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Executive Summary

Sommerfeld effect is a common phenomenon for unbalanced rotating shaft excited

by a limited power supply. When the power supply is not sufficient for vibration to pass

over the resonance, the shaft will slow down or be captured at resonance. Analyses of the

phenomenon are conducted for shaft with axisymmetric stiffness and for the case where

the vibration is one-dimensional due to imposed constraints. The goal of this project is

to fill the gap between the above two extreme cases of two-dimensional vibration system

with two spring sets attached to the unbalanced shaft. The axisymmetric case denotes

the asymmetry in spring stiffness, while the one-dimensional case corresponds to one of

the spring set has infinite stiffness acting as the constraint.

Krylov-Bogoliubov averaging method was used to access the analytical motor torque

for steady-state response, which is the lowest motor torque required for passage over res-

onance. The stability criteria of steady-state torque were considered as well. Transient

case provides the information of vibration that is approaching its steady state. Runge-

Kutta-Fehlberg method was used in numerical simulation to validate the steady-state

torque with its stability criteria. By considering the analytical steady-state torque at

two specific points of rotation speed, ν = 1 and ν = Ω, a passage technique for axisym-

metric vibration system was introduced. The technique was validated by Runge-Kutta-

Fehlberg method. The passage technique applies to two-dimensional vibration system

with asymmetric spring stiffness. With the power supply that initially causes capture at

x-vibration and y-vibration, the rotating shaft will passage over both x- and y-resonances

by slightly raising one of the spring stiffness. This technique reduces the required power

supply for rotation machine to pass over resonance. The analysis of steady-state re-

sponse and transient response of two-dimensional vibrations fills in the gap between the

axisymmetric case and one-dimensional case. It provides a more comprehensive study of

two-dimensional systems.
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1 Introduction

Background

Motors are a commonly used component in plants and machinery. The shaft of

the motor is not always balanced, and the small unbalance of the mass can cause lateral

vibration of the system. The vibration caused by rotation can determine the machine life,

because the foundation holding the plants has to support the vibration, and excessive

vibration may destroy and even ruin the plants. In 1902, German theoretical physicist,

Arnold Sommerfeld, discovered an energy sink at resonance of equipment generating with

an unbalanced motor, in Sommerfeld et al. [1], Dimentberg et al. [3], Samantaray et al.

[7].The energy sink is a phenomenon that the vibration is captured at resonance with a

large amplitude, so that the major part of the power supply is diverted to vibrate the

structure, instead of increasing the rotation velocity. This phenomenon was later named

as the Sommerfeld effect.

The Sommerfeld effect occurs with unbalanced shaft equipment. Studying the system

with an unbalanced shaft can predict the threshold value for driving torque that will

exclude the capture at resonance, so that the rotation speed increases without being

captured at a constant value, and the vibration amplitudes return to a smaller value

from resonance amplitude. In the previous century, the Sommerfeld effect has been

widely seen in mechanical engineering applications in Dimentberg et al. [3], Segalman et

al. [4], Cveticanin et al. [6], Samantaray et al. [7], and aerospace engineering applications

in Kinsey et al. [2], Tsui et al. [8]. Techniques of passage over resonance with a

limited power supply were invented to prevent the unwanted vibration, in order to extend

machine life, Dimentberg et al. [3], Segalman et al. [4], Kononenko et al. [5]. In

Aerospace Engineering, the effect of capture at resonance had been experienced for dual-

spin spacecraft, Tsui et al. [8]. This problem was further solved by a nonlinear controller

to reduce resonance during the spin through precession phase lock, Kinsey et al. [2].
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In previous research, Sommerfeld effect has been considered in the one-dimensional

case, that the vibration caused by rotation is constrained in linear motion, in Sommerfeld

et al. [1], Dimentberg et al. [3], Kononenko et al. [5], Cventicanin et al. [6], and Bolla

et al. [10]. As in applications, the constraints used to achieve one-dimensional vibration

are connected to the foundation of the equipment, assuming the material of constraints

has infinite stiffness. But even with an extremely high value of stiffness, there still occurs

two-dimensional vibrations in the system. Studying two-dimensional vibrations can also

lead to inventions of more techniques of passage over Sommerfeld effect.

Literature Review

Consider a one-dimensional vibration motivated by an unbalanced shaft, with in-

teraction of motor by a limited power supply. Figure (1) is the plot of the system,

Dimentberg et al. [3]. Two constraints in shaded area are used to maintain the vibration

in linear motion, and on x-axis, a spring set is considered as the foundation of the plant.

The unbalanced mass m1 is attached on the rotating shaft with offset r. The governing

Figure 1: Model of an unbalanced rotating shaft on a movable support with elastic suspension spring; x(t) and φ(t) are
translational displacement and rotation angle of the shaft, respectively. Dimentberg et al. [3]
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differential equations of the system are given by:

m2ẍ+ Cẋ+Kx = m1rφ̇
2 cosφ+m1rφ̈ sinφ , (1)

Iφ̈ = L(φ̇)−R(φ̇) +m1rẍ sinφ+m1gr cos(φ+
π

2
) . (2)

where m1 is the unbalanced mass of motor, m2 is the mass of vibrator, C is the damping

coefficient, K is the spring stiffness, r is the offset of the unbalanced mass, and g is the

gravitational acceleration. As shown in Figure 1, x(t) is the function of translational

displacement depending on time t, φ(x) is the function of rotation angle. I denotes the

shaft’s mass moment of inertia. L(φ̇) is the driving torque of the motor, and R(φ̇) is the

resisting torque. These are precribed functions of the motor properties.

Figure (2) illustrates the steady-state value of the rotational frequency satisfying

Eq.(1), for three different cases of the available torque-speed characteristic L curve, Di-

mentberg et al. [3]. S curve is the apparent resistance torque derived from the resisting

torque function R. The dashed part of S curve corresponds to the unstable case. The

intersections of the L curves and S curve are steady-state values of rotational frequency.

From this figure, curve L(1) has only one steady-state frequency, which means in this

Figure 2: Graphical illustration of constant steady-state values of the rotational frequency, for three different cases of
the available torque-speed curve L (labelled according to the number of the roots of the equation). Unstable part of the
S curve is indicated by a dashed line for the case where L-curves form a equidistant set. Curve L2 corresponds to the
borderline case between those with a single value of the frequency and with three such values. It also controls slow or
quasistatic passage through resonance, as indicated by an arrow. Dimentberg et al. [3]
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case, the shaft always passes through resonance, although some slowdown is possible. On

curve L(2), there are two roots for steady-state frequency. The one at the peak of the

S curve is unstable, so it jumps to another stable steady-state point; this is called jump

phenomenon. L(2) is a borderline between the single value of frequency, like L(1), and

three values of frequency, L(3).

Numerical methods are generally required in the study of transient motions, since

analytical methods are only applicable to cases under specific conditions. The paper

Dimentberg et al. [3] obtained the numerical solution, as well as extensive parametric

studies.

The one-dimensional problem considered in Dimentberg et al. [3] is a typical problem

of system with the non-ideal energy source. The rotation of motor is excited by energy

source. Non-ideal system is a vibrating system for which the power supply is limited.

Rotor dynamic systems are often analyzed with ideal motor drive assumption. This

assumption can simplify the problem; however, it is only applicable in the following two

cases. One case is when the operating range of the system is so limited, that there

is sufficient power available from the drive. Another case is when the drive remains

uninfluenced by the systems vibration, so that it can be approximated as an ideal motor

drive.

Non-ideal power supply has the property, that there exists an interaction between

the vibrator and motor. This interaction is always nonlinear, due to the trigonometric

function of rotation angle, affecting the vibrations in Cartesian coordinates. Therefore,

to deal with non-ideal power supply, one additional equation Eq.(2), describing the inter-

action between motor and vibrator, has to be added to the governing differential equation

of the system Eq.(1).

When the available power of the drive is comparable with power consumption due

to vibration, various nonlinear phenomena may be observed, which corresponds to the

Sommerfeld effect. In numerous engineering applications, an increase of available driving
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power is used to pass over the resonance; but when the additional power consumption due

to vibration is comparable with the limited power of the driving motor, this approach

may become impractical because of Sommerfeld effect. Therefore, some examples of

techniques of passage with limited power supply are the method of changing stiffness by

removing the originally additional stiffness, Dimentberg et al. [3], and switching stiffness

by using shape memory alloys, Segalman et al. [4], Kononenko et al. [5].

Figure 3: Displacement responses (upper traces) and shaft angular frequencies (lower traces) vs. time, as obtained by
numerical simulation in search of a passage/capture threshold for the case of a passage with slowdown with 30% of the
quasitatic threshold. Dimentberg et al. [3]
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Figure 3 from Dimentberg et al. [3], are plots of displacement and angular velocity of

one-dimensional vibration passing through resonance. The amplitude increases when the

vibration is getting close to resonance, and reaches maximum at resonance. During the

passage, the angular velocity slows down temporarily. After the resonance is passed over,

the amplitude decreases, and the angular velocity grows again. Different from capture

at resonance, the passage over resonance reflects that the vibration is reduced, and the

power supply continues to accelerate the rotation speed.

