
1

The Call of Karen

A Major Qualifying Project

Submitted to the faculty of

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Bachelor of Science in

Interactive Media and Game Development

And for the

Degree of Bachelor of Arts in

Interactive Media and Game Development (Technical Art Concentration)

Authors:

Kate Olguin (IMGD BS)

Thomas Tawadros (IMGD BA)

Diana Kumykova (IMGD/CS)

Mikel Matticoli (IMGD/CS)

Advisors:

Farley Chery (IMGD)

Dr. Gillian Smith (IMGD/CS)

14 May 2020

2

Abstract

 The Call of Karen is a PC simulation comedy game about a 1950s suburban housewife

whose home is invaded by Cthulhu. The player controls the titular housewife, Karen, who is

trapped in an unhappy marriage taking care of an ungrateful child, and must keep up

appearances in the face of a home gone mad. The goal of this MQP was to create a fun, funny,

and full-fledged game of high enough quality to be released on a major distribution platform

such as Steam or the Epic Games Store. We also wanted to create a compelling narrative that

deconstructed the nostalgia associated with the 1950s by telling a story from the often

neglected and demeaned perspective of a 1950s suburban housewife.

This report describes the production process of The Call of Karen, including details of

the evolution and completion of the game’s design, art, gameplay, playtesting, and showcasing

procedures. The game at the time of this report is functionally complete, and playtesting and

showcasing results indicate that we did achieve our goal.

Acknowledgments

We’d like to thank our advisors, Professors Farley Chery and Gillian Smith. Their

experience, input, and feedback was invaluable to us during this process. We’d also like to

thank all of our playtesters who gave us their time and useful feedback, and the people outside

the team who lent their voices to the game, Fiona Doyle and Zeke Feldman. Finally, we’d like to

thank reference librarian Laura Robinson, who helped us out at the start of the project.

3

Table of Contents

Abstract 2

Acknowledgments 2

1 Introduction 7

2 Background 9

2.1 Representations of the 50s in Media 9

2.1.1 Suburbia: A Man’s World? 9

2.1.2 Influence of J. G. Ballard 10

2.1.3 Your Friendly Neighborhood Cthulhu 12

2.1.4 Anxiety in the Americas 12

2.1.5 Genre Titles 13

2.2 Representations of Women in the 1950s 17

2.3 Representations of Cthulhu in Media 22

2.4 Humor in Games 25

3 Design 28

3.1 Experience Goal 28

3.2 Comparables 28

3.3 Story 30

3.3.1 Story Summary 30

3.3.2 Characters 31

3.3.3 Karen 31

3.3.4 Husband 32

3.3.5 Child 33

3.3.6 Radio 33

3.3.7 Susan Jones 34

3.4 Mechanics 34

3.4.1 The Idea of Horror 35

3.5 Tasks 35

3.5.1 Smoothie/Breakfast 36

3.5.2 Lunch 37

3.5.3 Cleaning Up 37

4

3.5.4 Vacuuming 38

3.5.5 Cooking Meatloaf 39

3.5.6 Setting the Table/Cleaning the Table 41

3.6 Flavor Tasks 42

3.6.1 Ordering Silver Bullets 42

3.6.2 Receiving and Using an Ancient Book 43

3.6.3 Modifying Vacuum with Bullets 44

3.6.4 Final Vacuum Modification 44

3.6.5 Sealing Away Cthulhu 44

3.6.6 Revving the Cthulhu Vacuum 45

3.7 Days 45

3.8 Progression and Escalation 47

3.8.1 Escalations by Task 49

3.8.2 Breakfast 49

3.8.3 Cleaning Up 50

3.8.4 Vacuuming 51

3.8.5 Dinner Dash 51

3.9 Other Methods of Conveying Cthulhu 51

3.10 Greyboxing & Paper Prototyping 52

3.11 House layout 53

4 Technical Implementation 55

4.1 Key Software/Tools 55

4.2 Why We Chose PC Over VR 55

4.3 Engine: Why We Chose Unreal 56

4.4 Version Control 57

4.4.1 Why we chose Git and not Perforce 57

4.4.2 Workflow 58

4.5 Game Structure 59

4.5.1 Actors, Components and Triggers - Oh my 59

4.5.2 High-Level Documentation 60

4.5.3 TaskManager 61

4.5.4 C++ Integration and BP_GameManager 62

4.5.5 Data Storage: Data Tables and Dictionaries 64

5

4.6 Gameplay: How was the game made? 65

4.6.1 Day Night Cycle and Task Loading 65

4.6.2 Escalations and AI 65

4.6.3 Movement System 67

4.6.4 User Interface 67

4.7 Implementation Difficulties 70

4.7.1 Blueprints vs C++ 70

4.7.2 Git Merge Data Loss 70

4.7.3 Semi-Random Data Overwrites and Deletion 71

5 Art 72

5.1 Inspiration and Concept 72

5.2 Colors 77

5.3 Asset Creation 78

5.3.1 Modeling 78

5.3.2 Texturing 79

5.4 Technical Art 81

5.4.1 Shaders 81

5.4.2 Rigging 84

5.4.3 Particle Effects 85

5.4.4 Cosmetic Blueprints 85

5.4.5 Lighting 87

5.5 User Interface 90

6 Sound Design 92

6.1 Voiceover 92

6.2 Music 93

6.3 Sound Effects 94

6.4 Implementation 95

7 Playtesting and Showcasing 96

7.1 Institutional Review Board Approval 96

7.2 Playtesting Protocol 97

7.3 Alphafest 97

7.4 Playtesting Session 1 103

7.5 The MassDiGI Game Challenge 107

6

7.6 Playtesting Session 2 109

7.7 PAX East 114

7.8 COVID-19 and Playtesting 114

8 Conclusion and Recommendations 116

8.1 Scope 116

8.2 Team Dynamics 116

8.3 Team Structure 117

8.4 Project Management 117

8.5 Future Work 118

8.6 What Went Wrong 118

8.7 What Went Right 118

9 References 120

10 Appendices 126

Appendix A: Final Game Progression List 126

Appendix B: IRB Exemption Example Survey 128

Appendix C: Alphafest Survey 129

Appendix D: Playtesting Survey 1 132

Appendix E: Playtesting Survey 2 135

Appendix F: MassDiGI Game Challenge Slides 138

7

1 Introduction

 This Major Qualifying Project (MQP) was completed by four Worcester Polytechnic

Institute (IMGD) students. The project’s artists were Kate Olguin, majoring in Interactive Media

and Game Development (IMGD), and Thomas Tawadros, majoring in Interactive Media and

Game Development with a concentration in Technical Art (IMGD BA). Kate Olguin also served

as the project’s producer. The project’s programmers were Diana Kumykova and Mikel Matticoli,

both majoring in Computer Science and Interactive Media and Game Development (CS/IMGD).

The Call of Karen is a PC simulation comedy game developed in Unreal Engine 4 during

the 2019-2020 school year at Worcester Polytechnic Institute. The game is about a 1950s

suburban housewife whose home is invaded by Cthulhu. The player controls the titular

housewife, Karen, who is trapped in an unhappy marriage taking care of an ungrateful child, and

must keep up appearances in the face of a home gone mad. The player completes tasks

stereotypically associated with 1950s suburban housewife life. These tasks quickly spiral out of

control, resulting in gameplay like Cooking Simulator, but with more eldritch horror.

Our main goal with The Call of Karen was to make a full-fledged game that would inspire

humor and keep players consistently engaged throughout its playtime. We also wanted this

game to be of a high enough quality to be released on a major distribution platform like Steam

or the Epic Games Store. Worth noting is that going through the actual process and steps of

release is outside of the scope of this MQP (though it is something we plan on doing). However,

for this project, we wanted to create a product that was of high enough quality where we would

be able to release it if we wanted to.

As students, it’s often hard to find the time to get a big project out the door. Additionally,

with the way the term system works at WPI, we don’t get too many opportunities to go through

the entirety of the game development process under academic supervision. Professors and

outside industry experts alike have told us that there is great value in bringing a project from

start to finish, so we set out to make a game that would allow us to go through as much of the

game development process as possible.

Another key goal with The Call of Karen was to tell a compelling story that deconstructed

the nostalgia associated with the 1950s through the eyes of a period accurate suburban

housewife. The 1950s is often portrayed through rose-tinted glasses in media (Dwyer, 2015),

glasses that conveniently ignore the fact that this era was a terrible time to be a woman.

Additionally, suburban housewives and their work is consistently demeaned and subject to

significant negative stereotyping (Neuhaus, 2011). We thought that there was value in exploring

this neglected perspective in an accurate way to provide social commentary on the patriarchal

society of the 1950s.

 In chapter 2, we detail our research findings that allowed us to accurately and

thoughtfully portray and deconstruct the 1950s. Chapter 3 discusses the overall design of the

game, including the influence our findings in chapter 2 had on our narrative and game structure.

While chapters 2 and 3 discuss the why of our game, chapters 4, 5, and 6 discuss the how,

exploring the technical, artistic, and sound design choices made throughout our development

process. Chapter 7 details our results and experiences with playtesting and showcasing our

game, and Chapter 8 concludes our paper with an analysis of some of the aspects of

development that led us to success that weren’t covered in previous chapters, as well as what

8

went wrong and what went right.

By keeping a tight hold on scope and maintaining consistent, close communication, The

Call of Karen enjoyed a fairly smooth production process. We believe we were able to go

through the majority of the game development process. Our observations and data from

playtesting and showcasing detailed in chapter 7 indicate that we met our experience goal and

our game is of high enough quality for release. As a result, we’d say this MQP was a success.

9

2 Background

The Call of Karen is one part 1950s housewife simulator, one part Lovecraftian horror

experience. With the game being set in a historical time period, we used a variety of sources to

better understand and recreate the world of the 1950s. Of particular interest was the life and

struggles of women from the era, as well as how they are represented today. Intersecting this

historical setting is H. P. Lovecraft’s Cthulhu Mythos (Loucks, 2012). The work of Lovecraft in

general, and the Cthulhu Mythos in particular, have become immortalized in popular culture. In

recent years one can find everything from novel series to video games themed on Lovecraft’s

work (Ghodrati, 2013). Research into this area guided creative decisions around task escalation

and enemy design. Finally, we researched humor in video games, how it functions, and how

best to use it. The Call of Karen straddles a line between self-aware comedy and cosmic horror,

so getting the balance right was key to creating an enjoyable experience.

2.1 Representations of the 50s in Media

 The “suburbia” of 1950s America has become immortalized in popular culture. When our

team first began to brainstorm what the 1950s means today, we came up with images of well-to-

do households furnished in gaudy colors, housewives in polkadot skirts, and the staticy sound of

a radio announcer rattling off in the background. The word “Hoover” entered the American

lexicon as a reference to the eminent vacuum brand (Blitz, 2016). The Red Scare, and the

Space Race weighed heavy on the minds of Americans nationwide (History.com Editors, 2020).

Much of our current idea of 50s suburbia comes from a history of representation in media

including books, television, and film (Huq, 2013). Looking back at these representations gave

our team some guidance on how to go about building a game that takes place during that time.

2.1.1 Suburbia: A Man’s World?

 Defining the term suburbia is not entirely straightforward. What quickly comes to mind,

involved with the images above, are suburban neighborhoods: row upon row of neat, cookie

cutter houses lined with white picket fences. This “physical” setting is the most concrete

manifestation of suburbia. Location, however, is only a piece of the whole picture. Huq (2013)

considers suburbia a “sociocultural category,” in this case, of the American experience. The

social, economic and political background of the day are all important in painting a complete

picture. While it was not typically the subject, 1950s suburbia provided the background for, and

subsequently became defined by, popular works of fiction including books, tv shows, and

movies. The earliest works come from the 50s themselves. Preeminent among these is Sloan

Wilson’s novel The Man in the Grey Flannel Suit (1955).

10

Both the book and subsequent movie of the same name were popular hits. The novel hit

a “cultural nerve” (George 2016). Through the character of Tom Rath, it explored the conflict

between conformity and individualism in America’s working man. It put the idea of the “straight

suburban mindset” into public consciousness, but more generally, it solidified a theme of

dissatisfaction present in working-class suburban life. This story focuses on the male

perspective of suburban family life. However, Tom’s wife Betsy gives an impression of the

female perspective. Dissatisfaction with the current state of affairs and her husband’s lack of

ambition illustrate that everything is not smooth sailing in a superficially picturesque marriage.

This aspect of the nuclear family was something we sought to recreate when portraying the time

period from the perspective of a housewife.

In The Call of Karen, we wanted to accentuate the dissatisfaction of the suburban status

quo as seen from the female perspective. Throughout the game, the player experiences Karen’s

frustration with her family. But the dismissal with which her husband and child treat her, while

real, never leaves the house. In this way, it is implied, the appearance of an ideal family is kept

afloat, and Karen herself bears the brunt of keeping up this appearance. The catchphrase of the

game illustrates this sense of obligation: “When horrors come to town, your property value will

not go down.”

2.1.2 Influence of J. G. Ballard

Despite, or perhaps due to, its ordinary nature, suburbia is often the setting for unlikely

events. With the threat of Soviet attack weighing on the collective American conscience, the

suburbs were often painted as a place to escape to in the event of nuclear armageddon. The

Poster for The Man in the Gray Flannel Suit (1956)

11

cold war “engendered a ‘bunker’ mentality – seen literally in the 2009 film of Christopher

Isherwood’s 1964 set A Single Man where the main character George’s neighbours are building

bomb shelters” (Huq, 2013).

English novelist J. G. Ballard is renowned for his depictions of an apocalyptic post-war

landscape. Beginning in the 50s, Ballard wrote stories prominently featuring “20th-century

middle-class people devolving into savagery,” dystopian landscapes, and dehumanized sex and

technology (Encyclopedia Britannica 2011).Such settings and topic contrasted heavily with the

straight-laced ethics of 1950s suburbia, but contribute heavily to subsequent public imagination

of the era. He foresaw a media-saturated society, a population oblivious to the struggles of the

real world. Again, we see a “worst-case scenario” attitude toward the future. On the surface, this

strongly juxtaposes the social conservatism of the day, which mandated an unflinching belief in

the sunstained superiority and excellence of the Western Bloc. But as time progressed, the

psychological weight of mutually assured destruction led to a progressively bleaker outlook,

both in the US and around the world. The prospect of a world torn apart by human conflict

seemed, and likely was, closer than ever. A yet uninvented medium, video games, would go on

to capitalize on this era of fear.

Our game plays on the Ballardian theme of apocalyptic occurrences in the proverbial

backyard. The suburbs, neighborhoods born of a cookie cutter mentality, had an already low

tolerance for inexplicable events, let alone an eldritch nightmare taking dominion. The

juxtaposition of 1950s suburbia and Lovecraftian nightmare is amusing due to the contrast

between the two topics. However, this conceit is only believable because of the sense that the

tranquil suburb is exactly the place where something like this would happen.

Poster for It’s a Wonderful Life (1946)

12

2.1.3 Your Friendly Neighborhood Cthulhu

Proceeding books, film and television representations of the 1950s color our perception

of what they were like. In 1946, It's a Wonderful Life immortalized on the silver screen the

wholesome, “All-American“ values that would later come to dominate the genre of “feel-good”

suburban film. Ten years later the aforementioned adaptation of The Man in the Gray Flannel

Suit showcased a more dramatic picture of a similar world. Both films portray the male

perspective. Ambition and the need to succeed in work contrast with a responsibility and

commitment to the family. Ultimately, upstanding morals come out on top. In contrast, Huq

points out that “retro-representations of the 1950s/1960s are quite unlike the actual films from

the era which tended to portray suburban perfection.” Starring Toby Maguire, Pleasantville

(1998), tells the story of two siblings that are transported into a sitcom from the 50s. An idyllic

midwest town, Pleasantville epitomizes post-war suburbia. Old-fashioned American values,

centered on the nuclear family, take center stage. The film turns black-and-white, but as the

main characters challenge the moral framework of the town, they slowly bring color to this world.

Ultimately, the film portrays the 50s as a simpler, but more restricted time, when individual self-

expression was not as valued as today.

Starting in 2007, the Mad Men tv series explored the seamy underbelly of corporate life

in the 1950s and 60s. It depicts misogyny, greed, and unrelenting power struggles that were

certainly a part of life in the 50s, but a part rarely explored in movies or television from the time.

Huq points out a theme in suburbia on television of ‘them’ and ‘us’. The tv showed spacious,

comfortable suburban homes, while viewers were more likely stuck in a more cramped, less

idyllic reality. Again, retrospective media paints a different picture.

Superficially, The Call of Karen is a kind of Pleasantville. At a glance, the game is

colorful, bright, and lighthearted. The game does not take itself too seriously, and thus the

player experience’s Karen’s daily routine at a distance. It does not hit close enough “to home”

that they feel the game is describing physical reality. However, the psychological and emotional

reality of Karen’s life, like those of the citizens of Pleasantville, is one of monotony and

stagnation. Only when Toby Maguire (literally) steps into the picture does anything significantly

change in the town of Pleasantville, and much the same can be said about our game’s rendition

of Cthulhu. In a way, the Great Old One was the catalyst that Karen needed to break through

the prison of her stay-at-home life. Likewise, at the end of the game, she wields her hallowed

vacuum cleaner, revving it in response to her husband’s unwitting selfishness.

2.1.4 Anxiety in the Americas

Perhaps a reason that games have used the 50s as a setting is the perceived prosperity,

and vulnerability of the time. The U.S. experienced an economic boom after the second World

War. According to Moffatt (2020), the period from 1920 to 1960 saw the nation’s gross national

product rise from $200 million to over $500 million. The end of the war effort meant industry

could finally relieve pent-up consumer demand. American markets and goods penetrated

foreign countries. The “baby boom” was steadily increasing the number of consumers with

disposable income. The rest of the world was struggling to recover from the aftermath of the

war. Americans, largely untouched by Axis firepower were, for all intents and purposes, on top

of the world. Progress and prosperity became national ideals. This aura of economic growth

13

fueled a particular brand of American exceptionalism. This became increasingly obvious during

the Cold War.

But in 1957, much to their chagrin, Americans got news that Russia had become the first

nation to put an artificial satellite into space. “Just when [they] were feeling self-confident and

optimistic about the future, along came the crude, kerosene-powered Sputnik launch...America

was agog and unnerved” (Dickson 2007). With exceptionalism came anxiety. The U.S. saddled

itself with the responsibility of beating Russia in the space race. At the same time, mutually

assured destruction via atomic warfare circulated in the public imagination. From across the

globe, the world’s two largest superpowers were aiming at each other with hair triggers. A

nuclear apocalypse did not seem like such an unlikely future.

In The Call of Karen, the radio announcer acts as a conduit for the anxiety of the outside

world. Karen, and thus the player, never leave the house. Likewise they must rely on the radio

for news of current events. With his talk of freak storms, communist sympathizers, and the stars

being right, the radio announcer epitomizes the anxiety and hesitation about the outside world

that was felt in the 50s. The game emphasizes this further, only letting the player out of the

house when Cthulhu is at the doorstep.

2.1.5 Genre Titles

Four decades after the launch of Sputnik, one game developer would ask the question:

what would the world look like if the 50s did end in nuclear apocalypse? Developed and

published by Interplay Entertainment, Fallout: A Post Nuclear Role Playing Game released in

1997. It introduced players to a vision of an America ravaged by nuclear war. According to Hall

(2018), the Fallout universe diverges from our own after the 1945 surrender of Japan to the

Allied Powers. Technology progresses, and the world experiences a number of nuclear conflicts

that eventually ravage the planet. But the game is quick to remind us that some things, like war,

never change. Social and aesthetic development seem to have stopped mid-century. The game

In-game advertisement for Vault-Tec in Fallout 4 (2015)

14

takes place in the year 2161, but more resembles a twisted, nightmarish version of the 1950s. In

the Fallout timeline, the USSR declined and communist China replaced it as America’s rival

super power. The U.S. remains in a state of cold war for over a century. Technological

development, both civil and military, centers around the exploitation of atomic power. Visually,

the game is “distinctly retro-futuristic.” (Hall 2018). The Fallout world takes inspiration from

World’s Fair imagery from the 50s and 60s. In this universe, the technology of the future looks

just like people in the 50s thought it would. Old fashioned diners, car chassis, and jukeboxes

straight out of the 50s populate the environment. But the graphics of the original Fallout are

limited. Most of the game is played from a zoomed-out, isometric perspective. Closeup

character screens show off more of the aesthetic, but the graphic fidelity is low by today’s

standards.

Promotional image for Fallout 4 (2015)

Screenshots from the original Fallout. Left: Isometric perspective; Right: Character

interaction screen

15

The original Fallout met critical acclaim, and since then Fallout has come to be a

household name in the gaming community. Later games in the Fallout series would benefit from

developments in graphics rendering technology. Starting with Fallout 3, developer Bethesda

Softworks allowed the player to experience the game from a first-person perspective. More

recently, Fallout 4 (2015) and Fallout 76 (2018) take advantage of modern physically-based

rendering (PBR) to bring the world to life. Although the Fallout games are set in the near to far

future, they represent the social, technological, and aesthetic sensibilities of post-war

Americana.

The Fallout games are likely the most well known video games to use 1950s America so

heavily as both set and inspiration. They certainly are not the only ones. 1950s iconography and

tropes have inspired a variety of games spanning genres. Among these is the game Destroy all

Humans! (2005), which explores an apocalypse of a different nature. Developed by Pandemic

Studios and published by THQ, Destroy all Humans! put the fate of humanity in the hands of

2005’s console gamers. Players control Crypto, a flying-saucer piloting alien bent on extracting

human brains for the survival of his species.The game takes place in locations across 1950s

America, from suburban Santa Modesta to Capitol City, parodies of Santa Monica and

Washington D.C. respectively.

The game is self-aware and filled with dark comedy, and references to 50s pop culture

abound. The first army detachment sent to intercept you can be heard chanting:

Promotional image for Fallout 76 (2018)

16

“I don’t know what I’ve been told, Joe Mcarthy’s good as gold.”

Throughout the game, non-player characters (NPCs) theorize that Crypto is part of a

communist plot to undermine the country. The ability to mind-read nearly anyone also provides

an entertaining look into Pandemic’s satirized version of the 50s.

The popularity of Destroy all Humans! Spawned a sequel, and a remake was released

over the time this paper was written. The previous games showcase the myriad ways that the

1950s have been captured and represented in games over the last two decades. The Call of

Capitol City in Destroy all Humans! (2005)

Town of Santa Modesta in Destroy all Humans! (2005)

17

Karen draws elements from all of them, weaving together a self-aware comedic narrative with

high graphical fidelity. Our game stands on the shoulders of giants, but brings a fresh

perspective that has been missing for quite some time.

2.2 Representations of Women in the 1950s

The titles mentioned above were (and continue to be) popular hits, but smaller games

also show the widespread influence of 50s suburbia. Particularly relevant to The Call of Karen is

the Kickstarter game Aberford (2015) from Sketchy Panda Games. Set in the titular small town,

the game would feature 4 housewives as they

Aberford (2015) Kickstarter promotional image

Mind-reading in Destroy all Humans! (2005) reveals humorous undertone

18

battled back hordes of zombies, formerly the men of their community. The game takes cues

from the popular “50s housewife” persona seen in advertisements from the era. These

reinvented housewives, however, have a crucial difference: their capacity for violence. Cooking

and cleaning are replaced by bludgeoning and beating. It was the video game manifestation of a

trend seen on Pinterest and other social media sites. Images of housewives from

advertisements like the ones above were edited and captioned, in the style of ironic memes.

Most of this seems to be for the sake of comedy, but much of what makes these images funny

is the contrast between the reader’s internal persona of the 50s Housewife, and the one

suggested by the image. The prevailing sense one gets from the original ads of the era is one of

perfection, of order, of a certain conservative mindset. A 50s housewife is always well dressed,

well mannered, and knows how to cook, clean, and tend to a household. She is the symbol of

well-to-do suburban life, iconic in her polka dot house-dress, baking sheet in one hand, oven

mitt glued to the other. Most importantly, she is the foundation of a stable household, putting the

wellbeing of her family before everything else. But the idea of an ideal housewife is just that: an

ideal.

In reality, this pristine outer persona is a kind of propaganda, a hollow image of what

upper middle-class Americans valued and wanted at the time. In-line with the social

conservatism of the day, it eschews messy, realistic portrayals of women for an easily digestible

fantasy. Who needs subtlety when nuclear weapons and communists threaten to destroy your

very way of life? Memes like the one above cut rather violently across the 50s housewife

persona. What if things were actually not as hunky-dory as they look? What if the weight of

social conformity was driving women of the era insane within the prison of their own homes?

