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Chapter 1

Introduction

This dissertation is focused on certain variational models of fracture. In engineering, the

design of structures that can resist cracking is an important goal, with implications for

structural performance and safety. The development of well-posed models of fracture

that can predict the paths of cracks is both a critical step to achieving this goal and

a challenging mathematical problem. Also, the analytical results are all quite recent

because the mathematical tools necessary for formulating a variational fracture model

were developed within the last twenty years. These recent developments have generated

interest in rigorous analysis of fracture models, built upon collaboration between the

math and engineering communities.

In this chapter, I will set the stage for the results presented in this dissertation. First,

in Section 1.1, I will provide some background on variational models of fracture; my goals

for that section are to provide some historical context, introduce some of the notation,

and to survey useful references. Then, in Section 1.2, I will give a brief description of

the results presented in this dissertation.

1.1 Background

In the context of modelling fracture, the primary goal is to formulate a well-posed model

that can predict crack evolution, which includes determining both when pre-existing

cracks will run and the paths that such cracks take through the material. Although

models with such predictive capability are quite recent, the central idea in the theory of

brittle fracture was proposed by Griffith in 1920 [18]. He formulated the following crite-

rion for two dimensional crack propagation: a pre-existing crack can run only when the
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elastic energy that is released by cracking, per unit length of crack, exceeds the tough-

ness of the material. Precisely, he defined the energy release rate (in two dimensions)

as:

G := −dE
dl

where E is the bulk elastic energy stored in the material and l is the length of the

crack. Then, the Griffith criterion states that the crack will not run if G is less than

the toughness of the material, and can run if G equals the toughness. Implicit in this

criterion is a view of fracture as a balance between the energy that is required to create

new crack - which Griffith implied is proportional to the length of the crack - and the

elastic energy that is released when the material cracks. However, notice that the Griffith

criterion only provides a rule for determining when cracks grow; the path of the crack

must be known a priori (see Figure 1.1).

Figure 1.1: Typical setting for Griffith criterion.

This assumption and the restriction to two dimensions were eliminated using meth-

ods in the Calculus of Variations. The main ingredient was the appropriate space of

candidate functions, the so called Special Functions of Bounded Variation (SBV), first

analyzed by Ambrosio and De Giorgi [14]. Briefly stated, SBV (Ω) is the space of func-

tions u ∈ BV (Ω) such that the singular part of Du is concentrated on the set where u

is (approximately) discontinuous, a set of codimension 1 (see [15] [4] [30] for a complete

description). Using u ∈ SBV (Ω) to map Ω to its deformed configuration, with the

discontinuity set of u identifying the crack set, Ambrosio and Braides [3] proposed to

model static fracture by minimizing

u 7→
∫

Ω

W (∇u)dx+HN−1(S(u)) (1.1.1)

over u ∈ SBV (Ω), u = g (given) on ∂Ω; here W is the elastic energy density, S(u)

denotes the set of (approximate) discontinuity points of u, and ∇udx is the absolutely
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continuous part of Du. Notice that for an admissable function, one can generally create

a competitor with lower elastic energy by using more discontinuities, but at the cost of

the “length” of the additional discontuity set. Thus (1.1.1) captures the competition

between crack length and elastic energy release that is the core feature of the Griffith

criterion, and the location of the crack is determined by this energy minimization. The

existence of a minimizer for (1.1.1), given typical assumptions on W , follows from the

compactness of the space SBV , first proved by Ambrosio [2].

For crack evolution, the only analytical results are for quasistatic evolutions, mean-

ing that the rate of change in the problem parameters (Dirichlet boundary conditions,

boundary loads, body forces) is small compared to the time it takes the body to reach

elastic equilibrium. Francfort and Marigo [17] proposed the following model: first dis-

cretize time, at each timestep solve an appropriate static problem (where, since cracks

cannot heal, (1.1.1) is slightly modified to penalize only new discontinuities), and then

find the time continuous evolution by taking the limit as the size of the timesteps goes

to zero. The main issue is to show that this limit satisfies the properties of a quasistatic

evolution: loosely stated, at each time the crack set and deformation satisfy a mini-

mality property and that the crack evolution satisfies an energy balance, which relates

the stored elastic energy plus the dissipated energy to the work done by loading. These

properties were proved for the time continuous limit, first in two dimensions with certain

geometric contraints on the crack sets by Dal Maso and Toader [11], and then in the

general setting by Francfort and Larsen [16] and Dal Maso, Francfort and Toader [12].

1.2 Overview of Dissertation

The results presented in this dissertation involve two separate problems, with the re-

maining two chapters divided accordingly. Chapter 2 presents the first problem; this

chapter reproduces the presentation in [19], with only slight modifications and some

additional figures. The work involved developing and analyzing models of fracture in

which we modeled the energy dissipated by crack growth as concentrated on the front of

the crack, a set of codimension 2. It is natural to suppose that, as the crack propagates,

the dissipated energy should be local to where the crack is growing and depend on the

local speed of crack growth. While many engineering models of fracture are based on

some notion of crack front, there had not been a rigorous definition of front, let alone

mathematical analysis of a front-based fracture model. We presented the first work in
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this direction including:

• The first rigorous definition of crack front and front speed (See (2.1.1))

• A model of fracture whose evolution law is described at the crack front using the

front speed (See (2.1.2))

• A new (and equivalent) way of enforcing the irreversibility of fracture (Remark

2.6.3)

• An existence result for a constrained version of this front-based model (Theorem

2.5.2)

• A relaxation result (Theorem 2.6.13) that:

– Holds in any dimension

– Completely characterizes the optimal front microstructure

– Shows the surprising result that the effective energy is always rate-independent

• A proof that any crack evolution can be approximated strongly from within by

an evolution with a front moving arbitrarily close to any desired speed (Theorem

2.6.12).

Chapter 3 contains a level set method for computing stationary points for the Mumford-

Shah functional (from image segmentation) and fracture; as above, the chapter follows

the presentation in [20]. Generally, the idea behind level set methods is to associate the

singular set with the zero level set of some function. This function evolves, governed by

a PDE that is similar to that of motion by mean curvature, so that the zero level set

moves to a stationary point of the functional. In [20], we proposed a new technique that

addresses several issues unresolved by previous techniques. Our method:

• Can handle tips in the singular sets (important for fracture)

• Can find minimizers that previous techniques cannot find, in particular when the

minimizing singular set contains triple junctions (see Section 3.5).

The implementation of this technique involved a Matlab finite element code (adapted

from [1]) for computing solutions to the associated elliptic PDE and the use of mesh

generation tools [27]. Some of the numerical challenges were stability, for which we used

a Lax-Freidrichs descretrization with local timestepping, and the choice of appropriate

interpolation algorithms to compute curvatures.
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Chapter 2

Fracture Paths From Front Kinetics

2.1 Introduction

The goal of the work presented in this chapter is to model the energy dissipation due to

cracking as concentrated on crack fronts, and therefore generalize the Griffith dissipation

used in (1.1.1). This goal is motivated by the following observation: when a material

fractures, the energy that is dissipated by cracking should be local to where the crack

is growing, and should depend on the local speed of crack growth. Most engineering

models of fracture are formulated using some notion of a crack tip or front, and front

speed, but such ideas had not been investigated rigorously. A critical first step of this

work was to rigorously define these two notions.

Then, given such definitions, one can view penalizing the length of the crack (as in

(1.1.1)) as a dissipation that depends linearly on the front speed. A precise definition

of crack front and front speed then allows the use of dissipations with a nonlinear

dependence on the front speed. Therefore, our next step was to pose a variational

model with such a dissipation, and understand the resulting optimal microstructure

with the aim of proving existence of minimizers. In this chapter, which closely follows

the presentation in [19], I present our results for these questions, some of which were

quite surprising.

First, I now introduce our definition of crack front, which is formulated using the

entire trajectory of crack evolution. Specifically, we consider the class of trajectories u

with corresponding crack trajectory C that is increasing and such that at each time t

the discontinuity set S(u(t)) is a subset of C(t) (up to a set of HN−1 measure zero).

Furthermore, the crack trajectory has a front representation, i.e., there exists a function
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F : [0, T ] → 2Ω, and a family of functions v(·, t) : F (t) → R, such that∫ T

0

ϕ̇(t)

∫
C(t)

f(x)dHN−1(x)dt = −
∫ T

0

ϕ(t)

∫
F (t)

f(x)v(x, t)dHN−2(x)dt (2.1.1)

∀ϕ ∈ C1
0([0, T ]), ∀f ∈ C0(Ω

′)

where Ω ⊂⊂ Ω′. We call the set F (t) the crack front or front at time t, and v the front

speed. Note that if (u,C) satisfies (2.1.1) then necessarily the measure of C is absolutely

continuous in time; however, it is unclear if absolute continuity is sufficient. A quick

calculation also shows that restricting to trajectories with v ≥ 0 provides a new and

equivalent way of enforcing the irreversibility of fracture, i.e., the monotonicity of C.

With this class we formulated our model. We could have used the incremental mini-

mization approach described in Section 1.1 (see Remark 2.3.1), but it is somewhat more

natural to use the new energy functionals of Mielke-Ortiz (see [22]), which are function-

als designed to model dissipative systems using entire trajectories of the system. Thus,

our model is the following: for given ψ : [0,∞) → [0,∞), find (uε, Cε) by minimizing

Iε[u] :=

∫ T

0

e−
t
ε

{
1

ε

∫
Ω

W (∇u(x, t))dx+

∫
F (t)

ψ(v(x, t))dHN−2(x)

}
dt, (2.1.2)

over the class of front representable trajectories (matching given boundary conditions),

and then take the limit as ε→ 0 to recover the quasistatic evolution.

A critical fact about this class of trajectories is that in order for a minimizing sequence

{ui}∞i=1 of (2.1.2) to converge (in the natural sense, to be described later) to a trajectory

u with corresponding crack C having a front representation, it is necessary that ψ have

superlinear growth at infinity, but this is not sufficient. There are two reasons for this

lack of compactness. First, it is possible that the discontinuity sets of the ui close up as

i → ∞ only for t within some time interval, so that the limit u has discontinuity sets

that appear instantaneously at the end of this interval. Second, these sequences can

have crack sets that exhibit the onset of a mother-daughter microstructure, meaning

that the crack grows by creating many small cracks just ahead of the macroscopic crack

front, effectively bypassing the superlinear growth of ψ.

Our approach to the first issue is a weakening of the natural choice of C for a given

trajectory u – that C(t) is the smallest crack set containing all prior discontinuities of

u. Instead, we only require the inclusion of discontinuity sets, namely, that up to sets
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of HN−1 measure zero,

S(u(τ)) ⊂ C(t) ∀τ ∈ [0, t].

We will present two approaches to the second issue, organized in this chapter as

follows. In Section 2.5 we will constrain the admissible trajectories to prevent mother-

daughter type microstructures and ensure compactness of our constrained class. The cor-

responding variational problem is analyzed in a two dimensional setting, finally showing

the existence of an optimal crack path (Theorem 2.5.2).

Section 2.6 presents the central result of our work. In that section, we allow such

microstructures generally, in N dimensions and without constraints on admissible trajec-

tories, which requires relaxation. We show that the mother-daughter mechanism is only

part of the picture, and in fact minimizing sequences will employ a front microstructure

that enables them to move at an energetically optimal front speed, which depends only

on the linear envelope of the function ψ. We thereby show that, remarkably, any energy

whose dissipation rate is of the form∫
F (t)

ψ(v)dHN−2

relaxes to an energy whose dissipation rate is proportional to the front speed, i. e., a

rate-independent dissipation, and so also a Griffith energy dissipation (Theorem 2.6.13).

Perhaps the most natural example for which we would not have expected relaxation

to a rate-independent dissipation is ψ(v) = α+ vp, giving the energy

Iε[u,C] =

∫ T

0

e−
t
ε

{
1

ε

∫
Ω

W (∇u(x, t))dx+

∫
F (t)

(α+ vp(x, t)) dHN−2(x)

}
dt, (2.1.3)

with α > 0 and p > 1. While it would seem that having a fixed penalty on the front size

and a superlinear penalty on the front speed would prevent microstructure, let alone

relaxation to rate-independence, the relaxation result of Theorem 2.6.13 shows that this

is not the case.
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2.2 Minimum principles for rate problems in me-

chanics

Many physical systems are governed by problems of the rate form. Thus, let u ∈ Y be a

field that describes the state of the system, where Y is the corresponding configuration

space. For the systems under consideration, the trajectory u : (0, T ) → Y over a time

interval (0, T ) is governed by the problem:

u(0) = u0 (2.2.4a)

u̇(t) = v(t) (2.2.4b)

v(t) ∈ argmin{G(t, u(t), v(t))} (2.2.4c)

where u̇(t) is the time derivative, or rate, of u at time t; u0 ∈ Y is the initial state of

the system; and G : (0, T ) × Y × Y → R̄ is a rate functional. Problem (2.2.4) entails

a sequence of minimum problems parameterized by time. For every time, the minimum

problem (2.2.4c), or rate problem, returns the rate v(t) corresponding to the known state

u(t). Integration of these rates in time then determines the evolution of the system.

A special example of rate problem (2.2.4c) arises in evolutionary problems governed

by rate equations of the form

0 ∈ ∂Ψ(u̇(t)) +DE(t, u(t)), (2.2.5a)

u(0) = u0, (2.2.5b)

where Ψ : Y → R∞ := R∪{∞} is a convex dissipation potential; E : Y → R∞ is an

energy function; ∂Ψ is the subdifferential of Ψ, representing the system of dissipative

forces; DE is the Fréchet derivative of E, representing the conservative force system;

and time t varies in the interval [0, T ]. Equation (2.2.5a) establishes a balance between

dissipative forces and conservative forces, and the trajectory u(t) of the system is the

result of this balance and of the initial condition (2.2.5b). In this particular case, the

rate functional takes the additive form

G(t, u(t), v(t)) = Ψ(v(t)) +DE(t, u(t))v(t). (2.2.6)

Whereas, for fixed time, the rate of evolution of the system is characterized vari-
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ationally by the rate problem (2.2.4c), the trajectories of the system lack an obvious

variational characterization. Specifically, the lack of a minimum principle of trajecto-

ries forestalls the application of relaxation, gamma convergence, and other methods of

the calculus of variations to the determination of the effective energetics and kinetics of

systems exhibiting evolving microstructures.

Mielke and Ortiz [22] have proposed a class of variational principles for trajectories

that addresses this difficulty. The fundamental idea is to string together the minimum

problems (2.2.4c) for different times into a single minimum principle. In order to ensure

causality, the rate problems corresponding to earlier times are given overwhelmingly

more weight than the rate problems corresponding to later times. This leads to the

consideration of the family of functionals

Fε(u) =

∫ T

0

e−t/εG(t, u(t), u̇(t)) dt (2.2.7)

and to the minimum principles

inf
u∈X

Fε(u) (2.2.8)

where X is a space of functions from (0, T ) to Y , or trajectories, such that u(0) = u0.

We shall refer to Fε as the energy-dissipation functional to acknowledge the fact that

Fε accounts for both the energetics and the dissipation characteristics of the system.

For additive problems of the form (2.2.5), an alternative form of the energy dissipation

functional can be obtained through an integration by parts of the dissipation term, with

the result

Fε(u) =

∫ T

0

e−t/ε

[
Ψ(u̇) +

1

ε
E(u)

]
dt (2.2.9)

up to inconsequential additive constants.

