
A Level-Set Approach for Solving
Nonlinear Integer Optimization Problems

by

Ryan Killea

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master of Science

in

Data Science

by

May 2023

APPROVED:

Professor Andrew Trapp, MS Thesis Advisor

Professor Fabricio Murai, Reader

Professor Elke Rundensteiner, Data Science Program Director

Abstract

This thesis studies new methods to explore and exploit the structure of nonlinear integer

optimization problems to create a level set optimal structure for parameterized integer

nonlinear optimization problems, conducive to rapid lookup and queries over a wide range

of potential resource vectors. The value function is a function that maps resource vectors

to their optimal objective function values. General integer nonlinear optimization prob-

lems are a class of optimization problems where a nonlinear function is optimized subject

to inequality and equality constraints, with all variables being integers. Important sub-

classes include quadratic integer programs, as well as programs of higher functional order.

These problem subclasses are in general NP-hard and so challenging to solve. Certain

critical problem contexts, such as discretized model predictive control, disaster response,

robust investment optimization, and dynamic energy market allocation, can both be ex-

tremely sensitive to time delays and benefit immensely from rapid retrieval of provably

optimal results. Further, even in optimization domains where no such urgency exists, it

is important from an applied perspective to be able to reason over the maximal values

of an optimization problem to understand how it responds both to resource availability

as well as to questions of how to best elicit improvements by changing resource levels.

Such competing, compelling, demands of optimality and speed call for new methods that

allow for fast lookup of provable, pre-computed optima to avoid longer wait times as new

resource vector queries arrive.

This thesis contributes a new general solution approach to nonseparable, nonconvex,

polynomial integer programs with separable constraints. Storing the value function in a

way that allows its efficient maintenance and search during and after the incremental con-

struction is proposed to accelerate the queries during and after construction. The problem

is broken down into subproblems that incrementally add to a Minimal R∗ Tree(MR∗T)

data structure new level set optimal vectors one at a time, building up and benefiting

from a value function lower bound. New ways of directly comparing the upper bounds

at these subproblem nodes to the existing value function lower bound are considered to

improve the performance of the approach. The specific optimization routines used for the

value function bounds at these subproblems are also tailored to the task of reasoning over

a range of right-hand sides (equivalently, resource levels).

Computational experiments explore solving a frequent problem of the applicable class

– quadratic knapsack : nonseparable, nonconvex, polynomial knapsack problems with

several linear constraints. For the considered problem class, reasoning over very large

range of right-hand sides (on the order of hundreds of thousands), we demonstrate the

ability to construct an optimal structure in as little as six to 35 conventional, state of

the art (Gurobi) solver solves with a single right-hand side. Thus, for problems that

are repeatedly solved over varying resource vectors, this promises substantial savings.

Furthermore, sensitivity analysis results, unobtainable via conventional solver solves due

to the lack of a strong integer dual, are easily recoverable from the optimal structure at a

speed of < 2 milliseconds for even complex directional sensitivity queries. This thesis gives

a first step in solving a broader context of optimization problems with a value function

approach than previously possible.

2

Contents

1 Introduction 1

2 Background 4

3 Mathematical and Computational Preliminaries 9

3.1 Mathematical Preliminaries . 9

3.1.1 Relevant Mathematical Optimization Problem Classes 10

3.1.2 Nondominance, Level Set Optimality, and An Efficient Frontier . . . 11

3.1.3 Ordering via w-Weighting . 12

3.2 Algorithmic Preliminaries . 13

3.2.1 Overview of Tree Search Algorithm 13

3.2.2 Variable Fixing Order . 15

3.2.3 Bounding Logic . 16

3.2.4 Data Structures . 17

4 Comprehensive Value Function Construction via Tree Search Algorithm 19

4.1 Tree Search Algorithm (TSA): Foundational Elements 19

4.1.1 Tree Search Algorithm: Main Loop 20

4.1.2 Tree Search Algorithm: Pruning . 25

4.1.3 Tree Search Algorithm: zj−Upper Bounds 26

4.1.4 Tree Search Algorithm: Initialization 31

4.1.5 Tree Search Algorithm: Proof of Correctness 32

i

4.2 Tree Search Algorithm: Performance Enhancements 33

4.2.1 Enforcing Pareto Monotonicity . 33

4.2.2 Cuts and m−region Bounds Adjustment 34

4.2.3 m−region Bounds Adjustment . 37

4.2.4 Extending EPM to Pairs of Variables 38

4.2.5 Reusing Computation . 39

4.2.6 Algorithmic Description with All Enhancements 41

5 Computational Studies 45

5.1 Computational Setup . 45

5.2 Computational Experiments . 45

5.3 Sensitivity Analysis . 46

5.4 Problem Instance Generation . 47

5.5 Computational Experiments: Test Instance Parameters 48

5.6 Computational Experiments: Performance Metrics 49

6 Computational Results and Discussion 50

6.1 Sensitivity Analysis . 50

6.2 Overall Performance . 51

6.2.1 Performance Tables . 53

6.3 Performance on a Single Right-Hand Side Vector 57

6.4 Binary Integer Multi-dimensional Quadratic Knapsack 58

6.5 Integer Multi-dimensional Quadratic Knapsack 60

7 Conclusion 62

ii

List of Figures

2.1 The relationship of the problem class addressed in this thesis, to less general

problems. In the acronyms used, ”I” means Integer, ”L” means Linear, ”Q”

means Quadratic, and ”P” means Program. Past value function approaches

have considered up to Integer Quadratic Programs (IQPs). 6

3.1 How variable ordering relates to variable fixing, independently of the w-

ordering. In green are the most-recently incremented variables that remain

unfixed (but lower bound their descendants in that variable’s dimension),

in gray are variables that are fixed for the node and all descendants, and

the ∗ symbol indicates subsequent variables in the lexicographic ordering. . 15

4.1 A flowchart capturing the overlying structure of the TSA’s main loop . . . 22

4.2 The main loop procedure. 24

4.3 Pseudocode for the Initialization step of our main loop 32

4.4 Illustration of the Enforcing Pareto Monotonicity procedure. The space

depicted is a m = 2-dimensional constraint space. The point in black is

the current node, considering a smaller box B(min(ℓj , L), uj) of potentially

LSO descendants. Green is a node providing a value function lower bound

that is able to change the uj value through Enforcing Pareto Monotonicity,

while red is not. Blue illustrates how this might eliminate a solution of the

zj−upper bounding ILP, prompting another ILP solve. 34

iii

4.5 Illustrated above are the weakly-dominated statuses of solutions corre-

sponding to all x-values with coordinates between 0 and 2 depicted in the

space of their right-hand sides. Blue indicates nondominated, red indicates

dominated. 36

4.6 Illustration of the Extended EPM procedure. The space depicted is a con-

straint space of dimension m = 2. The point in black is the current node,

considering a smaller box B(min(ℓj , L), uj) of potentially-optimal descen-

dants. The red points cannot be used in standard EPM but can be used in

the Extended EPM. The red dashed lines are the strongest monotonicity-

implied nonconvex cut, relaxed to the green dashed lines to successfully cut

the region containing the ILP solution in blue. 40

4.7 The main loop procedure with all algorithmic enhancements. 42

4.8 The pruning procedure. 43

5.1 Parameters used for generating problem instances. 49

6.1 A comparison of the number of dominated nodes that are still considered

and not pruned across n values for various levels of L and U 52

6.2 A comparison of the size of the data structure that stores a superset of Sopt

across U -values and n values. 53

6.3 A comparison of the runtimes of the proposed approach to Gurobi for solv-

ing all instances of the smallest size, n=40. 54

6.4 A comparison of the runtimes of the proposed approach to Gurobi for solv-

ing all instances of the medium size, n=60. 55

6.5 A comparison of the runtimes of the proposed approach to Gurobi for solv-

ing all instances of the large size, n=70, outside of a single instance for

L = 0, U = 60, denoted by the asterisk. 56

iv

6.6 A comparison of the runtimes of the proposed approach to Gurobi for solv-

ing the same problem. Although tested on a small number of instances, the

TSA outperforms on average across all problem sizes. 57

6.7 A comparison of the performance ratios of the proposed approach to Gurobi

for solving problems with a given upper bound magnitude (20) across var-

ious magnitudes of lower bound for the binary case. 58

6.8 A comparison of the performance ratios of the proposed approach to Gurobi

for solving problems with a given upper bound magnitude (40) across var-

ious magnitudes of lower bound for the binary case. 59

6.9 A comparison of the performance ratios of the proposed approach to Gurobi

for solving problems with a given upper bound magnitude (60) across var-

ious magnitudes of lower bound for the binary case. 59

6.10 A comparison of the performance ratios of the proposed approach to Gurobi

for solving problems with a given upper bound magnitude (20) across var-

ious magnitudes of lower bound for the integer case. 60

6.11 A comparison of the performance ratios of the proposed approach to Gurobi

for solving problems with a given upper bound magnitude (40) across var-

ious magnitudes of lower bound for the integer case. 60

6.12 A comparison of the performance ratios of the proposed approach to Gurobi

for solving problems with a given upper bound magnitude (60) across var-

ious magnitudes of lower bound for the integer case. 61

v

List of Tables

2.1 Comparison of value-function based solution methods for bilevel and stochas-

tic programs. MIP indicates support for continuous and discrete variables,

Linear, Quadratic, and Nonlinear indicates support for nonquadratic non-

linear objectives. Exact indicates that the value functions returned are

exact. 7

3.1 Parameters used in the Overview of the Tree Search Algorithm. 14

4.1 Additional Parameters used in the Tree Search Algorithm. 20

vi

Acknowledgements

I would like to acknowledge the people and organizations who helped me on my journey

to complete this thesis. To my amazing advisor, Prof. Trapp, who has known me as an

undergrad and taught and mentored me through it all. To my family, Mom, Dad, and

Phoebe, and all my cousins as well I am blessed to have you in my life. To Trivani for

the unwavering support and love. And to ARCHES, DS Council, GSG and all my

graduate school friends, thank you for making my time at WPI really special.

I would also like to acknowledge HIAS for the amazing work they do, and the RUTH

team in particular. Lastly, I would like to acknowledge the NSF for the RAPIDS grant

which supported my studies in Fall 2022.

vii

Chapter 1

Introduction

Exceedingly challenging integer nonlinear optimization problems that would have been

prohibitive even 10 to 20 years ago are increasingly being tackled. While difficult, integer

nonlinear programs appear in a diverse array of contexts, and are sometimes treated with

specialized solvers tailored to their specific application areas. Other problems have a latent

polynomial nonseparable discrete substructure, and as a result they can be phrased as

problems that are able to be handled by solvers for integer polynomial problems. Model

predictive control for robots, problems in compiler design, and hedge fund investment-

specific problems are being solved using increasingly complicated models [1–4]. In these

domains, it would be extremely helpful if an algorithm could respond to changes in resource

constraints.

The ability to quickly reason around the superoptimal feasible region is even more

compelling, yet to date remains out of reach for problem classes lacking a tractable strong

dual. Instead, these (polynomial) Mixed Integer Nonlinear Programs (MINLPs) are solved

with modern solvers such as Gurobi and BARON. Solving MINLPs to provable optimality

is challenging and almost all tractable problems in this class have deep structure that can

bring computational advantages when properly understood and employed.

Though difficult to optimize, MINLPs appear in a diverse array of contexts. The

empirical results demonstrated in this thesis exist in the domain of nonlinear knapsack

1

problems, a subset of integer nonlinear programs. Consider the use case where there is a

range of resource values that could be expected to see in practice, whether at a later time

with uncertainty, as an adversarial action, or during re-optimization. The question this

thesis answers is:

How can optimality information be intentionally and efficiently generated for

the integer nonlinear knapsack problem over all resource vectors in a region of

interest, to thereby provide near-instantaneous lookups for any resource vector

within the region of interest?

When there is a lack of clarity with respect to the resource levels that form the right-

hand side of knapsack or budget constraints, it can be advantageous to formulate problems

in terms of a value function to provide flexibility with varying resource levels. The value

function approach associates to each resource vector a corresponding optimal objective

function value. By simultaneously leveraging optimality criteria and problem structure

over a range of constraint vectors, in this thesis we demonstrate how to construct a unique

data structure that efficiently stores optimality information over a large set of possible

resource levels, thus enabling efficient query and reasoning capabilities for fast, repeated

optimization. Alternatively, our value function approach reduces the overall cost of many

distinct solves by sharing computational cost between all solves, eliminating redundancies

and avoiding computation that is overly specific to a single solve.

This thesis constructs optimality information for the nonlinear integer programming

value function over a region of uncertainty in resource availability. This information

is minimally stored in an optimized data structure in such a manner that is extremely

efficient to query and reason, enabling subsequent optimization and reoptimization in

milliseconds. This data structure also forms the underpinning of a new algorithm that

is designed to incrementally construct the value function. A number of enhancements

in value function generation are demonstrated such as the inclusion of cuts, explicitly

comparing partial solutions, and best, intentional reuses of computation. The approach

presented demonstrably works on MINLP problem instances from the literature specifically

2

integer quadratic knapsack.

The remainder of this thesis outlines and expands upon the aforementioned novel

methods addressing this challenging class of problems. Section 2 situates the work in

the existing literature on MINLPs. Section 3 covers important details about the algo-

rithm, mathematical notation, variable bounding, and the data structure employed for

fast lookups. Section 4 fully describes our foundational tree-search algorithm, complete

with a proof of correctness, and the various enhancements we have used to make it com-

petitive. Section 5 explains the details of and motivation for the experimental decisions

made. Section 6 contains the numerical and qualitative results and analysis of results for

the experiments. Section 7 concludes, summarizing what we have shown and highlighting

important next steps. Lastly, Section 8 is our Appendix.

3

Chapter 2

Background

Gurobi [5] and BARON [6] are two state of the art solvers that can solve to global op-

timality various classes of integer nonlinear programs (INLPs) for fixed resource vectors.

