HIGH-PERFORMANCE DECODER ARCHITECTURES
FOR LOW-DENSITY PARITY-CHECK CODES
by
Kai Zhang

A Dissertation
Submitted to the faculty of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the
Degree of Doctor of Philosophy

in
Electrical and Computer Engineering

by

August, 2011

APPROVED:
Prof. Xinming Huang Prof. Berk Sunar
Thesis Advisor Thesis Committee
Worcester Polytechnic Institute Worcester Polytechnic Institute
Prof. James Duckworth Dr. Zhongfeng Wang
Thesis Committee Thesis Committee

Worcester Polytechnic Institute Broadcom Corporation

Abstract

The Low-Density Parity-Check (LDPC) codes, which were invented by Gallager
back in 1960s, have attracted considerable attentions recently. Compared with other
error correction codes, LDPC codes are well suited for wireless, optical, and mag-
netic recording systems due to their near-Shannon-limit error-correcting capacity,
high intrinsic parallelism and high-throughput potentials. With these remarkable
characteristics, LDPC codes have been adopted in several recent communication
standards such as 802.11n (Wi-Fi), 802.16e (WiMax), 802.15.3¢c (WPAN), DVB-S2
and CMMB.

This dissertation is devoted to exploring efficient VLSI architectures for high-
performance LDPC decoders and LDPC-like detectors in sparse inter-symbol inter-
ference (ISI) channels. The performance of an LDPC decoder is mainly evaluated
by area efficiency, error-correcting capability, throughput and rate flexibility. With
this work we investigate tradeoffs between the four performance aspects and develop
several decoder architectures to improve one or several performance aspects while
maintaining acceptable values for other aspects.

Firstly, we present a high-throughput decoder design for the Quasi-Cyclic (QC)
LDPC codes. Two new techniques are proposed for the first time, including parallel
layered decoding architecture (PLDA) and critical path splitting. Parallel layered
decoding architecture enables parallel processing for all layers by establishing dedi-
cated message passing paths among them. The decoder avoids crossbar-based large
interconnect network. Critical path splitting technique is based on articulate ad-
justment of the starting point of each layer to maximize the time intervals between

adjacent layers, such that the critical path delay can be split into pipeline stages.

Furthermore, min-sum and loosely coupled algorithms are employed for area effi-
ciency. As a case study, a rate-1/2 2304-bit irregular LDPC decoder is implemented
using ASIC design in 90 nm CMOS process. The decoder can achieve an input
throughput of 1.1 Gbps, that is, 3 or 4 times improvement over state-of-art LDPC
decoders, while maintaining a comparable chip size of 2.9 mm?.

Secondly, we present a high-throughput decoder architecture for rate-compatible
(RC) LDPC codes which supports arbitrary code rates between the rate of mother
code and 1. While the original PLLDA is lack of rate flexibility, the problem is solved
gracefully by incorporating the puncturing scheme. Simulation results show that
our selected puncturing scheme only introduces the BER performance degradation
of less than 0.2dB, compared with the dedicated codes for different rates specified
in the IEEE 802.16e (WiMax) standard. Subsequently, PLDA is employed for high
throughput decoder design. As a case study, a RC-LDPC decoder based on the
rate-1/2 WiMax LDPC code is implemented in CMOS 90 nm process. The decoder
can achieve an input throughput of 975 Mbps and supports any rate between 1/2
and 1.

Thirdly, we develop a low-complexity VLSI architecture and implementation for
LDPC decoder used in China Multimedia Mobile Broadcasting (CMMB) systems.
An area-efficient layered decoding architecture based on min-sum algorithm is incor-
porated in the design. A novel split-memory architecture is developed to efficiently
handle the weight-2 submatrices that are rarely seen in conventional LDPC de-
coders. In addition, the check-node processing unit is highly optimized to minimize
complexity and computing latency while facilitating a reconfigurable decoding core.