That the causal limit ε → 0 of (2.2.8) is equivalent to problem (2.2.4) can be es-

tablished formally from the Euler-Lagrange equations of Fε. Thus, the Euler-Lagrange

equation of (2.2.4c) is, simply,

∂vG(t, u, v) = 0 (2.2.10)

whereas the Euler-Lagrange equations of (2.2.8) are:

∂u̇G(t, u(t), u̇(t)) + ε

{
∂uG(t, u(t), u̇(t))− d

dt
∂u̇G(t, u(t), u̇(t))

}
= 0 (2.2.11)
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A comparison of (2.2.10) and (2.2.11) reveals that, disregarding higher-order terms in

ε, the minimizers u(t) of (2.2.8) are such that u̇(t) solves the rate problem (2.2.4c) at

all times. The Euler-Lagrange equation (2.2.11) may also be regarded as an elliptic

regularization of problem (2.2.4) [22]. Thus, depending on the size of ε the system is

allowed to peep into the future to a greater or lesser extent. In the same manner as the

term rate problem is used to denote the problem that determines rates, namely problem

(2.2.4c), we shall use the term trajectory problem to refer to the problem that determines

the trajectories of the systems, namely problem (2.2.8).

A class of problems that is amenable to effective analysis concerns rate-independent

systems for which the dissipation potential Ψ is homogeneous of degree 1 [22]. A striking

first property of rate-independent problems is that all minimizers uε of Fε satisfy energy

balance independently of the value of ε. Under suitable coercivity assumptions it is then

possible to derive a priori bounds for uε which likewise are independent of ε, with the

result that it is possible to extract convergent subsequences and find limiting functions u.

Under certain regularity assumptions it follows that all such limits satisfy the energetic

formulation of Mielke et al. (see, e. g., the survey [21] and references therein) for rate-

independent systems of the form (2.2.5). Moreover, if (Ψk)k∈N converges to Ψ and Ek

Γ-converges to E with respect to appropriate topologies, then the accumulation points of

the family (uε,k)ε>0,k∈N for ε, 1/k → 0 solve the associated limiting energetic formulation.

These results for rate-independent systems provide a first indication that the variational

program outlined above indeed works, i. e., that the minimizers of the energy-dissipation

functionals Fε converge towards trajectories of the evolutionary problem. The case of a

general rate functional G remains open at present.

2.3 Fracture mechanics as a rate problem

Fracture is irreversible, dissipative and is driven by energetic driving forces, which sug-

gests that it should be describable within the energy-dissipation framework outlined in

the preceding section. However, whereas the energy of a body undergoing fracture is

simply given by its elastic energy, the dissipation attendant to crack growth is concen-

trated on the crack front and its proper accounting requires carefully crafted measure-

theoretical tools. Before embarking on the development of those tools, we begin by

briefly recounting the elements of formal fracture mechanics that lead to the formula-

tion of dissipation potentials for growing cracks. We therefore proceed formally and
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(a) (b)

Figure 2.1: a) Crack advancing in a body occupying domain Ω and zoom of the crack-
front region showing crack set Ct at time t, contained with crack set Ct+∆t at time t+∆t,
during which interval of time the crack front sweeps an area ∆C of unit normal n. b)
Detail of advancing front and definition of front velocity.

assume regularity and smoothness as required.

We consider an elastic body occupying a domain Ω ⊂ RN , N ≥ 2. The boundary ∂Ω

of the body consists of an exterior boundary Γ, corresponding to the boundary of the

uncracked body, and a collection of cracks jointly defining a crack set C. In addition, Γ

partitions in the usual manner into a displacement boundary Γ1 and a traction boundary

Γ2. The body undergoes deformations under the action of body forces, displacements

prescribed over Γ1 and tractions applied over Γ2. Under these conditions, the elastic

energy of the body is

E(u) =

∫
Ω

W (x, u,∇u) dx+

∫
Γ2

V (x, u) dHN−1 (2.3.12)

where dx is the N -dimensional Lebesgue measure, Hd is the d-dimensional Hausdorff

measure, W is the elastic strain energy density of the body and V is the potential of the

applied tractions. Suppose now that the applied loads and prescribed displacements are

incremented over the time interval [t, t + ∆t] and that, in response to this incremental

loading, the crack set extends from C(t) to C(t + ∆t). Owing to the irreversibility of

fracture we must necessarily have that C(t) ⊂ C(t + ∆t). The elastic energy released
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during the time increment is

−∆E =

[∫
Ω

W
(
x, u(t),∇u(t)

)
dx+

∫
Γ2

V
(
x, u(t)

)
dHN−1

]
−
[∫

Ω

W
(
x, u(t+ ∆t

)
,∇u(t+ ∆t)

)
dx+

∫
Γ2

V
(
x, u(t+ ∆t)

)
dHN−1

]
.

(2.3.13)

Expanding to first order in all incremental terms we obtain

−∆E ∼ −
[∫

Ω

(∂uW ·∆u+ ∂∇uW · ∇∆u) dx+

∫
Γ2

∂uV ·∆u dHN−1

]
. (2.3.14)

Integrating by parts and using the equations of equilibrium this expression reduces to

−∆E ∼
∫

∆C

T (t) · [[u(t+ ∆t)]] dHN−1 (2.3.15)

where

T = ∂∇uW (x, u,∇u)n (2.3.16)

are the internal tractions, with n the unit outward normal to the boundary, and we write

∆C = C(t+ ∆t)\C(t), Fig. 2.1a. The corresponding energy release rate now follows as

− Ė = − lim
∆t→0

∆E

∆t
=

∫
F

f(n)v dHN−2 (2.3.17)

where F is the crack front, Fig. 2.1b, v is the crack-front velocity

f(n) = lim
∆t→0

1

∆t
(∂∇uW n) · [[ut+∆t]] (2.3.18)

is the energetic force acting on the crack front. The identity (2.3.17) expresses the

rate at which energy flows to—and is subsequently dissipated at—the crack front. In

particular, the duality-pairing structure of (2.3.17) is conventionally taken to mean that

the energetic force f(n) does power, or drives on the crack-front velocity v. On this

basis, it is customary in fracture mechanics to postulate the existence of a crack-tip

equation of motion of the form

f = ∂ψ(v) (2.3.19)

where ψ is a dissipation potential density per unit crack-front length. The total dissipa-
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tion potential for the entire crack front finally follows by additivity as

Ψ(v) =

∫
F

ψ(v) dHN−2 (2.3.20)

We note that constitutive relations of the form (2.3.19) can also be derived—instead of

just postulated—from (2.3.17) and the first and second laws of thermodynamics using

Coleman and Noll’s method [10]. The crack-tip equation of motion (2.3.19) is subject

to the dissipation inequality

f · v ≥ 0 (2.3.21)

which follows as a consequence of the second law of thermodynamics. In the present

context, the dissipation inequality introduces a unilateral constraint that prevents crack

healing.

We note that the dissipation attendant to crack growth is localized to the crack

front F , which is a set of co-dimension 2. This is in contrast to energetic theories of

fracture based on the SBV or SBD formalisms in which the principal singular set of

interest, namely, the crack set, has co-dimension 1. In geometrical measure theory the

structure and properties of sets of co-dimension 2 is less well understood than those of

sets of co-dimension 1, which adds difficulty to the energy-dissipation version of fracture

mechanics. We also note that in rate-independent theories of fracture mechanics the

dissipation is described by a surface energy on the crack flanks and lumped together

with the energy.

The observational record lends support to the assumption that crack growth obeys

a crack-tip equation of motion of the form (2.3.19). By way of example, Fig. 2.2 shows

a compilation of fatigue data for 2024-T3 aluminum alloy from the classical work of

Paris and Erdogan [24] and dynamic fracture data for 4340 steel [25]. In the case of

fatigue, the number N of loading cycles plays the role of time. In interpreting these

data it should also be recalled that in linear-elastic fracture mechanics the driving force

f scales as the square of the stress-intensity factor. By plotting the driving force vs.

crack-tip velocity on log-log axes, all the data points ostensibly collapse on master curves

suggesting the existence of a crack-tip equation of motion. The data displayed in Fig. 2.2

is also suggestive of power-law behavior, possibly with a threshold on the driving force.

Thus, with the direction of advance prescribed, e. g., by symmetry, the component of

the crack-tip equation of motion normal to the front within the tangent plane to the

13



(a)

(b)

Figure 2.2: a) Compilation of fatigue data for 2024-T3 aluminum alloy [24] b) Dynamic
fracture data for 4340 steel [25]. The driving force f scales as the square of the stress-
intensity factor. By plotting the driving force vs. crack-tip velocity on log-log axes, all
the data points collapse on master curves.
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crack takes the form

v = C(f − f0)
m (2.3.22)

where the threshold f0 ≥ 0, C and m are material constants. If the rate of dissipation is

further assumed to be independent of the direction of crack advance, then the dissipation

potential follows as

ψ(v) = f0|v|+
mC

m+ 1
|v|1+1/m (2.3.23)

kink
angleCrack advance

Figure 2.3: Local view of the geometry and kinetics of crack advance.

We are now in a position to formulate the rate problem (2.2.5) for fracture mechanics.

In view of identity (2.3.17), the rate problem of fracture mechanics reduces to

inf
v,n

∫
F

[ψ(v)− f(n) · v] dHN−2 (2.3.24)

and the corresponding Euler-Lagrange equations are

∂ψ(v) = f(n) (2.3.25a)

∂ψ∗(f(n)) = 0 (2.3.25b)

which jointly determine the crack-tip velocity v and direction of advance n. The re-

sulting geometry and kinetics of crack advance is illustrated in Fig. 2.3, that represents

a local neighborhood of the crack front, e. g., parametrized by its arc length s, with

the local crack geometric described by orthonormal axes tangent to the crack and its

front. Because of the constraint C(t) ⊂ C(t+ ∆t), it follows that the direction of crack
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advance can locally be described by means of a single kinking angle ω(s). Also, because

of the constraint (2.3.25b) reduces to one single equation for the determination of ω(s).

We note from (2.3.24) that the resulting kinking angle maximizes the energy-release

rate or, equivalently, the rate of dissipation f(n) · v, and thus we can regard (2.3.24)

variously as a maximum energy-release or a maximum dissipation principle. Once ω(s),

and by extension n(s), is determined from (2.3.25b) the local crack-front velocity v(s),

giving the rate of extension of the crack, follows from (2.3.25a), which simply restates

the crack-tip equation of motion.
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branching 
instability

Figure 2.4: Dual dissipation density as a function of kinking angle for steady-state dy-
namic crack growth at different crack tip velocities. The dual energy-dissipation density
has a single maximum below a critical crack-tip velocity, corresponding to straight-ahead
growth, and two maxima above the critical velocity, corresponding to crack branching
[29].

The energy-dissipation functional (2.3.24) can exhibit complex behavior. A case in

point is furnished by a dynamic two-dimensional crack propagating in a steady state.

In this case, an equivalent static problem can be obtained by introducing a reference

frame that moves with the crack tip, and the equivalent static problem thus defined can

be analyzed within the energy-dissipation framework just outlined. A classical solution

of Yoffe [29] then shows that for crack-tip velocities below a certain critical speed vc

of the order of 60% of the shear wave speed (2.3.25b) has a single solution and the

crack runs straight ahead. By way of sharp contrast, above the critical speed (2.3.25b)

has two symmetrical solutions corresponding to kinking angles of the order of ±65◦

corresponding to crack branching. In the present variational framework, this classical

branching instability of dynamic fracture can thus be understood as a consequence of the

lack of convexity of the rate problem, which furnishes a new insight into the phenomenon

and opens opportunities for the analysis of crack branching.

On the basis of preceding description of the energetics and dissipation of fracture we
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can now exhibit the energy dissipation functional (2.2.9) of fracture mechanics, namely,

Fε(u) =

∫ T

0

e−t/ε

[∫
F

ψ(v) dHN−2 +
1

ε

(∫
Ω

W (x, u,∇u) dx+

∫
Γ2

V (x, u) dHN−1

)]
dt.

(2.3.26)

Minimization of this energy-dissipation functional supplies the entire crack-path over the

time interval [0, T ] and the attendant trajectory of the displacement field. The energy-

dissipation functional (2.3.26) forms the basis of the analysis presented in the remainder

of the paper.

Remark 2.3.1. We close this section by noting that this front-based variational model

can also be used in the discrete-time incremental approach, by considering for crack

increments ∆C in the time interval [t1, t2] the crack energy

inf

{
lim inf
n→∞

∫ t2

t1

∫
Fn

ψ(vn) dHN−2dt : Cn → ∆C

}
where Fn is the front corresponding to Cn and the convergence Cn → ∆C is in the sense

described in Section 2.6. Remarkably, as a consequence of the results in that section (see

Remark 2.6.11 and Theorem 2.6.12, this inf is simply

inf

{
lim inf
n→∞

∫ t2

t1

∫
Fn

C vn dHN−2dt : Cn → ∆C

}
= CHN−1(∆C), (2.3.27)

where

C := inf
s∈(0,∞)

ψ(s)

s
.

2.4 Notation and mathematical setting

We first introduce some notation to be used throughout this chapter, which is consistent

with [15].

• Ω, a bounded open subset of RN with Lipschitz boundary, represents the reference

configuration of the body. As a mechanism for enforcing boundary conditions (see

for instance [16]), Ω′ will denote a bounded open set with Lipschitz boundary such

that Ω ⊂⊂ Ω′.

• For y ∈ RN , let (y1, ..., yN) denote the components of y.
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• For n = 0, ..., N Ln is the n-dimensional Lebesgue measure and Hn denotes the

n-dimensional Hausdorff measure.

• SBV (Ω) is the space of special functions of bounded variation on Ω. For u ∈
SBV (Ω), we will denote the approximate discontinuity set of u as S(u) (see [4]).

SBVp(Ω) will denote those u ∈ SBV (Ω) such that ∇u ∈ Lp(Ω).

• We will say that a sequence {vn}∞n=1 ⊂ SBV (Ω) converges to v ∈ SBV (Ω) (or

vn
SBV→ v) if 

∇vn ⇀ ∇v in L1(Ω);

[vn]νnHN−1bS(vn)
∗
⇀ [v]νHN−1bS(v) as measures;

vn → v in L1(Ω); and

vn
∗
⇀ v in L∞(Ω),

where ν denotes the normal to S(v), and [v] the jump of v. Note that, as a

consequence (see [2]),

HN−1(S(v)) ≤ lim inf
n→∞

HN−1(S(vn)) (2.4.28)

whenever vn
SBV→ v.

• For any set of finite perimeter E, ∂∗E denotes the reduced boundary of E, and for

x ∈ ∂∗E, νE(x) denotes the measure theoretic outer normal to E at x.

• For ξ ∈ R, let Ew
ξ denote the ξ super level set of w, i.e., Ew

ξ := {x ∈ Ω : w(x) > ξ}.

• For {Ki}∞i=1, Ki ⊂ R2, we use the notation K = H-lim
i→∞

Ki or Ki
H→ K to mean

that Ki converges to K in the Hausdorff metric.

• A
∼
⊂ B means that HN−1(A \B) = 0. A

∼
= B means HN−1(A4B) = 0.

• 2X denotes the power set of X.

• Q(x, r) is a cube in RN centered at x with side length 2r.

• B(x, r) is a closed ball centered at x with radius r.
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• W : RN → R is convex with minimum attained for ξ ∈ RN with ‖ξ‖RN = 0 and

satisfies C1|ξ|p−
1

C1

≤ W (ξ) ≤ C2(|ξ|p +1) for some positive constants C1, C2 and

some p > 1.

2.5 Existence for constrained trajectories

In this section, we present an existence result for a constrained version of the problem

that we introduced in Section 2.1. We are restricting our consideration to the two

dimensional case (Ω ⊂ R2), and, motivated by the compactness issues for the class

of trajectories that satisfy (2.1.1) (see Section 2.1), we define a class of constrained

trajectories:

Definition 2.5.1. For fixed p′ > 0, the class Tp′ is the set of triples (u,C, F ) such that:

1. u satisfies:

(a) u(·, t) ∈ SBVp(Ω
′) ∀t ∈ [0, T ]

(b)

∫
Ω

W (∇u(x, ·))dx ∈ L1([0, T ]; R)

(c) ∀t ∈ [0, T ], u(·, t) = g on Ω′ \ Ω̄, where g ∈ L∞(Ω′) ∩H1(Ω′) is given.

