
WPID: A Simple PID Library for VEX

A Major Qualifying Project submitted to the faculty of

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the Degree of Bachelor of Science

Submitted to Worcester Polytechnic Institute

Submitted by

Jair Meza

Austin Rebello

Brianna Sahagian

Advisor

Professor George T. Heineman

Date: February 29, 2024

This report represents the work of one or more WPI undergraduate students submitted to the

faculty as evidence of completion of a degree requirement. WPI routinely publishes these reports

on the web without editorial or peer review.

WPID VEX Library i

Abstract

While VEXCode is the officially supported API for programming the V5 Brain, there is a
distinct lack of beginner-friendly third-party libraries. The WPID Lib and corresponding website
aims to fill this void by introducing novice teams to Proportional Integral Derivative (PID)
concepts, accompanied by a simple-to-use library written for VEXCode. Beginners can use
WPID Lib to help narrow the gap with experts. With thorough documentation and text tutorials
hosted on the website, students are able to quickly learn PID concepts and how to use PID on
their robot, granting them the ability to increase the quality of their autonomous driving sections
of the competition. After conducting our study on VEX teams who tested out our library, we
confirmed that WPID Lib is an excellent resource for beginner and intermediate level VEX teams
in competition.

WPID VEX Library ii

Acknowledgements

We would like to thank the people who made this project possible.
From the VEX Community, we would like to recognize all the teams that took the time to

try out our library. We understand that the competition season is busy, but your feedback on our
WPID Library was crucial to building out a robust and powerful PID tool for beginner and
intermediate teams.

We would also like to thank Sarah Stanlick and Ruth McKeogh from WPI’s Global
School and Institutional Review Board for assisting us with taking the proper steps to conduct
ethical human trials of our software.

Finally, we would also like to thank our WPI advisor, Professor George Heineman. His
support and feedback was invaluable throughout our project, and helped push us to create an
excellent resource for VEX competitors.

WPID VEX Library iii

Authorship

Sections Primary Author(s)

Abstract Austin Rebello

Acknowledgements Austin Rebello

1.0 Introduction Brianna Sahagian

2.0 Background Brianna Sahagian

2.1 The VEX Robotics Competition Brianna Sahagian

2.2 PID Control Brianna Sahagian

2.2.1 Open-loop and Closed-loop Control Systems Brianna Sahagian

2.2.2 P, I, and D Constants and Configurations Brianna Sahagian

2.2.3 PID Example Brianna Sahagian

2.2.4 PID Areas for Improvement Brianna Sahagian

2.3 The Current VEX Landscape Jair Meza

2.3.1 Issues in Implementing PID Jair Meza

2.3.2 Third Party Solutions Jair Meza

3.0 Methodology Jair Meza

3.1 Coding the WPID Library Jair Meza

3.1.1 Structure and Organization Jair Meza

3.1.2 Implementing the PID Class Jair Meza

3.1.3 Implementing the Mechanism Class Jair Meza

3.1.4 Implementing the Chassis Classes Brianna Sahagian

3.1.5 Types of Motion Jair Meza

3.1.6 Logging Capabilities Austin Rebello

WPID VEX Library iv

3.2 Conducting the Study on VEX Robotics Students Jair Meza

3.2.1 Exploration Jair Meza

3.2.2 Testing Jair Meza

3.2.3 Interview Jair Meza

3.2.4 Research Conclusion Austin Rebello

3.3 Creating the Website Documentation and Tutorials Austin Rebello

3.3.1 Website Design and Implementation Austin Rebello

3.3.2 Documentation Austin Rebello

3.3.3 Tutorials Austin Rebello

3.4 Measuring Success Austin Rebello

3.4.1 Autonomous Route Analysis Brianna Sahagian

3.4.2 Interview Responses Brianna Sahagian

3.4.3 Donation of Materials Austin Rebello

4.0 Results Austin Rebello

4.1 Robot Testing Brianna Sahagian

4.2 VEX Student Trials Austin Rebello

4.2.1 Successes Austin Rebello

4.2.2 Drawbacks Austin Rebello

4.3 Future Project Opportunities Jair Meza

Appendix A: Informed Consent Form for Over-Eighteen Brianna Sahagian

Appendix B: Informed Consent Form for Under-Eighteen Participants Brianna Sahagian

Appendix C: VEX Team Interview Questions All

Appendix D: Roughly Coded Interviews for Pro vs Cons Austin Rebello

WPID VEX Library v

Table of Contents

WPID: A Simple PID Library for VEX
Abstract i
Acknowledgements ii
Authorship iii
1.0 Introduction 1
2.0 Background 2

2.1 The VEX Robotics Competition 2
2.2.1 Open-loop and Closed-loop Control Systems 2
2.2.2 P, I, and D Constants and Configurations 4
2.2.3 PID Example 5
2.2.4 PID Areas for Improvement 6

2.3 The Current VEX Landscape 6
2.3.1 Issues in Implementing PID 6
2.3.2 Third Party Solutions 8

3.0 Methodology 9
3.1 Coding the WPID Library 9

3.1.1 Structure and Organization 9
3.1.2 Implementing the PID Class 11
3.1.3 Implementing the Mechanism Class 12
3.1.4 Implementing the Chassis Classes 13
3.1.5 Types of Motion 16
3.1.6 Logging Capabilities 17

3.2 Conducting the Study on VEX Robotics Students 19
3.2.1 Exploration 19
3.2.2 Testing 19
3.2.3 Interview 20
3.2.4 Research Conclusion 20

3.3 Creating the Website Documentation and Tutorials 20
3.3.1 Website Design and Implementation 20
3.3.2 Documentation 23
3.3.3 Tutorials 25

3.4 Measuring Success 27
3.4.1 Autonomous Route Analysis 27
3.4.2 Interview Responses 28

WPI VEX Library vi

3.4.3 Donation of Materials 28
4.0 Results 29

4.1 Robot Testing 29
4.2 VEX Student Trials 30

4.2.2 Successes 30
4.2.3 Drawbacks 31

4.3 Future Project Opportunities 31
Appendix A: Informed Consent Form for Over-Eighteen Participants 35
Appendix B: Informed Consent Form for Under-Eighteen Participants 38
Appendix C: VEX Team Interview Questions 42
Appendix D: Roughly Coded Interviews for Pro vs Cons 43

WPID VEX Library 1

1.0 Introduction
The Robotics Education & Competition (REC) Foundation is an organization dedicated

to supporting STEM-based education through their global competitive robotics movement. In
partnership with VEX Robotics Inc, the REC Foundation hosts multiple yearly robotics
programs including the VEX IQ Competition, VEX Robotics Competition, and VEX U (REC
Foundation, n.d.). Many VEX Robotics teams are encouraged to use the Proportional Integral
Derivative (PID) control algorithm to improve the accuracy and consistency of their robot’s
movement. PID is a closed-loop algorithm that incorporates feedback into its execution, making
this algorithm a desirable choice for VEX teams that want smooth motion to a target position
(Barr, 2002). This algorithm can be extended to any motor on the chassis or mechanism, making
PID reusable across robotic systems. While PID is a flexible and useful algorithm for
competition, the algorithm involves complex calculus-based concepts that can be difficult to
understand without dedicated educational resources. However, VEX teams that are novice
programmers find it difficult to implement PID over different robotic systems, as is evident by
the hundreds of forum posts regarding issues with implementing PID.

This project aims to create a simple VEX library using the VEXCode API for beginner to
intermediate teams that allows them to quickly and accurately move their robot with PID control
during the autonomous stages of competition. We also will create standalone tutorials with
videos on a supplemental website to document the library API. The library will serve as the
intermediate stage between pure VEXCode V5 and established third-party APIs; it is meant to
help teams take the step from the beginner to advanced level (“VEXcode API Reference”, n.d.).
Another goal is to successfully donate the MQP materials to one of the teams in the VEX
community after the project concludes. Finally, the team intends to post the library as an
open-source project so that it can continue to benefit teams in future seasons.

WPID VEX Library 2

2.0 Background
VEX Robotics programs invite students at different education levels to learn hardware,

electrical, and software skills in a collaborative team environment (VEX, n.d.). In total, the VEX
community consists of over 24,000 teams and 1,100,000 student competitors. The work on this
Major Qualifying Project is focused on the subset of high school level teams within the 11,500
VEX teams that compete in the VEX Robotics Competition (VRC) (VEX Robotics, 2024).

2.1 The VEX Robotics Competition

The VEX Robotics Competition (VRC) incorporates a versus style of competition
between pairs of opposing red and blue robots (VEX Robotics, 2024). Each competition has a
fixed 15-second Autonomous Period where the robot executes instructions independent of
human interference and a 1 minute and 45 second Driver Controlled Period. While every VRC
follows these standards, each yearly challenge involves different mechanics that fundamentally
alter the way VEX teams build and program their robots. The 2024 VRC, Over Under, features
unique field elements called Triballs and two Elevation Bars for robots to interact with to score
points. The Triballs are meant to be scored in the team’s alliance net, and the Elevation Bar
presents a final challenge for the alliance robots to ascend at the end of the Driver Controlled
Period (VEX Robotics, 2024). The nature of these tasks determine the chassis type and
mechanism design of robots participating in the Over Under VRC.

