46.9 -18.4 

Table 1: Thermodynamic values for alkali metal ion binding to a series of crown ethers 
as reported by Bradshaw and co-workers.10 
 

This correlation is particularly clear in the case of the 18-crown-6 and the 21-crown-7 

where the average pocket sizes are on the order of 1.39 and 1.70 Å respectively.  These 

values nicely match the ionic radius of potassium (1.33 Å) and that of cesium (1.69 Å) 

and as a result, the free energy of complexation for these two cations is the most 

favorable (-34.7 and -28.5 kJ/mol) in comparison to the other cations. 
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The differences in the free energy of complexation can give a measure of the ability of an 

ionophore to discriminate between various guests.  This measure is the selectivity factor, 

logK, and is the ratio of the equilibrium constants for the binding of individual guests.  

This value can be calculated from the free energy of complexation, ∆G, as follows; 

lnKi =  -∆Gi/RT  (1) 

lnKj =  -∆Gj/RT  (2) 

Where K is the equilibrium constant (this is also called a binding, stability, complexation 

or association constant), i is the ion of interest and j is the ion to be discriminated against, 

i.e. the interfering ion and R, T and G are the standard thermodynamic quantities.  

 

Obtaining the ratios and converting to log; 

logKij = Ki/Kj   (3) 

gives logKij, the selectivity factor (or coefficient). 

 

For example, the 18-crown-6 ionophore has a ∆G of -25.1 and -34.7 kJ/mol for sodium 

and potassium respectively (Table 1), yielding logKK,Na = 1.68 or KK,Na  = 48.1 (at 25ºC).  

In other words the equilibrium constant for the binding of potassium is ca. 48 times larger 

than that of sodium and thus the 18-crown-6 is 48 times more selective for potassium 

than it is for sodium.  It is this value, logKij, which drives the development of new 

ionophores.  The larger the difference in free energy of complexation between various 

guests, i.e. ∆∆G, the larger the logKij and therefore the more selective and potentially 

useful is the ionophore. 
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It can also be concluded from the data in Table 1 that the overall thermodynamic stability 

of the complexes, as indicated by the free energy of complexation, is not solely 

dependent on enthalpic factors. Rather, in each case there are significant and multiple 

entropic costs of complexation that contribute to decreased stability.  For the ion alone, 

there are both favorable and unfavorable entropy changes that occur. Upon binding the 

ion undergoes an entropically favorable loss of its solvation shell(s) but at the same time 

loses overall entropy, including a significant amount of translational entropy upon 

docking with the ionophore.  Complexation also involves a decrease in entropy of the 

ionophore since it loses conformational freedom in the bound state. The reduction of 

conformational freedom is imposed upon the ionophore by the formation of ion-dipole 

interactions between the guest and the electron donors of the ionophore.  These 

interactions reduce the degree to which bond rotation can occur and therefore imparts a 

more rigid structure upon the ionophore as compared to the unbound state.   This overall 

entropic cost can be minimized however, and the resulting complex can be made more 

stable if the complexed and uncomplexed ionophore conformations are similar, i.e. if the 

ionophore conformation is pre-organized. A prime example of this effect is the natural 

antibiotic valinomycin in which six amide linkages force the cyclic depsipeptide structure 

into a pre-organized conformation through hydrogen bonding.  This leaves the six-

carboxyl carbonyls free to electrostatically complex K+ in a three-dimensional octahedral 

arrangement (Figure 2).  The rigidity imposed upon valinomycin not only reduces the 

overall entropic cost of complexation, it also prevents the structure from folding and 

wrapping around smaller cations, such as sodium, an effect that reduces selectivity.  In 
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addition, the three-dimensional nature of the complexation pocket allows for enhanced 

stability of cations requiring octahedral (spherical) coordination geometries since the ion 

can be stabilized from above and below the plane of the ionophore, in contrast to crown 

ethers which essentially complex only along the single plane of the ligand.  The pre-

organized and rigid structure in combination with the three-dimensional binding site 

results in the improvement of the difference between the free energies of complexation 

for potassium and sodium (∆∆G = -18.43 kJ/mol, logKK,Na = 3.26 )14 in comparison to 

18-crown-6 (∆∆G = -9.6 kJ/mol, logKK,Na = 1.68 )10 leading to a 38-fold improvement in 

the selective binding of potassium over that of sodium.     

 

Figure 2: Valinomycin structure showing hydrogen bonds (dotted lines)  (oxygen: red; 
nitrogen: blue).  

 

Another general class of molecules that possesses attributes similar to those of 

valinomycin, i.e. pre-organization, rigid molecular structure and three-dimensional 
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complexation site, are container compounds such as calixarenes and calixarene-crown 

ethers (Figure 3). 
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Figure 3: A tetraester calix[4]arene (left) and a 1,3-alternate calix[4]arene-crown-5 
(right) 
 

There are numerous reviews on these compounds and as a result, their structure and some 

of their complexation behaviors are fairly well understood.11a  Calixarenes possess a pre-

organized structure because the phenyl groups form a semi-rigid cone shape.  In addition, 

various substituents may be placed along the lower rim to enhance complexation and thus 

increase selectivity.  In addition, and like valinomycin, the binding site is three-

dimensional and therefore can complex cations  more efficiently than simple crown 

ethers which possess planar binding sites.   In comparison to monensin esters, which are 

traditional sodium ionophores (see for example, Figure 4), some very simple 

calix[4]arenes (Figure 5)  such as tetraethylester-p-octylcalix[4]arene11c,12  and 

tetramethylester-p-tert-butylcalix[4]arene 13 exhibit higher selectivities (ca. one to two 

orders of magnitude increase over monensin esters).  

 



 20  

 
 

Figure 4: Methyl monensin 
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Figure 5: Tetraethylester-p-octylcalix[4]arene 12 (left)  and tetramethylester-p-tert-
butylcalix[4]arene 13 (right) 
 

Calixarene-based counterparts for potassium are also well known, e.g., the 1,3-alternate  

calix[4]arene-crown-5 (Figure 3, right).14  Although the molecule possesses the basic 

calix[4]arene structure, the addition of the crown-5 moiety further increases the rigidity 

of the molecule and thus the pre-organization.  As a result, the pocket that is established 

is fixed and possesses little flexibility. Therefore the pocket can not deform to effectively 

stabilize cations that are smaller than potassium, such as sodium.   In comparison to 

valinomycin, a marked enhancement in the ∆∆G of complexation between potassium and 
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sodium was found for this calix[4]arene-crown-5, -18.43 kJ/mol and -31.24 kJ/mol 

respectively.  The increase of ∆∆G for the calix[4]arene-crown-5 in comparison to 

valinomycin leads to improved selectivity for potassium over sodium, logKK,Na = 5.53 

and logKK,Na = 3.26, respectively. 

 

In general, two design features must be incorporated into the ionophore to achieve high 

selectivity for a particular guest; the pocket of the ionophore must be an appropriate size 

to bind the guest and a pre-organized structure is needed to reduce the entropic and 

enthalpic costs of complexation.  While these factors are primary drivers in the 

complexation of alkali metal ions additional features are required to obtain high 

selectivity for other cations, e.g. ammonium ion.  In comparison to the alkali metal ions, 

which prefer octahedral (spherical) coordination shells, ammonium ions prefer a 

tetrahedral binding geometry.   This is illustrated by the natural antibiotic nonactin, the 

most widely studied ammonium ionophore (Figure 6). 
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Figure 6: Nonactin 
 

In the case of nonactin the ammonium cation is complexed through the four ethereal 

oxygen atoms in a tetrahedral geometry.  However, due to the flexibility of the ionophore 
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various conformations can be adopted.  As a result, nonactin can form “wrapping-type” 

complexes with alkali cations through the deformation of the pocket and thus is not very 

selective.15  In particular, nonactin discriminates against potassium ion, which has a 

similar ionic radius (1.33 Å) to ammonium ion (1.43 Å), only by an order of magnitude 

(logKij ~ 1) .16,17  

 

To address the limitations of nonactin, research has focused on creating an ionophore that 

can supply a tetrahedral complexation geometry as well as a more rigid and potentially 

pre-organized structure.  Attention has also been paid to the importance of hydrogen 

bonding.  For example, Lehn et al. synthesized macrotricyclic cryptands (Figure 7) that 

exhibited a substantial enhancement (>100 fold) in the binding of ammonium over that of 

potassium, as determined by NMR studies.18  This enhancement was attributed to the 

tetrahedral geometry provided by the ionophore and its ability to donate four hydrogen 

bonds to stabilize the cation. This result pointed out the particular importance of 

hydrogen bonding and symmetry considerations in the design of ammonium ion 

recognition sites. 
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                          Figure 7: Lehn’s cryptands 
 
 

Initial complexation studies of ionophores are typically completed in solution giving 

association constants (also called binding or stability constants) of individual cations, 

from which the selectivities are calculated, (Equations 1-3).  However, one of the major 

goals of developing new and more highly selective ionophores is the attainment of 

sensors, which can be used in a variety of applications and in particular clinical 

diagnostic instrumentation.  In a sensor format the individual association constants are 

not measured but rather the direct determination of the selectivity coefficient (logKij) for 

the sensor over an interfering ion is made.   

 

These sensors are based upon potentiometric ion selective electrodes (ISE’s) in which an 

ionophore is doped into a plasticized-PVC membrane, which in some cases also contains 

a lipophilc salt.  The constructed membrane is then placed into an electrode body, 
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typically called a Phillips body in which an internal electrolyte (usually .1M KCl) is 

added.  The electrode is connected through a potentiostat and the cell is completed by 

using a reference electrode, (SCE or sat. Ag/AgCl).  The two half cells can then be 

placed into testing solutions and the potential difference measured as a function of 

analyte activity, or concentration in dilute systems (Figure 8). 

potentiometer

external reference electrode ion selective electrode

internal reference electrode

internal electrolyte

plasticized-PVC membrane

testing solution

 

Figure 8: Basic construction of an ISE testing apparatus. 
 

The operation of an ion selective electrode is dependent upon the establishment of a 

potential difference between the solution side and the internal electrolyte side of the 

electrode.  This potential difference occurs at the solution-membrane interface.   When 

the membrane is doped with an ionophore that is primarily selective for one ion this 

potential difference then becomes dependent upon the activity of this ion and is measured 
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against an external reference electrode.  The function of the potential difference and the 

activity follow the well-known Nernst equation as shown; 

 

E = E° - (2.303RT/nF)loga   (4) 

 

Where E is the electromotive force (emf) of the cell in volts, E° is the emf cell constant, F 

is the Faraday constant, a is the activity of the analyte, n is the charge of the measured 

species and R and T are the usual thermodynamic quantities.  This equation is in the form 

of y = mx + b and thus a plot of E verse loga will give a straight line with a slope of 

2.303RT/nF.  For the measurement of monovalent cations at 25°C, n = 1 and the slope 

becomes 59.16 mV/dec.  Thus for any ISE that measures monovalent cations and is 

operating according to the Nernst equation a slope of 59.16 mV/dec would be expected. 

 

For such systems, the selectivity of the ISE over other cations is one of the key 

parameters, primarily driven by the selectivity of the ionophore, and may be measured in 

one of several ways.  The two typical methods are called the Fixed Interference Method 

(FIM) and the Separate Solution Method (SSM).19   When these methods are used a 

selectivity coefficient for the sensor is determined and given as logKij
POT.  The “POT” 

refers to the fact that the selectivity value was determined potentiometrically and i = 

primary ion of interest, j = interfering ion.  The reported selectivities are given as 

negative values and the more negative the better.  For example, typical potassium ISE’s 

possess selectivity values for potassium over sodium on the order of logKK,Na
POT = -3.3.  
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This is interpreted as the sensor being greater than three orders of magnitude more 

selective for potassium than for sodium.   

 

Ion selective electrodes have been in wide use since the 1970’s, particularly within the 

field of clinical diagnostics and therefore are well established as critical tools in the 

diagnosis of disease.  The systems, employing the ISE technology, have changed little 

during this time and are still designed today using the same complex architecture that was 

developed over three decades ago and therefore has limited their applicability. To 

overcome these limitations, research has begun to focus on optical techniques of 

detection with a view to reduce overall complexity due to the fact that optically based 

systems do not require external reference electrodes and expensive electronic potentiostat 

equipment.  In order to reach the goal of optically based clinical diagnostic systems new 

sensors are needed that owe their response to photonic energy rather than electrical 

differences. These sensors have been termed optodes and, in many cases, take advantage 

of ionophores that have been covalently linked to a fluorescent molecule (fluorophore) 

forming what is known as a fluoroionophore.  Like their electrochemical counterparts, 

various considerations are required to be taken into account in order to develop new, 

highly selective and sensitive fluoroionophores.  
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B: Basic Considerations in the Design of       
Fluoroionophores 

 

Over the past several years, there has been explosive growth in the development of 

fluoroionophores based on a variety of optical effects. A comprehensive review of such 

systems has been published by de Silva et. al.20  One of the first considerations in the 

design of fluoroionophores is sensitivity and thus the preponderance of recent work has 

centered on the covalent linking of ionophores through an electron-donating group to 

electron transfer-sensitive fluorophores. The basic photophysical process of such 

molecules depends on an intramolecular electron transfer quenching mechanism in which 

the excited state of the fluorophore is quenched by electron transfer from an electron 

donating group in the fluoroionophore. This process is known as photoinduced electron 

transfer or PET.  A thermodynamic prediction of the feasibility of electron transfer can be 

made by calculating the free energy of the process using the Rehm-Weller equation 

(Equation 5). 

 

∆GPET = Eoxd/D - Ered/A - ∆E00 - e2/4πεr  (5) 

 

Where, Eoxd/D is the oxidation potential of the electron donor, Ered/A is the reduction 

potential of the electron acceptor, ∆E00 is the energy of the excited state that participates 

in the electron transfer process, usually a singlet state, and the final term is the 

Coulombic energy of the ion pair where e is the electron charge, ε is the dielectric 
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constant of the solvent and r is the distance between the two ions.  The process is 

presented in terms of a frontier orbital energy diagram in Figure 9. 

 

E

LUMO

HOMO

HOMO

PET

Fluorophore Electron donor 
of ionophore

Uncomplexed State

 

Figure 9: Frontier orbital energy diagram of fluorescence quenching in the PET 
mechanism. 
 

Simplistically, Figure 9 shows that the reduction potential of the fluorophore is lowered 

in the excited state and is depicted in terms of the fluorophore HOMO being lower in 

energy than the HOMO of the electron donor in the ionophore.  This being the case, an 

intramolecular electron transfer from the electron donor HOMO to the fluorophore 

HOMO occurs and simultaneously an electron transfer occurs from the LUMO of the 

fluorophore to the HOMO of the electron donor.  As such, the radiative transition from 

S1→S0 is quenched and little or no fluorescence is observed.   

 

Since these molecules incorporate a site for binding cations in which the electron-

donating group participates, perturbation of the electron transfer process would be 
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expected upon complexation.   Indeed, upon complexation the electrostatic field of the 

cation makes electron transfer to the fluorophore less efficient and leads to enhanced 

fluorescence emission, in effect turning the electron transfer off and turning the 

fluorescence on.    This effect can be understood thermodynamically, i.e. the oxidation 

potential of the electron donor is increased relative to that of the acceptor in the 

complexed state.  The process is presented in terms of frontier orbital energy diagram in 

Figure 10.   

 

In Figure 10, the ionophore has bound a cation and is in the complexed state where the 

electron donor that participates in electron transfer is now involved in the complexation 

of the ion.  Due to this ion-dipole interaction, the oxidation potential of the donor has 

increased and is shown in terms of the HOMO of the electron donor at a relatively lower 

energy with respect to the HOMO of the fluorophore.  This therefore makes the 

intramolecular electron transfer thermodynamically less favorable and thus the radiative 

transition, S1→S0, occurs and fluorescence is observed. 



 30  

hνfluorescence
E

LUMO

HOMO
HOMO

Fluorophore

Complexed State

Electron donor 
of ionophore

 

Figure 10: Frontier orbital energy diagram of fluorescence enhancement in the PET 
mechanism in the bound state. 

 
 

In many cases, PET is highly efficient and the fluoroionophore is in an almost completely 

quenched state.  Upon complexation the fluorescence is considerably enhanced and thus 

these systems have been given the term of “off-on” switches.  This “off-on” PET 

mechanism has been reported in 9-anthryl-azacrown-5 in which 9-methylanthracene is 

covalently linked to the secondary amine of the azacrown moiety (Figure 11).21a 

 

O

NO

OO

 

Figure 11: 9-Anthryl-azacrown-5 
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The free energy change for electron transfer in this molecule is estimated to be ∆GPET =    

-0.41 eV (assuming the azacrown is the electron donor with an oxidation potential of 0.89 

eV,21b 9-methyl-anthracene is the acceptor with a reduction potential of -1.97 eV and E00 

= 3.17 eV,21c and the Coulombic term is 0.1 eV21b) .   Upon complexation of sodium 

cations a >40 fold increase in the fluorescence quantum yield was observed.   

 

Due to this high sensitivity, the majority of the early fluoroionophores have been 

developed with the PET mechanism in mind and for several reasons have typically been 

based upon crown ether structures.  First, the synthetic flexibility offered by these 

structures allows the incorporation of a variety of fluorophores as well as electron donors.  

This allows for the tailoring of the fluoroionophore such that fluorophores and electron 

donors with the appropriate thermodynamic properties can be combined yielding 

potentially useful molecules.  Also, these electron donor groups can be incorporated into 

the crown structure in positions that are potentially in close proximity to both the ion 

docking site and the fluorophore.  For example the phenyl group in the crown structure of 

calix-benzocrown ethers is comparable to 1,2-dialkoxybenzenes in its electron donor 

behavior and in combination with a 9-cyanoanthracene (Figure 12) yields a 

fluoroionophore that is selective for potassium ions.22  
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Figure 12: 9-Cyanoanthryl-benzocrown-6 
 

A further consideration in the design of fluoroionophores is the linkage architecture 

between the fluorophore and the ionophore moieties.   In particular, a systematic 

investigation of the effect of linker length on the “off-on” fluorescence mechanism was 

reported by Ji et al. for a series of potassium sensitive pyrenyl aza-18-crown-6 

fluoroionophores.23  In these molecules the pyrene group was tethered to the azacrown 

ionophore at the nitrogen atom by methylenic linkers with n = 1 - 4 methylene groups.  

The initial quantum yields, φ0, increased in the order n = 1 < 2 ~ 3 < 4, 0.017, 0.024, 

0.026, 0.072 respectively.  As would be expected, the observed general trend is an 

increase in the φ0 with increasing distance from the electron donor.  The farther the 

fluorophore is from the electron donor, the less efficient the electron transfer there is and 

therefore the greater the φ0.  However, there is a discontinuity in the trend when n = 3.  

Here, the “n = 3 rule” was invoked to account for the fact that the φ0 for n = 3 was 

approximately equal for n = 2.  It was hypothesized that when n = 3, the alkyl chain can 
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fold onto itself, thereby decreasing the end-to-end distance between the pyrene moiety 

and the azacrown. Thus it was suggested that the pyrene moiety was folding over the 

crown, forming a sandwich complex, and thereby coming into closer proximity to the 

tertiary amine and consequently experiencing an enhancement of the electron transfer 

process, likely by way of a through space mechanism.  As a result of this the φ0 is lower 

than expected.  This effect illustrates that indeed fluoroionophores are multi-component 

systems and that each piece needs to be considered in the design of new molecules. 
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C: Ionophore/Fluoroionophore Design Approach 

 

New ionophores and fluoroionophores have been developed for ammonium, lithium, 

sodium and potassium ions, based upon the fundamental considerations for ionophore 

and fluoroionophore design as discussed above.   

 

Proposed motifs for ammonium ion are based upon the cation’s preference for tetrahedral 

binding which is expected to bias the ionophore’s selectivity to ammonium ion over that 

of cations that prefer octahedral (spherical) complexation.  In addition, a pre-organized 

and hence a rigid structure is designed into the target molecule.  At the same time, the 

synthetic route must be reasonable and amenable to further tuning of the complexation 

properties of the ionophore.  These criteria can potentially be met by using cyclic peptide 

and depsipeptide structures.  The classic example of this type of structure, as noted 

above, is valinomycin, which possesses a pre-organized rigid structure and has been 

synthesized with a combination of solution and solid phase techniques.  Using 

valinomycin as our inspiration, several target molecules have been designed and 

investigated using a combination of energy minimization, molecular dynamics, and 

docking energies to evaluate their potential as ammonium ionophores.   One of these 

candidates, a cyclic hexadepsipeptide, has been synthesized and tested in ion selective 

electrodes and its potentiometric properties evaluated. 

 

Lithium, sodium and potassium fluoroionophores have been designed based upon 

calixarene and calixarene crown architectures, again due to their inherent pre-organized 
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structures as well as their facile synthetic pathways.  Respective candidates were 

evaluated in the same manner as the ammonium ionophore targets with one additional 

computational parameter, i.e. electrostatics, to determine at least qualitatively, the extent 

of electron density redistribution upon complexation.  This, in combination with ∆GPET 

calculations will help predict the ability of these candidates to act as fluoroionophores.   
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II: General Experimental 
 

Mass spectra were performed by SYNPEP Corporation, Dublin, CA or by Bayer 

Diagnostics, Medfield, MA. Melting points are measured in a Mel-Temp capillary 

melting point apparatus and are not corrected.  1H- and 13C- NMR spectra were recorded 

with a Bruker Avance 400 in CDCl3 unless otherwise noted. Optodes were housed in a 

custom flow-through cell.  IR spectra were obtained with a Perkin Elmer Spectrum One 

FT-IR Spectrometer.  All solvents and reagents were analytical reagent grade and used as 

supplied from Aldrich Chemical Co. Poly(vinyl chloride) (PVC), nitrophenyloctylether 

(NPOE), dioctyl phthalate (DOP), potassium tetrakis(4-chlorophenyl)borate (KtpClPB) 

and D-Hydroxyisovaleric acid were purchased form Fluka AG (Buch, Switzerland).  

Amino acids L and D-valine-N-fmoc were purchased from Calbiochem-Novabiochem 

Corp. Calix[4]arene was purchased from Acros. 4-p-tert-Butylcalix[4]arene-

tetraaceticacid-tetraethylester and 4-p-tert-butylcalix[4]arene was obtained from Fluka. 

Buffers were prepared with deionized water (18 MΩ⋅cm). 

 

Fluorescence Measurements 
 
 

Fluorescence emission and excitation spectra were obtained with a Perkin Elmer LS-50B 

Fluorimeter. In the case of in situ studies, fluorescence was measured as a function of 

metal ion concentrations where the metal ions were added as the acetate or 

hexafluorophosphate salts.  For sensor studies, aqueous solutions of the chloride salts 
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were used. Fluorescence areas were determined by integrating the spectrum over a fixed 

wavelength range.   

 

Molecular Modeling Calculations  

 
Molecular modeling was preformed on an SGI 320 running Windows NT.  Calculations 

were carried out using the Molecular Operating Environment (MOE) ver. 2000.02 

computing package (Chemical Computing Group Inc., Montreal, Quebec, Canada.).  