The two-dimensional vibration problems can contain nonlinear terms. Nonlinearity

comes from the interaction between vibrator and motor, due to the non-ideal energy

source, nonlinear motor torque, and nonlinear elastic force. The nonlinear interaction of

non-ideal energy source is not negligible unless in the case of an unlimited power supply.

In general, the torque of the electro-motor, which is the net torque by deducting resisting

torques from driving torques, is assumed to be linear. This torque is the characteristic of

motors. A previous research of DC motors, asynchronous and synchronous motor, proved

that the motor torques are commonly nonlinear Kononenko et al. [5]. In this report, we

assume that the motor torque is from a lossless power supply, so that the motor torques

are constant values.

The elastic force, modeled as a spring stiffness, can also be a nonlinear function. An

electromotor with an unbalance is connected to a visco-elastic structure with nonlinear

properties. Nonlinear spring stiffness is common in a significant number of materials, for

example, aluminum, titanium and other aircraft materials, Prathap et al. [11], copper

and copper alloys, Lo et al. [12], ceramic materials, Colm et al. [13] show nonlinear

stress-strain properties of the material. The nonlinear dependence of the restoring force

on the deflection is a polynomial whose exponent is of positive integer or non-integer

order. For most materials, the damping properties are also nonlinear, but since the order

of nonlinearity in the damping force is small, linear damping force model can be used as

a good approximation. A detailed explanation of nonlinearity involved in the problem
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can be found in the paper Cveticanin et al. [6].

We only consider linear spring stiffness in this report.

Perturbation theory is a method to find an approximate solution to a problem by

starting from the exact solution of a related while simpler problem, and then adding the

perturbation series in small parameter, Verhulst et al. [9]. Krylov-Bogoluiboy averaging

method replaces the exact differential equation of the motion by its averaged version.

For two or more timescales, the long time scales are assumed to be independent of the

short time scales, which requires the condition that guarantees variations in slow vector

solution within the period of variations in the fast time scale. The detailed explanation

and process of applying this method is included in the paper, Verhulst et al. [9].

Krylov-Bogoluibov averaging method is a commonly used method to deal with prob-

lems of oscillating processes in nonlinear mechanics. The application of Krylov-Bogoluiboy

averaging method can be found in the papers Dimentberg et al. [3], Verhulst et al. [9],

Bolla et al. [10]. In our research, we decided to apply Krylov-Bogoluiboy method to

solve for analytic results.

Numerical simulation is used to validate the analytic results and also can be used to

explore the transient effects in passage through resonance. Analytic results by applying

Krylov-Bogoluibov averaging method can only be found under specific conditions in

our problem: small damping, small unbalance and small difference between the natural

frequencies. And it is for the steady-state response. Thus numerical simulation can

analyze the general case without the conditions of small values, and consider the transient

cases.

Runge-Kutta method is a commonly used method for numerical simulation of Som-

merfeld effect problems. The applications of Runge-Kutta method can be found in the

papers Dimentberg et al. [3], Cveticanin et al. [6], Samantaray et al. [7].

Runge-Kutta-Fehlberg is an updated method under Runge-Kutta family, which is

also called as Runge-Kutta45 method, Burden et al. [17]. Different from Runge-Kutta
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method, which has uniform step size, Runge-Kutta-Fehlberg has step size that is adaptive

to the number and position of the grid points. The idea of the method is to begin with

two Runge-Kutta approximations, with order 4 and order 5. Then apply the algorithms

to get two approximations at a given grid point. If the error approximation at the

grid point exceeds some prescribed maximum bound on accuracy, a smaller step size

is assigned as well as a new grid point, then repeat the steps for further points. If

the error approximation falls below the present minimum bound on accuracy, which

indicates a good approximation, the step size will increase for the next step. If the error

approximation falls in between the maximum and minimum bounds, the step size will

remain constant for proceeding steps.

In this report, we consider a two-dimensional vibrations system with two spring sets

in vertical and horizontal axes. The one-dimensional vibrating system can be considered

as a two-dimensional system with one of the spring set has infinite stiffness, i.e. the

ratio of stiffnesses is inifinity. The other extreme case of two-dimensional vibrations is

axisymmetric case, which the stiffnesses of two spring sets are equal, i.e. the ratio of

stiffnesses is unity. The case of axisymmetric shaft has been solved by Kononenko in

his book, Kononenko et al. [18]. The goal of the project is to fill in the gap between

the above two extreme cases. The model with its equation of system is demonstrated

in Chapter 3. In Chapter 4 and 5, we use Krylov-Bogoliubov averaging method for

analytical analysis of steady-state reponse and transient reponse. Moreover, we consider

the stability criteria of the steady state reponse. Detailed numerical simulations on the

transient reponse, and the results are stated in Chapter 6.
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2 Methodology

Analytical Method (Krylov-Bogoliubov Averaging Method)

The basic idea of averaging method can be dated back to the late 18th century,

when Lagrange formulated the gravitational three-body problem as a perturbation of the

two-body problem in 1788. In 1930s, the averaging method became one of the classical

methods for approximate analysis of oscillating processes in non-linear mechanics. The

method is named after Nikolay Krylov and Nikolay Bogoliubov.

Averaging method is applicable to systems of the form:

ẋ = εX(x, t); ε� 1 . (3)

Here matrix X(x, t) is periodic with period T in explicitly present time t. Therefore it

can be expanded in complex Fourier series as:

X(x, t) =
k=∞∑
k=−∞

Xk(x) exp(ikνt) . (4)

where ν = 2π/T , Xk(x) =
1

T

∫ T
0
X(x, t) exp(−ikνt)dt.

With ε → 0, solution to the matrix ODE (3) satisfies x(t) → x0(t). x0(t) is the

solution vector to the matrix ODE with the RHS containing only the term of k = 0 in

the series (4):

ẋ0 = εX0(x0); whereX0(x) =
1

T

∫ T

0

X(x, t)dt . (5)

As an example, from Verhulst [9].

ẍ+ ε(2− e−εt)ẋ+ x = 0 . (6)

Introducing τ = εt, along with the regular perturbation expansion x = x0 +εx1 +ε2 + · · · ,
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and expansion of the Eq.(6) yields

(
∂2

∂t2
+ 2ε

∂2

∂t∂τ
+ ε2

∂2

∂t2
+ ε2 + · · ·

)(
x0 + εx1 + ε2 + · · ·

)
+ ε(2− e−τ )

(
∂

∂t
+ ε

∂

∂τ

)
(x0 + εx1 + ε2 + · · · ) + (x0 + εx1 + ε2 + · · · ) = 0 . (7)

Colleting the terms of the order ε, we find the equation to zero order

∂2x0

∂t2
+ x0 = 0 . (8)

The general solution of Eq. (8) is x0(t, τ) = A(τ) cos t+B(τ) sin t.

Transform x, ẋ → A,B by variation of parameters. In this problem, dot denotes

derivative with respect to t, for example ẋ =
dx

dt
. Taking the derivative with repsect to

t of x, we get ẋ = −A sin t + B cos t + Ȧ cos t + Ḃ sin t. By variation of parameters, let

Ȧ cos t+ Ḃ sin t = 0, so that

ẋ = −A sin t+B cos t , (9)

then

ẍ = −Ȧ sin t+ Ḃ cos t− A cos t−B sin t . (10)

Substituting Eq (9) and (10) into the equation of system Eq. (6):

−Ȧ sin t+ Ḃ cos t+ ε(2− e−εt)(−A sin t+B cos t) = 0 . (11)

Use Eq (11) and the condition for variation of parameters, Ȧ cos t + Ḃ sin t = 0, to

solve for Ȧ and Ḃ:

Ȧ =
dA

dt
= ε

dA

dτ
= ε(2− e−τ )(−A sin t+B cos t) sin t , (12)

Ḃ =
dB

dt
= ε

dB

dτ
= −ε(2− e−τ )(−A sin t+B cos t) cos t , (13)

as τ = εt.
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Both sides of Eq.(12) are the order ε, so that we can apply the averaging method for

Eq.(12):

∫ 2π

0

dA

dτ
dt =

∫ 2π

0

(2− e−τ )(−A sin2 t+B sin t cos t)dt , (14)

2π
dA

dτ
= (2− e−τ )(−Aπ + 0) , (15)

dA

dτ
= −1

2
(2− e−τ )A . (16)

Similarly, for Eq. (13):

∫ 2π

0

dB

dτ
dt =

∫ 2π

0

(2− e−τ )(−A sin t cos t+B cos2 t)dt , (17)

dB

dτ
= −1

2
(2− e−τ )B . (18)

So that the first order for x(t):

x0 = exp

(
−τ − 1

exp(−τ)

)
(A(0) cos t+B(0) sin t) . (19)

where A(0) and B(0) are determined by the initial conditions.

Computational Technique (Runge-Kutta-Fehlberg)

Runge-Kutta methods belong to a family of increasingly accurate, and time-effcient

methods, named after two German scientists: Carl Runge (1856-1927), mathematician

and physicist, and Martin Kutta (1867-1994), mathematician. Generalized from Modified

Euler and Midpoint methods, the methods of higher order with global error of O(hk) with

k ≥ 3. Runge-Kutta-Fehlberg method adapts the number and position of the grid points

during the course of the iteration in attempt to keep the local error within some specified

bound.