They frame the outer veneer of perfection as completely superficial. It’s fundamental function is

to hide instability and reinforce a status quo. It creates a character out of a flawed human being.

In the age of social media, we see idealized personas all the time. Instagram, Facebook,

and other social media sites have made it easier than ever for bodybuilders, fitness models, and

the like to portray a particular image of who they are. What’s different is that we are now

beginning to realize the society-wide detriments of this practice. Indeed, research linking

Aberford (2015) blends 50s housewife personas with retrospective internet memes like the
one above

19

internet use to declines in mental health have been surfacing since the late 90s (Pantic 2014).

Social media use, especially among teenage girls, has been linked to significantly higher rates

of depression. Another crucial difference is the perceived enforcer of the status-quo. At a

glance, it’s tempting to say that back in the 50s, social-conformity was enforced by interpersonal

relationships, whereas today it is enforced by the media. In reality the distinction is not so black

and white. During the 50s, television started to broadcast what the ideal family should look like.

Shows like Father Knows Best and I Love Lucy, began to influence the American identity.

Clearly, media contributed to a sense of shared values, influencing us much like media does

today. So, on some level, media influence has been part of the social fabric since at least as

early as the 50s. But apart from the iconic look, what did people from the era think about the

role of women in society?

The 50s themselves were seen as a time when women were predestined to become

homemakers. Having just come out the end of the second World War, women who had been

previously involved in the manufacturing work for the military-industrial complex began to be

displaced by returning GIs. Industry had evolved since the beginning of the war, but not enough

that the returning workforce was completely alienated. So, women who had answered the call of

Rosie the Riveter left the factories and mills. And with the baby-boom in full swing at the end of

the 40s, American women were more than ever becoming homebound.

Women were also viewed as the stable backbone on which countries including post-war

Britain would rebuild. “This was due in part to the significant contribution women had made to

the war effort and their on-going commitment to postwar reconstruction” (Beaumont, 2016).

America, being more isolated from the destruction seen in other parts of the world, likewise

Poster for I Love Lucy (1946)

20

viewed women as the anchor of the nuclear family in a time when the world was just beginning

to recover from the largest war it had ever seen. This high regard, however, did not come

without tradeoffs. Women were portrayed as wives and mothers first. “In contrast to the dynamic

possibilities of women's new role in postwar society, the prevailing view of women at this time,

as illustrated in popular women's magazines, was that the vast majority aspired only to marriage

and motherhood” (Beaumont, 2016). Whereas women had already proven they could be

valuable members of the workforce during the war effort, they were nonetheless relegated to the

role of mothers and wives. Beaumont makes explicit that “Women during the 1950s were not

just housewives and mothers but were also workers, campaigners, consumers, spinsters,

widows, lovers, divorcees, prostitutes and citizens.” The full array of women’s experiences and

aspirations during this period, however, have been largely lost to history, or at least to public

imagination. What persists, however, are the colorful, iconic images found in magazines of the

ideal 1950s housewife.

Many magazines and advertisements of the time sought to market home appliances. It

was a time when technology for the sake of convenience was a celebration of success.

American exceptionalism was entering home life in the same way it does today: consumer

goods. This phenomenon alone inspired a few aspects of The Call of Karen, including the use of

a “Hurston” vacuum, and mail ordering silver bullets through a magazine catalog.

The 1950s was the golden era of mail-order. The Sears-Roebuck catalog, started in the

late 1880s, saw explosive growth throughout the coming decades. By the 1950s, Sears had

exceeded $1 billion in sales, and “had opened more than 700 stores in the United States”

(Pruitt, 2019). Sears had become a retail titan, expanding to neighboring Mexico and Canada.

Our in-game catalog was based on the popular mail-order catalogs of the day.

21

Their economy of scale allowed Sears to sell everything from socks to entire homes. In the

middle were appliances: dishwashers, stoves, vacuums, and the like. And who better to market

such goods to than the American housewife.

1950s America was imbued with the aura of technological progress unhindered by the

notion of externality. New and innovative appliances were created to help people, including the

ordinary housewife, in their day-to-day duties. The perception was that such technology would

make life easier and more free, and to some extent it was true. Anyone who has ever washed

clothes by hand can attest to that. But an invisible cost of all this innovation was that it

commodified the labor of the women who used such appliances. Appliance advertisements like

those pictured above deepened the already strong gender role assigned to women during the

50s. With the Sears and other catalogs now immensely popular, they then spread this

housewife persona far and wide through the use of advertising.

The commodification of the homemaker also served to isolate them. Discouraged from

seeking employment, housewives spent their days slaving away at the same repetitive tasks in

service of what we can only hope was a loving family. But apart from the few ideal cases, works

like Grey Flannel Suit (and general human experience) show that families rarely function

perfectly. The breadwinner, the “working-man” of the 1950s, was the paragon of the household.

Working husbands providing income meant that housework was deemed secondary, the needs

of the housewife secondary to those of the husband. The difference, however, is that while the

working man pursued his ambitions and competed for more desired opportunities, the

housewife was relegated to the home, with no outlet for her ambitions, entirely at the service of

her family. From a modern perspective, with women now integrated into the global workforce, it

is not that difficult to see why some women in the 50s would feel trapped by their

circumstances. With the constant pressure of monotonous servitude, who knows what kind of

psychological stress they could have been under. As may be clear by now, this was the primary

perspective we wanted to explore in The Call of Karen. Behind its playful and light-hearted

exterior, the game is pinned to the psychological struggle of the 1950s housewife. The problem,

in our case, was portraying this struggle. Luckily, there is sufficient precedent in this area,

stemming from the long celebrated author of the Cthulhu mythos.

1950s advertisement featuring housewife persona

22

2.3 Representations of Cthulhu in Media

 H. P. Lovecraft was born in 1890 in Providence, Rhode Island. Though he began

publishing stories at an early age, he was little known during his lifetime (Somers, 2020). Only in

the time since his death has Lovecraft’s work in the realm of horror fiction risen to prominence.

The terms “cosmic horror,” “weird horror,” and most recently “Lovecraftian Horror,” all stem from

the emergent ubiquity of Lovecraft’s work. In contrast, the phrase “Cthulhu Mythos,” the term

describing the entire pantheon of fictitious stories, settings, and characters started by Lovecraft,

was first used by one of his contemporaries in correspondence (Ghodrati, 2013). Of particular

interest is that Lovecraft’s work has travelled far outside the circles of literature in which it was

born, penetrating into pop culture. Much like the writers that have since emulated Lovecraft’s

style and subject matter, creatives in all areas of media have been inspired by, and directly use

the horrific universe built by Lovecraft in their own works. Eminent writers including Neil

Gaiman, Alan Moore, F. Paul Wilson, and the prolific Stephen King have Lovecraft to thank. In

King’s words: “[Lovecraft] opened the way for us. He looms over all of us. I can’t think of any

important horror fiction that doesn’t owe a lot to him” (Ghodrati, 2013). Director Guillermo Del

Toro and surrealist artists H. R. Geiger and Jean Giraurd (Mobius) also credit Lovecraft as

inspiration. The supplemental literature, and more recently cinema, have had a tremendous

effect on the general perception of the Cthulhu Mythos. Most recently, tabletop and video

games have begun to incorporate elements of the Cthulhu mythos. Some, as we’ll discuss,

employ narratives constructed entirely within the Cthulhu Mythos.

 Of particular importance to this paper, and to the design of The Call of Karen as a game,

is the way in which Lovecraft told his stories. “Cosmicism” is the term given to the operational

manual by which Lovecraft constructed his Eldritch universe. Cosmicism is “the idea

and philosophy that mankind is absolutely insignificant and irrelevant...that life is genuinely

inconceivable to the human mind, and the universe is fundamentally indifferent or hostile toward

mankind” (Ghodrati, 2013). Glimpsing this vast imcomrehensibility tends to drive characters

insane, and it’s often this glimpse that ends or forebodes the end of any hope of a positive

conclusion for a protagonist. From the moment William Dyer hears a report of the titular range in

At the Mountains of Madness (1931), the story is imbued with an eerie sense of hopelessness.

And from the moment Thurston describes the small bas-relief in The Call of Cthulhu (1928), he

carries the weight of knowledge too heavy for human minds (HorrorBabble, 2017, 2018).

Lovecraftian horror stories rarely have unambiguous or happy endings.

 Ghodrati captures the contemporary appeal of Lovecraft: “[His] ‘gods,’ names, incidents

and settings were all created as if for our age; for the age of scientific and technological

wonders and for the age when those weird paragraphs of cosmic horror and the Old Ones could

be put into concepts for video games, arts and especially digital arts, modern horror writing and

special effects in cinema” (2013). According to Ghodrati, Lovecraft first began to enter cinema

after the second World War. The “proliferation of atomic weapons” , had caused the public to

question the “sanity of the scientific world” (Ghodrati, 2013). The official Lovecraft internet

archive provides 3 categories for cinema involving Lovecraft: those films based directly on the

original stories, Lovecraft inspired films that reference the original content, and films that have a

“Lovecraftian feel to them,” that do not explicitly reference Lovecraft (Loucks, 2020). Among this

third category are Ridley Scott’s Alien (1979) (heavily inspired by the art direction of H.R.

23

Geiger), and John Carpenter’s The Thing (1982). The movies in the Alien franchise, most

recently Prometheus in 2012, have made heavy use of the concept of “ancient astronauts” that

inhabited the earth before the rise of humanity. This concept itself was heavily influenced by

stories like At the Mountains of Madness, where characters stumble upon ruins of what seems

to be an ancient, space-faring civilization.

 As previously mentioned, interactive media inspired by or even set in a Lovecraftian

universe have become increasingly popular in recent years. In the latter category video games

like Call of Cthulhu (2005) and The Sinking City (2019) place players directly within the

Lovecraftian universe, with references to locations like Arkhan, and Innsmouth that were re-

occuring in the original literature. Likely the biggest video game of former categor is the recent

Bloodborne (2015). Releasing for both consoles and PC, Bloodborne, has a plot and backstory

distinct from the Cthulhu Mythos, but draws heavily from the sense of cosmic horror established

by Lovecraft. In particular, the “insight” system is a mechanic with Bloodborne that, once the

player attains enough insight, allows the player to perceive ghastly monstrosities throughout the

world that were previously unseen.

Bloodborne (2015) promotional image

24

This progressive ability to see into an alternate reality, or to see something otherwise

hidden is heavily utilized in the critically acclaimed mobile game series The Room (2012). Every

game in The Room series is a 3D puzzle solving game steeped in Lovecraftian and cosmic

horror. So far, every game in the series has included a “looking-glass” as a core mechanic,

which allows the player to see glowing text, symbolism, and extra-dimensional objects that

would otherwise be invisible. The most recent mobile release, The Room: Old Sins, features

ancient aliens themes and puzzles, connecting it to the same web of inspiration as At the

Mountains of Madness and Prometheus.

 For The Call of Karen, we were not aiming to make a hopeless story. The focus was to

be how Karen could overcome her circumstances, and rise to the challenge of her peculiar

circumstances, without the help of her uncaring family. However, the encroaching presence of

Cthulhu was not simply set dressing. We wanted to portray a psychological struggle in a way

that wouldn’t be completely foreign to players. The ubiquity of Lovecraftian fiction meant that

(because players knew the presence of Cthulhu doesn’t typically bode well) we could use

references to the Cthulhu Mythos to progress the story. It also allowed us to easily and starkly

Increased insight allows eldritch horrors to be seen in Bloodborne (2015)

25

juxtapose the two sides of the conflict: “1950s housewife simulator meets eldritch horror”

became an effective and enticing hook.

 The game itself incorporates direct references to the Mythos, as well as stylistic

decisions that put it in the same category as the “Lovecraftian” films mentioned previously. The

radio, in addition to progressing the narrative, provides many of these references. The player’s

first hint of cosmic horror upon starting the game comes in the form of a radio jingle:

“There’s a new kind of evil about...don’t let the octopus into your home.”

From there the radio narration only gets more suspect, mentioning a “freak storm” over the

Atlantic, and eventually quoting Lovecraft directly: “The Stars are Right, your number one guide

to The Stars Being Right.” Abnormal visual effects, including floating text, camera effects

including chromatic aberration, and grotesque, undulating textures add to the sense of

otherworldy horror.

2.4 Humor in Games

 From the beginning, The Call of Karen was designed to be as much about humor as it

was about eldritch horror. Video games, as entertainment, frequently incorporate humor, and

even some of the darkest, grittiest games take moments, like any good story, to add comic

relief. The Call of Karen is far from gritty; the decision to make a game that didn’t take itself too

seriously occurred early in the design process. But making a game where the humor actually

resonates, and doesn’t fall flat, is easier said than done.

In A Review of Humor for Computer Games: Play, Laugh and More (2009), Dormann

and Biddle divide theories about why humor exists into three categories: superiority, relief and

incongruity. Superiority theory states that humor occurs at the expense of others. Relief theory

emphasizes that humor can occur with the release of nervous tension. Finally, incongruity

Floating text and undulating textures in The Call of Karen

26

theory focuses on how humor tends to occur when people find humor in unexpected or

surprising situations. The order these are presented in also reflects the chronology of the

respective theories, with superiority theory dating back to the mid 1800s (Dormann & Biddle,

2009). Thus, incongruity theory is the most modern, and most well regarded of the theories

about the underpinnings of humor.

Kallio and Masoodian note that “while humor exists in some shape or form in many video

games, unlike in film and literature, comedy is not considered an established genre of its own in

video games” (2019). Comedy does not seem to be a cut-and-dry segment of the video game

market as much as a by-product of the play process: “Eastman points put that humor is a form

of play in itself, and that ‘No definition of humor...will ever stand up, which is not based upon the

distinction between playful and serious‘ ” (Kallio & Masoodian, 2019). In this way the humor in a

game can be “emergent.” For example, in multiplayer games, getting hit by a vehicle and having

your character ragdoll a dozen yards. Military and combat-focused games like the Battlefield,

Call of Duty, and Halo (2001-2020) series all produce comedic gameplay experiences in this

way. It relies on players using open-ended game mechanics and systems to produce humorous,

laughter inducing moments. But what if humor is intentionally built directly into the game?

According to Kallio and Masoodian, “Ludonarrative” comedy involves “active” interaction with an

intentionally humorous gameplay/story-driven experience. They identify 3 primary methods, and

a handful of secondary methods for “incorporating comedy into [the] ludonarrative of video

games” (2019). Primary methods include visual style, the sources of comedy, and conflicts in

comedy. Secondary comic “enhancers” are “useful for captivating the players’ curiosity, but can

also prepare them for the full experience of humor (Kallio & Masoodian, 2019). These include

humorous worlds, environmental storytelling, challenging normality, comic relief, and superiority

humor.

The Call of Karen utilizes many of these ludonarrative strategies. Primary methods

include comedy through source and conflict. An unexpected source of comedy is the radio

announcer, who leads players through the game in a humorous way. Some of the game

Mysteriously floating books are one of the first signs of danger

27

mechanics themselves are also sources of humor. Floating household items, upgrading your

vacuum with silver bullets, and chasing down a possessed meatloaf fit into this category.

Humor is also generated from the central conflict of the story; Karen, an average 1950s

housewife, is at odds with the likes of an eldritch god, a Great Old One descended from the

stars. The Call of Karen also includes many secondary elements for generating comedy. Dirt

and slime spawning on the ceiling and walls reinforces a humorous world and environmental

storytelling. The game also challenges normality, by establishing a relatively believable setting,

and then breaking rules as Cthulhu encroaches further and further into Karen’s suburban

abode.

28

3 Design

In this chapter, we describe the design of The Call of Karen, including the experience

goal in chapter 3.1, narrative design in chapter 3.3, mechanics in chapter 3.4, and overall game

structure in chapters 3.5 - 3.9. We also discuss our comparables and how we drew from them in

chapter 3.2, our greyboxing and paper prototyping process in chapter 3.10, and our level design

in 3.11.

3.1 Experience Goal

Our main experience goal with The Call of Karen stemmed from wanting the player to

feel as though their surroundings were spiraling out of control. This sort of feeling is usually

used to inspire frustration or fear, but we wanted to use this feeling to inspire humor instead. A

Review of Humor for Computer Games: Play, Laugh, and More details two of the major theories

of where humor comes from: relief theory and incongruity theory (Dormann & Biddle, 2009).

Relief theory suggests that we are likely to laugh when we’re somewhat nervous, in order to

break the tension. Incongruity theory posits that we laugh at things that are unexpected,

surprising, and have a certain degree of nonsense to them. The high concept of The Call of

Karen takes advantage of both of these humor theories. Seeing Cthulhu slowly ramp up its

dominion over Karen’s house inspires some tension, which allows us to tap into relief theory,

and the conceit of Cthulhu invading a 1950s suburban housewife’s home inspires humor with

incongruity theory.

While the above goal was largely what our efforts were focused on, we had other goals

as well. In addition to humor, we hoped to inspire amusement. We wanted players to be

consistently engaged with and enjoying the game. We also wanted the player to feel pride in

their work. We wanted to incorporate an element of satisfaction in the tasks the player was

completing, so as to entice them to play further and to make sure they noticed when Cthulhu’s

presence started to affect these tasks.

We defined these goals early on in the game development process, the summer before

our MQP officially began. We believed it was imperative to make sure we were all on the same

page about what kind of game we were making as soon as possible. This experience goal

significantly shaped our design process, and remained largely the same throughout production.

The only minor changes we made were based more on the humor theories we utilized than on

the actual goal itself. While we kept relief theory in mind, as production continued, we found

ourselves leaning more and more towards the use of incongruity theory to inspire the humor we

wanted.

3.2 Comparables

 Throughout the development of The Call of Karen, we drew inspiration from several

games to inform how our game would play. Our main comparables were Job Simulator, Mother

Simulator, and Cooking Simulator (Owlchemy Labs, 2016; PlayWay, 2019; Steppe Hare Studio,

2018). All of these games allow the player to interact with different objects in a physics-based

environment, and are structured around task based gameplay, both of which we wanted to

29

replicate in The Call of Karen. Cooking Simulator was our closest comparable, since it was

close in scope to what we had the capability of accomplishing and also has no fail state. We

also drew from Job Simulator’s step-by-step instructions on completing tasks as well as the

overall goofy tone of the gameplay, and were inspired by the hectic nature of Mother Simulator,

though we decided not to emulate its intentionally unwieldy controls.

Job Simulator (2016)

Mother Simulator (2018)

30

Cooking Simulator (2019)

3.3 Story

 While a large portion of our design process was focused on gameplay and mechanics,

we had to dedicate plenty of time to setting and story as well. While we hoped to inspire humor

with The Call of Karen’s conceit and gameplay progression, it became evident early on that we

would need a cohesive story in order to tap into the game’s fullest potential. We knew that we

had to keep our setting and story obvious and readable—the more that was immediately

apparent to the player, the less we had to go out of our way to convey with added systems, and

the more manageable our scope would remain.

3.3.1 Story Summary

 The titular Karen of The Call of Karen seems to have everything a 1950s housewife

could want: an affluent husband, a gorgeous house, and a bright young child. However, despite

her seemingly picturesque lifestyle, she is deeply unsatisfied. Her husband is largely absent and

dismissive of her, working late hours and rarely engaging with her during the hours that he is at

home. He doesn’t lift a finger to help with any housework, instead choosing to sequester himself

in their room to write his novel. Karen’s son, Francis, displays all the ungrateful mannerisms

typical of 10-year-olds, and spends most of his time with his friend Timmy, whose passive

aggressive mother constantly gets under Karen’s skin.This dissatisfaction with her family and

the expectation that she maintain the household in a perfect state of cleanliness wears on her.

An unhappy house wife in her house life, Karen often falls asleep at the kitchen table, wine

glass in hand.

 During a seemingly normal week, unsettling news begins to air on the radio. There’s a

freak storm over the Atlantic, and the radio host seems to have become a bit unhinged,

occasionally speaking in tongues in a garbled voice. Karen’s house starts to behave oddly as

well. Food flies out of the fridge once she opens it, and slime and floating furniture pop in and

out of existence before she can really get a good look at them. As the week progresses,

31

stranger and stranger occurrences happen in Karen’s house, and she is left trying desperately

to clean it all up before anyone notices.

 After a week of solving eldritch horror-related problems, Karen decides that she’s had

enough. She modifies her trusty vacuum with as much demon-fighting paraphernalia as

possible and challenges Cthulhu face to face. She seals it in her vacuum, and the horrors finally

cease.

3.3.2 Characters

 One challenge we faced with characters is that, in order to convincingly portray a typical

1950s suburban housewife, we needed Karen to have a husband and at least one child.

However, fully voicing, modeling, and animating additional characters is extremely time

consuming, and creeps dangerously towards the uncanny valley if done poorly. After some

deliberation, we decided to make it so that Karen’s husband and children are never seen in-

game, only heard through voice lines shouted across the house. We believed that this added to

the humor of the game and was true to the often isolating lives of 1950s housewives (Lamb,

2011, p.29). This implementation of the husband and child also emphasize the fact that Karen is

unappreciated; she spends all day cleaning, and they don’t even bother to speak to her face to

face. Additionally, we thought having the kid and husband run circles around Karen without ever

seeing her was a funny gag.

We have a few other characters in addition to the husband and child, to give the

impression of a world outside of Karen’s house. Additionally, we wanted at least one other

character to be affected by or acknowledge Cthulhu’s presence, since we wanted to lean away

from the idea that everything happening was all in Karen’s head. We also needed a vehicle for

more humor and commentary on the 1950s, so we incorporated a radio with a host that is also

affected by the encroaching eldritch threat.

3.3.3 Karen

 When creating the character of Karen, we wanted to make sure that we portrayed a

1950s housewife recognizably, but also didn’t buy into any of the harmful stereotypes

surrounding 1950s housewives—at least, not without seriously examining them first. 1950s

housewives are generally represented as happy, subservient women, despite the prejudices

and expectations set upon them by their families and society. We wanted to avoid the harmful

misogyny present in these tropes, and create a more realistic, rounded character. Karen is

unhappy in her marriage, and is well aware of the societal pressures and expectations forced on

her. She doesn’t like it, but she sticks with her husband and keeps maintaining the house in

order to keep up appearances. The idea of maintaining normalcy and keeping up appearances

is integral to the culture of the 1950s, so we wanted this idea to be important to Karen as well.

As a result, Karen doesn’t want to fight Cthulhu because it’s an unspeakable evil that needs to

be stopped, but because it’s affecting her ability to maintain normalcy.

During the beginning of production, Karen was largely voiceless, and her personality

was only expressed through one or two lines. As production continued, we realized that it was

imperative that Karen have more dialogue and be a fully-fledged character, so people would

relate to her more and so we could really clarify that she was not happy with her lot in life. Karen

32

talks to her family politely, but when she’s alone in the house she becomes sarcastic and

beleaguered, revealing her true feelings.

Worth noting about Karen is that she has a background in fighting monsters, which is

hinted at through a few lines in the game. This aspect of Karen’s background is generally skated

over for laughs, but is worth noting—the living room closet in the house is dedicated to monster

fighting paraphernalia, including bottles of holy water, wooden stakes, garlic, crucifixes, salt, and

knives.

Karen’s monster fighting closet. Not pictured are the crucifixes on the wall, just out of

range of the camera.

The monster fighting closet ties into another key aspect of Karen’s personality. While

she is a victim of the misogyny and expectations of her time, she is also incredibly proactive.

She is aware of the horrors encroaching on her house, and takes concrete steps (like ordering

silver bullets and modifying her vacuum to shoot them) to keep everything in order.

3.3.4 Husband

 With Karen’s husband, we didn’t mind as much if we bought into the stereotypes

surrounding 1950s men, because generally those stereotypes were not as harmful or pervasive

as the ones surrounding women. As a result, Karen’s husband is the typical 1950s husband.

Most depictions of 1950s husbands gloss over their negative attributes, so we made sure to

emphasize them. He’s a working man, and as a result is out of the house all day. He offers little

to no help with general day to day care around the house, and doesn’t interact much with Karen

or his child. He’s dismissive of Karen and the work she does, and through Karen’s dialogue it’s

implied that he, like many men of his era, is a misogynist. While he is certainly a bad husband,

we avoided making him overtly physically or emotionally abusive or manipulative. This game

tackles a lot of parts of 1950s housewife life, but we aren’t equipped and weren’t prepared to

properly portray a legitimate abusive marriage. Also worth noting is that an unhappy marriage

can be played for laughs, while an abusive marriage should not be. Karen’s husband is named

John, a stereotypically generic caucasian male name to fit his stereotypical personality. Due to

his general absence, he is only heard throughout the game when leaving for work or giving

33

excuses for not coming to dinner. He is oblivious, and does not notice the eldritch horror

infecting the house, or his wife’s unhappiness.