Upon solving to global optimality, standard solver output is a single optimal solution and

related optimality information.

Convex optimization problems including linear programs (LPs) have a property known

as strong duality that implies the existence of a solution to the bounding dual problem

that achieves the same optimal objective function value as the solution to the primal.

This fact means that adjustment to resource vectors can be efficiently accounted for using

the data from the dual solution. Specifically, another property of LPs that comes from

strong duality, Complementary Slackness, that if a linear program is solved to optimality,

all slack variables in the primal (those for that strict inequality holds) can be matched to

corresponding dual variables that are not slack for all inequality constraints. This means

using basis information from a solve, one can quickly reoptimize to find an optimal solution

with adjusted constraints. Similarly, when solving Integer Linear Programs (ILPs), an-

other similar property, Integral Complementary Slackness, holds that gives upper bound-

ing knowledge about the value function from the solution of the LP when variables are

restricted to integers. Mixed Integer Linear Programs (MILPs or MIPs) contain LPs and

ILPs as special cases and can have a mixture of discrete and continuous variables. Unlike

4

with LPs or ILPs, INLPs do not have a strong duality or integral complementary slackness

result that works in full generality because their relaxations are nonlinear. Without these

strong results, directly using solver outputs to speed up the process of computing a value

function is fraught with problems.

To place the proposed algorithm’s problem class within the broader scope of nonconvex

optimization problems, it is helpful to start at ILPs and work outward. As can be seen in

Figure 2.1, ILP is the least general problem class. From there, a popular class are separable

Integer Quadratic Programs (IQPs) that have a quadratic objective that separates like∑
i cixi +Qi,ix

2
i . From there, nonseparable IQPs have a general quadratic objective with

symmetric off-diagonal terms and can be expressed as 1/2x⊤Qx + c⊤x. While these

problems are more complicated than separable IQPs because the variables interact, that

same property can make them useful, for instance in the hedge fund application area [4]

shows how the modeler can make use of interactions to model correlations across asset risk.

Lastly, the most general problem class that this thesis considers (with linear constraints

in the experimental study, yet no such restriction need apply) is the nonseparable Integer

Polynomial Program class. This class has as an objective function an arbitrary polynomial

with interaction terms and can model interaction across more than two variables at a time

as well as be used via series expansion as a general approximation of any analytic function.

Although the presented algorithms and theory behind the results in the thesis supports

this broad class, quadratic objectives are considered to demonstrate its effectiveness. This

is because Gurobi can solve them for single right-hand sides without reformulation.

Previous value function approaches have been used in linear stochastic programming

[7–9], understanding the integrality gap in Integer Linear Programs (ILPs) [10, 11], and

multi-parametric problems [12]. Stochastic Programming is a technique and problem

class that models the case where a random process may change the objective function or

constraints for a dependent, future optimization problem that is also conditional on an

initial stage and uncertain realizations of randomness.

An example of such a problem is the classical farmer’s problem [13], where a farmer

5

Figure. 2.1: The relationship of the problem class addressed in this thesis, to less general problems. In the acronyms
used, ”I” means Integer, ”L” means Linear, ”Q” means Quadratic, and ”P” means Program. Past value function ap-
proaches have considered up to Integer Quadratic Programs (IQPs).

must make purchasing decisions up front and later choose how best to respond to how

good of a harvest year it is. The farmer’s initial decision has corresponding variables in the

optimization model and is called the first stage problem, and recourse decisions are made

in the second-stage after observing the uncertain yields. This separates the problem into

a first stage that is summed with a weighted combination of second-stage recourse objec-

tives, with identical structure only varying parametrically, weighted proportionately to the

likelihood that each scenario is encountered. In particular, the two-stage stochastic integer

programming literature includes Trapp et al. [7], Antley [9], and Özaltın et al. [14] that

all apply value function methods to problems of interest to avoid duplicating computation

using results related to duality for their respective problem classes. These approaches

re-use the information implicit in the solutions to ILPs, along with the structure of the

constraint matrix, to formulate a solution to restricted supersets of the necessary right-

hand sides to solve the problem under consideration. Trapp et al. [7] uses a restricted

integral monoid to obtain the superset of interest, and Antley [9] uses inequalities on the

difference between restrictions of the problem to pure integer solutions, pure continuous,

and full mixed-integer. This study is closely related to Antley [9], where the authors sim-

ilarly reuse bounds computation, a space-partitioning data structure, and pursue value

6

function improvement. A key difference is that they use an ϵ bound alongside the linear

problem structure to go further and incorporate continuous variables, avoiding the com-

putation of potentially very many candidate vectors. Bertsimas and Stellato [15] argue for

an understanding of optimization problems through solution motifs and study how they

change with respect to right-hand side data explicitly. Although Özaltın et al. [14] and

Zenarosa et al. [16] study quadratic problem classes, both approaches make additional

assumptions on the problem class. Due to implementation difficulties the most similar

quadratic approach in Özaltın et al. [14] was unable to be compared with this work.

Author / Year MIP Linear Quadratic Polynomial Exact

Özaltın et al. [14] (2012) Y Y
Trapp et al. [7] (2013) Y Y
Zenarosa et al. [16] (2018) Y Y Y
Bertsimas and Stellato [17] (2019) Y Y
Tavaslıoğlu et al. [18] (2019) Y Y
Antley [9] (2022) Y Y
This work (2023) *a Y Y Y Y

Table 2.1: Comparison of value-function based solution methods for bilevel and stochastic programs. MIP indicates
support for continuous and discrete variables, Linear, Quadratic, and Nonlinear indicates support for nonquadratic
nonlinear objectives. Exact indicates that the value functions returned are exact.

aWhile not discussed in this thesis, there is a natural extension to the mixed integer case with linear
objective terms on continuous variables.

The work in this thesis is primarily concerned with INLP Polynomial Optimization

problems, and among them chiefly the quadratic knapsack problem, with varying resource

vectors. While less common than ILPs, this problem class has been studied extensively in

the INLP literature. A potential reason for this is the deep connection between theory and

practice that is present. Lasserre [19] connects polynomial optimization to a complexity

hierarchy. On the practical side, these problems are widely applied in Operations Research

and Management Science. They have been applied to solve engineering design problems

[20, 21], in computational biology [22], project selection [23], the location problem [24],

the allocation problem [25–27], and knapsack problems [28, 29]. Lookup approaches have

also been used to (at least approximately) solve large sets of similar NP-hard optimization

problems in milliseconds [17], by using past searches to approximately guide new searches

7

for a-priori unknown optima.

8

Chapter 3

Mathematical and Computational

Preliminaries

Foundational concepts are now introduced to establish a mathematical framework for the

algorithmic approach.

3.1 Mathematical Preliminaries

The section provides an understanding of the standard formulations and properties for

related mathematical optimization problem classes, gives definitions to nondominance re-

lations, defines and characterizes the concept of Level Set Optimality, weak and strong

nondominance, and the ordering used by the algorithm to ensure an incremental construc-

tion of the value function.

9

3.1.1 Relevant Mathematical Optimization Problem Classes

The standard linear program (LP) is an optimization problem that can be expressed in

the following canonical form:

maximize c⊤x (3.1a)

subject to: Ax ≤ b, (3.1b)

x ∈ IRn
+, (3.1c)

where c is a vector of known objective function coefficients in IRn, A is an m×n constraint

matrix (IRm,n), b is a vector of capacities or resource levels in IRm
+ , and x is a variable

vector in the positive reals, IRn
+.

The standard (primal) LP has a corresponding dual problem:

minimize b⊤y (3.2a)

subject to: A⊤y ≥ c, (3.2b)

y ∈ IRn
+, (3.2c)

with the same data elements A, b, c as previously defined, and y a variable vector in the

positive reals, IRm
+ .

Linear programs, as a type of convex optimization problem [30], possess the property

of strong duality, meaning that if there is an optimal solution x⋆ to the primal, then there

is an optimal solution y⋆ to the dual, and at optimality, the optimal objective function

value of the primal is equal to that of the dual, that is, c⊤x⋆ = b⊤y⋆. While the worst case

computational complexity of linear programs can be exponential, LPs on average solve

very quickly in practice, making them useful for a variety of optimization tasks.

Integer linear programs (ILPs) differ from standard LPs in that the variables are

required to be integer valued, x ∈ ZZn
+. This seemingly simple adjustment causes the ILP

to become a computationally challenging problem (NP-hard), generally speaking.

10

By additionally relaxing linearity in the objective or constraint function(s), we arrive

at an integer nonlinear program (INLP):

maximize f(x) (3.3a)

subject to: g(x) ≤ b, (3.3b)

x ∈ ZZn
+, (3.3c)

where f(x): ZZn
+ 7→ IR is a general nonlinear function, typically at least twice-differentiable,

g(x): ZZn
+ 7→ IRm and b ∈ IRm

+ . For the purpose of this thesis, we consider f to be a

polynomial function of x, not required to be separable or convex.

When there is uncertainty in the right-hand side resource vector, it can be useful to

view INLPs in a parameterized manner, that yields the INLP value function formulation:

z(β) = maximize f(x) (3.4a)

subject to: g(x) ≤ β, (3.4b)

x ∈ ZZn
+, (3.4c)

where β ∈ IRm
+ replaces b as parametric input, and z(β) is the value function. We further

assume β lives in B(L,U), the set of m-dimensional vectors contained within lower and

upper bounding vectors L and U , that is: B(L,U) = {β ∈ IRm
+ | L ≤ β ≤ U}.

3.1.2 Nondominance, Level Set Optimality, and An Efficient Frontier

Weak and strong nondominance relations are important concepts when algorithmically

computing the value function over B(L,U), particularly with respect to certain vectors

[−f(x), g(x)1, · · · , g(x)m] that combine objective and constraint function information.

Definition 1. (Weak Nondominance) For two distinct vectors a ∈ IRm
+ , b ∈ IRm

+ , b is

weakly-LSO-dominated by a if ai ≤ bi for i = 1, . . . ,m and a ̸= b. If it is not weakly-LSO-

11

dominated, it is LSO-nondominated. Denote being LSO-nondominated in relation to two

vectors as ⪯̸.

Definition 2. (Strong Nondominance) For two distinct vectors a ∈ IRm
+ , b ∈ IRm

+ , b is

strongly-LSO-dominated by a if ai < bi for i = 1, . . . ,m. If it is not strongly-LSO-

dominated, it is weakly-LSO nondominated.

The notion of Level Set Optimality is defined as the property of being weakly non-

dominated as in Definition 1. Trapp et al. [7] proved that the set of all level-set optimal

(LSO) vectors (henceforth, Θ) is sufficient to characterize the value function of an integer

linear program [7]. This result was used to motivate an algorithm to find a restricted

superset of LSO vectors and from that a restricted value function, much as is the goal of

this thesis, for a set of right-hand sides B(L,U). For performing queries on integer vectors

β in the region of interest B(L,U), the performance of their approach depends on the

fraction ρ = |Θ ∩ B(L,U)|/|{β : ∃x ∈ ZZn
+ s.t. g(x) = β ≤ U}| of possible β vectors that

remain after eliminating from consideration all right-hand sides that are not LSO vectors.

As ρ → 1, the importance of only considering β values that could be LSO diminishes.

Additionally, a practical consideration is that as ρ → 1, the space required to represent

the LSO set becomes a limiting factor. The algorithm detailed in this thesis also bene-

fits from ρ being small, as it iteratively identifies nondominated vectors to construct an

efficient frontier representing the value function.

Definition 3. (Efficient Frontier) The Efficient Frontier is defined as the set of weakly

nondominated m-vectors considered by the algorithm. So if the algorithm has considered

a set of m-vectors S, it is the set E = {a ∈ S : ∀ b ∈ S, (a ⪯̸ b)}.

3.1.3 Ordering via w-Weighting

We employ a w-weighting scheme to induce an ordering on β vectors, defined as follows:

Definition 4. (w-weighting) The w-weighting of a vector β ∈ IRm
+ is induced by another

fixed vector w ∈ ZZm
+ as the following weighted sum: w(β) = w⊤β. The w vector must have

12

the property that it is strictly increasing with respect to x, that is w(g(x)) < w(g(x+ ei))

for all values of x and unit vectors ei.

The order induced by the w-weighting scheme on x vectors and their g(x) transfor-

mations is essential for ensuring that lower weight vectors never dominate higher weight

vectors. Thus, vectors once believed to be optimal in the algorithmic generation of level-

set optimal vectors, are never removed from the search data structure. In the domain of

multi-objective optimization, a similar lexicographic ordering exists over objective func-

tions to attain this ordering [1, 31, 32]. The process of w-weighting generalizes this concept

to including constraints without a priori determination of a constraint ordering. The w-

weighting scheme is also useful for the Enforcing Pareto Monotonicity and cuts/m−region

bounds adjustment techniques defined in Section 4, in that it produces LSO bounds uni-

formly over the constraint dimensions.

3.2 Algorithmic Preliminaries

In this section we present an overview of the main contribution of this thesis – Tree Search

Algorithm (TSA) – including nomenclature to aid in streamlining the exposition, and then

provide additional information to explain variable fixing order as well as the data structure

used for efficient lookup.

3.2.1 Overview of Tree Search Algorithm

This section introduces a high-level overview of an algorithm that uses a search tree to in-

crementally construct the value function of an integer nonlinear program of the form (3.4).

Table 3.1 details useful notation for the ensuing exposition.

The main algorithm incrementally constructs the value function by using the w-

ordering scheme to build a search tree of subproblems stored as nodes with parent-child

relationships. The TSA builds the search tree by starting at the root node with every

variable unfixed and set to zero. It then incrementally advances to node j, adding to xji

for index i a unit vector ei, 1 ≤ i ≤ n. All nodes have an associated variable vector xj that

13

Table 3.1: Parameters used in the Overview of the Tree Search Algorithm.