The derivation of 2-stage Runge-Kutta scheme is the characteristic of the higher order
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Runge-Kutta methods. The general form of an explicit two-stage Runge-Kutta Method

is

xi+1 = xi + h(αk1 + βk2) ,

k1 = f(ti, xi) ,

k2 = f(ti + ah, xi + ahk1) .

where dx/dt = f(t, x). Two example methods that fit this pattern are midpoint method

(a = 1/2, α = 0, β = 1) and Heun’s Method (a = 1, α = β = 1/2), both have appoxi-

mation with error no greater than O(h2). To estimate the local truncation error of these

methods, perform the Taylor expansions of the terms of the general 2-stage Runge-Kutta

Methods. Substituting k1 in the definition of k2,

k2 = f(ti + ah, xi + ahf(ti, xi)) . (20)

Since f ′(t, x) =
df

dt
(t, x) = ∂f

∂t
(t, x) + ∂f

∂x
(t, x) · x′(t) , and x′(t) = f(t, x), we have

k2 = f(ti, xi) + ah
∂f

∂t
(ti, xi) + ah

∂f

∂x
(ti, xi) · f(ti, xi) +O(h2) . (21)

When this is inserted in the expression for xi+1, we find

xi+1 = xi + h(α + β)f(ti, xi) +
h2

2
2aβ

[
∂f

∂t
(ti, xi) +

∂f

∂x
(ti, xi) · f(ti, xi)

]
+O(h3) . (22)

Comparing this to Taylor series, we can see the conditions for the expansion (22) to

match the first two terms of Taylor series

x(ti+1) = x(ti) + hx′(ti) +
h2

2
x′′(ti) +O(h3) , (23)

are
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α + β = 1 , (24)

2aβ = 1 . (25)

It is straightforward to check that the midpoint method and the Heun’s Method satisfy

these conditions.

The outline of Runge-Kutta-Fehlberg algorithm can be found in the following steps.

Begin with two RK approximation algorithms, one with order p and with order p + 1;

we used p = 4. Apply 4th-order-RK and 5th-order-RK to get two approximations at

a given grid point t1. The approximations are used to approximate the local error at

the grid point. If the error of 4th-order-RK is within the prescribed tolerance, then the

preceding process is repeated with 4-order algorithm. If the error approximation exceeds

some prescribed maximum bound on accuracy, a smaller step size is assigned, and a

new grid point is used. The preceding steps are repeated; the two RK approximations

will be recomputed using the new grid point. If the error is between the minimum and

maximum bounds, the approximation is acceptable, so the acceptable step size can be

used to advance to the next grid point. If the error is lower than the minimum bound, the

step size is more than adequate, and will be increased until it reaches maximum bound.

In an interval [a, b], with initial values x0, we calculate

k1 = hf(ti, xi) ,

k2 = hf(ti +
h

4
, xi +

1

4
k1) ,

k3 = hf(ti +
3

8
h, xi +

3

32
k1 +

9

32
k2) ,

k4 = hf(ti +
12

13
h, xi +

1932

2197
k1 −

7200

2197
k2 +

7296

2197
k3) ,

k5 = hf(ti + h, xi −
429

216
k1 − 8k2 +

3680

513
k3 −

845

4104
k4) ,

k6 = hf(ti +
h

2
, yi −

8

27
k1 + 2k2 −

3544

2465
k3 +

1859

4104
k4 −

11

40
k5) ;
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xi+1 = xi +
25

216
k1 +

1408

2565
k3 +

2197

4104
k4 −

1

5
k5 ,

x̃i+1 = xi +
16

135
k1 +

6656

12825
k3 +

28561

56430
k4 −

9

50
k5 +

2

55
k6 ,

E =
1

h
|x̃i+1 − xi+1| =

1

h

∣∣∣ 1

360
k1 −

128

4275
k3 −

2197

75240
k4 +

1

50
k5 +

2

55
k6

∣∣∣ .
If the error E is less than the tolerance ε, the time step is acceptable, then the

approximation at the grid point by 4th-order-algorithm is

xi+1 = xi +
25

216
k1 +

1408

2565
k3 +

2197

4104
k4 −

1

5
k5 . (26)

If the error E is greater than tolerance, the error of approximation is unacceptable, a

new step size should be determined for futher steps. To recalculate a new step size, the

scaling factor of the step size, δ, is calculate as

δ = 0.84
( ε
E

)1/4

. (27)

When δ ≤ 0.1, the step size h is greater than maximum bound, that the approximation

is unacceptable. In order to get more accurate approximation, we need to decrease the

step size. Replace hi+1 = 0.1hi provided that the smaller step size satisfies hi+1 ≥ hmin.

Compute new values of xi+1 and x̃i+1 for this smaller step size.

When δ ≥ 4, the step size h is smaller than minimum bound, that the approximation

is quite accurate that the step size is more than adequate. In this case, we can increase

the step size to accelerate the procedure without losing the accuracy. Increasing h by

four times as long as the larger step size is still smaller than hmax. That is, set hi+1 = 4hi

When 0.1 < δ < 4, then xi+1 is an acceptable approximation at ti+1. In this case,

step size can be used to calculate the next grid point, hi+1 = hi. An alternative is to

recalculate a new step size with the scaling factor δ. Replace hi+1 = δh.

Every time when h > hmax, the step size will be reset as h = hmax, so that we keep
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the step size in an acceptable range.

Repeat the above steps. If new grid point has t ≥ b, which means the grid point

is the end point and the procedure is completed. We stop the process at this point. If

the new grid point does not reach the right end of time interval, but the next grid point

exceed the interval, that t+ h > b, then set h = b− t, so that the final point will be set

as the end poing of the interval. However, if this h is smaller than hmin, that minimum

h is exceeded, then the procedure is completed unsuccessfully, but with a small value of

hmin, the data collected is sufficient for analysis.

In 4th-order-RK method, the result depends on different prescribed step size, while

a large step size results in less accuracy, and a small step size delays the progress. This

brings the problem of choosing an appropriate step size. Using the Runge-Kutta-Fehlberg

method, the error of the compuation maintains in a local error bound. The adaptive step

size solves this problem by automatically resize time steps, that saves time of calculation

and guarantees a good approximation.
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3 Formulation

Consider an unbalanced shaft, mounted on a rigid base, which is suspended on two

elastic spring sets vertically and horizontally, allowing the shaft to move translationally in

vertical direction x, and horizontal direction y (Figure 4). Based on the one dimensional

vibration of an unbalanced shaft, Dimentberg et al. [3], the equations of its coupled

translational and rotational motion can be written as

mẊ + CẊ +KxX = −mr d
2

dt2
(cosφ) , (28)

mẎ + CẎ +KyY = −mr d
2

dt2
(sinφ) , (29)

Iφ̈ = M(φ̇, t) +mr(Ẍ sinφ− Ÿ cosφ) +mgr cos(φ+ π/2) . (30)

Here X(t), Y (t) are vertical displacement and horizontal displacement of the shaft’s

mass center, respectively, and φ(t) is the shaft’s rotation angle. It is assumed that the

unbalanced shaft is torsionally stiff shaft, which means the shaft and motor rotate simul-

Figure 4: Model of an unbalanced rotating shaft on a support with two-dimensional elastic sus-
pension spring sets. x(t) and y(t) are translational displacement in two dimensions, φ is the
rotation angle of the shaft.
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taneously without tortional phase. Although in practical application, the phase generally

exists, we are not going to consider this in our problem. Kx and Ky are the stiffness

of vertical spring set x and horizontal spring set y respectively, while their damping co-

efficients are assumed to be equal as C. The unbalanced mass and its eccentricity are

denoted as m and r, respectivelly, whereas I is the shaft’s mass moment of inertia such

that I = m(r2
G + r2)φ̈ where rG is the shaft’s radius of gyration. The last term on the

RHS of the Equation (30) is due to gravity. The influence of gravity for vertical shaft is

absent, whereas for a horizontal shaft it is of minor importance at high rotation speeds

and high accelerations in both x and y directions.

Non-Dimensionalization

To simplify our problem, we non-dimensionlize the system. Let

x =
X

r
, y =

Y

r
, t̄ =

√
Kx

m
t = Ωxt . (31)

where Ωx is the natural frequency of the undamped x-displacement, which can be derived

from Equation (29). Rewrite the equations of system in non-dimensional variables:

mr
Kx

m
ẍ+ C · r

√
Kx

m
ẋ+ rKxx = −mrKx

m

d2

dt̄2
(cosφ) . (32)

So that

ẍ+
C√
Kxm

ẋ+ x = − d2

dt̄2
(cosφ) . (33)

Substitute damping ratio α =
C

2
√
Kxm

into the equation, we have the non-dimensionalized

x-momentum equation:

ẍ+ 2αẋ+ x = − d2

dt̄2
(cosφ) . (34)

Similarly, non-dimensionalize the y-momentum equation with repect to t̄ = Ωxt,
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where Ωx =

√
Kx

m
. Let Ω =

Ωy

Ωx

where Ωy =

√
Ky

m
, we get:

ÿ + 2αẏ + Ω2y = − d2

dt̄2
(sinφ) . (35)

Rewrite the angular momentum equation in t̄:

Kx

m
φ̈−

(
r
Kx

m
ẍ sinφ− rKx

m
ÿ cosφ

)
=

M

m(rG2 + r2)
. (36)

Let ε =
r

rG
and M̄ =

M

Kx(rG2 + r2)
, Equation (36) becomes:

M̄ = φ̈− ε2

1 + ε2
(ẍ sinφ− ÿ cosφ) . (37)

From the equation of M̄ , we can see that M̄ is on the order of ε2. In next section, we

apply analytical methods to approximate the values of M̄ .
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4 Steady-state Response

The general function of simple harmonic motion: mẍ + cẋ + kx = F0 sin(ωt) has

solution of diplacement x(t) = X sin(ωnt − θ1) + A exp(−εωnt) sin(ωdt + θ2), where X

and A are constant amplitudes, φ and φ1 are phase angles, ω is the force frequency,

ωn is the natural frequency, and ωd is the damped natural frequency. The first part of

the equation denotes the steady-state response and the second part corresponds to the

transient response. In the analytical analysis, we only apply the KB-averaging method to

find the steady-state response. The transient response is found by numerical simulation

in next section.