3.3.5 Child

 Similar to the husband, we didn’t mind if we bought into stereotypes surrounding

children. Francis is Karen’s only child, named for Francis Wayland Thurston, the narrator in the

original The Call of Cthulhu. Francis is generally ungrateful, but not to the point of caricature—

he’s just your average entitled and somewhat rude child. Francis is about 10 years old, in

middle school, and generally out and about. We didn’t want Francis to be a surly teen, but we

also didn’t want him to be so young that he was extremely reliant on Karen, or required too

much supervision to leave the house. We wanted Francis to have items that he would leave

strewn around the house for Karen to clean up, so we settled on trading cards, a traditional

pastime for kids his age in the 1950s. Francis, like Karen’s husband, doesn’t notice Cthulhu

invading the house. It was important to us that we didn’t put Francis in any serious danger—any

game that enters the realm of seriously hurting children strays too close to the kind of horror we

wanted to avoid entirely. We also used Francis as a vehicle for the rivalry between Karen and

one of her neighbors, Susan, by having Francis hang out with Susan’s son. While Francis is

certainly a source of stress in Karen’s life, we intentionally focused on the husband as the

bigger problem in the house. Children are stressful and uncivilized just by nature of being

children, while Karen’s husband is old enough to know better.

3.3.6 Radio

 We knew early in production that we wanted a radio in the game to provide more insight

into the outside world. It was important to us to have a window into life outside of Karen’s house,

to give the impression of a greater, bigger world. We listened to several old radio broadcasts to

make sure we portrayed the radio persona right. We learned fairly quickly that 1950s radio

recordings were few and far between, and that the kind of radio announcers associated with the

1950s were present throughout the 1960s. As a result, we largely used 1960s radio as our

reference, including but not limited to the Ron Lundy Show, Lucille Ball comedy sketches, and

WMCA “Goodguy” Radio (Ball, 1950; KOMA, 1964; Lundy, 1962; Murrow, 1950; O’Brien, 1965).

1950s radio announcers were generally very upbeat white men who did commentary,

interviews, and jokes in between sponsorships and songs playing, so incorporated these

aspects into the personality of our radio host. Our fictional radio station, PMCR radio (which

stands for Ph'nglui Mglw'nafh Cthulhu R'lyeh, part of a chant from The Call of Cthulhu), is hosted by

Charles, named for the protagonist of one of Lovecraft’s other novels, The Case of Charles Dexter

Ward (1941).

Radio hosts and their jokes were products of their time, so we decided to utilize the radio

for commentary on the 1950s. Charles reinforces McCarthyism, misogyny, and intense

materialism on his show, as many of his real-life counterparts did, exaggerated and played up

for satire. Charles also makes comments with uncanny accuracy on what Karen is doing

throughout the day for some extra commentary and humor. We decided that Charles would

slowly get corrupted by Cthulhu, to reinforce the idea that Cthulhu’s presence and impact is not

limited to Karen’s house and mind. Charles maintains his happy-go-lucky and showboating

34

affect even as his voice becomes garbled and he begins speaking in tongues. He seems to

suffer minor nervous breakdowns throughout the week, though once Karen seals away Cthulhu,

he returns to normal.

3.3.7 Susan Jones

 A classic trope of many narratives involving suburban housewives is rivalry with other

suburban housewives. We found that we could utilize this trope while avoiding the misogyny

that defines many other pieces of media depicting suburban housewives, and decided that we

could incorporate some humor here without demeaning or devaluing Karen or her work. Susan

Jones is the local PTA president, and the mother of one of Francis’s friends. She is catty and

makes backhanded compliments towards Karen fairly often, and dialogue from Karen indicates

that the disdain is mutual. Worth noting is that, while Karen is displeased with her lot in

housewife life, Susan fully buys into it, at least externally, going so far as to make statements

like “women shouldn’t drive.“ Susan’s personality is inspired by the sad fact that women raised

in sexist environments (especially in the 1950s) have a significant amount of internalized

misogyny, and sometimes buy into the idea that they are less than men and only good for

housework (Charles, Guryen, & Pan, 2018; Lamb, 2011, p.57).

3.4 Mechanics

 We kept scope in the forefront of our minds as we designed our mechanics, since we

had a limited amount of time and number of programmers and weren’t looking to create

complex systems. We decided to focus on logical and/or spatial difficulty when deciding on our

mechanics, with the intent to keep gameplay straightforward and fairly easy. We avoided fine-

motor difficulty, since we didn’t think it would mesh with the experience goal of the game, and

we weren’t sure how well fine motor difficulty would tie into the experience of being a suburban

housewife. After all, how often do you need twitch reflexes when cleaning up the house?

 We settled on two major gameplay systems: picking up/putting down objects and

interacting with them. Picking up functions similarly to picking up items in Bethesda Softwork’s

Skyrim (2011). Upon the press of a button (in Skyrim E, but in The Call of Karen left click) the

item is held out in front of you. The item is locked to the center of your viewport, and when you

move, it moves. You put down items with the same button click, and if they are not on the floor,

they fall to the floor. You cannot move items through solid objects as well. Items can be picked

up and put down in certain positions to trigger certain events or complete certain tasks. For

example, putting down a plate on the dining room table is part of the “setting the table” task.

Interacting with objects is accomplished with right click. Large objects with a highlight around

them will open and close, while holding an object and then pressing right click will cause that

object to perform its specific function. For example, cabinets open and close upon right clicking,

but the vacuum, which is held in your hand, turns on and sucks up grime with the same button.

Some objects change others based on interaction—for example, a raw meatloaf becomes

cooked when placed in the oven.

 We kept the mechanics on the simpler side to establish a solid, easy to understand

groundwork with the player. The high concept of the game already requires significant

35

suspension of disbelief, so we want to keep the general mechanics very readable so as to not

completely alienate the player. This simplicity also allows us to convey a sense of normalcy to

the player easily and effectively, which makes breaking that normalcy all the more noticable.

3.4.1 The Idea of Horror

 As made clear by our experience goal, we did not intend to inspire horror with this game.

However, we can’t completely ignore the influences the horror genre had on our design process.

After all, Lovecraft’s creations are all usually described as “horrors”. Additionally, we have to use

certain horror elements to communicate to the player that Cthulhu is invading Karen’s home.

So, how do we invoke the idea of horror, while staying away from actual horrific elements

themselves? The art section of the paper details the visual side of this conundrum, but here

we’re talking about mechanics.

 One of the main elements of many horror games is lack of agency. In classic horror

staples like Outlast (2013-2018) and Amnesia: The Dark Descent (2010), when there are

monsters coming, you can’t fight back against them; your only choice is to run (Frictional

Games, 2010; Red Barrels, 2013). With The Call of Karen, we were aware of this use of

agency, and designed around it. From a narrative standpoint, Karen lacks a lot of agency in her

home life. She’s stuck doing the same or similar tasks every day, and until the end of the game,

she is unable to directly combat Cthulhu, instead dealing with byproducts of his presence.

However, when it comes to mechanics, Karen has a ton of agency, able to interact with most

objects and accomplish tasks at her own pace. Giving Karen agency in her mechanics but

limiting her agency in the narrative allowed us to strike the balance between horror influence

and actual horror that we wanted.

3.5 Tasks

A key part of The Call of Karen is the tasks Karen completes through the day. These

tasks are essentially chores, typical activities that a suburban housewife would do throughout

the day. Tasks are composed of granular subtasks, and completion of these subtasks leads to

completion of the overarching task. For example, the first overarching task of every day is

making breakfast. Making breakfast is broken down to the following subtasks: cook two eggs,

two strips of bacon, put them on a plate, and place a fork on the plate to eat them. These

subtasks are meant to be fairly self explanatory, and use real-world logic to guide the player.

Cooking eggs requires the player to get a pan, place it on the stove, and then place an egg in

the pan. Designing our tasks around real-world logic lessened the amount of tutorialization

necessary—players were already familiar with the general principles involved with the

gameplay. All other tutorialization was accomplished via short, onscreen prompts.

We knew early on that we wanted tasks, not minigames—minigames are too hard to

fine-tune, and tasks were what our primary comparables used. We wanted each task to be fairly

short, and reminiscent of what a suburban housewife would do so that we could effectively

utilize real-world logic. We also wanted tasks that could be feasibly modified to indicate the

presence of Cthulhu.

36

We ideated a wide variety of potential tasks that a typical 1950s suburban housewife

would complete during the course of her day, then pared them down. We tried to keep the

number of tasks as low as possible, keeping in mind what we could make fun with the

mechanics we had and what best represented a typical suburban housewife’s day. We initially

ended up with seven tasks in total: Make a smoothie, make lunch for your son, clean up,

vacuum, cook meatloaf, set the table, and clean the table. As we prototyped and iterated, we

learned that some tasks were not fun, not necessary, or didn’t effectively evoke the 50s, and

thus were changed. We also later added “flavor” tasks, one-off tasks that add some variety and

some extra worldbuilding.

3.5.1 Smoothie/Breakfast

 Making a smoothie was a task that took place in the morning of every in-game day. It

involved placing a certain number of combinations of fruits and vegetables into a blender,

turning on the blender, then drinking the resulting smoothie. We wanted it to be the main,

routine-setting task, the only thing Karen really does for herself throughout the entire day, and

the first thing the player does in the game. Making a smoothie was one of the earliest tasks we

had in mind for the game, a relic from before we had decided that the game would take place in

the 1950s. Once we did make this decision, we considered changing the smoothie task, as it

didn’t seem period accurate for the 1950s (though research indicated that it was). We kept it in

due to the consensus that, while it didn’t evoke the 1950s, it was a task typically associated with

suburban housewives.

 That wasn’t the end of our smoothie-related discussion. After playtesting at our first

event, Alphafest, we noticed several players struggling to put the fruit in the blender—the

transparency of the blender combined with the fact that the fruit didn’t cast shadows made for a

significant depth perception struggle. Additionally, our feedback from both Alphafest and the

later MassDiGI Game Challenge indicated that we were right in our first concerns;the blender

and act of making a smoothie felt out of place in an otherwise obviously 1950s aesthetic. As

such we decided to change the task. However, we were left with a slight conundrum. While the

smoothie task had problems, we didn’t want to completely redo or eliminate it. Eliminating the

smoothie would cause significant script rewrites, and starting from scratch would mean

completely redoing the framework of the task and potentially greyboxing it again.

After some discussion, we changed the task from making a smoothie to cooking

breakfast. This switch maintained the same level of suburban housewife-iness, while keeping

with what people expect from the time period. Additionally, we were able to reuse a lot of the

same task framework. Cooking breakfast involves getting a pan out of the cupboard and placing

it on the stovetop, then getting eggs and bacon out of the fridge and placing them in the pan.

The player must wait a few seconds for them to be cooked, then place them on a plate. Once

plated, they must add salt and pepper to their food, then place a fork on the plate to eat it. The

breakfast change was helpful to us in several ways. The use of the pan eliminated the depth

perception problem we had with the blender, and cooking eggs and bacon was generally easier

to grasp than finding all of the different fruits and vegetables.

37

Cooking Breakfast.

3.5.2 Lunch

 Making lunch was another task decided early on, stemming from the idea that we

wanted more chores to acknowledge Karen’s motherhood. The idea of lunch was to take

foodstuffs from the fridge and around the kitchen and place it into Francis’s lunchbox, which

would disappear from the table once he went off to school.

The main struggle we faced with lunch was implementation. Lunch didn’t make it into the

game in time for Alphafest, and after Alphafest we focused more on fixing the issues with the

gameplay that was already implemented. After a while, we made the decision to leave lunch

out. We had concerns that adding lunch late would result in a host of new problems that we

would then have to balance, similar to the first implementation of the smoothie. Additionally, we

found that lunch wasn’t integral to the experience. The cleaning up task involved picking up

Francis’s belongings, so we weren’t bereft of tasks that indicated his presence in the house. No

voice lines directly referenced the act of making lunch, so we wouldn’t cause significant rewrites

by leaving it out. Additionally, the actual task itself, picking up and putting different types of food

into a receptacle, was quite similar to the smoothie task. Since lunch occurred immediately

afterwards, it didn’t seem especially necessary.

3.5.3 Cleaning Up

 Cleaning up was an integral task due to the fact that it is both a key part of the 1950s

housewife experience and that it effectively communicates the fact that Karen’s family doesn’t

help her with any housework. Cleaning up involves picking up papers, pencils, books, and

trading cards strewn around the living room, objects belonging to John and Francis. Books must

38

be placed on the living room shelf, papers and pencils must be placed on the coffee table, and

trading cards must be placed in a trading card tin and left by Francis’s door.

 Cleaning was a task that changed very little throughout the development process. It did

receive some tweaking after playtesting, as we discovered that we had done too good of a job

leaving the room in a state of disarray and the task took far too long. This issue was fixed rather

easily by lowering the number of objects that needed to be put in their proper place. The only

main issue we faced was that, for a significant part of development, we had no indication of

which door was Francis’s. That problem was solved by adding a hand-lettered sign to Francis’s

door. Overall, cleaning was easy to grasp and conveyed Karen’s plight effectively, making it one

of our most invaluable tasks.

Cleaning up.

3.5.4 Vacuuming

 Vacuuming was designed hand in hand with cleaning up as a typical suburban

housewife task that we wanted to include. Vacuuming involves picking up the vacuum object,

holding it close to a patch of grime, and holding right click until the grime fades away.

Vacuuming didn’t go through any major changes during the course of production, though we

made plenty of minor tweaks. Players struggled to figure out how to use the vacuum due to the

fact that grime patches faded out fairly slowly. Players would be using the vacuum correctly but

not see immediate results, and as such would think it was broken or that they were using it

wrong. We remedied this problem by speeding up the rate at which grime patches faded out.

We also found that players would often stop vacuuming the moment the patch of grime became

invisible. This behaviour was a problem due to the way the grime faded out, as the grime was

invisible for a very small period of time before it was counted as completely vacuumed up. Thus,

players would move on to a different stain, and have no way to figure out where the old stain

was upon realizing their error. We fixed this issue by altering the way the grime fades out. Once

39

the grime had almost faded to the point of invisibility, we dialed down the opacity rapidly to fade

it out the rest of the way and count the patch as completed. Vacuuming, similar to cleaning, was

extremely useful to us, and served the added purpose of giving us a weapon for Karen to fight

Cthulhu with.

Vacuuming up grime.

3.5.5 Cooking Meatloaf

 It was important to us that Karen cook for her family, but we worried that complex

cooking systems or mechanics would dangerously balloon our scope. We considered several

ideas, and had to balance between what was interesting, period accurate, and recognizable. We

hovered around the idea of having Karen make aspics for a while, gelatin-based savory dishes

that were all the rage in the 1950s.

40

A typical 1950s aspic.

 However, while we did enjoy the idea of aspics, we decided that they weren’t quite

recognizable or iconic enough as regular 1950s fare. Given that this is a game about doing

housework in the face of a home gone mad, we thought it would be more valuable to start with a

cooking task that was rooted in normalcy, then take it into the realm of madness, and starting

with an aspic would already be significantly out of the ordinary for most people. After kicking

around several ideas, we landed on cooking meatloaf.

 Meatloaf was ideal for us because the act is quick and doesn’t require any complex

cooking systems, and could be performed in conjunction with setting the dinner table. Making

meatloaf in The Call of Karen involves picking up raw meatloaf, placing it in the oven, waiting a

few seconds for it to cook, bringing it to the dinner table, and then dropping a knife on it to slice

it.

 Meatloaf was another task that underwent very few changes during the course of

production. The main struggle that we faced with meatloaf was technical, as it was sometimes

difficult to get the meatloaf to sit in the oven to cook it, and once the meatloaf was done, it was

hard to extricate it from the oven. However, the overall structure of the meatloaf task always

remained the same.

41

Cooking meatloaf.

3.5.6 Setting the Table/Cleaning the Table

 Setting the table involves placing plates, forks, and cups on the table to prepare for

dinner, and upon being placed anywhere on the table, the dinnerware will immediately snap to

its proper position. Setting the table and cleaning the table were designed to go hand in hand

with cooking meatloaf. The idea was initially that Karen would set the table, then cook the

meatloaf. After dinner was prepared, Karen would be drawn out of the dining room for one

reason or another, and in that moment her family would eat dinner in a mad scramble, leaving

the table in disarray before returning to their respective rooms. Karen would then return to the

dining room and place the dishes in the dishwasher.

 After a while, we decided to cut the cleaning the table aspect of the task. Firstly, we

couldn’t quite figure out a good system to get Karen out of the dining room and obstruct her

view of it for long enough to start the dinner sequence without locking the player’s movement

and camera, which we didn’t want to do. Additionally, similar to lunch, cleaning the table didn’t

make it into the build in time for Alphafest or playtesting. We decided that it was repetitive and

didn’t add enough to the game to be worth the trouble, so we left it out.

 Worth noting is that setting the table and cooking meatloaf were functionally combined

into one overarching task, the “daily dinner dash”. This combination meant both tasks could be

completed during the same period of time; for example, the meatloaf could be placed in the

oven, and the plates could be put on the table before the cooked meatloaf was taken out. This

combination made sense to us considering that both tasks were fairly short and revolved around

preparing for dinner.

42

Setting the table.

3.6 Flavor Tasks

 Flavor tasks were added to the game after several industry experts at the MassDiGI

Game Challenge suggested that we add unique tasks that directly addressed Karen trying to

combat Cthulhu. We kept these tasks short and simple, as we were fairly deep into

development and didn’t want to add anything that would need intensive playtesting or balancing.

3.6.1 Ordering Silver Bullets

 Ordering silver bullets begins when Karen receives an edition of the fictional Being

magazine (a play on Life magazine, a popular read in the 1950s) in the mail. The magazine

offers free silver bullets if the receiver’s address is filled in and mailed back to the distributor.

The player must place a pencil on the magazine to fill out the information, then place the

magazine in an envelope, then take the envelope to the mailbox. A few days later, the silver

bullets arrive.

43

Being magazine and the advertised silver bullets.

 Silver bullets were added specifically because of their connection to monster hunting.

While silver is not necessarily a weakness of Cthulhu’s, in many mythologies silver is used to

fight against or ward off evil supernatural beings. As such, we decided to include silver bullets

as a method of fighting against Cthulhu. We were more concerned with portraying recognizable

demon-fighting iconography than being accurate to the Cthulhu mythos, and assumed that most

people wouldn’t have enough knowledge of The Call of Cthulhu to note that fighting Cthulhu in

this way isn’t accurate.

3.6.2 Receiving and Using an Ancient Book

 Karen receives another package in the mail the day after ordering her silver bullets. The

package is an ancient book, sent over to her by her catty neighbor Susan. Attached is a

passive-aggressive note from Susan noting the general disarray of Karen’s home and informing

her that the ancient book will help. Picking up the book and right clicking the vacuum with it

while the book is being held will cause the vacuum to become enchanted, and able to vacuum

up the eldritch slime covering Karen’s walls and ceiling.

44

The vacuum is enchanted, with ancient book in hand.

 After the vacuum is upgraded, Karen must now (begrudgingly) write Susan a nice thank

you letter. Writing the thank you letter involves picking up a pencil and placing it on paper, then

putting the paper in an envelope, then putting said envelope in the mail slot. While this is the

last we see of the ancient book, this is far from the last we see of upgrading the vacuum.

3.6.3 Modifying Vacuum with Bullets

 Once Karen’s bullets arrive in the mail, her vacuum must be modified to be able to use

them. This modification is accomplished in the same way that enchanting is, holding the bullets

while right clicking the vacuum.

3.6.4 Final Vacuum Modification

 After several days of eldritch horrors invading her home, Karen decides that she’s going

to combat Cthulhu directly in a final showdown. Before doing this, she has to upgrade her

vacuum one last time. This task involves picking up the vacuum, putting it in the previously

mentioned monster-fighting closet, and closing the door and waiting for a few seconds. Upon

opening the door again, the vacuum will have several new Cthulhu-fighting modifications from

the objects within the closet.

3.6.5 Sealing Away Cthulhu

 Sealing away Cthulhu, and the ending of our game, was something we discussed at

length. We did want to end the game on a positive note for Karen, as we felt that we would lose

a lot of the humor if she remained miserable. We also didn’t want to destroy or explicitly show

Cthulhu, as that goes against the spirit of the Cthulhu mythos;a core part of the idea of Cthulhu

is that it is unknowable and cannot be killed. We considered a twist ending, revealing at the end

that Karen’s husband and child were eldritch demons, and that’s why the house was spiraling

out of control. We ended up discarding this idea because we felt that it undermined the

45

exploration of Karen’s unhappiness as a 1950s suburban housewife. If Karen’s family was

actually eldritch demons, than it would be easy to chalk up their behaviour and her unhappiness

to the fact that they’re evil entities. The misogyny of the 1950s is easy to sweep under the rug

when the main misogynist in question is an evil demon.

 We definitely had a conundrum on our hands. Since Karen is fighting against Cthulhu all

week, it would make sense that she’d want to stop him so everything would go back to normal.

The problem is, normal wasn’t working for her. Even if Cthulhu is stopped, her marriage remains

unhappy and her child remains ungrateful. We kicked around several ideas that might give

Karen a satisfying ending, one of them even being that she would marry Cthulhu—we thought

there was something to the thought that an eldritch horror would be a better husband than a

typical 1950s man.

 Eventually, we landed on a happy compromise: Karen would seal Cthulhu away in her

vacuum. That way we would never have to show Cthulhu or destroy it, and considering that in

The Call of Cthulhu lore Cthulhu being unsealed from his deep slumber in the sunken city of

R’lyeh is what would bring about the end times, it’s logical to assume that to stop Cthulhu, it

would have to be sealed away again.

 For this task, Karen must pick up her newly upgraded vacuum and step outside, the first

time she’s been outside during the entire game. The house is surrounded by a thick fog, and the

dim silhouette of Cthulhu is above her. The player must click to throw the vacuum at Cthulhu.

The game cuts to black after she does so, and skips to the next day.

3.6.6 Revving the Cthulhu Vacuum

 There is one final flavor task that occurs on the final day of the game, after Cthulhu has

been sealed away. The player must find and pick up the vacuum Cthulhu is sealed in. Turning

on the vacuum indicates that Cthulhu’s power is sealed within and can be manipulated by the

vacuum. This indication of the vacuum’s new power is key to the ending of the story.

Immediately after trying the vacuum, Karen’s husband chides her for the house being less clean

than usual during the week of eldritch horrors, upon which Karen revs the vacuum once more.

3.7 Days

 While tasks are at the forefront of The Call of Karen, the game’s structure is day-based

as well. The game takes place over the course of an in-game week, with different tasks on

Karen’s agenda depending on what day it is. We utilized this day-based framework for several

reasons. Firstly, we wanted to add some variation to our gameplay. We were concerned that

doing the exact same tasks in the same order day after day would get boring and repetitive fast,

and different tasks on different days would break up some of the monotony, while still allowing

us to set up a general routine for Karen. Additionally, we were worried that doing the same tasks

every day would break some of the illusion for the player. Considering that Cthulhu exists in The

Call of Karen’s universe, we’re clearly not going for the picture of realism, but considering that

our game’s mechanics rely on real-world logic, it’s easier for players to swallow that Cthulhu is

real than that the floor needs to be vacuumed every day.

46

 Establishing our use of a day-based system early in our development also gave us more

concrete control of the scale and scope of the game. The length and pacing of the game could

be adjusted by removing or changing days, or changing the number or type of tasks that take

place during each day. Initially, we settled on completing two in-game weeks, with four or five

tasks during each day. Our initial estimate was that tasks would take roughly two minutes to

complete, so each day would take roughly eight minutes. Two in-game weeks would give us a

little over an hour of gameplay, which we thought was feasable given our timeframe.

 As development continued, we realized that our initial two week estimate was a bit

optimistic at the pace we were moving at. Additionally, we found during playtesting that tasks

took longer than planned to complete, roughly three to five minutes for each one. We also

suffered from pacing issues—playtesters felt like the game didn’t introduce Cthulhu early

enough. As such, we cut the number of in-game days we would complete in half, settling on one

week. We also lowered the number of tasks each day to three or four, or lower depending on

how difficult the tasks were. These changes were necessary to improve pacing and make sure

that the days we had were polished and high-quality given the amount of time we had left to

complete them.

 Early on, we established a routine for tasks relating to days. Some tasks, like making

breakfast, are completed every day. Other tasks depend on how recently another task was

completed—you wouldn’t vacuum two days in a row. Tasks are divided into morning, afternoon,

and night tasks, and there’s usually at least one of each category task in a day. We created a

chore order map to keep track of what chore happened on each day, and in what order.

Our initial weekday chore order map.

47

Due to the changes mentioned earlier, we had to make significant changes to our chore

order map to fix pacing and scope issues.

