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ABSTRACT

We discuss live coding inside of a virtual reality environment using specialized virtual reality
equipment. While prior research on live coding has primarily focused on using keyboard and
mouse input, we argue this is not appropriate for virtual reality environments, where users
cannot see a physical keyboard. We have created a new environment, named “Meng”, that
focuses on embodied gestures, voice recognition, and in-world graphic user interfaces to
enable users to program in a more embodied style while immersed in the virtual world they
are creating. We conducted a user study to evaluate our environment; however, due to
COVID-19 restrictions participants used an alternative version of our software meant for use
with typical desktop computers. Participants indicated that Meng is a live coding system that
has immersive visual effects, and that most readily adapted to using the new input
mechanisms we placed in the environment. We released Meng—and two associated plugins
for voice input and rendering ray marchers—as open-source plugins for Unreal Engine 4.



1 INTRODUCTION

Our project combines two rapidly emerging fields: live coding and virtual reality. As its
name suggests, in live coding programmers/performers allow other people to watch their
programming process in real-time during live performance. Most live coding performers
combine music, images, and code on screen to create an interactive experience. While many
live coders perform for audiences, live coding is also a novel method for creatively exploring
software development; the near-instant feedback it provides to programmers encourages play
and experimentation in a way that differs from traditional software development[1].

In virtual reality (VR) worlds[2], people see and experience completely different scenes from
the physical world. We believe that live coding while immersed in VR provides performers
an exciting opportunity to create new worlds and new types of live coding experiences. We
chose the Oculus Quest[3], a recently introduced VR device, as our research focus for live
coding. Because the Quest is a wireless VR device its mobility is better than other equipment,
enabling users to experience virtual worlds more freely and more immersively.

Most VR devices, unlike typical computers, do not make heavy use of a physical keyboard
for typing. But most prior research on programming in VR environments focused on creating
virtual keyboards, and letting performers use input controllers to click these graphical
widgets in VR environments (see detailed information in Section 2). However, with these
affordances, programmers cannot input commands as quickly as they would in the real world;
in our experience, the input speed is very slow when comparing virtual keyboards to physical
ones. In live coding shows, there is an unwritten rule that performers cannot enter instructions
too slowly, otherwise the resulting music and graphics become repetitive and boring as
development takes too long; therefore we argue that virtual keyboards are an inappropriate
input mechanism for live coding while immersed in VR. To remedy this, Meng combines
GUI panels, voice commands, and gesture recognition as input functions in our live coding
system. In this way, users will not need a traditional keyboard for programming while using
VR equipment, and will be able to program in a more embodied fashion.

To make these novel input mechanisms work in Meng, we abstract control commands into a
programming language that can be immediately evaluated. We also built a ray marching[4]
plugin to render complex geometries in the virtual world and simulate flocking behaviors for
the virtual agents while enriching their visual expression. Thus, users are able to build their
world by creating different agents with this embodied programming language while
navigating the 3D world through first person perspective which is—to us—Ilike a dream. And
that is why our project is called “Meng”, the Mandarin word for “dream”.

Meng provides users with many interactive affordances for creating virtual worlds:

e (reating agents with voice commands, which are close to natural language. For
example, users can simply say “New red cube” to create a red cube in the virtual
world.



e Selecting agents with VR controllers and then using GUI or voice commands to
change their properties.

e Querying agents with specific tags by using speech. For instance, by simply saying
“Query ray marching”, all the agents based on ray marching rendering will be
selected.

e Drawing arbitrary paths for agents to follow and scaling the size of paths by stretch
gesture.

Figure 1 shows an example scene created in our system, featuring flocks of agents, ray
marched geometries, and volumetric fog.

Figure 1: A demo scene in Meng

Due to Covid-19, we ported our project from a VR-specific version to one that runs on
regular desktop computers, so that participants could experience it remotely as part of a user
study. This study focused on helping us improve Meng by collecting and analyzing users’
feedback about experiencing a new live coding environment with such different input
mechanisms. We also compared Meng with a traditional web-based live coding environment
using the Cognitive Dimensions of Notation framework|[5].