Notation Definition

dj Set of feasible descendant nodes (after constraints have been
applied) of a node j

pj Index of the parent node of a node j
xj The vector of variable values stored at node j
xj Vector of inferred upper bounds on x in dj (given xj and the

variable fixing order, see Section 3.2.2)
w m−dimensional positive vector quantity that allows us to find

weights

ωj
i Weight of a variable at node j; equal to w⊤g(xj + ei) for cho-

sen w
ωj Current total weight of a node j (w⊤g(xj))
m−region Region of g(x) values that the node has yet to eliminate from

consideration for optimality
S Constructed set of nodes (indexed by j) that have yet to be

pruned
Sheur Set of value function lower bounds determined by the heuristic

insertions
Sopt Set corresponding to the notion of a nondominated frontier

comprised of LSO vectors
m m + 1, the number of dimensions that f(x), g(x) comparisons

occur in.

consists of a fixed prefix of values, a variable index that was incremented from its parent,

and a suffix of not yet assigned variables that are set to zero. Hence at each step of the

TSA, the tree is a subtree of a lexicographically ordered tree on the variable lower bounds.

This way of ordering the choice of increments and variable-fixings allows the algorithm to

always only insert nodes in Θ in Sopt.

Because the w-weighting implies that strictly greater x values have greater w-weight,

and the xj are incremented in a strictly increasing manner, the variable value at each

child node has strictly greater weight (ωj for node j) than that of its parent. This can be

seen from the associated resource consumption at node j, βj , in relation to its variable

lower bounds as follows: ωj = w⊤βj = w⊤g(xj). Figure 3.1 visually depicts the process

of moving from a parent to a child node with precise values given to the variables. At

every node, the algorithm is designed to prune child nodes through the use of auxiliary

14

information. Section 4.1 details the additional algorithmic enhancements that make use

of this additional information. Specifically, these nodes limit the possible values of x

that can be considered in their descendants, quantify upper and lower bounds on the

objective function values achieved subject to their constraints, and represent eliminating

a single value of x from consideration corresponding to the variable lower bound they

have. Because the w-weighting guarantees that all nodes with xj values that may weakly

dominate the current node will have been considered before it, a lookup into the data

structure containing all LSO vectors discovered up until this point is sufficient to establish

if the current xj is weakly dominated. In this way, the algorithm proceeds to incrementally

add LSO vectors to a set Sopt representing the efficient frontier, defined to be the set of

points that are weakly nondominated that have been observed thus far in the search.

3.2.2 Variable Fixing Order

Figure 3.1 seeks to illustrate the variable fixing order from the perspective of what the

process might look like from a mid-level node in a search tree in practice. The ∗ symbol

indicates variables that are not fixed and do not yet have a variable (xji) value that has

been modified (and until they are, are treated as zero), the green oval indicates the only

variable that is unfixed and does have a lower bound greater than zero imposed, while

the grey oval indicates variables that are fixed to their values for that node and any

descendants.

Figure. 3.1: How variable ordering relates to variable fixing, independently of the w-ordering. In green are the most-
recently incremented variables that remain unfixed (but lower bound their descendants in that variable’s dimension), in
gray are variables that are fixed for the node and all descendants, and the ∗ symbol indicates subsequent variables in
the lexicographic ordering.

Increments by one are considered in order of decreasing ωj
i , and all variable indices

in the prefix (i < i′ where i′ is the index being incremented) are fixed to the value they

15

took in the parent node. Figure 3.1 shows an example of how this ordering dictates the

order in which subsets of feasible vectors are considered. The parent node, 20001∗∗∗∗∗,

may branch into children that are lexicographically higher than the parent while leaving

2000 fixed. For instance, the next child to the right has value equal to 2000101∗∗∗.

This variable ordering commits earliest to the most constraining branches for a given

solution that enables many nodes to be pruned early in the search. The lowest w-weight

children of a node (the ones created by increasing the green variable) are the least con-

strained, and each child is exponentially more constrained (by variable fixing) than the

last. As a result, a large number of suffixes are likely to be pruned if pruning is applicable

and promising subproblems are quickly separated from those that are less likely to have

LSO descendants.

3.2.3 Bounding Logic

As the TSA progresses and new nodes are added, the node descendants are associated

with three kinds of lower and upper bounds. These bounds are used to establish weak-

dominance, as well as to accelerate algorithmic performance through elimination of un-

necessary search space.

There are m−region bounds for a node j that are associated with g(xk) vector values

k ∈ dj that may be LSO. These bounds are established in the course of the upper bounding

procedure (Section 4.1.3) tightened during m−region bounds adjustment (Section 4.2.2).

The n−region bounds for a node j are associated with lower and upper bounds on the

variable values that are taken at each of the n indices across all descendants dj . These

bounds arise naturally as the tree search increments and fixes variable values at nodes

as well as by virtue of reduced costs (Section 4.1.3). The bounds are able to tighten

approximations to higher-order terms in the upper bounding as well as improve the more

advanced techniques in Sections 4.2.2 and 4.2.4.

The scalar objective is also bounded through z−region bounds. These bounds quantify

the minimum and maximum objective value that any descendant of a node j may have.

16

The lower bound is achieved by value function lookup in conjunction with the m−region

lower bound and the problem parameters, while the upper bound is set explicitly by the

upper bounding routine detailed in Section 4.1.3.

3.2.4 Data Structures

Another contribution of this thesis is the use of a spatial search data structure that allows

for fast querying the incrementally-constructed efficient frontiers (E) of the value function.

The data structure, originally based upon the k-d tree data structure [33] and since a

dynamic R∗-tree [34], stores the combination of feasible right-hand sides and objective

function values necessary to represent the value function over LSO vectors (Θ), that was

proven [7] to be sufficient to represent it over the entire set of right hand sides between L

and U . The choice of the values to store in the data structure, itself determined by the

data structure’s current contents, leads to it being judiciously populated, and therefore

being a Minimal R∗ Tree (MR∗T) for the nodes discovered by the TSA at any point in

time. The data structure stores all lower and upper bounding information in a nested tree

structure with lower and upper bounds on both bounds and objective-function values to

efficiently prune branches of the search. This MR∗T data structure, being an R∗ tree,

has strong properties under insertion, not requiring frequent rebalancing like a k-d tree.

Additionally the MR∗T is designed to support efficient querying of optimal value functions

by using a splitting rule that heuristically minimizes the volume of enclosing boxes around

points using a quadratic rule. This means that in the process of an orthogonal range query,

the primary type of query performed on value functions, the MR∗T can often prune large

branches without reaching the leaves containing actual full data points. It is imperative

that the algorithm have this efficient MR∗T data structure because it heavily relies upon

lookups to not only determine nondominance for vectors but also to establish all value

function lower bounds for nodes as it generates its own search tree. Empirically this

approach has been seen to scale approximately logarithmically in time with the number of

vectors inserted for both lookup and insertion. The proposed algorithm performs a number

17

of lookups greater than 1 at each step in its main loop as well as solves a subproblem. This

means that if there is a constant-size subproblem solved at every step of the algorithm as

well as some number of lookups and insertion (in the worst case), lookups and insertions

will eventually come to dominate the performance considerations.

18

Chapter 4

Comprehensive Value Function

Construction via Tree Search

Algorithm

Having presented foundational elements in Section 3, we now discuss the specifics of the

implementation of the TSA, MR∗T, and enhancements.

4.1 Tree Search Algorithm (TSA): Foundational Elements

Building upon the overview presented in Section 3.2.1, the Tree Search Algorithm (TSA)

proceeds in two steps. In step 1, precompute valid lower bounds (Section 4.1.4) on z(β),

used to speed up the global search for level set optima. In step 2, run the main loop

function (Section 4.1.1) until there are no more nodes to explore, returning the resulting

MR∗T data structure as means to efficiently access the value function over B(L,U). The

main loop is central to the TSA, as it is where the set of optimal x values are found

by iteratively constructing the search tree. Thus, it is prioritized over the important

discussion of algorithm initialization, that is deferred until Section 4.1.4.

Critical to the TSA are bounding strategies associated with each node j. These bounds

19

apply to the variable vector xj and the associated m−vector g(xj). As the TSA advances

it dynamically reduces the search space through multiple bounding procedures to update

respective 1. m−regions and 2. n−regions, as well as 3. scalar objective z−region bounds

for each node j. The bounding features are naturally inherited from increasingly more

specific subproblems at nodes of the tree structure, and their interaction amplifies their

respective effects. These steps are critical for the TSA to complete, in reasonable time,

and avoid an exhaustive search of the full set of feasible x values.

4.1.1 Tree Search Algorithm: Main Loop

Several additional concepts extending beyond the high-level overview of the node data

discussed in Section 3.2.1 improve the efficiency of the search for LSO vectors. The

associated nomenclature is introduced in Table 4.1.

Table 4.1: Additional Parameters used in the Tree Search Algorithm.

Notation Definition

f j Shorthand for f(xj), the (accrued) objective value for par-
tial variable assignment xj

f
j

Upper bound on f of LSO vectors in dj

f j Lower bound on f of LSO vectors in dj

opt(β) Set of x values in ZZn that, with respect to β, are maximiz-
ers of z(β), that is, z(β) = z(g(x)) = f(x) ∀ x ∈ opt(β)

βj The m−dimensional mapping of x, that is, g(xj)
zj The range of potential value function values that dj may

influence, spanning f j to f
j

ℓj Local lower bound on β vectors for that descendant nodes
dj have yet to be proven suboptimal

uj Local upper bound on β vectors for that descendant nodes
dj have yet to be proven suboptimal

First, each currently-considered node j maintains an associated m−region with lower

(ℓj) and upper (uj) bounds over that its descendants could possibly yield one or more LSO

vectors. This region may not necessarily be contained in B(L,U) in the overall problem,

as B(ℓj , uj) must include all feasible m−vectors that could still dominate a value function

bound and some of those may occur below L. Node j also keeps track of its current value

20

function lower and upper bound, f j and f
j
respectively. Descendants dj of node j are those

nodes resulting from adding a suffix to the x-value at that node (as detailed in Section

3.2.2 and Figure 3.1). The weight of node j is denoted ωj ; because the values assigned

to variables for nodes increase in a monotonic fashion, their weights also monotonically

increase according to the a-priori-determined w. The weight of variable i at node j is

denoted ωj
i and conveys its contribution to w-weighting when variable i is incremented.

The value of f(xj), denoted f j , is distinct from the lower bound on descendant nodes f j .

It is used to find vectors that weakly dominate xj to improve zj−bounding, a process

that is further described in Section 4.2.2. The upper bounds for values that variables

take at prefix indices are set and inherited by descendants according to the variable fixing

ordering. For linear constraints, this means a variable index that has a higher resource

consumption will be fixed earlier in the variable fixing ordering, induced by the w−weight

assigned. The variable fixing ordering is determined by the weights at the root node.

21

Figure. 4.1: A flowchart capturing the overlying structure of the
TSA’s main loop

The main loop proceeds as follows.

A priority queue (P) is used to maintain

nodes in nondecreasing order according

to their weights. When multiple nodes

share the same weight, ties are broken

by f value (highest first, ties broken ar-

bitrarily), for the purpose of increasing

the likelihood that nodes consider prior

nodes that LSO-weakly-dominate them.

To handle many nodes sharing a

weight ωj (that may often be the case

for integer weights), a set of nodes with

that weight is considered at a time. For

ωj any nodes with the same β are sorted

by their f(·) value, regardless of feasi-

bility; the feasible node with the largest

f(·) value is checked for nondominance.

If it is, it immediately passes to the optimal set in the MR∗T data structure.

The rest of this section considers each node j separately. An inherited value function

upper bound f
j
is compared against the value function lower bound f j found by lookup

against the minimum of ℓj and L into the optimal set Sopt and heuristic lower bound

set Sheur to determine whether a given node can be immediately pruned in the event

that f
j ≤ f j . All nodes that were not immediately pruned search for all dominating

nodes from the optimal set Sopt, the heuristic set Sheur, and the other nodes sharing the

same βj vector. The query to find dominating nodes from these sets is not against the

minimum of ℓj and L, but rather against βj as the objective is to find x values that

weakly-dominate the node itself, not a value function lower bound on its descendants.

These nodes sharing the same βj vector are convenient when creating the m − region

22

bounds adjustment constraints defined in Section 4.2.2. After applying these constraints,

the TSA computes a new value function upper bound f
j
and performs Enforcing Pareto

Monotonicity as defined in section 4.2.1. To find the value function upper bound, an ILP

is used for zj−upper-bounding that reasons over the feasible descendants of the node. The

specifics of the implementation and derivation of the zj−upper-bounding ILP are detailed

in Section 4.1.3.

If the zj−upper-bounding ILP is infeasible or the global lower bound the TSA finds

dominates the upper bound after computing the ILP or its LP relaxation, the TSA can

safely prune the node j. Further, if the combination of the zj−upper-bounding ILP value

and the zj−upper-bounding LP value plus reduced costs are sufficient to produce a set

of lower bounds (through lookups) that cover the full space from ℓj to uj and dominate

either the ILP upper bound or the implied LP-plus-reduced-cost upper bound, the TSA

can safely prune the node j. This process is detailed further in Section 4.2.4. After

applying a step that attempts to constrain m−region upper bounds that we refer to as

Enforcing Pareto Monotonicity (detailed in Section 4.2.1), the TSA attempts to further

tighten the region contained between ℓj and uj through optimization using m − region

Bounds Adjustment. If successful in changing ℓj or uj or both, and not pruning the node,

the TSA repeats m−region Bounds Adjustment, reusing results that remain feasible after

the changes. This is accomplished by simply storing the optimal solutions achieving the

results and checking against the new constraints for violation.

After all nodes have undergone this process, remaining nodes have new variable lower

and upper bounds computed for all unfixed variables and are inserted into the priority

queue for the weight corresponding to their completion. Throughout this process, nodes

inherit all three types of bounds (m−vectors, n−vectors, and zj−bounds) from their

parents. Any logical changes to ℓj are then applied, specifically, each coordinate of ℓj

(being a lower bound on the m−region vector values of descendants) is set to a value

strictly greater than or equal to the minimum g(x) at that coordinate for descendants.