2. C : [0, T ] →
{
K ⊂ Ω̄ : K is H1 measurable, H1 (K) <∞

}
such that:

(a) C(0)
∼
= C0, for given closed C0

(b) C nondecreasing: ∀τ < t, C(τ)
∼
⊂ C(t)

(c) ∀t ∈ [0, T ], S(u(t))
∼
⊂ C(t)

(d) F ∈ W 1,p′([0, T ]; Ω̄), and there exists a family of functions v(·, t) : F (t) → R,

such that∫ T

0

ϕ̇(t)

∫
C(t)

f(x)dH1(x)dt = −
∫ T

0

ϕ(t)

∫
F (t)

f(x)v(x, t)dH0(x)dt

∀ϕ ∈ C1
0([0, T ]), ∀f ∈ C0(Ω

′).

Property 2 expresses the fact that we are considering a relaxed definition of crack

set, as discussed in the introduction. By Property 2d, we are only considering those

trajectories that satisfy the front representation, and further that their fronts are at

most one point ∀t ∈ [0, T ] with no jumps in the position of this front. Since the class
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of trajectories that have a one point front moving continuously is not closed, we allow

the front point to move inside of the existing crack set (with v = 0). Therefore, we can

choose F ∈ W 1,p′([0, T ], Ω̄) such that at every t ∈ [0, T ], the front at time t is a subset

of F (t). We will consider a dissipation potential of a similar character to that of (23) in

[19], in particular we require superlinear growth of the dissipation potential. However,

since F can move inside of the existing crack set, a sequence {qi}∞i=1 ⊂ Tp′ will have

a subsequence that converges to an element of Tp′ only if sup
i

∥∥∥Ḟi

∥∥∥
Lp′

is bounded, and

therefore, in order to ensure compactness, we must penalize the derivative of F in the

functional. Accordingly, we will minimize

Iε,p′ [q] :=

∫ T

0

e−
t
ε

{
1

ε

∫
Ω

W (∇u(x, t))dx+

∫
F (t)

∣∣∣Ḟ ∣∣∣p′ (t)dH0(x)

}
dt

over q = (u,C, F ) ∈ Tp′ , where ε > 0 and p′ > 1 are fixed. Note that the proof of

Theorem 2.5.2 below applies to all convex potentials with p′ growth, in particular for

|Ḟ |+ |Ḟ |p′ , as in (23) of [19]. Since F (t) is only one point, the energy is simply

Iε,p′ [q] :=

∫ T

0

e−
t
ε

{
1

ε

∫
Ω

W (∇u(x, t))dx+
∣∣∣Ḟ ∣∣∣p′ (t)} dt.

Theorem 2.5.2. There exists a minimizer of Iε,p′ in Tp′.

Proof. Let {qi}∞i=1 ⊂ Tp′ be a minimizing sequence for Iε,p′ , meaning

lim
i→∞

Iε,p′ [qi] = inf
q∈Tp′

Iε,p′ [q].

This implies that

sup
i

∥∥∥Ḟi

∥∥∥
Lp
′ ([0,T ];R2)

<∞. (2.5.29)

Since p′ > 1, then by (2.5.29), Theorem 1 in Section 4.6 of [15], and Morrey’s Inequality

(Theorem 3 in Section 4.5.3 of [15]) there is an F ∈ W 1,p′([0, T ]; Ω̄) such that, up to a

subsequence that we will not relabel,

Fi → F in L∞([0, T ]; Ω̄) and (2.5.30)

Ḟi ⇀ Ḟ in Lp′([0, T ]; R2). (2.5.31)
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Note that (2.5.31) implies:∫ T

0

e−
t
ε

∣∣∣Ḟ ∣∣∣p′ (t)dt ≤ lim inf
i→∞

∫ T

0

e−
t
ε

∣∣∣Ḟi

∣∣∣p′ (t)dt. (2.5.32)

Set C(t) := C0 ∪
⋃
τ≤t

F (τ) and C̃i(t) := C0 ∪
⋃
τ≤t

Fi(τ). Since Fi → F uniformly then

∀t ∈ [0, T ] C̃i(t)
H→ C(t). Construct u : Ω× [0, T ] → R as follows: ∀t ∈ [0, T ], take

u(·, t) ∈ argmin

{∫
Ω

W (∇z)dx : z ∈ SBV (Ω), S(z)
∼
⊂ C(t), z = g in Ω′ \ Ω

}
,

(2.5.33)

which is nonempty by the properties of W and the compactness of the space SBV (The-

orems 4.7 and 4.8 of [4]).

Let q := (u,C, F ) as defined above. We will now show that q ∈ Tp′ , and that it is

a minimizer of Iε,p′ . First, note that properties 1a, 1c, 2a, 2b, and 2c hold for q by

construction. Also, since C is nondecreasing, the map

t 7→
∫

Ω

W (∇u(x, t))dx

is nonincreasing, is continuous a.e. and therefore L1 measurable. This, combined with

the lower semicontinuity of the bulk part of the energy means that property 1b is satis-

fied.

Next, we verify that the pair (C,F ) satisfies property 2d of the definition of Tp′ . Choose

a sequence {ηk}∞k=1 ⊂ C∞([0, T ]; Ω̄) such that ηk → F strongly in W 1,p′([0, T ]; Ω̄) (see

Section 4.2 Theorem 3 of [15]). Then Morrey’s Inequality (Section 4.5.3 Theorem 3 of

[15]) implies

ηk → F strongly in L∞([0, T ]; Ω̄).

Let Γk(t) :=
⋃
τ≤t

ηk(τ). According to the Area formula (Theorem 1 in Section 3.3.2 in
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[15]) we have ∀k ∈ N and t < t′ ∈ [0, T ]∫ t′

t

|η̇k| dt =

∫
Ω̄

H0
(
[t, t′] ∩ η−1

k ({y})
)
dH1(y)

≥ H1(Γk(t
′) \ Γk(t)). (2.5.34)

Using the uniform convergence ηk → F (in particular that ∀t ∈ [0, T ] Γk(t)
H→ C(t)\C0)

and the fact that Γk(t) connected, we have for all t < t′ ∈ [0, T ]

H1(C(t′) \ C(t)) ≤ lim inf
k→∞

H1 (Γk(t
′) \ Γk(t))

≤ lim
k→∞

∫ t′

t

|η̇k| (s)ds

=

∫ t′

t

∣∣∣Ḟ ∣∣∣ (s)ds. (2.5.35)

Using (2.5.35), we have that for any f ∈ C0(Ω
′) and all t < t′ ∈ [0, T ],∣∣∣∣∫

C(t′)

fdH1 −
∫

C(t)

fdH1

∣∣∣∣ =

∣∣∣∣∫
C(t′)\C(t)

fdH1

∣∣∣∣
≤ ‖f‖L∞(Ω′)H

1(C(t′) \ C(t))

≤ ‖f‖L∞(Ω′)

∫ t′

t

∣∣∣Ḟ ∣∣∣ (s)ds. (2.5.36)

The estimate (2.5.36) means that, for every f ∈ C0(Ω
′), the map

t 7→
∫

C(t)

f(x)dH1(x) (2.5.37)

is absolutely continuous, and so there exists Df ∈ L1([0, T ]; R) such that∫ T

0

ϕ̇(t)

∫
C(t)

f(x)dH1(x)dt = −
∫ T

0

ϕ(t)Df (t)dt (2.5.38)

for all ϕ ∈ C1
0([0, T ]; R). In particular, taking f ≡ 1 in Ω̄ there is a D ∈ L1([0, T ]; R)

such that ∫ T

0

ϕ̇(t)H1(C(t))dt = −
∫ T

0

ϕ(t)D(t)dt
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for all ϕ ∈ C1
0([0, T ]; R). Since for any f ∈ C0(Ω

′) with ‖f‖L∞(Ω′) ≤ 1 the map

t 7→ H1(C(t))−
∫

C(t)

f(x)dH1(x)

is nondecreasing, for any f ∈ C0(Ω
′) one can show that there is a representative of Df ,

denoted D∗
f , so that for all t ∈ [0, T ]

1

‖f‖L∞(Ω′)

D∗
f (t) ≤ D(t) <∞

and for a.e. t ∈ [0, T ] the map f → D∗
f (t) is a bounded linear map on C0(Ω

′). By the

Riesz Representation Theorem (Theorem 1 in Section 1.8 of [15]), there exists a family

of measures {µt}t∈[0,T ] such that for all f ∈ C0(Ω
′)

Df (t) =

∫
Ω

f(x)dµt(x) (2.5.39)

at a.e. t ∈ [0, T ]. Hence,∫ T

0

ϕ̇(t)

∫
C(t)

f(x)dH1(x)dt = −
∫ T

0

ϕ(t)

∫
Ω′
f(x)dµt(x)dt, (2.5.40)

for all ϕ ∈ C1
0([0, T ]; R) and f ∈ C0(Ω

′; R). Now, we show that for a.e. t ∈ [0, T ], the

measure µt is supported on F (t). Since F ∈ W 1,p′([0, T ]; Ω̄), p′ > 1, F is uniformly

continuous on [0, T ]. For each n ∈ N choose δn > 0 so that for a, b ∈ [0, T ] with

|a − b| < δn, |F (a)− F (b)| < 1/(2n). Fixing an n ∈ N, choose a finite set of open

intervals {(ak, bk)}z
k=1 such that

0 < |bk − ak| < δn ∀k,

and

L1

(
[0, T ] \

⋃
k

(ak, bk)

)
= 0.

Fix k and then choose some tk ∈ (ak, bk). Set

B := B(F (tk), 1/(2n)).
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For any t ∈ (ak, bk), C(t) \ C(ak) ⊂ B, which means

C(t) \B = C(ak) \B

and so for all f ∈ C0(Ω
′ \B)

d

dt
(C(t) \B) = 0

for almost every t ∈ (ak, bk). Thus, by (2.5.40), for any f ∈ C0(Ω
′ \B) and almost every

t ∈ (ak, bk) ∫
Ω′
f(x)dµt(x) = 0,

and so for a.e. t ∈ (ak, bk)

µt(Ω
′ \B) = 0. (2.5.41)

By the choice of the diameter of B we know that for every t ∈ (ak, bk)

B ⊂ B(F (t), 1/n)

and so for a.e. t ∈ (ak, bk)

µt (Ω′ \B(F (t), 1/n)) ≤ µt (Ω′ \B)

= 0.

Repeating this argument for each k, and setting

Gn := {t ∈ [0, T ] : µt (Ω \B(F (t), 1/n)) > 0},

we have that

L1(Gn) = 0

for all n ∈ N and so the set

G := {t ∈ [0, T ] : µt (Ω \ F (t)) > 0}

has zero measure. This means that for t ∈ [0, T ] \G

µt << H0bF (t),

25



and setting

v(x, t) :=
dµt

dH0bF (t)
(x)

we apply (2.5.40) to find∫ T

0

ϕ̇(t)

∫
C(t)

f(x)dH1(x)dt = −
∫ T

0

ϕ(t)

∫
F (t)

f(x)v(x, t)dH0(x)dt (2.5.42)

for all ϕ ∈ C1
0([0, T ]; R) and f ∈ C0(Ω

′; R). Therefore the triple q = (u,C, F ) satisfies

property 2d of the definition of Tp′ .

It remains only to show the lower semicontinuity of the bulk part of the energy. We will

use this claim about our sequence ui and the C constructed above:

Claim: Suppose that for some w ∈ SBV (Ω), ui(·, t)
SBV→ w. Then S(w)

∼
⊂ C(t).

Proof of Claim: Recall that C̃i(t)
H→ C(t). Now let x0 ∈ Ω′ \ C(t). Since C(t) is closed,

there exists t∗ ∈ [0, t] such that

D := dist(F (t∗), x0) = min
s∈[0,t]

dist(F (s), x0)) > 0.

Set

B := B(x0, D/2).

Then there exists N ∈ N such that ∀i > N

C̃i(t) ∩B = ∅.

By definition of C̃i, and since for each i the pair (Ci, Fi) satisfies the front representation

formula with a front speed vi, for any f ∈ C0(B) and i > N∫
Ci(t)\C0

f(x)dH1(x) =

∫ t

0

∫
Fi(s)

f(x)vi(x, s)dH0(x)ds

=

∫ t

0

∫
Fi(s)∩B

f(x)vi(x, s)dH0(x)ds

= 0. (2.5.43)

Then (2.5.43) implies

H1(Ci(t) ∩B) = 0

26



for i > N . By property 2c of Definition 2.5.1 we have

H1(S(ui(t)) ∩B) = 0

for i > N . Therefore, applying (2.4.28) with ui|B and w|B we have that

H1(S(w) ∩B) ≤ lim inf
i→∞

H1(S(ui(t)) ∩B) = 0.

Since the above argument holds for any ball with radius less than D/2, and since x0 was

arbitrary, this proves the claim.

Now, to show that the bulk energy is lower semicontinuous, fix t ∈ [0, T ]. Take a

subsequence of {ui}∞i=1 such that:

lim
k→∞

∫
Ω

W (∇uik(x, t))dx = lim inf
i→∞

∫
Ω

W (∇ui(x, t))dx.

We can assume, without loss of generality, that supk ‖uik(t)‖L∞ < +∞ since truncation

merely lowers the elastic energy. By the compactness of the space of SBV (Theorem 4.8

of [4]) there exists ūt ∈ SBV (Ω) such that, up to a further subsequence that we will not

relabel,

uik

SBV→ ūt.

By the above claim

S(ūt)
∼
⊂ C(t),

and so applying the definition of u (recall (2.5.33)) we have∫
Ω

W (∇u(x, t))dx ≤
∫

Ω

W (∇ūt(x, t))dx.

Therefore, ∫
Ω

W (∇u(x, t))dx ≤
∫

Ω

W (∇ūt(x, t))dx

≤ lim
k→∞

∫
Ω

W (∇uik(x, t))dx

= lim inf
i→∞

∫
Ω

W (∇ui(x, t))dx.
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Since the above holds for each t ∈ [0, T ], then the lower bound on W and Fatou’s Lemma

(see [4]) implies:∫ T

0

e−
t
ε

∫
Ω

W (∇u(x, t))dxdt ≤
∫ T

0

e−
t
ε

{
lim inf

i→∞

∫
Ω

W (∇ui(x, t))dx

}
dt

≤ lim inf
i→∞

∫ T

0

e−
t
ε

∫
Ω

W (∇ui(x, t))dxdt. (2.5.44)

Combining (2.5.32) and (2.5.44) gives

Iε,p′ [q] ≤ lim inf
i→∞

Iε,p′ [qi],

which establishes that the triple q = (u,C, F ) is a minimizer of Iε,p′ .

2.6 Relaxation and Rate-Independence

For energies of the form

Iε[q] :=

∫ T

0

e−
t
ε

{
1

ε

∫
Ω

W (∇u(x, t))dx+

∫
F (t)

ψ(v(x, t))dHN−2(x)

}
dt, (2.6.45)

(where q ∈ T , ε > 0 is fixed, and ψ : [0,∞) → [0,∞) is continuous) minimizing

sequences can exhibit the onset of microstructures that involve the geometry of the

crack front, which prevents the existence of a minimizer without strong restrictions on

that geometry (see Section 2.5). In this section we will characerize the optimal crack

front microstructure and prove a formula for the relaxation of the dissipation part of

energies of the form (2.6.45) (see Theorem 2.6.13). This result holds in any dimension

and without a priori constraints on the crack fronts. This section is organized as follows.