3.8 Progression and Escalation

 An important aspect we wanted to harness in our game was the act of establishing a

routine and the uneasiness that comes from breaking it. As a result, tasks were designed with

“escalations” in mind—changes to the base tasks that would convey Cthulhu’s presence and the

exponential descent into madness so common in Lovecraftian fiction. These escalations could

be as subtle as randomizing placement of cutlery in an odd way, or as complex as chasing an

evil meatloaf through the house to consecrate it with holy water. The escalations would not

affect the goal of the overarching tasks, instead modifying the subtasks that the overarching

tasks were composed of. The goal of making breakfast would remain the same, but would have

the added step of plucking eggs and bacon out of the air to cook them while gravity isn’t

cooperating.

Early in production we created a progression map that illustrated what tasks would be

performed on what days, and what level of escalation it would be at. We initially decided that the

first two days would be for establishing base game mechanics and ideas, then use the days

after to slowly introduce some weirdness.

Our final chore order map

48

We initially divided our tasks into 4 stages of progression: Very low, low, medium, and

high. Very low was to be so low that the player might not even notice it. For example, silverware

being in a different place than usual when going to set the table. Low is a slight step above very

low, relatively unobtrusive but a bit more obvious. For example, silverware and plates being in a

different place than usual, then, after the player puts the silverware on the table, the plates

move back to their original locations. Medium escalations start to enter the realm of making the

player’s tasks a bit more difficult. Medium escalations involve objects that defy gravity, texture

changes, and other oddities of that nature. High escalations make subtasks significantly

different or more difficult. High escalations generally involve objects becoming sentient and or

moving in abnormal ways.

 As previously mentioned, after playtesting we realized we had a problem with our pace.

Players didn’t notice or question the very low escalations at all, and the utter lack of Cthulhu in

the early days led players to boredom fairly quickly. It turned out to be fairly easy to swap

around the progression, so we were able to make quick changes based on our playtesting and

get them in front of more eyeballs faster. As a result, we ended up changing the progression of

the game significantly, and much more by ear than our initial meticulous planning. To indicate

the presence of Cthulhu and add intrigue early on, we implemented a medium escalation—

books floating in the living room, then falling to the floor—on the first day of the game. This

addition gave us the immediate intrigue we were looking for, while still allowing us to maintain a

relative sense of normalcy and routine.

The first progression map and legend for our planned two weeks of gameplay.

49

 After we cut the first week of content, we had to adjust our progression significantly once

more. Due to our rapid changes, we didn’t end up returning to our old progression map to make

changes, instead creating a separate document to list what would happen each day. Also

factoring into our decision to abandon our old progression map was the addition of flavor tasks,

which didn’t quite fit into our map’s structure. Our new progression list can be found in our

appendices. We also did away with very low escalations altogether. No playtesters seemed to

notice them, and they made less sense to use now that the gameplay was condensed to one

week.

3.8.1 Escalations by Task

 As the escalations for some tasks are vastly different than the escalations for others, it is

worth denoting here what escalations occur for each task.

3.8.2 Breakfast

 For the low escalation on the breakfast task, food, pans, and plates fly out of the fridge

and cupboard at the player. They float around unaffected by gravity for a few seconds before

dropping to the floor, and the task progresses as normal. For the medium escalation on the

breakfast task, food, pans, and plates are in zero gravity for the entirety of the task,

necessitating that the player pluck them out of the air in order to complete the task. For the high

escalation, food, pans, and plates are unaffected by gravity, but also “pulse” up and down every

few seconds, making it significantly harder to find and utilize them.

A delicious floating breakfast.

50

3.8.3 Cleaning Up

 The low escalation of the cleaning task involved objects floating in the air, spinning

rapidly, then dropping to the floor. The medium cleaning escalation was the same, with the

notable difference that the objects never dropped to the floor. The high escalation utilized the

modified vacuum that could shoot bullets. Books with their pages creased into fangs float in the

living room, chomping in the air, and the vacuum cleaner must be used to shoot them down.

Cleaning up in zero gravity.

Hungry hungry books.

51

3.8.4 Vacuuming

 The low escalation of the vacuum task involved patches of grime on the walls and ceiling

instead of on the floor, and the medium escalation involved these patches of grime being

transformed into patches of pulsing purple ooze. Notably, the vacuum does not have a high

escalation. Considering that the vacuum is used for the high escalation of cleaning and the

sealing away of Cthulhu, we didn’t think it was especially necessary for the vacuum to be

featured in its own task again.

Who put slime all over my perfectly lovely ceiling?

3.8.5 Dinner Dash

 The dinner dash’s first two escalations are exactly the same as cleaning up: floating,

spinning objects that fall to the ground, then floating, spinning objects that remain unaffected by

gravity. The dinner dash’s high escalation involves the meatloaf turning to slime with eyes and

skittering around the floor of the house. Karen must get a holy water bottle from the closet and

spritz the meatloaf for it to turn back to normal, then cook the meatloaf as usual.

3.9 Other Methods of Conveying Cthulhu

 Despite our adjustments of the progression and escalations there was still some concern

that we weren’t implementing Cthulhu fast or soon enough. These concerns resulted in the

creation of a blueprint called the Yikes Machine, designed to be a quick and easy way to invoke

Cthulhu without changing major gameplay mechanics. At a variable time averaging around 20

seconds, the Yikes Machine does something strange to the house. This strangeness lasts for

about 10 seconds, then disappears. These oddities come in four forms:

● Swapping existing materials out for Cthulhu-esque materials.

● Spawning random, large objects in random places they shouldn’t be. For example, an

oven floating in the living room.

52

● Spawning pillars, spheres, and other objects composed of swirling text from the chant in

The Call of Cthulhu.

● Adding post processing effects to the main camera like film grain, chromatic aberration,

and intense bloom.

These oddities were received fairly well by playtesters, and had the added effect of

invoking the Lovecraftian theme of seeing strange happenings and questioning your own sanity.

Many players didn’t notice the effects at first, and would often turn away before going back to

get a second look to confirm what they had seen. Because the Yikes Machine effects don’t last

very long, oftentimes the effect would be gone before the player could get a good look at it,

making them question what they had seen.

It doesn’t seem particularly ergonomic to put a chair there.

3.10 Greyboxing & Paper Prototyping

 Before we entered full production, we wanted to make sure that our ideas were sound.

We “paper prototyped” our tasks, though with our simple control scheme, it was difficult to

create an accurate 1-1 paper prototype. We used several markers and pieces of paper as

stand-ins for our objects and moved around a room picking up items and putting them down as

we planned for in the main game. We found this level of paper prototyping to be substantial

enough to convince us that our gameplay mechanics would work, especially considering that we

had some solid comparables to build off of. After paper prototyping, we began greyboxing each

task and the layout of the house with simple shapes to get a feel for the core gameplay. After

we were satisfied with our greyboxes, we added models and textures to make them complete

tasks.

53

3.11 House layout

 From the beginning, we knew that the game would take place entirely in one house. The

art, design, and technical cost of creating and implementing multiple areas was outside of the

scope of this project. As such, creating a quality layout for the house was important to us. This

layout was something we iterated alongside our greyboxing. We wanted a layout that was both

reminiscent of a classic 1950s house and designed for good gameplay. We referenced

blueprints of 1950s houses during this design process, and kept the play spaces of our

comparables in mind.

Blueprints for a house layout from the 1950s.

We realized we needed a “loop” between the dining room, kitchen, and living room.

These three rooms are where most of the gameplay takes place, and thus we had to make sure

it was easy to navigate between all of them. We also intended to “break” the line of sight

between those three rooms as much as possible. Breaking the line of sight would allow us to

manipulate elements of different rooms without the player noticing, which was key for switching

between different tasks. Additionally, we decided against a second floor. Our research indicated

many 1950s homes were single-story, and since all of the gameplay would take place on the

first floor anyhow, it didn’t make sense to craft a new floor that would be entirely cosmetic and

serve no functional purpose. We cycled through several layouts, and changed them as we went

through the greyboxing process, eventually landing on the layout below.

54

A top-down view of Karen’s house.

55

4 Technical Implementation

 Over the course of this MQP our main goals for programming were to keep things simple

to implement, easy to understand, and easy to build upon. We also hoped to make the process

of integrating code and art updates as clean and painless as possible. In order to achieve these

goals, we took steps to start planning the code structure for main gameplay elements such as

the day/night cycle, task loading, and actor modifications fairly early, but always made sure to

keep an open mind about refactoring old code when necessary. In regards to combining code

with the artists’ work, we tried to merge branches on Github, our source control of choice,

approximately every two weeks to make sure everyone’s branches were updated with the most

recent art and codes changes, as well as to limit merge conflicts further down the line. However,

as with most projects, we did hit some bumps along the way - mainly, issues finding Unreal

resources, difficulties with integrating C++, and not quite keeping up with that “merge branches

every two weeks” plan as much as we’d hoped.

4.1 Key Software/Tools

 A variety of tools were used to enable and facilitate the development of Call of Karen.

On the technical side, these fit into three major categories:

● Engine: Unreal Engine 4 + Unreal Editor

● Version Control: Git + Unreal Diff Tools

● Documentation: Google Drive + GitHub

4.2 Why We Chose PC Over VR

Pre-production for The Call Of Karen began in early June of 2019 and continued well into the

summer, and much of that time was spent deciding the basis for this game: what was it about,

what genre is it, what story do we want to convey, and what platform will it be on? This last

question turned into a contentious debate that stretched several weeks as our team vacillated

between developing the game for Windows PC or VR.

 At first we intended on making the game in VR due to several reasons: the programmers

had experience developing in VR, one of them had a vested interest in the area, the market was

less saturated, and we thought it would be easier for the player to empathize with Karen’s plight

if they had to physically do the chores through VR mechanics. VR templates in game engines

typically include code for interacting with objects pre-built, so that was one less task for our

programmers to tackle, and there was more opportunity for playing around with sinister and/or

interesting 3D sound if the player was in a surround-sound headset. Finally, we wanted to make

use of WPI’s extensive VR resources - the school owns a few different kind of VR headsets as

well as VR backpack sets that would allow players to roam around a playspace unhindered by

wires and/or lighthouses, which we thought we could take advantage of to maybe create a

game that capitalizes on the larger play area and higher graphic quality of the new headsets.

 Ultimately, however, we decided on PC as the primary platform - though we have not

ruled out converting The Call Of Karen to VR eventually if the development team wishes to. The

key reasons why we settled on PC are as follows: PC games are easier to setup and playtest,

56

they allow for more creativity in terms of art (our opinion), they are easier to access for the

general market, they (usually) don’t require specialized equipment and, most importantly, The

Call Of Karen didn’t need to be in VR except for the gimmick as far as we could tell.

Early on we decided that we wanted to get in as much playtesting and feedback as we

could on this game, and to facilitate that we needed an easy setup and cleanup, as well as easy

access to necessary equipment. For PC games, this amounts to having a working laptop handy

and charged; for VR games, this includes wiring a VR headset to a VR capable computer or

laptop, potentially setting up lighthouses, and then dealing inevitably with a variety of connection

issues. All of our team members have either attended or heard of playtesting sessions that took

a lot longer than needed because of VR issues, and we wanted to avoid that.

When it comes to art, our team generally agreed that VR excelled when its art style was

more realistic, and we didn’t necessarily want a realistic style at the time. We didn’t want to limit

our options in case we did decide to go a more stylistic/cartoonish route.

As to the market concerns - most good VR headsets, those that don’t cause as much

motion sickness and have nice graphics, run in the price range of $200-$1000 generally

speaking. This is a huge money sink, especially for those who maybe only want to play a few

VR games or only just ours, so we felt it wouldn’t be reasonable to expect people to go out and

buy a headset just to buy our game as well. If we decided to only focus on people that already

had a headset - well, that is a fraction of the consumer market, and therefore a fraction of the

number of buyers for our game as the number would be if we targeted PC gamers.

Finally, The Call Of Karen didn’t need VR - by this we mean, there was no mechanic or

story element that required the game to be created in VR and VR only. While yes, we loved the

idea of doing cool things with surround sound and really immersing the player into Karen’s

lifestyle, all of that is also doable in a first person game with careful attention to the audio; which

is subsequently what we did.

4.3 Engine: Why We Chose Unreal

Within the first month of development we already knew we wanted to do a 3D game,

with an emphasis on excellent lighting and a polished art style. It was for these reasons that we

leaned towards using Unreal Engine 4 from the beginning, as it has a very well developed art-

pipeline, an easier to use and modify lighting system, and higher fidelity graphics rendering than

comparable free-use engines such as Unity, in general. In addition, developing in Unreal gave

us a greater chance to do well in any Epic Game scholarships such as the Epic MegaGrants

program or in the Epic Game store, if we did decide to publish the game there.

Another benefit of Unreal was that its Blueprint system was relatively easy to pick up,

and the object-oriented structure of the blueprint object was very familiar to both programmers.

While official documentation on some aspects of blueprinting can be sparse, there is a wealth of

information online in the form of community tutorials, Youtube videos, and basic Unreal

documentation that allowed all team members, most of whom had little to no Unreal experience,

to pick up the necessary skills to start developing the game within a week or two.

57

4.4 Version Control

4.4.1 Why we chose Git and not Perforce

The team knew immediately that some form of source control was necessary for this

project in order to allow for all four of the team members to work on the game concurrently. In

addition, this source control had to be easily accessible to both programmers and artists at any

skill level, so as to minimize the learning curve and speed up production. As both programmers

had extensive prior experience working with Git, in conjunction with GitHub’s added

collaboration tools, that was the source control initially leaned towards and used for the first 4

months of the project. Git’s many different GUIs also sweetened the deal for us, because they

allowed for each team member to interact with Git in whichever manner they found most

comfortable and efficient. For the most part on our team, programmers stuck to using git

command line, while artists used a mix of Git Kraken, GitHub Desktop, SourceTree, and GitHub

Web. However, using Git’s default diff tools with Unreal posed some troubling issues, such as

major difficulties in merging blueprints, especially level blueprints, across the different member

branches.

Perforce Helix Core (Perforce) was introduced as a potential alternative to Git, as we

were advised by various classmates as well as our team advisors that Perforce was the industry

standard for working with Unreal Engine on large teams (“Perforce Helix Core”, 2019). Perforce

is used internally at Epic Games, and at several other large game studios (Neverender, 2014).

Unlike Git+GitHub, it is a commercial piece of software that is licensed for free to academic

institutions. The Helix Core server is used in conjunction with P4D, a standalone front-end that

runs on the desktop (not on the web). To give it thorough consideration, we reached out to

Perforce about their educational licensing and obtained a trial license to set up.

The setup of Helix Core immediately proved complicated, as it required a manual on-site

server-side installation of the software, for which Perforce provides minimal support to non-

enterprise customers. Despite difficulties with the server, we were able to install and test out

P4D (the user-facing frontend) and the merge tools packaged with it. After looking into the

viability of using Perforce and the effectiveness of its merge tool, the team ultimately decided to

stay with Git for the main source control. While Perforce did offer specially made merging tools,

they were designed for diffing text files, and were therefore not Unreal Blueprint compatible. The

minimal diff tools available for Unreal’s binary file formats were the same for Perforce as for Git.

We found the overall setup, management, and user interface for the Perforce repository to be

much clunkier and less intuitive as well, and switching over would have provided a dramatic

increase in work tangential to development of the game with no clear benefit.

Through the process of researching Perforce, we discovered a solution to our Blueprint

merging issue in the form of the Unreal blueprint diff tool. Unreal’s built in diff tools allowed us to

compare the current version of a blueprint with previous versions from the same git branch, as

well as versions on other branches, to resolve any merge conflicts. In previous versions of the

Unreal Editor, these diff tools were integrated with Perforce and SVN, but not git, which was

likely what led to the misconception that Perforce provides diff support for Unreal. As of UE4.22,

git support is in beta but fully functional, and integrated well with our established workflow. This

tool has been essential in reducing lost and/or duplicate code due to merges.

58

4.4.2 Workflow

 Our approach to having multiple people collaborating on an Unreal project through Git

was to: always have a working copy of the game on master, have everyone make changes on

branches, and merge as often as was feasible. Master was locked to ensure that no one person

could push to it by accident and overwrite our production copy of the code - to merge changes

into master a team member had to create a merge request which was then approved by at least

two other members, typically the programmers. Generally speaking each team member would

maintain 1-2 personal branches from master, with each member communicating what they

planned to change. It was extremely important that everyone on the team knew what the others

were up to in order to avoid multiple people making the same edits, or even more fatal, multiple

people making edits on the same file. In an effort to mitigate the dangers of overlapping edits,

each member usually created their own sublevel in Unreal to put in their changes if they were

significant enough, i.e. not small bug fixes or material changes. Using sublevels allowed each

team member to make changes to the map in scene without affecting the main Game.umap

binary file, or any other sublevel binary file, both of which are not able to resolve merge

conflicts. When it was time for someone’s work to be merged into master, one or more members

would handle moving the temporary sublevel changes into the main Game.umap, and the

temporary sublevel would then be deleted.

 When it comes to merging overall, we aimed for a complete merge every one to two

weeks - we rarely, however, met that goal, until the final few weeks before our beta build was

completed. At the beginning merges were less frequent due to work going slower, but as time

wore on it became clear that combining the work of four people at once was much more

daunting than anticipated. Unreal’s reluctance to work well with Github only exacerbated the

issue, with virtually any file worked on by two people needing to be manually merged in order to

avoid work being lost - we understand now, why Perforce has the policy of only allowing a file to

be checked out by one person at a time. The frankly frustrating amount of work that went into

each merge caused a push back of the merge process which resulted several mega-merges

which lasted multiple days. Thankfully though, as we approached spring and became more

comfortable with each others’ development time and processes these mega-merges became

fewer in number. In addition, we discovered the Unreal Diff tool, which allowed us to more

effectively solve merge conflicts on blueprints - however, this was only within the last few

months of development, and only effective at solving clear-cut merge conflicts on blueprints. If

there was a merge conflict on any of the map files, the system config, or any other binary files, it

was often a case of copying over as much as we could remember and hope we discovered

introduced bugs before they went into production. The technical details of these issues are

discussed in more detail in the Implementation Difficulties section.

 The software we used for source control was all variations on Git - the programmers

stuck exclusively to the git cli, more or less, while the artists started off using Git Kraken, and

switched to Git Desktop and SourceTree, which they found to be more comfortable to work with

Unreal. Overall, our workflow decisions were largely informed by Unreal’s inability to integrate

properly with these tools.

59

4.5 Game Structure

4.5.1 Actors, Components, and Triggers - Oh My...

 All actors in this game which have any form of interaction were based off of two actor

classes defined early on in development: ReactiveStaticActor and ReactiveSkeletalActor. The

main difference between these classes is that ReactiveStaticActor contains an inherited static

mesh component, while ReactiveSkeletalActor contains an inherited skeletal mesh component -

this actor type was created specifically for objects which had animations, such as doors needing

to open/close and the monster books, as static mesh components do not support animations.

ReactiveStaticActor also contains inherited Escalation and RotatingMovement components for

ease of applying escalations to task objects on later days.

 Both ReactiveStaticActor and ReactiveSkeletalActor defined custom component events

which would pass actor events such as EventOnHit, EventOnOverlap, etc. from the actor to its

interactable components. In addition to this, custom events were also created for

LeftMouseButton and RightMouseButton to pass down these event calls to components which

would apply mouse functionality to certain objects.

 As for components, the programmers decided early on in development to create a base

interactable component from which all other components would inherit functionality. The only

exceptions to this were the Escalation component, which does not have any interactivity

functions, and the CinematicComp component, which handled screen cinematics such as fade

ins and fade outs, and was attached solely to the TaskManager actor.

 The first component created was ActorEventHandlerAbstractComponent, which defined

an abstract function to catch the custom component event ComponentEventHit defined in

ReactiveSkeletalActor and ReactiveStaticActor for children components to define on their own.

Directly parented to this is the Interactable component, which the rest of the interactables

inherit. Inside Interactable the custom event EventInteract was created, which defines how to

treat object interaction depending on the type of actor (static or skeletal) and the other

components the actor has. It also ensures that all objects which have a component of type

Interactable have a few important characteristics such as simulating physics and physics body

collisions in order for these actors to act realistically in game.

 Pickup and Tool are the two components defined from Interactable, with Pickup

inheriting directly from Interactable, and Tool inheriting directly from Pickup. The Pickup

component, as it indicates, defines functionality for objects which the player is able to pickup - in

addition, in the FirstPersonCharacter function EventPickup the object the player is attempting to

pickup is always checked to make sure it has this component present. Typically the behaviors

defined in Pickup relate to pickup objects which don’t have any other defining features, such as

cards, pencils, the cardtin, etc., and only affects how they act on EventComponentHit.

Tool defines behaviors for objects which carry out an action on right click - “Right click to

use tool”, as the game informs. There are nine tools defined in-game, with one or two that have

duplicate functionality but utilize different assets - for example, “Salt” and “Pepper” are separate

tools, but use the same function on right click with different particle materials. For the most part,

the tools in game complete fairly simple actions - play a sound, create/delete an actor, call

another quick function, change the material of its owner and/or another actor in-scene. Often the

60

usage of a tool would also set variables necessary to the completion of tasks to help the game

keep track of how far along in a task the player is. For example, the “BulletBox” tool, which in-

game is represented by the bullet box which appears on day 5, sets the variable “isBullet” of the

player’s vacuum to true on right click to indicate that the vacuum has been upgraded from an

enchanted vacuum to one which is now equipped to fire bullets. It is only after this variable is set

that the player is able to continue with the vacuum task.

Several behaviors involved the player or objects overlapping with areas of the map (such

as the player walking between rooms, or re-enabling gravity on breakfast items over the stove).

These were implemented using standard BoxTriggers, filtering overlapped objects on overlap

events and applying the corresponding property changes or triggering game event/state

changes.

4.5.2 High-Level Documentation

High-Level Game Progression

- Game Start, Open level Menu

- Hit Play, Open level Game

- GameManager/BP_GameManager Spawned

- Game level (persistent) Actors Spawned

- GameManager Initialized after TaskManager spawn

- Main Game Loop

- QueueNext Task Called

61

- GameManager fires OnTaskChanged

- Old task levels unloaded, new task levels loaded

- Unload task/lighting sublevels for old task if applicable

- Load task/lighting sublevels for new task

- If no next task call QueueNextTask for next day

- GameManager fires OnTaskLoaded

- GameManager receives and sets up UI

- TaskManager receives and sets up gameplay for current task

- RadioManager receives and starts up audio for current task

- Player is free to move around/interact with gameplay Actors

Gameplay Actors call GM_SetValue

- GameManager changes value in value store

- GameManager calls OnValueChanged

- GameManager calls CheckTaskComplete

If task completion criteria met, fires OnTaskComplete

- TaskManager Receives, sets up post-task UI/Task if applicable

- RadioManager Receives, starts up end of task audio

- If last day, break main game loop

- Upon completion, call QueueNextTask for next task (loop)

- Open level Credits

4.5.3 TaskManager

 While the entirety of our gameplay logic was implemented using blueprints, in part for

ease of use by the artists, and in part to speed up development and compile times, some

systems proved more reasonable to build using C++. One of the core mechanisms of the task-

based gameplay was evaluating whether or not a task or subtasks had been completed. The

parameters for this completion generally involved the state of different gameplay objects (e.g.

whether the card tin is in front of Francis’s door), higher-level game state (how many books

have been placed on the shelf), and user-triggered events (hitting a plate with a fork). Checking

completion for a task requires either storing all of this state data in one place, or having

references to each individual object. We opted for the former, as it was easier for several

different Actors or Components within the scene to dynamically get references to a particular

object than to attach references of each of those objects to an instance of a single Actor class.

 TaskManager initially housed all of this data in a pure blueprint format. Game state was

stored in the form of Blueprint variables (mostly booleans and integers), as was the names and

orders of tasks each day, task escalation levels, and day-to-day progression (arrays/maps of

strings and asset references). The benefit of this format was that it was quick to prototype

chunks of gameplay in order, and everything was laid out sequentially, making it easier to debug

than a more abstract implementation.

As the amount of days/tasks and similar mechanics increased however, this resulted in

large amounts of duplicate blueprint code and a lot of rewriting or refactoring those chunks of

gameplay in each individual instance. This also meant that every blueprint class that had code

affecting task completion had to search for and store a reference to the single instance of

TaskManager, and update a corresponding variable manually defined in the TaskManager

62

blueprint. Additionally, events to check task completion for each task had to be defined

individually in TaskManager per task, and in some cases with separate chains per game

day/escalation. This led to major blockers and version control headaches, as the binary and

non-diffable blueprint file that comprised TaskManager had unmergeable edits any time one of

our programmers wanted to add core gameplay.