The outline of this paper is as follows: In the next section we discuss the background of some
VR projects that can allow players to program and a traditional live coding website. Section 3
is a detailed introduction and the methodology of creating Meng. We describe our
experimental evaluation result in Section 4 before concluding the paper and discussing future
work.



“Meng”- Live Coding in Virtual Reality 4

2 BACKGROUND AND MOTIVATION

The rapid maturation of VR technologies has led to a corresponding interest in researching
methods for programming while immersed in virtual reality. Alive[6] takes the advantage of
AlloSphere[7]—an immersive, spherical, virtual reality environment at the University of
California, Santa Barbara—to explore the combination of multi user collaboration and live
coding in a large-scale virtual reality environment. It provides users with a sense of
immersion by applying spatialized audio and projecting across a three-story stereoscopic
display while users develop the sonic and visual behaviors of agents in a virtual world.

Figure 2: Fish-eye photograph of three performers standing on the bridge of the AlloSphere and live coding the
world that surrounds them

Inception[8] is another system exploring live coding with VR devices. It is a system for
digital artists to create artwork in a virtual reality environment, which takes both a standard
QWERTY keyboard and VR controllers as input devices, providing a live coding text editor
in the virtual reality interface in addition to a novel feature for viewing design alternatives.
However, in this system, VR controllers are only used to manipulate rendered 3D objects, not
to input source code.
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Figure 3: Inception creates an immersive creative-coding environment for digital artists

In regards to VR support for programming tasks, VR-FTC[9] contributes an immersive VR
approach for visualizing program structures. Users can interactively visualize, navigate and
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communicate program code information in a VR environment by using controllers and a
virtual keyboard. Notable features it contains include both searching and tagging of code.
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Figure 4: The code editor window in VR-FTC

Figure S: A virtual keyboard supports text input for searching, filtering, and tagging

in VR-FTC

In regards to game-like systems exploring VR programming, Cubely[10] presents puzzles in
a virtual world and uses its game-like appeal to foster experimentation and creativity. By
leveraging the embodied experience provided by VR devices, the 3D-VPL[11] has made its
contribution in the field of education. It supports block-based programming systems that can
be edited in the VR environment, which also provides an overview and survey of
programming concepts visualized in a virtual world.

Figure 6: The code editor window in 3D-VPL
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As to non-VR live coding software, Livecodelab[12] is a browser-based platform for live
coding that supports both audio and graphics programming (as shown in Figure 7). The
Improcess project[13] aims to create new tools for performing improvised electronic graphics
in a live setting; its authors provide an in-depth discussion and evaluation of the abstraction
of structure for developing a new language for live coding.

Figure 7: Livecodelab running inside of Google Chrome.

We compare the advantages and disadvantages of using a physical keyboard, virtual
keyboard, or voice and gestures as the input method in the VR environment in Table 1.



Input Methods Advantages Disadvantages

Physical keyboard It is the most familiar and Keyboards would either

generic interface. have to be mounted on a
‘ ' harness for users to wear or
The input speed when using | it would only be usable
a physical keyboard is fast. [\ hen facing a single
direction.
Virtual keyboard It is also a familiar and Virtual keyboard might

generic interface, widely
used in touch devices and
VR systems.

Input speed with a virtual
keyboard is relatively fast.

Easy to apply into a VR
environment.

occlude the virtual world
when used in a VR
environment.

Virtual typing could be
difficult in VR. The input
speed could be very low
when typing on the
keyboard with VR
controllers.

Voice + Gestures + GUI

It is potentially more
embodied in the VR
environment.

It does not occlude the
virtual world.

This interaction is very easy
and interesting, so it might
attract those people who do
not have any background in
programming.

It will be an unfamiliar
interface for users
accustomed to “traditional”
programming.

Voice can be difficult to
accurately recognize. So the
voice system has high
requirements in terms of
both the players’
pronunciation and a quiet
physical environment.

It can be difficult for the
players to draw what they
want, because drawing in a
3D world using VR
controllers does not have
the same haptic feedback as
drawing on a plane.