2.2 PID Control

PID control is the most common method of control used in industry applications
(Emerson, 2023). PID is preferred professionally because the algorithm has the ability to adapt to
different environments and allows for generally straightforward implementation. The PID
controller market is predicted to reach $1.6 billion by the year 2026, with applications in the food
and beverage, oil and gas, temperature, motion, flow, pressure, and power sectors (Global
Industry Analysts, 2022). In the VEX Robotics setting, PID algorithms are used as motion
controllers for individual motors and motor groups on a robot.

2.2.1 Open-loop and Closed-loop Control Systems

When considering types of algorithms to control motion, there are two general
approaches: open-loop or closed-loop control. In open-loop control, the algorithm takes in a set
of input parameters and uses the values of these fields to compute a response. During the
execution of the algorithm, no new internal or external data is introduced into the calculations.
This approach allows for efficient and cost-effective implementation of an algorithm. Examples
of open-loop control systems include the software behind washing machines. While a washing
machine takes in a user-specified set of parameters including load-size, spin cycle, and water
temperature, these inputs remain static while the machine is running (Collimator, 2023).

WPID VEX Library 3

In closed-loop control, the algorithm takes input from the initial set of parameters and
factors the system output into its calculations. These systems are typically more complex than
open-loop systems because the hardware must include a component to collect internal or external
information. Different types of sensors can be used to collect external output; the type of
information collected varies depending on the application. An example of a closed-loop control
system is a smart temperature system. The software that operates this system takes in an initial
temperature input and the external room temperature data to determine the heating or cooling
state of the temperature system. Closed-loop systems are typically more expensive due to the
need for sensing components, but algorithms using this approach are more precise and accurate
than open-loop control systems.

PID control is a type of closed-loop control system. In the VEX setting, the algorithm
takes in a target distance parameter as its setpoint or goal state. The setpoint is the target for the
PID algorithm to consider when calculating its output. Typically, the setpoint is a distance or
some other form of physical measurement and the system uses sensors to determine the error,
that is the difference in the current state of the robot, and its setpoint. This sensor can be an
external camera, ultrasonic range finder, line tracker, or encoder (internal or external). In this
MQP, the chosen sensor for system output is the internal encoder system on the VEX V5 motors.
The encoder returns the rotations that the motor has traveled. Using some basic geometry, the
distance a robot travels can be calculated by measuring the circumference of the wheel, and
multiplying it by the number of rotations the motor has spun. Typically, this is done with simple
robots with wheels and motors directly geared. This traveled-distance is subtracted from the
setpoint to determine the error. Then, the P, I, and D constants combine with the error to calculate
the speed of the robot and the loop repeats by polling new sensor information to determine the
new error. This process is demonstrated below in Figure 1.

Figure 1. PID Closed-loop Control Diagram (Silver Star, 2006)

There are multiple ways to determine when the PID loop should finish executing. In
some cases where the system needs to maintain a position, the loop might never end. This allows
the loop to continue adjusting the actuator (the mechanism responsible for changing the state of

WPID VEX Library 4

the system) in the case that it is physically pushed off the setpoint. This will allow the actuator to
respond as the error begins to change, attempting to settle back to the target. In many cases,
especially in VEX where the setpoint changes multiple times throughout the course of an
autonomous routine, the loop will end when the system is within an upper and lower bound of
the target. For instance, if the system may determine that an error of 1% is enough to exit the
loop, while in other cases a larger percent error may be introduced to allow the loop to exit
sooner. The current output of the system can also be used to determine if it is attempting to settle,
or still making adjustments. For example, if the speed output is higher than a predetermined
threshold, the loop will continue as it is, assuming the system is still in motion and not
attempting to stop. Once the system falls below this speed threshold, the loop may exit. Timeouts
are also utilized to limit the amount of time a movement takes, and typically these are used as a
last case scenario when the system should have already exited the loop.

2.2.2 P, I, and D Constants and Configurations

The PID controller operates using a combination of three constants: the proportional
constant Kp, the integral constant Ki, and the derivative constant Kd (Tilbury and Messner, n.d.).
These constants are predetermined gain values (a scalar value used to change the magnitude of
an output when multiplied) that are multiplied with their corresponding calculated terms. The
proportional term is calculated by finding the error of the system, and the Kp constant is
multiplied, which proportionally increases the robot’s response-speed based on error. With a
higher error, the proportional term will yield a more immediate response, however; a high output
can cause overshoot, where the robot hits its setpoint and then continues moving. The Ki
constant multiplies with the summation of error to move the robot incrementally towards its
setpoint, better known as the integral of the error over time. The integral adds more precision to
the system, so that once the proportional term brings the robot close to its setpoint, the
integration can cover the remaining distance. The combination of Kp and Ki is used in the PI
control configuration of PID to quickly (Kp) and precisely (Ki) reach a setpoint. The Kd constant
multiplies with the difference of error to decrease overshoot, or the derivative of the error over
time. Its job is to predict the rate of change so that the system, allowing it to come to a stop
sooner. The combination of Kp and Kd is used in the PD control configuration of PID to quickly
(Kp) reach a setpoint while curbing overshoot (Kd). Using all three constants in conjunction
implements the PID configuration, where the robot can quickly (Kp) and precisely (Ki) reach a
setpoint while curbing overshoot (Kd). There are no configurations that exclude Kp as it is
responsible for outputting a majority of the system's speed, where Ki and Kd are responsible for
the end behavior.

WPID VEX Library 5

2.2.3 PID Example

Figure 2. A representation of how each constant impacts PID control

Figure 2 displays distance readings that are outputted from a robot running a hypothetical
route using PID. In this scenario, the robot is attempting to reach the setpoint at the red line on
the graph. At the beginning of the route, the proportional control (using the Kp gain) has the
majority of influence to quickly pick up speed and move the robot close to the red line. Then,
once the robot gets close to the setpoint line, the integral control (using the Ki gain) takes over to
push the robot the rest of the way to the line. In this scenario, the robot overshoots its setpoint
and has to reverse direction to correct for the overshoot. This correction is shown at each bend of
the curve above (and below) the setpoint line. During this overshoot is where the derivative
control has its influence (using the Kd gain). The derivative control gradually reduces the
overshoot in both directions until the robot eventually reaches the setpoint (+/- some remaining
steady-state error).

WPID VEX Library 6

2.2.4 PID Areas for Improvement

While PID serves as an adaptable and efficient algorithm for robotic motion, the
algorithm has several drawbacks that can be addressed with supplemental utilities. The first
implementation issue with PID occurs at the intersection of the Kp and Ki constants. When
continuously integrating with Ki throughout a PID-controlled motion, the integral portion of the
algorithm increases to the point where overshoot is difficult to avoid. In order to eliminate
overshoot from PID motions, this continuous accumulation of error needs to be limited to
specific sections of the motion. Another issue with PID is the high chance for derivative noise.
The derivative portion of PID is subject to sharp fluctuations during motion that make this piece
of the algorithm difficult to implement smoothly. Finally, the PID algorithm has no feature to
support smooth transitions into and out of motions. PID control supports smooth motion in the
intermediate stage between the start and end of the motion, but supplemental utilities are needed
to prevent sudden starting and stopping.

2.3 The Current VEX Landscape
Over the course of 18 unique games, many VEX teams have found similar patterns to

develop and program their robots, despite the vast differences in game mechanics. Some of these
patterns relate to hardware such as joints that allow for mechanisms to rotate, while others might
be within the code, such as a simple function to spin all the drivetrain motors simultaneously.
Ultimately, the direction that the team decides to take will depend on their experience and
exposure to these patterns. Because of the straightforward implementation of PID, many teams
attempt to write their own PID algorithm from scratch, but struggle with the nuances of applying
it to motors, and tuning the system. Some teams instead use third-party libraries to skip the
implementation entirely, allowing for more time to be spent on other solutions.

2.3.1 Issues in Implementing PID

Among new teams, PID seems attractive because of the relatively simple code required to
type out, as shown in Figure 4. Writing out a basic version of this algorithm in Python shows that
it only takes a few lines to get an output that can be used to control motors. However, just
because the code may appear to be simple, the integral and derivative terms alone cause
confusion in teams that either don’t understand calculus or the PID algorithm itself. When teams
have issues, they turn to the official VEX Forums, which allows users to make posts asking
questions and discussing topics relating to all things VEX. On the forums, there are dozens of
posts with titles like, “Help with PID”, or “How to implement PID” and even “PID not working”
(VexForum, 2024). In these posts, users paste in their code, along with any questions they have
relating to why the algorithm won’t work as they intended. While many teams get the basic
structure, there are a multitude of mistakes such as hard coding values, poor understanding of the
programming language itself, or just naive mistakes such as doing the wrong calculations. There

WPID VEX Library 7

are multiple responses to PID topics a day, and many new topics created each week, as seen in
Figure 3.