Section 2.6.1 contains the definition for the appropriate class of fracture trajectories and

other definitions useful for the remainder of Section 2.6. In Section 2.6.2 we describe

the notion of convergence for which we prove the relaxation result- this convergence is

extremely weak and thus the result of Theorem 2.6.13 holds in practical settings. Section

2.6.3 contains Theorem 2.6.13 and its proof.
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2.6.1 Definitions

Definition 2.6.1. The class T is the set of pairs (u,C) such that:

1. u satisfies:

(a) u(·, t) ∈ SBVp(Ω
′) ∀t ∈ [0, T ]

(b)

∫
Ω

W (∇u(x, ·))dx ∈ L1([0, T ]; R)

(c) ∀t ∈ [0, T ], u(·, t) = g on Ω′ \ Ω̄, where g ∈ L∞(Ω′) ∩H1(Ω′) is given

2. C : [0, T ] →
{
K ⊂ Ω̄ : K is HN−1 measurable, HN−1 (K) <∞

}
is such that:

(a) C(0)
∼
= C0, for given C0

(b) C nondecreasing: ∀τ < t, C(τ)
∼
⊂ C(t)

(c) ∀t ∈ [0, T ], S(u(t))
∼
⊂ C(t)

(d) There exists a function F : [0, T ] → 2Ω and a family of functions v(·, t) :

F (t) → R such that∫ T

0

ϕ̇(t)

∫
C(t)

f(x)dHN−1(x)dt = −
∫ T

0

ϕ(t)

∫
F (t)

f(x)v(x, t)dHN−2(x)dt

∀ϕ ∈ C1
0([0, T ]), ∀f ∈ C0(Ω

′).

Definition 2.6.2. Define the space T ∗ to be the set of all pairs (u,C) that satisfy the

properties of T except for property 2d.

Remark 2.6.3. Note that an alternative to 2b in definition 2.6.1 is that v in 2d satisfies

v ≥ 0. A similar characterization is possible for q ∈ T ∗, requiring the weak derivative

of HN−1bC(t) to be nonnegative.

Definition 2.6.4. Define the rate independent envelope of ψ, ψ̄ : [0,∞) → [0,∞) by

ψ̄(x) := sup
φ≤ψ

φ linear

φ(x).

And, setting

C := inf
s∈(0,∞)

ψ(s)

s
,

we have for s ∈ [0,∞)

ψ̄(s) = C s.

29



Figure 2.5: Rate-independent envelope for ψ(v) = α+ vp, α > 0.

2.6.2 Convergence of Trajectories

Sketch of Compactness Argument

An important feature of the choice of convergence is that minimizing sequences of

(2.6.45) are compact. To motivate our choice of convergence, we will briefly sketch

the compactness argument for energies of this form. Let D be a countable, dense subset

of [0, T ], and suppose that ψ has this property: there exists a constant K1 > 0 such

that, for s ∈ [0,∞), ψ satisfies

ψ(s) ≥ K1s. (2.6.46)

The, let {qi = (ui, Ci)}∞i=1 ⊂ T be a minimizing sequence of Iε. This implies that the

sequence has bounded energy, i.e., there exists K2 > 0 such that

sup
i
Iε[qi] < K2. (2.6.47)

We now show that there is a q = (u,C) ∈ T ∗ such that up to a subsequence

ui(·, t)
SBV→ u(·, t)

for all t in the countable dense D ⊂ [0, T ]. To see this, we suppose that the minimizing

sequence {qi}∞i=1 has the property that for all i ∈ N and each t ∈ [0, T ]

ui(·, t) ∈ argmin

{∫
Ω

W (∇z)dx : z ∈ SBV (Ω), S(z)
∼
⊂ Ci(t), z = g in Ω′ \ Ω

}
,
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since this can only reduce Iε[qi]. Then, by the growth bounds on W , sup
i∈N

‖∇ui(·, t)‖Lp(Ω)

is bounded uniformly for t ∈ [0, T ], where p > 1. We also assume that our minimizing

sequence is chosen so that

sup
i∈N

‖ui(·, t)‖L∞(Ω′) ≤ ‖g‖L∞(Ω′) ,

which, by a truncation argument, can only lower the bulk energy. Now, by (2.6.47) we

have ∫ T

0

e−
t
ε

∫
Fi(t)

ψ(vi)dHN−2dt < K2,

which combined with (2.6.46) and property 2d of the definition of T means that there

is a K3 > 0 such that

HN−1(Ci(T )) =

∫ T

0

∫
Fi(t)

vi(x, t)dHN−2(x)dt

< e−
T
ε K3. (2.6.48)

Then, by the compactness of the space SBV (Ω′) (Theorems 4.7 and 4.8 of [4]), for each

t ∈ D there is an SBV function ut such that, up to a subsequence that is not relabeled,

ui(·, t)
SBV→ ut.

For t ∈ D , define u(·, t) := ut, and since D is countable, we apply a diagonal argument

to show that up to a subsequence,

ui(·, t)
SBV→ u(·, t) (2.6.49)

for all t ∈ D . Define, for t ∈ D ,

C(t) :=
⋃
τ∈D
τ≤t

S(u(·, τ)).

Then, one would define (u,C) suitably on [0, T ]\D , so that q = (u,C) ∈ T ∗. Depending

on the specific properties of W and ψ, this convergence can often be stronger. The proof

of Theorem 2.6.13 does not depend on the strength of this convergence, thus we will use

a convergence such that (2.6.49) holds on the minimal set necessary to build the limiting
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crack set, giving lower semicontinuity of the energy.

Minimal Crack Trajectories

To define the convergence, we associate to each q = (u,C) ∈ T ∗ the minimal crack

trajectory, C∗, by the following procedure. For each t ∈ [0, T ] set

Ct :=
{
K ⊂ Ω̄ : K is HN−1 measurable, S(u(τ)) ∪ C0

∼
⊂ K for all τ ≤ t

}
, (2.6.50)

and note that

inf
K∈Ct

HN−1(K) ≤ HN−1(C(T )) <∞.

For each t ∈ [0, T ] take a sequence {Ct
n}∞n=1 ⊂ Ct such that

HN−1(Ct
n) → inf

K∈Ct
HN−1(K). (2.6.51)

Define, for t ∈ [0, T ],

C∗(t) :=
⋂
n∈N

Ct
n. (2.6.52)

Since for each t ∈ [0, T ], Ct
n ∈ Ct for every n ∈ N, then

S(u(τ)) ∪ C0

∼
⊂ C∗(t) for all τ ≤ t (2.6.53)

and since C∗(t) is HN−1 measurable then C∗(t) ∈ Ct, which by (2.6.51) and (2.6.52)

gives

HN−1(C∗(t)) = inf
K∈Ct

HN−1(K) (2.6.54)

for all t ∈ [0, T ]. Note C∗(0)
∼
= C0 and that the map

t 7→ HN−1(C∗(t))

is bounded and monotone, and so is in BV ([0, T ]).
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Convergence Definition

Definition 2.6.5. For q = (u,C) ∈ T ∗, with associated C∗, a countable set D generates q

if and only if for every t ∈ [0, T ]

C∗(t)
∼
= C0 ∪

⋃
τ≤t
τ∈D

S(u(τ)).

Lemma 2.6.6. For any q = (u,C) ∈ T ∗ there exists a countable dense set that generates

q.

Proof. Since the map

t 7→ HN−1(C∗(t)) (2.6.55)

is monotone it can only have jump discontinuities, and further these jumps can only occur

on a countable subset of [0, T ]. Choose a countable dense D∗ ⊂ [0, T ] that contains all

of the times where the map in (2.6.55) has a jump discontinuity. Define, for t ∈ [0, T ]

and any countable dense D ⊂ [0, T ],

C(D , t) := C0 ∪
⋃
τ≤t
τ∈D

S(u(τ)).

Then, for each t ∈ D∗ take a sequence of countable dense subsets {D t
n}∞n=1 such that

HN−1
(
C(D t

n, t)
)
→ sup

D ′
HN−1 (C(D ′, t)) <∞.

Now, set

Dt :=
⋃
n∈N

D t
n.

Since Dt is countable and dense then

HN−1 (C(Dt, t)) = sup
D ′
HN−1 (C(D ′, t)) .

Then, set

D :=
⋃

t∈D∗

Dt,
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and so at each t ∈ D∗ we have

HN−1 (C(D , t)) = sup
D ′
HN−1 (C(D ′, t)) . (2.6.56)

D is a countable dense subset of [0, T ], and we will now show that it generates q. First,

let t ∈ D∗. From (2.6.53) we have

C(D , t)
∼
⊂ C∗(t). (2.6.57)

For any t0 ≤ t,

HN−1 (S(u(t0)) \ C(D , t)) = 0,

since otherwise the countable dense subset D ∪ {t0} would contradict (2.6.56). Then

since C(D , t) is HN−1 measurable it is in Ct and by (2.6.54)

HN−1(C∗(t)) ≤ HN−1(C(D , t)).

Combining with (2.6.57) we have for t ∈ D∗

C∗(t)
∼
= C(D , t). (2.6.58)

Now take t ∈ [0, T ] \D∗. Choose an increasing sequence {tk}∞k=1 ⊂ D∗ such that tk → t.

Since ⋃
k∈N

C∗(tk)
∼
=
⋃
k∈N

C(D , tk)

∼
=
⋃
τ<t
τ∈D

S(u(τ)), (2.6.59)

then by (2.6.53) ⋃
k∈N

C∗(tk)
∼
⊂ C(D , t)

∼
⊂ C∗(t). (2.6.60)

Therefore

HN−1

(⋃
k∈N

C∗(tk)

)
≤ HN−1(C(D , t)) ≤ HN−1(C∗(t)). (2.6.61)
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By (2.6.59) the sequence {C∗(tk)}∞k=1 is nondecreasing and so by choice of the set D∗

HN−1

(⋃
k∈N

C∗(tk)

)
= lim

k→∞
HN−1 (C∗(tk))

= HN−1(C∗(t)).

Combining this with (2.6.60) and (2.6.61) gives

C∗(t)
∼
= C(D , t).

Therefore the set D generates q.

Definition 2.6.7. We will say that qi → q (with {qi}∞i=1 ⊂ T ∗, q ∈ T ∗) if and only if

ui(·, t)
SBV→ u(·, t) for all t ∈ D (2.6.62)

for some countable dense subset D that generates q.

Remark 2.6.8. Notice that if a sequence {qi}∞i=1 converges in T ∗ the limit is not unique

since the limiting C is not uniquely specified.

2.6.3 Relaxation Theorem

The goal of this section is to find a representation for I∗ε , the relaxation of

Iε :=

∫ T

0

e−
t
ε

∫
F (t)

ψ(v)dHN−2dt

with the covergence in (2.6.62), i.e., for q ∈ T ∗

I∗ε [q] := inf
qi∈T
qi→q

{
lim inf

i→∞
Iε[qi]

}
. (2.6.63)

Lemma 2.6.9. The map

q 7→
∫ T

0

e−
t
εdµ(t), (2.6.64)

where q = (u,C) ∈ T ∗ with associated C∗ and µ is the weak derivative of t→ HN−1(C∗(t)),

is lower semicontinuous with the convergence (2.6.62) in T ∗, i.e., whenever {qi}∞i=1 ⊂ T ∗
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and qi → q in T ∗, then ∫ T

0

e−
t
εdµ(t) ≤ lim inf

i→∞

∫ T

0

e−
t
εdµi(t).

Proof. Let D generate q and for each t ∈ D

ui(·, t)
SBV→ u(·, t).

This implies, again for each t ∈ D

HN−1(S(u(·, t)) ≤ lim inf
i→∞

HN−1(S(ui(·, t))).

By Lemma 3.1 in [16] we then have for all t ∈ [0, T ]

HN−1(C∗(t)) = HN−1

⋃
τ≤t
τ∈D

S(u(·, t))

 ≤ lim inf
i→∞

HN−1

⋃
τ≤t
τ∈D

S(ui(·, t))

 .

Denoting the minimal crack trajectories associated to qi by C∗
i , we then have

HN−1(C∗(t)) ≤ lim inf
i→∞

HN−1(C∗
i (t)) (2.6.65)

for any t ∈ [0, T ]. Applying an integration by parts to the map in (2.6.64) gives∫ T

0

e−
t
εdµ(t) = ε

∫ T

0

e−
t
εHN−1(C∗(t))dt+ e−

T
εHN−1(C∗(T ))−HN−1(C0). (2.6.66)

Combine (2.6.65) and (2.6.66) with Fatou’s Lemma and the lemma is proved.

We will also make use of the following lemma, which was first proved in [12] (see

Lemma 4.5).

Lemma 2.6.10. Suppose {ui}∞i=1 ⊂ SBVp(Ω), p > 1, such that HN−1

(
∞⋃
i=1

S(ui)

)
< C,

for some constant C. Then, ∃v ∈ SBV (Ω) such that

∞⋃
i=1

S(ui)
∼
= S(v).
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Proof. First, we assume that for each i ∈ N, ui ∈ L∞(Ω), since for any w ∈ SBV (Ω),

arctan(w) ∈ SBV (Ω) ∩ L∞(Ω) and

S(arctan(w)) = S(w).

The plan is to define a sequence {vi}∞i=1 by

vi :=
i∑

j=1

rjuj,

where the constants {rj}∞j=1 will be chosen so that three properties hold. First, {vi}∞i=1

will converge in SBV to some v. Also, we will have that for any i ∈ N,

i⋃
j=1

S(uj)
∼
= S(vi).

Finally, we will have that for every i ∈ N there is a constant ηi > 0 such that, for all

k > i and x ∈ S(vk) (except on a set whose HN−1 measure is less than 1/i),

|[vk](x)| > ηi > 0,

which means that the jump sets of the {vi}∞i=1 do not disappear in the limit. We begin

by setting

r1 :=
1

2 max
{

1, ‖∇u1‖Lp(Ω)

}
max

{
1, ‖u1‖L∞(Ω)

}
and then let v1 := r1u1. As in [16] (see Lemma 3.1), given {vj}i−1

j=1 ⊂ SBV (Ω),

HN−1(S(vj)) < C ∀j ∈ N, set

Ai−1(ξ) := {x ∈ S(vi−1) : [vi−1](x) + ξ[ui](x) = 0},

where, for any z ∈ SBV (Ω) and x ∈ S(z), [z](x) denotes the jump in the trace from

either side of S(z) at x, i.e., [z](x) := z+(x)− z−(x). Note that since the sets Ai−1(ξ),

ξ ∈ R, are disjoint and measurable, HN−1(Ai−1(ξ)) = 0 except possibly for countably
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many values of ξ. Choose δi−1 ∈ (0, δi−2) (taking δ0 := 1) such that

HN−1({x ∈ S(vi−1) : |[vi−1](x)| ≤ δi−1}) <
1

i− 1
.

Choose ri ∈ (0, ri−1), such that

1. ri <
δi−1

2i max
{

1, ‖∇ui‖Lp(Ω)

}
max

{
1, ‖ui‖L∞(Ω)

} and

2. HN−1(Ai−1(ri)) = 0.

Now set

vi := vi−1 + riui =
i∑

j=1

rjuj.