Table 1: Comparison of using different input methods in VR




Because of the disadvantages of using a physical keyboard and virtual keyboard in a VR
environment, we believe that trying to bring traditional programming interfaces like
keyboards into VR is the wrong approach. Instead, we hypothesize that programming in VR
can take better advantage of the medium through the use of voice commands and embodied
gestures. Thus, we explored combining GUI panels, gesture recognition, and voice
commands as input methods instead of physical or virtual keyboards, providing what we feel
is a more intuitive way to interact with the virtual live coding system.



3 METHODOLOGY

System Architecture
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Figure 8: System Architecture

In this section, we discuss how we design and implement three input mechanisms, and our
use of experimental rendering techniques like ray marching. Figure 8 shows a high level
overview of the architecture of Meng.

3.1 Input mechanisms

Meng enables users to create virtual agents and control their movement in a virtual world. To
create and program these agents, users employ three different input mechanisms: voice,
gesture, and GUI. Agents can also be tagged to create groups; we can then query for all
agents with a given tag to select a group of agents for modification.

3.1.1 Voice recognition as input mechanism

We combined Sphinx[14] and Google Speech-to-Text[15] to get the best of both systems:
immediate responses to our grammar using Sphinx running on local machines, and the
flexibility of natural language recognition when required (with some added latency) by using
Google Speech-to-Text in the cloud.

With Meng’s voice input system, users can create agents, adjust agents’ parameters, tag
agents and query agents. For example, after summoning the GUI panel by pressing the left
trigger on a VR controller, users can speak to change the shape and size of the selected object
or create new agents with some basic parameters such as color and shape using Sphinx. They
can also tag agents or query agents using existing tags through Google Speech-to-Text.
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Figure 9: Combine Sphinx and Google Speech-to-Text
e Sphinx:

To create a more intuitive method for users to input voice commands, we first brought
the Sphinx-UE4[16] plugin into our project. This plugin enables the majority of the
voice commands in Meng, and performs voice recognition on the local VR device or
connected computer.

Sphinx enables us to customize the grammar that we want it to recognize by providing
a configuration file in the JSpeech Grammar Format (JSGF)[17]. JSGF is a
platform-independent, vendor-independent textual representation of grammars for use
in speech recognition. Figure 10 shows a simple JSGF grammar supporting
statements such as “new red sphere”. Its ease of use and flexibility makes it easy for
us to define the syntax that needs to be recognized. This in turn enables users of Meng
to input both more complex and natural statements.

public <final_rule> = new/[ <colors> ] <meshBasedObjects>;
<colors> = (red | blue | white | black | yellow | green);

<meshBasedObjects> = ( cube | sphere | pillar | elephant);

Figure 10: Grammar example that would recognize, as one example, “new red elephant”

By switching grammar files according to the state of users, it is easy to react to
different commands in different situations.

o Google Speech-to-Text:

Although Sphinx’s grammar mode is very flexible, it is not as free as natural speech
recognition; only words in the grammar file can be recognized. While the majority of



commands in Meng can be captured by a JSGF grammar, we also wanted to enable
users to apply “tags” to virtual agents so that these tags could subsequently be used to
query for agents possessing a particular tag; this is a common technique found in
game engines (including Unreal Engine 4). To break out of the limit of word lists
included in grammars and let users use any tags of their choosing, we tried to find a
way to recognize natural speech. However, the accuracy of the natural speech mode of
Sphinx—which runs purely on the user’s local machine—is too low. Our research
found that Google Speech-to-Text offers very good natural language recognition
service in comparison[18]. It uses a model trained on a huge speech data set, and can
accurately convert speech into text.

To use Google Speech-to-Text in our project, we embedded a C++ REST SDK in
Unreal Engine and used it to build a Google cloud client. Then, we created an
asynchronous drop-in node for the Unreal Blueprints scripting language enabling easy
configuration of the service.

When using web services like Google Speech-to-Text, smaller data sizes lead to faster
responses. Google recommends capturing audio with a sampling rate of 16000 Hz and
one channel. We used RtAudio—a cross-platform audio library included in UE4—to
implement a voice capture function that allows us to set both sampling rate and the
number of channels used for input. After recording speech, the recorded audio is
converted to a Base64 string, so that we can pack the speech and associated
configuration data into a JSON message and send it to Google Cloud through a HTTP
request.