In our problem, we use different notations such that φ is the rotation angle of the

shaft, and ν = φ̇ is the rotational velocity, which for steady-state case ν is a constant.

The solution of our problem is:

x(t̄) = Xs sin(νt̄) +Xc cos(νt̄) , (38)

y(t̄) = Ys sin(νt̄) + Yc cos(νt̄) . (39)

Since the steady-state rotational velocity ν = constant, we have φ̈ = ν̇ = 0. Therefore

the RHS of the equations of translational vibrations can be expanded with φ̈ = 0, so that

the equations of system are:

ẍ+ 2αẋ+ x = ν2cos(νt̄) , (40)

ÿ + 2αẏ + Ωy
2y = ν2sin(νt̄) , (41)

M̄ =
ε2

1 + ε2
[−ẍ sin(νt̄) + ÿ cos(νt̄)] . (42)

Substitute the solution of x(t̄), (38), into Equation (40):

(1− ν2)(Xc cos(νt̄) +Xs sin(νt̄)) + 2α(−νXc sin(νt̄) + νXc cos(νt̄)) = εν2 cos(νt̄) . (43)
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By equating the sin(νt̄) terms and cos(νt̄) terms, we solve for Xs and Xc:

Xs =
2αν3

Γx
, (44)

Xc =
ν2(1− ν2)

Γx
, (45)

where Γx = (1− ν2)2 + (2αν)2.

Similarly, sustitute the solution of y(t̄), (39), into Equation (41):

(Ω2 − ν2)(Yc cos(νt̄) + Ys sin(νt̄)) + 2α(−νYc sin(νt̄) + νYc cos(νt̄)) = εν2 sin(νt̄) , (46)

and equate sin(νt̄) terms and cos(νt̄) of two sides, we can find:

Ys =
ν2(Ω2 − ν2)

Γy
, (47)

Yc = −2αν3

Γy
, (48)

where Γy = (Ω2 − ν2)2 + (2αν)2.

Since M̄ is in the order of O(ε2), as introduced in previous section, we can apply

KB-averaging method to find this as a function of ν.

M̄(ν) =
ε2

1 + ε2

( ν
2π

)∫ 2π/ν

0

(Xc sin(νt) cos(νt) +Xs sin(νt)2 − Ys sin(νt) cos(νt)− Yc cos(νt)2)dt

=
ε2

1 + ε2

( ν
2π

)∫ 2π/ν

0

(Xs sin(νt)2 − Yc cos(νt)2)dt

=
ε2

2(1 + ε2)
(Xs − Yc) , (49)

since the average of Xc sin(νt) cos(νt) and Ys sin(νt) cos(νt) are zero.

Substitute Xs and Yc into the equation of M̄ :

M̄ss =
αν3ε2

1 + ε2

(
1

Γx
+

1

Γy

)
. (50)
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The following figure demostrates the curve of the steady-state threshold torque M̄ss,

such that starting with a driving torque M, the system will reach a point on the curve

that corresponds to its steady-state. There exist two peaks of the curve, which locate at

ν = 1 and ν = Ω, and correspond to x-resonance and y-resonance. The stability of the

steady-state curve is analyzed later.

Figure 5: Steady-state curve of threshold torque M̄ss vs. angular velocity ν, with α = 0.01, ε = 0.005 and Ω = 1.2

Consider the values of steady-state torque M̄ss of the two peaks: ν = 1 and ν = Ω,

they are functions depending on Ω. From the function of M̄ss, Eq (50), when ν reaches

1, the function of steady-state torque is:

(M̄ss)1 =
αε2

1 + ε2

(
1

4α2
+

1

(Ω2 − 1)2 + 4α2

)
. (51)

The plot of (M̄ss)1, with α = 0.01 and ε = 0.005 is demonstrated in Figure 6. As we

consider the cases between two extreme cases: axisymmetric case and one-dimensional

case, we only care about the range of Ω that is 1 ≤ Ω ≤ ∞. When Ω = 1, the system

is axisymmetric, such that the horizontal and vertical spring sets have the same spring
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stiffness. In this case, the value of (M̄ss)1 is around 0.00125, which is the first peak value

of M̄ss at ν = 1. For the one-dimensional case, which can be denoted as Ω = ∞, the

second peak value of M̄ss at ν = Ω is around 0.000625, which is one half of the steady-

state torque value in axisymmetric case. And as indicated in the figure, the (M̄ss)1

curve decreases from the maximum value at Ω = 1, and is asympotic to the value of

one-dimensional case, 0.000625.

Now consider the second peak at ν = Ω, the steady-state torque is:

(M̄ss)2 =
αε2Ω3

1 + ε2

(
1

(1− Ω2)2 + 4α2Ω2
+

1

4α2Ω2

)
. (52)

Different from the (M̄ss)1 curve, the values at the peak ν = Ω decreases from the

maximum value 0.00125 at axisymmetric case Ω = 1, reaches its minimum value 0.000681

at Ω = 1.058, and increases again to infinity. Since the minimum value of (M̄ss)2 is greater

than all the values in (M̄ss)1, the steady-state torque M̄ss at the second peak ν = Ω is

always above the steady-state torque at the first peak ν = 1. This is also infered from

the M̄ss function, Eq (50).

Figure 6: Threshold steady-state torque values at ν = 1, (M̄ss)1 vs. angular velocity ν, with α = 0.01, and ε = 0.005
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With this property of curve (M̄ss)2, we introduce a passage technique for axisymmetric

vibrating system, by slightly increasing the spring stiffness. Suppose the vibrating system

is axisymmetric, such that the x-axis spring stiffness equals the y-axis spring stiffness,

the technically required torque for passage is 0.00125, as found above. This means at

least 0.00125 of torque is needed for passage over resonance. If the y-axis spring stiffness

is slightly raised from 1 to 1.058, then the minimum torque required for passage in x-

displacement is 0.000625, and the minimum torque required for y-displacement passage

is 0.000681. Hence with x-axis spring stiffness being unity, and y-axis spring stiffness

being 1.058, the torque required for passage in both x-displacement and y-displacement is

0.000681. Thus, for a axisymmetric vibration system with input torque between 0.000681

and 0.00125, which is captured at resonance initially, a slightly increase of y-axis spring

stiffness by 0.058 will achieve passage over resonance at ν = Ω.

Figure 7: Threshold steady-state torque values at ν = Ω, (M̄ss)2 vs. angular velocity ν, with α = 0.01, ε = 0.005, and
Ω = 1.2
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5 Transient Response

In previous section, we consider the steady-state response, while before the vi-

bration reaches steady state, we also need to consider the transient case. The figure

of steady-state torque demonstrates the the final angular velocity φ̇ that the shaft will

reach, with some given initial conditions. In this section, we apply perturbation expan-

sion, as well as KB-averaging, to look for the general solution of displacement equations.

Since from the equation of steady-state torque, Eq (50), M̄ss is of order ε2, the terms of

oder ε2 in the perturbation expansion of angular momentum equation corresponds to the

steady-state torque.

Steady-state response has stability criteria, such that vibration approaches stable

steady state, but departs from unstable steady state. Hence with the analysis of transient

response, we are able to determine the vibrations with initial conditions that is not located

on the steady-state torque curve.

Starting with the analysis of transient response, the equations of system are:

ẍ+ 2αẋ+ x = φ̇2 cosφ+ φ̈ sinφ , (53)

ÿ + 2αẏ + Ω2y = φ̇2 sinφ− φ̈ cosφ , (54)

M̄ = ε2φ̄′′ +
ε2

1 + ε2
(ÿ cosφ− ẍ sinφ) . (55)

Consider φ = νt+ φ̄(τ), where φ̄(τ) denotes the perturbation added to the constantly

increasing rotation angle φ. A new time scale τ is of the order of ε , such that τ = εt.

With the new time scale τ , let

x = xs(τ) sin νt+ xc(τ) cos νt , (56)

y = ys(τ) sin νt+ yc(τ) cos νt . (57)
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Then

ẋ = νxs cos νt− νxc sin νt+ ε(x′s sin νt+ x′c cos νt) , (58)

ẍ = −ν2x+ 2εν(x′s cos νt− x′c sin νt) + ε2(x′′s sin νt+ x′′c cos νt) (59)

where x′s denotes derivative of xs with respect to τ , similarly for x′c, x
′′
s and x′′c .