Figure 3. A screenshot of the official VEX forum with the search query: “PID”(VEXForum,
2024).

Figure 4. Pseudocode of a basic PID algorithm in Python

WPID VEX Library 8

2.3.2 Third Party Solutions

Despite the abundance of PID-related questions on the forums, it is still one of the most
frequent topics. Teams that are either unsatisfied with their own implementation, or want
something that is a bit more advanced, can opt to use a third-party library, or use pre-existing
code that someone else has written. Nearly all of these resources are tailored for the intermediate
to advanced level programmers looking to get an edge on their competition, leaving the
beginners behind. One of the most popular third party resources is called PROS, which is a
library of functions similar to VEXCode that allow the users to control the V5 system in various
ways (PROS, n.d.). The library was developed by students at Purdue University, and is now open
source, allowing anyone to inspect and suggest additions to the source code. PROS was built for
users looking to control their robot in a more advanced manner, offering functions to control and
monitor everything from current draw to motor speeds. The library is organized slightly
differently than VEXCode and comes down to personal preference on whether a team adopts
PROS over VEXCode.

One of the biggest reasons many programmers switch to PROS is for its excellent third
party library integration. PROS comes preloaded with OkapiLib, a library that introduces even
more advanced motion algorithms and functions for quick and precise autonomous movement
(Okapi, n.d.). Okapi depends on the PROS API in order to control the V5 system, making
OkapiLib exclusive to projects that use PROS as opposed to VEXCode. PROS also comes with
LVGL, an open source C embedded graphics library that is used for things such as displaying
sensor data, and autonomous selector screens (LVGL, n.d.). However, this library is not
exclusive to PROS as a port is available for VEXCode users as well, though importing it is
slightly more involved. Pros also supports templating, and a very popular example is
EZ-Template (Zarchi, n.d.). EZ-Template utilizes the PROS API and offers users a project with
empty initializers and constructors, allowing the user to input their robot’s features, constants,
and other parameters, allowing simple setup. This template has been successful in competition,
helping team 7686B win the world championship. EZ-Template has inspired a VEXCode
alternative called JAR-Template which follows a similar pattern of inputting robot-specific
parameters in a template project (JAR-Template, n.d.).

Although these solutions are extremely accurate, well-documented and community
favorites, they all tailor to the advanced teams that have access to a multitude of sensors,
programming knowledge and testing time. Many of the libraries require the use of external
encoders, gyroscopes, and other advanced sensors that beginner teams might not be familiar
with. The aim for WPID was to provide a VEXCode library that does not require any of these
sensors, and only relies on the motors used in the construction of the robot. This allows for new
teams to quickly implement WPID with minimal setup, and provide an out-of-the-box
experience. The implementation of WPID is also different compared to these libraries and
templates, as WPID is offered as a static library as opposed to a template, in order to reduce
clutter in a project. However, the source code is available on the GitHub repository, linked in the
bibliography section of this paper.

WPID VEX Library 9

3.0 Methodology
The main goal of the project is to develop a simple PID library written with the

VEXCode API. The VEXCode API allows beginner teams to easily incorporate the library in an
already familiar environment that is also officially supported by VEX. Along with the library,
tutorials and documentation will be developed to assist teams with the usage of the library, to
help quickly implement and use the library effectively.

3.1 Coding the WPID Library
Our process of developing the library mirrors many teams starting their own program

from scratch. It first started with tinkering with the VEXCode to further our understanding of
what the API has to offer. This included writing a crude PID algorithm that would be used as the
basis of the project. Once we were satisfied with our basic implementation, we started to hammer
out the details of what exactly we expected to be in the library.

3.1.1 Structure and Organization

It was clear that because PID can be applied to many different types of actuators,
mechanisms and drivetrains, it was important to develop the PID functions with that in mind.
Since the algorithm would be used across various instances of classes that each have a collection
of unique constants and data, it made sense to build a PID class to store these functions and
variables. Doing so would allow any object to create an instance of PID and utilize the functions
with its own parameters.

As for the mechanisms used in VEX, they can essentially be boiled down to a collection
of motors used to manipulate and spin structural components such as gears, c-channel, and
wheels shown in Figure 5. Ultimately, an aptly namedMechanism class was designed to store a
group of motors, and a PID object to use for spinning the motors with the PID algorithm. The
Mechanism class serves as a facade for vex motor groups, allowing them to interface seamlessly
with the PID class (Gamma, 1995).

One of the most important mechanisms of any VEX robot is the drivetrain. It is
responsible for moving the robot across the field, and is used to aim the other mechanisms to
manipulate game objects. The drivetrain is also just a collection of motors that manipulate
wheels to drive the robot, and therefore implement instances of the Mechanism class to control
each part of the drivetrain. The most common setup for a drivetrain in VEX is the tank or skid
steer setup, where motors are either connected to the left or right side of the chassis. Each side is
independently controlled, allowing for forward and backward movement, as well as turning on
the spot. Another common drivetrain is the H-Drive setup, which adds a third wheel
perpendicular to the other drive wheels of a tank setup, allowing for side to side motion, with an
example shown in Figure 6. Many of the drivetrains are similar in what they are able to
accomplish, so a pure virtual class called Chassis was developed to hold common functions and

WPID VEX Library 10

variables used across all types of drivetrains. The Tank and HDrive classes extend this Chassis
class, allowing them to implement these functions.

Figure 5. Basic CAD of a Tank Drive Chassis. This iteration also features a four bar lift.

Figure 6. Basic CAD of an HDrive Chassis. Similar to Tank, the HDrive chassis features a skid
steer style setup, with an additional center wheel for sideways motion.

WPID VEX Library 11

3.1.2 Implementing the PID Class

The PID class contains multiple functions and variables to assist in the calculations for
each Mechanism that utilizes PID. These variables consist of the required PID constants, in
addition to a reference to the previous error, previous integral, and the error bounds. The actual
algorithm is relatively simple, but includes a few additions to improve the effectiveness. The
beginning portion of the code mirrors exactly what is shown in Figure 1. One of the additions
includes a saturation check to make sure that the output of the PID loop does not exceed a
maximum value set by the user. For example, if the user only wants the motors to spin at 20%
speed, but the output of the algorithm tells the motors to run at 50% speed, the output will be
reduced to 20% in order to avoid saturation. This allows the user to control the maximum speed a
mechanism can spin.

Another addition is an integral anti-windup check that only allows integration when the
system is not saturated. Saturation refers to when the output of the PID algorithm the physical
limitations of the actuator it is outputting to. For example, if the maximum RPM of a motor is
200, and the algorithm determines an output of 300, the system is saturated. The anti-windup
check restricts the maximum value of the integral by clamping, or capping, the value to a
predetermined maximum. This is done by first storing the initial calculated speed value, and
comparing it to the clamped speed value after the saturation check. If the initial speed and
clamped speed are not equal, that means the system was saturated. Then, the sign of the
controller output before the clamping is compared with the sign of the current error. If both have
the same sign, that means the integrator is increasing the magnitude of the speed. In this case, the
error for calculating the integral term is set to 0, effectively making the term equal to its previous
value. These two checks determine if the integrator is actually making things worse by adding
onto the calculated speed when it does not need to. The purpose of the integral term is to nudge
the system to its target when the proportional term is not able to, and doing a conditional
integration such as this will help tame the integrator by not letting it integrate unless the system
is not being saturated.

WPID VEX Library 12

Figure 7. A modified diagram showing the logic behind integral clamping. If the output is being
clamped and the output is increasing error, then set the error of the integral term to 0.

The PID algorithm exits when the function unfinished determines if the error is within
a predetermined upper and lower bound, and if the speed output is below the low speed
threshold. A reset function resets the previous error and previous integral stored in the class, so
that subsequent usage of the PID functions starts from an initial state. A copy function is used to
copy PID constants to a new PID object for use when multiple mechanisms want to use the same
constants, but different instances of a PID object. This was particularly useful for chassis control,
where both sides of the chassis use the same constants, but store different error and integral
values over the course of the loop.

3.1.3 Implementing the Mechanism Class

The fundamental basis of how WPID was developed is the idea that each component
actuated by motors is just a collection of motors connected to metal, wheels or other objects.
With this in mind, a Mechanism class was designed to hold information regarding these motors
such as the actual motor objects, and the external gear ratios. The constructor takes in a
vex::motor_group and a gear ratio, as well as an optional string identifier used in logging, shown
below in Figure 8. The gear ratio term is the ratio of any internal and external gears used in the
construction of the mechanism itself. Sometimes a gear ratio can be utilized to increase the speed

WPID VEX Library 13

of the mechanism for something like a flywheel, or increase torque for a lift. In either case, this
term scales the output to account for the gearing, which ensures the position of the mechanism is
accurate.

Figure 8. Mechanism constructor.