~— = Make GoogleSTTConfig
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Figure 11: Google Speech-to-Text config

With Google Speech-to-Text, users can easily tag agents using whatever the word
they want and query them later.
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Figure 12: Query GUI
3.1.2 Gesture recognition as input mechanism

We integrate RunebergVRPlugin[19] in our project, which can record the movement of the
VR controllers when the agent is grabbed by the left controller and the Y button on the right
controller is pressed. By using this movement data, we enable users to draw arbitrary paths
for selected objects to follow; the handheld VR controllers can also stretch these paths and
change their scale.
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DiableAlScreenkessages o suppress

n

Figure 13: Draw a heart-shape path, and the selected cube will start to move and follow it
3.1.3 Directly interact with GUI panel

Two concerns prompted us to create Meng’s GUI system. First, it is hard to use voice or
gesture to precisely adjust some agents’ parameters. For example, to precisely change a color
to a desired hue, you might need to experiment with changing the value of the color’s red
channel many times. This will be difficult if every command is executed via voice command;
dragging a slider will often be much quicker. Second, memorizing all the commands in our
project is difficult, especially for those using our project for the first time. The GUI system
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also should act as a complement to the voice and gesture input systems, and provide hints to
users about commands they can explore. So we created a GUI system which can allow users
to directly interact with agent parameters.

Figure 14: Using the GUI to change the color and shape of the selected object
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Figure 15: Using the UI to create a new agent

We designed the GUI layout based on the characteristics of the virtual reality world and our
project. In general, the GUI of traditional video games is designed in screen space. However,
we cannot use the same approach in the virtual reality world because the VR equipment is
worn on the head of the player which means the distance between the GUI and the player’s
eyes is so close that all the player will see is the GUI. To avoid this, we decided to attach the
GUI to the left controller and adjusted its distance, position and size to ensure that players
can interact with it comfortably.

As we said before, the goal for our GUI is for it to supplement the voice and gesture inputs,
so it should not be too complex or it will negatively affect the user’s sense of immersion. To
keep our GUI simple, all our graphical interfaces adopt the same style and format. We hide as
much of the GUI as we can whenever possible, displaying it only when the user needs it. For
example, initially the layout of the GUI only shows example commands (see Figure 16). But



if users need some tips about a particular command, they can use controllers to point the
command and then the associated tips will be shown (see Figure 17).
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Figure 16: The GUI interface in our project without pointing at “Assignable Tags”
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Figure 17: The GUI interface in our project after pointing at “Assignable Tags”

This method avoids creating multi-level hierarchical GUI, making interaction relatively
simple.

3.2 Content creation

Meng uses ray marching to render agents and blend primitives. To simulate grouping
behavior with agents, we implemented the Boids algorithm[20] and use GPGPU methods to
run it more efficiently on the GPU. For rendering thousands of agents on the screen at the
same time, we take the advantage of the powerful auto-instancing feature in Unreal Engine 4.

In the remainder of this section, we will discuss these techniques in detail to show how we
use them to create and render agents in Meng.



3.2.1 Ray Marching and procedural shape generation

Meng uses a graphics rendering technique called ray marching. Ray marching enables us to
combine geometries in novel ways and create forms like fractal geometries and area fog that
are not possible using more traditional rendering techniques. Ray marching has also been
explored in the live coding community. By using the ray marcher in a live coding system,
programmers can generate many complex scenes without needing to know details about the
underlying ray marching or lighting algorithm[21]. Thus, we implemented a ray marcher
inside Meng which abstracts away the complexities of writing shader code and makes our
system more accessible to people who do not have much graphics programming experience.

Ray marching is similar to traditional ray tracing in that a ray is cast into the scene. In ray
tracing, the algorithm uses a set of equations that determine the intersection point of the ray
and the object to be rendered. In this way, the object where the rays intersect can be found.
Using this intersection information, we can decide what the color should be for each pixel
based on how light in the scene strikes the intersection.