4.5.4 C++ Integration and BP_GameManager

 Our initial TaskManager implementation helped to clearly identify the key benefits and

drawbacks of using the blueprint system within our game:

● Sequential gameplay was quick and easy to wire and troubleshoot in blueprint

● Less sequential/more abstract mechanisms such as level and UI loading became

tedious to reimplement repeatedly

To address the latter issue, we created the GameManager using Unreal’s C++ API. This

enabled a more abstract representation of our game state in the form of an in-memory key-

value store. Each key was a unique string representing a game state variable that corresponded

with an integer value. This is a simplified form of the kind of state management used in many

modern web application frameworks such as React (“React State”, n.d.). Implementing custom

getters and setters for these state variables allowed us to do a couple of convenient things,

such as defaulting values to zero (removing any need for initializing or checking the presence of

a value), and firing off events when a game value was updated.

With all state updates happening through a single function, this also facilitated checking

task completion - all of the keys and target values associated with completion of a task could be

stored in a Datatable, and checked only on a TaskUpdate instead of on tick or by manually

triggering a custom defined event in TaskManager. State value updates, task completion, and

level loading completion were all exposed via Event Dispatchers that any blueprint could bind a

custom event to immediately on creation (“Event Dispatchers”, n.d.).

A key aspect of GameManager was its inheritance from the UGameInstance engine

class (“UGameInstance”, n.d.). The GameInstance subclass designated in the project settings

as the game’s primary GameInstance is instantiated automatically, and accessible statically

from any blueprint class, including animation blueprints. This meant we no longer needed to

search for and store references to the object holding our game state, and could simply obtain

the engine-level reference to it on the fly to trigger/bind to events and update state.

 As established in our analysis of TaskManager, sequential logic was easier to integrate

in Blueprint. While level loading fell into this category, certain aspects such as querying

datatables and defining events were cleaner and easier to do in Blueprint. We addressed this

through the creation of BP_GameManager, a subclass of GameManager that defined any

sequential logic (such as level loading) with helper functions for more abstract operations

defined in GameManager. Features that made more sense to implement in Blueprint were

declared as abstract functions in the C++ layer and overridden in the Blueprint layer. The

63

blueprint layer additionally provided an abstraction on the self-contained C++ functions that

didn’t need to be called elsewhere, and resulted in a much simpler interface for state

management and level loading.

 The result was a simple and clean Blueprint interface to use within the rest of the

gameplay code for state management and task completion/level loading. Using a static function

library, we made all of our key functions and event bindings accessible globally using a single

node. Having the ability to update state without declaring a blueprint class variable in

TaskManager, getting a reference to TaskManager in the corresponding blueprint, and checking

that variable before getting/setting it saved us a lot of time and cut out unnecessary spaghetti.

GameManager (C++) Definition BP_GameManager (Blueprint) Definition

64

Final GameManager Interface (These nodes can be used in any blueprint)

Handling Egg Cooking Without vs With GameManager State

4.5.5 Data Storage: Data Tables and Dictionaries

 All major data was stored inside a series of .csv files, some of which were backed up as

Google Excel sheets on our shared team MQP drive. These .csvs were then imported into

Unreal as Data Tables for use in engine. The type of data stored can be split into audio, and

task management.

Audio tables included the MusicTable, which consisted of all the music clips used in

game, DaySoundAudio, which was a table of dialogue from all characters keyed to their

approximate order of use in game, and the SoundTable, which was where all the general sound

effects were stored. An overarching DialogueSequence table kept track of which audio files,

mainly dialogue interspersed with some sound effects, were to be played at what point during

the game one after the other to ensure smooth transitions between audio clips.

 Task management tables included TaskMaps, TaskProgression, TaskValues, and

WidgetStrings. TaskMaps organized the sublevels used for each task in game and keyed them

to their task names for ease of loading them on the fly, while TaskProgression kept track of the

65

timeline of the game - what tasks were played which day, in what order, what their escalation

(difficulty) level was, and what lighting state was required to be loaded for a certain task.

TaskValues was where all the task completion variables, along with their target values, were

stored and updated in game - for example, in order to complete the vacuuming task the player

must vacuum up all the spots of grime to reach the target number of dirt cleaned, so a “dirt”

variable in the TaskValues table was updated on each spot removed to evaluate if the player

had completed the task. On each update to a task variable the SetValue function called an

internal CheckTaskComplete function to ascertain whether or not all variables associated with

the current task had reached their target values. If so, an event TaskComplete would be fired

from GameManager and received in either the TaskManager or RadioManager blueprints to be

acted on (played task end audio, remove objects, load next task, etc). Widget Strings contained

the keyed values for different task UI text, and was used by the base UI template to create

dynamic UI in-game.

4.6 Gameplay: How was the game made?

4.6.1 Day Night Cycle and Task Loading

 The gameplay loop of The Call of Karen consists of a repeating day-night cycle with a

series of tasks/mini-games occurring on each day of increasing difficulties. Getting this loading

of tasks and their associated escalation levels to work was our first priority, and the initial

method for driving the day-night cycle was completed within a few weeks of development. This

method relied on storing the data for each day, its list of tasks, and the escalation level for each

task in a series of dictionaries (key value pairs) and ordered lists, which were passed into a

function in TaskManager to be acted upon. Each task had a dedicated sublevel for ease of

switching tasks and for ease of having multiple people work on the project at the same time, so

the day loading system took advantage of this and set up each task by loading its sublevel and

any UI that went along with it. This day loading system, while clunky, was effective for the initial

prototyping phase.

 During the latter half of development it became clear that certain things initially built in

blueprint would be cleaner and more efficient/maintainable if built in C++ instead - one of these

things was the day-night cycle framework. As mentioned previously in the section on C++

Integration and BP_GameManager, one of our programmers took it upon themselves to do a

partial rewrite of the entire cycle system, moving data such as the tasks and their level

information into data tables for easier and neater retrieval, and setting up an event system

which could be passed into blueprints to be acted on.

4.6.2 Escalations and AI

 One of our main aims when it came to programming this game was to keep the

implementation fairly simple and easy to build off of. Towards this end we planned the

escalation system so that when it came time to add higher levels of escalations, and therefore

higher levels of difficulties, all it would take was simply adding in a call to the next level function,

i.e. call Level2 to apply level 2 escalations. Almost all of the escalation code was encapsulated

66

into a custom Unreal Component called Escalation, which was made an inherited component for

all objects which used our standard actor types ReactiveStaticActor or ReactiveSkeletalActor.

Each Escalation Component has an associated escalationLevel which would be set on task

loaded in order to tell the component which level function to call and apply changes to the owner

actor’s behavior. Originally the reasoning behind having an individualized escalation level for

each actor was to avoid accidentally applying escalation effects to other ReactiveActors in

scene which didn’t need them - for example, while we wanted all the food, plates and pans in

the breakfast task to start floating and jerking around on escalation level 2, we didn’t want the

same thing to happen to the fridge or the spatulas in drawers, both of which were

ReactiveActors and therefore also had Escalation Components of their own.

 We ended up with three escalation functions - levels 1, 2, and 3 - along with three other

general use escalation functions: normalize, randomizeLocation, and EXID. RandomizeLocation

and normalize are fairly self-explanatory. The former takes in the current task and randomizes

the location of all the objects associated within a given space in the house. The latter removes

any and all effects on objects in a task that have had an escalation applied to them; this was

used often when there was a need for floating objects to drop ominously on triggers, or to make

it easier to complete certain escalated tasks such as putting the meatloaf in the oven when

there is an antigravity escalation applied to it. EXID was a custom function to create the

escalation for breakfast on day 6, which caused the gravity to reverse every 1-2 seconds to

create a sort of wacky “possessed breakfast food” feel for the final day before the Cthulhu

showdown. The functions Level1, Level2, and Level3 used a combination of these generalized

functions, as well as custom features such as applying impulses and/or rotation vectors to

objects to get more interesting movement patterns.

 There were some unique cases where the escalation was not applied by the Escalation

Component, but rather created dynamically on level load - this was typically because the

escalation was so different from the baseline task, and/or utilized so many different objects, that

it didn’t seem worthwhile to try and fit the functionality into the component itself. In addition,

often these tasks required the conversion of objects already in the level, such as the meatloaf

and books, from ReactiveStaticActors to ReactiveSkeletalActors or Pawns so that animations

and/or AI navigation could be applied to them. These instances were the day 4 dinner task,

which utilized Unreal’s AI framework to create a meatloaf that runs around, and day 6 cleaning,

which spawns floating, chomping monster books which must be shot down to complete the task.

 The AI meatloaf used for day 4 dinner was created using an Unreal Pawn as the base

actor class, and uses a combination of a NavMesh Volume in the main map and pseudo-

random movement within a defined radius to move about the level. For this task we didn’t need

particularly complex AI, as we never aimed to make tasks so difficult as to be frustrating to the

player, or require a lot of dexterity, so the tricky-but-doable challenge of catching a twitchy little

meatloaf rat that the AI created worked perfectly. This meatloaf character was always present in

the dinner sublevel, but only made active on day 4.

 Day 6 cleaning required the complete deletion of the normal objects being cleaned -

pencils, papers, normal books, and cards - and the spawning of new monster books, which then

had level 2 (float and no drop) escalation applied to them. As mentioned previously, in order for

an actor to have an animation sequence attached it needs to have a skeletal mesh, so all of

67

these books needed to be spawned in as ReactiveSkeletalActors with the monster book

animation sequence attached and playing.

4.6.3 Movement System

 The movement system utilizes the Unreal first person shooter template’s system, with

some tweaks. In order to make the movement feel more grounded and less like a classic

shooter game, the jump height was decreased while the player mass was increased. In addition,

the default walking speed was increased so that walking around the environment wouldn’t be a

chore for the player. To accompany this, two additional movement options were added to further

aid players in navigating the playspace: a crouch capability, and a run capability.

 How to deal with object collisions while moving was a large part of tweaking the

movement system, as often times in The Call of Karen the player finds themselves walking

around a house strewn with various obstacles and items on the floor and next to walls.

Ultimately, we decided on having any small object on the ground ignore collisions with the

player character, while still generating overlap and hit events in case the object needed to

respond to colliding with the player in any way. This method of dealing with collisions allows the

player to navigate the house without “tripping” over any objects on the ground or getting stuck

on relatively large objects such as books, resulting in a smoother navigation experience. Very

large static items, like kitchen counters and living room furniture, still collide with the player

character and block any attempts to overlap in order to maintain realism.

 Initially, an aspect of the movement system was the ability to “step onto” any object in

the game, including kitchen counters, tables and chairs. We had believed that leaving that ability

in would give the player more freedom of movement around the play space and allow them to

reach into perhaps more difficult spaces in the house, like above the fridge or in the very center

of a large table. However, after receiving feedback from Alphafest in November in which several

people complained about “jumping onto the counter” as if it were a bug, we ultimately decided to

take out jumping onto objects and reconfigured some game objects’ positions so that they would

still be reachable by the player within the map.

4.6.4 User Interface

 With our heavily task-based gameplay, effectively communicating how to complete those

tasks to the player was critical. While our early prototypes had on-screen checklists, these were

individually hand-built UI widgets for each task, which proved to be unscalable, and difficult to

orchestrate in Blueprint. Our solution was to utilize a few data-driven Widgets, with UI strings

stored in data tables so that we could focus on the gameplay and content of the UI and not have

to worry about building out new UI upon completion of each new gameplay element.

 Unreal allows UI widgets to inherit properties and structure like with any other Blueprint

class, which allowed us to build a few generic, data-driven UI elements that could be populated

from our existing TaskValues datatable on task load, and update themselves from the game

state. Our base widget, FadeInWidget, contained no structural components but animations for

fading/sliding on and off screen. TaskWidget, a child of FadeInWidget, contained a title element

and a list of TaskListItemWidgets. Since our task loading procedure already loaded/parsed the

data for the current task and the TaskValues associated with completion, all we needed to do

68

was pass this data into the widget constructors and stick them on the screen. TaskValues in the

form of egg_count were correlated with UI strings like “Cook 2 eggs” in the WidgetStrings

datatable.

 For user instructions that did not conform to this format, we created a simple popup

widget inspired by toast notifications (Brocka 2016). This allowed us to provide added story and

hints to the player during mini-tasks such as ordering silver bullets and writing a sarcastic thank

you note to Susan, without having to add the overhead of making those items full-fledged tasks

with TaskValues, dedicated levels, etc (or modifying the task and level loading systems to

accommodate them).

 In a similar vein, we added a persistent controls popup at the bottom left corner of the

screen so the player could easily reference it if they forgot any of the controls. This popup

appears at the start of the game and can be hidden/shown by pressing a single key (with a

lingering but non-distracting prompt remaining in the HUD while it is hidden.

Unlike our prototype UI, all of these UI elements as well as active menu/credits UI

elements were anchored to different corners of the screen, so that they scale to dramatically

different screen sizes and aspect ratios effectively.

69

70

4.7 Implementation Difficulties

4.7.1 Blueprints vs C++

 When we first began development in Unreal the blueprinting system was very easy to

get used to and get working fast – we sometiomes had prototypes for tasks up in a matter of

hours. However, as we continued to work and wished to create more complex systems, such as

the loading systems for days and task sequences at different difficulties, it became harder to

implement things quickly and efficiently. Simple tasks that could be accomplished by writing 3

lines of C++ code took up enormous blocks of “spaghetti” blueprint space, and were basically

unintelligible to the artists - even between the programmers, sometimes, it was difficult for one

to read the other’s blueprint code. Blueprint functions become sprawling, messy masses very

quickly, which led to much confusion, duplicate code, and bugs that should have been easy to

fix, but weren’t. In addition to the incomprehesibility, blueprints also execute slower than C++

when it comes to looping functions, map loading functions, and functions with heavy

mathematical equations. This slowdown became extremely apparent as more objects appeared

in scene that needed to be looped over in code for modification, and posed a serious risk of

slowing down our game to the detriment of the overall experience and quality.

4.7.2 Git Merge Data Loss

Imagine banging two different kinds of rocks together until they become one rock -

except you have no hands and can’t see the rocks. Eventually you just give up and go find a

different rock. That is how version control integration works for Blueprints in Unreal. Our

programmers lost as much as tens of hours of work at a time over merge issues, and though

they could write a standalone paper on it, have opted for a brief summary instead.

The root cause of this problem is the way Unreal handles asset storage. Assets

(*.uasset), maps (*.umap), and most notably, blueprints, are stored in a binary format. This

means separate changes to the same file can not be compared or merged by version control

tools such as git. While Unreal provides a Blueprint merge tool that identifies conflicting

changes, it does not allow you to merge them (even if they are functionally able to be merged

cleanly), nor does it display this information in a useful way. The user can view sections of

blueprint in the current local branch, the branch being merged in, and the most recent common

ancestor in the version tree - but these graphs are read-only and include unintentional changes

like accidentally moving and disconnecting/reconnecting nodes, resulting in the edit history

being pretty much unreadable. File changes are also not refreshed without closing/reopening

the diff tool, resulting in additional lost work unless the affordances of the tool are completely

ignored and the “merge” and “save” buttons never used. To top it off, the merge tool frequently

crashed the editor or even the computer when left open for extended periods of time

(presumably some sort of memory leak).

Maps and assets, unlike Blueprints, could not be merged in any capacity, and if modified

on two separate branches, one set of changes always needs to be entirely scrapped and

redone. We were able to mitigate some of this by employing strategic workflows, such as having

artists make asset changes by copying actors into sublevels, and manually merging those back

71

in. While this reduced the amount of work that needed to be redone from scratch, the process of

manually comparing actor properties and overwriting/copying data between individual actors

was extremely tedious. Some of our larger art merges took 6-8+ hours of programmers/artists

going through several weeks worth of work together, and in a couple of cases multiple days

when combined with the obscure data corruption bugs described in the next section.

For assets, there was no way to resolve merge conflicts, and it was time consuming to

wait for each others’ responses before editing a particular asset file to prevent conflicts. In many

cases where conflicts were introduced unknowingly large amounts of work were lost and

sometimes unnoticed for weeks, resulting in repeated “didn’t we fix that 3 weeks ago?”

moments (particularly when modifying collision boxes and animation properties, which are all

stored in the same mesh asset file by Unreal). In some cases changes just flat out got

lost/disappeared in merges, and had to be redone several times over the course of subsequent

merges. At times, it almost felt as if our meddling Cthulhu gameplay mechanics were bleeding

into our development workflows.

4.7.3 Semi-Random Data Overwrites and Deletion

 An unexpected and unwelcome feature of Unreal that the programmers experienced

often was data being overwritten and/or deleted randomly in the Unreal editor. Typically the

victims were actor components and tags. Sometimes while working in the editor, either between

builds or between reopenings of Unreal, actors would lose characteristics without explanation.

This issue has been reported by other Unreal users in various contexts, though the cause

remains unclear and there were no documented solutions that worked for us (Roberteker,

2018). Often this meant that upwards of two to three dozen objects would lose the ability to be

picked up, or react to hit and/or overlap events correctly, and would in general cause

unexplainable bugs until we caught on to what was happening. The issue could be solved by

resetting the changes on whatever sublevel map the error occurred on. However, this usually

wasn’t a viable option because of essential changes that needed to be kept on that level. The

result is that the programmers spent many hours redoing settings and replacing missing code

several times over to fix issues that shouldn’t have even occurred in the first place.

We couldn’t find much information as to the cause of the data deletion - our best guess

is that it’s a side-effect of either Unreal’s backup map data system, or an obscure memory-

related bug in the implementation of the editor. Either way, it is not an exaggeration to say that

between the two programmers a significant part of the level changes in this project was redone

two to four times. In addition to the number of times blueprint data was lost to difficult merges,

somewhere around 25-50% of the code was rewritten more than once, and in some cases

several times.

72

5 Art

 In this chapter, we cover all of the artistic choices that went into shaping the look of The

Call of Karen. Chapter 5.1 details other works that inspired the look of our game, chapter 5.2

discusses our use of color, chapter 5.3 describes our asset creation process, chapter 5.4

discusses our use of and process for creating technical art, and chapter 5.5 discusses our user

interface. Our user interface is only discussed at a cosmetic level here; for more information on

user interface from a technical standpoint see section 4.6.4.

5.1 Inspiration and Concept

 Early in the art design/visual development process, we wanted to be able to point to a

select set of games as reference for our art style. We agreed our game should look pseudo-

realistic; high quality assets paired with saturated colors and simplified textures were our initial

ideas. Our first comparables we used were What Remains of Edith Finch and Firewatch

(Campo Santo, 2016; Giant Sparrow & Annapurna Interactive, 2017) .

What Remains of Edith Finch (2017)

73

Firewatch (2016)

The former was used as a guide for overall level layout, since most of Edith Finch takes

place in cramped interior environments, and it also established the quality level we wanted to

have for our assets. Firewatch was primarily used for lighting reference. One compromise we

made was that we didn’t want our game to be choked with clutter, as many areas of Edith Finch

are. We wanted players to understand what was and what was not interactable, and we felt that

excessive amounts of clutter would work against this principle. Additionally, reduced clutter

meant reduced art load, allowing us to focus on polish, lighting, and making sure the assets we

did have were high quality. Additional style references included Bioshock Infinite, and The

Flame in the Flood (Irrational Games & 2K Games, 2013; The Molasses Flood, 2016).

Bioshock Infinite (2013)

74

The Flame in the Flood (2016)

Trover Saves the Universe has the distinction of being one of the few comedy-centric

games we used as a comparable. In general, comedy games seem to incorporate more colorful

palettes (Squanch Games, 2019).

Trover Saves the Universe (2019)

 Some feedback we received during the MassDiGI Game Challenge involved presenting

What Remains of Edith Finch as a comparable. We were encouraged to swap it for a different

game, principally because the eminence and critical acclaim of Edith Finch overshadowed its

utility as a comparable; we agreed that comparing The Call of Karen to Edith Finch established

unreasonably high expectations for our game. Thereafter, we decided to instead use I Expect

You to Die as our main style and layout comparable (Schell Games, 2016).

75

I Expect You to Die (2016)

This well-known VR game is well regarded, and most importantly, smaller. Its similarities to

Edith Finch, as well as the reduced amount of clutter in the game, made it a very apt choice as

a comparable.

 Additional comparables were also established for how we wanted to implement the

presence of Cthulhu and corresponding milieu of eldritch disturbances. The Sinking City and

Darkborne were our earliest comparables in this area (Bertz, 2019; Frogwares, 2019). Our initial

thoughts on incorporating these elements involved the creation of pentagrams and symbols to

cover walls, much like this example from The Sinking City.

The Sinking City (2019)

76

 Fully committing to a 1950s style presented us with some new and interesting

challenges when it came to art. Not only did we have to create a convincing house, but we had

to make it something that truly evoked the 50s. We were initially tempted to utilize our own

knowledge of the 1950s and furniture around our own homes as primary references, but were

able to quickly find 1950s references that were more reliable and period accurate.

This need to evoke the 50s presented some interesting challenges, as sometimes props

and layouts that were period accurate just didn’t “feel” like the 50s. In order to create something

that truly evoked the feeling we were going for, we had to account for everyone’s nostalgia

goggles. For example, many appliances that we included (the blender, electric stove, and

dishwasher) were met with skepticism because, even though they were around in the 50s, many

people didn’t think they were, and thus they seemed historically inaccurate, despite not actually

being so. Few people took too much issue with this, however, and some of these problems

solved themselves. While utilizing the dishwasher was present in our initial design plans, we

never ended up actually using it, so it seems like another cabinet and nobody really pays it any

mind. The blender task was changed to breakfast (for a number of reasons, including period-

accurate skepticism), so that problem took care of itself. As for the stove, not too many people

batted an eye at that, and the way that the stove was textured meant that it matched the rest of

the kitchen quite well anyhow.

Accounting for nostalgia was one part of the concepting process, but just as important

was making sure we had period accurate references. We relied fairly heavily on the internet at

first, but after a fruitful trip to the library, one of our artists was able to procure a book from the

1950s about how to be a good interior decorator. The Good Housekeeping Book of Home

Decoration (Brandt, 1957) became an invaluable art resource. The book was chock-full of useful

references and pictures from the 1950s. It had information on how every room in a house

should be decorated, including many useful reference pictures. When creating props and

furniture for our environment, this was the reference we used the most.

On the left a typical 1950s kitchen, and on the right The Call of Karen.

77

5.2 Colors

 We aimed to keep our use of color deliberate and readable. Each room in Karen’s house

is a different color, keeping in line with sensibilities of the time. We also made sure not to texture

any regular objects or walls purple, a color we left exclusively for Cthulhu. Our use of purple in

this way was inspired by the use of saturated pink and blue in The Legend of Zelda: Breath of

the Wild (Nintendo, 2017). The previously mentioned colors are almost exclusively used to

denote danger posed by Ganon and his lackeys. They stand out in comparison to the other

colors in the landscape and immediately alert the player that something is amiss.

The Legend of Zelda: Breath of the Wild (2017). Note the bright colors of the guardians.

We wanted to accomplish the same effect with the color purple. Cthulhu’s iconography is

historically portrayed as green, however, we found green to be fairly sickly and not unearthly

enough. We found purple to be a choice that fit our mood much better, as it evokes danger, but

not as much as red, and sticks out amidst the rest of the house. We used purple in both lighting

and texturing in situations where we wanted to convey Cthulhu was present.

78

Purple lighting during the day Karen confronts Cthulhu.

5.3 Asset Creation

5.3.1 Modeling

 We created our 3D models with a combination of Autodesk Maya and 3DS Max,

focusing most heavily on the former. We struggled to some degree with proper scaling—to be

implemented correctly in-game, every model must be scaled correctly upon exporting, not

afterwards. We had a hard time figuring out what was going wrong, and by the time we did, it

was time to demo for our first event. To make everything look right for the build, we rescaled

everything in-engine, then updated and reimported the assets after the event.

 Asset creation was divided between our two artists. We kept and updated a thorough

asset list so as to not step on each others’ toes and maximize efficiency. We changed and

updated our asset list as necessary when the game changed. As previously mentioned, we

utilized plenty of reference when modeling, and while we tried to get everything done right on

the first try, we did end up having to go back and make some edits.

 Modeling was done in waves based on priority. By the time modeling began, we had a

greyboxed version of our house layout with blocked out furniture included, so we prioritized

necessary, interactable assets first. For example, fruit for the smoothie, the blender, the oven,

plates, forks, knives, vacuum, et cetera. A lot of the prop modeling was done in the same scene,

so as to make sure that everything was scaled consistently with each other. Once the

necessary, interactable assets were complete, we moved on to necessary furniture, set pieces

that would obviously be notable as missing if left as default cubes or cylinders for too long, like

the couch and the kitchen table. Once these big setpieces were created, we moved on to set

dressing: objects that would add some extra flavor to the environment but were not quite

necessary like bowls, decor, and picture frames.