The pseudocode for this loop is presented in Figure 4.8.

23

Main Loop
(1) Initialize the first node in S to x0 = 0 ∈ ZZn

(2) While S is not empty:
(3) Consider the next node by weight j, breaking ties by larger
f j value, removing it from P
(4) Collect all (heuristic, optimal) nodes dominating
f(xj), g(xj) into a set D
(5) Perform any problem-specific updates to ℓj , uj

(6) If |D| > 0:
(7) Create the dominating cuts
(8) Attempt to prune j, if not pruned continue to (13) oth-
erwise go to (2)
(9) Else if xj is feasible:
(10) Add xj to Sopt

(11) Else if xj is not feasible but otherwise nondominated:
(12) Add xj to Sheur

(13) If βj ̸≤ min(ℓj , L):
(14) Attempt to prune j, if not pruned continue to (15) oth-
erwise go to (2)
(15) Perform binary search to prune the largest prefix of j pos-
sible from consideration at the current node
(16) Add the remaining children of j to S
(17) Add all nondominated feasible nodes in Sheur to Sopt

(18) Return Sopt

Figure. 4.2: The main loop procedure.

Before this routine has run, Sheur has already been populated with an initial heuristic

lower bound set as described in pseudocode in Figure 4.3. Lines 1 and 2 initialize the root

node of the search tree and run the search until all nodes have been considered (|S| = 0)

respectively. Lines 3 and 4 perform the checks against the data structure to incrementally

construct Sopt using the current node. Lines 6-8 indicate that if the node is dominated by

at least one node in terms of the value function, pruning should be attempted. Lines 9 and

10 establish how nodes enter Sopt from the main loop. Lines 11 and 12 are for problems

where nodes can be infeasible and nondominated at the same time. Consider cases where

some dimensions of the resource consumption vector exceed U , but there exist not-yet-fixed

variables that would reduce g(x) in these dimensions if incremented so the node cannot

be prematurely pruned. Lines 13 and 14 leverage nodes existing outside of the m−region

24

for their descendants. Pruning can find a value function lower bound on the region where

their descendants can exist and compare that against the upper bound for that node. Line

15 is an enhancement that is further described in Section 4.2.5. What sets each child apart

from the rest is the simultaneous fixing of variable bounds and incrementing of a variable

bound, and the fixing respects an ordering, therefore binary search on the bounds that

are fixed allows only a limited subset of children to be considered. Line 16 is the point

where the children are added to the search tree. Lastly, lines 17 and 18 return only the

proven-optimal feasible nodes encountered during the search, stored in the MR∗T data

structure.

It should also be noted that the TSA is unlike the more traditional global branch and

bound approach that bisects the range of a single variable at a time (thereby eliminating

the nonintegral region between the lower and upper branch point). The TSA removes at

least one value of x from consideration at all nodes, whereas the bisection-based branch and

bound approach only completely eliminates values of x from consideration at leaves (nodes

without children) or when nodes are fathomed. The motivation for making such small

adjustments is to guarantee that the value function is constructed strictly incrementally

and all nodes see every potentially dominating x to maximize the benefit from Enforcing

Pareto Monotonicity and m − region Bounds Adjustment. Branch and bound does not

need to track β values or the vectors that would dominate the lower bound of a node

because it only needs to solve for the value function at a single point, making it easier to

discard branches.

4.1.2 Tree Search Algorithm: Pruning

Pruning is important in reducing the rate of growth in computation time as the problem

size increases. The process the TSA follows is described in more detail below.

When a node is removed from the set of all nodes (S) because it is the next lowest

weight node in step (3) of the main loop, there is a chance that it is pruned without

producing its children nodes in steps (8) or (14). To ascertain whether this is possible,

25

the TSA first checks to see whether one of two prunable node conditions is present.

• If the node is weakly dominated by at least one vector considering f(xj) and g(xj),

there is the possibility that all descendants of the node are also dominated, moti-

vating the constraints defined in Section 4.2.2.

• If all but one dimension in g(xj) is less than or equal to max(ℓj , L), apply Enforcing

Pareto Monotonicity with the node or heuristic lower bound may show that the node

does not have any optimal descendants.

4.1.3 Tree Search Algorithm: zj−Upper Bounds

It is important to have strong upper bounds on the value function z(β) of the parameter-

ized polynomial optimization problem. However, there is a tradeoff between upper bound

strength and computation time. The time spent on computing upper bounds should justify

the extra computational expense. The TSA uses a combination of upper planes shared

among terms in the polynomial (πi, i ∈ I, I an index set over shared variable factors)

with variable upper bounds to efficiently apply a modification of the technique described

in Glover [35] (as lower bounds are only nonzero for a single variable at a node, all products

equal 0).

First, a brief introduction to the existing literature places the technique the TSA

employs in relation to existing methods. While the TSA treats general integer nonlinear

optimization problem, the simplest case is the integer quadratic knapsack problem, which

can be formulated as follows:

z(β) = maximize
1

2
x⊤Qx+ c⊤x (4.1a)

subject to: Ax ≤ β, (4.1b)

x ∈ ZZn
+, (4.1c)

Gallo et al. [36] define upper planes that bound all f values attainable over the feasible

26

region in terms of a linear function of the assumed variable values. Through this method,

they linearize the quadratic knapsack and establish an efficient solution. The strength

of these upper planes and others are surveyed in Pisinger et al. [28]. Caprara et al. [37]

develops a promising approach based upon a Lagrangean modification of the Gallo et al.

[36] upper plane that augments the quadratic matrix with an anti-symmetric matrix to

balance the contribution of items and tighten the bound to equality. Unfortunately, the

subgradient approach they use relies on having a single-dimensional inequality constraint.

In contrast, the TSA uses the upper plane approach without Lagrangean modification to

find upper planes for general polynomial programs, and adds secondary inequalities based

upon variable bounds to form conditional McCormick relaxations.

To gradually illustrate the way the upper bounds operate, it is instructive to consider

the quadratic case. In the quadratic case, both for integer and binary variables, there is a

need to bound the contributions of the nonlinear term. A standard upper plane approach

would dictate that one decouple the problem of bounding the factor (π) that could be

applied to each variable. These subproblems to find πi for variable i compute maximal

factor values one at a time, and usefully are only required to reason over x values that

could prove LSO for the final solution. As a result, the π values of the parent node can

be used to impose a cut, as can cuts implied by dominating vectors described in Section

4.2.2, as well as node-specific variable upper bounds xj .

We use an LP to find πi that is adapted from the 4th upper plane LP (U4) described in

Gallo et al. [36] with these additions and the modification by Caprara et al. [37] noting that

the variable xi must be nonzero, and therefore can deduct from the resource budget of the

subproblem. It can be seen that the upper planes in Gallo et al. [36] are an instance of a

partial McCormick relaxation cut to produce an upper-bounding hyperplane. Specifically,

consider for each variable xi, a new variable that is equal to the quadratic contribution of

the terms multiplied by that variable. Importantly, extending this to higher orders yields

n independent linear subproblems and one independent subproblem of degree 1-less than

the original problem degree in the Lasserre hierarchy [19]. Gallo et al. [36] exclusively

27

focus on the latter inequality to obtain optimization problems defining an upper plane for

objective values of nodes in dj . Recall from Table 3.1 that pj is the parent node of a node

j. Because this LP will have been solved for pj , there are pre-determined upper-plane

values for (πpj). The single vector of n variables (v) in the LP represents increase from

xj . The mathematical program for factor index i, is therefore:

maximize
1

2

∑
k=1...n

(Qi,k +Qk,i)vk (4.2a)

subject to: vi ≥ 1, (4.2b)

vk ≤ xjk − xjk, ∀k = 1 . . . n (4.2c)

ℓjk ≤ g(xj + v)k ≤ ujk, ∀k = 1 . . .m (4.2d)

f(xp
j
) + πpj⊤(xj − xp

j
) +

∑
k=1...n

πpj

k vk ≥ f j , (4.2e)

v ∈ IRn
+. (4.2f)

The optimal objective function of this LP is a single coefficient corresponding to the

quadratic factor of index i, representing the best that coefficient can achieve. This LP

can be computed at for each variable where incrementing by 1 remains feasible at the

current node, allowing for tighter bounds as the tree of solutions is searched. The upper-

plane coefficient terms from a node to its descendants are not necessarily monotonically

decreasing, but are whenever all coefficients in the objective are nonnegative.

The difference for polynomials of degree greater than two is that rather than bound the

coefficient contributions to individual variables, the approach instead becomes to bound

the contributions that subsets of variables will have, still employing linear programs. Un-

fortunately, this may result in a significant weakening of the optimality cut implied by the

π value of the parent node.

After the upper planes have been established, the formulation for the overall upper

bound revolves around upper plane coefficients for each variable as well as upper bounds

on each. Using McCormick’s envelope by introducing a new variable w for the bilinear

28

term xy, but only considering the upper-bounding constraints, we obtain two inequalities:

w ≤ xUy + xyL − xUyL, (4.3a)

w ≤ xyU + xLy − xLyU . (4.3b)

Notationally, the choice of w is because for higher order polynomials, it is an indexed

set of variable factors (in the quadratic case simply variables), and y is a set of linear

contributions for each, thus the TSA can upper bound the nonlinear terms in a polynomial

optimization problem by summing over w. This envelope can be reduced to the nonzero

terms as we are reasoning over descendants, so variable lower bounds and factor lower

bounds can be assumed to be zero:

w ≤ zUy, (4.4a)

w ≤ zyU . (4.4b)

The final zj-upper-bounding formulation given upper-plane values π is a single integer

29

linear program (ILP) that, for the quadratic case, becomes:

maximize f(xj) +
∑
k

ckzk + wk (4.5a)

subject to: ℓji ≤ g(z + xj)i ≤ uji , ∀i = 1 . . .m (4.5b)

wi ≤ (xj − xj)iyi, ∀k = 1 . . . n (4.5c)

wi ≤ ziπ
j
i , ∀k = 1 . . . n (4.5d)

yi =
∑

k=1...n

Qi,k +Qk,i

2
zj , ∀k = 1 . . . n (4.5e)

zi ≤ xji − xji , ∀k = 1 . . . n (4.5f)

z ∈ ZZn
+, (4.5g)

w, y ∈ IRn
+. (4.5h)

To show how this approach works for higher order problems, consider an objective:

x1x2x3 + 2x2x3x4 + x1. This objective would be separated into parts for each variable

occurring in at least one nonlinear term, and the parts would be factored over the occur-

rences with at least 1 variable, divided by the number of variables involved. The parts

would be x2x3(x1 + 2x4), x1x2(x3), x3x4(2x2), x2x4(2x3), and x1x3(x2), all divided by 3.

In this way, there would be linear terms such that an LP could be computed to determine

each πi. Because upper bounds are only applied on optimal potential values of x for de-

scendants of a certain node, optimality constraints from the π values of the parent node

(using past upper planes) and the cuts in Section 4.2.2 are also applied when finding these

upper bounds via the above ILP formulation. The upper bound zUi applies to the product

of variables that zi is equal to.

30

The final zj−upper-bounding formulation for the general polynomial case becomes:

maximize f(xj) +
∑
k

ckvk + wk (4.6a)

subject to: ℓji ≤ g(xj + v)i ≤ uji , ∀i = 1 . . .m (4.6b)

vi ≤ xji − xji , ∀i = 1 . . . n (4.6c)

yi =
∑
k∈Ri

dk
|R′

i|+ 1
vj , ∀i ∈ I (4.6d)

wi ≤ sUi yi, ∀i ∈ I (4.6e)

wi ≤ siπ
j
i , ∀i ∈ I (4.6f)

si =
∏
r∈R′

i

vj , ∀i ∈ I (4.6g)

v ∈ ZZn
+ (4.6h)

s, w, y ∈ IR
|I|
+ . (4.6i)

The index sets R and R′ are used to consider all products of variables and linear factors

occurring in the nonlinear terms of the objective function respectively, and I is an index

set over these pairs of sets. The vector c contains the coefficient terms for linear variables,

d contains the coefficient terms for the linear factors of nonlinear terms, and π contains

the coefficient terms for nonlinear factors derived from upper planes.

4.1.4 Tree Search Algorithm: Initialization

As in prior work [7, 10, 38], assume that there is a known m−region lower bound on all

feasible g(x), and without loss of generality set this bound to be 0 for all xj . In at least the

case of g as a linear operator, x = 0 implies Ax = 0. To that end, the TSA initializes its

data structure with a set of nodes it knows to contain all optimal vectors as descendants,

the zero vector in ZZn.

Having access to strong lower bounds across the entire space of right-hand sides is

particularly important to the TSA. To start with a strong set of heuristic x values, we

31

adapt the approach of Fomeni and Letchford [39] for the initialization step of the TSA.

Figure 4.3 details the pseudocode for this procedure that takes inspiration from classical

exact Dynamic Programming approaches to solving integer knapsack problems. This

approach, which exactly solves the problem in the linear version, is stronger than other

heuristic techniques because it populates the entire space of right-hand sides up to U with

reasonable heuristic value function zj−lower bounds.

The TSA iterates in a preset order (in our case, according to w−weight from low to

high) over the variables and attempts to add increments of the variable to the existing

heuristic set. While in the process of considering these variables, multiple increments to

the same index may be considered, so a set C is used to denote the vectors currently under

consideration. It immediately prunes (a valid strategy for linear objectives) if a stored

heuristic x weakly dominates the xν (ν for new) that it is considering. In the case where

g(xν) = g(a), f(xν) = f(a), a ∈ Sheur, the TSA proceeds with the vector that has the

greater sum
∑

ı∈n xn. Lastly, it makes a pass over all x in the heuristic set and removes

the weakly-dominated vectors not in E (the efficient frontier).
Initialization
(1) Sheur ← {0 ∈ ZZn}
(2) For i← 1 to n do
(3) C ← Sheur

(4) While C ̸= ∅:
(5) For x ∈ C:
(6) xν = x+ ei
(7) If xν is weakly nondominated by nodes in Sheur:
(8) C ← C ∪ xν , Sheur ← Sheur ∪ xν

(9) C ← C \ x
(10) Remove dominated solutions from Sheur

(11) Return Sheur

Figure. 4.3: Pseudocode for the Initialization step of our main loop

4.1.5 Tree Search Algorithm: Proof of Correctness

To prove correctness of the TSA, two elements are required. First, the TSA must terminate

in a finite amount of time. This can be seen as it operates without backtracking on the

set of integer vectors of finite and bounded w-weight, and at-worst performs exhaustive

32

breadth first search and finite-time (with NP-hard ILP solves) operations at each node.