Structures were minimized first using the AMBER94 potential control under a solvent 

dielectric of 5. PEF95SAC was used to calculate partial charges.  Minimized structures 

were then subjected to a 30 ps molecular dynamics simulation. The structures were 

heated to 400 K, equilibrated at 310 K and cooled to 290 K in the dynamics thermal cycle 

at a rate of 10 K/ps.  The lowest energy structures obtained from these dynamics 

calculations were then minimized again.  Using the minimized structures, docking 

energies of the cation complexes were calculated by employing the default parameters 

supplied with the program. Electrostatic calculations were then preformed on the 

molecules using the default parameters. 
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III: Results and Discussion 
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A: Ammonium Ionophore (8) 
 

 
Metabolites such as urea and creatinine are important disease indicators25 and for this 

reason considerable effort has been expended in developing diagnostic tools for their 

detection.  Concentrations of urea and creatinine in biological media can be detected 

indirectly by measuring the amount of ammonium ion generated upon enzyme-catalyzed 

hydrolysis.25,26  The measurement of the ion has traditionally been accomplished by the 

use of ion selective electrodes (ISE) doped with the natural antibiotic nonactin.25-34  A 

serious drawback to the use of nonactin is that it is only about ten times more selective 

for the ammonium ion than it is for the potassium ion.25,26  This lack of selectivity is 

particularly problematic when the concentration of ammonium ion generated from 

creatinine is less than the background potassium concentration.  This has led a number of 

groups to develop new ammonium ionophores. For example, Chin and co-workers 

synthesized 1,3,5-tri(3,5-dimethylpyrazol-1-ylmethyl)-2,4,6-triethylbenzene in which the 

three pyrazole groups provide hydrogen bonding sites.35  An ISE incorporating this 

molecule showed improvement in ammonium ion selectivity over potassium ion as 

compared to nonactin (log 6.2
,4

−=++
POT

KNH
K ), illustrating the importance of hydrogen 

bonding and symmetry.  However, the limit of detection for this ionophore is two orders 

of magnitude higher than for nonactin and therefore it is not sufficiently sensitive for 

some applications.  Kim et al. investigated the use of thiazole-containing benzocrown 

ethers as ammonium ionophores and reported potassium selectivity comparable to 

nonactin and enhanced selectivity for ammonium over sodium ion 
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(log 9.3
,4

−=++
POT

NaNH
K ).36  Similarly, others have used 19-crown-6 structures with decalino 

blocking groups to control selectivity, reporting increased selectivity for ammonium over 

both smaller and larger cations.37 

 

The approach taken here to the design and synthesis of ammonium ionophores has, like 

Lehn18 and others,35-37 focused on the incorporation of hydrogen bond donors in 

tetrahedrally-symmetric complexation sites. Given the structural complexity of some of 

the synthetic ionophores reported, we have used a molecular motif that both lends itself 

to straightforward synthesis and allows structural modifications to be incorporated 

without substantial changes in synthetic strategy.  Our experience to date, as well as that 

of others,39-42 has shown that ionophores based on cyclic peptide and depsipeptide 

structures, i.e., those that are similar to natural ionophores, can be readily synthesized in 

high yield by either solution or solid phase methods.  

 

In the work reported here we have taken valinomycin as our inspiration for the design of 

a new ammonium ion specific ionophore. Valinomycin is a naturally occurring antibiotic 

having high selectivity for potassium ions. It has a cyclic depsipeptide structure 

consisting of alternating amide and ester units (six of each, twelve in total) and has been 

synthesized on a solid phase support.42  Valinomycin pre-organizes through hydrogen 

bonding of its amide carbonyl groups to form a pocket which presents its six ester 

carbonyl groups as sources of electrostatic stabilization for potassium ions.43  Thus, the 

pocket provides an octahedral type complexation site with a size that is a close match to 

the estimated ionic radius of potassium (1.33 Å). We report here the synthesis of an 
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ammonium ion-specific ionophore, 8, which has some of the same structural elements as 

valinomycin. Compound 8 is a cyclic depsipeptide consisting of alternating amide and 

ester groups (three of each, six in all) which is, in effect, one half of the valinomycin 

structure. Compound 8 does not fold onto itself and therefore it provides a complexation 

site that is approximately the same size as valinomycin, a necessary feature because the 

ammonium ionic radius (1.43Å) is comparable to that of potassium.18  An important 

difference though, is that 8 is not capable of providing an octahedral binding site. 

However, it has hydrogen bond donors arranged tetrahedrally (necessary for ammonium 

complexation) and it is this distinction that we expected to allow the ionophore to 

discriminate efficiently between potassium and ammonium ions.  

 

Below we describe the synthesis of 8; the incorporation of this ionophore into a planar 

ISE sensor format; testing of the potentiometric response of the electrode in a commercial 

clinical diagnostic ‘Point-of-Care’ instrument; and the results of selectivity studies for 

ammonium versus other metal cations.  
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Ammonium Ionophore Experimental 

 
 
Synthesis of 3. (Scheme 1, see text p. 53)  

Note: All NMR and Mass Spectroscopy data in Appendix A1. 

L-Lactic acid benzyl ester (BzlO-L-lac, 1) (based on a modified procedure).42  10 g 

(111 mmol) of L-lactic acid was dissolved in 150 mL of anhydrous benzyl alcohol.  The 

solution was saturated with HCl gas and stirred for 18 hr where upon the solution was 

diluted with 200 mL CH2Cl2.  The organic layer was washed 3 times with 100 mL 1 N 

KOH, and then with 100 mL 10% citric acid and dried over Na2SO4.  The CH2Cl2 was 

removed under vacuum at 40 °C.  The benzyl alcohol was removed by vacuum 

distillation (2.5 mmHg) and the product recovered as a colorless oil at 120°C, 10.3 g, 

yield 51.3%.  The NMR spectra conforms to the literature.44 1H-NMR (400 MHz, CDCl3), 

δ 1.47 (s, 3H), 3.05 (s, 1H), 4.33-4.59 (m, 1H), 5.24 (s, 2H), 7.39 (m, 5H); 13C-NMR (100 

MHz, CDCl3), δ 20.3 (CH3), 66.8 (CH), 67.2 (CH2), 128.2, 128.5, 128.6, 135.2 (Ar), 

175.5 (C=O). 

 

BzlO-L-lac-D-val-N-fmoc (2). 19.4 g (57.2 mmol) of D-valine-N-fmoc was dissolved in 

175 mL of CH2Cl2 to which 8.92 mL (1 eq.) of diisopropylcarbodiimide (DIPCDI) was 

added.  The solution was stirred for 25 min. where upon 10.3 g (1 eq.) of the formed L-

lactic acid benzyl ester (1) and .696 g (.1 eq) of 4-dimethylaminopyridine (DMAP) was 

added.  This mixture was then stirred for an additional 18 hr.  The insoluble urea thus 

formed was removed by filtration and the solution was washed once with 100 mL of 
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water, thrice with 100 mL saturated NaHCO3, thrice with 100 mL 10% citric acid and 

then dried over Na2SO4. The CH2Cl2 was then removed under vacuum at 40 °C to yield a 

yellow gum. The product was obtained by recrystallization using cold ether to yield 22.6 

g of a white solid, yield 79%. mp. 104-106 °C; Rf  .43 (CH2Cl2);  1H-NMR (400 MHz, 

CDCl3), δ .84 (d, J = 6.9 Hz, 3H), .91 (d, J = 6.9 Hz, 3H), 1.44 (s, 3H), 2.14-2.18 (m, 

1H), 4.14-4.18 (m, 1H), 4.30-4.36 (m, 3H), 5.11-5.14 (m, 3H), 5.22 (d, J = 9.1 Hz, 1H), 

7.24-7.34 (Ar, 9H), 7.53 (d, J = 7.4 Hz, 2H), 7.69 (d, J = 7.5 Hz, 2H);  13C-NMR (100 

MHz, CDCl3), δ 15.9 (CH3), 16.4 (CH3), 17.9 (CH3), 30.3 (CH), 46.1 (CH ), 57.9 (CH2), 

66.0 (CH), 66.1 (CH2), 68.3 (CH), 119.0, 124.1, 126.0, 126.7, 127.2, 127.4, 127.6, 134.1, 

140.3, 142.7, 142.9 (Ar), 155.1, 169.0, 170.2 (C=O).  ESI MS m/z (%) calcd. for 

C30H32NO6 (M+H+) 502.2, found 502.2 (15), M+Na+ calcd. 524.2, found 524.4 (100), 

M+K+ calcd. 540.2, found 540.2(11) 

 

L-Lac-D-val-N-fmoc (3). 22.6 g (45 mmol) of the formed BzlO-L-lac-D-val-N-fmoc (2) 

was dissolved in 150 mL CH2Cl2.  The benzyl ester group was removed by using 2 g of 

Pd activated carbon, 10 wt%, and H2 at atmospheric pressure over 3 hr.  The spent 

catalyst was removed by filtration and the solution was washed thrice with 100 mL 

saturated NaHCO3.  The aqueous phase was acidified with 3N HCl and extracted with 

CH2Cl2.  The organic layer was washed with 100 mL brine, dried over Na2SO4 and 

concentrated totally under vacuum at 40°C, to afford in quantitative yield the title 

compound as a white crystalline solid, 18.5 g.  mp 62-64 °C; Rf .45 (9:1 CH2Cl2/MeOH); 

1H-NMR (400 MHz, CDCl3), δ 0.93 (d, J = 6.8 Hz, 3H), 0.99 (d, J =  6.8 Hz, 3H), 1.53 

(d, J = 6.8 Hz, 3H), 2.25 (m, 1H), 4.22 (m, 1H), 4.37-4.42 (m, 3H), 5.17 (m, 2H), 5.33 (d, 
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J = 9.0 Hz, 1H), 7.29-7.41 (Ar, 4H), 7.59 (d, J = 7.4 Hz, Ar, 2H), 7.76 (d, J = 7.5, Ar, 

2H);  13C-NMR (100 MHz, CDCl3), δ  16.9 (CH3), 17.5 (CH3), 19.0 (CH3), 47.0 (CH), 

59.0 (CH2). 67.1 (CH), 69.0 (CH), 120.0, 124.9, 125.1, 127.1, 127.7, 141.3, 143.7, 143.8 

(Ar), 156.4, 171.3, 174.4 (C=O).  EIS MS m/z (%) calcd for C23H25NO6Na (M+Na+) 434.2 

found 434.2(100) 

 

Synthesis of 6. (Scheme 2, see text p. 53) 
 
D-Hydroxisovaleric acid benzyl ester (BzlO-D-hyval, 4). The title compound was 

prepared in same the manner as L-lactic acid benzyl ester using 19.5 g (139 mmol) of D-

hydroxyisovaleric acid to yield 29.0 g, yield 84.4%. The NMR spectra conforms to the 

literature.45,46 1H-NMR (400 MHz, CDCl3), δ 0.83 (d, J = 6.8 Hz, 3H), 1.00 (d, J = 6.8 

Hz, 3H), 2.06-2.11 (m, 1H), 2.92 (d, J = 6.2 Hz, 1H), 4.08 (dd, J = 6.2, 3.5 Hz, 1H), 5.17 

(d, J = 12.1 Hz, 1H), 5.23 (d, J = 12.1 Hz, 1H), 7.31-7.38 (m, 5H);  13C-NMR (100 MHz, 

CDCl3), δ 15.9 (CH3), 18.8 (CH3), 32.2 (CH), 67.2 (CH2), 75.0 (CH), 128.4, 128.5, 

128.6, 135.2 (Ar), 174.8 (C=O).   

 

BzlO-D-hyval-L-val-N-fmoc (5). 24.0 g (70.7 mmol) of L-valine-N-fmoc, 14.5 g (1 eq.) 

of the formed D-Hydroxisovaleric acid benzyl ester (4), 36.2 g (1 eq.) PyBop, 9.5 g (1 

eq.) HOBT and 25 mL (2 eq.) of diisopropylethylamine (DIPEA) were added to 200 mL 

CH2Cl2. This mixture was then stirred for 4 hr.  The resulting solution was washed thrice 

with 100 mL saturated NaHCO3, thrice with 100 mL 1N HCl and dried over Na2SO4. The 

CH2Cl2 was then removed under vacuum at 40 °C. The product was obtained by flash 

chromatography (Biotage Flash40 column 15 cm x 7 cm, hexane/ CH2Cl2/EtOAc 
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60/35/5) to yield 19.0 g of a colorless oil, yield 51.5%. Rf .43 (CH2Cl2);  1H-NMR (400 

MHz, CDCl3), δ 0.92-1.01 (m, 12H), 2.25-2.28 (m, 2H), 4.24 (d, J = 7.0 Hz, 1H), 4.38-

4.46 (m, 3H), 4.92 (d, J = 4.2 Hz, 1H), 5.13-5.19 (m, 2H), 5.27-5.29 (m, 1H), 7.29-7.42 

(Ar, 9H), 7.60 (d, J = 7.3 Hz, Ar, 2H), 7.77 (d, J = 7.5 Hz, Ar, 2H);  13C-NMR (100 MHz, 

CDCl3), δ 17.1, 17.3, 18.8, 19.1 (CH3), 30.1, 31.3 (CH), 47.1 (CH), 59.1 (CH), 67.2 

(2CH2), 77.9 (CH), 120.0, 125.1, 125.1, 127.1, 127.7, 128.4, 128.4, 128.6, 135.1, 141.3, 

143.8 (Ar), 156.1, 169.0, 171.6 (C=O);  EIS MS m/z (%) calcd. for C32H35NO6Na 

(M+Na+) 552.2 found 552.2(100), calcd. M+K+ 568.2 found 568.2(48). 

 

D-hyval-L-val-N-fmoc (6). 14.5 g (27 mmol) of 5 was dissolved in 100 mL CH2Cl2.  The 

benzyl ester group was removed by using 2 g of Pd activated carbon, 10 wt%, and H2 at 

atmospheric pressure over 2 hr.  The spent catalyst was removed by filtration and the 

solution was washed thrice with 100 mL saturated NaHCO3.  The aqueous phase was 

acidified with 3N HCl and extracted with CH2Cl2.  The organic layer was dried over 

Na2SO4 and concentrated totally under vacuum at 40°C, to afford the title compound as a 

colorless gum, 9.6 g, yield 80%. Rf .59 (9:1 CH2Cl2/MeOH); 1H-NMR (400 MHz, 

CDCl3), δ 0.92-1.04 (m, 12H), 2.27-2.30 (m, 2H), 4.23 (d, J = 6.9 Hz, 1H), 4.38-4.45 (m, 

3H), 4.93 (d, J = 4.0 Hz, 1H), 5.35 (d, J = 9.0 Hz, 1H), 7.29-7.41 (Ar, 4H), 7.59 (d, J = 

7.4 Hz, Ar, 2H), 7.76 (d, J = 7.5 Hz, Ar, 2H);  13C-NMR (100 MHz, CDCl3), δ  17.0, 

17.4, 18.9, 19.1 (CH3), 30.0, 31.1 (CH), 47.1 (CH), 59.2 (CH), 67.2 (CH2), 120.0, 124.0, 

125.1, 127.0, 127.7, 141.7, 143.7 (Ar), 156.4, 171.7, 173.8 (C=O).  EIS MS m/z (%) 

calcd. for C25H29NO6Na (M+Na+) 462.2 found 462.4(100), calcd. M+K+ 478.2 found 

478.2(48). 
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Synthesis of the acyclic depsipeptide, 7.  (Scheme 3, see text p. 54) 

Solid phase synthesis was carried out on 2.9 g of Wang resin (1.1 mmol/g loading). The 

resin was prepared by adding 20 mL of DMF and mixing for 30 min. under N2 at which 

point the DMF was removed by aspiration. During which time, 3.28 g  (2.5 eq. to resin 

loading) of 3 was dissolved in 50 mL of CH2Cl2 to which 1.25 mL 

diisopropylcarbodiimide was added.  This was stirred for 25 min. at which point the 

CH2Cl2 was removed under vacuum at 40°C giving a white residue.  10 mL of DMF was 

added to the white residue and this solution was then added to the swelled resin.  40 mg 

(0.1 eq) of 4-dimethylaminopyridine was also added and the mixture was mixed under N2 

for 1 hr.  The reaction solution was removed by aspiration and the resin was washed 

thrice with 20 mL DMF, thrice with 20 mL MeOH and dried under vacuum.  Loading 

was tested by cleaving the fmoc protection group from a known mass of resin (20 mg) 

with 20% piperidine in DMF and monitoring the UV absorption at 290 nm.  Using a 

molar extinction coefficient value of 4950 a loading of 50% was obtained.  The process 

was repeated in full to obtain 70% loading.  The remaining resin was deprotected with 

20% piperidine in DMF (30 mL, 10 min.).  The solution was removed by aspiration and 

the resin was washed thrice with 20 mL DMF, thrice with 20 mL MeOH, thrice with 20 

mL DMF.  3.50 g. (2.5 eq) of 6 was added to 30 mL of DMF and 4.15 g (2.5 eq.) of 

PyBOP, 1.08 g (2.5 eq.) HOBT, and .278mL (5 eq.) of diisopropylethylamine.  This 

mixture was then added to the resin and mixed under N2 for 4 hr. The solution was 

removed by aspiration and the resin was washed thrice with 20 mL DMF, thrice with 20 

mL MeOH, once with EtOH and dried under vacuum.  Complete coupling was confirmed 
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by the Kaiser test for free amine. The general procedure was repeated again for the 

addition of the final block, 3.  The linear depsipeptide, 7, was cleaved from the dried 

resin with TFA/H2O/TIS 95/2.5/2.5 over 2 hr. by mixing under N2.  The cleavage mixture 

was removed by aspiration and was concentrated to give a brown residue. The brown 

residue was dissolved and concentrated twice more with toluene.   The crude product was 

purified by flash chromatography (Biotage Flash40 column 15cm x 7cm, CH2Cl2/MeOH 

95/5) to obtain 380 mg of an off white powder, yield 88% based on 70% resin loading. 

mp 144-146 °C; Rf .49 (9:1 CH2Cl2/MeOH); 1H-NMR (400 MHz, DMSO-d6),  δ 0.72-

0.84 (m, 24H), 1.21-1.26 (m, 6H), 1.96-2.00 (m, 4H), 4.12-4.14 (m, 2H), 4.68 (d, J = 5.4 

Hz, 1H), 4.74 (d, J = 7.0 Hz, 1H), 5.04 (d, 6.8 Hz, 1H), 8.12 (d, J = 8.4 Hz, 1NH), 8.37 

(d, J = 8.5 Hz, 1NH); 13C-NMR (100 MHz, DMSO-d6), δ 17.3, 17.5, 17.8, 18.2, 18.2, 

18.3, 18.3, 18.9, 19.2, 19.3 (CH3), 30.3, (2CH), 30.4 (2CH), 57.4, 57.6, 57.7, 69.8, 70.9, 

78.1 (CH),  158.2, 158.6, 169.0, 169.7, 170.0, 170.8 (C=O);  EIS MS m/z (%) calcd. for 

C26H46N3O10 (M+H+) 560.3 found 560.4(100). 

 

Synthesis of 8. (Scheme 3) 

150mg (.276 mmol) of the acyclic depsipeptide, 7, was dissolved into 20 mL thionyl 

chloride and mixed for 1.5 hr. at which point the solution was concentrated to give a 

white solid.  The residue was immediately taken up in 150 mL anhydrous benzene and 

.144 mL (1.05 mmol) triethylamine and mixed for 18 hr.  The solvent was removed under 

vacuum, 40°C.  The residue was taken up in 100 mL CH2Cl2 and washed with 100 mL 

10% citric acid, 100 mL saturated NaHCO3, dried over Na2SO4 and the organic layer 

concentrated totally to afford 75 mg of an off white powder, yield 50%. mp 96-98 °C; Rf 
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.58 (CH2Cl2); 1H-NMR (400 MHz, CD3CN),  δ .85-.88 (m, 24H), 1.26-1.40 (m, 6H), 2.14 

(m, 4H), 4.19-4.26 (m, 3H), 4.82 (d, J = 4.3 Hz, 1H), 5.00 (m, 1H), 5.12 (m, 2H), 6.77 (d, 

J = 7.8 Hz, 1NH), 6.95 (d, J = 6.4 Hz, 1NH), 7.02 (d, J = 7.08 Hz, 1NH); 13C-NMR (100 

MHz, CDCl3)  δ 14.7, 16.1, 16.5, 16.9, 17.0, 17.6, 17.7, 17.9, 18.2, 18.5 (CH3) 29.0, 29.1, 

29.4, 29.7 (CH), 56.0, 57.4, 57.6, 69.1, 70.8, 78.7 (CH), 168.0, 169.1, 169.6, 169.6, 

170.6, 171.2 (C=O). EIS MS m/z (%) calcd. for C26H44N3O9Na (M+Na+) 564.2 found 

563.7(100), calcd.  M+K+ 580.2 found 579.7(40). 

 

ISE Membrane and Electrode Preparation.  

Four membrane cocktails were prepared to test 8. The specific formulations are as 

follows: M1: 69/30/1 wt% of NPOE/PVC/8, M2: same as M1 with 50 mole % of 

KtpClPB to 8, M3: 69/30/1 wt% of DOP/PVC/8, M4: same as M3 with 50 mole % 

KtpClPB to 8.  Membrane cocktails were prepared as 10 wt% solutions in THF. The base 

electrodes were constructed in a thick film planar format47 using a polymeric internal 

electrolyte layer.48,49  A single wafer which is composed of 100 individual electrode 

elements was used for the sensor construction.  The polymer for the internal electrolyte 

was prepared as a 10 wt% solution in EtOH and spun on to the planar wafer at 750 rpm 

for 30 seconds and allowed to dry for 1 hour before membrane deposition. Internal 

electrolyte thickness was ca. 3.5 µm.  The wafer was then quartered giving 4 wafers of 25 

sensors each.  Membrane cocktails were deposited (.9 mL) onto the wafers and allowed 

to cure for 24 hours before use giving a membrane thickness of ca. 105 µm.  The planar 

wafers were singulated by hand giving 25 sensors for each formulation.   
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ISE Testing.  

The sensors were housed in the proprietary flow through cell used with the Bayer 

Diagnostics Rapidpoint 400 critical care system. This system uses a saturated Ag/AgCl 

reference cell.  Two flow cells were constructed which contained 3 sensors of each 

formulation for a total of 12 tested sensors.  Each cell was tested individually on the 

Rapidpoint system, which maintains a 37 °C temperature for the cell.  The sensors were 

tested using solutions containing NH4Cl (0.1 – 100 mM), 100 mM Tris buffer (pH 7.2) 

and .05g/l Brij 700.  Selectivity testing was based on the separate solution method 

(SSM),50,51 where i = j = 0.1M. 
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Ammonium Ionophore Results and Discussion 

 
Ionophore Modeling and Synthesis 

 

As we have noted, 8 possesses some structural similarities to valinomycin in that it 

provides an appropriately-sized binding pocket for complexation of ammonium or 

potassium cations (ionic radii: 1.43 Å and 1.33 Å, respectively).18 However, instead of 

providing an octahedral complexation geometry like valinomycin, 8 is only able to 

stabilize ions with tetrahedral binding requirements such as ammonium ion. It is on this 

basis that we predicted enhanced ammonium ion/potassium ion selectivity for 8 over that 

of valinomycin. This is supported by Figure 13 showing the results of modeling the 

binding of ammonium and potassium ions with 8.  