79

All of the kitchen furniture in the same place.

Our aim was to finish modeling as soon as possible so we could move on to shader

creation and texturing and stay on schedule. We accomplished this goal to a large degree, but

we did end up having to go back and adjust models later based on gameplay or how they

looked in the engine. For example, fairly late in production we had to adjust the front door

model, because we added a flavor task that required Karen to receive mail, and the original

model lacked a mail slot.

All of our models were hard-surface and didn’t necessitate the use of Zbrush. While we

know that Zbrush is a powerful and excellent tool, it didn’t make much sense to go out of our

way to work in Zbrush when we had little to no organic models to make.

Worth mentioning was that we had to be diligent with our material assigning and naming

practices while in these modeling packages. Leaving materials as their default names upon

exporting assets causes the material to be imported with that default name into Unreal, resulting

in many duplicate materials with unhelpful names like “lambert1”. We struggled with this

problem at the beginning of the project, but after some time and a significant amount of

renaming and sorting, we were able to consistently name materials correctly.

5.3.2 Texturing

 Texturing was done using a combination of both Substance Painter and Adobe

Photoshop. Substance painter was used primarily because, due to the large amount of props

we had, we prioritized fast UV unwrapping over perfectly optimized UVs for most props.

Substance Painter would allow us to texture with these quick UVs with significantly more ease

than Photoshop.

 While most props were textured with Substance Painter, Photoshop was useful for props

that required a lot of images and text, an aspect of texturing that Substance Painter struggles

with a bit more. For example, the couch, california closet, and kitchen implements were created

with Substance Painter, but all of the books and trading cards were very text-heavy, and thus

required Photoshop. Substance Painter makes it harder to edit previously input text, and is a

poor choice for difficult to create, modular, easily swappable, precise textures as needed for the

80

trading cards. In many of these cases however, models were taken into Substance Painter to

create maps other than the base color map, since it’s easier to visualize maps like metallic and

roughness in Substance. Only in a few cases (the books and envelopes) were all texture maps

created in Photoshop.

 There were many instances where we utilized basic functions in Unreal’s shader graph

to block out colors on textures before actually texturing them. For example, during a large

portion of development, the colors of walls were determined via the VectorParameter module in

Unreal’s shader graph. This module allowed us to very quickly and easily see what colors would

match together and look good in-engine. Once the color of the walls was determined, we used

grayscale wall textures and combined them with the VectorParameter module to give the walls

more character, and tweaked the VectorParameter module to adjust for the value change.

Unreal’s VectorParameter module.

 Texturing was split between our artists, utilizing the same organization system as

modeling to keep from overlapping work as much as possible. We worked in a somewhat

staggered way, and one of our artists was new to Substance Painter and had to learn it before

they could begin. We rarely shared Substance files between each other, as they were quite

large, and we had good enough communication where we were able to clarify any changes that

needed to be made so that the artist with the original Substance file was able to change it

themselves.

 We did have a strange issue when importing our textures into Unreal, which persisted

into our first showcasing event. When hooking up our textures with the appropriate materials in

Unreal, the textures appeared dark and far too shiny. We were so baffled that slightly before our

first showcasing event, we used our knowledge of Unreal’s shader graph to artificially change

the materials to be their correct roughness. Once the event was over, we discovered our

problem and were able to fix it fairly easily—it was a matter of changing a setting on the textures

themselves, then changing a parameter in the shader graph to reflect the texture change. When

81

ussing the Ureal Engine temple, Substance Painter, exports the Occlusion, Roughness, and

Metallic maps of materials packed together into one image file. However, packing them this way

means that the sRGB checkbox in the texture must be unchecked in Unreal before the material

will properly show the material.

 Also worth noting is that, for this project, the artists were the ones hooking up all of the

textures into Unreal. Hooking up the textures gave the artists more familiarity with the shader

graph (necessary if we were to create the shaders needed to convey Cthulhu) and also gave

them more control over how the assets actually looked in-engine, which was invaluable to

accomplishing our artistic vision.

5.4 Technical Art

 Both of the artists on the team possessed knowledge of technical art, and this

knowledge was extremely useful to us as the project continued. This knowledge of technical art

and the willingness to roll up our sleeves and learn different areas of technical art gave us new

and interesting options to make our game look polished and evoke Cthulhu in fun and

interesting ways.

5.4.1 Shaders

 Part of communicating Cthulhu’s presence involved liberal use of the shader graph. One

of the first shaders we created was a shader that allowed us to do tri-planar mapping inside

Unreal. Effectively, this shader would allow us to put any tileable texture on any object and have

the texture applied correctly with no need to account for UVs. As part of our vision was

swapping out textures on random objects, this was an ideal situation—this way, we would be

able to swap out textures on any object we liked, and wouldn’t have to be stuck with a limited

amount based on what objects we used the correct UV maps for. This would also save on

memory space, since we could apply one texture and shader to multiple objects with the correct

results.

The tri-planar mapping shader graph.

82

The tri-planar mapping in action.

 Now that we had tri-planar mapping working, we needed eerie textures to use it with. We

tried to stick with classic horror/Cthulhu iconography—mostly veins and slime—but we didn’t

want to evoke any major feelings of fear or disgust in the player. The use of purple, as

mentioned in chapter 5.2, helped us achieve this goal. The vein texture would be a lot more

unsettling if it was skin colored, but the purple “skin” and orange veins, a color combination

rarely found in nature, really helped us distance ourselves from any true horror while still

evoking the idea of it.

Our Cthulhu textures. In-game, they also pulse and flicker.

Most of our Cthulhu-esque shaders were animated in one way or another. Many didn’t

use spritesheet animation, but instead made use of the panner module. The panner module

allowed us to give the slime textures enough movement to feel just slightly unsettling, and

meant that we didn’t have to import any new animations when they weren’t necessary. We also

were able to use the panner module zoomed in on a grayscale texture multiplied with the

opacity and emissive map to indicate that spots or veins were flickering and glowing, which

added a nice dynamic element to our shaders.

83

The shader graph for one of our slime textures.

 While most of our textures were animated with the panner, we did utilize some

spritesheets for our meatloaf texture. One of the dinner dash escalations involves the meatloaf

being caught and consecrated, so we wanted the look of the meatloaf’s texture to be more

intense than the shaders that crop up around the house on occasion. As such, we decided to

give the meatloaf several eyes that twitch around and blink, since creatures with multiple eyes

are common in Lovecraftian iconography. These eyes were animated in After Effects and

rendered as a gif, then converted into a spritesheet in Photoshop, and imported into Unreal. The

flipbook node was then used to cycle through the series of images to animate them. It turned

out fairly well—the only problem was that, with this flipbook node, we were unable to use the tri-

planar mapping shader on the meatloaf, so some of the UV seams are fairly visible, and not all

of the eyes are clear.

The eldritch meatloaf shader graph.

84

The meatloaf shader on and off the meatloaf.

5.4.2 Rigging

 As we didn’t have any animated characters, our rigging was kept to a minimum. We did

struggle at first with figuring out how to get cabinets, the refrigerator, and the oven to open and

close, and considered using a very basic rig for them. However, we ended up using animated

mesh hierarchies instead. Even this method of opening and closing doors and cabinets ended

up being a struggle, as skeletal mesh collisions were finicky and hard to work with so the

programmers had to go in and essentially hard-code the opening and shutting of doors.

 We did end up with one rigged asset. On day 6, some books in the living room float

around and chomp at the air. In order to get these books to chomp, we used a simple 5-bone rig

to get the effect we needed. We had to make significant adjustments to skin weights, since our

books were fairly low-poly and any major mesh deformities would be glaringly obvious. We were

able to achieve the effect we wanted fairly quickly, and also created and exported a simple

biting animation for the books.

Our rigged chomping book.

85

5.4.3 Particle Effects

 We didn’t end up using too many particle effects, but there were some notable ones.

Firstly, we had the salt and pepper particle effects—these effects didn’t require much in the way

of complex visuals, and as such were created by the programmers, not the artists. We also had

a particle effect for when the vacuum gets enchanted, making it glow as it rises into the air.

Finally, and probably most notably, we had a particle effect when Karen goes outside during the

final section of the game, meant to look like a rising, swirling storm.

 This last particle effect had two uses: to instill a sense of unease, and to obscure

Cthulhu. One of the important things about Lovecraftian horror is that the horror comes from the

unknowability and incomprehensibility of its subjects. As such, we felt that it would undermine

Cthulhu’s presence if we were to clearly portray it. We still felt the need for a final showdown

with Cthulhu, but we needed to keep its form ambiguous. As such, we made a very rudimentary

Cthulhu model complete with glowing eyes and an animated slime texture, gave it a backlight to

help show a silhouette, and shrouded it behind a particle effect (seen below). We had to do a

significant amount of iterating on this particle effect to get it to show just the right amount of

Cthulhu, but eventually we reached a happy medium.

Cthulhu’s silhouette.

5.4.4 Cosmetic Blueprints

 While we were largely able to keep our artistic endeavors in Unreal confined within

shaders and particle effects, there were a few cosmetic elements that the artists had to delve

into blueprints to accomplish. Blueprints were used for our swirling text, postprocessing effects,

protection circle, and upgrading the vacuum blueprint.

 This swirling text was an idea that we initially wanted to incorporate into the cleaning up

escalation, an idea which later got cut. The concept was to have floating, swirling text appear

above an ancient book, and after a few seconds both the text and book would disappear. When

designing the text material, we knew that we didn’t want it to be a flat png. We wanted to be able

to adjust the text’s size and contents within Unreal. As far as we could figure out, creating this

kind of adjustable text is impossible to do with the shader graph alone. As such, we made a

86

blueprint that took text input and applied it to a specified material. This swirling text blueprint and

material combo may have been cut from cleaning up, but it was invaluable to us when it came to

the Yikes Machine. The Yikes Machine allowed us to spawn unusual objects and then delete them

shortly after, and we quickly discovered that large columns of swirling text worked quite well as

one of these unusual objects. We applied the text blueprint and material to a sphere, cylinder,

and default Unreal bush, which gave us the strange look we were going for. The text actually on

the material is the chant associated with the Great Old One in The Call of Cthulhu:

“Ph'nglui mglw'nafh Cthulhu R'lyeh wgah'nagl fhtagn.”

Swirling Cthulhu text.

 We also created another cosmetic blueprint that worked in conjunction with the Yikes

Machine. This blueprint allowed us to predefine different sets of postprocessing effects and

apply them to the camera whenever we wanted. Paired with the Yikes Machine, this blueprint let

us fill the screen with static or use chromatic aberration whenever we wanted to invoke a sense

of uneasiness.

 Another cosmetic blueprint, the protection circles, was similar to the swirling text in that

we wanted to accomplish that would be much harder do in the shader graph. We needed it to

expand and fade into existence upon creation, and we wanted the glyph on the inside of the

protection circle to float up and down within the outer circle while the blueprint was active. Once

we got the protection circle working, we incorporated it into the vacuum upgrade blueprint. The

vacuum upgrade blueprint utilized particle effects and the protection blueprint to have the

vacuum rise into the air as protection circles surrounded it, before falling to the ground as a

different, upgraded vacuum.

87

Enchanting the vacuum.

5.4.5 Lighting

 A major change that occured over the course of the development of The Call of Karen

was the switch from static to stationary lighting. Unreal Engine includes 3 basic, mutually

exclusive states for all lighting assets: static, stationary, and dynamic. As the name suggests,

static lights are completely unchangeable at runtime, and therefore have the lowest

A stationary spotlight in Unreal Engine

88

computational cost, as well as the highest quality. Stationary lights are technically dynamic;

some of their properties—color, intensity, etc.—can be changed at runtime, but they cannot be

moved. Dynamic lights are completely changeable at runtime, and as you might guess, are the

most computationally expensive. Though modern games are now embracing fully (or mostly)

dynamic lighting—Fortnite (2017-2020) in particular—unrestrained use of dynamic lighting can

quickly result in massive performance problems. Unreal Engine offers stationary lights as a

compromise between fully static, and fully dynamic lights. Stationary lights allow for baked

lighting (that is, lighting and shadowing that is baked into a 3D asset before runtime) in

combination with dynamic shadow maps. Initially, it was thought that a mostly static lighting

setup would achieve our desired quality level. Indeed, the game remained statically lit for most

of its development. However, this prevented the game from having dynamic (moving) shadows.

With light pouring in through the windows during the morning and afternoon, we wanted

movable objects, of which there are plenty, to cast moveable shadows. Besides adding a layer

of quality, it would assist with depth perception when handling interactable objects.

The problem was that, even with the lighting set to stationary, there were still no dynamic

shadows being cast. We believed this was due to the fact that the house, specifically the floor,

was still a static asset. Like lights, mesh objects can also be set to static, stationary, or dynamic,

allowing different levels of modification at runtime. We believed that only stationary and dynamic

meshes could receive dynamic shadows, and our testing seemed to reflect that. In retrospect,

there were likely other problems with the lighting that interfered with having proper dynamic

shadows, as static objects do infact receive dynamic shadows. Nevertheless, we proceeded to

change as much of the house to stationary objects as possible. Dynamic shadows were now

working, and the lighting was looking better than ever. But there was one major problem:

anything in the house that was reflective was reflecting the outside sky; it was as if there was

nothing blocking the light from the distant horizon hitting the glass on the kitchen table, or the

Preliminary baked lighting with static objects

89

couch in the living room.

This, unfortunately, was a consequence of converting the entire house into stationary

meshes. Stationary meshes, unlike static ones, do not show up in reflection captures. Briefly,

reflection captures act as a 360 degree camera, capturing everything they see, and then

projecting this image onto reflective surfaces. Without reflection captures, materials (especially

metals) look dark and matte, and glass is reflectionless. However, having the entire house be

stationary meant that it was invisible to our reflection captures, making every reflective surface

within the house directly reflect the sky. To solve this issue, a separate reflection environment

sublevel was created, in which we placed static copies of all the objects in the house that had

been made stationary. The new static objects then contributed correct reflections to everything

within the house.

Understanding our previous misconception about static objects, this process of making

the entire house stationary and then copying everything to make static reflections could have

likely been avoided. But hindsight is 20/20, and the result we achieved was high quality lighting,

with relatively low computational cost.

Isolating reflections shows the interior reflects the sky

Final lighting

Corrected reflections

90

5.5 User Interface

 While we recognize the importance of good user interface, beautifying the UI was our

lowest priority. However, near the end of production, we took a little bit of time to upgrade the UI

from the base given by Unreal. Karen’s tasks are shown on a piece of paper, in a font

resembling handwriting. We wanted this UI to be simple and reminiscent of a typical to-do list.

Additionally, our menu screen utilizes the title render that we use for advertising, which we

thought was a good fit.

Task list UI.

Final morning lighting

91

The Call of Karen title render.

92

6 Sound Design

 This chapter details the creation and implementation of The Call of Karen’s game audio.

Chapter 6.1 covers the recording and processing of voiceover, chapter 6.2 discusses the

creation and finding of music assets, chapter 6.3 discusses the creation of sound effects, and

chapter 6.4 discusses the implementation of audio into the game.

6.1 Voiceover

 As mentioned in chapter 3.3, a lot of The Call of Karen’s narrative is conveyed via

voiceover. As a result, voiceover was our first audio priority. Once our script was written and

approved by our advisors, we decided to record placeholder audio so we could see how players

responded to it. We were fairly close to Alphafest and didn’t have much time to reach out to

other people to perform, so our placeholder lines were recorded almost entirely internally. We

thought it might be distracting that one teammate voiced almost every character in the game, so

we used audio processing effects to try and mask this fact as much as possible. The only

external recording done for this placeholder audio was for a one-off character, Jeff, who had two

lines fairly late in the game. Jeff had accidentally been left out of the internal recording sessions,

and since we needed his lines quickly, one of our teammates’ roommates voiced him.

 After Alphafest and our first playtesting session, we left the voiceover largely unchanged.

We knew that it needed to be edited and re-recorded, but we knew that we would likely have to

make even more edits in the near future. We thought it was a better use of our time to work with

what we already had until we had sufficient time to iron out those edits, especially since we

were making large changes to different parts of the game fairly quickly.

 With the deadline for our build fast approaching and the script freshly rewritten for

(hopefully) the last time, we knew we needed to re-record in mid D term. Unfortunately, we had

a significant obstacle to overcome. Due to the COVID-19 outbreak, D term was completed

entirely off-campus. We were all stuck at home, without immediate access to each other, other

people that might be able to help with our recordings, or any nice recording equipment. As such,

we had to figure out how to work with what we had, and what to do to get new recordings.

Fortunately, we had previously decided that we liked the radio recordings well enough the way

they were, and they had escaped rewrites largely unscathed. Since the radio’s lines comprise

the majority of the script, this took a lot of work off our plate. For Francis, while we would have

preferred to have someone new, we couldn’t quite think of anyone who would work that we

could easily get ahold of. Considering that Francis has very few lines, we decided to leave him

as-is as well. The husband’s voice lines were also left as-is. Francis and the husband did

require a few rewrites, but since they had been recorded internally, we didn’t have to worry

about wrangling outside voice actors for them.

 The main conundrum that we faced was Karen. Karen was the most obvious placeholder

voice, and the script had been rewritten to give her significantly more lines. We needed a new

Karen to bring it all together, and with a stronger performance. Luckily, a friend of one of our

93

team members knew a fellow student, Fiona Doyle (who consented to have her name in this

paper), who we thought would be a good fit. Scheduling during a global pandemic proved to be

a bit of an obstacle, but eventually we were able to record. Karen’s new voice was much more

fitting than the old one, and really tied together the cast of characters.

 One of our biggest obstacles during this time was the fact that all recording needed to be

done with whatever microphone voice actors had on hand. Microphone quality was generally

bad and extremely variable, and significant audio processing had to be done to try and get the

audio to sound the way we wanted it to. The audio we ended up with obviously wasn’t as crisp

and polished as it would have been had we been using professional grade microphones, but it

was definitely acceptable. Also, luckily, there were some rerecords that were likely to go

unnoticed. Radio rerecords were largely undetectable, because radio lines were sent through a

high pass filter with static playing in the background to emulate a classic 1950s radio sound.

These components masked the different mic quality of the rerecords fairly well. Since all of

Karen’s lines were recorded by our new voice actress, they were all recorded using the same

mic in the same recording environment, which meant that they sounded uniform. The husband’s

new lines were the trickiest ones—the mic quality was quite low, but with some postprocessing

effects and an acknowledgment that the husband was shouting from across the house, the lines

turned out alright.

 An important aspect of the voiceover is the presence of Cthulhu in the radio. As the

week continues, Charles, the radio host, speaks gibberish, chants in tongues, and shows other

signs of descending into madness. We utilized audio effects to effectively convey this

breakdown. We did combinations of reversing the audio, pitching it down, and doubling the radio

announcer’s voice to give it an eerie, demonic quality, while maintaining the cadence and tone

of the announcer.

6.2 Music

 We decided that it made the most sense for the in-game music to be coming from the

radio—after all, if we had a diegetic reason for music to be playing, why not use it? While we did

have a team member capable of music composition, we decided fairly quickly that it wasn’t

worth it for them to compose the game’s entire score, considering how much music we needed

and how much other work was left to be done. After it was pointed out to us that a lot of music

from the early 1920s had entered the public domain, we decided to utilize this early 1920s

music in The Call of Karen, assuming that many people would not be able to tell the difference

between one type of old music and another. We were generally correct in that assumption, but

unfortunately, some problems arose with this selection.

 Firstly, people who were familiar with the 50s recognized almost immediately (and were

disappointed by) the fact that we weren’t using period-accurate music. Considering that people

interested with and familiar with the 50s are among the people most likely to be interested in our

game, the fact that we were alienating them the moment the radio turned on wasn’t promising.

Our second problem was significantly bigger: when double-checking the copyright laws of the

recordings we were using, we realized we had a misunderstanding. A lot of music from the early

1920s had entered the public domain, but it was the sheet music, not the recordings, that were

94

allowed to be used. Tragically, this meant that all of our music we had been using had to be

scrapped.

 We took this search for new music as an opportunity to shift to something more period-

accurate. Eventually, we found 12 songs that were closer to what was actually playing on a

1950s radio, transitioning from 1920s soft jazz to 1950s classic rock and more upbeat blues

music. While we preferred music released under the Creative Commons 0 license (which

allowed modification and required no attribution), we discovered that it’s quite difficult to find this

type of music, so we ended up with tunes that required attribution. However, giving some

composers credits in our game was a small price to pay for the amount of time and effort getting

the music from online saved us.

 The only piece of custom music that we did compose was the jingle that the game opens

with. The lyrics are as follows:

“Listeners and patriots and lovers watch out!

There is a new kind of evil about.

Both family men and old maids on their own,

Don’t let the octopus into your home!”

We thought the jingle would be a nice tongue-in-cheek way to set the overall tone of the

game and set up the radio aspect early on. We aimed to be period accurate with the

instruments and the style of jingle, based on our previous radio research. The vocals were

recorded by one of our artists and layered to give the impression of a chorus, similar to the all-

female choruses present in many advertisements at the time. As for the “octopus”, there was a

significant amount of capitalist propaganda in the 1950s that portrayed the rising communist

threat as an octopus, so we thought that would be a fun way to reference both the atmosphere

of the time and Cthulhu. And, for those who don’t know about the communist-octopus reference,

the radio announcer spells it out for them in the next line of dialogue.

6.3 Sound Effects

 Sound effects were largely created using Creative Commons 0 sounds from

freesound.org. For the majority of this MQP, we were fairly light on sound effects. We focused

mostly on sounds that the game would feel odd without—sounds for the vacuum cleaner turning

on or getting enchanted, sounds for the doorbell ringing when Karen gets a package, et cetera.

The main other sound effects we incorporated were Cthulhu related. There are a few times in

the game where Karen addresses Cthulhu directly, and Cthulhu responds in kind with a growl or

shriek. We wanted these Cthulhu sounds to be eerie but also still be able to convey some kind

of intelligent emotion, so these sounds were recordings from one of our artists which were then

put through a significant amount of audio effects. Recording these Cthulhu sounds ourselves

also gave us more control over the kind of mood we wanted for them.

 As for soundscapes, we only had one soundscape, for the final day. That soundscape is

mostly the sound of distant thunder, with some quiet, occasional chanting to set the demonic

tone. The chanting isn’t super easy to make out, but is as follows:

95

“In perfect suburbs with darkened skies

The ancient ones will once more rise

Disrupting homes is his new brand

Cthulhu spreads across the land.”

This chant both adds a bit to the humor and sets the mood.

6.4 Implementation

 Due to our lack of a dedicated audio person, and also in keeping with our manageable

scope goal, we decided to aim for fairly simple audio implementation. All the implementation

was handled by one of the programmers when they were in between larger programming edits,

and utilized 3D sound features built into the Unreal Engine.

 Priority went first to putting in the radio dialogue for all days, as it was the main element

of storytelling in the game. Similarly, after the final script rewrite, Karen, her family’s, and

Cthulhu’s lines (or roars) were high priority and next to be put in to complete the overall

narrative. Last to go in were environmental sound effects such as vacuuming,

upgrading/enchanting the vacuum, and minor task sounds such as circling a magazine ad. All

sounds used in the game were implemented with a simple PlaySoundAtLocation function in

Unreal except for Cthulhu’s groans, which we aimed to have more of an “omnipresent” sound -

Cthulhu is literally an ancient cosmic entity/God, so it made more sense to make it impossible to

pin down where its responses were coming from. The radio and voice lines each used custom

Sound Attenuation settings to replicate real world 3D sound, with special focus on having the

radio sound realistically quieter/louder as the player moved around the house, but still always

intelligible. It was extremely important that the player could always hear the radio and all

dialogue, so the volume levels were exaggerated a little to accommodate moving around the

environment.

 All audio files were kept in a series of spreadsheets, both on the team shared Google

Drive as well as on the Github repository, and were converted to Unreal Data Tables for use in

engine. Music, sound effects, and dialogue were kept in their own data tables, with an

overarching DialogueSequence table that kept track of multiple lines of dialogue between

Karen, her family, and Cthulhu for each task and each day. All of the audio sequences passed

through a generalized function within our audio blueprint RadioManager called

PlayAudioSequence, which played each audio clip in order and from the correct location in the

house based on a passed-in variable. This way we avoided duplicate code while also spawning

sounds from multiples points in the house through one method. Other one-off sound effects and

miscellaneous lines were typically played when the player passed over a trigger, like passing

through the door connecting the kitchen and living room, or on a tool use, like vacuuming or

using a spray bottle.