The Mechanism class implements the PID algorithm through a private function named
spinToTarget(). This function is responsible for calculating and driving the motors based on all
the parameters available, such as the target position, and a maximum speed. It works by first
aggregating all parameters required for PID calculations like the current position, the target, max
speed, as well as adding the offset (explained in the next paragraph). These parameters are then
used in a while loop to calculate the speed of the motors based on the current state. These
parameters are passed into the PID algorithm; the output of which is checked and then relayed to
the motors to spin. This function is the literal driving force behind all movement in the WPID
library.

Offset is a band-aid solution for when your robot is under or overshooting its targets
consistently, which works by adding a constant value to the target in the units of the motion
where offset is being used. For example, during testing the robot would consistently reach 23
inches when the target was 24 inches, and to remedy this an offset of 1 inch was added to
improve the precision. Offset was added to the library to help beginner teams improve their
precision without needing to retune the system if there is a consistent error, but as stated before,
it is a band-aid solution. This is especially useful when teams travel to a new environment with
slightly different surfaces, or just to help increase the accuracy of the robot when needed. The
offset can be set through the mechanism itself, and the units are in vex::rotationUnits::degree.

Other functions utilize this private function to complete both absolute and relative
movement, as well as synchronous and asynchronous movement. These movement types are
further explained in Section 3.1.5. Mechanism also contains other functions for polling data and
setting other options such as the PID constants, and the error bounds. These functions can affect
the behavior of the mechanism, and are also sometimes used for PID related calculations.

Mechanism was built to further abstract a motor_group, and was meant to be
implemented in other classes that want to control Mechanisms in a specific way, such as a
chassis. That is why each of the Chassis classes implement Mechanism in order to utilize all of
WPID’s functionality.

3.1.4 Implementing the Chassis Classes

The WPID library defines a chassis as the drivetrain of a robot. The chassis is necessary
for any driving actions that a robot must take on the field. Our library’s implementation of

WPID VEX Library 14

chassis consists of a hierarchy of different common chassis types used in the VRC setting: Tank
Drive (also known as Skid Steer) and H-Drive.

Figure 9. Chassis class inheritance diagram.

This chassis hierarchy includes one abstract class Chassis, its subclass Tank, and a Tank
subclass HDrive. The pure virtual Chassis class contains all function signatures and fields that
are shared between the available chassis types. The Tank classes declare and implement each of
the functions from the Chassis class, as shown in Figure 10 below. Tank class also inherits all the
data fields contained in Chassis.h. The HDrive classes declare and implement each of the
functions from the Tank class, plus new functions that relate to the extra center motor group.
Likewise, the HDrive class inherits all the data fields contained in Chassis but adds new data
fields that relate to the center motor group.

Every chassis is made up of its track width, wheel radii, motor groups, and gear ratios.
The track width variable contains the distance between the centers of the front/back wheels
across the body of the robot; this variable is used in turning logic. The wheel radii are used to
determine how far the robot travels per motor revolution. The motor groups define how many
independently moving parts are in the drivetrain. The gear ratio is used to scale the output speeds
based on any external or internal gears used in the drivetrain.

Figure 10. The Tank constructor.

Each type of motion in any chassis class is built off of the internal spinToTarget()
function used within the Mechanism class. Thus, we did not have to implement PID separately
for straight, turning, or diagonal motion. The chassis movement functions simply pass the
appropriate distances and directions to the internal mechanism function. Since each chassis
movement function works in the same fundamental way, the straight(float distance, int
max_speed) function implementation can serve as a general example of how this part of the
library was written:

WPID VEX Library 15

Figure 11. Converting the distance between different units of measurement and setting
the target with that converted unit.

In Figure 11 above, the Conversion class ensures that the entered distance units are
transformed into standard inch units. Then, the target distance for the motion is translated from
inches to motor degrees.

Figure 12. PID and Offset values are assigned to all motor groups before spinning the
motors to the target location.

Next, the straight function assigns the correct PID object to each motor_group, as shown
in Figure 12. Each PID object (pidStraight, pidTurn, and pidStrafe) has gains tuned specifically
to suit the motion it corresponds to, and must be manually changed before each type of motion.
The function repeats this step with offset. After these steps, the distance and max_speed
parameters are sent to a function that transfers control to Mechanism movement functions.

Overall, the Chassis class and its hierarchy provide a bridge between the VEX
programmer’s intended instructions and the internal Mechanism class. The threading and PID
implementation are details that we abstracted away to make the Chassis interface more
user-friendly with a logic flow that is relatively simple to follow.

WPID VEX Library 16

Figure 13. UML Class diagrams of Chassis, Tank, HDrive and Mechanism. These classes are
responsible for outputting PID calculated speeds to the motors.

3.1.5 Types of Motion

In the WPID library, there are four types of motion. Absolute motion moves the
mechanisms to an absolute position, relative to where the motors are initialized. Relative motion
takes the current state of the mechanism and adds the input to produce a target. Synchronous
motion blocks any other function calls until this motion is complete. Asynchronous motion calls
do not block code after the function call. Each type of motion has various use cases, which can
be determined by the programmers and autonomous designers as needed.

WPID VEX Library 17

Absolute motion is done by initializing the mechanism to a starting position, denoted as 0
degrees. For most mechanisms such as a lift, the starting position is usually determined by a
physical limit. This initialization occurs automatically within WPID and is done when the
program initializes each of the motors on startup. However, the user may change this location
with the resetPosition() function, in the case that they employ other methods of ensuring the
mechanism is at its starting point, such as using limit switches or other physical hard stops. This
is useful for ensuring the robot returns to a “home” position. Absolute motion assumes the target
is relative to the starting point of the mechanism. For example, if the target is 80 degrees, and the
mechanism is currently at 20 degrees, the mechanism will move only an additional 60 degrees.
Relative motion is done by adding the target of the function to the current position of the robot.
In this case, the robot starting at 20 degrees, moving relative to 80 degrees will actually result in
the mechanism finishing at 100 degrees. In short, absolute motion uses the starting point as a
reference, where relative motion uses the current position of the mechanism as its reference
point.

Synchronous motion is motion that does not allow any other function calls to occur until
this movement is complete. This type of motion is useful when the user wishes to move a single
mechanism at a time, which can help maintain the robot's balance, accuracy and precision.
Sometimes moving multiple mechanisms is more efficient, which Asynchronous motion allows.
These functions do not block the program and allow other function calls to occur after. When
Asynchronous functions are used, a helper function called waitUntilSettled() can be useful in
determining when the mechanism is finished moving. The wait function does indeed block the
program from executing any other functions until this function returns, signifying the mechanism
has finished moving. Using both of these types of movement can easily improve the efficiency of
your autonomous runs by allowing multiple mechanisms to move concurrently. An example of
using async motion with an H-Drive chassis can be seen in Figure 14 below.

Figure 14. The async call allows other functions to be performed underneath, while the
waitUntilSettled() function blocks the program until the chassis has finished moving.

3.1.6 Logging Capabilities

Our library will also come with two logging functions that have their own separate
purpose for coding in our library. The first capability is the LOG() function, which is mainly
focused on debugging the programmer-written code by providing feedback on the robot's
movement. This is achieved with the Logger.h file, a component of the WPID namespace that
accepts three log types when LOG() is called, DEBUG, INFO, WARN.

WPID VEX Library 18

Flagging a LOG() type as DEBUG, INFO, or WARN does not result in different outputs,
it is a visual label for the programmer to set themselves for their understanding of what is being
logged. DEBUG and INFO are most commonly used for logging program data, such as robot
movement parameters, directly to the console to visually read the output of the program. This
helps spot where the code may be going wrong by detecting erroneous outputs in the PID’s
parameters. WARN is most commonly used where undesirable behavior of the robot is being
detected. An excellent example of this is when the robot’s movement times out after taking too
long to come to a complete stop, the WARN log would display this information to the user, and
they would then know that was the explanation for the robot’s behavior.

The second logging capability is a graphical script in python that helps visualize PID
parameters (speed, error, distance to target, Kp, Ki, and Kd) in an understandable manner. This is
achieved by the robot first logging these parameters to CSV files while the robot is moving, and
is saved with a naming convention that uses the VEX::timer, which starts at 0 every time the
program is run. This logging capability does require VEX teams to possess micro-SD cards, and
likely microSD to SD card adapters to plug into the programmer’s computer.

Once the programmer plugs in the micro-SD card with the logged VEX data, they then
have to transfer the files to the python_resources/VexLogs/ file path within our library, and
remove any existing CSV files in that folder. Now, all the programmer has to do is run the
graphData.py python file in the python_resources folder, producing a graphic similar to figure X
below.

Figure 15. Example output from the graphData.py file.