 

Figure 13: Minimized structures of 8 complexed with potassium ion (left) and with 
ammonium ion (right). 
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These minimized structures (obtained as described above) show the ammonium cation 

centrally located within the pocket and able to hydrogen bond with at least five of the 

carbonyl groups in 8.  In contrast, the potassium cation adopts a position that is shifted to 

one side and therefore provides an unfavorable binding site for potassium.   

 

Modeling of 8 also indicates that it may offer enhanced ammonium/potassium selectivity 

over nonactin, the ammonium ionophore commonly used in ISE applications. Minimized 

structures of nonactin with ammonium and potassium ions are shown in Figure 14.   

 

 

Figure 14:  Minimized structures of nonactin complexed with ammonium ion (left) and 
with potassium ion (right). 
 

The crown ether backbone of nonactin is quite flexible and allows for the formation of 

wrapping-type complexes with both ions. In such complexes the ions are enveloped by 

the nonactin structure and have multiple binding opportunities with the ethereal and/or 

carbonyl oxygen atoms present. It is important to note that formation of this envelope is 

essential for binding potassium ions because it is only in this conformation that an 

octahedral binding geometry is provided.  On the other hand the cyclodepsipeptide 8 
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possesses a more rigid backbone structure that cannot easily form a “wrapping-type” 

structure. As a result, an octahedral binding site is not provided and potassium ion 

binding will not be favorable. However, since a tetrahedral complexation geometry is 

available, ammonium ion binding can occur. 

 

To estimate the efficiency of ammonium binding in 8 compared with that in nonactin, 

docking energies were obtained for the ion/ionophore complexes in each case. In the case 

of 8, the difference in docking energies between ammonium ion and potassium ion was 

calculated to be 6 kcal/mol more negative than that calculated for nonactin. While these 

calculations give relative values only, they indicate qualitatively that 8 should be at least 

comparable to nonactin in terms of its ammonium/potassium ion selectivity. 

 

Schemes 1-3 show the strategy used for the synthesis of 8. The same solution and solid 

phase techniques reported previously for the synthesis of valinomycin42 have been used 

here with the exception that a Fmoc protection strategy was employed. This strategy 

allows the synthesis to be carried out on a commercially available solid phase support 

(Wang resin). Also, cleavage can be carried out under mild conditions. Thus, block 

components 3 and 6 were synthesized in solution, 3 was loaded on a Wang resin coupled 

with 6 and then again with 3 to yield 7 which was subsequently cleaved from the resin 

and cyclized to form 8. Although 8 was synthesized from the same component groups 

found in valinomycin (L-lactic acid, D-hydroxisovaleric acid, L- and D-valine), it is clear 

that a variety of hydroxylated amino acid derivatives and natural amino acids can be used 

in order to produce an ionophore with the appropriate binding site size and symmetry. 
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(We note that the stereochemistry of the individual groups in valinomycin has been 

preserved in the design of 8.)  This approach, then, represents a flexible strategy that will 

allow future systematic investigations of the effects of structure on the efficiency and 

selectivity of ammonium ion complexation. 
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Resin OH + 3
DIPCDI, DMAP

DCM, 2 hr.
O

Resin-O

O

O
N-fmoc

Piperidine

DMF, 10 min.
O

Resin-O

O

O
NH2

+ 6
1) Pybop, HOBT, DIPEA, DMF, 4 hr.

2) Piperidine, DMF, 10 min.
O

Resin-O

O

O
NH

O
O

NH2

O

1) Pybop, HOBT, DIPEA, DMF, 4 hr.

2) Piperidine, DMF, 10 min.
O

Resin-O

O

O
NH

O
O

NH
O

O

O

NH2

O

TFA,H2O, TIS

2 hr.
O

OH

O

O
NH

O
O

NH
O

O

O

NH2

O

1) SOCl2, 1.5 hr.

2) Et3N, Bzn, 18 hr.

O

O

O

NH

O

NH
O

O

O

O

NH

O

7

8

3a

3a

6a

6a + 3

 

 

 

 



 55  

 

Sensor Fabrication and Testing   

 

With the advent of micro-fabrication techniques, planar type electrodes have become an 

attractive alternative to traditional Phillips body ISE’s due to the ability to construct and 

test many sensors at once.  In addition, planar type electrodes make use of polymeric 

solid internal contacts, which allow for the construction of an all-solid state ISE.  The all-

solid state format has advantages over traditional Phillips body ISE’s such as ease of 

construction, cost effectiveness and ability for miniaturization. Systems such as these 

have been shown to be quite stable and have been shown to give potentiometric 

selectivities that are comparable to traditional ISE’s.52  In particular, ammonium sensors 

have been constructed using the all-solid contact concept and have been shown to possess 

selectivities that are typical of nonactin based  Phillips body ISE’s.53 

 

These advances have led to a substantial increase in the use of the planar format and has 

prompted manufacturers to offer clinical diagnostic instrumentation that utilizes planar 

ISE’s.54,55   Following this trend, 8 was incorporated into a planar ISE structure employing 

a polymeric solid contact material47-49 and tested in a commercially available Point-of-

Care clinical diagnostic system. Figures 15 and 16 show an edge on and top view of the 

planar electrode substrate and Figure 17 shows an actual sensor. 
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Figure 15: Edge on view of planar ISE 

 

 

Figure 16: Top view of planar ISE 
                                                                            

 

Figure 17: Actual ISE 
 

Ag leads 
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Figure 15 presents a side cut-away view of a single ISE chip measuring ca. 5mm X 5 

mm.  On the back side of the chip are printed gold electrical contacts (yellow) that 

connect to the front side electrode (red) via holes in the substrate.  A Ag/AgCl internal 

electrode is electrically isolated with dielectric.   Over this lies the internal polymeric 

electrolyte and then the plasticized PVC membrane.  Figure 16 shows the top view of this 

configuration with additional dielectric (black squares) covering the holes.  As a 

comparison, figure 17 presents an actual ISE chip side by side with a penny to provide 

scale.  The alphanumeric designation on the chip is used for tracking purposes only. 

 

Four membrane formulations were tested in order to determine which environment would 

yield the best potentiometric properties of sensors constructed with 8. Each sensor 

membrane consisted of plasticized PVC. Formulations differed as to the type of 

plasticizer used and whether an ionic additive was present. NPOE (nitrophenyloctylether) 

and DOP (dioctyl phthalate) were used as plasticizers since they have been used in other 

ammonium sensitive electrodes and yielded good results.11c We also investigated the 

effect of a lipophilic ionic additive, i.e. KtpClPB (potassium tetrakis(4-

chlorophenyl)borate), in combination with the two plasticizers.   

 

Figure 18 shows the potentiometric responses of the four membrane formulations to 

increasing concentrations of aqueous NH4Cl.   
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Figure 18: Potentiometric responses of planar ISE’s to ammonium ion (10-4 M to 10-1M) 
for membranes 1-4 based on 8. 
 

Two effects can be observed in the data, one that we attribute to the plasticizer and a 

second due to the ionic additive.  It can be seen from Table 2, membranes containing the 

plasticizer NPOE, both in the presence and absence of KtpClPB, consistently produced 

sensors with the highest slopes, i.e., the closest to the ideal Nernstian condition of 61.5 

mV/dec at 37 °C.   We attribute this effect to the higher polarity that NPOE (ε = 24) 

imparts to the membrane compared to DOP (ε = 3.88).56  It is known that depsipeptide 

structures such as valinomycin (and likely 8) experience intramolecular hydrogen 

bonding (H-bonding) interactions.43 In the case of 8 these interactions would be expected 

to interfere with the complexation of ammonium ions (since this complexation also 

requires H-bonding).  In a polar environment such as that provided by NPOE, the 
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intramolecular H-bonding will probably be decreased thus allowing for more efficient 

ammonium ion complexation.44,57  Such would not be the case in lower polarity 

environments such as those produced by the presence of DOP. In fact, our NMR dilution 

studies support this suggestion. In this study NMR spectra of 8 were obtained over a 

concentration range of 2 – 20 mM in non-polar (CDCl3) and polar (MeCN-d3) solvents. 

This concentration range brackets the concentration of 8 in the membranes tested. In the 

non-polar environment, spectra of 8 at each concentration exhibited broad and 

structureless NH resonances symptomatic of intramolecular H-bonding, while in the 

polar medium, NH resonances were sharp, suggesting the disruption of H-bonding.   

 

In addition to this apparent polarity effect, it was observed that a 50 mol% loading of the 

ionic additive, KtpClPB (in combination with either the NPOE or DOP), results in 

significant deviations from Nernstian behavior and substantially reduces the selectivity, 

particularly over the divalent cations (See selectivity data in Table 2).   Although it has 

been shown previously that modest numbers of anionic sites within liquid polymeric 

membranes can improve the potentiometric properties of ISE’s, a low molar ratio of 

ionophore to ionic sites can substantially degrade selectivity and decrease the slope.50,57-59 

This behavior is confirmed in the present study. It is likely that the deleterious effect on 

selectivity by the ionic additive, which is present in the membrane in a 1:2 ratio relative 

to 8, is due to non-specific ion exchange, likely through the formation of ion-pairs.60,61   

 

Table 2 shows the results of selectivity studies that were carried out using the separate 

solution method50,51 on four membrane preparations.  
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         Selectivity coefficients, log POT

jNHK +
4

 

Membranea  Li+ Na+ K+ Ca2+ Mg2+  Slopeb 

         

M1  -7.3 -2.1 -0.6 -4.4 -7.1  60.1 

M2  -1.9 -1.5 -1.0 -1.3 -1.5  55.8 

M3  -5.0 -1.9 -0.6 -3.9 -7.3  45.8 

M4  -3.2 -1.5 -0.4 -3.4 -3.9  39.4 

Nonactind  -4.428 -2.425 -0.925 -2.528 -4.228  59.3c 

a M1: 69/30/1 wt% of NPOE/PVC/8, M2: same as M1 with 50 mole % of KtpClPB to 8, 
M3: 69/30/1 wt% of DOP/PVC/8, M4:  same as M3 with 50 mole % KtpClPB to 8.b 
Determined between10-3 M to 10-1 M cation, at 37˚C. c At 25 °C. d Data for nonactin 
taken from references indicated. 

 

Table 2.  Selectivity of 8 versus other Cations 

 

It is clear from this data that the optimum potentiometric characteristics are obtained 

using the NPOE plasticizer in the absence of added ionic sites.  Membranes produced 

with this formulation gave near Nernstian responses, i.e. near 61.5 mV/dec at 37°C, of 

60.1 mV/dec. Taking membrane M1 as the best example, this formulation exhibited 

excellent selectivity for ammonium ion over the divalent cations calcium and magnesium 

as well as lithium, and good selectivity over sodium and potassium (log POT
jNHK +

4
 = -2.1, -

0.6 respectively) that is comparable to nonactin (log POT
jNHK +

4
  -2.4, -0.9 for sodium and 

potassium respectively).25,28  This selectivity dropped considerably for most ions with the 
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addition of ionic additive and is reflected in the non-Nernstian slopes as previously noted. 

Membranes that were formulated using DOP as the plasticizer exhibited substantial sub-

Nernstian behavior, making comparisons of selectivity less meaningful. As indicated 

above this effect is likely induced by the low polarity of the polymeric solvent inducing 

intramolecular hydrogen bonding and thus reducing the ability of the ionophore to 

complex the cations. However, again, potassium selectivity was comparable to that of 

nonactin.   

 

The ionic selectivity pattern for M1, NH4
+ > K+ > Na+ >> Ca++, >> Mg++ ~ Li+, indicates a 

substantial improvement over that of nonactin with respect to the divalent cations as well 

as lithium ion.  The high ammonium/lithium selectivity can be attributed to a size fit 

effect.  As noted, the pocket of 8 is designed to accommodate the larger cations and this, 

coupled to the fact that 8 cannot form wrapping type complexes, precludes the possibility 

of favorable binding to lithium ion whose ionic radius (0.68 Å) is much smaller than that 

of ammonium ion.   

 

High selectivity of 8 for ammonium ion over the divalent cations is likely due to two 

effects, a size fit effect for both calcium and magnesium ions and in the case of calcium 

ion, a low coordination geometry.  The size-fit effect is straightforward since calcium and 

magnesium ions have radii of 0.99 and 0.82 Å respectively, and thus are too small to be 

effectively complexed.   The second effect specific to calcium ion can be attributed to the 

fact that this ion has been shown to favor ligands with six coordinating groups such as 
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ETH 1001.11c  Compound 8 cannot present all six carbonyl groups at one face due to 

dipole-dipole repulsion and therefore would not be able to stabilize the calcium ion.  

 

The data presented shows that new ammonium ionophores based upon cyclodepsipeptide 

motifs are an attractive alternative to others presented in the literature.  While the 

potentiometric data is comparable to nonactin, modifications to the ionophore backbone 

are expected to enhance its selectivity.  In particular, it has been shown that the addition 

of bulky substituents to other ionophores has improved selectivities through steric 

effects.37  This approach also has the added advantage of increasing the lipophilicity of 

the compounds, thereby making them more compatible with non-polar membrane 

environments.  Due to the facile nature of depsipeptide synthesis, the introduction of 

bulky groups such as phenyl or long alkyl chains will allow for additional tuning of the 

ionophore’s potentiometric properties.   
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Summary of Ammonium Ionophore work 

 

We have reported here the modular synthesis of a new ammonium selective ionophore 

based upon a cyclic depsipeptide motif.    Like Lehn and others,18,35-37 this ionophore was 

rationally designed to take advantage of the tetrahedral symmetry of the ammonium 

cation in order to discriminate against cations requiring octahedral binding geometries.  

This is particularly important where a size fit effect can not improve discrimination over 

cations of similar size, notably potassium.   In addition, the structure was designed with 

the view of incorporating a rigid pre-organized backbone which has been shown to 

enhance selectivity by reducing the enthalpic costs of complexation, a prime example of 

which is the pre-organized structure of valinomycin.43  This approach yielded an 

ionophore which, when incorporated into an ISE format, provides selectivity for 

ammonium ion over potassium and sodium that is comparable to nonactin. We believe 

that the flexible modular approach used here will enable us to tune the structure of 

similar molecules so as to achieve higher selectivity and sensitivity characteristics.  
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B: Potassium Fluoroionophore (10) 
 

The use of crown ethers that are covalently-bound to calix[4]arenes to selectively 

complex with specific ions has been studied extensively.14,62-72 Reinhoudt et al. reported 

selective binding of potassium ions (relative to sodium or lithium) with calix[4]arene-

crown-5 structures, noting that the K+/Na+ selectivity was dependent on the 

calix[4]arene-crown conformation (i.e., cone, partial cone or 1,3-alternate).14,62  

 

Since these early reports, studies have expanded to include benzocrown and azacrown 

structures and their selectivity and sensitivity for binding a wide variety of metal cations 

and their practical application as sensors, particularly optical sensors.  For example, 

Dabestani et al.  reported the synthesis and characterization of an calix[4]arene-

benzocrown-6 structure consisting of a 9-cyanoanthryl fluorophore covalently-linked 

through a methylenic bridge to the benzo group.24,63,64  This fluoroionophore acts as an 

“off-on” fluorescence switch that is triggered by ion complexation. In the absence of 

cation, the benzocrown group quenches the cyanoanthryl excited singlet state by 

photoinduced electron transfer (PET), while in the presence of complexed cation, the 

electrostatic field of the ion disrupts this PET process.  This particular system exhibited 

high sensitivity for cesium ions (important in the detection of radioactive contamination) 

and relatively good selectivity for cesium over other alkali metal ions.  Similar structures 

make use of azacrown rings instead of benzocrowns,21a,65-72 presumably because the 

lower oxidation potential of the amine (1.15 V)73 relative to the benzo group (1.45 V)73 

allows greater flexibility in the selection of the fluorophore used in the system, i.e., the 
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amine provides greater driving force for the electron transfer process. Kim et al. have 

synthesized calix[4]arene-azacrown-5 compounds where the nitrogen of the azacrown is 

substituted with benzyl or picolyl groups.69 In the picolyl systems, selectivity for silver 

ions was found to be an order of magnitude higher than for other cations measured.  The 

presence of the pyridinyl ring apparently contributes to the metal ion binding.   

 

More recently, Dabestani and co-workers suggested that a structure consisting of separate 

binding sites for cesium and potassium cations could function as a proton-activated logic 

device.66   This structure consists of a calix[4]arene-benzocrown-6 covalently-linked 

through the benzo group to an anthryl azacrown-6.  The anthryl azacrown structures 

(crown-5, crown-6) have been shown previously to be sensitive to sodium and potassium 

cations among others, although the selectivity for these ions over other alkali metal ions 

is only modest.21a,22  

 

Our focus in this work is the construction of fluoroionophores specific for potassium 

cations that can be incorporated into solid-state optical sensors for clinical diagnostic 

measurements.    It is clear from the previous discussions that pre-organization, size fit 

and a rigid backbone are key elements in the design of selective ionophores and 

fluoroionophores.  In contrast to other molecular architectures, calix[n]crown’s are ideal 

motifs which embody these characteristics and offer the potential for developing novel 

fluoroionophores for potassium.  For example, 18-crown-6 structures possess a pocket 

size that is 1.34-1.43 Å and is appropriate for binding potassium (ionic radius, 1.33 Å).10  

However, due to the high flexibility of the structure the ionophore discriminates against 
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sodium by only about two orders of magnitude (logKK,Na = 1.7).10  There are several 

factors for this low specificity that are induced by the presence of the flexible backbone.  

One such factor is the ability of the crown to form wrapping type complexes around 

smaller cations, such as sodium.  Due to this, there is a small difference in the enthalpy of 

complexation between potassium and sodium (-56.1 and -31.4 kJ/mol respectively) 

which is typically the main driver in the differences in specificity (see Table 1).   In 

contrast to this, calix[4]arene-crown-5 is able to discriminate against sodium with over 

five orders of magnitude specificity.14  This dramatic increase is typically due to a large 

difference in the enthalpy of complexation which is brought on by a rigid and hence pre-

organized state.  With this in mind we have synthesized 10 (and its model compound 9), 

which combines the known optical response of anthryl azacrown-6 to potassium ions 

with expected enhanced selectivity provided by coupling the azacrown to a 1,3-alternate 

calix[4]arene.  Described here are the results of these initial studies, potentially promising 

increased selectivity for potassium over sodium and other alkali metal.  
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Potassium Fluoroionophore Experimental 

Synthesis of 9 (by Kathy Dennen) 

 N-(9-anthrylmethyl)-monoaza-18-crown-6  (9).  The synthesis of 9 was based on a 

modified literature procedure.21a 1-aza-18-crown-6 (0.515g, 1.95 mmol), 9-

chloroanthracene (0.400g, 1.76 mmol), and triethylamine (0.526g, 0.74 mL) were 

refluxed in 1,4-dioxane (200 mL) for 24 hours.  The solvent was evaporated, and the 

product extracted with a 2:3 CH2Cl2/H2O mixture. The organic phase was rinsed three 

times with water and then dried over anhydrous magnesium sulfate.  Further purification 

was done using thin layer chromatography preparatory plates in the dark (17:1 

CH2Cl2/EtOH), to yield N-(9-anthrylmethyl) monoaza-18-crown-6 (0.176g, 0.388 

mmol). The product was then recrystallized with CH2Cl2/ether to yield a yellow solid 

(22%).  1H NMR (400 MHz, CDCl3). δ 2.9 (t, 4H, J = 5.24 Hz), 3.7-3.5 (m, 20H), 4.6 (s, 

2H), 8.6-7.4 (m, 9H).  13C NMR (100 MHz, CDCl3). δ 52.4, 54.3, 70.6, 71.1, 71.2, 71.3 

(CH2), 124.8, 125.2, 125.7, 127.9, 131.8 (Ar). 

 

Synthesis of 10 (by Dr. Hubert Nienaber) 

 

25,27-Bis(1-propyloxy)calix[4]arene. The preparation of dipropyl-calix[4]arene 

followed a literature method.72  In a 250 mL round bottom flask 5.08 g (11.9 mmol) 

calix[4]arene, 4.87 g (28.6 mmol) 1-iodopropane  and 3.95 g (28.6 mmol) K2CO3 were 

suspended in 150 mL dry acetonitrile and heated under reflux for 24 hours.  The solvent 

was removed in vacuo and 50 mL 2N HCl and 50 mL CH2Cl2 were added and the phases 
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were separated. The aqueous phase was extracted two times with 30 mL CH2Cl2, the 

organic phases were combined, dried with Na2SO4 and the solvent removed in vacuo.  

The crude product was recrystallized from methanol/CH2Cl2 (5:1) and gave 4.37 g (72%) 

of 25,27-bis(1-propyloxy)calix[4]arene as white crystals. The 1H NMR spectrum 

corresponds to the published data.62  1H NMR (400 MHz, CDCl3)  δ 1.32 (t, J = 7.3 Hz, 

6H),  2.08 (m, 4H), 3.40 (d, J = 12.9 Hz, 4H), 3.98 (t, J = 6.2 Hz, 4H), 4.35 (d, J = 12.9 

Hz, 4H), 6.65 (t, J = 7.5 Hz, 2H, Ar), 6.74 (t, J = 7.5 Hz, 2H, Ar), 6.92 (d, J = 7.5 Hz, 4H, 

Ar), 7.06 (d, J = 7.5 Hz, 4H, Ar), 8.30 (s, 2H). 

 

2-(2-Chloroethoxy)ethyl-p-toluenesulfonate. Preparation was done according to a 

standard procedure for the preparation of p-toluenesulfonic esters.74  In a round bottom 

flask 9.53 g  (50 mmol) of p-toluenesulfonylchloride were mixed with 7.47 g (60 mmol) 

2-(2-chloroethoxy)ethanol in 50 mL CHCl3.  The mixture was stirred and cooled below 

5°C  and 10.1 g (100 mmol) triethylamine were added drop-wise at this temperature.  

After the addition was completed, the mixture was stirred for another 3h at room 

temperature.  At which point, a mixture of 50 g ice and 20 mL conc. HCl was added 

carefully and stirred for 30 min. The chloroform phase was separated, washed three times 

with 30 mL water, dried with Na2SO4 and the solvent removed in vacuo upon which 12.5 

g (90%) of a yellowish oil was obtained.  The product was used without further 

purification.  1H NMR (400 MHz,CDCl3)  δ 2.45 (s, 3H),  3.55 (t, J = 7.4 Hz, 2H), 3.65 – 

3.77 (m, 4H), 4.17 (t, J = 7.2 Hz, 2H), 7.42 (d, J = 7.5 Hz, 2H, Ar) , 7.84 (d, J = 7.5 Hz, 

2H, Ar),  
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25,27-Bis(1-propyloxy)-26,28-bis(5-chloro-3-oxapentyloxy)calix[4]arene. A solution 

of 2.54 g (5 mmol) 25,27-bis(1-propyloxy)calix[4]arene, 5.57 g (20 mmol) 2-(2-

chloroethoxy)ethyl p-toluenesulfonate and 3.36 g (10 mmol) Cs2CO3 in 150 mL dry 

acetonitrile was heated at reflux under nitrogen for 24 h. The solvent was removed in 

vacuo and 50 mL 2N HCl and 50 mL CH2Cl2 were added and the phases were separated.  