The main loop increments the minimum w-weight after each pass by a nonzero amount.

Every w-weight is always strictly less than
∑

i∈1...m Ui.

Second, upon termination, the TSA must yield the correct result as output. In this

case, the correct result implies that the TSA has certified that all vectors in the minimal

R∗ tree data structure, storing Sopt, are (level-set) optimal and that no vectors have

been omitted. To certify that the vectors are optimal, the condition for entry into the

set Sopt is weak nondominance, so initializing with the zero vector as a base case, all

vectors returned are optimal by induction. To prove that no vectors that are potentially

optimal are omitted or ignored, it suffices to show that all pruning only occurs with a valid

independent certificate of weak-dominance. Each potential source of pruning orm−region

bounds adjustment is guaranteed to retain points that are not weakly dominated. Because

the TSA applies dominance in a total ordering defined by order of entry into the data

structure (once entered, no further dominance checks are performed), two nodes mutually

pruning each other on the basis of equality is impossible.

4.2 Tree Search Algorithm: Performance Enhancements

Several useful performance enhancements, while not strictly necessary for correctness, are

employed to improve the run time efficiency of the TSA to solve problems of nontrivial

size.

4.2.1 Enforcing Pareto Monotonicity

The Enforcing Pareto Monotonicity (EPM) method is how the TSA uses existing optimal

vector and heuristic lower bound information to reduce the range of right-hand sides and

potentially prune nodes in the search process. By noting that the existing feasible solution

xj provides a lower bound on the value function for β ≥ βj , the TSA can remove portions

of uk for a node k that are guaranteed to be dominated given the value function upper

bound f
k
of the node. Specifically, if f

k ≤ f j and βj ≤ βk in all but one dimension, the

33

Figure. 4.4: Illustration of the Enforcing Pareto Monotonicity procedure. The space depicted is a m = 2-dimensional
constraint space. The point in black is the current node, considering a smaller box B(min(ℓj , L), uj) of potentially
LSO descendants. Green is a node providing a value function lower bound that is able to change the uj value through
Enforcing Pareto Monotonicity, while red is not. Blue illustrates how this might eliminate a solution of the zj−upper
bounding ILP, prompting another ILP solve.

TSA has a certificate that the constraint in that dimension is slack past the attained value

in βj for dk.

4.2.2 Cuts and m−region Bounds Adjustment

This thesis introduces a useful cut for solving INLPs based on dominance. The cut applies

in particular to polynomial objectives by repeated application of the binomial theorem that

states for scalar x and z:

(x+ z)p =

p∑
k=0

(
p

k

)
(x)kzp−k = (xj)p +

p−1∑
k=0

(
p

k

)
(x)kzp−k. (4.7)

The TSA uses the fact that ZZn
+ is closed under addition to quantify exclusively over

integer xj + z values. By inspecting the leading term one can see the contribution of (x)p

34

is independent of the value of z ∈ ZZ+ and therefore for a polynomial f , f(xj+z)−f(y+z) is

of order at most one less than f for any pair xj ∈ ZZn
+, y ∈ ZZn

+. Consider a node with a given

value-function lower bound associated with variable values xj . If f(xj) ≤ f(y), g(xj) ≥

g(y), xj ̸= y, and g(y+z) ≤ g(xj+z) then one can add a cut to all mathematical programs

relevant to node j that indicates,

f(y+z) ≤ f(xj + z),

z ≤ xj − xj ,

z ∈ ZZn
+. This cut requires that all level-set optimal solutions (in Θ) descending from node

j must not be dominated by the same increment applied to node y by which it is currently

dominated, so long as those descendants remain below g(xj + z), logically entailed by

the definition of a level-set optimal solution. Notably for linear g the requirement that

g(y + z) ̸≤ g(xj + z) always holds.

To illustrate how these cuts work, consider the following example with three variables.

Let

f(x) = 10x1 + 5x2 + 7x3 + 3x1x2 + 4x1x3 + 6x2x3 + 2

and

g(x) =

1x1 + 2x2 + 1x3

1x1 + 1x2 + 2x3

The dominated and nondominated values xi ∈ [0, 2] ∀ i, can be seen in Figure 4.5.

35

Figure. 4.5: Illustrated above are the weakly-dominated statuses of solutions corresponding to all x-values with coor-
dinates between 0 and 2 depicted in the space of their right-hand sides. Blue indicates nondominated, red indicates
dominated.

The right-hand side vectors that are dominated and are therefore not in Sopt are shown

with a red circle whereas those that are not dominated (LSO) are in Sopt and are shown

with blue circles. An example cut for the point a = (0, 0, 1) with f(a) = 9 would use the

nondominated Sopt point b = (1, 0, 0) with f(b) = 12. The cut would therefore be for the

descendants of the node with xj = a = (0, 0, 1), f(a+z)−f(b+z) ≥ 0 which is equivalent

to −3+4z1+3z2− 6z3 ≥ 0. Note how the linear and constant terms naturally cancel and

all that remains is a linear cut based upon the quadratic terms. This cut indicates that

at least one of z1, z2 must be nonzero to yield a LSO solution. Additionally increasing

z3 requires a higher contribution to z1 or z2. If z1, z2 are already fixed to zero, the node

j can be pruned because the inequality will never be satisfied, making the zj−bounding

ILP infeasible.

For problems that have variable bounds, the conditions to apply the cut comparing a

point from (xj+z) ∈ dj to another point y+z may fail to hold if the increment moves y+z

outside of the variable bounds. To ensure the cut remains valid, the coefficient applied

to the relevant variable indices (where xji < yji) can be changed. Specifically, the cut can

36

be made valid by making the inequality always hold if zi + yji is greater than the global

variable bound in that dimension. Let the coefficient terms applied to z in the inequality

generated by the cut be q. The coefficient is changed to the maximum of its current value

and the ratio of f(y)−f(xj)−
∑

i∈1...n x
j
imin(qi, 0) and the distance to the global variable

upper bound at that index for y plus one. This way, when y+z surpasses the global upper

bound value, the constraint is always satisfied because it contributes a positive amount to

the left-hand side that is guaranteed to be large enough by simple variable bounds logic.

Because these cuts certify that vectors on the infeasible side of the cut are dominated,

these cuts will never eliminate an optimal vector, making them valid to apply to all

mathematical programs relevant to node j.

4.2.3 m−region Bounds Adjustment

When a node is dominated, its lower and upper bounds can also be adjusted by solving

an integer linear program in each dimension of β. This adjustment is performed by

optimizing (maximizing or minimizing) the value that βi can attain over dj for any feasible

increment (z ≤ xj − xj) while satisfying both the cut constraints and the constraint that

f
j ≥ f j . For m−region bounds adjustment, it is important that the procedure be fast, so

rather than using the original full zj−upper-bounding formulation with the McCormick

relaxation approach as part of the constraints, the TSA instead just uses the classical

single constraint upper plane approach.

The m − region bounds adjustment approach therefore become 2m ILPs: one for

37

maximization, one for minimization per dimension:

maximize/minimize g(xj + z)i (4.9a)

subject to: ℓji ≤ g(xj + z)i ≤ uji ∀i ∈ 1 . . .m (4.9b)

zk ≤ xjk − xjk ∀k ∈ 1 . . . n (4.9c)

w +
∑

k=1...n

ck(x
j + z)k ≥ f j (4.9d)

wp = πp
∏
r∈J ′

p

(xj + z)r ∀p ∈ I (4.9e)

z ∈ ZZn
+ (4.9f)

w ∈ IR|I| (4.9g)

The cuts implied by dominating vectors are of order one less than the objective for poly-

nomial problems. By optimizing for the minimal and maximal values that the coordinates

of the constraint can achieve, the bounds are sequentially adjusted. Because this process

does not remove feasible descendants from a shared set, the ordering is immaterial and

all solves can be completed in parallel. After a pass of m − region bounds adjustment,

the bounds may have changed, which indicates that a new round of bounding can be

performed as detailed in Section 4.2.6. If the m − region bounds adjustment problem is

infeasible, it indicates that the integrality constraint imposed is sufficient to show that no

optimal vectors can be found among the descendants of node j.

4.2.4 Extending EPM to Pairs of Variables

When both ILP and LP forms of the zj−upper bounding mathematical program are com-

puted, yet the bounds cannot be changed by the other techniques, an additional set of cuts

reflecting trade-offs in the value function lower bound between the right-hand side terms

can be added and the bounds recomputed. The logic behind this is similar to Enforcing

Pareto Monotonicity. Consider an LSO solution at coordinate c ∈ Θ, recalling that Θ is

the set of all LSO points in m−region space. Because the value function is nondecreasing,

38

if z(c) ≥ f
j
, then min(ℓj , L) ≤ c ≤ uj , z(b) ≥ f(xk), ∀ c ≤ b ≤ uj , k ∈ dj proving

nodes in dj are not LSO by the same logic used in EPM. Because the intersection over

the inequalities in right-hand side space are nonconvex for ci ≥ min(ℓj , L)i for two or

more dimensions, a convexification is necessary for its actual application to the mathe-

matical programs as a linear constraint. This convexification is achieved by considering

the convex hull of the union of regions where exactly two dimensions are strictly within

B(min(ℓj , L), uj), sorting in one dimension and finding the convex hull. To accomplish

this the MR∗T data structure is queried for all points from which these cuts may be

constructed. The union of the nonconvex regions form a staircase pattern that features

a straightforward convex hull. These two-dimensional cuts in m−region space are of the

form:

a1βi + a2βj − a3 ≤ 0. (4.10)

After generating the cuts, the point solving the zj upper-bounding ILP is checked for

inclusion in the cut region by iterating over each inequality. If it is contained, then the

cuts are added to all mathematical programs relevant to node j and the bounds are

recomputed. Because this process is expensive, it is only attempted if all other methods

of changing the ℓj , uj bounds or otherwise pruning the node fail to succeed. Additionally

because of the combinatorial potential for the number of points generated by this process,

it is limited to two dimensions to make the number of generated inequalities linear in

the number of nonconvex regions. These advanced upper bounding cuts are illustrated

visually in Figure 4.6.

4.2.5 Reusing Computation

The initialization step first computes and stores submatrices for fast access to row infor-

mation for all n variable subsets that will be considered. The TSA uses reduced costs for

the variable lower and upper bounds to avoid branching into areas the TSA has proven to

be suboptimal.

Lastly, a binary search procedure is used at each node to eliminate entire suffixes that

39

Figure. 4.6: Illustration of the Extended EPM procedure. The space depicted is a constraint space of dimension m = 2.
The point in black is the current node, considering a smaller box B(min(ℓj , L), uj) of potentially-optimal descendants.
The red points cannot be used in standard EPM but can be used in the Extended EPM. The red dashed lines are the
strongest monotonicity-implied nonconvex cut, relaxed to the green dashed lines to successfully cut the region contain-
ing the ILP solution in blue.

40

are guaranteed to be immediately prunable without computing upper bounds for each

separately before adding the children to the search tree. It does this by noting that each

suffix contains all later suffixes. Therefore, if an upper bound is computed on one of these

nested sets and it is immediately prunable, all sets that are strictly more constraining than

it are also able to be pruned. Because the variables are ordered by least promising nodes

first, the variable fixing order is reversed for this binary-search procedure. All branches

that are pruned are prefixes of the remaining nodes, and therefore do not have their

upper bounds changed to 0 upon branching in the usual way, but are instead deferred for

consideration in their descendants nodes.

4.2.6 Algorithmic Description with All Enhancements

The main loop of the TSA with all enhancements is designed so as to efficiently leverage

their respective strengths. To show how this works, a new pseudocode description of the

routine with all algorithmic enhancements is provided.

There are significant additions to the pruning subroutine that naturally follow from the

described enhancements. The subroutine first considers the LP relaxation of the upper

bound described in the zj−Upper Bounds in Section 4.1.3. The LP relaxation of the

zj−upper bounding ILP gives reduced costs (δi on variables βi,∀i = 1 . . .m) that, when

paired with a value function lower bound f j gives updated bounds on ℓj and uj as:

∀i : βi = uji , δi > 0 ℓji := max

{
ℓji , u

j
i −

f
j − f j

δi

}

∀i : βi = ℓji , δi < 0 uji := min

{
uji , ℓ

j
i −

f
j − f j

δi

}

The reduced cost gives a lower bound on how much the upper bound would decrease

if non-slack variable bounds were to change. Therefore, the upper bound would reduce by

at least that much, independently of other variable bounds. Combining this fact with the

knowledge of a lower bound gives a potentially new variable upper bound.