96

7 Playtesting and Showcasing

 This chapter details our playtesting sessions and showcasing events. Chapter 7.1

discusses the process we went through to receive Institutional Review Board approval, and

chapter 7.2 discusses the playtesting protocol we followed during playtesting sessions. Chapter

7.3 discusses our first event and playtesting opportunity, Alphafest, and analyzes the results we

received from this event. Chapter 7.4 discusses our first formal playtesting session and breaks

down the results, and chapter 7.5 details our preparations for, time at, and information gathered

from participating in a local game pitching competition, the MassDiGI Game Challenge. Chapter

7.6 discusses our second playtesting session, and chapter 7.7 discusses our time and findings

from showcasing at PAX East 2020. Finally, chapter 7.8 discusses the impact that the outbreak

of COVID-19 had on our ability to effectively playtest.

7.1 Institutional Review Board Approval

 Before we could start any playtesting or showcasing, we had to get approval from the

Institutional Review Board (IRB), an organization that prevents unethical treatment of

participants in data collection or studies. The IRB was created with psychological and

biomedical experiments in mind, but despite the fact that we didn’t quite fit into that category, we

were still required to get approval before we could begin any data collection.

 Following the approval process was difficult. The IRB’s website was inscrutable to us,

and we struggled to figure out how to start. Every process or guideline we tried to follow only

raised more questions. The form asked us what kind of study we were, and we had no idea

what to classify ourselves as. Some IRB studies require the administrators to go through online

ethics training and pass an assessment. Would we need to do the same? We also discovered

that there are some studies that pose a low enough risk to participants that they don’t require

IRB approval, and go through a different process altogether to get exemption. Were we one of

those? Additionally, it seemed as though studies that are not exempt from the IRB require those

who participate (in our case, anyone who played) to fill out and/or sign a form before playtesting.

This discovery was quite disappointing. Bringing along a stack of forms and making each player

sign them would definitely hamper our efforts to get playtesting feedback from people at events,

where it’s already hard enough to get people interested in your game without the addition of

paperwork. Full of questions and finding very few answers, we decided to reach out to some

IRB administrators at WPI.

 After meeting with IRB Secretary Ruth McKeough in person and explaining our study to

her, she was kind enough to walk us through the process. It turned out that, thankfully, we were

one of the studies that was exempt from the IRB. We had to go through a process to formally

receive exemption, but once we received it we would not need our players to sign any waivers

or fill out any forms before playing. All we needed to do was give each playtester a general

overview of the game before they began, and assure them that they could leave at any time.

Once we had IRB exemption, we were free to begin our playtesting and showcasing.

97

7.2 Playtesting Protocol

 An important part of gathering the most valuable feedback possible from playtesting

sessions is conducting these sessions in the correct way. During playtesting sessions,

administrators must take notes on both what the player is doing in-game and their expressions

and body language as they do it. Another key element of playtesting protocol is that the

administrators should not talk to the playtester unless the tester is stuck or asks a direct

question. Playtesting is meant to provide information on how the game would be received by the

general public if it was released immediately, and the general public won’t have the developers

guiding them through every step of the game or answering every player’s questions. Most

questions should be ignored, in favor of the playtester figuring out the answers on their own.

Direct questions should only be answered and instruction should only be given if the playtester

is incapable of progressing without intervention. And if that point has been reached, you’ll

already have learned what you need to know about that part of the game.

 Another important aspect of playtesting is encouraging playtesters to voice their

thoughts aloud at the beginning of each session. Even with a reminder at the beginning of a

session, playtesters don’t always voice their thoughts, since plenty of people hesitate to give

feedback. However, it’s important to give this reminder anyways, since valuable information can

be learned from playtesters speaking as they play the game.

 Also worth noting is that, as required by IRB, we opened every playtesting session with a

brief spiel explaining what the game is about, and assuring that playtesters can leave at any

time. We also informed them that we would be taking notes on what they were doing, but would

not record their names, so any specific things they said or did could not be traced back to them

in our paper or notes.

 Our playtesting protocol did make the sessions feel a bit awkward at first. After all, it’s a

bit odd to have someone hovering silently over your shoulder, as you play through something

they made. It was especially awkward on occasion when the testers would ask questions and

we had to remain silent. However, once we and the testers got used to it, the sessions became

significantly less awkward. And the data gained from our sessions run this way was invaluable

to improving our game.

 After each playtesting session, we had our playtesters fill out a short survey. These

surveys are available in the appendices, and used neutral language to avoid skewing the

results. Most of our questions were formatted using Likert scales, though we did have a few

open ended questions. Two of these questions gave us data that was sometimes hard to parse

but was useful when we could do so: specifically, “Describe your experience with one sentence”

and “Name 3 emotions that you felt while playing this game”. These questions were designed to

help us figure out if we were hitting our experience goal.

7.3 Alphafest

 Our first showcasing and playtesting opportunity came in the form of Alphafest.

AlphaFest is an annual showcasing event held by the IMGD program in late B term, an event

which all IMGD MQPs are required to showcase at. Alphafest is a significant milestone for

IMGD MQPs, as it’s usually the first time the IMGD student body and other IMGD professors get

98

to see what state other projects are in. It’s also usually the first time project groups can get

feedback on their project by people who know nothing about it. Knowing this, we were

determined to give a strong showing, and get some solid data in the process.

 As this was our first deadline for an actual build, and we had been working in a fairly

insular environment, we were anticipating many bugs and generally mixed feedback from

Alphafest attendees. Still, we pushed ourselves to get the best possible product we could in

front of everyone, and set deadlines and frequent check-ins to make sure that we were on track.

By the time Alphafest arrived, we had the first day or so of the game ready to show off. We had

implemented some audio lines and had the smoothie, tidying up, and dinner dash tasks

completed.

 Something we weren’t quite expecting was just how popular Alphafest and The Call of

Karen were. There were several factors that contributed to this popularity. Firstly, the IMGD

program had recently instituted a new policy on playtesting, which required students to

participate in two playtesting sessions/events per IMGD class they were enrolled in. As

Alphafest was a playtesting event, it was packed with people wanting to knock out the

requirement. Additionally, it was held in the Foisie Innovation Studio and offered free food,

attracting many students working in the building who were looking for a break or a snack. This

event also drew several people outside IMGD to attend, people either looking to see what WPI’s

resident game developers were up to or who wanted a sneak peek on what a friend, roommate,

or significant other’s MQP looked like. Due to these factors, the event was packed. The Call of

Karen had also strategically picked out a spot by the door to get the attention of attendees who

were coming in or leaving, which definitely added to our popularity. We set up two playtesting

stations, and consistently had a line of two to three people waiting to play for the rest of the

night. We took turns managing the stations and taking diligent notes following our playtesting

protocol, but there ended up being so many playtesters that we set up an extra station for

administering the post-game survey so we could reset the game faster and keep people cycling

through.

 There’s nothing quite like playtesting for ferreting out new and unforeseen bugs, and

Alphafest was no exception. We got a lot of brand new information to parse from both our notes

and the 26 people who filled out our survey. Worth noting before we break down the following

graphs is that, while this format doesn’t display what the values 1 through 5 on the Likert scale

mean, the actual survey does display these values (see appendix C). For all questions, 1 is the

least desirable outcome, while 5 is the most desirable.

99

Players seemed to generally understand the controls and what they were supposed to

do in the game, but we had to take this data with a grain of salt. Most players didn’t notice the

controls popup, and to keep things moving so we could get as many playtesters as possible, we

gave a rundown of the controls to every player at the beginning of their session. The same goes

for the tasks, though we definitely didn’t explain those quite as much. We were still exploring

how to tutorialize and implement the UI explaining these aspects of the game, so not having

solid data for this first event didn’t bother us all that much.

100

The results of the survey indicated that, while the playspace was navigable, there was

room for improvement. Despite all of our iterating on the house layout, it seemed we still had

some tweaks to make. However, given the observations that we made of the playtesters

themselves, we had a hypothesis on what was tripping players up. The player camera’s field of

view was pulled fairly far out in this build, which caused some disorientation. After Alphafest, we

applied some minor tweaks to the walls and rooms in the house, and shrank the field of view,

hoping that this would fix the issue.

 We had a few art issues going into Alphafest, but were happy to see that players

overwhelmingly liked the art style. This response, alongside the fact that we wouldn’t be

changing the art style at all for the rest of production, led us to omit this question in future forms.

Looking back, it may have been valuable to keep it anyways, but hindsight is 20/20.

101

 Lighting was also received generally positively, but we felt it still needed some work.

Lighting was something that we continued to iterate throughout production, but it was nice to

hear that we at least had a decent base to work off of.

102

 The radio was received positively, and the writing received mixed to positive reception.

This data also didn’t influence our next iteration of the game much, because a lot of the writing

and radio hadn’t been implemented at the time of Alphafest. We had about two lines of dialogue

(lines that were on the longer side, but still only two lines), and no music aside from the opening

jingle. We attributed the mixed response of the writing to these factors—after all, it’s hard to

judge the overall quality of a game’s writing based on a very small amount of it.

 Worth noting is that, despite humor being a key part of our experience goal, we didn’t

have any questions directly addressing whether the game was funny or not. We struggled to

figure out a way to ask this question in a way that would give us actionable feedback without

priming the player. Instead of asking directly about humor in the survey, we observed the

playtesters to see if they were smiling or laughing, and relied on the question “What are three

emotions you felt while playing this game?”, which was meant to help us determine if we were

reaching our overall experience goal. After Alphafest, we classified the emotions we got from

the survey into three categories: Matches our experience goal, doesn’t conflict with our

experience goal, and conflicts with our experience goal. Ideally, most of the responses would

match or at least not conflict with our experience goal.

 Parsing these emotions was sometimes difficult. The one that gave us the most pause

for thought was “confusion”, because it was hard to tell where the confusion was coming from.

Was it coming from a lack of understanding of the game systems or mechanics? If so, then we

were doing something wrong. Was it coming from not understanding why Cthulhu was invading

the house? Then that was alright. In the end, we chalked confusion up to not conflicting with our

experience goal, since it was so hard to quantify.

 These initial results showed some promise, but we still clearly had a lot to work on. The

majority of the emotions given (47.9%) did not conflict with our experience goal, and a

significant amount matched our experience goal (32.4%), but we had a sizable amount

conflicted with it (19.7%). The majority of the words that conflicted with our experience goal

were words like “frustrated” and “annoyed”. Given that our game was fairly buggy at the time

103

and some tasks, like the smoothie, were difficult to complete, we attributed the majority of these

emotions to those issues, and doubled down our efforts to fix them.

 Overall, we considered Alphafest to be a great success. While we did have a lot to

improve on, we also gained plenty of useful information, and several actionable things to do to

improve the game. Additionally, the notes on our playtesters themselves indicated that we were

heading in the right direction. Many seemed engaged and were laughing and smiling as they

played.

7.4 Playtesting Session 1

 Our first formal playtesting session was in C term. We sent out a mass email to IMGD

majors and those taking IMGD classes asking for playtesters. The playtesting requirement had

made people ravenous for playtesting opportunities, and every time slot was filled in a little over

two minutes.

 For this and every other formal playtesting session, we had two participants at a time

come in and play the game, with at least one team member observing them both. They would

play until they either completed the content we had, or until roughly 25 minutes had passed.

Afterwards, we would ask them to fill out our survey.

 Since Alphafest, we’d made several adjustments to The Call of Karen based on the

feedback we received. Significantly more of the voice lines had been implemented, the

smoothie task had been adjusted to hopefully be more readable, and many bugs had been

fixed. Additionally, days 1-3 were largely complete (though not bug-free).

 For this first round of playtesting, we had 20 playtesters. Most of our survey questions

were the same as the ones from Alphafest, though as previously mentioned, we removed our

art style question.

104

These mixed to positive results from this round of testing confirmed our suspicions that

our positive results from Alphafest were likely due to the fact that we explained our game to the

people playing. We did not offer any such explanation this time, which we believe is what

resulted in this reception. Not terrible, but we still had a lot to improve on. The main gameplay

concept that players struggled to grasp was right clicking while holding an object to use it, so we

decided to try and fix that sticking point in later builds.

Our FOV and layout tweaks seemed to have worked, since players found it significantly

easier to navigate through the play space during this round of testing. While the results seemed

to indicate that there was more we could do to improve the playspace, we decided to leave it

alone for the rest of development. We were satisfied with these results, and with the way that

we had modeled the house and its walls, it just didn’t make sense to continue to make tiny

changes until it was absolutely perfect. There were other, more pressing matters we wanted to

focus on.

105

The lighting had undergone some changes since Alphafest, but not to a significant

degree. As such, the feedback regarding the lighting remained largely the same. We still had

plans for more lighting changes, but these changes wouldn’t be finished until D term, so we

anticipated the overall lighting feedback to remain the same for the playtesting sessions

following this one.

106

 As previously mentioned, since Alphafest more voice lines were implemented in the

game and the radio now played music in the background during the tasks. The radio was

received overwhelmingly positively, while the writing received mixed to positive reception. The

mixed reception on the writing gave us some pause for thought. What could we do to make the

writing more appealing to everyone? Additionally, while some people didn’t seem to enjoy the

writing, we did observe several people laughing and smiling at the jokes, and those that did

enjoy it liked it enough to point it out specifically in our survey question, “What’s one sentence

you would use to describe our playthrough?” While our script did undergo a few changes during

D term, we were unfortunately unable to playtest these changes.

 Our first round of playtesting also revealed that we were doing much better matching our

experience goal. The percentage of responses that conflicted with our experience goal was

down to 11.9% from our previous 19.7%, and the number of responses that matched our

experience goal increased by 10%. Similar to the results we saw before, some of the conflicting

107

responses were along the lines of “frustrated”. These responses were significantly fewer than

before, and considering that since Alphafest our number of progress-impeding bugs was

significantly down (though not zero), we believe we correctly assessed that the frustration we

saw from the Alphafest playtesting was a result of these bugs.

 However, there was a new contender in the category of emotions conflicting with our

experience goal: “bored” and “monotony”. Emotions like these comprised over half of those that

conflicted with our experience goal, emotions that we did not see as much from Alphafest.

Additionally, observations of playtesters indicated that we weren’t doing enough to convey

Cthulhu early on in the game. Payers barely noticed the tiny sprinklings of madness we

scattered about (randomizing object placement or tossing objects all over the ground), and were

fairly bored with the slow build-up to Cthulhu. We knew that we needed to remedy our pacing

problem, but unfortunately didn’t have time to do so before our next event, the MassDiGI Game

Challenge. However, we saw the majority of these playtesting results as proof that we were

improving our game and moving in the right direction, even if there was still more that needed to

be done.

7.5 The MassDiGI Game Challenge

 The MassDiGI Game Challenge is an annual pitching competition hosted by the

Massachusetts Digital Games Institute, or MassDiGI. Indie and collegiate game developers

prepare and give a 7 minute long pitch to a wide variety of industry professional judges. The

competition takes place over the course of two days, with a miniature showcase and the first

few waves of judging occurring on the first day, and final presentations and the final wave of

judging on the second day.

 Our producer was the only one familiar with the event, having previously competed in

the game challenge. Thus, we all agreed that participating would be a valuable opportunity for

us to get even more valuable feedback on our game. We spent the week leading up to the

Game Challenge polishing our game and rehearsing our pitch. We also did some things to

make us and our setup seem a bit more professional—we got Trumbus (our team name and

logo) pins, decided on a color scheme to wear (black with a purple accent), and got props to put

on our booth to fit our 1950s housewife brand. We were nervous, but excited.

 Worth noting is that the MassDiGI Game Challenge is less for playtesting and more for

getting concrete and direct feedback from industry experts. Also worth noting is that the

MassDiGI Game Challenge has a significant focus on marketing strategies and marketability. As

such, we had to dedicate a significant chunk of our presentation to our research and marketing

strategy for our game. Another point to note was that, if our team did make it to the second day,

we would be one member short—our producer had a prior commitment that she was beholden

to during the time of the game challenge.

108

Our setup for the first day of the MassDiGI Game Challenge.

 During our first day, we presented our pitch to three waves of two to three judges. Our

practice paid off, and our pitches went smoothly and without incident. We adjusted our pitches

slightly each round based on feedback we received from the judges. However, we didn’t have to

adjust all that much. Feedback from the judges was generally very favorable, and praised us for

our high concept, humor, and art. The criticism generally came in two categories: with our

marketing plan and with our implementation of Cthulhu.

 While our marketing plan was definitely something we wanted to keep in mind during

production, we weren’t all that concerned with making it absolutely perfect. Going through the

actual marketing and steps of release was outside the scope of this MQP, and we didn’t have

any dedicated marketing people on our team. However, the implementation of Cthulhu was

definitely an area that we wanted feedback on. Judges confirmed what we had learned from our

previous playtesting feedback; Cthulhu needed to show up earlier in the game, and its presence

needed to be known in other ways besides antigravity. They also suggested adding tasks that

directly addressed Karen’s battle against Cthulhu, which we hadn’t considered previously. This

feedback directly influenced our game, spurring us to create the Yikes Machine and flavor tasks.

The MassDiGI Game Challenge was also helpful in that it allowed us to directly connect

with other game developers in the greater Boston area. The 2020 MassDiGI Game Challenge

attracted teams from Becker College, Northeastern University, and independent game

developers all around the greater Boston area, and we played each other’s games and offered

feedback and ideas. We found meeting and talking to other developers in the greater Boston

area to be a valuable experience, and we’re happy we were able to do so.

During the second day of the game challenge, all of the finalists for each category of

games (neatly organized into pastry-based categories, we were cronuts) presented one final

time in front of an all new panel of judges. Despite the absence of our lovely producer/artist

Kate, the presentation went remarkably well, with generally favorable feedback from this new

109

panel. They focused mainly, again, on the marketing plan, and suggested we flesh that out

more as expected. In addition to this they paid special interest to the 1950s setting, and advised

us to make sure it was obvious what time period our game was set in, as well as making the

house feel lived-in. As a result, our artists spent much of the later development period adding

personality and more period-accurate details around the house to great effect. Finally, the

second-day judges also brought up the need to focus on bringing the presence of Cthulhu to the

forefront. We finished as runner-ups in our category and were extremely pleased with the result.

Finalists and runners up in our category! (Kate present in spirit)

7.6 Playtesting Session 2

After our success at the MassDiGI Game Challenge, we knew we had to get back to the

grindstone and start implementing our changes based on the feedback we got there. The first

thing we tackled was our pacing problem. We needed to spark intrigue earlier on to keep

players consistently engaged. We also needed to implement some more Cthulhu into the house,

a problem brought to our attention by both playtesting and our advisors. As such, we made a

few sweeping changes. We adjusted the progression of the game and added a task escalation

on day one: floating objects in the living room during the cleaning up task. We also added the

Yikes Machine to give us some extra eldritch flavor. To gauge how effective these methods of

conveying Cthulhu were, we added another question to the survey: “How much did you feel the

presence of Cthulhu?” Also worth noting is that this round of playtesting was when we decided

to remove the smoothie task and replace it with cooking breakfast.

110

This playtesting session was very important to us, since it was to be the last playtesting

session before we would showcase at PAX East the following week. We wanted to put our

absolute best foot forward for showcasing at an event as renowned and popular as PAX East,

and as such needed desperately to know about any critical bugs or issues. Due to our shifting

schedules, we offered less playtesting slots than before, but still believed we had enough

playtesters to get useful data. Similar to last time, all of our slots filled up extremely quickly,

though we had several no-shows the day of.

For this round of playtesting, we had 12 responses. We had the first three days of the

game completed and largely bug free at this point. Aside from the added Cthulhu question, the

survey remained the same as it had been previously.

 The results for these questions were generally the same as before, and considering that

we hadn’t made major changes to the systems affecting these responses, we didn’t really

anticipate any big changes. However, this general understanding of the controls and objectives

satisfied us that the build would work for PAX East. While players were still occasionally

confused about right clicking while holding an item to use it, they generally understood the

111

overall mechanics and what they were supposed to be doing. Additionally, during our

observations of the playtesters, they didn’t get stuck to the point of being unable to progress,

and didn’t ask nearly as many questions about the controls as they had in the past.

 Considering that the playspace hadn’t been changed from the previous playtesting

session, we expected roughly the same results that we had received before, and that was what

we got. Similar to the controls-based feedback, our observations indicated that players were

generally fine navigating the playspace, so we were content with our results. There was only

one issue worth noting: during the cleaning up task, the player is supposed to put cards by

Francis’s door. However, Francis’s door wasn’t labeled, so it was impossible to know which door

to put the cards by. This was remedied before PAX by adding a sign to Francis’s door, which

seemed to solve the issue.

 Lighting had been tweaked, and was overwhelmingly well received (with one outlier). We

were pleased with these results, though we did end up continuing to refine and improve the

112

lighting as production continued into D term. However, these results did assure us that our

lighting was good enough for PAX East.

 The radio and writing were also well received. Nothing had changed with the writing, so

we were curious why our data had shifted to see writing in a more consistently favorable light.

Our only hypothesis is that perhaps, with the Cthulhu aspect of the game revealed earlier, all

the cheeky jokes about everything being fine landed a lot better. Whatever the explanation, we

were happy to see this improvement.

113

 The presence of Cthulhu question ended up being a bit of a mixed bag. However, the

responses we received were, to some degree, the responses we were aiming for. These

responses were results from the first few days of gameplay, where Cthulhu isn’t very present or

active. As such, the fact that Cthulhu’s presence was somewhat middling tracks with what the

player would have experienced during these first few days.

 We definitely seemed to be improving when it came to meeting our experience goal.

While the number of emotions that matched our experience goal remained the same (42.1%),

the number that conflicted had decreased significantly (5.3%). We were satisfied with these

results, and felt like they told us we were close to or almost matching our experience goal.

114

 Overall, these playtesting results gave us a lot to think about, but once again reinforced

that we were heading in the right direction. We were doing better matching our experience goal,

our pacing had improved, and we would have a good product to show at PAX East.

7.7 PAX East

 PAX East, the biggest gaming convention on the eastern seaboard, was our next and

final (at least within the scope of this MQP) stop for showcasing and playtesting. PAX East is a

showcasing event for small and large games alike to be viewed by the general gaming public,

an event that typically boasts tens of thousands of attendees. PAX East this year was haunted

by the spectre of COVID-19, but that didn’t seem to affect its high attendance numbers.

 WPI has a booth at PAX East every year that showcases student games, run by an

IMGD IQP team that accepts game submissions of all kinds from the IMGD program at large

and selects four games to be displayed at the booth. The Call of Karen submitted and was

fortunate enough to be selected. Our last playtesting session was the previous week, and we

scrambled to make bug fixes and design tweaks based on our playtesting feedback. We went

into PAX with the first three days of The Call of Karen largely feature complete.

 PAX East was easily the most difficult event to get quantifiable feedback from. First of

all, due to the event being four days long and the WPI booth being supervised in shifts from

different games, we were not able to see every single attendee playthrough of The Call of

Karen, as we had been able to with previous events. Also, due to the fact that we were there to

help showcase all of the games at the booth, not just our own, we were not able to closely

observe players and take notes the same way we had with events prior. We also did not

administer the playtesting form at PAX East. We didn’t mind this lack of data, since we all knew

that PAX East was not an event for playtesting. PAX East was strictly for showcasing the

product you have and for garnering interest from the general public.

 However, we did still manage to get some information from PAX East. Several attendees

asked us where they could purchase the game or find it online, which we found notable. The

vast majority of games available at PAX East are those that have been or are going to be

commercially released by professional game developers, so the fact that people felt like our

game was high enough quality to be available commercially told us we were succeeding at our

goal of creating a game of high enough quality for commercial release.

7.8 COVID-19 and Playtesting

 It would be a disservice to this paper to talk about playtesting without discussing how

difficult it became during the final term of this project. Halfway through D term break, it was

announced that due to the increased spread of COVID-19 and the risk of infection posed by

large gatherings, D term would be completed entirely remotely off campus. We were lucky that

we all had the hardware necessary to continue the MQP without access to the computer labs on

campus, but it certainly did have an effect on our ability to playtest.

 We briefly discussed the possibility of playtesting remotely, but ended up scrapping the

idea. Playtesting remotely severely limited the amount of data that we would receive, and the

process of sending builds out to and managing testers remotely wasn’t worth it to us to get this

115

limited data. As a result, we do not have any playtesting data from D term. While this lack of

data is unfortunate, we still feel that we had enough data to continue improving the game and

draw accurate conclusions on whether or not we succeeded with this MQP based on our

feedback from our last playtesting session and PAX East.

116

8 Conclusion and Recommendations

 This chapter details our conclusion and recommendations for future MQP teams, and

analyzes some elements of our developments that were not mentioned in previous chapters.