The aqueous phase was extracted two times with 30 mL CH2Cl2, the organic phases were 

combined, dried with Na2SO4 and the solvent removed in vacuo.  The crude product was 

recrystallized twice from methanol/CH2Cl2 (5:1) and gave 3.07 g (85%) of 25,27-bis(1-

propyloxy)-26,28-bis(5-chloro-3-oxapentyloxy)calix[4]arene as white crystals. The 1H 

NMR spectrum corresponds to the published data.68 1H NMR (400 MHz,CDCl3)  δ 0.93 

(t, J = 7.2 Hz, 6H),  1.65 (m, 4H),  3.50 – 3.80 (m, 28H), δ 6.67 - 6.72 (m, 4H, Ar),  6.97 

(d, J = 7.6 Hz, 4H, Ar) and 7.05 (d, J = 7.6 Hz, 4H, Ar). 

 

N-tosyl 25,27-bis(1-propyloxy)calix[4]arene-azacrown-5.  A solution of 1.45g (2 

mmol) 25,27-bis(1-propyloxy)-26,28-bis(5-chloro-3 oxapentyloxy)- calix[4]arene, 0.343 

g (2 mmol) p-toluenesulfonamide and 1.38 g (10 mmol) K2CO3 in 70 mL dry DMF  was 

heated at reflux under nitrogen for 24 h. The solvent was removed in vacuo and 50 mL 

2N HCl and 50 mL CH2Cl2 were added and the phases were separated. The aqueous 

phase was extracted two times with 30 mL CH2Cl2, the organic phases were combined, 

dried with Na2SO4 and the solvent removed in vacuo.  The crude product was purified by 

column chromatography using ethyl acetate:hexane 1:4 (Rf = 0.4) to provide 1.15 g 

(70%) N-tosyl 25, 27-bis(1-propyloxy)calix[4]arene-azacrown-5.  The 1H NMR spectrum 

corresponds to the published data.68  1H NMR (400 MHz, CDCl3)  δ 0.72 (t, J = 7.3 Hz, 
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6H), 1.28 (m, 4H), 2.45 (s, 3H), 3.20 – 3.80 (m, 28H), 6.74 - 6.82 (m, 4H, Ar), 7.01 – 

7.06 (m, 8H, Ar), 7.34 (d, 2H, J = 7.4 Hz, Ar), 7.74 (d, 2H, J = 7.4 Hz, Ar). 

 

25,27-Bis(1-propyloxy)calix[4]arene-azacrown-5.  The reductive detosylation of N-

tosyl 25,27-Bis(1-propyloxy)calix[4]arene-azacrown-5 followed the procedure described 

by Quici et al.73 Under nitrogen, 380 mg (10 mmol) LiAlH4 was added carefully to a 

solution of 410 mg (0.5 mmol) N-tosyl 25,27-bis(1-propyloxy)calix[4]arene-azacrown-5 

in 80 mL dry THF.  The suspension was heated to reflux for 24h and then allowed to cool 

to rt., and the excess LiAlH4 was decomposed with a stoichiometric amount of water. The 

aluminum oxide was removed by filtration and carefully washed with 80 mL THF and 

the solvent evaporated. The crude product was purified on prep. TLC using ethyl 

acetate:hexane 1:1  (Rf = 0.2) to afford 203 mg (61%) 25,27-bis(1-

propyloxy)calix[4]arene azacrown-5 as a pale yellow solid. The 1H NMR spectrum 

corresponds to the published data.68  1H NMR (400 MHz,CDCl3)  δ 0.82 (t, J = 7.3 Hz, 

6H), 1.52 (m, 4H), 2.77 (s, 4H), 3.43 – 3.60 (m, 16H), 3.77 (s, 8H), 6.78 (t, J = 7.5 Hz, 

2H, Ar), 6.83 (t, J = 7.5 Hz, 2H , Ar), 7.03 (d, J = 7.5 Hz, 4H, Ar) and 7.13 (d, J = 7.5 

Hz, 4H, Ar). 

 

N-(9-methyl-anthracene)-25,27-bis(1-propyloxy)calix[4]arene-azacrown-5(10). Note: 

NMR and Mass Spectroscopy data in Appendix A2. A solution of 100 mg (0.15 mmol) 

25,27-bis(1-propyloxy)calix[4]arene-azacrown-5, 35 mg (0.15 mmol) 9-

(chloromethyl)anthracene and 46 mg (0.45 mmol) triethylamine in 50 mL of dry dioxane 

was refluxed for 24h.  The solvent was removed in vacuo and 50 mL 2N HCl and 50 mL 
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CH2Cl2 were added and the phases were separated. The aqueous phase was extracted two 

times with 30 mL CH2Cl2, the organic phases were washed once with 30 mL of 2N 

NaOH, separated, dried with Na2SO4 and the solvent was evaporated in vacuo.  The 

crude product was purified on prep. TLC using CH2Cl2 (Rf = 0.3) to afford 23 mg (18%) 

N-(9-methyl-anthracene)-25,27-bis(1-propyloxy)calix[4]arene-azacrown-5, the title 

compound, as white crystals. mp 188-190; 1H NMR (400 MHz,CDCl3)  δ 0.69 (t, J = 7.4 

Hz, 6H), 1.21 (m, 4H), 2.75 (d, J = 4.5 Hz, 4H), 3.27 (s, 8H), 3.38 (t, J = 7.3 Hz, 4H), 

3.46 (s, 4H), 3.80 (s, 8H), 4.58 (s, 2H), 6.79 (m, 4H, Ar), 7.05 (dd, J = 7.4, 11.2 Hz, 8H, 

Ar), 7.48 (t, J = 7.1 Hz, 2H, Ar), 7.57 (t, J = 7.1 Hz, 2H, Ar), 8.01 (d, J = 8.3 Hz, 2H, 

Ar), 8.43 (s, 1H, Ar), 8.59 (d, J = 8.8 Hz, 2H, Ar).  13C NMR (100 MHz,CDCl3) δ 10.4 

(CH3), 22.8, 38.6, 54.2, 70.2, 71.2, 72.4, (CH2), 122.5, 122.7, 125.2, 125.7, 125.9, 129.4, 

130.1, 130.2, 131.8, 134.2, 134.5, 157.2, 157.5 (Ar).  MS m/z (%) calcd. for C57H62NO6  

(M+H+) 856.4 found 856.4(100). 
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Potassium Fluoroionophore Results and Discussion 

 

Emission spectra of 9 and 10 

 

Figure 19 shows the fluorescence spectra obtained for N-(9-anthrylmethyl)-monoaza-18-

crown-6, 9,  in the absence and presence of added concentrations of potassium acetate in 

dichloromethane.  We consider 9 as a model for 10 since it contains the same 

fluorophore/amine electron transfer system as 10 and the size and electrostatic 

characteristics of the complexation sites are qualitatively similar in both compounds as 

determined by molecular modeling. This model compound was synthesized in order to 

serve as a baseline in the determination of whether the selectivity and sensitivity of the 

azacrown moiety is increased by the incorporation of the calix[4]arene group.   
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Figure 19: Fluorescence emission spectra (λex 355 nm) of 9 (5.5 × 10-6 M) in 
dichloromethane with added BTMAH (9.0 × 10-7 M) as a function of [K+].  a: 0 µM, b: 
1.25 µM, c: 2.5 µM, d: 5 µM, e: 7.5 µM, f: 10 µM, g: 11.3 µM. 
 

      

The fluorescence behavior of 9 clearly demonstrates that the PET “off-on” switching 

mechanism that occurs in response to ion complexation is operative. In the absence of 

ions the anthryl fluorescence is at a minimum and increases linearly with addition of 

potassium acetate up to a concentration marginally higher than the concentration of 9, 

after which it begins to plateau. This indicates that the ion and ionophore are likely 

forming a 1:1 complex in solution as expected given the reported behavior of similar 

azacrowns.21a The results obtained show a ca. 50–fold enhancement of the fluorescence 

intensity upon addition of potassium ions. This is consistent with previously published 
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data21a and certainly indicates sufficient sensitivity and dynamic range for further study 

following incorporation of the calix[4]arene group.  

 

Protonation of the nitrogen atom in the azacrown can potentially block the electron 

transfer process and for this reason, the organic base, benzyltrimethylammonium 

hydroxide (BTMAH), was added to minimize protonation. In fact, the addition of base to 

solutions of 9 in the absence of potassium ions causes a 4-fold decrease in the 

fluorescence intensity, consistent with this protonation effect. Nevertheless, some 

fluorescence is still observed. It is difficult to unambiguously determine the origin of this 

fluorescence, i.e. whether it reflects the intrinsic rate constants for fluorescence and 

electron transfer in this molecule or whether there is a low background concentration of 

potassium, sodium or other cations present as impurities. Indeed, the intensity of the 

fluorescence emission in the presence of base and in the absence of added potassium is 

somewhat variable and it is possible to reduce this intensity by using rigorously cleaned 

glassware during sample preparation, suggesting that at least some of the effect is due to 

impurity ions. 

 

Figure 20 shows the fluorescence spectra obtained for 10 in the absence and presence of 

added potassium acetate in dichloromethane solution.  In order to compare directly the 

behavior of 9 and 10, the spectrum for 10 in the absence of potassium ions was 

normalized to that of 9 to account for differences in sample absorbance at the excitation 

wavelength. As with 9, the fluorescence intensity of 10 in the presence of added base, 
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increases dramatically with addition of potassium ions, although the dynamic range for 

10 is considerably less than for 9, (8.5-fold and 50-fold increases respectively).  
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Figure 20: Fluorescence emission spectra (λex 355 nm) of 10 (1.1 × 10-6 M) in 
dichloromethane with added BTMAH (1.0 × 10-7 M) as a function of [K+].  a: 0 µM, b: .5 
µM, c: 1 µM, d: 1.5 µM, e: 2 µM, f: 2.5 µM, g: 3 µM. 
 

 

The reason for this reduced response is unclear. One potential explanation is that the ion 

occupies a site in 10 relative to the electron lone pair on the azacrown nitrogen atom as 

well as to the anthryl fluorophore that is different than in 9.  For example, if the most 

stable position of the ion in the complex is at a greater distance from the nitrogen lone 

pair in 10, this could lead to a weaker electrostatic interaction and result in less effective 

interference with the electron transfer quenching process. Such an effect could 
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conceivably be caused by an interaction between the ion and the π-systems of the phenyl 

rings of the calixarene group.  The binding of cations through π-interactions has been 

observed for other host-guest molecules as well as the 1,3 alternate calix[4]arene-crown-

5 used in the present study.14,75-77  In fact, electrostatics calculations on the potassium 

ion-10 complex point out significant changes in charge density in the calixarene phenyl 

rings upon complexation.  Figures 21 and 22 present the results of the electrostatic 

calculations where the electron density decreases in the order: red, green, blue.  As 

shown, in the uncomplexed state (Figure 21) there is a high electron density localized 

around the calix[4]arene aromatic moieties as indicated by the substantial red coloration.  

In contrast, Figure 22 shows that complexation causes the electron density in the 

aromatic rings to be reduced significantly, as evidenced by the shift to a substantial blue 

coloration.   Additionally, it was found that when the structure of 9 complexed with 

potassium ion was minimized, a K+…N distance = 3.00 Å was optimal whereas a K+…N 

distance of 3.48 Å was observed for 10. Therefore, a weaker interaction with the amine 

electron donor and consequently a reduction in the fluorescence response would be 

expected for 10 compared to 9. Figure 23 shows the minimized potassium-10 complex 

with the calculated distances of the cation to the oxygen and nitrogen atoms. 
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Figure 21: Electrostatic computational results for 10 in the uncomplexed state. The 
magnitude of electron density decreases in the order: red>green>blue. 1, anthracene 
fluorophore; 2, binding site; 3, calix[4]arene; 4, propyl substituents. 
 

 

 

Figure 22: Electrostatic computational results for 10 in the complexed state. The 
magnitude of electron density decreases in the order: red>green>blue. 
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Figure 23: Minimized structure of 10 in the complexed state with potassium showing the 
distances, in Å, to the heteroatoms. 
 

 

Selectivity 

 

Since it is our eventual intention to use molecules similar to 10 in sensors for the 

detection of potassium ions in blood samples, the selectivity of 10 for potassium over 

other analytes is an important consideration. Given the structural similarities between 10 

and 1,3-alternate calix[4]arenes it is reasonable to expect similar binding properties.14 

Therefore, we expect that metal ion complexation in 10 is governed by electrostatic 

interactions, particularly with the azacrown oxygen atoms, and through cation-π 
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interactions, but selectivity is controlled enthalpically from the pre-organized structure,   

size fit effects and steric effects from the propyl substituents appended to the two rotated 

aryl rings of the calix[4]arene.14  Figure 24 shows the dependence of the emission 

intensity of 10 on cation concentration. (The values in the plot are normalized to the 

fluorescence intensity in the absence of ion.) These results suggest high selectivity of 10 

for potassium ion in comparison with the other alkali metal cations studied, including 

sodium. This is an important property for blood analysis applications since sodium is 

present in relatively high concentrations in whole blood.  
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Figure 24: Emission area of 10 versus the concentration of various alkali metal ions: Li 
(ο), Na (∆), K (♦), Rb ( ), Cs (×). 
 

Selectivity was calculated by a method (illustrated in Figure 25) that is qualitatively 

similar to the fixed interference method (FIM) and separate solution methods (SSM) used 



 81  

in ion selective electrode applications.50  Figure 25 shows a hypothetical plot of 

fluorescence emission intensity as a function of ion concentration for primary and 

‘interfering’ ions.  Selectivity is calculated from Equation 6 and is represented as a 

logarithmic value.  

 









=

][
][loglog , j

iK ji    (6) 

 

Here, [j] is the concentration of the interfering ion in the plateau region of the plot and for 

sensor applications is normally chosen to fall within a physiological concentration range 

for that ion. This is the concentration of interfering ion that provides the maximum 

fluorescence response; [i] is the concentration of the primary ion that produces the same 

fluorescence response as the maximum fluorescence produced by the interfering ion and 

as such represents a minimum unambiguous detection limit for the primary ion.  From 

Figure 24 it is clear that sodium and lithium ions produce virtually no response. These 

results allow only a lower limit of the selectivity to be calculated using Equation 6.  Thus 

log KK,Na ~ log KK,Li ≤-3.5, a value similar to that obtained for valinomycin and 

considerably larger than obtained for 9.   For cesium and rubidium, log KK,Cs = log KK,Rb 

= -1.0, a value that is comparable to that obtained for the related 1,3 alternate 

calix[4]arene-crown-5.14  These results are summarized in Table 3.  For comparison, 

Table 3 also shows selectivity results obtained previously for the related calix[4]arene-

crown-5 and valinomycin.  
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Figure 25: Hypothetical plot of fluorescence emission intensity as a function of ion 
concentrations for primary (i) and interfering  (j) ions. 

 
 

       Selectivity coefficients, log KK,j 
Compound Li+ Na+ Rb+ Cs+ 

9 - -1.3 - - 

10 ≤-3.5 ≤ -3.5 -1.0 -1.0 

Ref 14a -4.84 -5.39 -0.48 -2.25 

Ref 14b -3.52 -3.26 -0.48 -0.38 

a: 1,3 alternate calix[4]arene-crown-5 in CHCl3. b: valinomycin in CHCl3. 
     

Table 3. Selectivity data (log Kij) for 10 and related compounds. 
 

Since the complexes apparently have a 1:1 ion/ionophore stoichiometry as suggested by 

similar calix[4]arene-crowns  and molecular modeling, ion concentrations much higher 
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than the concentration of 10 do not result in further increases in fluorescence 

intensity.14,78-82  The concentration of 10 in turn is limited by the requirement that 

absorbances at the excitation wavelength in our fluorescence experiments must be less 

than 0.04 in order to obtain a linear fluorescence response. Therefore, the concentration 

of 10 used in these measurements is limited and by necessity the ion concentrations are 

well below physiological norms.  However, in the eventual sensor configuration, 

considerably shorter path lengths will make much higher ionophore concentrations 

possible, possibly giving sensitivity in the physiological range.  

 

 Solvent effects 

 

Previous studies of analogous anthryl-calix[4]arene-benzocrowns indicated a 

considerable and complex solvent effect on the intensity of fluorescence in such 

compounds.64  Specifically, addition of methanol to dichloromethane was observed 

initially to cause an increase in the fluorescence presumably due to complexation of the 

methanol with the oxygen atoms of the benzocrown ether, i.e., electron transfer was less 

efficient. With continued addition of methanol, the increase in polarity in turn increased 

the efficiency of electron transfer and led to a decrease in the fluorescence.  Given this 

reported medium effect and its potential importance in the operation of a sensor based on 

this molecular structure, we have investigated the effect of solvent on 10, both in the 

absence and presence of added potassium ions.  In the absence of ions, the addition of 

methanol to the dichloromethane solutions caused an increase in the fluorescence 

intensity at small mole ratios of methanol to dichloromethane (ca. 0.17, 10% v/v, ca. 3M) 
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and then a decrease as the methanol was increased further. This behavior is similar to that 

reported for the benzocrown systems.64   It is likely here that at low methanol 

concentrations, the increase in fluorescence intensity is due to a hydrogen bond 

interaction between methanol and the azacrown nitrogen. However, at higher methanol 

concentrations the drop in fluorescence intensity observed can be ascribed to an increase 

in the efficiency of electron transfer due to an increase in solvent polarity.  This polarity 

effect presumably overshadows the hydrogen bonding effect. Alternatively, hydrogen 

bonding to the azacrown could be reduced due to self-association of the added methanol, 

particularly since the concentration of methanol is quite high, ca. 3M.  

 

In the presence of added potassium ions, an additional effect of solvent is observed.  

Figure 26 shows the delta response of 10 as a function of the mole fraction of 

dichloromethane in methanol. The delta response is determined from the slope of the 

fluorescence intensity versus ion concentration curve at a specific solvent composition.  

It is clear that as the mole fraction of methanol decreases, the delta response increases 

dramatically.  We ascribe this behavior to a solvation effect in that, as the solvent polarity 

decreases with increased dichloromethane concentration, the potassium ions seek out a 

more energetically favorable solvation environment, namely the complexation site in 10.  

Solvation effects on complexation such as observed here have been noted in other 

calix[4]arene systems.82  This response to solvation is expected to have an important 

impact on the composition of the membrane that is eventually chosen to host 10 in sensor 

applications.   
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Figure 26: Delta fluorescence response to K+ of 10 as a function of the mole fraction of 
dichloromethane in methanol. 
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Summary of Potassium Fluoroionophore work 

 

The, N-(9-methyl-anthracene)-25,27-bis(1-propyloxy)calix[4]arene-azacrown-5 (10), 

complexes with potassium ions in organic solution triggering a substantial increase in 

anthryl fluorescence emission through the disruption of the PET quenching process. 

Preliminary measurements indicate that the selectivity for potassium ions over other 

alkali metal cations,  particularly sodium and lithium, for 10 is increased dramatically 

over that of the anthryl azacrown model compound, 9.  This large increase in the 

selectivity for potassium over sodium and lithium can be attributed to the rigid and pre-

organized structure of 10 such that the motif can not wrap around these smaller cations 

without a large thermodynamic cost to complexation.  This again is in contrast to the 

flexible architecture of 9 where a small difference in enthalpies exists for the respective 

potassium and sodium complexes.  In addition, these preliminary solution phase studies 

indicate a 1:1 complexation between 10 and the ion, suggesting that 10 could be sensitive 

to potassium in the normal physiological concentration range once incorporated into a 

sensor. Furthermore, the observed fluorescence response to changes in solvent polarity 

suggests that the sensor substrate composition will have an important impact on the 

efficiency of 10 as an ionophore and could allow further optimization of sensitivity and 

selectivity. 
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C: Lithium Fluoroionophore (11) 
 

 

We have shown through our previous work, as well as that of others, that the 

calix[4]arene-crown architecture provides an ideal framework for the development of 

highly selective hosts.14,24,62-72  For example, the calix[4]arene-crown-5 structures (see for 

example Figure 3, right) are able to achieve higher selectivities than that of valinomycin, 

the natural antibiotic that is used extensively as a highly selective potassium 

ionophore.14,62   

 

As we have noted, in the calix[4]arene-crown structures the ion binding event occurs in a 

relatively rigid, pre-organized pocket with electrostatic stabilization provided by the 

oxygen groups in the crown as well as by cation-π interactions between the ion and the 

phenolic aromatic rings of the calixarene. The rigidity of the binding pocket combined 

with the possibility of varying the size of the pocket by changing the size of the crown 

through straightforward synthetic methods suggested to us the possibility of developing a 

systematic series of highly selective alkali metal ionophores and fluoroionophores that 

are based on a simple size-fit criterion.  To this end, we synthesized and tested 10, which 

showed, as described above, excellent selectivity for potassium.  These results led us to 

our conception of a lithium fluoroionophore (11) based on a similar structure.  

 

High selectivity in ionophores and fluoroionophores is particularly important for the 

accurate detection of lithium ions in physiological media since ions that may interfere 
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with lithium ion complexation, including sodium ion, are present at significantly higher 

concentrations. It is generally accepted that for an ionophore to accurately measure 

lithium ion concentration, it must have a selectivity ratio of lithium over sodium that is 

greater than 104.83  Earlier studies of lithium ionophores involved a variety of crown 

ethers, including dibenzo-14-crown-4.84  When incorporated into an ion selective 

electrode (ISE) this system was found to be ~10 times more selective for lithium than 

sodium ions.  In another study, a ten-fold improvement in lithium/sodium selectivity was 

attained by the incorporation of bulky substituents on a series of lipophilic derivatives of 

13- through 16-crown-4 ethers.85  It was suggested that these substituents sterically hinder 

the complexation of larger cations while at the same time reducing the tendency of crown 

ethers to form 2:1 sandwich-type complexes with larger cations.  A similar improvement, 

logKLi,Na = -2.15, was observed with the covalent linkage of benzyloxymethyl groups to 

13- and 14-crown-4 rings.86  More recently, a marked enhancement in lithium/sodium 

selectivity was achieved with the addition of a decalino subunit to a 14-crown-4, logKLi,Na 

= -3.0.87  A similar system exhibited an estimated selectivity logKLi,Na < -4 when 

incorporated into an optode.88  However, when employed in an ISE, the same ionophore 

attained a significantly lower selectivity, logKLi,Na = -2.5.87 

 

 Here we describe the synthesis and testing of N-(9-methyl-anthracene)-25,27-bis(1-

propyloxy)-4-p-tert-butylcalix[4]arene-azacrown-3  (11). Compound 11 consists of a p-

tert-butylcalix[4]arene group combined with an azacrown-3 moiety to create a 

considerably smaller binding pocket than in 10, the potassium-selective fluoroionophore 

we discussed earlier. Our results show that 11 is highly selective for lithium ions over 
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sodium and potassium ions.  Described here are the synthetic details, fluorescence results 

and the results of selectivity studies.   
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Lithium Fluoroionophore Experimental  

(Synthesis by Dr. Hubert Neinaber) 

Note: All NMR and Mass Spectroscopy data in Appendix A3. 