The same reduced cost approach is used to find new upper bounds for the variables,

41

Main Loop
(1) Initialize the first node in S to x0 = 0 ∈ ZZn

(2) While S is not empty:
(3) Consider the next node by weight j, breaking ties by larger
f j value, removing it from S
(4) Collect all y nodes f(xj), g(xj) into a set D
(5) Perform any problem-specific updates to ℓj , uj

(6) If |D| ≠ ∅:
(7) Create the dominating cuts from D,xj

(8) Attempt to prune j, if not pruned continue to (13) oth-
erwise go to (2)
(9) Else if xj is feasible:
(10) Add xj to Sopt

(11) Else if xj is not feasible but otherwise nondominated:
(12) Add xj to the heuristic set Sheur

(13) If βj ̸≤ min(ℓj , L):
(14) Attempt to prune j, if not pruned continue to (15) oth-
erwise go to (2)
(15) Perform binary search to prune from consideration the
largest possible prefix of j at the current node j
(16) Add the remaining children of j to S
(17) Incorporate optimal feasible heuristic solutions in Sheur into
Sopt by iterating over heuristic solutions and checking against the
MR∗T
(18) Return Sopt

Figure. 4.7: The main loop procedure with all algorithmic enhancements.

leading to tighter heuristic upper bounds by virtue of a tighter McCormick relaxation,

the technique underlying the upper bounds calculation. The updated bounds on β are

then also updated m−region bounds and are used for a lookup in the data structure to

find the strongest lower bound for the value of all potential optimal vectors (searching for

the maximal f(xk) with g(xk) ≤ max(ℓj , L)). If the node cannot be immediately pruned,

Enforcing Pareto Monotonicity is performed. If neither the most recent iteration of relaxed

zj−upper-bounding nor the Enforcing Pareto Monotonicity adjusted the bounds, the TSA

proceeds either to m − region Bounds Adjustment for dominated vectors or directly to

the strengthened ILP bound computation. After the ILP bound computation followed

by Enforcing Pareto Monotonicity does not produce an adjusted bound, the pruning

42

terminates. If at any point a zj−bounding or m− region bounds adjustment LP or ILP

is infeasible or the upper bound is dominated by the lower bound found by lookup in the

data structure, the node is pruned.

The pruning pseudocode appears in Figure 4.8.

Pruning
(1) Do:
(2) repeatFlag = False
(3) Perform m−region Bounds Adjustment if applicable
(4) If node j can be pruned by value function lower bound
(5) Prune and exit
(6) Compute LPs for the π upper planes if uncomputed or uj

has decreased
(7) Compute LP relaxation for the upper bound
(8) If node j can be pruned by value function lower bound
(9) Prune and exit
(10) Adjust coefficients and bounds using reduced costs
(11) If ℓj has changed for node j:
(12) repeatFlag = True
(13) Compute ILP form of the zj−upper bound
(14) If the ILP yields a nondominated vector, add it to Sheur

(15) If Enforcing Pareto Monotonicity changes uj , or uj has
been changed by reduced costs:
(16) repeatFlag = True
(17) If repeatFlag = False and the node can be pruned by ad-
vanced m−upper bounding
(18) Prune and exit
(19) If repeatFlag = False and advanced upper bounding yields
new cuts
(20) Add new cuts to formulations for all mathematical pro-
grams for node j
(21) repeatFlag = True
(22) While repeatFlag
(23)Exit without pruning

Figure. 4.8: The pruning procedure.

The pruning algorithm works iteratively. On lines 1-2 it sets the stage: if it successfully

moves the bounds, either the value function lower bound may lead to tighter optimality

cuts or the upper bound has made it more difficult to have high x values among its

descendants. In either situation, the loop is run again. Line 3 is where the TSA performs

43

m − region Bounds Adjustment (BA), detailed in Section 4.2.2, which is how the TSA

first attempts to reduce the gap between ℓj and uj . Lines 4-5 check to make sure that the

BA did not shift the lower bound to a point where the node is now able to be pruned.

Line 6-9 are a first attempt at reducing the value function upper bound f
j
, that uses the

LP relaxation of the zj−upper-bounding subproblem (Section 4.1.3) to find a potential

way to prune the node. If that fails, line 10 potentially further tightens ℓj , uj and the

variable bounds through reduced costs, and if successful indicates that the loop should

continue. Lines 13-14 are where the non-relaxed upper bound is used, and if nondominated

in the current heuristic set, added to Sheur. Lines 15-16 implement Enforcing Pareto

Monotonicity (Section 4.2.1) that potentially changes the upper bounds and also considers

whether the bounds have changed due to reduced costs from the LP relaxation. Lines 18-

22 again check the bounds, and if the loop would exit, also recomputes upper planes

and the ILP using cuts derived from Section 4.2.4 as a last resort. Line 23 is the failure

condition where node j has not been eliminated from consideration by the pruning process.

Note that the bounds (f
j
, ℓj , uj , xj) are all inherited by the children of node j, thereby

conserving computational effort from earlier in the tree.

44

Chapter 5

Computational Studies

Having described the TSA, this Section is dedicated to demonstrating the usefulness of

the TSA. Computational studies include demonstrating the speed of the advanced types

of sensitivity analysis queries possible, as well as gaining a better understanding for per-

formance characteristics.

5.1 Computational Setup

The work for the computational experiments was performed on the WPI Turing cluster

using 100GB of RAM and a Intel® Xeon® Processor E5-2695 v4 CPU on Red Hat

Enterprise Linux Server 7.3 with kernel version 3.10.0-514.x86. As a solver for linear and

quadratic programs, Gurobi 9.5 [40] was used. All problems were solved to optimality

with an optimality gap tolerance of 1e−10 (exact optimality).

5.2 Computational Experiments

The lack of a strong dual for integer (nonlinear) programs, absent special problem knowl-

edge, renders prohibitive optimality insights with respect to sensitivity analysis informa-

tion on resource level changes. The best that can be accomplished is to resolve the integer

(nonlinear) program repeatedly. Even in the case of convex optimization problems with

45

strong duals, post-optimality analysis is typically limited to a small range of values in a

single dimension.

The advantage to the methods in this thesis are lightning fast (O(log(n)) in practice)

retrieval methods for querying exact optimality information for resource (β) vectors for the

associated integer nonlinear optimization problem expressed in (4.9). These extreme per-

formance capabilities on hard exact integer nonlinear optimization problems are available

once Algorithm 4.8 completes. Thus, we first demonstrate the performance of the MR∗T

data structure to query exact optimality results in the context of conducting sensitivity

analysis in resource levels. The remainder of the experiments relate to the construction of

the MR∗T data structure using the methodology of Section 4, that after creation, offers

lightning fast (in milliseconds) querying over a range of resource levels. In some cases,

the creation of the data structure itself exhibits only a modest increase in run time over

a single Gurobi solve.

The overall performance of the TSA is demonstrated through mean and standard

deviation values across 3 random experiment instances per run, indicated by a unique

combination of n,L, U , Problem Type parameters. Problem Types are classified as either

binary or integer variables, respectively. Performance ratios against Gurobi solves are

computed by comparing the mean runtime of respective experiments and comparing to a

single Gurobi solve against the upper U constraint (often the hardest right-hand side to

evaluate).

5.3 Sensitivity Analysis

To demonstrate the utility of the MR∗T data structure for the purpose of sensitivity

analysis, we experiment with understanding the range of the value function along a certain

bounded direction λ emanating from a β vector. The choice of a λ vector is to determine

if the constraint were to vary from this resource level of interest (λ) along a direction of

some trade off (λ), what is the maximum impact possible? To generate these λ directions,

first a random direction is chosen where at least one coordinate is positive and at least one

46

is negative, important so that the result is more than a simple pair of lookups. A scaling

amount is then chosen to extend to the edge of the hypercube of β values considered. All

sensitivity analysis experiment queries are performed over the B(L,U) set, setting L = 0.

This experiment is equivalent to solving the following optimization problem for a given

λ: maximize/minimize z(β + tλ), t ∈ [−1, 1]. Quickly solving this optimization problem

amounts to traversing the MR∗T data structure after its incremental construction. This

contrasts with any approach that would require solving one or more optimization problems

to obtain bounds on directional sensitivity of the value function to changes in its resource

levels.

5.4 Problem Instance Generation

All computational experiments consider test instances from two problem classes:

1. Integer Multi-dimensional Quadratic Knapsack (IMDQK)

2. Binary Integer Multi-dimensional Quadratic Knapsack (BIMDQK)

Test instances for both the IMDQK and BIMDQK problem classes are generated using

the procedure outlined in Wang et al. [41], with modest modifications to ensure that the

problems are tractable, have more predictable profiling times, and avoid unwanted char-

acteristics that have been previously demonstrated in the literature [42]. The Wang et al.

[41] instances have nonseparable positive quadratic and linear objective terms and linear

knapsack (positive coefficient) constraints defining the resource consumption for selecting

a subset of items. The nonlinear nature of the problem arises from the quadratic terms

within the objective, which prompt subsets of items to interact with each other in complex

ways. This dynamic can result in variables with lower individual contributions ultimately

producing a higher cumulative effect when paired together, compared to options that

are stronger on an individual basis. Their original formulation has nonnegative resource

consumption (A matrix) parameters that are assigned uniformly within some range, right-

hand sides that are assigned uniformly between the largest single value for consuming a

47

resource and the sum over all consumptions, and quadratic and linear objective terms that

are chosen according to a uniform distribution from 1 to 100.

The modifications we make to the formulation of Wang et al. [41] are as follows. We

first fix all right-hand side levels to a set value and uniformly generate integer resource

consumption levels between ⌈r/2⌉ and r for a small positive integer parameter r. Fixing

all right-hand side values prevents the phenomenon where significant variation in com-

putational performance occurs – both for the described approach, as well as for Gurobi.

Limited computational testing revealed that larger budgets are intractable even for mod-

est BIMDQK and IMDQK problem sizes for both the described approach and Gurobi,

thus the budget is fixed to a value between 4r and 5r in every dimension; this is treated as

a parameter and described alongside the problem instances in the data. Setting resource

consumption levels for items in the range described reduces irregular phenomenon, such

as that observed in [42] where the optimal approach quickly becomes to fill the knapsack

with the least expensive knapsack items, ignoring interaction. Less variation in resource

consumption levels for each item yields considerably more challenging and interesting

problem instances. The TSA generates a single right-hand side vector that serves as the

upper bound; the full set of considered right-hand side vectors ranges from from 0 to U .

5.5 Computational Experiments: Test Instance Parameters

For all value function and single right-hand side problems this study considers a full-

factorial design to understand the impact of the parameters governing the problem in-

stances. The values considered are n ∈ {40, 60, 70}, m ∈ {3}, and the parameter r to

specify the dimensions of the hypercube as r ∈ {5, 10, 15}, with B =
∏m

i=1[ai, bi] ∩ ZZm

where a ∈ {0, 3r, 4r} and b ∈ {4r}. This approach to generating problem instances yields

a mix of problem sizes that are computationally tractable for both our approach as well

as for Gurobi.

48

Parameter Symbol Levels

Number of variables n 40, 60, 70
Upper bound of variable resource consumption r 5, 10, 15
Lower bound of hypercube of interest L 0, 3r, 4r
Upper bound of hypercube of interest U 4r
Problem type Binary, Integer

Figure. 5.1: Parameters used for generating problem instances.

5.6 Computational Experiments: Performance Metrics

The performance of the TSA across multiple metrics is tested against other solvers that

solve for single right-hand sides. One key metric is wall clock time, in seconds, which is set

to a maximum of 30 minutes. For this metric it makes sense to compare the performance

of the TSA to a single solve of Gurobi. The next is the number of i) linear programs and

ii) integer linear programming subproblems solved (4.6) to complete the TSA and find

all LSO vectors between L and U . Finally, to understand the performance of MR∗T for

sensitivity analysis, we consider the worst case time performance over 200 random queries

of β vectors in hypercube B.

49

Chapter 6

Computational Results and

Discussion

The results of the computational experiments are now presented, beginning with the per-

formance of the experiments to conduct lookups on sensitivity analysis queries on resource

levels, and proceeding to discuss the costs to generate the associated MR∗T data structure

that enables such lookups. It is first instructive to understand the overall performance

of the TSA in relation to the variables studied. To do this, data tables from the aggre-

gate of experiments across both domains are presented and compared. Then the Binary

Quadratic Knapsack Problem is considered, showing that the TSA is able in the worst

case to incur a cost of no more than 40-times that of a single Gurobi solve, and availing

the aforementioned sensitivity analysis information for a variety of resource levels. After

this, the Integer Quadratic Knapsack Problem is presented, a domain that reveals more

promising results, requiring only around 10 solves to complete the TSA and find all LSO

vectors between L and U .

6.1 Sensitivity Analysis

The sensitivity analysis query problem using a given vector is solved on all of the considered

computational experiments in less than 0.002 seconds across all 200 × 3 × 18 instances

50

considered. Because there was no discernable difference in solution time across any choice

of problem size, it is likely that constant factors in the performance are dominating the

query time and that it would scale to much larger sets of optimal vectors if sufficient time

is available for their identification through the TSA. As a result, this can be considered

a real-time sensitivity analysis. The main performance factor was actually strictly the

number of items in the Sopt ∪ Sheur for the experiment in question, as might be expected

from a lookup approach.

6.2 Overall Performance

The overall performance of the TSA with respect to the number of unfathomed nodes is

considered as a function of the number of variables n, the lower bound L, and the upper

bound U . As discussed in Section 4.1, the TSA and its enhancements seek to efficiently

construct the MR∗T by iteratively generating nodes and their children, while aggressively

eliminating nonpromising search space regions of children wherever possible. Naturally

the performance tends to scale at least linearly with the number of generated nodes. One

metric to consider is the number of dominated and yet to be pruned nodes. While these

nodes would be simple to prune for the linear case, the added complexity of nonlinearity

may lead to their retention even after all of the effort placed into attempting their removal

by EPM and m−region Bounds Adjustment as in Sections ?? and 4.2.3.

51

Figure. 6.1: A comparison of the number of dominated nodes that are still considered and not pruned across n values
for various levels of L and U .

As can be seen, with added problem complexity, more of these nodes must be consid-

ered and as a result it will later be shown that performance increases. Still, the growth is

below the cubic amount by which the size of the right-hand side region increases, demon-

strating the benefit of sharing computation among these solves. The next most important

internal variable is the size of the data structure containing only the points identified to

be a minimal superset of Θ, not including infeasible and heuristic points later shown to be

suboptimal. The number of points in this structure shows the minimal number of solves

a solver would need to complete to represent the value function over B(L,U).