The files placed in VexLogs are all pulled in at once, and sorted by which motor group
and motor instruction was assigned to that file, creating a data frame per motor group that

WPID VEX Library 19

contains all the instructions given to those motors. The data is then split into each of the
respective graphs shown in Figure 15 above, with Error Over Time at the top, followed by Speed
Over Time, PID Over Time and finally Distance Over Time. A window with these graphs pops
up for each motor group that is currently instantiated on the robot. Lastly, the programmer can
use command line arguments when calling graphData.py to only include some of the PID
parameters in PID Over Time. For example, calling graphData.py P I will not graph Kd, or only
using D will exclude Kp and Ki. By default, all PID values are included in the graphs.

3.2 Conducting the Study on VEX Robotics Students
This study intends to interview current VEX competitors about their experience with

existing control resources and collect student feedback on the WPID resources in the scope of
VEX competitions. The study will also analyze the autonomous routes that students create with
the library to determine the usability and comprehensibility of the resources.

3.2.1 Exploration

In the initial stages of the research, we gave students in each VEX team access to the
WPID library and its supplemental materials. The presented materials will include the files
needed to import the WPID library into their own projects, a documentation website, and
tutorials on how to use the library. We then took a step back to allow students to explore the
library, testing out features and familiarizing themselves with its core functionality. Students may
also use the website tutorials and documentation for assistance, but we did not answer any
questions or assist in this process. The objective of this stage was to simulate the environment
where the students would discover the resource during a competition season. Student teams were
expected to use their own robots, and assumed any responsibility with handling the robot and any
programmed motion safely. The library does have safeguards to prevent some extreme
movements, such as limiting a mechanism's motion, but this had to be set by the students in order
to function. This initial exploration stage took place over a period of one week. The amount or
extent of usage was not controlled during this stage of the study; the students decided themselves
if they wanted to solely read the documentation or attempt to use the entire library’s
functionality.

3.2.2 Testing

After some exploration and experimentation, we instructed the students to perform
specific tasks utilizing the library by developing a simple autonomous routine. We recommended
that the students create a new project so that the code was separate from their existing programs,
though not required. The nature of this ‘test’ was relatively low-complexity, but covered parts of
the library that the students may not have been completely familiar with. The goal of this stage is

WPID VEX Library 20

to see how quickly a team can write and debug a simple autonomous routine utilizing the library.
This period started after the week of exploration, and took place over one week. After the week
of testing, we asked for a video of the VEX team’s robot performing the routine. We also asked
for access to the students’ program and reviewed the written code. Any amount of completion
was acceptable.

3.2.3 Interview

The final portion of the research consisted of an online or in-person interview with each
VEX team. A full list of questions can be found in Appendix C. Interviews were not expected to
exceed forty-five minutes. Through the interview, we gained a better understanding of how high
school level VEX teams program their robots and collected student opinions on the WPID
library. The interview began with basic background questions to get an understanding of the
team’s programming skill level and their experience with robotics as a whole. The next portion
consisted of questions relating to robotics-specific ideas, such as control algorithms. Finally, we
asked questions pertaining to the library itself. Some questions asked about ease of use, while
others focused on the supplemental material.

3.2.4 Research Conclusion

We utilized the methodology for this study to analyze how high school VEX students
interact with the WPID library and its supporting website. Through the study, the team also
measured student satisfaction with the created resource. Ultimately, the research team intends for
students to learn and explore the library in a low-stakes environment, while also learning other
important robotics concepts that are oftentimes difficult to implement due to a lack of dedicated
VEX resources. The researchers have not set expectations relating to the extent of usage of the
library, as it is important for the study to emulate the environment in which an independent team
would come across the WPID resource after its release.

3.3 Creating the Website Documentation and Tutorials
To complement the VEX library and to assist the students with implementing and

understanding PID control, a website will be developed to host the library’s documentation as
well as video and text tutorials on how to use the library. Ensuring the website is easy to
navigate, read, and understand is a top priority to maximize the ability of the documentation and
tutorials to teach beginner VEX students how to implement PID movement on their robots.

3.3.1 Website Design and Implementation

The website is a collection of static HTML pages hosted via GitHub’s Pages (WPID,
2024). Through the use of CSS styling and Bootstrap, the website was created to be easy to

WPID VEX Library 21

navigate both on computer monitors and mobile devices. The appearance of the site’s landing
page is found in Figure 16 for desktop views and Figure 17 for a mobile view. We chose a
deliberate contrast of colors for the site design, specifically on the home page, to draw the users
towards the quick start section of the home page. This draws users to go right towards the
introductory tutorials for using our library, shown in Figure 18, and from there, they naturally
head towards the more advanced tutorials as they progress through PID development.

Figure 16. The WPID Library website’s landing page from a desktop view.

WPID VEX Library 22

Figure 17. The WPID Library website’s landing page from a mobile device view.

Figure 18. The destination of the “Quick Start” button on the landing page.

WPID VEX Library 23

3.3.2 Documentation

The documentation of our library is hosted on this website. In order to maximize the
consistency and readability of our documentation, we opted to generate the HTML, JS and CSS
files with a program called Doxygen (Doxygen, 1997). This program is considered a standard
tool for documenting programs written in C++, with the ability to read our entire library and
generate accurate and easily readable documentation for our library. The documentation to our
code can be accessed by clicking the “Documentation” hyperlink in the navigation menu, and
takes you to the page depicted in Figure 19.

Figure 19. The central point of our library documentation on the website.

To run Doxygen properly, we used Javadoc style comments that Doxygen is able to ingest
and generate documentation for our classes in the library. Navigating a Doxygen generated site is
easy, since you can view any of our classes’ functions and descriptions simply by clicking on the
name shown in Figure 19. This takes the user to a page similar to Figure 20, where all the
classes’ constructors, destructors, public member function and regular member function are not
only listed, but documented with comments. An example of the documentation of a member
function is shown in Figure 21. Each function and its associated parameters have an accurate and
detailed description.

WPID VEX Library 24

Figure 20. Our PID class page, representing an example of what Doxygen generates for
part of our classes.

Figure 21. An example of a documented function within the PID class.

Our goal with using Doxygen is to provide clean, accurate and detailed code
documentation that students can easily read and understand and do not have to be coded by hand.
Doxygen is able to turn our code into a well documented project and an excellent teaching tool
through its automatically generated documentation that can assist students, who may be new to
programming, starting a VEX PID project.

WPID VEX Library 25

3.3.3 Tutorials

The last portion of our website is dedicated to hosting video and/or text tutorials covering
numerous topics that will allow users to get our library up and running on their machines. Figure
22 depicts the layout of the tutorials page. Every tutorial was written using markdown files,
which are embedded inside the HTML files. Using markdown files is an excellent way to create
easily readable tutorials that contain a mixture of code, commands, and text explanations. We
have eight tutorial topics covering the following content:

● Setting up VSCode for V5
● Library Implementation
● Chassis
● Mechanism Setup/Usage
● What is PID?
● Data Logging
● Utilities
● Asynchronous Movement

Each of these topics is, at a minimum, covered by an in-depth text section that
comprehensively explains the topic at a high school level. An example of what a tutorials page
looks like is shown in Figure 23 If applicable, there are also video tutorials on some of the topics
to act as a visual walkthrough of some of the process. This was added to assist in the
implementation of our library and its code, as being able to visually see the steps a student needs
to take can be easier than following text instructions. The video tutorials were recorded and
uploaded to a YouTube channel called WPID Library, so the videos can be accessed both on and
off of our website, with WPID Library Importing being the only video tutorial so far (WPID
YouTube, 2024).

WPID VEX Library 26

Figure 22. The WPID Library Tutorials Page.

As mentioned earlier, each tutorial listed above has the goal of teaching entry-level and
intermediate-level VEX students specific topics relating to implementing our library or PID
control. The “Setting up VSCode for V5” tutorial teaches students how to get the V5
environment up and running through VSCode with extensions. The “Library Implementation”
tutorial walks students through the basic implementation of our library into their projects. The
“Chassis” tutorial teaches students how to utilize the chassis class, and its basic movement
functions. The “Mechanism Setup/Usage” tutorial explains how to use our library to get the VEX
Mechanism up and running in your program.

The “What is PID?” tutorial introduces the concept of PID to the students. The tutorial
includes both educational explanations and code examples to assist in teaching the students the
concept of PID and how to use it. The “Data Logging” tutorial exemplifies how to log the PID
parameters that the VEX robot is using to a comma separated file and how to graph this data
using an existing python script. The “Utilities” tutorial teaches students some utilities to assist in
making the robot more consistent, which include the error bounds, bias, ramp up, integral
cramping, console logging and unit conversion. Lastly, the “Asynchronous Movement” tutorial
teaches students how to use the asynchronous functions to move multiple mechanisms at once.

WPID VEX Library 27

Figure 23. The Chassis Tutorial page, with the embedded markdown file containing the
text based tutorial.

3.4 Measuring Success
This MQP project is intended to be an educational resource for high school students.

Based on this goal, the best way to measure success for the project was to assess results directly
from the students. In our evaluation, we considered two different types of success: success of the
beta version of WPID and success of the MQP overall. The success of the library was measured
based on an analysis of the feedback given from the VEX teams who participated in the study.
We also examined the accuracy of our code by studying the videos and code bases provided by
the VEX teams. The success of the MQP was based on student interest in our project’s purpose,
collection of actionable suggestions for improvement, and donation of the MQP materials to a
VEX team.