 

Dipropyl-4-p-tert-butylcalix[4]arene: CAS [137693-26-6] 

In a 500 mL round bottom flask 6.489g 4-p-tert-butylcalix[4]arene (10 mmol), 4.10g 1-

iodopropane (24.1 mmol) and 4.14g (30 mmol) K2CO3 were suspended in 300mL dry 

acetonitrile and boiled under reflux for 24 hours.  The solvent was removed in vacuo and 

50 mL 2N HCl and 50 mL CH2Cl2 were added and the phases were separated. The 

aqueous phase was extracted two times with 30mL CH2Cl2, the organic phases were 

combined, dried with Na2SO4 and the solvent removed in vacuo.  The crude product was 

recrystallized from methanol/CH2Cl2 (5:1) and gave 5.57 g (76%) of dipropyl-4-p-tert-

butylcalix[4]arene as white crystals.  1H NMR (400 MHz, CDCl3); δ 1.03 (s, 18 H,), δ 

1.26 (s, 24 H), 2.03 (m, 4H), 3.31 (d, 4H, J = 12.9 Hz), 3.95 (t, 4H, J = 6.4 Hz), 4.30 (d, 

4H, J = 12.8 Hz), 6.88 (s, 4H, Ar), 6.93 (s, 4H, Ar), 8.00 (s, 2H).  13C NMR (100 MHz, 

CDCl3) ; δ 11.3 (CH3), 23.9 (CH2), 31.5, 32.1 (CH3), 32.3, 34.2, 34.4 (CH2), 78.5 (C), 

125.5, 125.9, 128.1, 133.3, 141.6, 147.1, 150.4, 151.3 (Ar). 

 

25,27-Bis(1-propyloxy)-26,28-bis(2-chloroethoxy)-4-p-tert-butylcalix[4]arene 

To a solution of 7.329g (10 mmol) dipropyl-4-p-tert-butylcalix[4]arene in 300 mL dry 

acetonitrile,  9.39g (40 mmol) 2-chloroethyl-p-toluenesulfonate and 9.77g (30mmol) 

Cs2CO3 were added and the mixture was refluxed under nitrogen for 24 h. The solvent 



 91  

was removed in vacuo and 50 mL 2N HCl and 50 mL CH2Cl2 were added and the phases 

were separated. The aqueous phase was extracted two times with 30mL CH2Cl2, the 

organic phases were combined, dried with Na2SO4 and the solvent removed in vacuo.  

The crude product was recrystallized from methanol/CH2Cl2 (3:1) and gave 4.89g (57%) 

of 25,27-bis(1-propyloxy)-26,28-bis(2-chloroethoxy)-4-p-tert-butylcalix[4]arene as white 

crystals. 1H NMR (400 MHz, CDCl3); δ 0.55 (t, 6H, J = 7.5 Hz), 0.93 (m, 4H), 1.26 (s, 18 

H), 1.31 (s, 18 H),  2.60 (m, 4H), 3.30 (t, 4H, J = 7.5 Hz),  3.52 (m, 4H), 3.83 (m, 8H), 

6.95 (s, 4H),  6.97 (s, 4H).  13C NMR (100 MHz, CDCl3); δ 10.1 (CH3), 22.4 (CH2), 31.5, 

31.7 (CH3), 34.9, 34.0, 39.1, 40.1, 68.8, 71.3 (CH2), 125.2, 125.6, 132.7, 133.0, 144.5, 

144.6, 153.3, 155.0 (Ar). ESI MS m/z (%) calcd. for  C54H75Cl2O4 [M+H+] 857.48 found 

857.40(100), calcd. for [M+Na+] 879.48 found 879.43(95), calcd. for [M+K+] 895.45 

found 895.29(43). 

 

 

N-Tosyl-25,27-bis(1-propyloxy)-4-p-tert-butylcalix[4]arene-azacrown-3 

A solution of 2.58g (3 mmol) 25,27-bis(1-propyloxy)-26,28-bis(2-chloroethoxy)-4-p-

tert-butylcalix[4]arene, 0.513g (3mmol) p-toluenesulfonamide, 4.89g (15mmol) Cs2CO3 

and 0.17g  (1mmol) KI in 150mL dry DMF was heated at reflux under nitrogen for 24 h. 

The solvent was removed in vacuo and 50 mL 2N HCl and 50 mL CH2Cl2 were added 

and the  phases were separated. The aqueous phase was extracted two times with 30mL 

CH2Cl2, the organic phases were combined, dried with Na2SO4 and the solvent removed 

in vacuo. The crude compound was recrystallized from methanol/CH2Cl2 (4:1) and gave 

1.45g (51%) of N-tosyl-25,27-bis(1-propyloxy)-4-p-tert-butylcalix[4]arene-azacrown-3 
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as white crystals. 1H NMR (400 MHz, CDCl3); δ 0.56 (t, 6H, J = 7.5 Hz), 0.68 (m, 4H), 

1.11 (s, 18 H),  1.26 (s, 18 H), 2.20 (m, 4H), 2.39 (s, 3H), 3.14 (m, 4H), 3.36 (m, 4H), 

3.94 (m, 8H),  7.04 (s, 8H), 7.19 (d, 2H, J = 8.0 Hz), 7.48 (d, 2H, J = 8.2),  13C NMR (100 

MHz, CDCl3);  δ 10.1 (CH3), 21.9 (CH2), 31.7, 31.9 (CH3),  34.2, 40.1 (CH2), 50.7 (CH3), 

72.5, 74.2 (CH2), 126.5, 126.8, 127.2, 130.0, 132.5, 134.2, 137.0, 143.0, 144.0, 145.7, 

155.0, 155.6 (Ar). ESI MS m/z (%) calcd. for  C61H81NO6SNa [M+Na+] 978.57 found 

978.73(94). 

 

25,27-Bis(1-propyloxy)-4-p-tert-butylcalix[4]arene-azacrown-3 

To a solution of 1.2g (1.25 mmol) N-tosyl-25,27-bis(1-propyloxy)-4-tert-

butylcalix[4]arene-azacrown-3 in 80 mL dry THF was carefully added 1g of potassium 

metal under nitrogen. The mixture was heated to reflux for 24 h, at which temperature the 

potassium was molten, and then allowed to cool to rt. The main excess of potassium was 

removed and the rest was carefully hydrolyzed with water. The solvent was removed in 

vacuo and 50 mL 1N KOH and 50 mL CH2Cl2 were added and the phases were separated. 

The aqueous phase was extracted two times with 30mL CH2Cl2, the organic phases were 

combined, dried with Na2SO4 and the solvent removed in vacuo. The crude compound 

was recrystallized from methanol/CH2Cl2 (4:1) and gave 0.82g (82%) of 25,27-bis(1-

propyloxy)-4-p-tert-butylcalix[4]arene-azacrown-3 as white crystals.  1H NMR (400 

MHz, CDCl3); δ 0.55 (t, 6H, J = 7.5 Hz), 0.81 (m, 4H), 1.23 (s, 18 H),  1.27 (s, 18 H), 

1.89 (m, 4H), 3.10 (m, 4H), 3.26 (m, 4H),  3.95 (m, 8H), 5.30 (s, 1H), 6.95 (s, 4H), 6.99 

(s, 4H).  13C NMR (100 MHz, CDCl3); δ 10.0 (CH3), 22.0 (CH2), 31.5, 31.6 (CH3), 33.9, 
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34.0, 39.8, 47.8, 68.1, 72.7 (CH2), 125.9, 126.0, 132.4, 133.1, 143.9, 144.9, 154.0, 155.7 

(Ar). ESI MS m/z (%) calcd. for C54H76NO4 [M+H+] 802.56 found 802.52(100). 

 

N-(9-methylanthracene)-25,27-bis(1-propyloxy)-4-p-tert-butylcalix[4]arene-

azacrown-3 (11) 

A mixture of 200 mg (0.25 mmol) 25,27-bis(1-propyloxy)-4-p-tert-butylcalix[4]arene-

azacrown-3, 85 mg (0.37 mmol) 9-(chloromethyl)anthracene, 75 mg (0.75 mmol) 

triethylamine and 17 mg (0.1 mmol) KI in 80 mL of dry dioxane was refluxed for 48h 

under nitrogen and protected from light. The solvent was removed in vacuo and 50 mL 

2N KOH and 50 mL CH2Cl2 were added and the phases were separated. The aqueous 

phase was extracted two times with 30mL CH2Cl2, the organic phases were combined, 

dried with Na2SO4 and the solvent removed in vacuo. The crude product (80 mg) of was 

purified on prep. TLC using CH2Cl2/Et3N (50:1) (Rf = 0.25). This fraction was almost 

pure and yielded after recrystallization from methanol/CH2Cl2 (4:1) 26 mg (31%) of the 

pure N-(9-methylanthracene)-25,27-bis(1-propyloxy)-4-p-tert-butylcalix[4]arene-

azacrown-3 as slightly yellow crystals.1H NMR (400 MHz, CDCl3) ; δ 0.55 (t, 6H, J = 

7.4), 0.70 (m, 4H), 1.10 (s, 18H), 1.27 (s, 18H), 1.70 (m, 4H), 3.15 (m, 4H), 3.52 (m, 

4H), 4.01 (m, 8H), 4.06 (s, 2H), 7.00 (s, 4H), 7.05 (s, 4H), 7.40 (m, 4H), 7.92 (m, 2H), 

8.20 (m, 2H), 8.31 (s, 1H).  13C NMR (100 MHz, CDCl3); δ 10.2 (CH3), 21.9 (CH2), 31.8, 

31.9 (CH3), 34.2, 34.3, 40.2, 49.7, 51.4, 70.2, 74.5 (CH2), 125.1, 125.6, 125.7, 126.6, 

126.8, 127.3, 129.1, 131.5, 131.7, 131.8, 132.2, 134.3 143.6, 145.3, 155.5, 155.9 (Ar). 

ESI MS m/z (%) calcd. for  C69H86NO4 [M+H+] 992.63 found 992.69(82). 
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Fluorescence Measurements 

 

Fluorescence emission and excitation spectra were obtained with a Perkin Elmer LS-50B 

Fluorimeter in 75:25 dichloromethane:THF. 6µM Benzyltrimethylammonium hydroxide 

was added as a proton scavenger. Fluorescence was measured as a function of metal ion 

concentrations where the metal ions were added as the hexafluorophosphate salts.  

Fluorescence areas were determined by integrating the spectrum over a fixed wavelength 

range. 
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Lithium Fluoroionophore Results and Discussion 

 
Solvent effects 

 
Previous studies of anthryl-benzocrown ether calixarenes indicated a considerable and 

complex solvent effect on the intensity of fluorescence24 and a similar effect was 

observed in our study of the N-(9-methylanthracene)-25,27-bis(1-

propyloxy)calix[4]arene-azacrown-5  (10) (see Figure 26).  In both systems, in the 

absence of ions, the addition of methanol to dichloromethane solutions of the 

fluoroionophore caused an increase in the fluorescence intensity at small mole ratios of 

methanol to dichloromethane (ca. 0.17, 10% v/v) and then a decrease as the methanol 

concentration was increased further.  It is likely that at low methanol concentrations, a 

hydrogen bonding interaction occurs between methanol and the azacrown nitrogen atom, 

disrupting the electron transfer quenching process and leading to the increase in 

fluorescence emission intensity observed. Conversely, the polar environment provided by 

higher methanol concentrations can increase the efficiency of electron transfer and cause 

a decrease in emission intensity. Furthermore, it can be reasonably expected that the 

polarity effect will dominate at high methanol concentration while a specific solute-

solvent interaction will be more important at low methanol concentration.  
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Figure 27: Normalized emission area of 11 (λex 355 nm,1 × 10-6 M) as a function of the 
mole ratio of MeOH in dichloromethane. 
 

 

The effect of methanol on the emission of 11 is different. Figure 27 shows the 

fluorescence emission of 11 as a function of the mole fraction of methanol in 

dichloromethane solution.  With only small additions of methanol there is a dramatic 

decrease in the fluorescence quantum yield, i.e. there is no intensity increase at low 

methanol concentration.  The fluorescence is completely quenched by the addition of 

methanol at a mole fraction of 0.15.  This effect can be attributed to a more pronounced 

stabilization of charge separation in 11 than in other anthryl-benzocrown- and anthryl-

azacrown-calixarenes. This is supported by the results of previously reported solution 

thermodynamics studies of calix[4]arene crown-3 systems.82,89  In these studies, it was 
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observed that molecules with the crown-3 structure can complex small neutral molecules, 

such as nitromethane and malonitrile (and likely methanol) with relatively high stability 

constants (logKs = 1-2 in CDCl3).  1H NMR data from this work show that an interaction 

occurs between the guest molecule and the π-systems of the calix[4]arene aromatic 

rings.89  At the same time it was suggested that larger systems (e.g., crown-5) have 

weaker binding with neutral molecules due to the higher flexibility of the crown.  This, in 

combination with the previously reported NMR data, suggests that 11 is likely to be more 

highly solvated in methanol than the larger crown-5 structures. Since higher solvation by 

methanol can be expected to enhance the electron transfer efficiency, the observed 

quenching effect of methanol on the emission intensity is understandable.  

 

This solvent effect causes a practical problem in experiments on ion complexation since 

it masks the effect of ion binding on the emission intensity. As a result, all subsequent 

experiments on ion complexation were carried out in 75:25 (v/v) dichloromethane/THF 

using the hexafluorophosphate salts of the alkali metals, which are reasonably soluble in 

this solvent system.  

 

 Fluorescence Emission of 11 

 

Figure 28 shows the fluorescence spectra obtained for 11 in the absence and presence of 

added concentrations of lithium hexafluorophosphate in 75:25 dichloromethane/THF.  

The fluorescence behavior of 11 clearly demonstrates that the PET “off-on” switching 

mechanism occurs in response to ion complexation. In the absence of ions the anthryl 
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fluorescence is at a minimum and increases with addition of lithium hexafluorophosphate 

yielding a maximum 106-fold enhancement.  
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Figure 28: Fluorescence emission spectra (λex 355 nm)  of 11 (2 × 10-6 M) in 75:25 
dichloromethane/THF with added BTMAH (6.0 × 10-6 M) as a function of [Li+]. a: 0 µM, 
b: 2 µM, c: 3 µM, d: 4 µM, e: 4.5 µM, f: 5.5 µM, g: 6.5 µM, h: 8 µM, i: 15 µM. 
   
 

 

Other PET based systems exhibit dramatic increases in fluorescence intensity but few 

have shown enhancements of this magnitude.  The size of the fluorescence enhancement 

is directly related to the magnitude of the charge density of the bound ion that is 

experienced by the lone pair of the azacrown nitrogen atom, i.e., the electrons involved in 

the PET process. This is best illustrated by a comparison of the results for 11 with those 
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for 9 and 10, both of which are fluoroionophores that signal the binding of potassium 

ions by the PET process (as we previously discussed above).  
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For 9 and 10, the fluorescence enhancements observed were 50-fold and 8-fold, 

respectively. Modeling studies of 9 indicate that the most stable ion-fluoroionophore 

complex possesses a K+…N distance = 3.0 Å while for 10 this distance is 3.5 Å. This 

difference could be expected to result in significantly smaller charge density at the 

azacrown nitrogen lone pair in complexes of 10 than in complexes of 9, producing 

fluorescence enhancements consistent with those observed. The increased distance of the 

cation from the amine in 10 can be attributed to interactions between the cation and the 
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calixarene π-systems in 10, an effect that has been observed for other host-guest 

molecules.75-77  Modeling of 9, however yields a minimized structure with a Li+…N 

distance = 3.8 Å, considerably greater than either 9 or 10 and if taken on its own, counter 

to the observed fluorescence behavior. However, the lithium ion possesses a much larger 

intrinsic charge density, 1.47 versus 0.74 qÅ-1 for lithium and potassium ions, 

respectively, and this difference is sufficient to explain the observed enhancement.  

 

 

Selectivity 

 

While the strength of the metal ion-fluoroionophore complex in 11 is governed by 

electrostatic interactions, particularly with the azacrown oxygen atoms, and through 

cation-π interactions, selectivity is controlled primarily by a size fit effect and steric 

effects from the t-butyl substituents appended to the two rotated aryl rings of the 

calix[4]arene.14  Compound 11 was designed with the goal of excluding on a size-fit basis 

all ions larger than lithium (ionic radius = 0.68 Å).  The structure of 11 was based in part 

on 14-crown-4 derivatives which are an appropriate size match for lithium. This crown 

was incorporated into 11 as an azacrown-3. In addition to providing an appropriately 

sized pocket, we expected that the bulky nature of the calix[4]arene structure would 

reduce the possibility of 2:1 sandwich-type complexes forming with larger cations.  As 

part of our design process, molecular dynamics calculations were performed to determine 

the suitability of 11 for selectively binding lithium ion. Figure 29 shows the results of 

molecular dynamics calculations for 11 in the complexed state with lithium ion (left) and 
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sodium ion (right) (ionic radius = 0.95 Å).  The minimized structure shows the lithium 

cation centered within the cavity with Li+…O distances of 1.90, 2.02, 1.94, 1.95 Å.  This is 

in contrast to sodium, which is positioned asymmetrically in the binding site (Na+…O 

distances of 2.85, 2.44, 2.12, 2.13 Å) and is a considerably greater distance from the 

azacrown nitrogen atom. (Na+…N distance = 4.84 Å versus Li+…N distance = 3.80 Å).  

The calculations also indicate that the sodium complex is ca. 25 Kcal/mol less 

thermodynamically stable than the lithium complex. As expected, calculations for 

potassium ion (ionic radius = 1.33 Å) complexes with 11 (not shown) yielded structures 

in which the cation was pushed out of the binding pocket entirely (K+…N distance of 5.98 

Å).  Although these calculations are qualitative, they suggested that 11 should have a 

high degree of discrimination over sodium and potassium cations. 

 

Figure 29: Minimized structures of 11 with Li+ (left) and Na+ (right). 
 Figure 30 shows the dependence of the emission intensity of 11 on cation concentration 

for lithium, sodium and potassium. (The values in the plot are normalized to the 
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fluorescence intensity in the absence of ion.) These results suggest high selectivity of 11 

to lithium in comparison with the other alkali metal cations studied. 
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Figure 30: Emission area of 11 versus the concentration of various alkali metal ions: Li 
(♦), Na ( ), K(▲). 
 

 

From Figure 30 it is clear that for potassium and sodium ions, the integrated fluorescence 

intensity as a function of added ion initially increases until it reaches a plateau, beyond 

which it is constant up to the maximum concentration tested.  In the case of lithium ions, 

the fluorescence intensity increases, plateaus at ca. 10 µM and then begins to decrease 

beyond 50 µM.  This fluorescence quenching behavior is similar to other PET based 

systems and has been attributed to a “medium effect” due to the increase of ionic 
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strength.22,24,63-66  It is also clear that the enhancement in fluorescence emission in the 

presence of lithium ions is significantly larger than for sodium or potassium.  The 

selectivity was calculated from equation 8, where i = primary ion, j = interfering ion (as 

above, see equation 6).  

 









=

][
][loglog , j

iK ji    (8) 

 

 

Here, [j] is the highest tested concentration of the interfering ion in the plateau region of 

the plot, 20 mM and .5 mM for sodium and potassium ions, respectively.  The primary 

ion concentration, [i], is the concentration that produces the same fluorescence response 

as the maximum fluorescence produced by the interfering ion and as such represents a 

minimum unambiguous detection limit for the primary ion, (3.2 µM lithium and 2.8 µM 

lithium for sodium and potassium, respectively).  In the case of sodium, the calculation 

yields a selectivity value for lithium versus sodium, log KLi,Na = -3.8. However, this 

concentration represents the solubility limit of the sodium salt used and therefore, this 

selectivity should be regarded as a lower limit only.  Similar results were obtained for 

lithium versus potassium, log KLi,K = -2.3.  We note that again this is a lower limit. The 

value quoted is less than that for lithium/sodium selectivity because the potassium salt 

used was less soluble and we were limited to a maximum concentration of 0.5 mM. 

However, as with sodium the actual selectivity is likely much higher. In fact, given that 

the ionic radius of potassium is larger than that of sodium, and that from the molecular 
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dynamics calculations the potassium complex is less stable than that of sodium, the 

lithium/potassium selectivity is expected to be at least two orders of magnitude greater 

than the lower limit quoted. 
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Summary of Lithium Fluoroionophore Work  

 

The N-(9-methylanthracene)-25,27-bis(1-propyloxy)-4-p-tert-butylcalix[4]arene-

azacrown-3 (11) acts as a fluoroionophore in the presence of the alkali metal ions 

(lithium, sodium, potassium). In the absence of ion, fluorescence of the anthryl group is 

substantially quenched by intramolecular electron transfer (PET) from the nitrogen atom 

in the azacrown moiety. In the presence of complexed ion, the electric field of the ion 

disrupts the PET process, thereby switching on the anthryl fluorescence emission. For 

lithium, the enhancement in fluorescence is dramatic (>106-fold).  

 

Molecular dynamics calculations predicted high selectivity of 11 for lithium ion over 

sodium and potassium ions on the basis of a size-fit effect. This is confirmed by smaller 

fluorescence enhancements for the latter two ions. Selectivity was calculated based on 

the observed fluorescence behavior, yielding logKLi,Na = -3.8. and log KLi,K = -2.3.  These 

values are regarded as lower limits due to limited solubilities of the sodium and 

potassium salts used in the experiments. Nevertheless, the observed selectivities indicate 

that 11 is one of the most selective lithium ligands reported. 
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D: Sodium Fluoroionophore (12) and 
Optode Fabrication 

 

In the preceding work with our potassium fluoroionophore 10 and our lithium 

fluoroionophore 11, we reported on the photoinduced electron transfer (PET) mechanism 

by which these molecules operate and on the solution phase complexation of cations.  It 

was shown that complexation of potassium and lithium ions in an organic solution 

triggered a substantial increase in anthryl fluorescence emission through the disruption of 

the PET quenching process for 10 and 11, respectively.  It was also shown that the 

molecules possess high selectivity for their primary ions over that of interfering ions, 

(e.g. logKK,Na ≤ -3.5, logKLi,Na = -3.8 for 10 and 11, respectively)   

 

In solution, we were limited to testing at fluoroionophore concentrations that do not 

absorb beyond .04 in a 1 cm cell, i.e. < 10 µM.  Since complexation follows a 1:1 

stoichiometry, only micromolar cation concentrations could be tested.  This value is far 

below the physiological concentration range of important cations, i.e. mM range.  