Finally, we propose an LDPC-decoder-like channel detector for sparse ISI chan-
nels using belief propagation (BP). The BP-based detection computationally de-

pends on the number of nonzero interferers only and are thus more suited for sparse

IST channels which are characterized by long delay but a small fraction of nonzero
interferers. Layered decoding algorithm, which is popular in LDPC decoding, is also
adopted in this paper. Simulation results show that the layered decoding doubles
the convergence speed of the iterative belief propagation process. Exploring the
special structure of the connections between the check nodes and the variable nodes
on the factor graph, we propose an effective detector architecture for generic sparse
ISI channels to facilitate the practical application of the proposed detection algo-
rithm. The proposed architecture is also reconfigurable in order to switch flexible

connections on the factor graph in the time-varying ISI channels.

Acknowledgements

First of all, T wish to thank my advisor, Professor Xinming Huang, for his guid-
ance and support through all stages of my studies and research at the Worcester
Polytechnic Institute. I am very grateful for his recognition, his inspiration, and the
exposure and opportunities that I have received during the course of my study.

I am also indebted to to Professor Berk Sunar, Professor James Duckworth, and
Dr. Zhongfeng Wang for their valuable supports as members of my thesis committee.

I am grateful to my fellow graduate students in the Embedded Computing Lab,
Cao Liang, Wenxuan Guo, Yanjie Peng, Chen Shen and Wei Wang for their friend-
ship and support.

I would also like to thank all the staff in ECE department, including Robert
Brown, Catherine Emmerton, Colleen Sweeney, Brenda McDonald and Stacie Mur-
ray for their kind assistance and coordinations.

This thesis is dedicated to my wonderful family. I am forever grateful to my
parents Shanfeng Zhang and Qingfang Zhao, my wife Wanning Jiang, for their love,
support, and encouragement. I shall not try to put my appreciation and love for

them into words.

Contents

1 Introduction
1.1 Background
1.2 Related Works o
1.3 Summary of Motivations and Contributions
1.3.1 Ultra-High-Throughput LDPC Decoder Architecture Design .
1.3.2 Flexible-Rate High-Throughput LDPC Decoder Architecture

1.3.3 Efficient Decoder Architecture Design for LDPC Codes with
Special Structure oL o
1.3.4 Efficient Architecture Design in LDPC-Like BP-Based Cir-

cumstances e e e e e e e e e e

1.4 Outline.

2 LDPC Codes and Decoding Algorithms
2.1 Introduction of LDPC Codes
2.2 Quasi-Cyclic LDPC Codes
2.3 Belief Propagation Algorithm
2.4 Min-Sum Algorithm L

2.5 Loosely Coupled Algorithm

il

2.6 Early Termination Strategy 16
2.7 Layered Decoding Algorithm 18

High-Throughput LDPC Decoder Architecture with Parallel Lay-

ered Decoding 22
3.1 High Throughput Strategies 22
3.2 Parallel Layered Decoding Architecture 25
3.3 Critical Path Splitting 29
3.4 Proposed Decoder Architecture 30

3.4.1 Overall Decoder Architecture 31

3.4.2 Pipelined Architecture for CNU 33

3.4.3 Decision Units. L 35
3.5 Implementation Results 36
3.6 Summary 39

High-Throughput Rate-Compatible LDPC Decoder Architecture 40
4.1 Introduction L 40
4.2 Puncturing Schemes for Rate-Compatible LDPC Codes 42

4.2.1 Quasi-Cyclic LDPC Codes with Dual-Diagonal Parity Structure 42

4.2.2 Rate-Compatible LDPC Codes 43
4.2.3 Selected Puncturing Scheme 45
4.3 High-Throughput Rate-Compatible LDPC Decoder Architecture . . . 50
4.3.1 Summary of the Parallel Layered Decoding Architecture . . . 50
4.3.2 RC LDPC Decoder Design 54
4.4 Experimental Results, 57
4.4.1 Simulation Results for Punctured WiMax Codes 57