3.4.1 Autonomous Route Analysis

The success of the beta release of the WPID library was measured in part through the
analysis of student-created WPID autonomous routines. Because our study did not require a
specific amount of completion, we evaluated the code bases and videos more qualitatively. In our
evaluation, we considered the student’s experience with C++, VEX, and general programming
concepts (inheritance, objects, enumerations). The specific route that was given to the students
was designed to include multiple turns and straight forward movement. A full image of this route
can be found in the appendix.

WPID VEX Library 28

3.4.2 Interview Responses

The success of the beta release of the WPID library was also determined by the responses
given to our interview questions listed in Appendix C. The seven questions on the second half of
the interview cover the students’ interactions with our library. We created a spreadsheet with
interview responses that reflected the results in a pro vs. con format. Using these summary
statistics, we were able to identify overall positive and negative trends regarding different aspects
of our resources. We decided that a net positive result (pro ratio of ≥ 50%) would signify success
for the beta version of the WPID library. The results we collected from this analysis are depicted
and interpreted in Section 4.2.

3.4.3 Donation of Materials

At the completion of our MQP and after we presented our MQP in April, we
disassembled the robot and donated the materials to one of the high schools we interviewed for
the study. This high school was the Moses Brown School in Providence, Rhode Island, where
Jair Meza attended until 2020. We chose this school as a special thank you for participation in
the study, and for the ease and cost of transporting the materials to them as opposed to shipping
the materials to another team somewhere else in the country.

WPID VEX Library 29

4.0 Results
After interviewing several VEX teams, gathering and analyzing their code/videos, and

running our own structured tests, we were able to determine the benefits, drawbacks and
accuracy of our VEX library and website.

4.1 Robot Testing
In order to verify the accuracy of our PID algorithm, we first created a series of tests

using the fundamental types of motion that compose VEX autonomous routes. Every motion that
our library can support can be broken down into straight and turn movements. Strafing is simply
moving straight along the horizontal axis, while moving diagonally is a combination of straight
and strafing motions. Thus, we decided to test the straight and turn functions with fully tuned
PID. We decided to split these tests by distance, since our PID algorithm is based on the motor
encoder readings. We found that with default parameters and a tuned PID system, the robot was
able to end up relatively close to its setpoint within a reasonable amount of time. The average
error across all straight and turn motions were 11% and 8.2% respectively. However, adding
features in our library that support the PID algorithm for further tests yielded much better results.
Adding in a tuned offset for each specific distance decreased the straight and turn average errors
to 1.3% and 1.6%. According to these results, the library is effective at navigating a robot to its
general target location (within ~10%), however; the library should be used with a tuned offset to
get the most precise motion results (within ~1.5%). The reason for this difference could be due to
a number of factors: wheel slippage, drift, motor slop (where the motors start running slightly
before the wheels start spinning), and build issues all potentially impact the robot’s ability to
reach its target destination. Offset is able to counteract these factors in a way that the PID
algorithm cannot; it acts as a manual correction value.

Next, we completed a summative test with the complex square motion. This motion
started at a point that we labeled {0 in, 0 in, 0°} and included four periods of straight movement
followed by turning. We tested this motion with offset, based on the conclusion from our
previous tests. We started the test runs using the offsets we had identified earlier for 24 in and
90°. In this summative test, the robot ended its motion at the average point of {0.3 in, 0.8 in, 2°},
where each number is the absolute value of our average distance away from the starting point.
Because this complex motion consists of a series of eight distinct movements, the team found
this average error to be acceptable in a competition setting. Overall, the team concluded that our
library is effective at moving the robot close to its setpoint during simple and complex motions.

WPID VEX Library 30

Motion Speed Expected
Position

Actual Position Changed Parameters Average
Error

Straight 15 4 in {3.25, -, -, 3.5, 3.38} in max_acceleration = 0.5 17%

Straight 50 24 in {22.75, -, 23.25, 23, 23.25} in None 4.2%

Straight 50 60 in {57, 57.5, -, 57.75, -} in None 4.2%

Turn 25 40° {40, 31, 36, 39, 35}° None 9.5%

Turn 25 90° {82, -, 80, 85, 85}° None 8.0%

Turn 25 180° {168, 167, 168, 166, 168}° None 7.0%

Straight 15 4 in {4, 3.875, 4, 4, 4} in offset = 0.674 in 0.63%

Straight 50 24 in {23.75, 23.5, 23.75, 23.5, 23.75} in offset = 1 in 1.5%

Straight 50 60 in {61.25, 61, 60.75, 61, 61} in offset = 2.5 in 1.7%

Turn 25 40° {39, 39, 40, 39, 39}° offset = 3.8° 2.0%

Turn 25 90° {90, 87, -, 89, 88}° offset = 7.2° 2.0%

Turn 25 180° {178, 176, 179, 179, 180}° offset = 12.6° 0.89%

Square 35 {0 in, 0
in, 0°}

[{0, -0.5, -1}, {0, -1.5, -2}, {0, 0,
-3}, {-1.5, -1, -1}, {0, 1, -3}] in °

straight_offset = 1 in
turn_offset = 3.5°

N/A

Table 1. Table of results from simple and complex motion tests with WPID

4.2 VEX Student Trials
Our original goal was to have eight teams use our library and provide feedback, code, and

video documentation of the teams using our library. Unfortunately, due to factors including lack
of knowledge in C++, the short window for the study to be completed, and the study taking place
in the middle of competition preparations, we were only able to interview three of the teams.

4.2.2 Successes

As a result of the interviews with three VEX teams, we were able to determine that this
library is a success. Given the aforementioned success threshold being a positive ratio of Pros vs
Cons (>50% Pros), we have far exceeded that value with a ratio of 2 Pros to every Con, or a

WPID VEX Library 31

percentage of about 66%. Two teams mentioned how well the code was documented, and stated
that the documentation itself was very helpful in understanding the code. The third team made
mentions of how the material on the website was “easy to understand” and that they had “no
problems with the website.” The code itself was stated to be “easy to use,” with one team stating
that they were “excited about the control” over the robot. Last and most importantly, two of the
teams said they were excited to continue using our library after the study, as they felt it was a
crucial resource to assist with their VEX autonomous motion.

During one of the team’s autonomous routines, the precision and consistency of each
movement was relatively high. The routines were a recorded video of the robot performing a
route, which was difficult to visually inspect the performance. Accompanying the video was the
project used to program the robot for this route. Typically, robots moving autonomously are
subject to error based on external factors. This error could throw the heading of the robot off by a
few degrees, but this was not the case during this autonomous routine. The programmer was able
to use a consistent angle to turn the robot, implying the degree of error was low enough to allow
for this copy-paste behavior. Sometimes, changing the input by a few degrees is necessary when
the code results in inconsistent turns, though this was not the case for this run. This was
anticipated based on our previous in-house testing, as we were able to determine the library
provides a consistent movement. There was only one autonomous routine to analyze, so there is
a low sample size, but overall, the team is confident that the consistency of the library, through
our testing and analysis, is sufficient for a new team to score some points.

4.2.3 Drawbacks

With the success came some drawbacks as well. The first one being that our sample size
in the study was not as large as we had hoped for. Due to the study being conducted in the
middle of the VEX competition season, a majority of our teams did not have the time to attempt
our library, and of the three teams that did, two could not put as much time as they would have
hoped for in the timespan we were working with.

As far as the code itself goes, the largest hurdle to the library was the coding language it
was written in. Most high schoolers are unlikely to know C++ to the degree that was required
when using the library, especially if they had not used VEXCode before, and it was noted that
our documentation and tutorials on the website lacked any guidance on how to use the C++
programming language. Outside of C++, one team noted that they were not able to run the code
as perfectly as they would have wanted to. This is likely due to the robot not being fully tuned as
a result of the lack of time these teams had to work on the library during competition season, but
could also be through an error on the utilization, though it is unclear as there was not enough
time to analyze their program.