However, the ultimate intended use of fluoroionophores is in the construction of optically 

based sensors where the fluoroionophore will be contained within a thin polymeric film.  

Since these films will have a thickness on the order of microns, larger fluoroionophore 

concentrations will be possible, potentially promising sensitivity with the physiological 

range.  A logical extension of the work described up to this point then, is the 

incorporation of a fluoroionophore into an optically based format that is suitable for the 

eventual application of a sensor in the clinical diagnosis of disease. 
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The development of optical sensors, optodes, based on polymeric membranes has been 

extensively studied.11c,50  For example, tetraethylester-p-tert-butyl-calix[4]arene (Figure 

31) as well as the tetramethylester-p-tert-butyl-calix[4]arene (Figure 5, right) have been 

incorporated as one of several components into an organic polymer membrane consisting 

of PVC, various plasticizers, a pH sensitive fluorophore and in some cases a lipophilic 

salt (e.g., KtpClPB).90,91 The operation of such an optode usually involves the partitioning 

of the ion from the aqueous phase into the membrane organic phase followed by binding 

of the ion to the calix[4]arene and then a release of a proton from the fluorophore, which 

in the process alters the fluorescence intensity. This process is depicted in Figure 32 

where aq and org denote the aqueous and organic phases respectively, I is the ion, L is 

the ligand or ionophore, IL+ is the ion-ionophore complex, C- is the anionic fluorophore, 

CH is the neutral fluorophore. The signaling mechanism has been referred to as cation 

exchange and operates as follows: the cation, I+, enters the membrane organic phase and 

is bound by the ionophore, Lorg, creating a positive charge site, IL+
org; a proton is then 

released from the fluorophore, CHorg, creating a negative charge site C-
org , thereby 

maintaining electrical neutrality within the membrane organic phase.  The charged and 

uncharged versions of the fluorophore have different spectroscopic properties enabling 

the optical detection of ion binding.   
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Figure 31: Tetraethylester-p-tert-butyl-calix[4]arene 
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Figure 32: Cation exchange process of bulk optodes 
 

Despite exhibiting high selectivity, these multi-component systems are complex and 

difficult to optimize.  In addition to these drawbacks, since the signaling mechanism is 

pH dependent, samples that are exposed to the optode must be buffered in order to 

reliably measure the cation concentration independent from pH changes.  This 

significantly limits the utility and applicability of such optodes.  
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These multi-component devices have been simplified by eliminating the two-component 

ionophore/fluorophore couple and replacing it with the single fluoroionophore concept as 

discussed above. For example, Waldner et al. synthesized a sodium selective 

fluoroionophore consisting of acridine and the 26,27,28-tri-tert-butylester-p-tert-butyl-

calix[4]arene structure (Figure 33).92  This new fluoroionophore was doped into a 

commercial acrylate polymer (poly(hydroxybutyl acrylate)) and exhibited an increase in 

fluorescence intensity of 3 fold over a sodium concentration range of 0 to 2 M range.  

Despite the fact that no selectivity data was given and the fluorophore of choice is known 

to be pH sensitive, thus limiting its use as a sensor in important applications such as 

clinical diagnosis, the system employed a one component polymer matrix thereby 

promising simplified sensor construction.  
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Figure 33: Acridine-tri-tert-butylester-p-tert-butyl-calix[4]arene fluoroionophore 
 

Here we describe the development of a simple one-component sodium bulk optode using 

fluoroionophore 12 which is based upon a tetraethylester-p-tert-butyl-calix[4]arene 

covalently linked through an amide bond to a rhodamine-B fluorophore.  As mentioned 
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above, the calix[4]arene structure is an established sodium ion selective ionophore with 

good selectivity over potassium ion in the physiological range and therefore makes this 

an appropriate candidate for the ionophoric moiety.   
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Our choice of rhodamine-B as the fluorophore was based on several considerations.  

First, in order to make operative the “off-on” PET process in the fluoroionophore, it is 

necessary to incorporate both the fluorophore and an electron donating group into the 

molecule.  Furthermore, the free energy of the PET process must be negative following 

photoexcitation of the fluorophore.  The free energy requirement is satisfied by linking 

the rhodamine to the calix[4]arene by an amide bond.  The redox potentials of the 

rhodamine and amide and the excited state energy of the rhodamine combine to make 

PET a thermodynamically accessible process.  Another consideration in our choice of 
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rhodamine is its insensitivity to pH in the human physiological range.93  This obviates the 

need for a complex multicomponent optode.  Finally, the rhodamine excited state is 

accessible to visible light, making the use of inexpensive light sources and detectors 

possible.  The result as described below is an optode with a wide dynamic response range 

and sodium/potassium ion selectivity suitable for clinical measurements.   
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Sodium Fluoroionophore Experimental 

 
Synthesis of 12 (by Dr. Hubert Neinaber) 
  

4-p-tert-Butylcalix[4]arene-tetraaceticacid tetraethyl ester and 4-p-tert-

butylcalix[4]arene-tetraaceticacid triethyl ester were prepared as previously described.94,95  

Rhodamine B amine was purchased from Sigma and purified by dissolving 500 mg in 

200 mL dichloromethane and extracting the solution three times with 100 mL 2N HCl. 

The aqueous phases were brought to pH 12 with 20% KOH and extracted three times 

with 100 mL dichloromethane.  The organic phase was dried over MgSO4 and the solvent 

removed in vacuo. 

 

In a nitrogen atmosphere 650 mg (0.67 mmol) 4-p-tert-butylcalix[4]arene-tetraaceticacid 

triethyl ester was dissolved in 5 mL SOCl2 and refluxed for 15 min.  After this the excess 

SOCl2 was evaporated, the residue was dissolved in 3 mL dry CH2Cl2 and the solution 

again evaporated to remove all SOCl2.  The white crystalline residue (acid chloride) was 

dissolved in 50mL dry CH2Cl2 and at 0°C a mixture of 310 mg (0.68 mmol) Rhodamine 

B amine and 202 mg (2 mmol) triethylamine in 5 mL dry CH2Cl2 were added during a 

period of 10 min.  The mixture was stirred for another 16 h at room temperature, diluted 

with 200 mL CH2Cl2 and washed three times with 100 mL 2N HCl.  The organic phase 

was dried over MgSO4, evaporated, and the resulting residue was purified by column 

chromatography on silica with dichloromethane/methanol-mixtures of increasing polarity 

(dichloromethane/methanol gradient: 10% to 25% methanol). The product was isolated 

as 530 mg (56% yield) of a pink solid.  mp 230-233°C (decomp.).  MS m/z (%) calcd. for 
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C86H106N3O14 (M+) 1404.7, found 1404.8(100).  IR (KBr pellet, cm-1): 3387cm-1 (O-H), 

2963 cm-1 (C-H), 1753cm-1 (C=O), 1698 cm-1 (C=O), 1614 cm-1 (C=O), 1590 cm-1 

(C=O). 

  

Optode 1 Preparation and testing 

   

2 mL of MeOH was added to 6 mg of fluoroionophore 12 and 350 mg of a custom 

copolymer of 40% hydroxybutylacrylate and 60% isopropylacrylamide  (donated by Dr. 

Robert Hatch, Bayer Diagnostics, Elkhart, IN).  This composition was mixed for 18 hr 

before use.  150 µL of the membrane solution was deposited onto 18 mm diameter glass 

microscope slides.  Using a P-6000 Spin Coater (Integrated Technologies, Inc.) the slides 

were spun at 3000 rpm for 60 seconds.  This produced sensors with membrane thickness 

of ca. 10 µm.  Membranes were dried under ambient conditions for 2 hours and stored in 

the dark.  The prepared optodes were housed in a custom flow-through cell and 

positioned at ca. 45º relative to the excitation beam.  Fluorescence emission spectra were 

taken with λex = 540 nm.  Time drives were obtained with λex/em 540/585 nm.  NaCl and 

KCl were analytical grade and obtained from Aldrich.  Aqueous test samples were 

prepared in 18 MΩ⋅cm deionized water. 

 



 114  

Sodium Fluoroionophore Results and Discussion 

 
Principle of Operation 

 

The fluoroionophore, 12, contains the three components that are typically employed in 

PET-based systems, namely a fluorophore, a host-guest site and a spacer group.  The 

rhodamine fluorophore is particularly appropriate for this system since it is insensitive to 

pH in the physiological range, thereby eliminating the need to correct for pH.93  In 

addition, its visible absorption (540 nm) and emission properties (585 nm) will allow the 

use of readily available and relatively inexpensive commercial light sources, e.g., LED’s, 

and detection systems in the final sensor instrumentation.  To be operative the PET 

mechanism must have a negative free energy change, ∆GPET, and in this the rhodamine 

group is again an appropriate selection.  The amide linkage between the rhodamine and 

the calixarene ionophore also serves as a source of electrons that can reduce the 

rhodamine group following photoexcitation.  The oxidation potential of the amide 

group,96 the reduction potential of the rhodamine ground state97 and the energy available 

in the rhodamine excited singlet state (as determined from fluorescence excitation and 

emission spectra) combine in the Rehm-Weller equation to yield an estimated value of 

∆GPET = -0.13 V, indicating that electron transfer is a spontaneous process following 

photoexcitation. 

 

Indeed, electrostatic calculations on 12 show a substantial shift in the electron density 

within the amide linkage upon complexation of sodium ion.  Figure 34 presents the 
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results of the calculations and as before, the magnitude of electron density decreases in 

the order of red > green > blue.  These results suggest that upon binding of sodium ion 

the amide linkage will be involved in the complexation and thus increases the electron 

donor’s oxidation potential relative to that of the rhodamine acceptor.  This result, in 

combination with the ∆GPET calculations indicates that an enhancement in the 

fluorescence would be expected upon complexation.   

 

 

Figure 34: Electrostatic calculation results for 12 in the uncomplexed state (top) and 
complexed state with sodium (bottom).  The magnitude of electron density decreases in 
the order of Red, Green, Blue. 
 

The polymer membrane is also crucial to the functioning of the optode.   In particular it is 

desirable to use a matrix that is sufficiently hydrophobic so as to insure the long-term 
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mechanical stability of the membrane in aqueous environments.  However, it must also 

be sufficiently hydrophilic to allow for water uptake and ion transport from the aqueous 

phase into the organic phase of the membrane.  In addition, the membrane must be 

optically transparent at the excitation and emission wavelengths of the fluorophore.  

Copolymers of acrylamides and alkyl acrylates have been applied in similar 

applications,98 and in this work we have chosen a copolymer of 40% 

hydroxybutylacrylate and 60% isopropylacrylamide (Figure 35).  
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Figure 35: Sodium optode membrane copolymer 
 

 

Sensor Response 

 

The new sodium optode was exposed to various concentrations of pure aqueous NaCl 

spanning the range 0.025 to 2 M.  Figure 36 shows the fluorescence emission spectra 

obtained for these various concentrations.  The fluorescence intensity was a linear (R2 = 

0.9996) function of the sodium ion concentration (Inset, Figure 36).  Within this range, a 

2.7 fold enhancement in the fluorescence was observed, comparable to the acridine-tri-

tert-butylester-p-tert-butyl-calix[4]arene fluoroionophore constructed by Waldner et al 
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(3.1 fold).92  Figure 37 shows the dynamic response of the optode to sodium within the 

range of 0.01 - 0.2 M.  The data indicate that response times of the optode are on the 

order of 2 minutes with a maximum 30% increase in the fluorescence intensity. 
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Figure 36: Emission spectrum of Optode with incorporated 12 (λex 540 nm) as a function 
of sodium concentration; a (.025M), b (.1M), c (.2M), d (.3M), e (.4M), f (.5M), g (1M), 
h (2M).  Inset showing linear correlation of λmax (585 nm) to sodium cation 
concentration. 
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Figure 37: Dynamic response of Optode to increasing concentrations of aqueous 
solutions of sodium chloride (λex/em 540/585 nm).   

 

 

Selectivity 

 

 The tetraethylester-p-tert-butylcalix[4]arene ionophore has been shown previously in ion 

selective electrodes (ISE’s) as well as in optically-based systems to be highly selective 

for sodium ions compared to potassium ions.34,90,91  For example, when incorporated into 

ISE membranes composed of plasticized PVC, the sensors discriminate against potassium 

by more than two orders of magnitude, logK = -2.5.34  This relatively high selectivity is 

attributed to the rigid calixarene skeleton providing a framework for the creation of a 

pocket size that closely matches that of sodium (ionic radius, 0.95 Å) and thus excludes 
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larger sized cations such as potassium (ionic radius, 1.33 Å).  This size selection is also 

reflected in the free energy of complexation, ∆G, where the sodium complex has been 

shown to be 21.3 kJ/mol more favorable (negative) than that of potassium.82  These 

factors again point to the notion that preorganization and size fit are key components in 

the design of selective ligands. 

 

Although calix[4]arenes are known to have good selectivity for sodium over potassium 

ions, selectivity data for the previously reported acridine-calix[4]arene (Figure 33) based 

sensor were not measured.92   In this research we have measured the sodium/potassium 

ion selectivity using the Separate Solution Method for optodes (log K opt
KNa, SSM), based on 

the recommended procedure of Bakker et al.50   

 

The SSM method is superficially different from the method employed to calculate the 

selectivity for compounds 10 and 11.  Specifically,  the sensor is exposed to a specified 

level of just the primary ion of interest [i], in this case sodium, and the fluorescence 

output determined.  The sensor is then exposed to a level of interfering ion, [j], that is as 

high as required to achieve the same measured fluorescence emission as determined in 

the presence of [i] alone.  The selectivity is then calculated exactly as it is in equation 6 

by taking the ratio of [i] to [j].   In this fashion the selectivity for sodium over potassium 

was determined and compared to previous results of  an optode90 and ISE34 system based 

on the tetraethylester-p-tert-butyl-calix[4]arene ionophore as well as to the required 

selectivity in extracellular media 83 (Table 4).    
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log K opt
KNa,  

Required83 -0.6 

optode 1 -0.6 

optode 290 -2.3 

ISE34 -2.5 

  

Table 4: Selectivity data of optode 1, comparative optode 2, ISE and required selectivity. 

 

Optode 2 operates on the cation-exchange mechanism and is composed of a 

plasticized/PVC membrane incorporating tetraethylester-p-tert-butyl-calix[4]arene 

(Figure 31), and a tetraphenylporphine (TTP) fluorescent dye90 (Figure 38). 
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Figure 38: Tetraphenylporphine (TPP) used in optode 2 
 

While the TPP and ISE systems operate by a different mechanisms their selectivity is 

quite comparable, i.e. discriminating against potassium by ca. 2 orders of magnitude, 

indicating that the ability of calix[4]arene to discriminate between sodium and potassium 
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is relatively unaffected by their environments. Based on these precedents it could be 

expected that optode 1 would show comparable selectivity.  Our preliminary results for 

optode 1 show good selectivity, although somewhat lower than for the optode or ISE, -

0.6, -2.3, -2.5, respectively.   

 

This reduction of selectivity may not be unexpected in light of other work conducted with 

similar calix[4]arenes that have been substituted with bulky groups at the lower rim.  

Indeed, Cadogan et al investigated the effect on the selectivity of a number p-tert-butyl-

calix[4]arenes showing that as the substituents became more bulky a corresponding 

reduction in the selectivity was observed.99  In particular tert-butyl and adamantyl 

substituted calix[4]arenes provided ISE’s with logKNa,K = -1.1 and -0.1  showing the 

significant dependence on steric factors.  In addition to this effect, it was observed that 

the response times of these ISE’s also increased (up to ca. 60 seconds with adamantyl 

substitution) with increased steric hindrance, indicating that the bulky substituents 

reduced the rate of complexation.  This fact may inpart explain the lengthy response time 

noted for our optode.  However, we note that optode 1 meets the selectivity requirement 

for testing in extracellular media, e.g. whole blood, plasma and serum therefore making 

this system of practical utility.  
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Summary of Sodium Fluoroionophore work  

  

In this work we have reported on the development of a new and simplified sodium optode 

based on aminorhodamine B and calix[4]arene. This new fluoroionophore responded to 

increasing concentrations of sodium (.025M – 2 M) with an increase in fluorescence 

intensity, ca. 2.7 fold. Although the total change across this range is good, the delta 

response in the physiological range (0.1-0.2 M) is limited (0.12 units/mM).  This 

becomes particularly relevant when millimolar changes are required to be resolved for 

clinical diagnosis. Therefore further development is needed to enhance the signal-to-

noise ratio of this optode.   

 

From an evaluation of the optode response, the sensor was able to reach equilibrium in 

ca. 2 minutes.  In most circumstances this would be an adequate response time, however 

most modern day diagnostic instrumentation are able to provide an analytical result 

within ca. one minute.  Consequently additional effort is needed to improve this response 

characteristic.   

 

The response of the sensor is governed by two aspects; complexation of the cation and 

diffusion of the cation into the polymeric membrane.  The former is fixed for this system, 

however the latter can be tuned.  Specially, the response time of a sensor, dependent upon 

diffusion into the bulk, is proportional to the square of the distance or thickness of the 

membrane layer divided by the diffusion coefficient of the polymer (Equation 7).19 
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t95 = 1.13d2/D  (7) 

 

Here t95 is the time to 95% of the total response in seconds, d is the thickness of the 

polymer layer in cm, and D is the diffusion coefficient in cm2/s.  Thus, increasing the 

diffusion coefficient of the polymer can potentially reduce the response time of the 

sensor.  The diffusion coefficient in turn is controlled by the 

hydrophilicity/hydrophobicity of the polymer.  Hence higher hydrophilicity means more 

water uptake and therefore faster diffusion of cations into the membrane.  The polymer 

chosen for this work is a copolymer of hydrophilic (40%, hydroxybutyl) and hydrophobic 

(60%, isopropyl) monomers and therefore it could reasonably be expected that an 

increase in the ratio of the hydroxybutyl/isopropyl moieties would lead to a reduction of 

the sensor response time. 

 

Since sodium concentrations within extracellular media, such as whole blood and plasma, 

are relatively high (clinical range ca. 135-150 mM) compared to other potential 

interfering cations such as potassium (clinical range ca. 3.5-5 mM), the selectivity burden 

for sodium ionophores is small and is required to be logKNa,K = –0.6.83   In the selectivity 

studies completed in this work it was found that the optode has the required 

sodium/potassium ion selectivity for sodium ion determinations in extracellular media. 



 124  

IV: Conclusions 
 
 

In this work we have taken a rational approach to the design of new ionophores and 

fluoroionophores in which the fundamental requirements of complexation were 

considered while employing the modern techniques of molecular modeling.  This has 

resulted in the synthesis and complexation studies of novel ionophores for the 

monovalent: ammonium, potassium, sodium and lithium ions. The results of these 

complexation studies were corroborated with molecular modeling predictions for 

selectivity and thus provide a framework for the development of future ionophores and 

fluoroionophores.   

 

Specifically, we have reported here on the modular synthesis of a new ammonium 

selective ionophore based upon a cyclic depsipeptide motif (8).  This ionophore was 

designed to take advantage of the tetrahedral symmetry of the ammonium cation in order 

to discriminate against cations with requirements for a spherical coordination geometry.  

Moreover, through molecular modeling, 8 was predicted to be more selective for 

ammonium than potassium ions. In addition, the structure was designed with the view of 

incorporating a rigid pre-organized backbone which has been shown to enhance 

selectivity by reducing the enthalpic costs of complexation. This approach yielded an 

ionophore which, when incorporated into an ISE format, provides selectivity for 

ammonium ion over potassium (logK = -0.6) and sodium (logK = -2.1) ions that is 

comparable to nonactin. We believe that the flexible modular approach used here will 
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enable us to tune the structure of similar molecules so as to achieve higher selectivity and 

sensitivity characteristics.  

 

In addition to the ionophore 8, we have also designed, synthesized and tested 

fluoroionophores for metal ion detection and in one case we have created an optical 

sodium ion sensor from a fluoroionophore.  Specifically, a potassium fluoroionophore 

was designed, modeled and synthesized and shown to have high selectivity. N-(9-methyl-

anthracene)-25,27-bis(1-propyloxy)calix[4]arene-azacrown-5, 10,  was shown by 

modeling and dynamics calculations to exhibit appropriate size-fit behavior and to 

possess a pre-organized structure conducive to binding potassium ions.  In addition, 

electrostatic calculations were shown to give good evidence for the redistribution of 

electron density in 10 following binding.  This evidence is particularly important for 

predicting whether the photoinduced electron transfer (PET) mechanism, upon which the 

function of 10 as a fluoroionophore is based, is operative.   In fact, 10 was shown to 

complex with potassium ions in organic solution triggering a substantial increase in 

anthryl fluorescence emission through the disruption of the PET quenching process (8.5-

fold enhancement). Preliminary measurements indicate that the selectivity for potassium 

ions over other alkali metal cations particularly sodium and lithium (logKK,Na = logKK,Li ≤ 

-3.5) for 10 is increased dramatically over that of the anthryl azacrown model compound, 

9, (logKK,Na = -1.3) .  This large increase in the selectivity for potassium over sodium and 

lithium can be attributed to the rigid and pre-organized structure of 10 such that the 

molecule can not wrap around these smaller cations without a large thermodynamic cost 

of complexation. In addition, these preliminary solution phase studies indicate a 1:1 
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complexation between 10 and the ion, suggesting that 10 could be sensitive to potassium 

in the normal physiological concentration range once incorporated into a sensor. 

Furthermore, the observed fluorescence response to changes in solvent polarity suggests 

that the sensor substrate composition will have an important impact on the efficiency of 

10 as an ionophore and could allow further optimization of sensitivity and selectivity.   

 

The N-(9-methyl-anthracene)-25,27-bis(1-propyloxy)-4-p-tert-butylcalix[4]arene-

azacrown-3, 11, further illustrates the significant role that size-fit as well as pre-

organization criteria play in the selectivity of ionophores.  By a reduction in the size of 

the azacrown moiety we have created a binding site appropriate for the stable 

complexation of lithium ions which excludes larger cations such as sodium and 

potassium.  We have shown that 11 acts as a fluoroionophore in the presence of the 

lithium ions and that the enhancement in fluorescence is dramatic (>106-fold). Molecular 

dynamics calculations predicted high selectivity of 11 for lithium ion over sodium and 

potassium ions on the basis of a size-fit effect. This is confirmed by smaller fluorescence 

enhancements for the latter two ions. Selectivity calculations yielded logKLi,Na = -3.8. and 

log KLi,K = -2.3.  These values are regarded as lower limits due to limited solubilities of 

the sodium and potassium salts used in the experiments. Nevertheless, the observed 

selectivities indicate that 11 is one of the most selective lithium ligands reported. 

 

A logical extension of the work described up to this point then, is the incorporation of a 

fluoroionophore into an optically based format that is suitable for the eventual application 

of a sensor in the clinical diagnosis of disease.  In this work we have reported on the 



 127  

development of a new and simplified sodium optode based on a molecule that 

incorporates aminorhodamine B as a fluorophore and p-tert-butylcalix[4]arene as the 

ionophore (12). The p-tert-butylcalix[4]arene was chosen due to its relatively high 

sodium ion selectivity which is attributed to the rigid calixarene skeleton providing a 

framework for the creation of a pocket size that closely matches that of sodium (ionic 

radius, 0.95 Å) and thus excludes larger sized cations such as potassium (ionic radius, 

1.33 Å). These factors again point to the notion that pre-organization and size fit are key 

components in the design of selective ligands. 