Substitute these expressions into the x-momentum equation (53) and factorize out

sin νt and cos νt for the left hand side:

[
(1− ν2)xs − 2ενx′c + ε2x′′s − 2ανxc + 2αεx′s

]
sin νt

+
[
(1− ν2)xc + 2ενx′s + ε2x′′c + 2ανxs + 2αεx′c

]
cos νt

= (ν + εφ̄′)2(cos νt cos φ̄− sin νt sin φ̄) + ε2φ̄′′(sin νt cos φ̄+ cos νt sin φ̄) . (60)

For the sin νt terms and cos νt terms, there are two equations:

(1− ν2)xs − 2ανxc + 2ε(αx′s − νx′c) + ε2x′′s = −(ν + εφ̄′)2 sin φ̄+ ε2φ̄′′ cos φ̄ , (61)

(1− ν2)xc − 2ανxs + 2ε(αx′c + νx′s) + ε2x′′c = (ν + εφ̄′)2 cos φ̄+ ε2φ̄′′ sin φ̄ . (62)

Expand xs and xc in a regular perturbation expansion:

xs
xc

 =

xs0
xc0

+ ε

xs1
xc1

+ · · · . (63)

At leading order, we find:

1− ν2 −2αν

2αν 1− ν2


xs0
xc0

 = ν2

− sin φ̄

cos φ̄ .

 (64)
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Solve this system (64) to find xs0 and xc0 :

xs0 =
ν2

Γx

[
2αν cos φ̄− (1− ν2) sin φ̄

]
, (65)

xc0 =
ν2

Γx

[
(1− ν2) cos φ̄+ 2αν sin φ̄

]
, (66)

where Γx = (1− ν2)2 + (2αν)2.

Note that,

x′c0 = φ̄′xs0 , (67)

x′s0 = −φ̄′xc0 . (68)

At O(ε), we find that

1− ν2 −2αν

2αν 1− ν2


xs1
xc1

 = 2νφ̄′

− sin φ̄

cos φ̄

+ 2φ̄′

 ν α

−α ν


xs0
xc0

 , (69)

xs1
xc1

 = 2φ̄′

 Bxxs0 + Axxc0

−Axxs0 +Bxxc0

 , (70)

where

Ax =
α(1 + ν2)

Γx
, (71)

Bx =
1

ν
+
ν(1− ν2)− 2α2ν

Γx
. (72)

Now consider the y-momentum equation (54). Let y = ys(τ) sin νt+ yc(τ) cos νt, find

the first and second derivative of y with repect to t:

ẏ = νys cos νt− νyc sin νt+ ε(y′s sin νt+ y′c cos νt) , (73)

ÿ = −νy2 + 2εν(y′s cos νt− y′c sin νt) + ε2(y′′s sin νt+ y′′c cos νt) . (74)
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Substitute Eq (73) and (74) into equation (54). Separate the sin νt terms and cos νt

terms:

(Ω2 − ν2)ys − 2ανyc + 2ε(αy′s − νy′c) + ε2y′′s = (ν + εφ̄′)2 cos φ̄+ ε2φ̄′′ sin φ̄ , (75)

(Ω2 − ν2)yc + 2ανys + 2ε(αy′c + νy′s) + ε2y′′c = (ν + εφ̄′)2 sin φ̄− ε2φ̄′′ cos φ̄ . (76)

Expand ys and yc in a regular perturbation expansion:

ys
yc

 =

ys0
yc0

+ ε

ys1
yc1

+ . . . , (77)

then at O(1), we find that:

Ω2 − ν2 −2αν

2αν Ω2 − nu2


ys0
yc0

 = ν2

cos φ̄

sin φ̄

 , (78)

which has the solution

ys0 =
ν2

Γy

[
(Ω2 − ν2) cos φ̄+ 2αν sin φ̄

]
, (79)

yc0 =
ν2

Γy

[
−2αν cos φ̄+ (Ω2 − ν2) sin φ̄

]
, (80)

where Γy = (Ω2 − ν2)2 + (2αν)2.

Similar to the x-component case,

y′s0 = −φ̄′yc0 , (81)

y′c0 = φ̄′ys0 . (82)

Substitute into the terms of order ε to find ys1 and yc1 :ys1
yc1

 = 2φ̄′

 Byys0 + Ayyc0

−Ayys0 +Byyc0

 , (83)
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where

Ay =
α(Ω2 + ν2)

Γy
, (84)

By =
1

ν
+
ν(Ω2 − ν2)− 2α2ν

Γy
. (85)

Substitute xs, xc and ys, yc into the momentum equation (55), and apply KB-

averaging:

M̄ = ε2φ̄′′+
ε2

1 + ε2

[ν2

2
(ys sin φ̄− yc cos φ̄) + εν(y′s cos φ̄+ y′c sin φ̄) +

ε2

2
(−y′′s sin φ̄+ y′′c cos φ̄)

+
ν2

2
(xs cos φ̄+ xc sin φ̄)− εν(x′s sin φ̄− x′c cos φ̄)− ε2

2
(x′′s cos φ̄+ x′′c sin φ̄)

]
.

(86)

Substitute the xs and xc with perturbation term, as well as ys and yc into the equation

(86), the terms of order ε2 can be simplified as

αν3

(
1

Γx
+

1

Γy

)
= M̄ss

(
1 + ε2

ε2

)
,

which corresponds to the simple harmonic case.

Stability of steady-state response

By considering the terms of order ε2, we derived the steady-state threshold torque

M̄ss. Continue for the terms of order ε3, we analyze the transient reponse.

At order ε3, we have:

ν(y′s0 cos φ̄+ y′c0 sin φ̄) +
ν2

2
(ys1 sin φ̄− yc1 cos φ̄)

− ν(x′s0 sin φ̄− x′c0 cos φ̄) +
ν2

2
(xs1 cos φ̄+ xc1 sin φ̄)
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= ν(−φ̄′yc0 cos φ̄+ φ̄′ys0 sin φ̄) + ν2φ̄′[(Byys0 + Ayyc0) sin φ̄

+ (Ayys0 −Byyc0) cos φ̄]

+ ν(φ̄′xc0 sin φ̄+ φ̄′xs0 cos φ̄) + ν2φ̄′[(Bxxs0 + Axxc0) cos φ̄

(−Axxs0 +Bxxc0) sin φ̄

= φ̄′{−νyc0 cos φ̄+ νys0 sin φ̄+ ν2[(Byys0 + Ayyc0) sin φ̄] + (Ayys0 −Byyc0) cos φ̄]

+ νxc0 sin φ̄+ νxs0 cos φ̄+ ν2[(Bxxs0 + Axxc0) cos φ̄(−Axxs0 +Bxxc0) sin φ̄}

(87)

Then with the perturbation expansion of the momentum equation Eq.(55), we have

M̄ = ε2φ̄′′ +
ε2

1 + ε2

[
αν3

(
1

Γx
+

1

Γy

)
+ εβφ̄′ +O(ε2)

]
. (88)

where

β =
ν4

Γx
[2α + 2ανBx + Ax(1− ν2)] +

ν4

Γy
[2α + 2ανBy + Ay(Ω

2 − ν2)] . (89)

When M̄ = M̄ss, Eq (88) defines a stability problem for the phase of the form, so that

φ̄′′ + εβφ̄′ = 0 . (90)

Thus, when β > 0, the angular velocity φ̄′ = e−βτ decays exponentially, and the

system is stable. If β < 0, then the angular velocity φ̄′ grows exponentially, which means

unstable.

β =
ν4

Γx
[2α + 2ανBx + Ax(1− ν2)] +

ν4

Γy
[2α + 2ανBy + Ay(Ω

2 − ν2)] . (91)

The following are the figures of β vs. angular velocity ν with different values of Ω.

With 1 ≤ Ω < 1.05, as indicated in figure 8 a) and b), β is positve when ν ≤ 1 but
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negative when ν > 1, and it is asymptotic with respect to 0. However, when Ω ≥ 1.5, β

splits in three parts. β changes its sign from positve to negative when ν ≈ 1, and its sign

changes from positive to negative again when ν ≈ Ω. Compare figure 8 d) with figure

9, we can find when α = 0.01, Ω = 1.2, β is positive when the slope of the M̄ss curve

is positive, which is denoted as the blue curves, and β is negative when the slope of the

M̄ss is negative, which is denoted as the red dashed curves.

When the vibration approaches the stable steady state, which are the blue curves in

Figure 9, the corresponding rotation speed ν denotes the final rotating speed that the

shaft gets. This means after the transient state, the shaft reaches its steady state, with

rotating speed at a constant value. This corresponds to the capture at resonance, hence

(a) (b)

(c) (d)

Figure 8: Stability indicator β vs. angular velocity ν, with α = 0.01, and a) Ω = 1, b) Ω = 1.02, c) Ω = 1.05, d) Ω = 1.2
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the rotation of shaft stucks at a constant value, and the vibration amplitude maintains

at the large resonant amplitude. With given initial rotation speed and the function of

motor torque, we are able to determine the technical capture/passage of shaft based on

this figure, as well as the final rotation speed that the shaft reaches.