WPID VEX Library 32

4.3 Future Project Opportunities
Although the library has proven to be successful in terms of what was measured, there are

still multiple facets that need to be flushed out before the release version is given to the
community. One crucial aspect is to improve the precision of the PID algorithm. This can include
adjustments to calculations, adding some new features to make it easier and more predictable to
tune, as well as enhancing the experience of using the PID class. Something that can be of great
help is a more sophisticated derivative filtering system. At the moment, a low pass filter is built
into our PID calculations. This filter’s effects are extremely difficult to notice without using a
high Kd gain, though a high gain typically results in poor settling behavior. Another major
upgrade could be to simplify the overall class structure and functions to make it easier to read
documentation, as well as use the library itself. There are some functions within the library that
are somewhat ambiguous, which is only cleared up by reading the documentation and tutorials
thoroughly. For example, functions pertaining to max acceleration are difficult to understand as
the parameters to these functions are in odd units that aren't typically brought up otherwise. One
improvement could be to automatically determine the acceleration during PID calculations so
that the user has a smooth experience and does not have to interact with this function at all. Some
other improvements include, but are not limited to, better thread safe logging, support for
internal gear cartridges, a function to “engage” the wheels in order to reduce the slop within
motors before a movement is called, swing and arc turns, simplifying the inheritance, and adding
other drive train models that are common. Some advanced features to add could include support
for external encoders, motion profiling, and drive to point algorithms, though these are slightly
out of the scope for the library, as they are more suited for the advanced programmer. Ultimately,
as long as the library is capable of consistent autonomous movement, with a very simple API
that beginners who are less familiar with C++ can use effectively, then the WPID library will be
capable of raising the skill floor when it comes to the autonomous period in a VEX VRC
competition.

WPID VEX Library 33

Bibliography

Barr, Michael, “Introduction to Closed-Loop Control and PID”,

https://barrgroup.com/embedded-systems/how-to/pid-closed-loop-control, February 5th, 2024,

2002

Collimator, “Modern Control System Design: Building the Ultimate Automatic Response

Systems”, https://www.collimator.ai/post/what-is-control-system-design, February 5th, 2024,

2023

Dawn Tilbury and Bill Messner, “Introduction: PID Controller Design”,

https://ctms.engin.umich.edu/CTMS/index.php?example=Introduction§ion=ControlPID,

February 5th, 2024, n.d.

Doxygen, https://www.doxygen.nl/, February 23, 2024, 1997

Emerson, “The PID Controller & Theory Explained”,

https://www.ni.com/en/shop/labview/pid-theory-explained.html, February 5th, 2024, 2022

Gamma, E, “Design patterns elements of reusable object-oriented software”, February 15, 2024.

1994

Global Industry Analysts, “Global PID Controllers Market to Reach $1.6 Billion by 2026”, PR

Newswire,

https://www.prnewswire.com/news-releases/global-pid-controllers-market-to-reach-1-6-billion-b

y-2026--301506357.html, February 5th, 2024, 2022

Jackson Area Robotics, “JAR-Template”,

https://jacksonarearobotics.github.io/JAR-Template, February 24, 2024, n.d.

LVGL, “Light and Versatile Graphics Library”, https://lvgl.io/, February 24th, 2024, n.d.

https://barrgroup.com/embedded-systems/how-to/pid-closed-loop-control
https://www.collimator.ai/post/what-is-control-system-design
https://ctms.engin.umich.edu/CTMS/index.php?example=Introduction§ion=ControlPID
https://www.doxygen.nl/
https://www.ni.com/en/shop/labview/pid-theory-explained.html
https://www.prnewswire.com/news-releases/global-pid-controllers-market-to-reach-1-6-billion-by-2026--301506357.html
https://www.prnewswire.com/news-releases/global-pid-controllers-market-to-reach-1-6-billion-by-2026--301506357.html
https://jacksonarearobotics.github.io/JAR-Template/
https://lvgl.io/

WPID VEX Library 34

MATLAB, “Anti-windup for PID control | Understanding PID Control, Part 2”,

https://www.youtube.com/watch?v=NVLXCwc8HzM, February 5th, 2024, 2018

Okapilib, “OkapiLib Index Page”, https://okapilib.github.io/OkapiLib/index.html, February 24th,

2024, n.d.

Purdue ACM SigBots, “PROS First Time Users Guide”,

https://pros.cs.purdue.edu/v5/getting-started/new-users.html, February 24th, 2024, 2023

REC Foundation, https://roboticseducation.org/about-us/, February 16, 2024, n.d.

SilverStar, “PID Feedback Loop”, https://en.wikipedia.org/wiki/File:PID-feedback-loop-v1.png,

February 12, 2024, 2006

“VEXcode API Reference”, https://api.vexcode.cloud/v5/, 2024, n.d.

VEXForum, https://www.vexforum.com/search?q=PID, February 5th, 2024, 2024

VEX, https://www.vexrobotics.com/support/about-vex, February 16, 2024, n.d.

VEX Robotics, https://www.vexrobotics.com/v5/competition/vrc-current-game, February 5,

2024, 2024

WPID, https://wpidlib.github.io/WPID-Library-Docs/index.html, February 16, 2024, 2024.

WPID YouTube, https://www.youtube.com/channel/UCotYEsT_Sekt51_GJWMwgQw, February

16, 2024, 2024.

Zarchi, Jess. “EZ-Template”, https://ez-robotics.github.io/EZ-Template/, February 24, 2024,

2024.

https://www.youtube.com/watch?v=NVLXCwc8HzM
https://okapilib.github.io/OkapiLib/index.html
https://pros.cs.purdue.edu/v5/getting-started/new-users.html
https://roboticseducation.org/about-us/
https://en.wikipedia.org/wiki/File:PID-feedback-loop-v1.png
https://api.vexcode.cloud/v5/
https://www.vexforum.com/search?q=PID
https://www.vexrobotics.com/support/about-vex
https://www.vexrobotics.com/v5/competition/vrc-current-game
https://wpidlib.github.io/WPID-Library-Docs/index.html
https://www.youtube.com/channel/UCotYEsT_Sekt51_GJWMwgQw
https://ez-robotics.github.io/EZ-Template/

WPID VEX Library 35

Appendix A: Informed Consent Form for Over-Eighteen Participants

Informed Consent Agreement for Participation in a Research Study
Investigators: Jair Meza, Austin Rebello, Brianna Sahagian

Contact Information: jdmeza@wpi.edu, amrebello@wpi.edu, bnsahagian@wpi.edu

Title of Research Study: WPID: A Simple PID Library for VEX

Introduction:

You are being asked to participate in a research study. Before you agree, however, you must be

fully informed about the purpose of the study, the procedures to be followed, and any benefits,

risks or discomfort that you may experience as a result of your participation. This form presents

information about the study so that you may make a fully informed decision regarding your

participation.

Purpose of the study: VEX robotics members in high school must learn different ways to

control their robots during their competition seasons. Oftentimes, beginner teams looking to take

the leap to more intermediate control algorithms struggle with finding quality resources. These

resources are scattered across the web, and existing code for control is either too advanced or

lacks understandable documentation. Through our MQP project, the team has created a

collection of tutorials and well-documented code to facilitate the learning process for VEX

students. This study intends to interview and survey current VEX competitors about their

experience with existing control resources and collect student feedback on the WPID resources

in the scope of VEX competitions.

Procedures to be followed: In the initial stages of the research, the researchers will give

students in each VEX team access to the WPID library and its supplemental materials.

The researcher team will take a step back and allow students to explore the library, testing

out features and familiarizing themselves with its core functionality. Students may also

use the website tutorials and documentation for assistance, but the researchers will not

answer any questions or assist in this process. Student teams are expected to use their own

mailto:jdmeza@wpi.edu
mailto:amrebello@wpi.edu
mailto:bnsahagian@wpi.edu

WPID VEX Library 36

robots, and assume any responsibility with handling the robot and any programmed

motion safely. The library does have safeguards to prevent some extreme movements,

such as limiting a mechanism's motion, but this must be set by the students in order to

function. This initial exploration stage will take place over a period of one week. The

amount or extent of usage will not be controlled during this stage of the study; the

students may decide themselves if they want to solely read the documentation or attempt

to use the entire library’s functionality. After some exploration and experimentation, the

researchers will instruct the students to perform specific tasks utilizing the library by

developing a simple autonomous routine. This period will start after the week of

exploration, and will take place over one week. After the week of testing, the researchers

will ask for a video of the VEX team’s robot performing the routine. The research team

will also ask for access to the students’ program and review the written code. Any amount

of completion is acceptable. The final portion of the research consists of an online or

in-person interview with each VEX team about how the team approaches programming

their robots and about the team’s experience with the WPID library. It is expected that this

interview will take no longer than 45 minutes.

Risks to study participants: The probability and magnitude of harm or discomfort anticipated

in the research are not greater than those ordinarily encountered in daily life or during the

performance of routine physical or psychological examinations or tests.

Benefits to research participants and others: Participants will receive educational value

from the tutorials on WPID and through the utilization of the library. Topics covered in the

tutorials include the PID robotics control algorithm, setup of the coding environment and the

WPID resource, and utilization of the library's functionality. The study will also encourage

students to practice developing autonomous routines using a custom set of functionalities

based on resources they are familiar with. The larger VEX community will be able to access

the WPID library and associated website resources upon completion of the MQP project.

The MQP resources will retain the same educational value seen during the study, accessible

to VEX teams through the Internet.

Record keeping and confidentiality: Only the investigators will have access to the records

WPID VEX Library 37

collected from this study. All interviews are anonymous, with no individual’s names tied to any

interview response, thus maintaining full confidentiality. This consent form is the only personal

identification tying an individual to our study, and will not be shared publicly. Records of your

participation in this study will be held confidential so far as permitted by law. However, the

study investigators, the sponsor or its designee and, under certain circumstances, the Worcester

Polytechnic Institute Institutional Review Board (WPI IRB) will be able to inspect and have

access to confidential data that identify you by name. Any publication or presentation of the

data will not identify you, only your interview responses may be presented publicly.