4.4.2 Hardware Implementation Results 58

iii

4.5 Summary 61

Low-Complexity LDPC Decoder Architecture for CMMB Systems 62

5.1 Introduction 62
5.2 QC-LDPC Codes in CMMB Standard 64
5.3 Dual-rate Decoder Design, 65
5.3.1 Overall Architecture 66
5.3.2 Dual-Rate CNU Design 67
5.3.3 Memory Access for Partially Parallel Layered Decoding 71
5.3.4 Split-Memory Architecture for Weight-2 Sub-matrices 72
5.3.5 Number of Pipeline Stages 74
5.4 Area-Efficient Design Techniques 76
5.4.1 Memory Reduction 76
5.4.2 Read/Write Networks 76
5.5 Implementation results 79
5.6 Summary . o.o. ... e e 81

Design of Belief-Propagation Based Detectors for Sparse ISI Chan-

nels 82
6.1 Introduction 82
6.2 Channel Model and Decoding Algorithms 84
6.2.1 Channel Model and Factor Graph Representation 84
6.2.2 Belief-Propagation Algorithm 85
6.2.3 Layered Decoding Algorithm 87
6.3 Simulation Results oo oo 87
6.4 Detector Architecture Design 90
6.4.1 Overall Architecture 90

iv

6.4.2 Architecture of CNU 93

6.4.3 Cache-Like Architecture 94

6.5 Implementation Results 95
6.6 Summary 96
7 Conclusions 97

List of Figures

2.1
2.2
2.3

24
2.5

3.1
3.2

3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1

Regular (8,4) LDPC codes: (a) Parity-check matrix (b) Tanner graph 11
Implementation of early termination strategy 18
Parity-check matrix for the selected rate-1/2 LDPC code in 802.16e
standard. Lo 19
Message passing flow in horizontal layered decoding. 19
Architecture of horizontal layered decoding with loosely coupled al-

gorithm. 20

Processing status at four different clock cycles. 26
Variable summations passing directions of the H base matrix: (a) for
column 1 (b) for column 6. L 28

Offset-modified parity-check matrix for rate-1/2 LDPC code in 802.16e. 29

Timing diagram for parallel layered decoding architecture. 29
BER performance comparison of different decoding algorithms. 31
Overall parallel layered decoding architecture for QC-LDPC codes. . 32

CNU architecture with critical path splitting into 4 pipelined stages. . 34

Register allocation in each section of the hard decisions.. 35
Layout of the decoder core area. 37
Description of 1-SR node and k-SR node. 44

vi

4.2
4.3

4.4
4.5
4.6
4.7
4.8

5.1

5.2
5.3
5.4
5.5
5.6

5.7
5.8

6.1
6.2

6.3
6.4

Parity-check matrix for the selected rate-1/2 LDPC code in WiMax. .
BERs of the three punctured codes and the dedicated code at rate

2/3 over AWGN channels.
Overall architecture of a rate-compatible LDPC decoder.
Architecture of LLR Initialization Block.
Architecture of the Address Generator.
BERs of the punctured LDPC codes over AWGN channels.

Layout of the proposed decoder chip.

Structure of the parity check matrix for LDPC codes in CMMB stan-
dard: (a) rate-1/2; (b) rate-3/4.
BER performance for different rates and quantization schemes.
Overall architecture of the CMMB LDPC decoder.
Architecture of CNU for dual-rate (1/2, 3/4) CMMB LDPC codes.
The design of an PROF-based comparator
Element correspondence relations between CTV memory and APP
MEMOTY. © o o v v e v e e e e e e e e e e e e e
Split-memory design for handling the weight-2 sub-matrices.
For rate-1/2 codes (a) Architecture of read network; (b) Architecture

of write network.,

Factor graph of an ISI channel.
BER comparison between original BP algorithm and LDA-based BP

algorithm.
BER performance for various quantization schemes of received data. .

BER performance for various quantization schemes of extrinsic mes-

vii

46

93

59

87
88

6.5 Overall detector architecture.

6.6 Architecture of the CNU

6.7 Direct-mapped Cache Architecture

viii

List of Tables

3.1

4.1

4.2
4.3

5.1

5.2

5.3

Overall comparison between proposed decoder and other existing

LDPC decoders.