Figure 9: Steady-state stability curve of threshold torque M̄ss vs. angular velocity ν, with α = 0.01, ε = 0.001 and Ω = 1.2.
Blue curve indicates stable steady states, red dashed curve indicates unstable steady states.

36



6 Numerical Simulation

From the previous analysis, we derived the function of steady-state threshold torque

M̄ss(ν), and considered transient reponse by using perturbation expansion and KB-

averaging. In this chapter, we use numerical simulation to validate the steady-state

torque function M̄ss(ν), which leads to a passage technique, and prove the stability cri-

teria of steady-state.

Passage/Capture

As described in previous sections, the motor torque determines whether the passage

or capture will occur in a vibration. Since the power input of the motor keeps constant,

there is a tradeoff between the angular velocity of rotation and the motor torque. Thus

by increasing the angular velocity of the motor and the shaft, the function of motor

torque decays with respect to ν. This decaying function of motor torque M̄ depending

on angular velocity ν is determined by the properties of different kinds of motor. In order

to simplify the problem, we assume that the motor torque remains constant no matter

how fast the shaft rotates, i.e. M̄(ν) = M̄0. We would like to find M̄0 as the minimum

torque required for passage, and the values of M̄0 at different values of ν correspond to

the steady-state response threshold torque M̄ss by the numerical approach.

To look for M̄0, we need to determine the two cases: passage and capture. As

introducted in previous section, passage indicates amplitude of vibration passes over the

resonant amplitude and returns to a smaller constant value, while the angular velocity

increases throughout the whole process, although some slow down of angular acceleration

is possible when passing over the resonance. An example of passage is demonstrated in

Figure 10. Capture indicates the case when the vibration reaches its resonance, and the

amplitude is captured at the resonant amplitude, which has a high value. The angular

velocity of vibration captured at resonance will also be captured at a constant value,
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so that the power input is used to vibrate the system instead of increasing the angular

velocity. The corresponding figure of capture case is Figure 11.

In Dimentberg et al. [3], it introduced the case of “slow passage”, which is passage

with an obvious slowdown of angular acceleration. In this case, during the time passing

over the resonance, the angular velocity nearly remains constant, which shown in the

graph as the gradient of φ̇(t) is oscillating about 0. An example of “slow passage” is

demonstrated in Figure 12, during the passage over x-resonance and y-resonance, the

angular velocity remains at a constant value for a while, and it increases again when the

resonance is passed over. “Slow passage” indicates an eventually passage over resonance

after an amount of time with rotation velocity remains nearly constant, but a boundary

needs to be set in order to differentiate passage and capture. In our research, we only

consider passage as increasing angular velocity without gradient being less than 0, which

means the “slow passage” will not be considered as passage.
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(a)

(b)

(c)

Figure 10: (Passage) X-displacement and y-displacement responses (upper traces) and shaft angular velocity (lower traces)
vs. time, as obtained by numerical simulation in seach of a passage/capture threshold for the case Ω = 1, α = 0.01, ε =
0.005,M∗ = 0.0015
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(a)

(b)

(c)

Figure 11: (Capture) X-displacement and y-displacement responses (upper traces) and shaft angular velocity (lower traces)
vs. time, as obtained by numerical simulation in seach of a passage/capture threshold for the case Ω = 1, α = 0.01, ε =
0.005,M∗ = 0.0005
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(a)

(b)

(c)

Figure 12: (Slow-passage) X-displacement and y-displacement responses (upper traces) and shaft angular velocity (lower
traces) vs. time, as obtained by numerical simulation in seach of a passage/capture threshold for the case Ω = 1, α =
0.01, ε = 0.005,M∗ = 0.00085
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Three cases of motor torque

Based on the plot of steady-state torque M̄ss vs. ν, Figure 5, the curve has peaks

at ν = 1 and ν = Ω. The two extreme values of steady-state torque indicated the

technically minimum torque required for x-passage and y-passage, respectively. If the

motor torque is above both peaks, passage will occur in both x-axis displacement and

y-axis displacement, as shown in Figure 13. The x-displacement reaches its resonance

at time point 625, and it passes over the resonance with amplitude returns to a smaller

constant value. The y-displacement reaches its resonance at time point 900, and the

amplitude returns to a smaller constant value after the passage as well. The angluar

velocity is increasing throughout the whole process, although it increases at a slower rate

during the two passages over x-resonance and y-resonance, which is time points 625 and

900 respectively.

If the value of motor torque is above the first peak at ν = 1 but below the second

peak at ν = Ω, then the x-axis vibration will pass over the x-axis resonance, while y-axis

vibration will be captured at y-resonance, as shown in Figure 14. The x-displacement

passes over resonance as the previous case, but y-displacement reaches resonance at

time point 2000 and is captured with resonant amplitude. Corresponding to x- and y-

displacements, the angular velocity increases before the time point 2000 with a slower

increasing rate during the passage over x-resonance at the time point 1400, and then it is

captured at a constant value around ν = Ω = 1.5, when the y-displacement is captured.

If the motor torque is below both peaks, then both x-displacement and y-displacement

will be captured at resonances. The corresponding figure is Figure 15. We can see that

both x- and y- displacement have amplitudes maintained at resonance amplitudes after

they time they reach resonance. The agular velocity ν increases until x-displacement is

captured, and it remains constant at 1.

The above three cases of different motor torque are essential to the following process

of determining the passage/capture motor torque M∗. (M∗)1 denotes the minimum motor
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torque required to guarantee a passage over x-resonance, and (M∗)2 denotes the minimum

motor torque required to pass over y-resonance. In the numerical simulation, the value

of motor torque M∗ starts from a small value that initially cause capture for both x-

vibration and y-vibration, as indicated in the third case, Figure 15. Then the value of

M∗ is increased gradually, by the step of 1× 10−7.

For axisymmeric case, ν = 1, the motor torques required for passage in x-displacement

and y-displacement are equal, i.e. (M∗)1 = (M∗)2. So that with a given motor torque

M∗, the x- and y-vibrations will both pass over resonance, or both capture at resonance.

For unsymmetric case that Ω > 1, the values of (M∗)1 and (M∗)2 are different. From

steady-state analysis, we found that (M∗)2 is always greater than (M∗)1, for Ω ≥ 1.

Hence the lowest torque, which allows passage on x-vibration but capture on y-vibration,

is the (M∗)1. This corresponds to the second case. And in order to find (M∗)2, we need

to look for the lowest motor required to achive the first case from the third case, that

allows passages on both x-vibration and y-vibration.
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(a)

(b)

(c)

Figure 13: When the motor torque is above both peaks of (M̄ss)1 and (M̄ss)2, both the x-displacement and y-displacement
pass over the resonances with their amplitudes return to smaller constant values. The angular acceleration decreases during
x and y resonances, in this case, at time points around 625 and 900. Ω = 1.5, α = 0.01, ε = 0.005,M∗ = 0.0012
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(a)

(b)

(c)

Figure 14: When the motor torque is between the peaks of (M̄ss)1 and (M̄ss)2, x-axis vibration passes over resonance with
amplitude returns to a smaller constant value, while y-displacement is captured at resonance with resonant amplitude.
The angular acceleration decreases during the passage in x-displacement at time point around 1400, then it is captured at
a constant value around 1.5, starting near the time point when capture occurs in y-displacement. Ω = 1.5, α = 0.01, ε =
0.005,M∗ = 0.00085
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(a)

(b)

(c)

Figure 15: When the motor torque is below both peaks of (M̄ss)1 and (M̄ss)2, both the x-displacement and y-displacement
are captured at resonances with large resonant amplitudes. And the angular is captured at a constant value around 1,
starting near the time point when capture occurs in x-displcement. Ω = 1.5, α = 0.01, ε = 0.005,M∗ = 0.0005
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Results

Validation of Steady-state Case

In the numerical simulation, the function of steady-state torque M̄ss is validated

at Ω = 1.2. With different initial conditions and motor torque M∗, the rotation velocity

φ̇ is going to steady-state response. As shown in the figure of M̄ss, Figure 16, with a

given M∗ = 0.0001, then on the horizontal line containing intersections with the curve of

steady-state torque M̄ss, the rotational velocity φ̇ always goes to the stable steady-state

points, as indicated by arrows.

In order to validate the steady-state torque curve M̄ss, we created Matlab codes to

solve the equations of the system, by using Runge-Kutta-Fehlberg method. Starting with

the smallest motor torque M∗ = 0, the values of M∗ is gradually increased by the step

of 1× 10−6. At each value of M∗, if the initial rotation speed converges to a larger value

Figure 16: Plot of analytical steady-state threshold torque M̄ss vs. angular velocity ν, with blue curve indicating stable
part, and red dashed curve indicating unstable part. The arrows indicates the tendency of solution with specific area of
initial conditions
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after the process, then the value of convergence is the stable steady-state point. For the

initial rotation speed that is near the unstable curves, as plotted in red dashed curve in

Fig 16, then the unstable steady-state point is the boundary between increased φ̇ and

decreased φ̇. For example, with motor torque M∗ = 0.00005, then when φ̇0 = 1.041, the

rotation speed converges to 0.9706. When φ̇0 = 1.042, the rotation speed converges to

1.1563. Then the unstable steady-state point locates between 1.041 and 1.042, which was

approximated as 1.0415 in our report.