By the choice of {ri}∞i=1, specifically property 2, we have that

S(uj)
∼
⊂ S(vk), ∀k ≥ j. (2.6.67)

Also by the choice of the {ri}∞i=1 (property 1), we have that

‖∇vi‖Lp(Ω) ≤
i∑

j=1

1

2j max
{

1, ‖∇uj‖Lp(Ω)

} ‖∇uj‖Lp(Ω)

≤ 1, (2.6.68)

and

‖vi‖L∞(Ω) ≤
i∑

j=1

1

2j max
{

1, ‖uj‖L∞(Ω)

} ‖uj‖L∞(Ω)

≤ 1. (2.6.69)

These two estimates, the uniform bound on HN−1(S(vi)), and the compactness of the

space SBV (Ω) (Theorems 4.7 and 4.8 of [4]) imply that there exists v ∈ SBV (Ω) such

that, up to a subsequence,

[vi]HN−1bS(vi)
∗
⇀ [v]HN−1bS(v). (2.6.70)
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Further, by the calculation in (2.6.69), the sequence {vi}∞i=1 is a Cauchy sequence in

L∞, and so converges to some v ∈ L∞. The uniqueness of that limit implies that the

convergence in (2.6.70) holds without dropping to a subsequence. Now, by (2.6.67) we

can show that
∞⋃
i=1

S(ui)
∼
⊂ S(v), (2.6.71)

by proving that
∞⋃
i=1

S(vi)
∼
⊂ S(v). (2.6.72)

So, fix i ∈ N, and let γ > 0. Choose M ∈ N large enough so that M > i and 1/M < γ.

For k > M ,

S(vi)
∼
⊂ S(vk), (2.6.73)

and setting

Bk := {x ∈ S(vk) : |[vk](x)| ≤ δk}

we have, by the choice of the sequence {δk}∞k=1,

HN−1 (Bk) < γ. (2.6.74)

This implies that, for x ∈ S(vk) \Bk,∣∣∣∣∣
∞∑

i=k+1

ri[ui](x)

∣∣∣∣∣ ≤
∣∣∣∣∣∣

∞∑
i=k+1

δi−1

2i max
{

1, ‖ui‖L∞(Ω)

}2 ‖ui‖L∞(Ω)

∣∣∣∣∣∣
≤

∣∣∣∣∣
∞∑

i=k+1

δi−1

2i−1

∣∣∣∣∣
≤

∣∣∣∣∣δk
∞∑

i=k

1

2i

∣∣∣∣∣
< |[vk](x)| .

Therefore

S(vk)
∼
⊂ (Bk ∪ S(v)),

by (2.6.74) we have

HN−1(S(vk) \ S(v)) < γ,
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and so (2.6.73) implies

HN−1(S(vi) \ S(v)) < γ.

Since γ was arbitrary we have

S(vi)
∼
⊂ S(v),

and since i was arbitrary we have (2.6.72) and we have proved (2.6.71). The inclusion

S(v)
∼
⊂

∞⋃
i=1

S(ui)

follows from (2.6.70).

Remark 2.6.11. Note that the rate independent envelope gives the optimal dissipation

and front speed. For any q = (u,C) ∈ T and any t1 < t2, we have∫ t2

t1

∫
F (t)

ψ(v(x, t))dHN−2(x)dt ≥
∫ t2

t1

∫
F (t)

ψ̄(v(x, t))dHN−2(x)dt

= C

∫ t2

t1

∫
F (t)

v(x, t)dHN−2(x)dt

= C

∫ t2

t1

d

dt
HN−1(C(t))dt

= CHN−1(C(t2) \ C(t1)).

Also, by the continuity of ψ, there is a sequence of front speeds {vi}∞i=1 such that

ψ(vi)

vi

→ C .

We now show that this optimal front speed, and with it the optimal dissipation, can

be achieved by using the right front geometry.

Theorem 2.6.12. Let [a, b] ⊂ [0, T ] and Γ ⊂ Ω̄, HN−1(Γ) <∞, such that Γ
∼
= S(w) for

some w ∈ SBV (Ω). Then, for any δ > 0, there is pair (Cδ, Fδ), defined for t ∈ [a, b],

Cδ(b) \ Cδ(a)
∼
= Γ, the pair satisfies the properties of part 2 of Definition 2.6.1 (in

particular the front representation formula with front speed that we denote vδ), and∫ b

a

∫
Fδ(t)

ψ (vδ(x, t)) dHN−2(x)dt < (1 + δ)CHN−1 (Γ) . (2.6.75)
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Proof. The plan is to cover Γ with a countable collection of cubes so that in each cube

Γ is close to a hyperplane through the center of the cube. We partition [a, b] into a

countable family of subintervals. In each cube we will construct (Cδ, Fδ) during one of

the time subintervals by taking N−1 dimensional slices of Γ that move at a speed which

gives the optimal front speed, according to Remark 2.6.11 (see Figure 2.7). In each cube

we will miss subsets of Γ of small HN−1 measure, for which we later repeat the above

process, and in the end we will miss only a set of HN−1 measure zero (see Figure 2.8).

Let A1 = Γ; in what follows we will inductively define {Ak}∞k=2, Ak ⊂ Ak−1 for all k ∈ N.

Part I:

First we divide [a, b]. Let {Ik}∞k=1, Ik ⊂ [a, b] ∀k ∈ N, be a countable, disjoint collection

of intervals such that each Ik is nonempty and so that

L1

(
[a, b]4

∞⋃
k=1

Ik

)
= 0.

Then, for each Ik, let {Y k
` }∞`=1, Y

k
` ⊂ Ik ∀` ∈ N, be a countable disjoint collection of

intervals, each nonempty, such that

L1

(
Ik4

∞⋃
`=1

Y k
`

)
= 0.

So, we have that:

L1

(
[a, b]4

∞⋃
k=1

∞⋃
`=1

Y k
`

)
= 0.

Part II :

Suppose we have defined {Aj}k
j=1, with Aj ⊂ Aj−1 ⊂ Γ for j = 1, ..., k. As outlined

above, we will now cover Ak with a suitable family of cubes in order to define the crack

trajectory and crack front. As in the proof of Theorem 2.1 in [16], let D be a countable

dense subset of R such that for each ξ ∈ D, Ew
ξ is a set of finite perimeter. Then

S(w)
∼
⊂
⋃
ξ∈D

∂∗Ew
ξ .
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Let η > 0. From now on, if x0 ∈ ∂∗E for some specified set of finite perimeter E,

assume that any cube Q(x0, r) is oriented so that νE(x0) is normal to one of the faces of

the cube. From [16] (see the derivation of equation (2.1) in the proof of Theorem 2.1),

we know that for all ξ ∈ D, and HN−1-a.e. x ∈ Ak ∩ ∂∗Ew
ξ ,

lim
r↓0

HN−1(Q(x, r) ∩ Ak ∩ ∂∗Ew
ξ )

(2r)N−1
= 1. (2.6.76)

We have for x ∈ ∂∗Ew
ξ (see Remark 3.55 in [4])

lim
r↓0

−
∫

Q(x,r)

|νEwξ
(y)− νEwξ

(x)|d|DχEwξ
|(y) = 0.

This implies that

lim
r↓0

|DχEwξ
|
(
{y ∈ Q(x, r) : |νEwξ

(y)− νEwξ
(x)| ≥ η}

)
|DχEwξ

|(Q(x, r))
= 0

and so

lim
r↓0

|DχEwξ
|
(
{y ∈ Q(x, r) : |νEwξ

(y)− νEwξ
(x)| < η}

)
|DχEwξ

|(Q(x, r))
= 1

for x ∈ ∂∗Ew
ξ . Combining this with Corollary 1 of Section 5.7 in [15] we then have that,

again for x ∈ ∂∗Ew
ξ ,

lim
r↓0

|DχEwξ
|
(
{y ∈ Q(x, r) : |νEwξ

(y)− νEwξ
(x)| < η}

)
(2r)N−1

= 1.

And, since by Theorem 2 in Section 5.7 of [15] we have |DχEwξ
| = HN−1b∂∗Ew

ξ , we have

that for x ∈ ∂∗Ew
ξ

lim
r↓0

HN−1(Q(x, r) ∩ {y ∈ ∂∗Ew
ξ : |νEwξ

(y)− νEwξ
(x)| < η})

(2r)N−1
= 1. (2.6.77)

Combining (2.6.76) and (2.6.77), we know that for all ξ ∈ D and HN−1-a.e. x ∈ Ak ∩
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∂∗Ew
ξ ,

lim
r↓0

HN−1(Q(x, r) ∩ Ak ∩ {y ∈ ∂∗Ew
ξ : |νEwξ

(y)− νEwξ
(x)| < η})

(2r)N−1
= 1. (2.6.78)

Now, since D is countable, we also have that (2.6.78) holds for HN−1-a.e. x ∈ Ak and

all ξ ∈ D such that x ∈ ∂∗Ew
ξ .

For HN−1-a.e. x ∈ Ak, we choose ξ(x) such that for the set Ex := Ew
ξ(x) we have

x ∈ ∂∗Ex. We use (2.6.78) to finely cover (up to a set of HN−1 measure zero) the set Ak

with the family G of all cubes Q(x, r), x ∈ Ak, and r small enough so that Q(x, r) ⊂ Ω′

and the following properties hold:

1.
(
1− η

k

)
(2r)N−1 < HN−1(Q(x, r) ∩ Ak ∩ {y ∈ ∂∗Ex : |νEx(y) − νEx(x)| < η}) <(

1 + η
k

)
(2r)N−1

2.
(
1− η

k

)
(2r)N−1 < HN−1(Q(x, r) ∩ Ak) <

(
1 + η

k

)
(2r)N−1.

Now, applying Besicovitch’s Covering Theorem (specifically Corollary 1 of Section 1.5 in

[15]) using the Radon measure HN−1bAk, we get a countable disjoint collection of cubes

{Qk
`}∞`=1 ⊂ G, such that

HN−1

(
Ak \

∞⋃
`=1

Qk
`

)
= 0.

In each cube Qk
` , we will build up the set Ak ∩Qk

` in the time interval Y k
` , in a way that

has a front representation, and uses the optimal front speed as calculated in Part I.

Part III :

Fix such a pair (Qk
` , Y

k
` ), and we will employ the simpler notation Y k

` = [t1, t2], ∆t :=

t2 − t1 and Qk
` = Q(x, r). Also, we assume a coordinate system so that

Qk
` =

N∏
i=1

[0, 2r]

and νEx(x) = e1. Define

Gk
` := Qk

` ∩ Ak ∩ {y ∈ ∂∗Ex : ν1
Ex(y) > 1− η}.
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Note that by properties 1 and 2 of the choice of cubes we have

HN−1
(
Qk

` ∩
(
Ak \Gk

`

))
<

2

k
η(2r)N−1.

The plan is to define a front by taking N − 1 dimensional slices of the set Gk
` . With this

in mind, define the “slicing function” σ, which maps pairs (t, A) ∈ R × RN to subsets

of RN−1 by

σ(t, A) :=
{
z ∈ RN−1 : (z1, ..., zN−1, t) ∈ A

}
.

Also, define the family of imbeddings of RN−1 into RN by setting for t ∈ R and Ã ⊂
RN−1:

φt(Ã) :=
{
y ∈ RN : y = (z1, ..., zN−1, t) for some z ∈ Ã

}
.

Set

St := σ(t, Qk
` ∩ Ex).

Claim:

For L1-a.e. t ∈ [0, 2r], St is a set of finite perimeter in RN−1. (2.6.79)

Proof of Claim: By Theorem 2 in Section 5.10 of [15], we know that f ∈ BVloc(R
N) if

and only if ∫
K

(ess V b
a fk)(x

′)dLN−1(x′) <∞, (2.6.80)

for each k = 1, ..., N , a < b, and compact setK ⊂ RN−1, with x′ = (x1, ..., xk−1, xk+1, ..., xN) ∈
RN−1 and

fk(x
′, t) := f(..., xk−1, t, xk+1, ...).

Let

K∗ :=

(
N−1∏
i=1

[0, 2r]

)
⊂ RN−1.

For any y ∈ K∗, define the function (χEx)y : (0, 2r) → {0, 1} by

s 7→ (χEx)y(s) := χEx∩Qk`
(s, y).
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Also, define the function SV : K∗ → R by

y 7→ SV (y) := ess V 2r
0 (χEx)y.

Since χEx ∈ BV (Ω), then applying (2.6.80), using K∗ as our compact set, gives∫
K∗
SV (y)dLN−1(y) <∞. (2.6.81)

Then, if N = 2, we have proven (2.6.79), since for any s, t ∈ (0, 2r), (χEx)t(s) = χSt(s)

and so by (2.6.81), for L1-a.e. t, χSt has finite essential variation. For N > 2, let

K∗∗ :=

(
N−2∏
i=1

[0, 2r]

)
⊂ RN−2.

Then applying Fubini’s Theorem to (2.6.81) we have∫ 2r

0

∫
K∗∗

SV (y′, ξ)dLN−2(y′)dξ <∞.

So, there exists a set N ⊂ [0, 2r] such that for ξ ∈ [0, 2r] \ N ,∫
K∗∗

SV (y′, ξ)dLN−2(y′) <∞.

and

L1([0, 2r] \ N ) = 0.

For any t ∈ [0, 2r] \ N , and y′ ∈ K∗∗, define the function (χσt)y′ : (0, 2r) → {0, 1} by

z 7→ (χσt)y′(z) := χσ(t,Ex∩Qk` )
(z, y′),

and then define the function SVt : K∗∗ → R

y′ 7→ SVt(y
′) := ess V 2r

0 (χσt)y′ .

By definition of σ, we have that for any t ∈ [0, 2r], y′ ∈ K∗∗, and z ∈ (0, 2r):

(χσt)y′(z) = (χEx)(y′,t)(z),
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and so

SVt(y
′) = SV (y′, t)

for all y′ ∈ K∗∗, t ∈ [0, 2r]. Therefore, for t ∈ [0, 2r] \ N ,∫
K∗∗

SVt(y
′)dLN−1(y′) <∞. (2.6.82)

Appling (2.6.82) and the other implication of Theorem 2 in Section 5.10 of [15] to the

function χσ(t,Qk`∩Ex) defined on RN−1, gives us that for L1-a.e. t ∈ [0, 2r], χσ(t,Qk`∩Ex) ∈
BV (RN−1), which means that the set St is a set of finite perimeter in RN−1, which

concludes the proof of (2.6.79).

The above claim implies that there exists a set N ⊂ [0, 2r] with measure zero such that,

for t ∈ [0, 2r] \ N , there exists a vector valued Radon measure on RN−1, denoted

[∂St] =
(
|∂e1St|, ..., |∂eN−1

St|
)
,

such that ∫
σ(t,Qk` )

χSt(y) divϕ(y)dLN−1(y) = −
∫

σ(t,Qk` )

ϕ(y) · d[∂St](y)

for all ϕ ∈ C1
0(σ(t, Qk

` ); RN−1). And, according to Theorem 2 in Section 5.7 of [15], we

have that

|∂St| = HN−2b∂∗St

for t /∈ N .

Part IV :

The goal of this part of the proof is to show how Ak ∩Qk
l can be built up in a way that

satisfies the front representation formula by taking a moving slice of the cube with speed

1 . Define, for t ∈ [0, 2r],

F̃ (t) :=

{
φt(σ(t, Gk

` ) ∩ ∂∗St) if t /∈ N
∅ if t ∈ N

and

C̃(t) :=
{
y ∈ Gk

` : yN ≤ t
}
.
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For every t ∈ [0, 2r], C̃(t) is the intersection of a |DχEx| measurable set and a Borel

set and therefore is |DχEx| measurable. Also, C̃(2r) = Gk
` . To show that the pair

(C̃, F̃ ) satisfies the front representation formula, we will define a family of measures ρt,

t ∈ [0, 2r], such that

ρt(A) =

∫ t

0

HN−2(F̃ (ξ) ∩ A)dξ, (2.6.83)

for any Borel set A ⊂ RN . First, we must ensure that a family of Radon measures can

be defined in this manner.