52

Figure. 6.2: A comparison of the size of the data structure that stores a superset of Sopt across U -values and n values.

Of interest is the number of elements in the data structure that are relatively indifferent

to the number of variables n and size of B(L,U). This suggests that a value function

lower bound may actually be being constructed for a larger space than just B(L,U), while

certifying B(L,U) as optimal.

6.2.1 Performance Tables

The performance tables for the problem sizes are now reported. Here, n is the number of

variables, m is the number of constraints, time to complete the solve is shown, the num-

ber of subproblems (nodes for Gurobi and (I)LP-subproblem solves total for the proposed

approach), L, U and problem type are all self-explanatory.

53

Solver n m L U Problem Type Time (s)± stdev (I)LP solves±stdev

Gurobi 40 3 20 20 Binary 31.95 ± 20.84 2.85e+04 ± 2.34e+04
Gurobi 40 3 20 20 Integer 8.42 ± 1.04 2.95e+05 ± 5.42e+04
Gurobi 40 3 40 40 Binary 29.88 ± 2.43 3.65e+04 ± 8.77e+03
Gurobi 40 3 40 40 Integer 11.65 ± 4.98 3.87e+05 ± 1.66e+05
Gurobi 40 3 60 60 Binary 17.93 ± 17.08 1.78e+04 ± 7.23e+03
Gurobi 40 3 60 60 Integer 8.35 ± 1.51 4.06e+05 ± 9.63e+04
Ours 40 3 0 20 Binary 53.95 ± 7.07 3.60e+04 ± 2.64e+03
Ours 40 3 0 20 Integer 139.16 ± 28.81 1.40e+05 ± 1.71e+04
Ours 40 3 0 40 Binary 121.08 ± 15.07 1.18e+05 ± 1.15e+04
Ours 40 3 0 40 Integer 509.21 ± 116.96 5.63e+05 ± 1.50e+05
Ours 40 3 0 60 Binary 59.90 ± 10.81 9.97e+04 ± 7.74e+03
Ours 40 3 0 60 Integer 279.82 ± 49.35 6.20e+05 ± 1.26e+05
Ours 40 3 15 20 Binary 23.83 ± 5.84 2.78e+04 ± 3.87e+03
Ours 40 3 15 20 Integer 57.52 ± 27.26 1.02e+05 ± 3.81e+04
Ours 40 3 20 20 Binary 8.67 ± 1.34 8.10e+01 ± 0.00e+00
Ours 40 3 20 20 Integer 3.26 ± 0.64 4.06e+03 ± 1.24e+03
Ours 40 3 30 40 Binary 61.54 ± 13.73 6.67e+04 ± 1.71e+04
Ours 40 3 30 40 Integer 241.59 ± 42.80 3.23e+05 ± 5.87e+04
Ours 40 3 40 40 Binary 8.29 ± 1.98 1.53e+02 ± 1.25e+02
Ours 40 3 40 40 Integer 3.38 ± 0.95 3.26e+03 ± 1.83e+03
Ours 40 3 45 60 Binary 63.74 ± 9.73 8.35e+04 ± 2.06e+04
Ours 40 3 45 60 Integer 227.82 ± 58.60 4.55e+05 ± 1.27e+05
Ours 40 3 60 60 Binary 9.25 ± 1.90 8.10e+01 ± 0.00e+00
Ours 40 3 60 60 Integer 3.39 ± 0.90 3.08e+03 ± 1.04e+03
Ours 40 4 0 20 Binary 35.50 ± 4.04 7.10e+04 ± 1.18e+04

Figure. 6.3: A comparison of the runtimes of the proposed approach to Gurobi for solving all instances of the smallest
size, n=40.

For the smallest problems (n = 40) the performance table shows a trend that contin-

ues for later tables: the number of subproblems is similar but typically smaller for the

proposed approach than for Gurobi. This may mean that the value function information

is being used effectively to reduce this number to more reasonable amounts. As can be

seen in the time column, on the high end just over nine minutes can be expected to solve

these small subproblems that take Gurobi on the order of 30 seconds for a single resource

level for the binary case and just under ten seconds for the integer case. The setting of U

appears to have mixed impact for these problems.

54

Solver n m L U Problem Type Time (s)± stdev (I)LP solves±stdev

Gurobi 60 3 20 20 Binary 30.24 ± 4.11 1.93e+06 ± 2.78e+05
Gurobi 60 3 20 20 Integer 62.79 ± 5.25 2.07e+06 ± 2.30e+05
Gurobi 60 3 40 40 Binary 58.76 ± 1.89 3.13e+06 ± 1.90e+05
Gurobi 60 3 40 40 Integer 132.50 ± 18.07 4.18e+06 ± 6.11e+05
Gurobi 60 3 60 60 Binary 66.67 ± 8.10 2.57e+06 ± 9.83e+04
Gurobi 60 3 60 60 Integer 95.53 ± 14.80 3.37e+06 ± 5.46e+05
Ours 60 3 0 20 Binary 120.54 ± 16.07 1.34e+05 ± 7.57e+03
Ours 60 3 0 20 Integer 431.66 ± 75.02 5.91e+05 ± 5.27e+04
Ours 60 3 0 40 Binary 372.01 ± 72.60 4.65e+05 ± 6.53e+04
Ours 60 3 0 40 Integer 1551.68 ± 308.78 1.98e+06 ± 2.42e+05
Ours 60 3 0 60 Binary 253.84 ± 40.50 4.19e+05 ± 2.32e+04
Ours 60 3 0 60 Integer 1659.25 ± 196.51 2.43e+06 ± 1.61e+05
Ours 60 3 15 20 Binary 162.26 ± 99.41 1.19e+05 ± 5.10e+04
Ours 60 3 15 20 Integer 352.44 ± 57.22 4.52e+05 ± 3.16e+04
Ours 60 3 20 20 Binary 20.99 ± 3.96 1.21e+02 ± 0.00e+00
Ours 60 3 20 20 Integer 4.20 ± 0.26 3.39e+03 ± 1.99e+02
Ours 60 3 30 40 Binary 283.75 ± 47.46 2.62e+05 ± 6.31e+04
Ours 60 3 30 40 Integer 840.35 ± 102.80 1.18e+06 ± 2.69e+05
Ours 60 3 40 40 Binary 22.34 ± 1.71 1.21e+02 ± 0.00e+00
Ours 60 3 40 40 Integer 7.37 ± 2.93 8.74e+03 ± 5.05e+03
Ours 60 3 45 60 Binary 396.09 ± 68.62 3.56e+05 ± 7.51e+04
Ours 60 3 45 60 Integer 1059.59 ± 75.16 1.93e+06 ± 4.55e+05
Ours 60 3 60 60 Binary 15.39 ± 3.96 1.21e+02 ± 0.00e+00
Ours 60 3 60 60 Integer 11.10 ± 4.13 1.21e+04 ± 8.51e+03

Figure. 6.4: A comparison of the runtimes of the proposed approach to Gurobi for solving all instances of the medium
size, n=60.

For the medium-sized problems (n = 60) the performance table shows that Gurobi

actually scales quite well to larger problem sizes, as is the proposed approach. While this

could simply be due to only 3 replicates being sampled per run causing a relatively large

variation in results, it is worth noting. Nevertheless, this batch of problems is interesting

because it shows that even with these “easy” problems that are larger than the smaller

problems considered before, the proposed approach remains competitive in relative terms

to Gurobi. For the full value function reconstruction problem at U = 40 the solution of

integer problems is challenging for the proposed approach at over 26 minutes.

55

Solver n m L U Problem Type Time (s)± stdev (I)LP solves±stdev

Gurobi 70 3 20 20 Binary 105.63 ± 5.99 3.59e+06 ± 2.77e+05
Gurobi 70 3 20 20 Integer 266.03 ± 69.48 5.13e+06 ± 1.27e+06
Gurobi 70 3 40 40 Binary 141.57 ± 25.29 7.69e+06 ± 1.04e+06
Gurobi 70 3 40 40 Integer 238.22 ± 43.03 8.20e+06 ± 1.47e+06
Gurobi 70 3 60 60 Binary 130.71 ± 21.54 5.82e+06 ± 1.02e+06
Gurobi 70 3 60 60 Integer 649.49 ± 99.37 6.94e+06 ± 9.81e+05
Ours 70 3 0 20 Binary 294.35 ± 21.29 1.81e+05 ± 5.72e+03
Ours 70 3 0 20 Integer 1251.96 ± 220.63 8.52e+05 ± 9.38e+04
Ours 70 3 0 40 Binary 628.52 ± 80.13 9.02e+05 ± 1.21e+05
Ours 70 3 0 40 Integer 2484.88 ± 382.10 3.29e+06 ± 3.43e+05
Ours 70 3 0 60 Binary 624.72 ± 52.11 8.31e+05 ± 1.13e+05
Ours* 70 3 0 60 Integer 3803.14 ± 972.26 4.38e+06 ± 7.63e+05
Ours 70 3 15 20 Binary 241.71 ± 15.85 1.47e+05 ± 3.67e+04
Ours 70 3 15 20 Integer 1285.93 ± 165.47 8.49e+05 ± 1.04e+05
Ours 70 3 20 20 Binary 21.70 ± 2.14 1.41e+02 ± 0.00e+00
Ours 70 3 20 20 Integer 15.04 ± 7.96 1.17e+04 ± 7.42e+03
Ours 70 3 30 40 Binary 318.75 ± 96.85 3.60e+05 ± 1.44e+05
Ours 70 3 30 40 Integer 1642.95 ± 514.06 2.27e+06 ± 6.68e+05
Ours 70 3 40 40 Binary 25.33 ± 5.24 1.41e+02 ± 0.00e+00
Ours 70 3 40 40 Integer 15.17 ± 2.58 2.03e+04 ± 7.78e+03
Ours 70 3 45 60 Binary 541.70 ± 21.01 4.01e+05 ± 2.15e+04
Ours 70 3 45 60 Integer 2921.76 ± 767.62 2.77e+06 ± 1.01e+06
Ours 70 3 60 60 Binary 30.56 ± 1.89 1.41e+02 ± 0.00e+00
Ours 70 3 60 60 Integer 16.76 ± 8.50 7.50e+03 ± 3.16e+03

Figure. 6.5: A comparison of the runtimes of the proposed approach to Gurobi for solving all instances of the large size,
n=70, outside of a single instance for L = 0, U = 60, denoted by the asterisk.

Lastly, the large problems (n = 70) are considered. These problems are notably taking

longer than the n = 60 and lower cases, lasting over ten minutes with Gurobito solve for

the most challenging integer instances. These are the most promising for the proposed

approach, indicating that it may actually scale quite well to even higher numbers of

variables.

A single instance was unable to complete in under 90 minutes for the TSA, showing

the increasing difficulty particularly on the integer problem types. The most challenging

solved instance took just under 80 minutes to solve for all right hand sides up to U = 60.

56

6.3 Performance on a Single Right-Hand Side Vector

Because the TSA computes the value function over a range of right-hand side vectors, it

is important to study its performance on a single right-hand side range to upper bound

the potential performance. If it cannot find the solution for a single right-hand side vector

quickly for any problem, there is no chance that making the problem harder would improve

the situation. For a single right-hand side, the BIMDQKP problem becomes equivalent

to a relaxation of the linear reformulation by [35] (modified with cuts) followed by the

checks necessary to ensure that no further branches can achieve a higher value.

Thus a very similar approach is already well-studied in [41], specifically under the name

LIN2 with a key difference being that the upper plane coefficient values are computed

using noninteger relaxations. However, to understand how the single right-hand side case

performed against the current version of Gurobi on the problems under consideration it

remains worthwhile to have computational results.

Figure. 6.6: A comparison of the runtimes of the proposed approach to Gurobi for solving the same problem. Although
tested on a small number of instances, the TSA outperforms on average across all problem sizes.

57

6.4 Binary Integer Multi-dimensional Quadratic Knapsack

To understand the performance on specifically the binary problems, performance ratios

are presented that indicate how many solves it takes Gurobi to equal the amount of time

the proposed approach. Presenting the difference between the U values shows how the

performance varies with respect to the volume of the right-hand side region that must be

considered.

L U Problem Type Performance Ratio

0 20 Binary 1.69
15 20 Binary 0.75
20 20 Binary 0.27
0 20 Binary 3.99
15 20 Binary 5.37
20 20 Binary 0.69
0 20 Binary 2.79
15 20 Binary 2.29
20 20 Binary 0.21

Figure. 6.7: A comparison of the performance ratios of the proposed approach to Gurobi for solving problems with a
given upper bound magnitude (20) across various magnitudes of lower bound for the binary case.

For the problems with a right-hand side upper bound of 20, the performance scales

from less than the cost of a single extra solve to find just one right-hand side (direct

competition with Gurobi) to just over 5 for all right-hand sides. The intermediate points

with L = 3/4U are interesting here and in future comparisons because they show how

much of a benefit reducing a majority yet not all of the B(L,U) region is to performance.

Typically the benefit is somewhat understated compared to the shrinkage in volume of

the region that it represents, while the feature being available means that there are some

gains to be had if some portion of the space can be a priori ignored.

58

L U Problem Type Performance Ratio

0 40 Binary 4.05
30 40 Binary 2.06
40 40 Binary 0.28
0 40 Binary 6.33
30 40 Binary 4.83
40 40 Binary 0.38
0 40 Binary 4.44
30 40 Binary 2.25
40 40 Binary 0.18

Figure. 6.8: A comparison of the performance ratios of the proposed approach to Gurobi for solving problems with a
given upper bound magnitude (40) across various magnitudes of lower bound for the binary case.

For the U = 40 case, a jump to just over 6 solves is necessary for parity for the n = 40

setting can be seen and this is the worst performance the TSA exhibits over all parameter

combinations.