The curve of M̄ss plotted by operating numerical simulation is plotted in Figure 17.

The blue curve denotes the stable part of the steady-state torque, and the red dashed

curve denotes the unstable part of the steady-state torque. The curve of M̄ss from

numerical simulation has the same shape with the curve of the analytical steady-state

torque function, Figure 9, and the coordinates of points on the curves match each other.

Therefore, the numerical simulation validates the analytical result of steady-state torque

function M̄ss.

Figure 17: Plot of numerical steady-state threshold torque M̄ss vs. angular velocity ν, with blue curve indicating stable
part, and red dashed curve indicating unstable part.
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Figure 17 also validate the stability criteria of steady-state response, which was dis-

cussed under the Transient Response section. From the analytical analysis, positive β

indicates stable steady-state response, and negative β indicates unstable steady-state

response. Since with the initial rotation speed, which already allows both passages for

x-vibration and y-vibration, the rotation speed φ̇ will keep increasing until an extremely

large value at stable steady-state, we do not consider the part of function M̄ss that has

ν > 2. For the case α = 0.01, ε = 0.005, and Ω = 1.2, the stable steady-state is in the

intervals of ν: [0, 1] and [1.1, 1.2], and unstable steady-state is in the intervals: (1, 1.1)

and (1.2, 2]. From the numerical simulation, the stable steady-state is in the intervals of

ν: [0, 0.993] and [1.1113, 1.193]. When M∗ = 0.0005, x-vibration occurs “slow passage”

over resonance, which exists in practical vibration systems, but is not considered in the

analytical analysis of steady-state response. The “slow passage” obstructs the searching

of stable steady state because it allows rotation speed to increase at the point where

should be captured at stable steady-state technically. Similarly, for ν > 1.193, “slow

passage” occurs in y-vibration, and the stable steady-state cannot be determined. Also,

since the values of ν in numerical simulation are discrete points, some information is

lost between adjacent points with the difference as 0.001. The unstable steady-state is

in the intervals: [1, 1.1] and [1.18, 1, 133]. Due to the error of estimation in numerical

simulation, we are not able to obtain the stability criteria for the interval [1.134, 2], so the

stability criteria for M̄ss in numerical simulation was only considered in 0 ≤ ν ≤ 1.133.

Despite the limitation of numerical simulation, the M̄ss curve obtained numerically

matches the analytical steady-state torque curve M̄ss. Therefore, the analytical function

of M̄ss, as well as its stability criteria, is validated by numerical simulation.

Passage Technique for Axisymmetric Case

In order to verity the hypothesis of passage technique for axisymmetric vibration

system, which is discussed in Steady-state Response section, we need numerical simula-
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tion to validate the functions of steady-state torque at ν = 1, (M̄ss)1 with Eq (51), and

steady-state torque at ν = Ω, (M̄ss)2 with Eq (52).

The M̄ss value at two peaks at ν = 1 and ν = Ω are used as reference points of

starting values of real threshold torque for dynamic passage. A motor torque that is

slightly below the curve M̄ss is the starting point of M∗, which means this initial value of

motor torque guarantees capture on both x-displacement and y-displacement. The value

of this starting point is 0.0005. Then raise the value of motor torque gradually, by the

step of 1× 10−7, until passage firstly occurs. This real threshold of dynamic passage, M∗

will be recorded and compared with the steady-state torque M̄ss at different values Ω.

a. Passage on x-displacement but capture on y-displacement

To look for the peak values of threshold torque at ν = 1, the second case discussed

in the Three cases of motor torque is the case under consideration. In this case, we need

to find the numerical threshold motor torque that allows passage on x-axis vibration, but

with y-axis vibration captured at y-resonance. Also, in the figure of function M̄ss, Figure

5, this case indicates the motor torque that is above the first peak at ν = 1 and below

the second peak at ν = Ω. The only output of this case is that x-passage and y-capture

occur simultaneously.

By raising the value of Ω, and use the above method to find numerical threshold

motor torque of dynamic passage on x-displacement, and capture on y-displacement

simultaneously, we collected the data of (M∗)1 with respect to Ω in Table 1 in Appendix

A.

b. Passage on both x-displacement and y-displacment

The case of passage on both x-displacement and y-displacement corresponds to the

first case of the three cases of motor torque as described in previous section. In this case,

the motor torque should be large enough to allow both passages over x-resonance and
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y-resonance. Since torque required to pass over y-resonance is greater than the torque

required to pass over x-resonance, the passage on y-displacement guarantees the passage

on x-displacement.

By raising the value of Ω, and use the above method to find numerical threshold motor

torque of dynamic passage on y-displacement, we collected the data of (M∗)2 of passage

on both x- and y-displacements with respect to Ω. The values of numerical threshold

(M∗)2 can be found in Table 1 in Appendix A as well.

c. Comparison

With the collected values of (M∗)1 and (M∗)2 at different Ω, we make a comparison

between the numerical threshold torques and analytical threshold torques. Figure 18

demonstrates (M̄ss)1 and (M∗)1 versus Ω. The two curves match except for ratio of

stiffness that is very close to 1. This figure shows that the tendency of real threshold

motor torque M∗ for passage on x-displacement and capture on y-displacement is the

same as the analytical threshold M̄(ν1), which have high value at Ω = 1, decreases

Figure 18: Plot of analytical steady-state threshold torque at ν = 1, (M̄ss)1 in red, and numerical steady-stete threshold
torque at ν = 1, (M∗)1 in blue, vs. Ω.

51



rapidly in ratio 1 to 1.05, and remains at a constant value.

Next, we plot (M̄ss)2 and (M∗)2 versus Ω, as shown in Figure 19. The blue curve shows

(M̄ss)y, which decreases in the range of ratio of stiffness 1 to 1.03, and then increases

with increasing ratio of stiffness. However, the red curve of M∗ does not have an obvious

decrease with small ratio of stiffness, although it increases for large ratio as (M̄ss)2 does.

Also, the increasing rate of M∗ for large Ω is much smaller than the increasing rate for

(M̄ss)2, which is due to the specific condition (small difference of stiffnesses) applied in

the analytical analysis.

Figure 19: Plot of analytical steady-state threshold torque at ν = Ω, (M̄ss)2 in red, and numerical steady-stete threshold
torque at ν = Ω, (M∗)2 in blue, vs. Ω.

The graph of analytical threshold M̄ss at two peaks is also plotted as in Figure 20.

From this figure, we can see if we start with an axisymmetric stiffnesses system, the motor

torque required for passage on both x-displacement and y-displacement can be reduced

by increasing the ratio of stiffness to 1.3. This leads to a technique of passage, which is

when we have the axisymmetric case which vibrations are captured at both x-resonance

and y-resonance, we can raise one of the stiffness slightly with additional stiffness to

achieve passage.
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Figure 20: Plot of analytical steady-state threshold torque at ν = 1, (M̄ss)1 in red, and analytical steady-stete threshold
torque at ν = Ω, (M̄ss)2 in blue, vs. Ω.

Figure 21: Plot of numerical steady-state threshold torque at ν = 1, (M∗)1 in red, and numerical steady-stete threshold
torque at ν = Ω, (M∗)2 in blue, vs. Ω.
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We also plot the figure of numerical threshold (M∗)1 and (M∗)2 versus Ω as Figure 21.

From this graph, we can see although the decrease of motor torque required for passage

is small, it is still lower than the motor torque of passage in axisymmetric case. The two

Figures 20 and 21 are generally similar to each other, which shows that the analytical

results correctly demonstrate the real situation of 2D vibration.
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7 Conclusion

In this report, we deal with a two-dimensional vibration system, with two spring

sets attached to the unbalanced shaft. The two extreme cases: axisymmetric case where

the ratio of spring stiffness is 1; one-dimensional case where the ratio of spring stiffness

is infinity, are considered, as well as the cases in between. In the first half of the report,

we introduce the analytical method: Krylov-Bogoliubov Averaging method to solve for

steady-state case and transient case. We also consider the stability criteria for steady-

state case. By considering the two peaks of steady-state torque curve M̄ss, we come up

with a hypothesis of passage technique for axisymmetric vibration system.

In the second half of the report, we use numerical simulation to validate the analytical

results. The numerical method used is Runge-Kutta-Fehlberg method. The numerical

simulation validates the steady-state curve of torque M̄ss, and its stability criteria. Then

the values of real threshold torque at two specific points: (M∗)1 at ν = 1, and (M∗)2

at ν = Ω, are collected and plotted. By comparing these two figures with the figures of

steady-state torque at those two points, (M̄ss)1 at ν = 1, and (M̄ss)2, we find that the

hypothesis of passage technique for axisymmetric vibration system is supported by the

numerical results. Therefore, with a constant motor torque M∗ applying to an axisym-

metric vibration system, which firstly makes vibrations be captured at resonance, can

passage over the resonances by raising the spring stiffness of one of the spring set. Rais-

ing the system stiffnesses is possible through accounting finite stiffnesses of the bearing

support, by adding an additional spring set to the original spring set. The stiffnesses K

has the relation
1

K
=

1

Kshaft

+
1

Kbear

, where the bear stiffnesses Kbear are different in

x- and y- directions after adding extra spring set. We are able to calculate the splitted

stiffness by substituting the new Kbear into the relation.