For j < N , the measure valued map

t 7→

{
|∂ejSt| if t ∈ [0, 2r] \ N

0 if t ∈ N
(2.6.84)

is L1-measurable in the sense of Definition 2.25 of [4] by the following adaptation of

Lemma 3.106 in [4]. By Proposition 2.6 of [4] we need to verify that for any open set

A ⊂ Qk
` , the map t 7→ |∂ejSt|(A) is L1-measurable. Taking A to be such a set, choose a

sequence fn → ejχA, fn ∈ C1
0(A; RN−1). Then, the functions

t 7→ Ψn(t) :=

∫
σ(t,Qk` )

χSt(ξ) div fn(ξ)dLN−1(ξ)

are L1-measurable for all n by Fubini’s Theorem. Since for all n ∈ N∫
σ(t,Qk` )

χSt(ξ) div fn(ξ)dLN−1(ξ) = −
∫

σ(t,Qk` )

fn(ξ) · d[∂St](ξ),

then for L1-a.e. t,

−Ψn(t) → |∂ejSt|(A),

as n → ∞, and so we satisfy the requirement of Proposition 2.6 of [4], which implies

that the map in (2.6.84) is L1-measurable. Further, by Theorem 3.107 in [4] we have for

any j < N ,

|DejχEx| = L1b[0, 2r]⊗ |∂ejSt|, (2.6.85)
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where the measure product on the right hand side is given by Definition 2.27 of [4]:

(L1b[0, 2r]⊗ |∂ejSt|)(A) :=

∫ 2r

0

∫
σ(t,Qk` )

χσ(t,A)(ξ)d|∂ejSt|(ξ)dt,

for any A ⊂ Qk
` , A Borel. Since

|DejχEx|(Qk
` ) ≤ |DχEx|(Qk

` )

<∞,

the measure L1b[0, 2r]⊗ |∂ejSt| is Radon, again for j < N . Next, we turn our attention

to the measure-valued map

t 7→

{
|∂St| if t ∈ [0, 2r] \ N

0 if t ∈ N .
(2.6.86)

For any j < N , the function ζj, defined for t ∈ [0, 2r] and x ∈
N−1∏
i=1

[0, 2r] (up to a set of

L1b[0, 2r]⊗ |∂ejSt| measure zero)

ζj(t, x) := νj
St

(x),

is L1b[0, 2r] ⊗ |∂ejSt|-measurable, and so it follows that (ζj)
2 is L1b[0, 2r] ⊗ |∂ejSt|-

measurable. Proposition 2.26 of [4] implies that for all j < N , the map

t 7→
∫

σ(t,Qk` )

(
νj

St

)2
(x)d|∂St|(x)

is L1b[0, 2r] measurable, which implies that the map in (2.6.86) is L1b[0, 2r] measurable.

Also, for any j < N ,∫ 2r

0

νj
St

(ξ)d|∂St|(ξ)dt =

∫ 2r

0

|∂ejSt|(σ(t, Qk
` ))dt

<∞,
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and so, since for any t ∈ [0, 2r] \ N and ξ ∈ RN−1,
N−1∑
j=1

(νj
St

)2(ξ) = 1, we have

∫ 2r

0

|∂St|(σ(t, Qk
` ))dt =

∫ 2r

0

∫
σ(t,Qk` )

N−1∑
j=1

{
(νj

St
)2(ξ)

}
d|∂St|(ξ)dt

=
N−1∑
j=1

∫ 2r

0

∫
σ(t,Qk` )

(νj
St

)2(ξ)d|∂St|(ξ)dt

≤
N−1∑
j=1

∫ 2r

0

∫
σ(t,Qk` )

νj
St

(ξ)d|∂St|(ξ)dt

<∞.

Therefore, we define the Radon measure by the measure product

(L1b[0, 2r]⊗ |∂St|)(A) :=

∫ 2r

0

∫
σ(t,Qk` )

χσ(t,A)d|∂St|(ξ)dt,

for all A ⊂ Qk
` , A Borel. Since the set Gk

` is |DχEx| measurable, there exists a Borel set

that agrees |DχEx|-a.e. with Gk
` , and so we assume that Gk

` is Borel. Therefore, we can

define the family of Radon measures, t ∈ [0, 2r], by setting for each Borel set A ⊂ Qk
`

ρt(A) :=

∫
A

χGk`
(y)d(L1b[0, t]⊗ |∂Sξ|)(y)

=

∫ t

0

∫
σ(ξ,Gk`∩A)

d|∂Sξ|dξ.

Since |∂St| = HN−2b∂∗St, and by definition of F̃ , we can write these measures as

ρt(A) =

∫ t

0

HN−2(σ(ξ,Gk
` ∩ A) ∩ ∂∗Sξ)dξ

=

∫ t

0

HN−2(φt(σ(ξ,Gk
` ∩ A) ∩ ∂∗Sξ))dξ

=

∫ t

0

HN−2(F̃ (ξ) ∩ A)dξ (2.6.87)

giving (2.6.83).
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Next, we show that ∀t ∈ [0, 2r], we have that for any ball B ⊂ Qk
`

(1− η)|DχEx|(C̃(t) ∩B) ≤ ρt(B) ≤ |DχEx|(C̃(t) ∩B). (2.6.88)

We have by choice of the set Gk
` ,

(1− η)|DχEx|(C̃(t) ∩B) ≤ |De1χEx|(C̃(t) ∩B).

Using (2.6.85) we have

|De1χEx|(C̃(t) ∩B)) =

∫ t

0

|∂e1Sξ|(σ(ξ, C̃(t)) ∩ σ(ξ, B))dξ

=

∫ t

0

|∂e1Sξ|(σ(ξ,Gk
` ) ∩ σ(ξ, B))dξ

≤
∫ t

0

|∂Sξ|(σ(ξ,Gk
` ) ∩ σ(ξ, B))dξ

=

∫ t

0

HN−2(φξ(σ(ξ,Gk
` ) ∩ ∂∗Sξ ∩B)dξ

= ρt(B),

and so (2.6.88) is proved. This estimate implies that, ∀t ∈ [0, 2r],

|DχEx|bC̃(t) << ρt,

and that the densities

γt(ξ) :=
d(|DχEx|bC̃(t))

dρt

(ξ)

exist ∀t ∈ [0, 2r], ρt-a.e. and satisify the uniform bounds

1 ≤ γt ≤
1

1− η
.

Therefore, by the generalized Fubini theorem of Definition 2.27 in [4], we have for all
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ϕ ∈ C1
0([0, 2r]) and f ∈ C0(Q(x, r)),∫ 2r

0

ϕ̇(t)

∫
C̃(t)

f(x)dHN−1(x)dt =

∫ 2r

0

ϕ̇(t)

∫
Qk`

f(x)γt(x)dρt(x)dt

=

∫ 2r

0

ϕ̇(t)

∫ t

0

∫
F̃ (ξ)

f(x)γξ(x)dHN−2(x)dξdt by (2.6.87)

= −
∫ 2r

0

ϕ(t)

∫
F̃ (t)

f(x)γt(x)dHN−2(x)dt.

So we see that in the cube Qk
` the pair (C̃, F̃ ) satisfies the front representation with front

speed v(x, t) = γt(x).

Part V :

Now, instead of taking single slices of the cube moving at speed of 1, we will take slices

in a way that allows us to approximate the optimal front speed (this optimal slicing is

illustrated in Figure 2.6 for the case where the crack increment is a square in rn3). By

definition of C , for any δ > 0 we can choose v∗ ∈ (0,∞) such that

ψ(v∗)

v∗
≤ C (1 + δ).

Also, by the continuity of ψ, we can further take η small enough so that if v∗ < v0 <

v∗
1

1− η
we have

ψ(v0)

v0

≤ C (1 + δ),

and hence

ψ(v0) ≤ (1 + δ)C v0 when v∗ < v0 < v∗
1

1− η
. (2.6.89)

Set

lmin :=
(2r)N−1

v∗∆t

and

l̃ :=
lmin

(2r)N−2
=

(2r)

v∗∆t
.

We will employ the following notation:

• bl̃c - the greatest integer less than or equal to l̃
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• dl̃e - the least integer that is greater than or equal to l̃

• {l̃} - the fractional part of l̃

• t∗ := (1− {l̃})∆t+ t1.

First, in the interval [t1, t
∗], set

λ∗ := v∗bl̃c(t∗ − t1).

Then, for m ∈ N, m ≤ bl̃c, define

Sm(t) :=
λ∗(m− 1)

bl̃c
+ v∗(t− t1).

We perfom a similar construction in (t∗, t2], namely set

λ∗ := v∗dl̃e(t2 − t∗),

and for m ∈ N, m ≤ dl̃e, define

Sm(t) :=
λ∗(m− 1)

dl̃e
+ v∗(t− t1).

Then, define

S(t) :=



⋃
m∈N

m≤bl̃c

{Sm(t)} if t ∈ [t1, t
∗]

⋃
m∈N

m≤dl̃e

{Sm(t)} if t ∈ (t∗, t2]

The function S then maps t to the set of points in R where we want to take slices of the

cube at time t. Note that ⋃
t∈[t1,t2]

S(t) = [0, 2r],

and further that every ξ ∈ [0, 2r] belongs to S(t) for only one t (See Figure 2.6).

Now define, for t ∈ [t1, t2],

F k,`
η (t) := F̃ (S (t))
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Figure 2.6: Slicing of a square with optimal front speed.

Ck,`
η (t) :=



⋃
m∈N

m≤bl̃c

{y ∈ Gk
` : Sm(t1) ≤ yN ≤ Sm(t)} if t ∈ [t1, t

∗]

{y ∈ Gk
` : yN ≤ λ∗} ∪

⋃
m∈N

m≤dl̃e

{y ∈ Gk
` : Sm(t∗) ≤ yN ≤ Sm(t)} if t ∈ (t∗, t2]

(see Figure 2.7). Note that by construction of the slices, Ck,`
η (t) = Gk

` . Then, in a

manner similar to above, define the family of measures ρv
t , t ∈ [t1, t2], by setting, for any

Borel A ⊂ Qk
`

ρv
t (A) :=

∫ t2

t1

v∗HN−2
(
F k,`

η (t) ∩ A
)
dt.

For reasons similar to those used for the measures ρt, these measures are all well defined
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Radon measures. Now, by applying the change of variables

∫ (2r)
λ

0

HN−2(F̃ (λt))dt = λ

∫ 2r

0

HN−2(F̃ (t))dt,

to each of the slices individually, we find that

ρv
t2
(Qk

` ) = ρ2r(Q
k
` ), (2.6.90)

however note that such an equality does not necessarily hold at any other time in t ∈
[t1, t2]. Also, with a similar restriction to one slice regions, the previous argument for

the measures ρt can be modified to prove that ∀t ∈ [t1, t2], we have that for any ball

B ⊂ Qk
`

(1− η)|DχEx|
(
Ck,`

η (t) ∩B
)
≤ ρv

t (B) ≤ |DχEx|
(
Ck,`

η (t) ∩B
)
. (2.6.91)

This means that ∀t ∈ [t1, t2],

|DχEx|bCk,`
η (t) << ρv

t ,

and that the densities

γv
t (x) :=

d(|DχEx|bCk,`
η (t))

dρv
t

(x)

exist ∀t ∈ [t1, t2], ρ
v
t -a.e. x ∈ Qk

` , and satisify the uniform bounds

1 ≤ γv
t ≤

1

1− η
.

Therefore, for ϕ ∈ C1
0([t1, t2]) and f ∈ C0(Ω

′),∫ t2

t1

ϕ̇(t)

∫
Ck,`η (t)∩Q(x,r)

f(x)dHN−1(x)dt = −
∫ t2

t1

ϕ(t)

∫
Fk,`η (t)

f(x)v∗γv
t (x)dHN−2(x)dt.

Since for any f ∈ C0(Ω
′), the map

t 7→
∫

Ck,`η (t)\Qk`

f(x)dHN−1(x)
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is constant in [t1, t2], we have∫ t2

t1

ϕ̇(t)

∫
Ck,`η (t)\Qk`

f(x)dHN−1(x)dt = 0,

for any ϕ ∈ C1
0([t1, t2]). Therefore we have that for ϕ ∈ C1

0([t1, t2]) and f ∈ C0(Ω
′)∫ t2

t1

ϕ̇(t)

∫
Ck,`η (t)

f(x)dHN−1(x)dt = −
∫ t2

t1

ϕ(t)

∫
Fk,`η (t)

f(x)v∗γv
t (x)dHN−2(x)dt.

Thus, in each time interval Y k
` the pair (Ck,`

η , F k,`
η ) satisfies the front representation, with

front velocity vk,`
η (x, t) = γv

t (x)v∗. Employing the uniform bounds on γv
t and (2.6.89) we

have the following upper bound on the dissipation for the trajectory in the cube for η

small enough:∫ t2

t1

∫
Fk,`η (t)

ψ(vk,`
η (x, t))dHN−2(x)dt =

∫ t2

t1

∫
Fk,`η (t)

ψ(v∗γt(x))dHN−2(x)dt

≤ (1 + δ)C

∫ t2

t1

∫
Fk,`η (t)

v∗γt(x)dHN−2(x)dt

= (1 + δ)C

∫ t2

t1

∫
Fk,`η (t)

vk,`
η (x, t)dHN−2(x)dt.

Part VI :

Repeat this construction in each cube Qk
l during the time interval Y k

l , and in this way

define the functions Ck
η and F k

η for L1 almost every t ∈ Ik. From Part V we have

that the front representation formula holds in each time interval, which means that for

ϕ ∈ C1
0(Ik) and f ∈ C0(Ω

′)∫ t2

t1

ϕ̇(t)

∫
Ck,`η (t)

f(x)dHN−1(x)dt =−
∫ t2

t1

ϕ(t)

∫
Fk,`η (t)

f(x)v∗γv
t (x)dHN−2(x)dt

+

∫
Fk,`η (t2)

fdHN−2(x)−
∫

Fk,`η (t1)

fdHN−2(x)

where the boundary terms are the traces of the L1(Ik) function

t 7→
∫

Fk,`η (t)

fdHN−2(x). (2.6.92)
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Figure 2.7: Defining the front in each cube through slicing.

Thus, by linearity of the integral we sum over all of the intervals Y k
l , and use the fact

that there are no jumps in the traces of the function (2.6.92) at the endpoints of each

interval Y k
l , to see that the front representation holds for Ck

η and F k
η in Ik, i.e., for

ϕ ∈ C1
0(Ik) and f ∈ C0(Ω

′)∫ t2

t1

ϕ̇(t)

∫
Ckη (t)

f(x)dHN−1(x)dt = −
∫ t2

t1

ϕ(t)

∫
Fkη (t)

f(x)vk
ηdHN−2(x)dt.

Now, define Ak+1 by setting

Ak+1 := Ak \ Ck
η (Ik),

where by C(Ik) we mean the Ck
η image of the set Ik. By the above we have

HN−1(Ak+1) ≤
∞∑
l=1

2

k
η(2rk

l )
N−1

≤ 2

k

1

1− η
k

HN−1(Ak). (2.6.93)

Then, repeat the above construction for each Ak on the time interval Ik, k > 1, to define

the functions Cη and Fη on all of [a, b] (see Figure 2.8. We apply a similar argument

to the above to show that the pair (Cη, Fη) satisfies the front representation formula
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in [0, T ]. Now, since {Ak}∞k=1 is a decreasing sequence of HN−1 measurable sets and

HN−1(Ak) <∞, by (2.6.93)

HN−1 (Cη(b) \ Γ) = 0.

Since all of the time intervals are disjoint and cover almost all of [a, b], we have that∫ b

a

∫
Fη(t)

ψ(v(x, t))dHN−2(x)dt ≤ (1 + δ)C

∫ b

a

∫
Fη(t)

vη(x, t)dHN−2(x)dt

= (1 + δ)CHN−1(Γ).