Ray marching uses a different algorithm to deal with the ray/object intersection problem. In
contrast, we “move” a point along the ray until we find that the point intersects the object
rather than trying to directly calculate the intersection analytically. Sampling this point along
the ray is a relatively simple and cheap operation and has high real-time performance,
although not as good as the raster algorithm used in most 3D graphics applications.

For the purpose of using UE4’s built-in lighting system for geometries we generated by ray
marching, we were not doing full-screen ray marching, which is the way ray marching is
most commonly used. Instead, we do ray marching in each local mesh. To be more specific,
we are doing ray marching inside a sphere mesh for every single object. This is more efficient
than full-screen ray marching, as the origin of each ray is not the camera, but rather the
surface of the sphere mesh, as shown in Figure 18.

Sphere Mesh

G -

Marcing the ray inside the mesh
Sphere Mesh

G

Figure 18: Ray Marching in Unreal Engine 4
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e Signed distance function and sphere marching:

To achieve better performance, we use signed distance functions and sphere marching
optimizations in Meng’s ray marchers.

Signed distance functions, or SDFs for short, are functions that take a point as input
and return the shortest distance between the point and some surface. The sign of the
return value shows whether the point is inside or outside the surface. We can use this
return value as the step length of the ray to speed up the intersection process; this
technique is also called sphere marching and is much quicker than advancing a
uniform distance for every step.

Figure 19: Using Sphere Marching as optimization

As long as we have the signed distance function of a certain shape, it means we can
easily calculate the intersection between each ray and use this to render a variety of
different shapes. We currently support creating spheres, boxes, round boxes, torus,
links, cylinders, cones, and capsules in our project.

YO

Figure 20: Geometries rendered by Ray Marching in Meng
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e Boolean operations and primitive blending:

We also implemented three operations for combining geometries created by ray
marching. They correspond to the three basic Boolean operations (Union, Subtraction
and Intersection) and enable us to achieve primitive combinations and even the
blending of primitives without the geometric seams.

Figure 21: Boolean operations between shapes from "Constructive solid geometry" on Wikipedia[22]

These three operations can be expressed concisely when two geometries are expressed
as SDFs.

We have distA as the return value of the SDF of geometry A and distB represent the
return value of the SDF of geometry B. Then, we can use the formula below to blend
them.

Union SDF = Min(distA, distB);

Figure 22: Blending primitives using “Union” operation
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Subtraction SDF = Max(distA, — distB);

4

Figure 23: Blending primitives using “Subtraction” operation

Intersection SDF = Max(distA, distB);

Figure 24: Blending primitives using “Intersection” operation
e Fractal:

SDFs are excellent for rendering geometries that with bounds that cannot be
computed analytically; this enables Meng to render more experimental forms. Here is
an example of rendering Mandelbulb fractals with different parameters in Meng.
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Figure 25: Mandelbulb fractal with different parameters

3.2.2 Agent grouping behavior

In Meng, we not only provide the function of using gestures to customize agents’ moving
path, but also we also allow users to create a group of agents that move together. Using this
feature, users can create a group of agents that exhibit flocking behavior.

o Boids:

To implement Meng’s flocking simulation, we implemented Boids algorithm which is
a classic algorithm to simulate grouping behavior within a swarm of agents.

“The complexity of Boids arises from the interaction of individual agents (the boids,
in this case) adhering to a set of simple rules. The rules applied in the Boids world are
as follows:

Separation: steer to avoid crowding local flockmates

Alignment: steer towards the average heading of local flockmates

Cohesion: steer to move towards the average position (center of mass) of local
flockmates™[23]

f \'. Separation: steer to
i | avoid crowding local
J flockmates

\ Alignment: steer
il | towards the average
{ heading of local

“\ }3 h/ﬁ flockmates
E} \ Cohesion: steer to

f_\"‘ \ move toward the

| average position of
\ / local flockinates

Figure 26: Boids Algorithm
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e Using the parallel computing power of the GPU

If we look closely at the Boids algorithm, it is not difficult to find that when we are
calculating the behavior of an agent, we need to consider all the agents around it. This
means that the time complexity of this algorithm is O (n*n). When the number of
agents increases, the running time of the algorithm will also increase exponentially.
But what if we use parallel computing? If we can perform calculations for each agent
in parallel on different cores at the same time, the efficiency of the algorithm will be
greatly improved. Therefore, we introduced GPGPU technology to solve this
problem.