Chapter 8.1 details our scope for this project, chapter 8.2 discusses our team dynamics, chapter

8.3 discusses our team structure, and chapter 8.4 discusses our project management. Chapter

8.5 describes our plans for future work on The Call of Karen, and chapters 8.6 and 8.7 discuss

what went wrong and what went right respectively.

8.1 Scope

 On a high level, our scope was defined in parallel to our goal: to create a complete game

of high enough quality for release. Many of our design decisions were informed by our emphasis

on limiting scope. On the art side, this included not modeling characters, keeping the house

small, and leaving out areas not essential to gameplay such as the bedrooms and bathroom.

This allowed the artists to focus on building a dense and detail-rich gameplay environment that

feels authentic and alive. On the technical side, the gameplay was built off of simple, reusable

mechanics: picking up/placing objects, and occasionally activating secondary behaviors for held

objects (running the vacuum, pouring salt). Our programmers also opted to utilize the blueprint

system instead of diving into C++ right away in order to quickly prototype and graybox gameplay

elements. This also gave us room to adjust our scope progressively, as we could easily add

in/cut out tasks without adversely affecting the overall gameplay experience.

 The largest outside factor limiting our scope was our decision to use Unreal Engine.

While the underlying engine itself is very powerful, and the skills we picked up through using it

were very useful, the editor itself is very slow and unstable, and introduced several nightmarish

technical constraints over the course of the project. Sections of the documentation are also very

lacking, and we were further disadvantaged by the Unreal Wiki and all its content being

spontaneously taken offline during D term.

At the time of writing, Unreal is still a relevant tool in industry, and a good option for

realtime applications and cinematic rendering. It makes it easier to attain high-quality aesthetics,

and provides some powerful VFX tools for artists. From a technical perspective however, for the

scope of an MQP aiming to create a complete game, we would strongly recommend picking an

engine that integrates well with version control systems and provides a non-visual scripting

environment that does not require recompiling the engine.

8.2 Team Dynamics

 Our team dynamics worked out astoundingly well. Our team members did not all know

each other especially well going into the project, but we got along well early on and were all

excited about taking on the task of making a game from start to finish, as well as about the

game’s concept once it was decided. More importantly with everyone working on a student

schedule, all our team members regularly communicated their progress and constraints. We did

so in a largely informal manner - aside from timelining major milestones, we kept up-to-date

todo lists, Google Docs, and kept each other updated via a Facebook Messenger group chat. In

117

general, we found the most critical aspects of our team dynamics to be clear communication,

matching motivation/commitment, and a willingness to re-evaluate/re-scope aspects of the

game and regularly adjust our timeline based on our individual progress/constraints.

8.3 Team Structure

 As mentioned in chapter 1, this Major Qualifying Project (MQP) was completed by four

Worcester Polytechnic Institute (IMGD) students. The project’s artists were seniors Kate Olguin,

majoring in Interactive Media and Game Development (IMGD), and Thomas Tawadros,

majoring in Interactive Media and Game Development with a concentration in Technical Art

(IMGD BA). Kate Olguin also served as the project’s producer. The project’s programmers were

Diana Kumykova and Mikel Matticoli, both juniors majoring in Computer Science and Interactive

Media and Game Development (CS/IMGD). The small size of our team meant that teammates

often had to step into several different roles. Both artists were also effectively technical and VFX

artists, responsible for lighting, pipeline management, rigging, shader creation, and occasional

blueprinting. We lacked dedicated audio personnel, but one of our artists and programmers

were able to share the audio load. Nobody was officially denoted as a designer, but each

teammate contributed significantly to the design of the game. Additionally, while our producer

did hold us to deadlines and assigned tasks, the team was autonomous to the degree where

close management was unnecessary.

The team’s makeup, size, and the multidisciplinary nature of its members proved to be

an excellent balance for our project. All of the teammates had a steady stream of work to

complete throughout the course of development, and there were no points when team members

simply had nothing to do. While we didn’t have dedicated audio or design personnel, we are

inclined to believe that the addition of dedicated audio or design personnel may not have helped

us significantly. We were able to create and implement a significant amount of high quality audio

without needing an official sound designer, with the one exception being that we don’t have

original music. Additionally, while a dedicated designer may have been helpful in the early

stages of the game, but as production continued we believe they may have run out of work to do

had they not possessed any other skills. As it was, the division of labor worked out well for us.

8.4 Project Management

 As touched upon in the previous section, one of our artists served as the producer for

this MQP. As the producer, she organized and directed team meetings, assigned tasks, and

held the team to important deadlines. The team proved to be easy to manage, as members had

a high level of autonomy and could be trusted to complete tasks quickly with a high level of

quality. Early on in the project it was made clear that we needed clear and frequent

communication, and as a result we were able to avoid any major miscommunications

throughout the course of development. Additionally, we had no interpersonal conflicts

throughout the course of the project, so no conflict management was necessary.

 Worth noting is the fact that the producer also served as an artist on the team. Similar to

our concerns about a dedicated designer, while a dedicated producer would have certainly had

a more constant flow of work throughout development, we feel as though a producer on a team

118

this size must also work in another discipline so as to be useful when there is less managing to

do. Additionally, our producer possessed knowledge in many areas of game development and

professional game development experience through internships, and was able to use this

knowledge to communicate effectively with team members and draw from industry standard

production practices. It is our producer’s belief that lessons learned from previous game

development experience and knowledge of these practices was a large part of the reason

production continued smoothly. Of course, the team members themselves also cannot be

undersold—everyone worked hard and wanted to see the game come to fruition, and were

model teammates.

8.5 Future Work

 The goal of this MQP was to create a fun, funny, full-fledged game that was of high

enough quality for release. We believe that we have achieved this goal, but while our minimum

viable product is complete, there is still more we want to do to polish the game for release.

There’s more audio that we want to implement, a few textures to tweak, and several other odds

and ends that we want to wrap up before sending this game out into the world. We plan on

doing a bit of marketing as we polish the game, then releasing it onto an online distribution

platform. Our target platform is Steam, but we want to put more consideration into the Epic

Games Store or Itch.io before nailing anything down too quickly. We plan on releasing some

time in the early summer, and will continue work on it until then, though likely at a slower pace

compared to the school year.

8.6 What Went Wrong

 Our biggest setbacks were obscure technical issues introduced by Unreal, resulting in

lots of lost/repeated hours of work, and personal time constraints. Despite the benefits of the

tools we used, using industry standard version control tools in combination with Unreal engine

proved an unexpectedly massive headache. While we had a really great team comprised of

competent and talented individuals, our team members were also constantly busy if not

overworked for much of the duration of the project. With multiple fluctuating schedules coming

into play on top of the technical issues, it was difficult to forecast the time cost of different

phases of the project, and we inevitably ended up running into D term and had to cut out some

things last minute.

8.7 What Went Right

 After a year of design and development, we achieved all our major goals. We created a

completed game, with a fun, funny and cohesive play experience. We created an immersive

environment and an engaging story, with all of the art, code, and dialogue designed and built

from scratch, that will be ready to release with a few more weeks of relaxed polishing. We were

able to accomplish this in spite of aggressive technical difficulties, and maintained a positive and

enjoyable team environment despite the stress of balancing these difficulties with a tight

timeline. We also learned a whole lot along the way about the tools, process, and nuances of

119

creating a production-quality game from start to finish, and got the chance to show our game at

PAX East, MassDiGi Game Challenge (where we won an award for our pitch), WPI’s Virtual

Research Showcase, Showfest, and CS/IMGD Project Presentations.

120

9 References

1950s housewife Pinterest meme. (2012). In TeamJimmyJoe.com.

https://teamjimmyjoe.com/2012/12/1950s-housewife-meme/

20th Century Fox. (1956). The Man in the Gray Flannel Suit Movie Poster. In

Internet Movie Database.

https://www.imdb.com/title/tt0049474/mediaviewer/rm2867336448

Ball, L. (1950, January 30). My Favorite Husband. Stardust Records.

https://www.youtube.com/watch?v=V-MTi0v3wl8

Beaumont, C. (2016). What Do Women Want? Housewives’ Associations,

Activism and Changing Representations of Women in the 1950s. Women’s

History Review, 26(1), 147–162. Taylor & Francis Online.

https://doi.org/10.1080/09612025.2015.1123029

Bertz, M. (2019, April 2). Project Wight Reemerges As Darkborn. Game Informer.

https://www.gameinformer.com/preview/2019/04/02/project-wight-reemerges-

as-darkborn

Bethesda Softworks. (1997a). Original Fallout character interaction screen. In

Internet Movie Database.

https://www.imdb.com/title/tt0134648/mediaviewer/rm706179072

Bethesda Softworks. (1997b). Original Fallout isometric player perspective. In

Internet Movie Database.

https://store.steampowered.com/app/38400/Fallout_A_Post_Nuclear_Role_Pla

ying_Game/

Bethesda Softworks. (2015a). Fallout 4 screenshot with robot. In Steam store.

https://store.steampowered.com/app/377160/Fallout_4/

Bethesda Softworks. (2015b). Prepare for the Future game poster. In Internet

Movie Database.

https://www.imdb.com/title/tt4741306/mediaviewer/rm1744991232

Bethesda Softworks. (2020). Fallout 76 Wastelanders monster screenshot. In

Steam store. https://store.steampowered.com/app/1151340/Fallout_76/

Bioshock Infinite. (2013, March 26). [Game]. Irrational Games, 2K Games.

Blakemore, E. (2016, May 11). How Jell-O Wobbled Its Way to Pop Culture

Greatness. JSTOR Daily. https://daily.jstor.org/jello-in-pop-culture/

Brandt, M. (1957). The Good Housekeeping Book of Home Decoration. The

https://www.youtube.com/watch?v=V-MTi0v3wl8
https://doi.org/10.1080/09612025.2015.1123029
https://www.gameinformer.com/preview/2019/04/02/project-wight-reemerges-as-darkborn
https://www.gameinformer.com/preview/2019/04/02/project-wight-reemerges-as-darkborn
https://store.steampowered.com/app/1151340/Fallout_76/

121

Hearst Corporation.

Brocka, B. (2016, April 16). terminology - What is a “toast notification”? User Experience Stack

Exchange; Stack Exchange Inc.

https://ux.stackexchange.com/questions/11998/what-is-a-toast-notification

CBS. (1951). I Love Lucy promotional poster. In Internet Movie Database.

https://www.imdb.com/title/tt0043208/mediaviewer/rm2306015744

Charles, K. K., Guryan, J., & Pan, J. (2018). The Effects of Sexism on American

Women: The Role of Norms vs. Discrimination. In nber.org.

https://www.nber.org/appendix/w24904/effects-sexism-american.pdf

ClickAmericana. (2019). 1950s housewife at the oven. In ClickAmericana.

https://clickamericana.com/topics/home-garden/how-to-be-a-perfect-fifties-

housewife-in-the-kitchen

Cooking Simulator. (2019, June 6). [Game]. PlayWay.

Dickson, P. (2007, November 6). Sputnik’s Impact on America. Pbs.Org.

https://www.pbs.org/wgbh/nova/article/sputnik-impact-on-america/

Dormann, C., & Biddle, R. (2009). A Review of Humor for Computer Games:

Play, Laugh and More. Simulation & Gaming, 40(6), 802–824.

https://doi.org/10.1177/104687810934139

Dwyer, M. (2015). Back to the Fifties: Nostalgia, Hollywood Film, & Popular

Music of the Seventies & Eighties. Oxford University Press

Event Dispatchers. (n.d.). Docs.Unrealengine.Com; Epic Games. Retrieved March 2020, from

https://docs.unrealengine.com/en-

US/Engine/Blueprints/UserGuide/EventDispatcher/index.html

Firewatch. (2016, February 9). [Game]. Campo Santo.

Freesound - Freesound. (2012). Freesound.Org. https://freesound.org/

George, A. (2016), Gray Flannel Suit or Red Strait Jacket? Anticommunism and

the Organization Man in Postwar Fiction and Film. J Pop Cult, 49: 1320-1340.

doi:10.1111/jpcu.12494

Ghodrati, N. (2013). The Creation, Evolution and Aftermath of Lovecraftian

Horror [Master’sThesis].

https://www.duo.uio.no/bitstream/handle/10852/37090/NeginxGhodratix-

xMasterxsxThesisxxMayx2013x.pdf?sequence=1&isAllowed=y

Hall, C. (2018, May 30). The Fallout timeline. Polygon; Polygon.

https://www.polygon.com/features/2015/11/9/9646378/fallout-timeline-4-3-2

https://ux.stackexchange.com/questions/11998/what-is-a-toast-notification
https://www.imdb.com/title/tt0043208/mediaviewer/rm2306015744
https://clickamericana.com/topics/home-garden/how-to-be-a-perfect-fifties-housewife-in-the-kitchen
https://clickamericana.com/topics/home-garden/how-to-be-a-perfect-fifties-housewife-in-the-kitchen
https://doi.org/10.1177/1046878109341390
https://docs.unrealengine.com/en-US/Engine/Blueprints/UserGuide/EventDispatcher/index.html
https://docs.unrealengine.com/en-US/Engine/Blueprints/UserGuide/EventDispatcher/index.html
https://freesound.org/
https://www.duo.uio.no/bitstream/handle/10852/37090/NeginxGhodratix-xMasterxsxThesisxxMayx2013x.pdf?sequence=1&isAllowed=y
https://www.duo.uio.no/bitstream/handle/10852/37090/NeginxGhodratix-xMasterxsxThesisxxMayx2013x.pdf?sequence=1&isAllowed=y
https://www.polygon.com/features/2015/11/9/9646378/fallout-timeline-4-3-2

122

Health, C. for D. and R. (2019). IDE Institutional Review Boards (IRB). FDA.

https://www.fda.gov/medical-devices/investigational-device-exemption-ide/ide-

institutional-review-boards-irb

HorrorBabble. (2017). “The Call of Cthulhu” by H. P. Lovecraft / Cthulhu Mythos

(4/14) [YouTube Video]. In YouTube.

https://www.youtube.com/watch?v=2xB4yHCgly8

HorrorBabble. (2018). “At the Mountains of Madness” by H. P. Lovecraft / Cthulhu

Mythos (8/14) [YouTube Video]. In YouTube.

https://www.youtube.com/watch?v=XTk0iROhSOc

Huq, R. (2013). Making Sense of Suburbia through Popular Culture. London:

Bloomsbury Academic. Retrieved March 20, 2020, from

http://dx.doi.org/10.5040/9781472544759

I Expect You to Die. (2016, December 13). [Game]. Schell Games.

Job Simulator. (2016, April 5). [Game]. Owlchemy Labs.

Kallio, O., & Masoodian, M. (2019). Featuring comedy through ludonarrative

elements of video games. Entertainment Computing, 31, 100304.

https://doi.org/10.1016/j.entcom.2019.100304

KOMA - Oklahoma’s Greatest Hits. (1964, January 5). KOMA.

https://www.youtube.com/watch?v=vQHPEFw0zHI

Lamb, V. M. (2011). The 1950’s and the 1960’s and the American Woman : the transition

from the ”housewife” to the feminist. In HAL. https://dumas.ccsd.cnrs.fr/dumas-

00680821/document

Lin, L. yi, Sidani, J. E., Shensa, A., Radovic, A., Miller, E., Colditz, J. B., Hoffman,

B. L., Giles, L. M., & Primack, B. A. (2016). ASSOCIATION BETWEEN

SOCIAL MEDIA USE AND DEPRESSION AMONG U.S. YOUNG ADULTS.

Depression and Anxiety, 33(4), 323–331. Wiley Online Library.

https://doi.org/10.1002/da.22466

Loucks, D. K. (2020, January 20). Lovecraftian Movies and Television Shows.

Www.Hplovecraft.Com. http://www.hplovecraft.com/popcult/moviestv/

Lundy, R. (1962, February 28). Ron Lundy Show. WIL.

https://www.youtube.com/watch?v=4WHGOBj1YNk

Moffatt, M. (2020, January 27). What Caused the Post-War Economic Housing Boom

After WWII? ThoughtCo; ThoughtCo. https://www.thoughtco.com/the-post-war-

us-economy-1945-to-1960-1148153

https://www.fda.gov/medical-devices/investigational-device-exemption-ide/ide-institutional-review-boards-irb
https://www.fda.gov/medical-devices/investigational-device-exemption-ide/ide-institutional-review-boards-irb
http://dx.doi.org/10.5040/9781472544759
https://doi.org/10.1016/j.entcom.2019.100304
https://www.youtube.com/watch?v=vQHPEFw0zHI
http://www.hplovecraft.com/popcult/moviestv/
https://www.youtube.com/watch?v=4WHGOBj1YNk
https://www.thoughtco.com/the-post-war-us-economy-1945-to-1960-1148153
https://www.thoughtco.com/the-post-war-us-economy-1945-to-1960-1148153

123

Mother Simulator. (2018, March 20). [Game]. Steppe Hare Studio.

Murrow, E. (1950, December 12). Hear It Now. CBS.

https://www.youtube.com/watch?v=kH0tIgqvuwo&feature=youtu.be

Neuhaus, J. (2011). Housework and Housewives in American Advertising: Married to the

Mop. Palgrave MacMillan.

https://books.google.com/books/about/Housework_and_Housewives_in_Ameri

can_Adv.html?id=Um89YgEACAAJ&source=kp_book_description

Neverender. (2014, April 9). Perforce (and other version control) best practices. Unreal Engine

Forums. https://forums.unrealengine.com/development-discussion/c-gameplay-

programming/2678-perforce-and-other-version-control-best-practices

O’Brien, J. (1965, February 24). WMCA “Goodguy” Radio. WMCA.

https://www.youtube.com/watch?v=UQnSBkzga6Y

Omidsalar, A. (2018). Posthumanism and Un-Endings: How Ligotti Deranges Lovecraft’s

Cosmic Horror. The Journal of Popular Culture, 51(3), 716–734. Wiley Online

Library. https://doi.org/10.1111/jpcu.12681

Outlast. (2013, September 4). [Game]. Red Barrels.

Pantic, I. (2014). Online Social Networking and Mental Health. Cyberpsychology,

Behavior, and Social Networking, 17(10), 652–657. PMC.

https://doi.org/10.1089/cyber.2014.0070

Perforce Helix Core Version Control | Perforce. (2019). Www.Perforce.Com.

https://www.perforce.com/products/helix-core

Poplawski, Stephen J. 1885 - 1956. (2017, August 8). Wisconsin Historical Society.

https://www.wisconsinhistory.org/Records/Article/CS11926

Pruitt, S. (2019, March 13). An Ode to the Massive Sears Catalog, Which Even

Delivered Houses by Mail. HISTORY. https://www.history.com/news/sears-

catalog-houses-hubcaps

React State. (n.d.). Www.W3schools.Com; W3Schools. Retrieved March 2020, from

https://www.w3schools.com/react/react_state.asp

Retro House Plans and Home Plans for Retro Style Home Designs. (n.d.).

Www.Familyhomeplans.Com. Retrieved May 3, 2020, from

https://www.familyhomeplans.com/search_results.cfm?housestyle=28

Roberteker. (2018, November 29). Overnight, half of my objects disappeared. Unreal Engine

Forums. https://forums.unrealengine.com/unreal-engine/unreal-studio/1557134-

overnight-half-of-my-objects-disappeared

https://www.youtube.com/watch?v=kH0tIgqvuwo&feature=youtu.be
https://forums.unrealengine.com/development-discussion/c-gameplay-programming/2678-perforce-and-other-version-control-best-practices
https://forums.unrealengine.com/development-discussion/c-gameplay-programming/2678-perforce-and-other-version-control-best-practices
https://www.youtube.com/watch?v=UQnSBkzga6Y
https://doi.org/10.1111/jpcu.12681
https://doi.org/10.1089/cyber.2014.0070
https://www.perforce.com/products/helix-core
https://www.wisconsinhistory.org/Records/Article/CS11926
https://www.history.com/news/sears-catalog-houses-hubcaps
https://www.history.com/news/sears-catalog-houses-hubcaps
https://www.w3schools.com/react/react_state.asp
https://www.familyhomeplans.com/search_results.cfm?housestyle=28
https://forums.unrealengine.com/unreal-engine/unreal-studio/1557134-overnight-half-of-my-objects-disappeared
https://forums.unrealengine.com/unreal-engine/unreal-studio/1557134-overnight-half-of-my-objects-disappeared

124

RKO Radio Pictures. (1946). It’s a Wonderful Life Movie Poster. In Internet Movie

Database. https://www.imdb.com/title/tt0038650/mediaviewer/rm3862243328

Sears Roebuck & Co. (1960). 1960 Sears Catalog Cover. In Mid-Century Living.

http://midcenturyliving.blogspot.com/2011/04/sears-1960-catalog.html

Silver Has Mystic Powers. (n.d.). TV Tropes. Retrieved May 3, 2020, from

https://tvtropes.org/pmwiki/pmwiki.php/Main/SilverHasMysticPowers

Sketchy Panda Games. (2015a). Aberford Peggy says... promotional image. In CNET.

https://www.cnet.com/news/aberford-1950s-housewives-saving-the-world-from-

zombies/

Sketchy Panda Games. (2015b). Aberford promotional image. In Kickstarter.

https://www.kickstarter.com/projects/910316779/aberford-a-game-of-zombies-

and-50s-housewives?ref=nav_search&result=project&term=aberford

Skyrim. (2011, November 11). [Game]. Bethesda Game Studios.

Somers, J. (2020, March 27). Biography of H. P. Lovecraft, American Writer, Father of

Modern Horror. ThoughtCo. https://www.thoughtco.com/biography-of-h-p-

lovecraft-american-writer-4800728

Sony Computer Entertainment. (2014). Bloodborne promotional image. In

GotGame.com. https://gotgame.com/2014/09/16/apply-bloodborne-alpha-test/

The Editors of Encyclopaedia Britannica. (2019, November 11). J.G. Ballard | British

author. Encyclopedia Britannica; Encyclopædia Britannica, inc.

https://www.britannica.com/biography/J-G-Ballard

The Flame in the Flood. (2016, February 24). [Game]. The Molasses Flood.

The Legend of Zelda: Breath of the Wild. (2017, March 3). [Game]. Nintendo.

The Sinking City. (2019, June 25). [Game]. Frogwares.

THQ Inc. (2005a). Capitol City promotional image. In MobyGames.

https://www.mobygames.com/game/destroy-all-

humans/promo/promoImageId,148166/

THQ Inc. (2005b). Santa Modesta promotional image. In MobyGames.

https://www.mobygames.com/game/destroy-all-

humans/promo/promoImageId,148160/

THQ Inc. (2011). Destroy All Humans! mind-reading screenshots. In YouTube.com.

https://www.youtube.com/watch?v=VqngJZxmoVE

Trover Saves the Universe. (2019, May 31). [Game]. Squanch Games.

https://www.imdb.com/title/tt0038650/mediaviewer/rm3862243328
http://midcenturyliving.blogspot.com/2011/04/sears-1960-catalog.html
https://tvtropes.org/pmwiki/pmwiki.php/Main/SilverHasMysticPowers
https://www.kickstarter.com/projects/910316779/aberford-a-game-of-zombies-and-50s-housewives?ref=nav_search&result=project&term=aberford
https://www.kickstarter.com/projects/910316779/aberford-a-game-of-zombies-and-50s-housewives?ref=nav_search&result=project&term=aberford
https://gotgame.com/2014/09/16/apply-bloodborne-alpha-test/
https://www.britannica.com/biography/J-G-Ballard
https://www.youtube.com/watch?v=VqngJZxmoVE

125

UGameInstance. (n.d.). Docs.Unrealengine.Com; Epic Games. Retrieved March 2020, from

https://docs.unrealengine.com/en-

US/API/Runtime/Engine/Engine/UGameInstance/index.html

What Remains of Edith Finch. (2017, April 25). [Game]. Giant Sparrow, Annapurna

Interactive.

Whirlpool Corporation. (1950). My Washdays are Holidays Now! advertisement. In

Pinterest.com.

https://i.pinimg.com/originals/45/fb/6e/45fb6ef2dae71be7ef478d65fe6d2e8b.jpg

https://docs.unrealengine.com/en-US/API/Runtime/Engine/Engine/UGameInstance/index.html
https://docs.unrealengine.com/en-US/API/Runtime/Engine/Engine/UGameInstance/index.html
https://i.pinimg.com/originals/45/fb/6e/45fb6ef2dae71be7ef478d65fe6d2e8b.jpg

126

10 Appendices

Appendix A: Final Game Progression List

127

128

Appendix B: IRB Exemption Example Survey

129

Appendix C: Alphafest Survey

130

131

132

Appendix D: Playtesting Survey 1

133

134

135

Appendix E: Playtesting Survey 2

136

137

138

Appendix F: MassDiGI Game Challenge Slides

139

140

141

142

143