Figure 2.8: Inductive covering of the remaining pieces of Γ.

Now we prove the relaxation theorem.

Theorem 2.6.13. Let ψ : [0,∞) → [0,∞) be continuous and

Iε[q] :=

∫ T

0

e−
t
ε

∫
F (t)

ψ(v(x, t))dHN−2(x)dt (2.6.94)

for q = (u,C) ∈ T . Then I∗ε , the lower semicontinous envelope in T ∗ of the functional
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Iε, with respect to the convergence defined by (2.6.62), is given by

I∗ε [q] = C

∫ T

0

e−
t
εdµ(t), (2.6.95)

where q = (u,C) ∈ T ∗, C∗ is the minimal crack set trajectory associated to q, µ is the

weak derivative of t 7→ HN−1(C∗(t)), and

C := inf
s∈(0,∞)

ψ(s)

s
,

Proof. The proof proceeds as follows. First, we use the results of Theorem 2.6.12 to

construct a sequence {qi}∞i=1 ⊂ T such that qi → q and whose energies converge to

the right hand side of (2.6.95). Then we will combine this construction and the lower

semicontinuity of the right hand side of (2.6.95) to complete the proof.

Let q = (u,C) ∈ T ∗ with associated C∗. We construct a sequence {qj}∞j=1 ⊂ T that

converges to q and achieves the lower bound in the limit through the following. Let D

be a countable dense subset of [0, T ] that generates q and contains the times 0 and T .

For each j ∈ N, choose

Dj := {0 = tj0 < tj1 < ... < tjj = T} ⊂ D

such that {Dj} is an increasing sequence of nested sets and

D =
∞⋃

j=1

Dj.

Now, fix j ∈ N. By definition of T ∗, for each t ∈ [0, T ] u(·, t) ∈ SBVp(Ω
′) where p > 1.

Also, since D generates q then for every t ∈ [0, T ]

C∗(t)
∼
= C0 ∪

⋃
τ≤t
τ∈D

S(u(τ)).

Since HN−1(C∗(t)) ≤ HN−1(C∗(T )) < ∞ for all t ∈ [0, T ], we can apply Lemma 2.6.10

and Theorem 2.6.12, so that for each interval [tjk, t
j
k+1], k = 0, ..., j − 1, we can choose a
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pair (Cj
k, F

j
k ) satisfying the front representation and so that

Cj
k(t

j
k+1) \ C

j
k(t

j
k)

∼
= C∗(tjk+1) \ C

∗(tjk) (2.6.96)

and ∫ tjk+1

tjk

∫
F jk (t)

ψ (vj(x, t)) dHN−2(x)dt ≤
(

1 +
1

j

)
HN−1

(
C∗(tjk+1) \ C

∗(tjk)
)

=

(
1 +

1

j

)∫ tjk+1

tjk

d|DHN−1(C∗(t))|. (2.6.97)

Repeat this process for each k = 0, ..., j−1, and then define {qj = (uj, Cj)}∞j=1 by setting

uj(t) :=

{
u(tjk) for t ∈ [tjk, t

j
k+1)

u(T ) for t = T

and

Cj(t) :=

{
Cj

k(t
j
k) for t ∈ [tjk, t

j
k+1)

C∗(T ) for t = T.

Clearly we have for each t ∈ D

uj(·, t) → u(·, t),

in fact for any such t there is an M ∈ N such that for all j > M , uj(·, t) ≡ u(·, t). Then,

we have the upper bound

Iε[qj] =

j−1∑
k=0

∫ tjk+1

tjk

e−
t
ε

∫
Fj(t)

ψ (vj(x, t)) dHN−2(x)dt

≤
(

1 +
1

j

)
C

j−1∑
k=0

∫ tjk+1

tjk

e−
t
j
k
ε d|DHN−1(C∗(t))|,

and the lower bound

Iε[qj] =

j−1∑
k=0

∫ tjk+1

tjk

e−
t
ε

∫
Fj(t)

ψ (vj(x, t)) dHN−2(x)dt

≥ C

j−1∑
k=0

∫ tjk+1

tjk

e−
t
j+1
k
ε d|DHN−1(C∗(t))|.
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Thus, we have

Iε[qj] → C

∫ T

0

e−
t
εd|DHN−1(C∗(t))| as j →∞. (2.6.98)

We now combine the results above to complete the proof. For any q = (u,C) ∈ T ∗

with associated C∗, from Remark 2.6.11 and the sequence constructed in Part I, we have

that

C

∫ T

0

e−
t
εdµ ≥ I∗ε [q]. (2.6.99)

The other inequality

I∗ε [q] ≤ C

∫ T

0

e−
t
εdµ ≤ I∗ε [q] (2.6.100)

follows from the following. For any {qi}∞i=1 ⊂ T such that qi → q. we again combine

Remark 2.6.11 and Part I to construct a sequence q̃i so that q̃i → q with

lim inf
i→∞

C

∫ T

0

e−
t
εdµi = lim

j→∞
Iε[q̃j],

which combined with Lemma 2.6.9 gives (2.6.100).
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Chapter 3

A Level Set Method for

Mumford-Shah and Fracture

3.1 Introduction

The Mumford-Shah model for image segmentation ([23]) and variational models for

fracture ([17]) are surprisingly similar: they both involve minimizing energies of the

basic form

(u,Γ) 7→
∫

Ω\Γ
|∇u|2dx+H1(Γ),

where H1(Γ) is the one-dimensional Hausdorff measure (i.e., length) of the set Γ, rep-

resenting either the boundary of images (in the case of Mumford-Shah) or the fracture

set. The domain Ω ⊂ R2 represents either the image film or the reference configuration

for the deformation u. Actually, the model for quasistatic fracture in [17] is the limit

of a sequence of minimization problems of this form ([16]). For Mumford-Shah, there is

the additional term ∫
Ω

|u− g|2dx,

where g is the initial image.

There has been much analysis of the properties of minimizers, mostly in the context

of Mumford-Shah, and while the original Mumford-Shah conjecture – that there exists

a minimizing pair in the class u ∈ H1(Ω\Γ), Γ = ∪Γi where the union is finite and each

Γi is a C1 arc – remains open (since it is still unknown whether minimizers have Γ’s

with only a finite number of connected components), the behavior of solutions is largely
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understood (see [13] for a compilation of results). In particular, there is a characteriza-

tion of all possible blow-up limits Γ of minimizing sets ([6]). The three possibilities are:

i) Γ is a straight line (this corresponds to blowing up at a regular point of Γ), ii) Γ is a

ray, such as a crack-tip in fracture (corresponding to blowing up at such a tip), iii) Γ is

made of three rays, meeting at a triple junction with each angle equal to 1200.

This last property might seem odd, as it is the only junction allowed, and one might

think that some minimizers would have quadruple junctions, such as in a checkerboard.

However, it is not too hard to see that the total length of the boundary between the

black and white squares on a checkerboard can be slightly reduced by replacing each

quadruple junction with two nearby triple junctions (see figure 3.2.2 below), so that

blow-up limits in this case are straight lines or triple junctions. We should also add that

it is not known whether the type ii) “crack-tips” occur in Mumford-Shah minimizers,

but this is certainly due to the fact that almost no explicit solutions are known, and

the solutions that are known involve large degrees of symmetry in the domain and data.

Solutions with these tips are generally believed to exist, and have been proven to exist

for certain Dirichlet problems ([7]).

While Γ-convergence based numerical methods are theoretically justified (see, e.g.,

[5], [8]), there has naturally been interest in extending numerical methods for computing

free boundaries to computing free discontinuities, particularly for the level set method

of Osher and Sethian, [26]. Recently, Chan and Vese developed level set methods for

computing the Mumford-Shah problem ([9],[28]) based on using two fields. Our interest

in developing a new level set method for this problem is a result of these recent level set

methods and their incompatibility with the second and third types of blow up limits,

which we describe further below.

Now, we briefly outline the Vese-Chan algorithm. The starting point is the level set

method for motion by mean curvature of Osher and Sethian, [26]. The idea is that, if

one wants to evolve the boundary of a set A by its mean curvature, one can solve

φt = div

(
∇φ
|∇φ|

)
,

φ(0) = signed distance from ∂A.

Then, taking A(t) := {x : φ(x, t) < 0}, it follows that ∂A(t) moves by its mean curva-

ture. The idea for extending this to variational problems is that, if there is a necessary

condition for minimality involving the mean curvature of the boundary of a set A, then
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an evolution law can be derived for a φ as above, so that the set A(t) is stationary if

and only if its boundary satisifies the necessary condition. Additionally, of course, one

wants to design the evolution law so that if the set does not satisfy the condition, they

move so that they are closer to satisfying it.

The Mumford-Shah functional is

E(u,Γ) :=

∫
Ω\Γ

(
|u− g|2 + |∇u|2

)
dx+H1(Γ),

where g is a given L∞ function [23]. Given A(0) and the signed distance function φ,

we consider the minimizer u of the above energy, with Γ = ∂A(0). The corresponding

energy can be written ∫
Ω\Γ

E(x)dx+H1(Γ),

where E(x) := |u(x)− g(x)|2 + |∇u(x)|2. A necessary condition for minimality is that,

for H1 almost every x ∈ Γ,

[E] = κ

for the correct orientation of the curvature κ (see [4]), where [E] is the jump in E across

Γ. The idea behind this can be seen by considering the case where E is larger on one side

of Γ than the other, and Γ is flat. For definiteness, we can suppose that Γ is horizontal

and E is larger above Γ than below. Then it would lower the total energy to perturb

Γ upwards into the region of larger E, and extending the solution u from below into

the the region that has been newly enclosed below Γ. The volume term would then be

reduced by [E] times the area of this region, and the surface term is increased by some

amount. The equation [E] = κ reflects these two effects canceling each other.

A straightforward adaptation of the level set method would then involve solving

φt = [E]− κ = [E]− div

(
∇φ
|∇φ|

)
with appropriate initial conditions, but this would have the limitation that Γ := ∂A(0)

can divide Ω into only two regions: the set of points in A (i.e., where φ < 0) and

the set of points outside (i.e., where φ > 0), so that, for example, triple junctions are

impossible. Vese and Chan address this by using two level set functions, φ1 and φ2,

thereby gaining the ability to use four types of regions, or “colors ”, to divide Ω: the set

where both functions are negative, the set where just φ1 is negative, etc. However, we
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claim that this method retains some important deficiencies of the one-function level set

method, and that the introduction of more functions does not satisfactorally overcome

these deficiencies.

3.2 Revisiting the Vese-Chan algorithm

Here we identify three fundamental issues with the Vese-Chan algorithm (VCA), the first

being a consequence of the inherant limitations of extending the usual level set methods

to free discontinuity problems (in particular, discontinuity sets having crack-tips), the

second is due to the independence of the zero level sets of the two fields in the algorithm

(i.e., the fact that the two level sets do not interact with each other, for example, to

combine into pairs of triple junctions when they cross, rather than forming a quadruple

junction), and the third comes from the reliance on the Four Color Theorem (which

would be a problem no matter how many level set functions are used).

3.2.1 Crack-tips

Since the curve Γ obtained by VCA is always a union of boundaries of sets, it is incapable

of having a “crack tip” as illustrated in figure 3.1. Very few solutions of Mumford-Shah

are known explicitly (and these tend to need very strong symmetry of the domain and

data g), and in particular there is no known solution of Mumford-Shah that has a crack-

tip. However, crack-tips are known to exist in global minimizers of Mumford-Shah (see

[7]), which means, essentially, that we take Ω = R2, the g term is removed, and u is said

to be minimal if it has lower energy than any v satisfying {v 6= u} compact support in R2,

where the energy comparison is on any open set S satisfying {v 6= u} compact support

in S. Furthermore, as mentioned above, these solutions are one of only three possible

blow-up limits of solutions of Mumford-Shah. Finally, as the name “crack-tip” suggests,

these solutions are of critical importance in variational models for crack growth. Indeed,

Griffith’s criterion for crack growth [18], the basis for much recent work on variational

methods for fracture mechanics, is a model for the growth of a crack from its tip.
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Figure 3.1: A Γ with a crack tip

3.2.2 Triple junctions

VCA penalizes the zero level sets of the fields φ1, φ2 in a similar way to how the Mumford-

Shah energy penalizes the unknown set Γ. The problem is that the energy contribution

of the zero level sets of the two fields should be the length of the union of these sets,

rather than the sum of their lengths – the difference being that when the zero level

sets overlap, there is a savings. For example, without this effect, changing a quadruple

junction into two triple junctions increases the energy, and so VCA will not prefer these

junctions.

The fact that the lengths are penalized separately can be seen from the fact that

each level set function separately satisfies the necessary condition involving curvature,

independent of the fact that they might overlap. Again, this may seem insignificant, as

the odds might appear to be small that these sets would overlap. However, one effect of

minimizing the Mumford-Shah energy (and a source of difficulty in analyzing solutions)

is that discontinuity sets prefer to overlap, so that two nearby curves can be drawn to

each other in order to overlap, thereby reducing the overall energy, since each curve is

effectively penalized by only half its length in the overlap region. This is not taken into

account in the existing level set methods.

The fact that methods such as VCA (as well as Ambrosio-Tortorelli [5]) will gener-

ally just find local minimizers, and this phenomenon of curves moving together in order

to overlap might be a property of global minimizers but not local ones, might seem to

rarely affect local minimization. However, it is critical at junctions, where curves can

move arbitrarily small distances to form neighboring triple junctions and decrease the

energy. One result of this is that the only possible junctions are still triple junctions,

since, for example, it is not hard to see from Bonnet’s characterization of global min-

imizers that a quadruple junction can split continuously (in L2 and SBV , etc.) into

two triple junctions while decreasing the total energy (see figure 3.2.2). Therefore, even
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with local minimization, only triple junctions can occur. Yet, due to the independence

of the level sets in VCA, there is no preference for these triple junctions, and any type

of junction, e.g., quadruple, quintuple, can occur.

Figure 3.2: Energy of quadruple junction can be reduced by using two triple junctions

3.2.3 The Four Color Theorem

[28] relies on the Four Color Theorem in using two level set functions. The Four Color

Theorem only means that a collection of objects can be colored using no more than four

colors, and therefore two level set functions. But there must be deliberation in choosing

how to color, as figure 3.3 shows: if all four colors are used in the outer four regions,

there is no way to color the center region in a way that gives neighboring regions different

colors. In VCA, if the initial seeding results in four “colors” for the outer objects, VCA

will not detect the inner one.

Figure 3.3:
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3.3 Introduction to the proposed level set algorithm

In seeking to develop a level set method that does not suffer from the “crack-tip” lim-

itation, among others, it seems necessary to replace the union of curves Γ by a thin

neighborhood A of Γ, and evolve this region A by a level set method. The issue is,

by what law should the boundary of A evolve? Our first focus will be on a part of A

approximating a curve, as in figure 3.4. If we solve for the u ∈ H1(Ω\A) that minimizes∫
Ω\A

|u− g|2dx+

∫
Ω\A

|∇u|2dx, (3.3.1)

and E is defined in the natural way so that, for the minimizer u, the above is equal to∫
Ω\A

E(x)dx,

then if the jump in energy from x− “across A ” to x+, [E] := E(x+) − E(x−), exceeds

the outer curvature κ+ (which, for now, we assume equals −κ− since A is thin), then

∂A should be perturbed upward, at both x− and x+. A perturbation in the opposite

direction would need to follow if, instead, the curvature exceeded the energy jump.