GPGPU is an abbreviation of General-purpose computing on graphics processing
units. We used this technology to run Boids algorithms on the GPU side that is better
at doing parallel computing, using Compute Shader.

| I
CPU GPU
GPUs generally have more computing cores than CPUs and

are better at parallel computing with high throughput.

Figure 27: Comparison number of cores on CPU and GPU

We dispatched Compute Shaders every frame and used it to calculate position and
velocity for every agent and then save the result to textures. Such processing allows
us to make full use of the computing power of GPU as well as free up the computing
power of CPU and makes a balance to achieve better performance.

We are able to run the flocking simulation for thousands of agents on the screen at the
same time with this GPGPU method.

e Rendering thousands of agents:

How to efficiently render thousands of objects in each frame of video has always been
a problem that real time applications are committed to solving. Realtime rendering
programs are always required to run at a frame rate of at least 30 FPS. To render as
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many objects as possible in such a short time slice, it is necessary to give full play to
the rendering capabilities of the GPU and perform specific optimizations. In order to
solve this problem, our project uses two different ways to render the agents in the

group.
(1) Rendering agents by Static Mesh

For the flock flying across the scene, we use Unreal engine’s built-in static mesh
component to render them. Leveraging the auto-instancing function provided by the
unreal engine, we can render thousands of agents with just one draw call. The cost is
that the group of agents we render share the same material. In this way, the unreal
engine will automatically merge the rendering of these same agents into one rendering
batch to greatly improve the rendering efficiency.

Figure 28: Thousands of Boids flying
(2) Rendering by Instanced Static Mesh.

UEA4 provides a component called the instanced Static Mesh Component for GPU
instancing. As its name suggests, it will batch all the instances and render them by one
draw call. For the flock in which agents fly around in a small area, we use this method
to finish the rendering task.
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Figure 29 :Thousands of particles flying near hand



4 EVALUATION

The results of the experimental evaluation are split into two parts. The first part discusses the
results that came from a user study we led. In the second part, based on the results we got
from the first part, we used the Cognitive Dimensions of Notation framework, or CDN for
short, to compare our system with a traditional 2D web-based live coding environment and
analyze the differences and similarities.

4.1 User study

COVID-19 changed our planned evaluation, as we felt it was no longer safe to conduct
in-person user studies on shared VR equipment. This meant that user study participants
would have to run our system on their personal computers, and that they might not have
access to VR equipment. Accordingly, to conduct our evaluation we ported our project from
running on VR hardware to running on standard commodity desktops running Windows.
While this is imperfect given Meng’s emphasis on using embodied gesture, it does still enable
users to create worlds using both voice and GUI input, and we conducted our tests with
participants using these two input mechanisms.

4.1.1 Protocol Setup

Instead of requiring VR controllers, we enabled users to use keyboard and mouse to control
the PC version of our system in a classic FPS control mode (using WADS on keyboard to
move and the mouse to rotate the camera). We retain the system logic and almost all system
features of the original VR version in this PC version—except for using VR control devices
to draw paths—to ensure the effectiveness of evaluation. We distributed the PC version
through the Internet, so that playtesting could be conducted remotely.

To help users get familiar with our project quickly, we created a tutorial which includes three
parts. The first part teaches users how to interact with the Ul system; the second part teaches
users about the voice commands; and the third part is a mini task that requires users to
complete without tips. In the third part, users can choose the GUI system or their voice as the
main input mechanism, using their choice of GUI or voice commands to create an object with
some special properties. Also, if participants forget necessary commands, they can press T on
their keyboard to get hints. The purpose was to examine the acceptance of the new input
mechanism in this new live coding environment and the difficulty of learning this project.

In this evaluation process, participants should try their best to finish the tutorial.
Theoretically, after following all the steps of the tutorial system, users should have a basic
understanding of our project. To obtain information so that we can improve the design of our
system, we asked users to complete a survey containing questions about their experience (see
Appendix 1).
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After all preparations were complete, the IRB approved our project (IRB 21-0485, see
Appendix 2, Appendix 3 and Appendix 4) and we invited participants from WPI IMGD
major via an email that included a link to an executable of our project and the survey.