L U Problem Type Performance Ratio

0 60 Binary 3.34
45 60 Binary 3.56
60 60 Binary 0.52
0 60 Binary 3.81
45 60 Binary 5.94
60 60 Binary 0.23
0 60 Binary 4.78
45 60 Binary 4.14
60 60 Binary 0.23

Figure. 6.9: A comparison of the performance ratios of the proposed approach to Gurobi for solving problems with a
given upper bound magnitude (60) across various magnitudes of lower bound for the binary case.

For the U = 60 problem case, the number of solves does not increase as one would

expect if the approach truly struggled with larger volume right-hand side regions. This

may be because it only has to consider right-hand sides that are feasible (ρ is small), which

suggests that the value function approach is performing as intended.

59

6.5 Integer Multi-dimensional Quadratic Knapsack

For the Integer Multi-dimensional QKP, the performance ratios are substantially worse.

Across all n, U combinations, nearly 44-times as many solves may be necessary to achieve

the benefit of running the TSA to find all LSO vectors less than U . While that still places

the TSA as a reasonable choice, it is no longer as strong a proposition as for the binary case.

L U Problem Type Performance Ratio

0 20 Integer 16.53
15 20 Integer 6.83
20 20 Integer 0.39
0 20 Integer 6.87
15 20 Integer 5.61
20 20 Integer 0.07
0 20 Integer 4.71
15 20 Integer 4.83
20 20 Integer 0.06

Figure. 6.10: A comparison of the performance ratios of the proposed approach to Gurobi for solving problems with a
given upper bound magnitude (20) across various magnitudes of lower bound for the integer case.

For the U = 20 case, at worst 16.53 solves are required, but interestingly for these

problems (a trend that continues with larger U for the integer problem class), the value

function approach outperforms even for a single right-hand side. Remembering that there

are roughly 900 solves necessary even if the locations are ex-ante known, this is a consid-

erable performance benefit when sharing the computational effort.

L U Problem Type Performance Ratio

0 40 Integer 43.73
30 40 Integer 20.75
40 40 Integer 0.29
0 40 Integer 11.71
30 40 Integer 6.34
40 40 Integer 0.06
0 40 Integer 10.43
30 40 Integer 6.90
40 40 Integer 0.06

Figure. 6.11: A comparison of the performance ratios of the proposed approach to Gurobi for solving problems with a
given upper bound magnitude (40) across various magnitudes of lower bound for the integer case.

60

For the U = 40 case, at worst 43.72 solves are necessary to match Gurobi’s perfor-

mance. The improvements in performance ratio for a single right-hand side continue to

widen, and in some cases there is real benefit to reducing the size of the right-hand side

region considered.

L U Problem Type Performance Ratio

0 60 Integer 33.52
45 60 Integer 27.29
60 60 Integer 0.41
0 60 Integer 17.37
45 60 Integer 11.09
60 60 Integer 0.12
0 60 Integer 5.86
45 60 Integer 4.50
60 60 Integer 0.03

Figure. 6.12: A comparison of the performance ratios of the proposed approach to Gurobi for solving problems with a
given upper bound magnitude (60) across various magnitudes of lower bound for the integer case.

For U = 60, the performance ratios improve from the U = 40 case, indicating that if

the problems that are most-challenging for Gurobi are considered, the proposed approach

does not degrade in performance as quickly as does Gurobi. At worst 33.52 Gurobi solves

are accomplished in the time it takes the TSA to find all roughly 1, 000 solutions to the

value function in this case.

61

Chapter 7

Conclusion

Decision problems involving discrete choices can often be modeled as Integer Nonlinear

Programs (INLPs). Some of these discrete choice problems required constrained choices

under a capacitated, fixed (knapsack) budget, giving a resource vector interpretation to

a right-hand side β as in (3.4). These INLPs are computationally expensive to solve,

and especially when there is uncertainty with respect to resource vectors. This thesis

demonstrates a novel algorithmic approach to finding the value function of INLPs for

polynomial objectives and separable constraints. The computational results from the ex-

periments conducted are promising towards real-world application of the proposed value

function approach to general integer nonseparable polynomial problems with linear con-

straints. We specifically introduce the Tree Search Algorithm (TSA) to generate a Minimal

R∗ Tree data structure (MR∗T), enabling the efficient lookup of solutions, post-optimality

analysis, and recomputation for realtime applications.

The limitations of this thesis are that while the considered problem class of polynomial

integer optimization problems span a large variety of domains, it does not consider non-

polynomial programs with special structure, or even-more-generally non-analytic nonlinear

problems. Furthermore, because the scope is limited to integer problems, mixed-integer

problems have not been explored for the TSA. Given the use of a spatial data structure,

the TSA necessarily has an exponential requirement for data with respect to the number

62

of dimensions of the stored data to see any benefit from the spatial queries. As a result,

the TSA as-it-stands is limited to problems with only a small to moderate number of

varying resource constraint dimensions (m).

A natural direction for future work would be to consider a generalized Benders de-

composition [43, 44] extension of this approach to mixed-integer problems. Generalized

Benders decomposition is an approach for solving very large mixed-integer programs that

are nonlinear in the real variables. The decomposition does this through solving a master

ILP and iteratively solving the resulting NLP while successively fixing the integer vari-

ables. It would be interesting to explore whether the ILP assumption in Benders could be

relaxed to INLP with access to a fast value function lookup ahead of time.

Additional use could be made of the sub-millisecond lookup times for the value function

that result from this approach. One potential direction would be new ways that having

the value function of a nonlinear integer program could improve the way that real-time

or repeated problems are solved. This could be not only through faster solutions of that

problem with new resource constraints but also, in the future, by allowing the extension

of the computed value function by additional new constraints.

Finally, the TSA may also have applicability to a more general class of INLPs. Specif-

ically, the distributive law can be applied in the way the TSA uses it to any polynomials

on a discrete commutative ring with scalar valuation, opening the possibility of reasoning

over more interesting domains. Most nonlinear solvers have a wide array of custom-built

approaches for functions including hyperbolic programs, trigonometric functions, expo-

nentials, logarithms, and (fractional) polynomials. This should commensurably expand

the variety of real-world, nonlinear programs that could be addressed.

63

Bibliography

[1] Ali Esmaeel Nezhad, Mohammad Sadegh Javadi, and Ehsan Rahimi. Applying aug-
mented -constraint approach and lexicographic optimization to solve multi-objective
hydrothermal generation scheduling considering the impacts of pumped-storage units.
International Journal of Electrical Power & Energy Systems, 55:195–204, 2014.

[2] Alberto Bemporad, Manfred Morari, Vivek Dua, and Efstratios N Pistikopoulos. The
explicit solution of model predictive control via multiparametric quadratic program-
ming. In Proceedings of the 2000 American Control Conference. ACC (IEEE Cat.
No. 00CH36334), volume 2, pages 872–876. IEEE, 2000.

[3] Ellis L Johnson, Anuj Mehrotra, and George L Nemhauser. Min-cut clustering. Math-
ematical programming, 62(1-3):133–151, 1993.

[4] Alessandro Baldo, Edoardo Fadda, Matteo Boffa, Lorenzo Cascioli, Arianna Ravera,
and Chiara Lanza. The polynomial robust knapsack problem. European Journal of
Operational Research, 305, 06 2022. doi: 10.1016/j.ejor.2022.06.029.

[5] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023. URL https:

//www.gurobi.com.

[6] Nikolaos V. Sahinidis. BARON: A general purpose global optimization software pack-
age. Journal of Global Optimization, 8:201–205, 1996.

[7] Andrew C Trapp, Oleg A Prokopyev, and Andrew J Schaefer. On a level-set charac-
terization of the value function of an integer program and its application to stochastic
programming. Operations Research, 61(2):498–511, 2013.

[8] Andrew C Trapp and Oleg A Prokopyev. A note on constraint aggregation and value
functions for two-stage stochastic integer programs. Discrete Optimization, 15:37–45,
2015.

[9] Eric M Antley. Integrated value function global optimization approaches for two-stage
stochastic programs. 2021.

[10] Temitayo Ajayi, Christopher Thomas, and Andrew J Schaefer. The gap function:
Evaluating integer programming models over multiple right-hand sides. Operations
Research, 2021.

[11] Laurence A Wolsey. Integer programming duality: Price functions and sensitivity
analysis. Mathematical Programming, 20(1):173–195, 1981.

64

[12] Francesco Borrelli, Alberto Bemporad, and Manfred Morari. Geometric algorithm for
multiparametric linear programming. Journal of optimization theory and applications,
118:515–540, 2003.

[13] John R Birge and Francois Louveaux. Introduction to stochastic programming.
Springer Science & Business Media, 2011.

[14] Osman Y Özaltın, Oleg A Prokopyev, and Andrew J Schaefer. Two-stage quadratic
integer programs with stochastic right-hand sides. Mathematical programming, 133
(1):121–158, 2012.

[15] Dimitris Bertsimas and Bartolomeo Stellato. The voice of optimization. Machine
Learning, 110(2):249–277, 2021.

[16] Gabriel Lopez Zenarosa, Oleg A Prokopyev, and Eduardo L Pasiliao. On exact
solution approaches for bilevel quadratic 0–1 knapsack problem. Annals of Operations
Research, 298(1):555–572, 2021.

[17] Dimitris Bertsimas and Bartolomeo Stellato. Online mixed-integer optimization in
milliseconds. arXiv preprint arXiv:1907.02206, 2019.

[18] Onur Tavaslıoğlu, Oleg A Prokopyev, and Andrew J Schaefer. Solving stochastic and
bilevel mixed-integer programs via a generalized value function. Operations Research,
67(6):1659–1677, 2019.

[19] Jean B. Lasserre. Global optimization with polynomials and the problem of mo-
ments. SIAM Journal on Optimization, 11(3):796–817, 2001. doi: 10.1137/
S1052623400366802. URL https://doi.org/10.1137/S1052623400366802.

[20] E Sandgren. Nonlinear integer and discrete programming in mechanical design opti-
mization. 1990.

[21] Jung-Fa Tsai, Han-Lin Li, and Nian-Ze Hu. Global optimization for signomial discrete
programming problems in engineering design. Engineering Optimization, 34(6):613–
622, 2002.

[22] Srinath Sridhar, Fumei Lam, Guy E Blelloch, Ramamoorthi Ravi, and Russell
Schwartz. Mixed integer linear programming for maximum-parsimony phylogeny in-
ference. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 5
(3):323–331, 2008.

[23] Radhika Santhanam and George J Kyparisis. A decision model for interdependent
information system project selection. European Journal of Operational Research, 89
(2):380–399, 1996.

[24] Rajdeep Grewal, Gary L Lilien, and Girish Mallapragada. Location, location, lo-
cation: How network embeddedness affects project success in open source systems.
Management Science, 52(7):1043–1056, 2006.

[25] Andreas Ernst, Houyuan Jiang, and Mohan Krishnamoorthy. Exact solutions to task
allocation problems. Management Science, 52(10):1634–1646, 2006.

65

[26] Nan Kong, Andrew J Schaefer, Brady Hunsaker, and Mark S Roberts. Maximizing
the efficiency of the US liver allocation system through region design. Management
Science, 56(12):2111–2122, 2010.

[27] Mustafa Akan, Oguzhan Alagoz, Baris Ata, Fatih Safa Erenay, and Adnan Said. A
broader view of designing the liver allocation system. Operations Research, 60(4):
757–770, 2012.

[28] David Pisinger, Anders Bo Rasmussen, and Rune Sandvik. Solution of large quadratic
knapsack problems through aggressive reduction. INFORMS Journal on Computing,
19:280–290, 2007.

[29] Dimitris Bertsimas and Robert Weismantel. Optimization over integers, volume 13.
Dynamic Ideas Belmont, 2005.

[30] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization.
Cambridge University Press, 2004.

[31] Marianna De Santis, Gabriele Eichfelder, Julia Niebling, and Stefan Rocktaschel.
Solving multiobjective mixed integer convex optimization problems. SIAM Journal
on Optimization, 30(4):3122–3145, 2020.

[32] Samira Fallah, Ted K Ralphs, and Natashia L Boland. On the relationship between
the value function and the efficient frontier of a mixed integer linear optimization
problem. arXiv preprint arXiv:2303.00785, 2023.

[33] Jon Louis Bentley. Multidimensional binary search trees used for associative search-
ing. Communications of the ACM, 18(9):509–517, 1975.

[34] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. The r*-
tree: An efficient and robust access method for points and rectangles. In Proceedings
of the 1990 ACM SIGMOD international conference on Management of data, pages
322–331, 1990.

[35] Fred Glover. Improved linear integer programming formulations of nonlinear integer
problems. Management science, 22(4):455–460, 1975.

[36] Giorgio Gallo, Peter L. Hammer, and Bruno Simeone. Quadratic knapsack problems.
1980.

[37] Alberto Caprara, David Pisinger, and Paolo Toth. Exact solution of the quadratic
knapsack problem. INFORMS Journal on Computing, 11(2):125–137, 1999.

[38] Seth Brown, Wenxin Zhang, Temitayo Ajayi, and Andrew J Schaefer. A Gilmore-
Gomory construction of integer programming value functions. Operations Research
Letters, 2021.

[39] Franklin Djeumou Fomeni and Adam N Letchford. A dynamic programming heuristic
for the quadratic knapsack problem. INFORMS Journal on Computing, 26(1):173–
182, 2014.

66

[40] LLC Gurobi Optimization. Gurobi optimizer version 9.5.2, 2022.

[41] Haibo Wang, Gary Kochenberger, and Fred Glover. A computational study on the
quadratic knapsack problem with multiple constraints. Computers & Operations
Research, 39(1):3–11, 2012.

[42] Joachim Schauer. Asymptotic behavior of the quadratic knapsack problem. European
Journal of Operational Research, 255(2):357–363, 2016.

[43] Arthur M Geoffrion. Elements of large-scale mathematical programming Part I: Con-
cepts. Management Science, 16(11):652–675, 1970.

[44] John F Benders. Partitioning procedures for solving mixed-variables programming
problems. Numerische mathematik, 4(1):238–252, 1962.

67