Figure 3.4:

Two problems now arise: how do we determine what point in ∂A is “across A ” from

a particular x− ∈ ∂A, and how do we communicate between these points to determine

[E]? We do both implicitly as follows. Notice that (assuming we have satisfactorily
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defined “across ”) the issue is only to find the sign of

[E]− κ. (3.3.2)

If we consider the quantity 2E(x) − κ(x) at both x− and x+, then an easy calculation

shows that (3.3.2) equals half of

(
2E(x+)− κ+

)
−
(
2E(x−)− κ−

)
.

Therefore, the issue is simply to determine on which side of A the quantity 2E − κ

is larger. Since A is presumed thin, a natural way to determine this, while implicitly

defining “across”, is to solve

4ψ = 0 in A

ψ = 2E − κ on ∂A.

Then, the normal derivative ∂νψ at any x− indicates whether 2E − κ is larger there, or

on the other side of A. Taking φ(0) to be the signed distance function from ∂A, negative

inside A, we then solve

φt = ∂νψ

for a small time step, and the updated A is then the set on which φ(∆t) < 0. We again

minimize (3.3.1) with the new A, getting an updated u and E, and resolve for ψ, etc.

Of course, several issues remain, such as how to keep A thin, and these will be discussed

in later sections.

The case of a crack-tip in Γ is somewhat different. For an x ∈ ∂A that is at a

crack-tip, as in figure 3.5, there is no point of ∂A across from it, and so the situation is

actually more straightforward and reminiscent of VCA. If A is perturbed outward at x,

the region newly enclosed has zero energy, compared to E(x) before the perturbation.

So, if we were penalizing the length of ∂A, we would be interested in the sign of E − κ,

as in VCA. However, we should not penalize the length of ∂A, but rather the length of

the approximated Γ, or 1/2 the length of ∂A. So, we are interested, again, in the sign

of 2E − κ. As E and κ will both be very large at a tip, and 2E − κ will be relatively

quite small away from a tip, using ∂νψ(x) to indicate the sign of 2E − κ at a crack-tip

is a reasonable approximation.
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Figure 3.5:

3.4 The new level set method

In this section we present the details of our new level set method. First, in section 3.4.1,

we give the formal description of the new level set method. Then, in section 3.4.2 we

give the implementation details of the algorithm.

3.4.1 Formal Description

First, given an in initial image g, we seed our algorithm as follows. We find v ∈ H1(Ω)

that minimizes

u 7→
∫

Ω

|u− g|2dx+

∫
Ω

|∇u|2dx. (3.4.3)

We then set A0 to be the set where |∇v| ≥ γ‖∇v‖∞ for a chosen parameter γ ∈ (0, 1)

and we set φ(x, 0) to be the signed distance from ∂A0, negative in the interior of A0 and

positive outside. Then we find u1 ∈ H1(Ω\A0) that minimizes

u 7→
∫

Ω\A0

|u− g|2dx+

∫
Ω\A0

|∇u|2dx. (3.4.4)

Then we set

E(x) := |u0 − g|2(x) + |∇u0|2(x) (3.4.5)

and solve the PDE {
∆ψ = 0 in A0

ψ = 2E − κ on ∂A0.
(3.4.6)
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Here, κ is shorthand for the curvature of the level sets of φ,

κ := div

(
∇φ
|∇φ|

)
. (3.4.7)

Then, for any x ∈ ∂A0, the sign of ∂νψ indicates whether ψ is larger at x or at the point

x′ ∈ ∂A0 “across” from x. For example, if

∂νψ(x) > 0

then

2E(x)− κ(x) > 2E(x′)− κ(x′)

= 2E(x′) + κ(x),

which reduces to

[E](x) := E(x)− E(x′) > κ(x).

We then perturb A0 appropriately. In the context of the above example, we would

perturb A0 outward at x and inward at x′. We do this by decreasing φ at x and

increasing it at x′. Thus, we solve

φt = −∂νψ in ∂A0, (3.4.8)

where we note that ∂νφ(x′) < 0 if ∂νψ(x) > 0. This defines an approximation for A(∆t)

given by

A1 := {x : φ(x,∆t) < 0}.

We then redefine φ(x,∆t) to be the signed distance function from ∂A1 and we repeat

this process.

3.4.2 Computational details

In this section, we present the computational details of the algorithm described above.

To obtain a finite element discretization, we choose a quasi-uniform and shape-regular

triangulation Th(Ω) of Ω composed of triangular elements of size O(h). All computations

are performed on subdomains Ω′ ⊂ Ω such that no ∂Ω′ cuts through any element of
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Th(Ω), and we denote by Th(Ω
′) the triangulation Th(Ω) restricted to Ω′. All the relevant

PDEs are solved by the finite element method using the space Vh(Ω
′) ⊂ H1(Ω′) consisting

of continuous piecewise linear functions on the triangulation Th(Ω
′).

Given a mesh Th(Ω
′), we will use the following notation for convenience:

N (Ω′) := {set of all nodes xj in the mesh Th(Ω
′)}

Zj(Ω
′) := xj ∪ {xk ∈ N (Ω′) : xk connected to xj by an edge}

Wj(Ω
′) := {∪kτk ∈ Th(Ω

′) : xj ∈ τk}.

We always assume that τk, Wj, Ω′ and Ω are closed regions, andN (Ω′) includes the nodes

on ∂Ω′. As part of our level set algorithm, we need to compute ∇v(xj) (the gradient

of a function at a node xj of N (Ω′)) for v ∈ Vh(Ω
′). Since ∇v is a piecewise constant

function in Ω′, then we will need to “smooth” ∇u to give meaning to ∇v(xj). The

smoothing procedure is defined via Clement interpolation, that is, using the following

average of ∇v over Wj(Ω
′):

I2
Ω′(∇v)(xj) =

∑
τk∈Wj(Ω′)

area(τk)∇v|τk∑
τk∈Wj(Ω′)

area(τk)
.

Note that the smoothing procedure takes into account only elements τk in Th(Ω
′). We

also need to compute the divergence of the revelant vector fields (in particular to compute

curvatures). Thus, given a vector field p, we approximate ∇ · p at each xj ∈ N (Ω′) as

follows. First, we computing a linear function defined on Wj(Ω
′) that is the least squares

best fit of p1 evaluated at the nodes of Zj(Ω
′). We repeat this for each component of p,

and then sum the slopes of the linear approximations to calculate our approximation of

∇ · p.
We also use Clement interpolation to smooth the relevant scalar fields on nodes of

N (Ω′). Suppose w is a scalar field defined in Vh(Ω
′). Then:

I1
Ω′(w)(xj) =

∑
τk∈Wj(Ω′)

area(τk)w|τk∑
τk∈Wj(Ω′)

area(τk)
.

This smoothing procedure can be used to compute the divergence of a vector field defined

on (Vh(Ω
′))2.

We now describe the computational details of the algorithm for the first time iteration
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(n = 0). Recall that we are given an image function g defined on Ω. As described above,

we begin by seeding the algorithm with a subdomain A0 ⊂ Ω. With this in mind, we

minimize the problem (3.4.3) by the following finite element method: find v ∈ Vh(Ω)

such that ∫
Ω

∇v · ∇ϕdx+

∫
Ω

v ϕ dx =

∫
Ω

g ϕ dx ∀ϕ ∈ Vh(Ω).

We compute I2
Ω∇v ∈ Vh(Ω) using the smoothing method described above, and then fix

γ ∈ (0, 1) to define the subregion A0 ⊂ Ω by:

A0 := {x ∈ Ω : |I2
Ω(∇v)(x)| ≥ γ max

xj∈N (Ω)
|I2

Ω(∇v)(xj)|}.

It is easy to see that A0 is a polygonal domain with edges crossing elements of Th(Ω).

Then we define the subdomain Ah
0 ⊂ A0 by:

Ah
0 := {∪kτk ∈ Th(Ω) : all three vertices of τk belong to A0},

i.e., Ah
0 is the largest subdomain of A0 composed by elements of Th(Ω). The definition

of Ah
0 and its complement Ω\Ah

0 lead to natural definitions of Th(A
h
0), N (Ah

0), Vh(A
h
0),

Th(Ω\Ah
0), N (Ω\Ah

0) and Vh(Ω\Ah
0). These are the relevant sets for posing the finite

element methods, while A0 is relevant for defining the level set function φ0.

We define the level set function φ0 ∈ Vh(Ω) by computing the signed distance from

each node of N (Ω) to the boundary of A0. With the definition of Ah
0 and φ0 in hand,

we solve the Dirichlet problem (3.4.6) by the following finite element method: find

ψ0 ∈ Vh(A
h
0) such that ψ0(xj) = 2E(xj)− κ(xj) for all nodes xj on ∂Ah

0 , and∫
Ah0

∇ψ0 · ∇ϕdx = 0 ∀ϕ ∈ Vh(A
h
0) ∩H1

0 (Ah
0). (3.4.9)

To solve (3.4.9) we need to compute E(xj), defined by (3.4.5), and to compute the

curvature κ(xj), defined by (3.4.7). To compute the energy E(xj) we first find u0 ∈
Vh(Ω\Ah

0) the solution of∫
Ω\Ah0

∇u0 · ∇ϕdx+

∫
Ω\Ah0

v ϕ dx =

∫
Ω\Ah0

g ϕ dx ∀ϕ ∈ Vh(Ω\Ah
0),

and then use the smoothing technique I2
Ω\Ah0

∇u0 described above. Similarly, we compute

the curvature κ(xj) by using the approximation to ∇ · ∇φ0 as decribed above.
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We now evolve the level set function according to (3.4.8). This is done by finding

φ̂1 ∈ Vh(Ω) using a sort of Lax-Friedrichs discretization with a local timestepping δtxj :

φ̂1(xj)− I1
h(φ0)(xj)

δtxj
= −∂̃νψ0(xj) ∀xj ∈ Ω.

Here δtxj is chosen so that the zero level set curve does not move more than half of an

element. The definition of the normal derivative ∂̃νψ0 ∈ Vh(Ω) is done as follows: on

nodes xj ∈ N (Ah
0), we set ∂̃νψ0(xj) to be equal to I1

Ah0
(∇ψ0.∇φ0)(xj). On the remaining

nodes xj ∈ N (Ω\Ah
0)\N (Ah

0), we take the Dirichlet data ∂̃νψ0 on ∂Ah
0 and perform the

following discrete harmonic extension to Ω\Ah
0 : find ∂̃νψ0 ∈ Vh(Ω\Ah

0) such that∫
Ω\Ah0

∇∂̃νψ0.∇ϕdx = 0 (3.4.10)

for all ϕ ∈ Vh(Ω\Ah
0) and vanishing on ∂Ah

0 . The reason for using the discrete harmonic

extension is because we want a smooth movement from ∂A0 to ∂A1 (the zero level

set curve of φ̂1) when outwards from A0. In order to decrease the complexity of the

algorithm, we can replace this extension by a discrete harmonic extension to a thin layer

of Ω\A0
h near ∂Ah

0 , or to replace by some local averaging away from ∂Ah
0 .

Now we repeat the process. We compute the signed distance function φ1 associated

to ∂A1, the compute Ah
1 , u1, ψ1, ∂̃νψ1, φ̂2, ∂A2,φ2, A

h
2 , u2 etc. We point out that in

regular level set methods, the level set functions φ̂n are the ones needed for computing

rather than recomputing the signed distance functions φn. In our application, such a

technique does not work properly because An is thin, and therefore, over many iterations

the slope of φ̂n might get small and new zero level sets might appear, instead of zero

level sets only existing due to the evolution of the original zero level sets.

We now describe two departures from the description in 3.4.1 which seem to be

necessary computationally. First, instead of simply solving (3.4.6) we actually solve the

Poisson problem 4ψ = −2, i.e., we replace (3.4.9) with∫
Ah0

∇ψ0 · ∇ϕdx = 2

∫
Ah0

ϕdx ∀ϕ ∈ Vh(A
h
0) ∩H1

0 (Ah
0). (3.4.11)

This is an ad hoc technique we use to keep our domain thin. However, using this did

result in our domain becoming too thin. Thus, we use another routine that enforces
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a minimum thickness of the domain An. The idea of our technique is provided in the

following pseudocode:

for each node xj with small I2
h(∇φn)(xj)

if dist(xj, ∂An) < (minimum domain thickness)

set
φ̂n+1(xj)−I1

h(φn)(xj)

δtxj
= −1

end

3.5 Numerical results

We have tested our algorithm using the Mumford-Shah functional on a number of image

functions, including those with overlapping objects. Also, we have verified that, when

used with the energy used to model fracture, the algorithm is able to resolve crack tips.

Triple Junctions

To show that our method does find triple junctions, we usedan image function g : [0, 2]×
[0, 2] → R given by

g(x1, x2) :=


0 for x1 ≤ 1 and x2 ≤ 1

10 for x1 > 1 and x2 ≤ 1

20 for x1 > and x2 > 1

30 for x1 ≤ 1 and x2 > 1.

The corresponding image for g is pictured below in Figure 3.6.

Figure 3.6: Initial image function to show triple junction

As discussed above, the minimizer of the Mumford-Shah functional for this image
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function does not have a quadruple junction, since the energy can be reduced by using

two triple junctions:

Figure 3.7: Recall: Energy of quadruple junction can be reduced by using two triple
junctions

Figure 3.8 shows the results of our algorithm for the image function g defined above

and using our seeding algorithm described in Section 3.4. Figure 3.9 is a zoom in of

the final result that more clearly shows the triple junction. These computations were

performed on a mesh generated by Triangle [27] composed of 77, 574 triangles. We note

that the number of iterations needed to compute the solution can be reduced by seeding

our algorithm with an A0 that approximates the quadruple junction created by the four

color regions.
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Figure 3.8: Results of our algorithm with image g

Figure 3.9: Results with a zoom in on junction at right
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Table of Notation

B(x, r) Closed ball centered at x with radius r 9

E ⊂⊂ F Ē compact and Ē ⊂ F 1

Q(x, r) Cube centered at x with side length 2r 9

dist(x,A) inf of |x− y| over y ∈ A 1

W Elastic energy density 9

Hn n-dimensional Hausdorff measure 8

Ki
H→ K {Ki} converges to K in the Hausdorff metric 9

A
∼
= B HN−1(A \B) = 0 9

Ā Topological closure of A 1

A
∼
⊂ B HN−1(A \B) = 0 9

Ln n-dimensional Lebesgue measure 8

2X Power set of X 9

un
SBV→ u {un} SBV-converges to u 9

SBVp(Ω) u ∈ SBV (Ω) with ∇u ∈ Lp(Ω) 8

νE Measure theoretic outer normal to E 9

∂∗E Reduced boundary of E 9

SBV (Ω) Special Functions of Bounded Variation on Ω 8

S(u) Approximate discontinuity set of u ∈ BV 8

Ew
ξ ξ super level set of w ∈ BV 9

[u](x) Jump of u at x 27

C∗ Minimal crack trajectory for (u,C) ∈ T ∗ 21

D generates q 22

φt(A) Imbedding of A ⊂ RN−1 into RN by xN = t 33

T Class of front representable trajectories 19
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Tp′ Class of constrained front representable tra-

jectories

10

T ∗ Class of general trajectories 19

ψ Dissipation potential 45

ψ̄ Rate-independent envelope of ψ 19

C Slope of the rate-independent envelope of ψ 19

σ(t, A) N −1-dimensional slice of the set A at xN = t 33

Th(Ω) Shape-regular triangulation of Ω 58

I1
Ω′(w)(xj) Clement interpolation of scalar function w at

node xj

59

I2
Ω′(p)(xj) Clement interpolation of vector field p at node

xj

58

N (Ω′) set of all nodes xj in the mesh Th(Ω
′) 58

Zj(Ω
′) The set formed by the node xj and all nodes

connected to it by an edge

58

Wj(Ω
′) The set of triangles that neighbor node xj 58
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