4.1.2 Testing Results

In the total we received 19 replies; of these about 50% had previously used a live coding
system. The participants were asked to give their graphics cards information and rate the
overall performance of running Meng on their computers. Based on their answers, most of
them use dedicated graphics cards and stated that Meng ran smoothly on their computers (see
Figure 30).

14 13, 68%

Number of participants

3,16%

2,11%
2
1, 5%
0, 0% .
0
3 4

Figure 30: Value of 5 means “High (Running smoothly)” and value of 1 means “Low ( Stuttering / Frame Drops
can be clearly identified)”.

78.9% participants tried to experiment with other ideas that were not covered in the task (see
Figure 31), which means most of participants could infer many commands they were not
explicitly taught by inference. Except for 7 participants who did not get to the third part of the
tutorial, we knew that more than half participants finished the third part without using hints,
as shown in Figure 32. All of these indicate that learning how to interact with the
environment in our project is not difficult.
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Figure 31: Distribution of participants following the instructions
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Figure 32: Distribution of participants who did not use tips in the mini task

As noted before, using traditional input mechanisms seems inappropriate for programming in
VR, especially for live coding shows which need quick commands and feedback. Hence, an
important question for this user study is whether the new input mechanisms that we created
are acceptable for users. From the results, half participants preferred using the voice input
system. And they stated, in the survey, that the reasons why their first choice was voice
commands were that it was “more convenient”, and “was more interesting than using GUI
system”. The rest of participants stated that the reason they chose the GUI system was that
they were accustomed to using GUIs. As Figure 33 shows, many participants complained
about the recognition rate of the voice input system, but they still showed high acceptance of
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this new input mechanism. As expected, most participants were quite satisfied with
combining voice and GUI to be the main input mechanisms (see Figure 34).
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Figure 33: Distribution of recognition rate of voice input
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Figure 34: Value of 5 means “I enjoy it very much” and a value of 1 means “I did not like it”.

4.2 Compared to Livecodelab with CDN

Livecodelab is a web-based live coding environment. The language it created is simple but
can support some complex graphics and audio programming. The developers first released
Livecodelab nine years ago, and it has evolved into a mature and widely-used live coding
environment.
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Cognitive Dimensions of Notation framework is a common framework in the psychology of
the programming community. The whole framework has 13 dimensions but analysis often
foreground a subset of these. We chose four of them to use in our analysis by selecting the
four that seemed most relevant to live coding.

® Progressive evaluation:

Progressive evaluation refers to the ability of a programming environment to support
“partially-finished” programs so that programmers—especially novices—can evaluate
their own problem-solving progress at frequent intervals and obtain feedback on
“How am I doing?”".

In Livecodelab, each line of code represents a command and is a part of a whole. Any
edits to code are evaluated immediately, without requiring additional user interaction.
So users, even novices, can see problems in their programs very quickly and then
modify code as needed.

The collection of all the commands for agent creation, modification and operation can
be regarded as a mini program in Meng. Similar to Livecodelab, each command
executed for creating/modifying/operating agents in Meng can be evaluated
immediately. For easy debugging, we implemented a log system and log interface to
help users check each command. For example, our project has a command called
“New Cube”. If users only input “New”, the command will be considered as an
incomplete command. The log interface will display error-message to help users
debug and encourage progresive evaluation.

e Consistency:

The authors of CDN take consistency as a particular form of guessability: when some
of the language has been learnt, how much of the rest can be inferred? They believe
that a consistent language usually can be learned more readily.

As we mentioned before, live coding performers should enter instructions quickly.
Lots of live coding systems create their new languages to fit this rule and Livecodelab
is no exception. The commands in Livecodelab are similar. For example, if users
know how to create a cube and change its color, they will know how to create a ball
with different colors.