For plants and machinery with axisymmetric support stiffness, which require using

motor to accelerate the rotation of shaft, the passage technique introduced in the report

allows a lower power supply required to pass over the resonances. The motor torque is
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always nonlinear, which decreases at higher rotation velocity φ̇, although only constant

motor torque is considered in the report, the result applies to nonlinear motor torque

as well. By substituting the threshold steady-state torque M̄ss into the nonlinear motor

torque function, we are able to find the initial motor torque required for passage. With the

passage technique, axisymmetric vibrating system can save power supply on passing over

resonance, also reduces the time of passing over resonance with high resonant amplitude.

This is essential to machine life because the high amplitude of vibration can destroy the

supporting foundation. Although simply using all driving power available to achieve a

quick passage over resonance is a way to prevent capture at resonance, the large amplitude

of vibration at resonance is still a concern. By adding extra spring to one of the spring

set, resonance is passed over in a shorter time with smaller amplitude. The technique

saves energy input and extends machine life.

In a broader analysis, we may include nonlinearity in the two-dimensional vibration

system, such as nonlinear motor torque function, and nonlinear stiffness support. In

real life applications, the motor torque is always nonlinear, and it decreases at higher

rotation speed. The nonlinear stiffness of spring with different materials, for example,

copper, aluminum, and ceramic materials, are introduced at the beginning of the report.

For specific plants and machinery, the nonlinearity of stiffness needs to be considered

based on the material of support.
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8 Appendices

Appendix A: Table of analytical steady-state torque M̄ss and nu-

merical steady-state torque M∗ at ν = 1 and ν = Ω

With different ratio of stiffness Ωy/Ωx, we collected the following data of analyt-

ical threshold of passage on x-displacement but capture on y-displacement, denoted as

M̄(ν1) of passage on both x- and y-displacements, denoted as M̄(ν2). Also, the values of

numerical threshold of passage on x-displacement but capture on y-displacement, (M∗)x,

and of passage on both x- and y-displacements, (M∗)y, are demonstrated in the table as

well.

Ωy/Ωx (M̄ss)1 (M∗)1 (M̄ss)2 (M∗)2

1 0.0012500 0.0008634 0.0012500 0.0008634

1.01 0.0009359 0.0008366 0.0009484 0.0009165

1.02 0.0007480 0.0007446 0.0007670 0.0009294

1.03 0.0006858 0.0007002 0.0007098 0.0009059

1.04 0.0006604 0.0006706 0.0006896 0.0008523

1.05 0.0006479 0.0006530 0.0006827 0.0007866

1.06 0.0006409 0.0006451 0.0006814 0.0007482

1.07 0.0006367 0.0006350 0.0006830 0.0007235

1.08 0.0006339 0.0006300 0.0006862 0.0007173

1.09 0.0006320 0.0006300 0.0006903 0.0007434

1.10 0.0006306 0.0006310 0.0006949 0.0007483

1.15 0.0006274 0.0006301 0.0007224 0.0007474

1.17 0.0006268 0.0006301 0.0007342 0.0007590

1.20 0.0006263 0.0006301 0.0007522 0.0007556

1.30 0.0006255 0.0006301 0.0008136 0.0007639

1.50 0.0006252 0.0006290 0.0009380 0.0008400

2.00 0.0006250 0.0006292 0.0012502 0.0008555

Table 1: Table of analytical steady-state threshold torque (M̄ss)1 at ν = 1, and (M̄ss)2 at ν = Ω, numerical steady-state
threshold torque (M∗)1 at ν = 1, and (M∗)2 at ν = Ω, with different values of Ω

57



Appendix B: Matlab codes

a. Equations of system

function f = f(t, x0,pars,gamma,perc,M)

% Two-dimensioanl vibration governing equations

% Date: 11/16/2015. Author:Jiaxun Xie

%% Initial Conditions

%x0(1) = x0;

%x0(2) = v0; %v0 = dx/dt

%x0(3) = y0;

%x0(4) = u0; %u0 = dy/dt

%x0(5) = phi0;

%x0(6) = nu0; %nu = d(phi)/dt

%pars = [omega y/omega x, alpha/omega x, epsilon]

%%NONDIMENSIONAL

% Nondimensionalized by tau=(omega x)*t

% Omega x = 1

A = x0(2); %v

B = pars(3)*(x0(6)ˆ2)*cos(x0(5))-2*pars(2)*x0(2)-x0(1); %vdot

C = x0(4); %u

D = pars(3)*(x0(6)ˆ2)*sin(x0(5))-2*pars(2)*x0(4)-(pars(1)ˆ2)*x0(3); %udot

E = x0(6); %nu

F = M + pars(3)*(B*sin(x0(5))-D*cos(x0(5))); %nudot

f = [A;B;C;D;E;F];

end
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b. Runge-Kutta-Fehlberg method

function [X, T] = rkf(f, a, b, x0, tol, hmax, hmin, pars,gamma,perc,M)

%Input:

% endpoints, a and b

% initial condition, x0

% tolerance, tol

% maximum and minimum step size, hmax and hmin

%Output:

% approximation of X(t), x

% step size, h

t = a;

x = x0;

h = hmax;

flag = 1;

X = x0;

T = a;

while (flag==1)

k1 = h*feval(f, t, x, pars,gamma,perc,M);

k2 = h*feval(f, t+1/4*h, x+1/4*k1, pars,gamma,perc,M);

k3 = h*feval(f, t+3/8*h, x+3/32*k1+9/32*k2, pars,gamma,perc,M);

k4 = h*feval(f, t+12/13*h, x+1932/2197*k1-7200/2197*k2+7296/2197*k3, pars,gamma,perc,M);

k5 = h*feval(f, t+h, x+439/216*k1-8*k2+3680/513*k3-845/4104*k4, pars,gamma,perc,M);

k6 = h*feval(f, t+1/2*h, x-8/27*k1+2*k2-3544/2565*k3+1849/4104*k4-11/40*k5, pars,gamma,perc,M);

R = (1/h)*abs(1/360*k1 - 128/4275*k3 - 2197/75240*k4 +1/50*k5 +2/55*k6);

%error
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if norm(R)<=tol

t = t+h; % Approximately accepted time step

x = x + 25/216*k1 + 1408/2565*k3 + 2197/4104*k4 - 1/5*k5;

X = [X x];

T = [T t];%Output

%Calculate new h

delta = 0.84*(tol./R).ˆ(1/4);

%Case 1 smaller than minimum, decrease step size

if norm(delta) <= 0.1

h=0.1*h;

else

%Case 2 greater than maximum, increase step size

if norm(delta) >= 4

h = 2*h;

%Case 3 error within max and min, keep the step size

else

h = norm(delta)*h;

end

end

else

h = 0.5*h;

end

if h >= hmax

h = hmax;

else h=h;

end

if t>=b

flag = 0;

else
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if t+h>b

h = b-t;

else

if h<hmin

flag = 0;

end

end

end

end

c. Simulation by RKF

%% Inputs:

a = 0;

b =3000;

%x = [x,dx/dt, y,dy/dt, phi,nu)

x0 = [0;0;0;0;0;0];

tol = 1e-4;

hmax = 1;

hmin = 0.1;

gamma=0;perc=0;

%pars = [omega y/omega x, alpha/omega x, epsilon]

%omega x is assumed to be 1, so that pars = [omega y, alpha, epsilon]

pars = [1.2;0.01;0.005];

M = 0.0011

M x = (pars(3)ˆ2/(4*pars(2)*(1+pars(3)ˆ2)))*(1+1/(1+(pars(1)ˆ4 - 2*pars(1)ˆ2+1)/(4*pars(2)ˆ2)))

M y = pars(2)*pars(3)ˆ2*pars(1)ˆ3/(1+pars(3)ˆ2)*(1/((1-pars(1)ˆ2)ˆ2+4*pars(2)ˆ2*pars(1)ˆ2)+...

1/(4*pars(2)ˆ2*pars(1)ˆ2))

%f y = M - 600000ˆ(-1)*integral(@M y,0,600000)

%% RKF
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f1=@f;

[X, T] = rkf(f1, a, b, x0, tol, hmax, hmin, pars,gamma,perc,M);

% [X,T]=findm(rkf, a, b, x0, tol, hmax, hmin, pars,gamma,perc,M1)

%% Check passage/capture

%Check y-passage/capture

checkY = X(6, X(6,:)>pars(1)-0.1);

G y = gradient(checkY);

if any(G y<0)

'y-capture'

else 'y-passage'

end

%For r>1.1, checkY>pars(1)-0.1

%For r<=1.1,checkY>pars(1)-0.01

%Check x-passage/capture

checkX= X(6, X(6,:)>=0.99 & X(6,:)<=1.01);

G x = gradient(checkX);

if any(G x<0)

'x-capture'

else 'x-passage'

end

%% Plots

figure(1)

%plot of x displacement

plot(T,X(1,:))

xlabel('Time points'), ylabel('X')

figure(2)

%plot of y displacement

plot(T, X(3,:))

xlabel('Time points'), ylabel('Y')
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figure(3)

% plot of angular velocity

plot(T, X(6,:))

xlabel('Time points'), ylabel('$\dot{\phi}$','Interpreter','latex')

dnu = diff(X(6,:))./diff(T);
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