 

This new fluoroionophore, when incorporated into an optode, responded to increasing 

concentrations of sodium (0.025 – 2 M) with an increase in fluorescence intensity of ca. 

2.7 fold. Although the total change across this range is good, the delta response in the 

physiological range (0.1-0.2 M) is limited (0.12 units/mM).  This becomes particularly 

relevant when millimolar changes are required to be resolved for clinical diagnostics. 

Therefore further development is needed to enhance the signal-to-noise ratio of this 

optode.  From an evaluation of the optode response, the sensor was able to reach 

equilibrium in ca. 2 minutes. Since sodium concentrations within extracellular media, 

such as whole blood and plasma are relatively high (clinical range ca. 135-150 mm) 

compared to other potential interfering cations such as potassium (clinical range ca. 3.5-5 

mM), the selectivity burden for sodium ionophores is small and is required to be logKNa,K 

= –0.6.90   In the selectivity studies completed in this work it was found that the optode 

has the required sodium/potassium ion selectivity (logKNa,K = –0.6) for sodium 

determinations in extracellular media. 
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V: Future Work  

A: Ammonium Ionophore 

 

The ammonium ionophore, 8, when tested in an ion selective electrode (ISE) proved to 

be selective for ammonium ions over alkali and alkali earth metal ions.  This observed 

behavior demonstrates that cyclic depsipeptides can be used as the basis for new 

ionophores.  This is also illustrated by the cyclic depsipeptide valinomycin which is 

highly selective for potassium ions.  

 

In designing 8 and in going forward with future ammonium ionophores based on 

depsipeptide structures it is important to recognize that the depsipeptide backbone 

structure will play an important role in the ionophore’s selectivity.100-102  For example, 

analogs of valinomycin, in which changes in the chirality of the valine residues were 

made, have been synthesized and they typically show drastic reductions in the ability to 

bind potassium.100,101 Presumably, these chirality changes disrupt the hydrogen bonding 

network typically present in the parent valinomycin (see figure 2) resulting in molecules 

which contain only five N-H…O=C hydrogen bonds as compared to six for valinomycin.  

As a result the structures became asymmetric, poorly pre-organized and exhibit two 

orders of magnitude reduction in the binding constant for potassium ions in comparison 

to valinomycin. 
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In light of the above discussion, it is clear that systematic investigation into the effect of 

chiral substitution within 8 is warranted.  Since 8 is modular in terms of its synthesis, 

simple replacement of the various residues will lead to a series of new compounds.  In 

addition, the sequence of the alkyl substituents can be modified, leading to further 

understanding of the mechanism of complexation within 8.   For example, the L-lactic 

acid residue used to form compound 1 (see Scheme 1) can be changed to either L or D 

Hydroxyisovaleric acid leading to two variations of 8 (see Figure 39 for compound 13 as 

an example using L-Hydroxyisovaleric acid).  These compounds will be tested within 

ISE’s and the selectivity for ammonium over other ions determined.  The results of these 

selectivity studies will be compared to theoretical molecular modeling predictions of the 

various compounds. 
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Figure 39: Compound 8 (left) and proposed derivative 13 (right) 
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B: Bicyclic Ammonium Ionophore 

 

The selectivity displayed by 8 was achieved by designing the ionophore such that 

tetrahedral cations (ammonium ion) would be stabilized whereas cations requiring a 

spherical coordination geometry would not, e.g. sodium and potassium ions.  However, it 

is desirable to have ammonium ionophores that can achieve far greater discrimination 

over potassium and sodium ions, than exhibited by 8, for use in new measurement 

technologies.  This is particularly important in the measurement of creatinine (Figure 40) 

in biological media where the normal physiological levels, 0.7 – 1.3 mM, are far below 

the concentration of potassium (3 – 5 mM) and sodium (135 – 150 mM).  
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Figure 40: Creatinine 
 

To date, the most commonly used ammonium ionophore is nonactin.  Nonactin based 

ISE’s have been modified to contain an enzyme layer over the polymeric membrane.  

These layers encapsulate enzymes which can convert metabolites, such as urea and 

creatinine, into ammonium and thus give a measure of the urea or creatinine 

concentration (1 mole of urea is converted to 2 moles of ammonium ion whereas 1 mole 

of creatinine is converted to 1 mole of ammonium cation). However, since nonactin 
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based ISE’s are only ten times more selective for ammonium over potassium ion, a 

correction, which contributes error to the measurement, must be made to adjust for the 

interference by potassium.  Thus more selective ammonium ionophores would eliminate 

the need for this correction and therefore enable a more precise measurement of the urea 

or creatinine concentration. 

 

In order to accomplish the desired goal of more selective ammonium ionophores we first 

have had to develop a metric by which to judge if the resulting molecule would 

potentially be more selective or not.  This work involved modeling several known 

ammonium ionophores in the complexed state with ammonium and potassium ion.  These 

complexes were examined computationally and their docking energies (ED) calculated.  

The energy of the ammonium complex  minus the energy of the potassium complex (to 

give ∆ED) was then compared to the experimentally derived selectivity coefficients for 

ammonium over potassium ions (log ++ KNH
K

,4
) .  Specifically, we chose nonactin and the 

Lehn cryptands (Figures 6 and 7 and shown below in Table 5) since data for all these 

compounds were presented in one manuscript and their selectivity coefficients were 

determined under the same conditions.18  This data is shown in Table 5. 
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Compound log ++ KNH
K

,4
 ∆ED (Kcal/mole)   

nonactin 

O

O

O O

CH3

O

CH3 O

CH3

O

O CH3

O

CH3

O

OCH3

CH3

CH3

O

 

0.20 -4.0 

NO

ON

NO

ON

O

CH3

CH3

 

0.40 -12 

NO

ON

NO

ON

O

 

1.8 -18 

NO

ON

NO

ON

O
O
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Table 5: Selectivity data for various ammonium ionophores and  
∆ED of the ammonium/potassium ion complexes. 

 
 
Table 5 shows the results of the modeling calculations for the various ammonium 

ionophores.  The data suggests that a trend exists where larger (and more negative) 

differences  between the energies of ammonium and potassium ion complexes are 

indicative of higher selectivity coefficients for ammonium over potassium ions.  Indeed, 

molecular modeling has proved successful in reproducing experimental results for other 

ionophores such as valinomycin, nonactin and crown ethers, although it has been 

cautioned that such calculations should be taken as qualitative due to the approximations 
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involved.19  However, it is proposed that these qualitative calculations can be 

prospectively used as a guide in the development of new ionophores. 

 

Here we propose the design of new ammonium ionophores with a view to obtaining 

improved selectivity over potassium and sodium ions based on a bicyclic depsipeptide 

structure.  Using the above modeling results as a guide, we have designed several 

ionophores which are predicted to be superior to 8 and potentially better than nonactin in 

terms of their ammonium/potassium ion selectivity.  These compounds are based on the 

backbone of 8 and the bi- and tri-cyclic structures of Lehn’s cryptands.  Our previous 

work indicated that 8 discriminated against potassium but it was clear that it could be 

improved.  We reasoned that if we could introduce an additional site for hydrogen 

bonding to an ammonium ion and yet make the site inaccessible to cations requiring 

octahedral or spherical binding geometry we would see an improvement in the 

selectivity.  Ideally, if this site could also be introduced through a bridge, thus forming a 

bicyclic structure, we would obtain additional rigidity in the molecule and perhaps 

increase pre-organization thus potentially improving selectivity further.  Keeping 8 as our 

base molecule we introduced a bridge that can  be synthesized from readily available 

amino acids, i.e. lysine and glutamic acid giving compound 14 (Figure 41).  In Figure 41, 

it is shown that the same sterochemistry is retained as in 8 and that a bridge has been 

added using a derivative of glutamic acid. 



 134  

O

N
H

O

NH

O

NH

O

O

OO

O

O

N
H

O

L

D

D

L

L

D

 

Figure 41: Proposed bicyclic depsipeptide 14 
 

Molecular modeling calculations were carried out on the ammonium and potassium 

complexes of 14 resulting in ∆ED = -19 Kcal/mol and therefore is 15 Kcal/mol more 

negative than ammonium/potassium ion complexes of nonactin (see Table 5).  If the data 

in Table 5 is predictive, we would expect that 14 would be one to two orders of 

magnitude more selective than nonactin for ammonium ion over potassium ion. 

 

  
 

Figure 42: Modeling results for compound 14 
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The synthesis of this molecule has begun in our laboratory but is long (20+ steps).  The 

length of this synthesis is partly due to the many protection and de-protection steps that 

are required to build the structure.  In light of this we have also investigated an all-amide 

version of 14.  This compound, 15  (Figure 43), can be synthesized directly by solid 

phase techniques and only 3 solution phase steps will be required. 
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Figure 43: Proposed all amide bicyclic ammonium ionophore, 15 
 
 

Molecular modeling calculations on 15 indicated that this compound can potentially have 

better selectivity than nonactin (ca. one order of magnitude) but less so than 14.  

Calculations show ∆ED = -16 Kcal/mol making 15 an intermediate structure in our series.  

The synthesis of this molecule has also begun in our laboratory. 

 

Upon completion of these molecules, they will be incorporated into ion selective 

electrodes in the same manner as 8 and the potentiometric properties investigated.  The 

results of these tests will then be compared to the modeling data.  These results will then 
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be used to fine-tune the molecular modeling calculations to improve upon any 

inconsistencies.  This new model will then be verified on additional molecular structures 

eventually providing a platform with which the rational design of new ionophores can be 

accomplished. 
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C: Alternative Fluorophores 

 
 

In this work we have presented the design, synthesis and testing of two fluoroionophores 

based on calix[4]arene-azacrown structures covalently linked to an anthracene 

fluorophore, 10 and 11.   These compounds employ the same fluorophore and therefore 

excitation of each can be accomplished with λex = 355 nm.  However, there are two 

limitations to using fluorophores that are excited at 355 nm.   First, the instrumentation 

for which these molecules have been created uses LED’s as excitation sources (for cost 

considerations) and at the present time there are no commercially available inexpensive 

LED’s that emit below ca. 390 nm.  Second, the samples measured with this instrument 

are whole blood, constituents of which absorb and emit in the 350 – 400 nm region.  This 

will introduce interfering signals and reduce signal-to-noise.  In order to overcome these 

issues a new fluorophore in place of anthracene will need to be used, preferably one 

which absorbs >450 nm light and yet still would provide for a negative ∆GPET. 

 

Here we propose the modification of our fluoroionophores, 10 and 11 with an alternative 

fluorophore that will satisfy the above requirements of long wavelength excitation (>400 

nm) and negative ∆GPET.  Two fluorophores have been identified that will yield 

fluoroionophores with the desired characteristics that can overcome the limitations noted 

above.   One of these compounds, 16 (Figure 44), is a chloromethyl derivative of 4,4-

difluoro-4-bora-3a,4a-diaza-s-indacene and can be purchased from Molecular Probes.   
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Figure 44: Proposed replacement fluorophore, 16, for anthracene 
 

This compound has λex/em ~503/513 nm,93,103 and therefore can be excited by 

commercially available LED’s.  Also, excitation in the 500 nm region would 

substantially reduce any background fluorescence from whole blood samples and 

therefore will improve the reliability of analyte measurements.  In addition to the longer 

wavelength excitation, the molecule has been coupled to a simple azacrown forming a 

fluoroionophore and shown to operate through the PET mechanism.104  Compound 16, is 

also an appropriate choice since it is available as a chloromethyl derivative and thus can 

directly replace the 9-chloromethyl-anthracene in the synthetic strategies of 10 and 11. 

 

The other potential chromophore is  tetramethylrosamine, 17 (Figure 45), which has 

λex/em = 550/574 nm93 and again can be excited by commercially available LED’s, 

beyond the region where whole blood absorbs. In addition, it is reasonable to expect that 

the reduction potential will be within the same range (ca. –0.54 eV) as the rhodamine 

fluorophore that we described in our sodium optode work , and therefore will also be 

expected to participate in a PET type mechanism. 
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Figure 45: Proposed replacement fluorophore, 17, for anthracene 
  

One literature reference presents a synthetic route to a haloalkyl derivative (i.e. 

chloromethyl) that will allow a direct replacement of the 9-chloromethyl-anthracene in 

the synthetic strategies of 10 and 11.105  This method was modified to give a bromomethyl 

version, 22, and is shown in Figure 46.  The synthetic strategy is shown in Scheme 4 and 

the synthesis of this compound has been briefly explored (see Appendix A4 for details). 
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Figure 46: Bromomethyl derivative, 22, of 17 
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Scheme 4: 
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In general, the synthesis of these compounds was not straightforward.  In particular it was 

found that each intermediate was not stable under ambient light conditions since it was 
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observed that the products, beginning as slightly pink to white in color, turned to deep 

red and purple while exposed to ambient light.  In addition it was found that on TLC 

plates this reaction appeared to proceed at an even more rapid rate, turning bright pink 

immediately after exposure to the UV light source.  The intermediate products, 19-21, are 

not fully conjugated while the final product, 22, is and has been reported to be bright red 

in color compared to the slight pink/white color of 19-21.  Given this color difference and 

the observations noted above, it was speculated that 19-21 were photo-oxidizing to a 

fully conjugated system.  Thus, after initial attempts all reactions were carried out in the 

dark.  It was also found that the intermediates photo-oxidized on silica gel during column 

chromatography and adhered to the silica causing the products to bleed off the column.  

However, even with these problems reasonable amounts (gram quantities) of the 

intermediates could be obtained except for 21 for which a 16% yield was achieved after 

chromatography on silica gel.  This low yield was due to the fact that the product adhered 

to the silica gel. However by TLC, the reaction appeared to be nearly quantitative.  

Modification of the purification procedures is likely to improve on these initial attempts.  
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D: Ammonium Fluoroionophore 

 

The analysis of ammonium cations in aqueous or biological media has traditionally been 

accomplished through the use of ISE’s.  In contrast, sensors that operate on optical 

detection schemes are few and rely on indirect methods of signal transduction.  

Essentially all schemes are tied to a pH sensitive chromophore that is either protonated or 

deprotonated by the presence of ammonium cations through the cation exchange 

mechanism.  Thus, in all cases the response of the sensors are also dependent upon the 

sample pH which in turn necessitates the control of this parameter.  This limits the utility 

and practicality of the proposed optodes.  More recently, optical sensors based upon 

neutral ionophores, i.e. nonactin coupled with pH sensitive fluorophores have been 

developed.106-108  Upon exposure to ammonium cations the nonactin ion selective 

membrane binds the cations while the pH sensitive fluorophore deprotonates, thus 

maintaining electrical neutrality (Figure 32).  Deprotonation of the dye induces a change 

in the spectroscopic properties of the fluorophore which is proportional to the ammonium 

cation concentration and is typical of cation exchange mechanisms.    

 

Based on our above work, we propose to design, synthesize and test an ammonium 

fluoroionophore that directly binds ammonium ions and that is pH independent.  In our 

previous work, we reported on the design and synthesis of a new ammonium ionophore 

and its application in a planar ion selective electrode (ISE).    This ionophore was based 

upon a cyclo-depsipeptide structure, a structure that lends itself to facile synthetic 
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modification and seemed an appropriate starting point for developing a new ammonium 

fluoroionophore.  Based upon our success with this ionophore and our previously 

reported work with fluoroionophores it was reasonable to conclude that with an 

appropriate modification to the parent cyclo depsipeptide backbone, covalent linkage of a 

fluorophore will yield the desired target.  In particular, the backbone can be modified 

such that a carboxylic acid moiety will be available as an attachment site.  Given the 

work with our calix[4]arene aminorhodamine fluoroionophore, 12, where the fluorophore 

linkage was through an amide, we concluded that aminorhodamine B will be a good 

choice for attachment to the modified depsipeptide, particularly since thermodynamic 

calculations indicate that the rhodamine fluorophore attached through an amide linkage 

will operate via the PET mechanism (∆Gpet = 0.13V).  The rhodamine fluorophore is also 

appropriate since it is known to be pH insensitive and thus will yield, when coupled to 

the depsipeptide, the first pH independent fluoroionophore that directly responds to the 

ammonium cation.  To this end, we have investigated the feasibility of our proposal 

beginning with the synthesis (Schemes 5-7) of the modified cyclo depsipeptide structure 

(28).  We have also attempted covalent attachment of aminorhodamine B (see Appendix 

A5 for details). 
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Scheme 7 
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The synthesis of compound 28 was reasonably straightforward, yielding 445 mg of 

product.  The final step was the attachment of a fluorophore to give the fluoroionophore.  

The first attempts at coupling a fluorophore were with aminorhodamine B, the same 

fluorophore used for compound 12.  Three standard coupling strategies were used; 

conversion of 28 to an acid chloride and coupling under basic conditions (Et3N); the 
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carbodiimide method as used for 23, and standard peptide coupling strategy as used for 

25.  However, TLC and Mass Spectral analysis showed that no product was formed. 

 

One assumption is that  steric interference was to blame for the lack of product 

formation.   Therefore, we synthesized a derivative (29, Figure 47) of 28 that involved 

replacement of the aspartic acid residue in the formation of 25 with a glutamic acid 

residue yielding a monocyclic depsipeptide with a –R(CH)2COOH attachment site as 

compared to a –RCH2COOH site in 28.   
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Figure 47: Glutamic acid derivative (29) of 28 
 

This change was made assuming that the additional methylenic linkage would reduce any 

steric interference. However attempts to couple the fluorophore using the same 

procedures for 28 again yielded no product.  This, in combination with the above result, 

suggested that the fluorophore, aminorhodamine B, was the reason for the lack of product 

formation.  
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To confirm if the aminorhodamine B fluorophore was the issue we chose to investigate a 

different fluorophore, a 7-nitrobenzofurazan which is commercially available as an N-

methyl-4-hydrazino-7-nitrobenzofurazan (Figure 48). This fluorophore has also been 

shown to operate on a PET mechanism.109-112 

 

CH3

N

O

N

N
NH2

NO2

 

Figure 48: N-methyl-4-hydrazino-7-nitrobenzofurazan 
 

Covalent linkage through the primary amine and the free carboxylic acid group on the 

cyclic depsipeptide would yield the desired product.  Again, attempts to couple this 

fluorophore to both 28 and 29 using either the carbodiimide or peptide coupling strategy 

failed.  However, using an acid chloride intermediate and coupling under basic conditions 

(Et3N) we obtained some detectable product (via Mass Spectral analysis) from both 

cyclic depsipeptides 28 and 29, although the recovered amounts were small and impure, 

ca. 2 mg each (5% yield) and ca. 50% pure.   This result is inconclusive, due to the low 

yield of product, and does not provide any significant insight into the reasons for the lack 

of product formation. 

 

It is clear from these results that additional investigation into the coupling of a 

fluorophore to either 28 or 29 is warranted.  Specifically, coupling of fluorophores to 
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model compounds, such as fully protected aspartic and glutamic acid residues may prove 

beneficial in the elucidation of these reaction mechanisms. 
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E: Sodium Fluoroionophore II 

 
 

We, as well as others, have shown that the modification of the ring size in azacrown 

calixarenes is effective in controlling the selectivity of these ligands.  In particular, 

Dabestani et al. has shown that calix[4]arene-azacrown-6 structures are selective for 

cesium63-66 while here we have shown that calix[4]arene-azacrown-5 and -azacrown-3 

systems are selective for potassium and lithium ions, respectively.   

 

By extrapolation, we propose that an calix[4]arene-azacrown-4 covalently linked to a 

anthracene fluorophore will possess high sodium selectivity over other alkali metal ions 

and offer a new and highly selective fluoroionophore for sodium.  Indeed, calix[4]arene-

crown-4 structures are known and have been shown to possess some of the highest 

sodium/potassium selectivities known, (logKPOT Na,K =  -5.0).11c,113,114  

 

This new fluoroionophore should have both higher selectivity and sensitivity for sodium 

than compound 12 (see above).  Specifically, as already noted, selectivity will be 

improved due to a rigid binding site of appropriate size as well as sensitivity because the 

PET mechanism is more favorable thermodynamically (  ∆GPET -0.41V based on 10 vs. -

0.13V for 12).  Thus, have we proposed the synthesis and testing of 34 (Figure 49 and 

Scheme 8). 
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Figure 49: Proposed sodium fluoroionophore 34 
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Scheme 8 
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The synthesis of this compound has been explored in our lab, but with mixed results.  We 

expected that the structure of the calix[4]arene system would yield the 1,3-alternate 

conformer after the initial alkylation to 30 and 31 based on our previous results with 12, 

the lithium fluoroionophore discussed above.  However, we found that we obtained a 

mixture, presumably of 1,3 alternate and partial cone conformers which were not 

separable. Since it is known that the different conformers of calix[4]arene crowns give a 

range of selectivities we speculate that the same will be true for our fluoroionophore as 

well.  This introduces significant uncertainty in experimental results that will be obtained 

from a mixture of conformers.  In addition, quantification of the relative ratio of 

conformers is likely to be problematic since the NMR signals overlap to a great extent.   

 

To overcome these issues we propose a new sodium fluoroionophore (40) that would be 

based on a diisopropyl-4-p-tert-butylcalix[4]arene (or di-tert-butyl-) rather than the 

dipropyl-p-tert-butyl-calix[4]arene of 34.  It has been found that rotation about the aryl 

rings is suppressed by bulky substituents leading to the cone conformation in high 

yields.115   Thus, we suggest that diisopropyl-4-p-tert-butylcalix[4]arene, 35, will ensure 

that alkylation to 36 and 37 will result in the cone conformer rather than a mixture of 

partial-cone and 1,3-alternate as obtained with 34.  The proposed synthetic pathway is 

shown in Scheme 9. 
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Scheme 9 
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Appendix  
 
Appendix A1:  
NMR and Mass Spectroscopy data for compound 8  
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BzlO-D-hyval-L-val-N-fmoc (5) 
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cyclo-depsipeptide (8)  

O

O

O
NH

O

NH
O

O

O

O

NH

O

CH3

CH3

 

 



 182  



 183  



 184  



 185  



 186  

 

 

 

 



 187  

Appendix A2: 
 
NMR and Mass Spectroscopy data for N-(9-methyl-anthracene)-25,27-bis(1-

propyloxy)calix[4]arene-azacrown-5(10) 
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Appendix A3: 
 

NMR and Mass Spectroscopy data for 11 
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Dipropyl-(di-2-chloroethoxy)-4-tert-butylcalix[4]arene 

ClCl

O O

O
O

Pr
Pr

t-Bu

t-Bu t-Bu

t-Bu

 

 



 196  

 



 197  

   

 

 

 

 



 198  

N-Tosyl 25,27-bis(1-propyloxy)-4-tert-butylcalix[4]arene-azacrown-3 
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25,27-Bis(1-propyloxy)-4-tert-butylcalix[4]arene-azacrown-3      
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Appendix A4: 
 

Experimental, NMR and Mass Spectroscopy data for 21, based on a modified procedure.106 

 

4-carboxydihydrotetramethylrosamine (19) 
 
To a 115 ml solution of 3:3 H2SO4/H20 was added 12.5 g (9.1 mmol) of 3-

dimehtylaminophenol and 6.84 g (4.6 mol) of 4-carboxybenzaldehyde.  This was stirred 

under light reflux for 18 hr.  The pink suspension was neutralized with 90% KOH to pH 

7.0.  The resulting purple suspension is obtained by filtration, washed with water and 

dried.  The 4 g of the crude product was taken up in EtOAc and purified on silica gel 

(EtOAc). This gave 3.2 g of light pink product, yield 34%. No yield was given in original 

synthesis.  Recrystallization from DCM/Hexane also proved to be effective. Rf =.74 

(EtOAc). H1 NMR (400 MHz, MeOD-d4) δ 2.80 (s, 12 H), 4.98 (s, H), 6.32-6.35 (m, 4H), 

6.74 (d, J = 8.1, 2H), 7.02 (d, J = 8.2, 2H), 7.70 (d, J = 8.2, 2H). 