When trying to create commands for our project, we considered the integrity and
consistency. For all voice commands, we used Sphinx grammars to enforce a
consistent structure; we made GUI adopt the same structure and ordering.. Thus,
users can learn how to interact with Meng quickly and infer many commands they
were not explicitly taught.This has been shown from results of the user study (see
Figure 31 and Figure 32 above).



e Viscosity:

CDN defines Viscosity in programming languages (and other information structures)
as how much effort is required to perform a single change. Though it depends on the
precise change and languages/environments, it seems that in live coding
performance, reduced viscosity is often preferred.

Livecodelab needs users to enter the exact number when adjusting agents’ parameters.
For example, when changing colors, users should search the RGB number, and then
enter it in the right place. Sometimes they need to enter different numbers multiple
times to adjust to the appropriate color. This process wastes much time.

We have introduced the GUI system to our project for adjusting agents’ parameters.
Basically, users can just hold the slider and adjust its parameters. This way seems
more convenient because users not only do not need to enter instructions repeatedly,
but also do not need to search for any other information.

e Premature commitment:

It is hard for writers to write a table of contents list before writing a book. Similarly,
forcing users to make a decision before the information is available can be difficult
for them especially those live coding performers.

To avoid it, in Livecodelab, users do not need to do system design before coding.
They are allowed to do live coding shows impromptu and add any sentences to the
internal structure or delete some of them during performance.

Our system is dedicated to providing an embodied way to interact with the virtual live
coding system. We do not require our users to have any prior experience of
programming or using our system. And we do not require users to decide what they
need to create for the project before exploring it.

This comparison indicates that the new interactive modes provided by our system can meet
the needs of live coding—the language is simple enough to learn, all commands can be
executed immediately and it is not a fluid system (mentioned in CDN).



S CONCLUSION

Live coding environments enable users to create audiovisual works that modify a running
system, without requiring the system to be restarted. They are often used in live
performances. Our project aims to take advantage of the visual display of VR to make the
performance more immersive, and the controllers of typical VR environments to make live
coding more embodied. Thus, we present a programming environment in virtual reality for
live coding performers. In order to support more intuitive and more appropriate interactions
in VR, we introduce voice and gesture recognition combined with the GUI system to Meng
and believe this is preferable to using virtual keyboards for programming in VR.

Meng has different aesthetics from other live coding systems. The major visual features in
Meng come from the ray marcher we implemented, which supports primitive combination
and blending, allowing users to combine existing geometries into new shapes; it also supports
more advanced features such as rendering volumetric fog and fractal geometries.

Our user study indicated a high degree of satisfaction with the input methods of Meng.
However, still many participants are dissatisfied with the voice recognition rate; improving
this will be an important component of our future work. Other areas we plan to work on in
the future include:

e The ray marcher in our system now supports using boolean operations to combine two
geometries. We will add support for blending multiple geometries using boolean
operations.

e We run the boids algorithm on GPUs that are good at doing parallel computing for
better performance in Meng. In fact, the boids algorithm still has room for
optimization. We are considering using the spatial search algorithm to speed up the
agent's query process for its surrounding agents.

e We plan to develop a GUI to visualize the tags of all agents in the scene. In this way,
the user can conveniently use the voice to query the corresponding agent according to
the displayed tags.

e We plan to implement undo functionality in a future version to allow users to easily
reverse earlier commands.

e We plan to conduct a long term study to observe whether users are still satisfied with
combining voice and GUI as inputs after using them for longer periods of time. We
will also attempt to evaluate if the worlds users make with the features Meng provides
meets their goals and expectations.

During the development of Meng we have contributed a number of open-source libraries:

e “Meng” - Live Coding in Virtual Reality:
https://github.com/aceyan/Live-Coding-Virtual-Environment
The Github repository of our system including the evaluation version.
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e UE4 Raymarching Plugin:

https://github.com/aceyan/UE4_RayMarchingPlugin
A plugin enables users using ray marching in Unreal Engine 4.

e UE4 GPGPU Flocking/Boids:
https://github.com/aceyan/UE4_GPGPU_flocking

A plugin enables simulting flocking behavior using GPGPU in Unreal Engine4.

e UE4 Google Speech to Text Plugin:
https://github.com/Vakarian 1 5/UE4-Google-Speech-to-Text-Plugin
A plugin enables users to record their speech and recognize it through Google
Speech-to-Text.
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