For more information about this research or about the rights of research participants, or

in case of research-related injury, contact:

Investigators: Please see the top of the consent form for our contact information.

IRB Manager: Ruth McKeogh, Tel. (508)-831-6699, Email: irb@wpi.edu

Human Protection Administrator: Gabriel Johnson, Tel. (508)-831-4989, Email:

gjohnson@wpi.edu

Your participation in this research is voluntary. Your refusal to participate will not result in

any penalty to you or any loss of benefits to which you may otherwise be entitled. You may

decide to stop participating in the research at any time without penalty or loss of other benefits.

The project investigators retain the right to cancel or postpone the experimental procedures at

any time they see fit.

By signing below, you acknowledge that you have been informed about and consent to be a

participant in the study described above. Make sure that your questions are answered to your

satisfaction before signing. You are entitled to retain a copy of this consent agreement.

___________________________ Date: ___________________

Study Participant Signature_______________________________

Study Participant Name (Please print)

____________________________________ Date: ___________________

mailto:gjohnson@wpi.edu

WPID VEX Library 38

Appendix B: Informed Consent Form for Under-Eighteen Participants

Informed Consent Agreement for Participation in a Research Study
Investigators: Jair Meza, Austin Rebello, Brianna Sahagian

Contact Information: jdmeza@wpi.edu, amrebello@wpi.edu, bnsahagian@wpi.edu

Title of Research Study: WPID: A Simple PID Library for VEX

Introduction:

You are the parent/guardian of _____________________________, a student being asked to

participate in a research study. Before you agree, however, you must be fully informed about the

purpose of the study, the procedures to be followed, and any benefits, risks or discomfort that

your child may experience as a result of their participation. This form presents information

about the study so that you may make a fully informed decision regarding your child’s

participation.

Purpose of the study: VEX robotics members in high school must learn different ways to

control their robots during their competition seasons. Oftentimes, beginner teams looking to take

the leap to more intermediate control algorithms struggle with finding quality resources. These

resources are scattered across the web, and existing code for control is either too advanced or

lacks understandable documentation. Through our MQP project, the team has created a

collection of tutorials and well-documented code to facilitate the learning process for VEX

students. This study intends to interview and survey current VEX competitors about their

experience with existing control resources and collect student feedback on the WPID resources

in the scope of VEX competitions.

Procedures to be followed: In the initial stages of the research, the researchers will give

students in each VEX team access to the WPID library and its supplemental materials.

The researcher team will take a step back and allow students to explore the library, testing

out features and familiarizing themselves with its core functionality. Students may also

use the website tutorials and documentation for assistance, but the researchers will not

mailto:jdmeza@wpi.edu
mailto:amrebello@wpi.edu
mailto:bnsahagian@wpi.edu

WPID VEX Library 39

answer any questions or assist in this process. Student teams are expected to use their own

robots, and assume any responsibility with handling the robot and any programmed

motion safely. The library does have safeguards to prevent some extreme movements,

such as limiting a mechanism's motion, but this must be set by the students in order to

function. This initial exploration stage will take place over a period of one week. The

amount or extent of usage will not be controlled during this stage of the study; the

students may decide themselves if they want to solely read the documentation or attempt

to use the entire library’s functionality. After some exploration and experimentation, the

researchers will instruct the students to perform specific tasks utilizing the library by

developing a simple autonomous routine. This period will start after the week of

exploration, and will take place over one week. After the week of testing, the researchers

will ask for a video of the VEX team’s robot performing the routine. The research team

will also ask for access to the students’ program and review the written code. Any amount

of completion is acceptable. The final portion of the research consists of an online or

in-person interview with each VEX team about how the team approaches programming

their robots and about the team’s experience with the WPID library. It is expected that this

interview will take no longer than 45 minutes.

Risks to study participants: The probability and magnitude of harm or discomfort anticipated

in the research are not greater than those ordinarily encountered in daily life or during the

performance of routine physical or psychological examinations or tests.

Benefits to research participants and others: Participants will receive educational value

from the tutorials on WPID and through the utilization of the library. Topics covered in the

tutorials include the PID robotics control algorithm, setup of the coding environment and the

WPID resource, and utilization of the library's functionality. The study will also encourage

students to practice developing autonomous routines using a custom set of functionalities

based on resources they are familiar with. The larger VEX community will be able to access

the WPID library and associated website resources upon completion of the MQP project.

The MQP resources will retain the same educational value seen during the study, accessible

to VEX teams through the Internet.

WPID VEX Library 40

Record keeping and confidentiality: Only the investigators will have access to the records

collected from this study. All interviews are anonymous, with no individual’s names tied to any

interview response, thus maintaining full confidentiality. This consent form is the only personal

identification tying an individual to our study, and will not be shared publicly. Records of your

child’s participation in this study will be held confidential so far as permitted by law. However,

the study investigators, the sponsor or its designee and, under certain circumstances, the

Worcester Polytechnic Institute Institutional Review Board (WPI IRB) will be able to inspect

and have access to confidential data that identify your child by name. Any publication or

presentation of the data will not identify your child, only their interview responses may be

presented publicly.

For more information about this research or about the rights of research participants, or

in case of research-related injury, contact:

Investigators: Please see the top of the consent form for our contact information.

IRB Manager: Ruth McKeogh, Tel. (508)-831-6699, Email: irb@wpi.edu

Human Protection Administrator: Gabriel Johnson, Tel. (508)-831-4989, Email:

gjohnson@wpi.edu

Your child’s participation in this research is voluntary. Your child’s refusal to participate will

not result in any penalty to you or any loss of benefits to which you may otherwise be entitled.

They may decide to stop participating in the research at any time without penalty or loss of other

benefits. The project investigators retain the right to cancel or postpone the experimental

procedures at any time they see fit.

By signing below, you acknowledge that you have been informed about and consent for your

child to be a participant in the study described above. Make sure that your questions are

answered to your satisfaction before signing. You are entitled to retain a copy of this consent

agreement.

___________________________________ Date: ___________________

Study Participant Parent/Guardian Signature

mailto:gjohnson@wpi.edu

WPID VEX Library 41

__

Study Participant Parent/Guardian Name (Please print)

____________________________________ Date: ___________________

Signature of Person who explained this study

WPID VEX Library 42

Appendix C: VEX Team Interview Questions

Background Questions
1.) What is your background in programming? Are you mostly self-taught? Have you taken

classes?

2.) What is your approach to programming the robot? What resources do you use to do

research when you go to write code for a new season?

3.) Has your team considered using third party libraries before?

If yes: What libraries (if any) has your team used in competition?

4.) Do you use VEXCode Blocks, VEXcodeText, or VSCode? If you use VSCode, are you

using VEXCode or PROS? If you are using PROS, are you using OkapiLib? Which

language are you using, Python or C/C++?

Control
5.) Have you used any control algorithms? Which ones and why did you choose them?

Which one is your team most familiar with?

6.) Were you familiar with PID before this study? What were your initial opinions on PID?

7.) Do you know about other advanced control algorithms? If so, what was your

decision-making process to proceed with one algorithm over the others?

Questions Relating to Our Library
1.) What did you find useful about this coding library and website?

2.) Were there any problems with implementing this library?

3.) Did you find the documentation portion of the website helpful?

4.) Did you find the tutorial portion of the website helpful?

5.) What do you think we can do to improve this coding library and website?

6.) Would you consider using this library for future VEX competitions? If you were a team

with less experience, would you consider using this library?

7.) Would you like to add anything that we didn’t get a chance to touch on?

WPID VEX Library 43

Appendix D: Roughly Coded Interviews for Pro vs Cons

PROS CONS

PROGRAMMER
ONE

Code Documentation was a very helpful and useful
resource

C++ Syntax was a bit of a
challenge

When asked what could be improved on, stated that "they
did not have any issues, understood the concepts well
going in, and all topics discussed made sense as a result

Lack of C++ knowledge
was the major difficulty,
website lacked any C++
resources

"If I was new to VEX, this is a great first step" but since
this user was more advanced, they had more advanced
movement algorithms

Felt weird to use internal
theta when external
sensors were available
(not every team has
sensors available)

Did not have any qualms with site layout

Unable to run as perfectly
as they would’ve wanted
(perhaps a lack of time to
tune the robot)

PROGRAMMER
TWO

Documentation helped understand the ideas of the code
more

Video was private, not
viewable (fixed prior to
interview)

“Will be using this more after the study, will likely be able
to score more points with this library.”

PROGRAMMER
THREE code made easy to move

jumpy? causes to go off
course

slow down to stop, excited about the control

Easy to understand material

No problems with code itself or website

“Yeah, will look at [the library next season] once bug is
fixed/ use school computers”