 

dihydro-4-(hydroxymethyl)tetramethylrosamine (20) 

 2.2 g of 19 (5.66 mmol)  was dissolved into 100 ml dry THF to which .43 g (11.3 mmol) 

of LiAlH4 was added.  This was stirred under N2 for 2.5 hr. at which point the excess 

LiAlH4 was destroyed with stoichiometric amounts of water.  The oxide was then filtered 

off and the solvent removed in vacuo to give 1.6 of a pink solid, yield 75.5%.  This was 

used without further purification. Rf  = .50 (1:1 hexane/EtOAc). H1 NMR (400 MHz, 

CDCl3) δ 2.93 (s, 12H), 4.62 (s, 2H), 5.05 (s, 1H), 6.38 (d, J = 8.4, 2H), 6.44 (s, 2H), 6.83 

(d, J = 8.4, 2H), 7.18 (d, J = 6.3, 2H), 7.24 (d, J = 7.60, 2H). 
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4-bromomethyldihydrotetramethylrosamine (21) 

100 mg (.27 mmol) of 20 was dissolved in benzene t which .6 eq of PBr3 was added.  

This was stirred under reflux for 4 hr. at which point the solvent was removed in vacuo.  

The residue was taken up in EtOAc and purified by chromatography on silica gel (1:1 

hexane/EtOAc) yielding 16 mg of product. Rf = .84 (1:1 hexane/EtOAc). ). H1 NMR (400 

MHz, CDCl3) δ  2.93 (s, 12 H), 4.44 (s, 2H), 5.07 (s, 1H), 6.38 (d, J = 8.5, 2H), 6.44 (s, 

2H), 6.83 (d, J = 8.5, 2H), 7.15 (d, J = 8.0, 2H), 7.25 (d, J = 8.0, 2H). ESI MS m/z calcd. 

for  C24H26Br79N2O [M+H+], 435.102, found 435.081(55), for C24H26Br80N2O [M+H+], 

437.092, found 437.034(55). 
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4-carboxydihydrotetramethylrosamine (19) 
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Appendix A5: 
Experimental details, NMR and Mass Spectroscopy data for compound 28 

 

BzO-L-lac-D-val-N-tBoc (23): Based on a modified procedure.42  On an ice bath, 20.6 g 

(.0948 mol) of HO-D-valine-N-tBoc was dissolved in 150 DCM to which 14.8 ml (1 eq.) 

of DIPCDI, 1.16 g DMAP (.1eq.) and 17.1 g (1eq.) of BzO-L-lactic acid (1, prepared as 

previously described) was added.  The reaction mixture was then allowed to return to RT 

after 1 hr. and stirred for an additional 17 hr.  The insoluble urea thus formed was filtered 

off and the organic phase washed thrice with 10% citric acid, thrice with saturated 

NaHCO3, once with brine, dried over Na2SO4 and concentrated totally to give a colorless 

oil, 35.54 g, yield 96%.  1H-NMR (400 MHz, CDCl3),  δ  .90 (d, J = 6.9 Hz, 3 H), .97 (d, 

J = 6.8 Hz, 3H), 1.45 (s, 9H, t-Butyl),  1.51 (d, J = 7.0 Hz, 3H), 2.19 (m, 1H), 4.31 (m, 

1H), 5.00 (d, J = 8.9 Hz, 1H), 5.17 (m, 3H), 7.33 (m, 5H). 13C-NMR (100 MHz, CDCl3) 

δ 16.9, 17.4 (CH3), 28.3 (t-Butyl), 31.2 (CH3), 58.5 (CH), 67.1 (CH2), 69.2 (CH), 79.8 

(C), 128.4, 128.5, 128.6 (CH, Ar), 135.1 (C, Ar), 155.5, 170.1, 171.5 (C=O). 

 

BzO-L-asp(TCE)-N-tBoc.  Based on a modified procedure.(Matthews, J. L., Gademann, 

K., Jaun, B., Seebach, D. J. Chem. Soc.,Perkin Trans. 1 1998, 3331-3340.) On an ice 

bath, 20 g (.0618 mol) of BzO-L-asp(OH)-N-tBoc was dissolved in 150 mL DCM to 

which, 9.7 ml (1eq) of DIPCDI, .755 g (.1 eq) DMAP and 5.93 ml (1 eq.) 2,2,2-trichloro 

ethanol and was stirred for 1 hr. at which point it was allowed to return to RT and stirred 

for an additional 17 hr.  The insoluble urea thus formed was filtered off and reaction 

mixture was washed thrice with 10% citric acid, thrice with saturated NaHCO3, once with 
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brine, dried over Na2SO4 and concentrated totally to give 20.5 g of a white solid, yield 

72.9%.  Rf =.57 (3:1 Hexane/EtOAC), mp = 46-48 ºC, The NMR conforms to the 

literature values. 1H-NMR (400 MHz, CDCl3),  δ  1.43 (s, 9H, t-Butyl), 3.02 (dd, J = 4.7, 

17.2 Hz, 1H), 3.17 (dd, J = 4.6, 17.2 Hz, 1H), 4.66 (m, 3H), 5.19 (d, J = 7.1 Hz, 2H), 

5.50 (d, J = 8.2 Hz, 1H), 7.37 (m, Ar, 5H). 13C-NMR (100 MHz, CDCl3) δ 28.7 (CH3, t-

butyl), 36.9 (CH), 50.3 (CH2), 68.1 (CH2), 74.5 (CH2), 80.7 (C), 94.9 (C), 128.8, 128.9, 

129.0 (CH, Ar), 135.4 (C, Ar), 155.7, 169.7, 170.9 (C=O). ).  ESI MS m/z calcd. for 

C18H22Cl3NO6Na [M+Na+], 476.04 found 476.2. 

 

BzO-D-Hval-L-asp(TCE)-N-tBOC. 15.7g (.0346 mol) of BzO-L-asp(TCE)-N-tBoc was 

de-protected using 2g of Pd/C 10 wt% with atmospheric H2 in DCM for 3 hr.  The 

catalyst was filtered off, the organic phase concentrated totally and the intermediate thus 

formed in quantitative yield was used without further purification.  The residue was taken 

up into 150 ml DCM and cooled on an ice bath.  To the solution was added 5.42 ml 

(1eq.) DIPCDI and mixed for .5 hr. at which time 7.2 g (1 eq.) of BzO-D-Hval-OH (4, 

prepared as previously described) and .423g (1eq.) of DMAP was added.  This was 

allowed to return to RT and mixed for an additional 17 hr.  The insoluble urea was filter 

off from the brown solution and the organic was washed thrice with saturated NaHCO3, 

thrice with 10% citric acid, once with brine, dried over Na2SO4 and concentrated totally.  

The product was fractionally recrystallized from hexane to give 12.0 g of a white solid, 

yield 62.5%. 1H-NMR (400 MHz, CDCl3), δ .91 (d, J = 6.8 Hz, 3H), .95 (d, J = 6.9 Hz, 

3H), 1.45 (s, t-butyl, 9H), 2.28 (m, 1H), 3.09 (dd, J = 4.7, 9.0 Hz, 1H), 3.17 (dd, J = 4.4, 

9.0 Hz, 1H), 4.75 (m, 3H), 4.94 (d, J = 4.2 Hz, 1H), 5.18 (q, 2H), 5.52 (d, J = 8.2 Hz, 
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1H), 7.37 (m, Ar, 5H). 13C-NMR (100 MHz, CDCl3) δ 17.4 (CH3), 19.1 (CH3), 28.7 

(CH3, t-butyl), 30.5 (CH), 36.7 (CH), 50.2 (CH2), 67.5 (CH2) 74.6 (CH2), 78.2 (CH), 80.7 

(C), 94.9 (C), 128.8, 128.9, 128.0 (CH, Ar), 135.6 (C, Ar), 155.6, 169.3, 169.7, 170.8 

(C=O). 

 

BzO-L-lac-D-val-D-Hval-L-asp(TCE)-N-tBoc (25).    2.54 g (6.7 mmol) of BzO-L-lac-

D-val-N-tBoc (23) was dissolved in 40 ml 1:1 TFA/DCM and stirred for 1 hr. at which 

point the solvent was removed in vacuo.  The residue was taken up into toluene twice and 

concentrated to remove excess TFA.  The intermediate amine salt (BzO-L-lac-D-val-

NH3
+TFA-, 24a) was used immediately without further purification.  2.81 g (6.05 mmol) 

of the HO-D-Hval-L-asp(TCE)-N-tBoc acid was prepared in same manner as above and 

was added to a 0 ºC stirred solution of 3.15 g (1eq.) PyBop, .818 g (1 eq.) HOBT, and 

2.21 ml (2 eq.) DIPEA.  To this was added the intermediate amine salt (BzO-L-lac-D-val-

NH3
+TFA-) and stirred for .5 hr. at which point it was allowed to return to RT and mixed 

for an additional 18 hr.  The organic was then washed thrice with NaHCO3, thrice with 

10% citric acid, dried over Na2SO4 and concentrated totally.  The product was purified by 

flash chromatography (Biotage), 3:1 hexane/EtOAC to afford 2.65 g of a colorless gum, 

yield 60%. Rf  = .40 (3:1 hexane/EtOAC). 1H-NMR (400 MHz, CDCl3), δ .93 (m, 12H), 

1.45 (s, t-butyl, 9H), 1.48 (d, J = 7.1 Hz, 3H), 2.30 (m, 2H),  3.05 (dd, J =  4.7, 9.0 Hz, 

1H), 3.20 (dd, J = 4.4, 9.0 Hz, 1H), 4.60 (m, 1 H), 4.70-4.78 (m, 3H), 5.08-5.18 (m, 4H), 

5.72 (d, J = 8.1 Hz, 1H), 6.85 (d, J = 8.2 Hz, 1H), 7.31-7.37 (m, Ar, 5H). 13C-NMR (100 

MHz, CDCl3) δ 17.2, 17.3, 19.2, 19.4 (CH3), 28.7 (CH3, t-butyl), 30.8 (CH3), 31.0, 31.1 

(CH), 36.7 (CH2), 50.3, 57.5 (CH), 67.4 (CH2), 69.6 (CH), 72.4 (CH2), 79.9 (CH), 80.8 
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(C), 94.8 (C), 128.6, 128.7, 128.8 (CH, Ar), 135.5 (C, Ar), 155.6, 169.4, 170.3, 170.4, 

170.5, 170.6, 170.9 (C=O). 

 

BzO-L-lac-D-val-D-Hval-L-asp(TCE)-L-lac-D-val-N-tBoc (26).  2.65 g (3.65 mmol) 

of BzO-L-lac-D-val-D-Hval-L-asp(TCE)-N-tBoc (25) was treated with 40 ml of 3:1 

TFA/DCM for 1.5 hr. at which point the solvent was removed in vacuo and the residue 

taken up twice in toluene and concentrated to remove excess TFA to give the 

tetradepsipeptide amine-TFA salt, BzO-L-lac-D-val-D-Hval-L-asp(TCE)-NH3
+TFA-. 

This was used without further purification.  1.5 g (3.95 mmol) of BzO-L-lac-D-val-N-

tBoc (23) was deprotected as above in 100 ml DCM with .5g Pd/C 10 wt% in 

atmospheric H2 over 3 hr.  The catalyst was filtered off and the organic concentrated 

totally.  The HO-L-lac-D-val-N-tBoc acid was used without further purification and was 

dissolved into a 100 ml, 0 ºC DCM solution to which, 2.05 g (1eq.) PyBop, .535 g (1eq.) 

HOBT, 1.52 ml (2.2 eq) DIPEA and the amine-TFA salt, BzO-L-lac-D-val-D-Hval-L-

asp(TCE)-NH3
+TFA- was added.  This was stirred for .5hr and allowed to return to RT 

and mixed for an additional 18 hr.  The organic was then washed thrice with saturated 

NaHCO3, thrice with 10% citric acid, dried over Na2SO4 and concentrated totally.  The 

product was purified by flash chromatography (Biotage), 3:1 hexane/EtOAC to give 2.40 

g of a colorless gum, yield 73.3%. Rf = .40 (3:1 hexane/EtOAC). 1H-NMR (400 MHz, 

CDCl3) δ .96-.99 (m, 18H), 1.43 (s, t-butyl, 9H), 1.48-1.50 (m, 6H), 2.05 (m, 1H), 2.30 

(m, 2H), 3.05 (dd, J = 7.8, 11.6 Hz, 1H), 3.33 (dd, J = 8.0, 11.4 Hz) 3.98 (t, 1H), 4.50 (t, 

1H), 4.74-4.82 (m, 3H), 5.04 (d, J = 3.5 Hz, 2H), 5.13-5.21 (m, 3H), 5.33 (d, J = 8.2 Hz, 

1H), 7.07 (d, J = 8.5 Hz, 1H), 7.33-7.37 (m, Ar, 5H), 7.73 (d, J = 8.2 Hz, 1H). 13C-NMR 
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(100 MHz, CDCl3) δ 17.1, 17.2, 17.7, 18.7, 18.9, 19.3, 19.3, 19.5 (CH3), 28.7 (CH3, t-

butyl), 30.7, 30.8, 30.9 (CH), 35.8 (CH2), 49.8, 58.1, 60.1 (CH), 67.4 (CH2), 69.6, 70.6 

(CH), 74.6 (CH2), 80.0 (CH), 81.0 (C), 94.9 (C), 128.6, 128.8, 129.0 (CH, Ar), 135.7 (C, 

Ar), 156.5,169.4, 169.6, 169.6, 170.6, 170.9, 171.3, 171.9 (C=O). ESI MS m/z calcd. for 

C39H56Cl3N3O14Na [M+Na+] 918.3 found 918.4. 

 

Cyclo (-L-lac-D-val-D-Hval-L-asp(TCE)-L-lac-D-val-) (27).  2.4 g (2.7 mmol) of 

BzO-L-lac-D-val-D-Hval-L-asp(TCE)-L-lac-D-val-N-tBoc (26) was dissolved in 100 

DCM to which 1g of Pd/C 10wt% was added.  This was stirred for 3 hr. with atmospheric 

H2 at which point the catalyst was filtered off and the organic concentrated totally.  The 

white residue was taken up into 40 ml, 3:1 TFA/DCM and stirred for 1 hr.  The organic 

was concentrated totally and dissolved twice more with toluene to remove excess TFA.  

This was used without further purification.  The white residue was taken up in 50 ml 

SOCl2 and mixed for 1 hr. whereupon the acid chloride was concentrated.  The acid 

chloride intermediate was then taken up in benzene and concentrated again to remove 

excess SOCl2.  The residue was dissolved into 250 ml benzene by stirring to which 1 ml 

of Et3N was added.  After 2 hr. the benzene was removed in vacuo and the residue taken 

up in DCM whereupon the organic was washed once with 10% citric acid and then once 

with saturated NaHCO3.  The aqueous phases were extracted twice more each with DCM, 

the organic phases were combined and concentrated totally to give .55 g of a white foam, 

yield 31.4%.  1H-NMR (400 MHz, CDCl3) δ 1.00-1.02 (m, 18H), 1.4-1.57 (m, 6H), 2.00 

(m, 1H), 2.10-2.29 (m, 2H), 3.22 (m, 2H), 4.17 (t, 1H), 4.60 (t, 1H), 4.77 (m, 2H), 5.08 

(d, J = 5.6 Hz, 1H), 5.20 (d, J = 7.0 Hz, 1H), 5.30 (m, 2H), 6.47, (d, J = 8.0 Hz, 1H), 6.79 
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(d, J = 7.3 Hz, 1H), 7.53 (d, J = 7.0 Hz, 1H). 13C-NMR (100 MHz, CDCl3) δ 15.7, 

17.9,18.0, 18.3, 18.9, 19.4, 19.4, 19.7 (CH3), 30.2, 30.5, 31.5 (CH), 35.2 (CH2), 49.4, 

57.2, 60.2, 70.1, 72.3 (CH), 74.6 (CH2), 80.8 (CH), 95.0 (C), 169.0, 169.9, 170.0, 170.3, 

171.0, 171.7, 172.4 (C=O). ESI MS m/z calcd. for C27H40Cl3N3O11, [M+H+] 688.17 found 

688.2, for [M+Na+] 710.6 found 710.2. 

 

Cyclo (-L-lac-D-val-D-Hval-L-asp(OH)-L-lac-D-val-) (28).  .55g (.85 mmol) of the 

cyclo-depsipeptide 27 was dissolved in 20 ml acetic acid to which 1 g of Zn powder was 

added.  This was mixed vigorously for 24 hr.  The Zn powder was filtered off and the 

solution was concentrated totally.  The residue was taken up in benzene and concentrated 

again to remove excess acid to give in quantitative yield .445 g of the free acid as a white 

solid.  Rf = .35 (9:1 DCM/MeOH), mp188-190 ºC, 1H-NMR (400 MHz, CD3CN) δ .67-

.81 (m, 18H), .98-1.02 (m, 6H), 2.66-2.78 (m, 2H), 4.08 (m, 2H), 4.69 (m, 2H), 4.98 (m, 

2H), 6.88 (b, 1NH), 7.35 (b, 1NH), 7.61 (b, 1NH). 13C-NMR-DEPT135 (100 MHz, 

CD3CN) δ 15.7, 16.4, 16.6, 17.1, 17.2, 17.3, 17.5, 21.8 (CH3), 42.0 (CH2). 13C-NMR-

DEPT90, δ 30.5, 30.7, 31.0, 49.6, 58.4, 59.2, 71.1, 71.8, 80.3 (CH). 13C-NMR δ 157.2, 

168.8, 169.4, 169.8, 170.2, 170.5, 170.7 (C=O). ESI MS m/z calcd. for C25H39N3O11 

[M+H+] 558.27 found 588.3. 

 

Chromophore attachment (28a).  Aminorhodamine B was prepared as previously 

reported.  .11 g (.197 mmol) of cyclo-depsipeptide free acid, Cyclo (-L-lac-D-val-D-

Hval-L-asp(OH)-L-lac-D-val-), 22, was dissolved in 50 ml SOCl2 and mixed for 1 hr. at 

which point it was concentrated totally.  The residue was taken up in benzene and 
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concentrated to remove excess SOCl2.  The residue was dissolved again in benzene to 

which a 10 ml benzene solution of .12 g (.243 mmol) of the purified aminorhodamine B 

and .3 ml Et3N was added.  This was mixed for 48 hr. whereupon the solvent was 

removed in vacuo and the red residue taken up in DCM.  The organic was washed four 

times with 100 ml 1N HCl and dried over Na2SO4 and concentrated totally.  The crude 

mixture was chromatographed by preparative TLC, 9:1 DCM/MeOH.  Fractions were 

isolated and Mass Spec. analysis was preformed.  No product was found. 

 

This was repeated using .1 g of the cyclo-depsipeptide free acid and DIPCDI (1 eq.), 

DMAP (.1eq.) with 1 eq. of the chromophore in benzene solvent system.  This was 

reacted for 24 hr. and the organic phase was treated and washed as above.  Again 

purification on TLC and Mass Spec. analysis showed no product formed. 

 

This was repeated again using standard amino acid coupling techniques using 1 eq. of the 

cyclo-depsipeptide free acid, 1 eq. each of the chromophore, PyBop and HOBT and 2 eq. 

DIPEA in a DMF solvent system.  This was reacted for 24 hr. and treated as above.  

Again no product was found in the crude mixture or from prep. TLC fractions. 

 

Chromophore attachment II Cyclo (-L-lac-D-val-D-Hval-L-asp(MNBD)-L-lac-D-

val-) (28b).  .1 g of the cyclo-depsipeptide free acid was dissolved in 20 ml SOCl2 and 

mixed for 1 hr. at which point it was concentrated totally.  The residue was taken up in 

benzene and concentrated to remove excess SOCl2. This was taken up in 10 ml anhydrous 

MeCN to which 1 eq of 4-(N-methylhydrazino)-7-nitro-2,1,3-benzooxadiazole (MNBD) 
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and 3 eq. Et3N was added. This was stirred for 24 hr. at which point the solvent was 

removed in vacuo and the organic phase was washed thrice with saturated NaHCO3, 

thrice with 10% citric acid, dried over Na2SO4.  This was chromatographed on 

preparative TLC (9:1 DCM/MeOH) and 2 fractions were found, isolated and analyzed via 

Mass Spec.  Fraction 2 with Rf = .50 contained a small amount of the desired product, 

calcd. [M+H+] (%) 749.25 found 749.26 (12). 

 

This was repeated using the general DIPCDI and PyBop methods as above.  In both cases 

no product was found in the Mass Spec.   

 

Cyclo (-L-lac-D-val-D-Hval-L-glu(MNBD)-L-lac-D-val-) (29a).  The glutamic version 

was formed using the same general procedure used for Cyclo (-L-lac-D-val-D-Hval-L-

asp(MNBD)-L-lac-D-val-) except that BzO-L-glu(OH)-N-tBoc replaced BzO-L-

gasp(OH)-N-tBoc.  68.3 mg (.119 mmol) of the cyclo depsipeptide free acid was 

dissolved in 20 ml SOCl2 and mixed for 1 hr. at which point it was concentrated totally.  

The residue was taken up in benzene and concentrated to remove excess SOCl2. This was 

taken up in 10 ml anhydrous MeCN to which 25 mg (1 eq) of 4-(N-methylhydrazino)-7-

nitro-2,1,3-benzooxadiazole (MNBD) and 3 eq. Et3N was added. This was stirred for 24 

hr. at which point the solvent was removed in vacuo and the organic phase was washed 

thrice with saturated NaHCO3, thrice with 10% citric acid, dried over Na2SO4.  This was 

chromatographed on preparative TLC (9:1 DCM/MeOH).  The fraction with Rf  = .55 was 

isolated and gave 2 mg of a brown solid.  This was analyzed via Mass Spec. which 



 221  

showed the product was formed but was impure, [M+Na+] (%) calcd. 785.24 found 

785.15 (80).  
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