Three puncturing schemes for achieving rate 2/3 from rate 1/2 mother

Index of punctured blocks at different desired rates

Overall comparison between proposed decoder and other existing

WiMax LDPC decoders o o,

Connections of input and output ports in the read network for the

rate-1/2 codes L

Connections of input and output ports in the read network for the

rate-3/4 codes Lo

Overall comparison between proposed decoder and other existing ir-

regular decoders L

ix

Chapter 1

Introduction

This chapter first introduces the history of error correction codes and LDPC codes
and then describes the motivation, related works, contributions and outline of this

dissertation.

1.1 Background

A major concern in designing reliable data transmission and storage systems is
the control of data errors induced by a noisy channel or storage medium. In 1948,
Shannon demonstrated that if the information rate is less than the channel capacity,
introduced errors can be corrected by proper encoding and decoding of the infor-
mation [63]. From then on, various types of error correction codes were designed
by adding some redundancies to the original data (known as encoding), which the
receiver can use to check consistency of the delivered message, and to recover data
determined to be erroneous (known as decoding). Classical and widely used error
correction codes include Hamming Code (1950), BCH Code (1959) [34, 8], Reed-
Solomon Code (1960) [59], Convolutional Code (1955) [20, 74|, Turbo Code (1993)
[6] and LDPC Code (1962) [24].

Firstly discovered by Gallager in 1962 [24], LDPC codes were a class of Shannon-
limit-approaching codes in which two innovative ideas were exploited: iterative de-
coding and constrained random code construction. However, LDPC codes were
mostly neglected by code theorists for more than 30 years due to the tremendous
computational efforts in implementing their encoder and decoder and the intro-
duction of Reed-Solomon codes [59]. Shortly after the debut of another Shannon-
limit-approaching code, Turbo code [6], in which both the above ideas are explored,
LDPC codes were rediscovered by MacKay and Neal in 1996 [50]. LDPC codes have
several advantages over Turbo codes: no error floors at high SNRs, more inherent
decoding parallelism, higher throughput potentials, lower hardware complexity due
to the elimination of long interleavers.

LDPC codes are specified by sparse parity check matrices H and can be fully
represented by bipartite graphs (known as Tanner graph) with two sets of nodes,
called the check nodes and the variable nodes. LDPC codes can be effectively
decoded using the standard BP algorithm, also called sum-product algorithm (SPA).
Two phases of messages, the check-to-variable (CTV) messages and the variable-to-
check (VTC) messages, are transmitted along the edges of the Tanner graph [69] to
update each other iteratively.

Good LDPC codes that have been found are largely long, random and com-
puter generated codes with BP-based iterative decoding and can achieve an er-
ror performance as close as 0.0045 dB away from the theoretical Shannon limit
[50, 49, 60, 61, 14]|. In despite of excellent error performance, these codes are im-
practical for hardware implementation due to the following reasons: (1) they are
very long (up to 100,000 bits) and thus a large memory is required to store the
iterative messages, as well as the configuration of the H matrix; (2) their encod-

ing circuitry would be very large in order to fulfill the complex matrix and vector

multiplications; (3) their large latency and lack of parallelism when decoding on a
random Tanner graph; (4) randomly constructed LDPC codes also require a com-
plex routing network, which not only consumes a large amount of chip area, but
also significantly increases the computation delay.

In order to make LDPC codes hardware-friendly, structured LDPC codes that
have elegant regularity in the structure of their H matrices and can provide compa-
rable or even better error performance were introduced in by algebraic construction
[40, 39, 75, 35, 73, 53, 19, 57]. It has been demonstrated in [48] that structured,
algebraic-constructed codes can outperform random ones for medium length LDPC
codes (up to a few thousand bits). Besides, their encoding can be simply imple-
mented by linear shift registers. That is why LDPC codes are widely adopted by
several recent communication standards such as 802.11n (Wi-Fi), 802.15.3¢ (WPAN)
802.16e (WiMax), DVB-S2, CMMB, 802.3an (10G-BaseT) and etc. Quasi-Cyclic
(QC) LDPC codes, a special class of structured LDPC codes, decompose the large
H matrix into small sub-matrices which are either identity matrix or its permutation
[22, 43, 11]. Therefore, QC LDPC codes are best suited for hardware implementa-
tion since the regular structures of their H matrices make simple message switching

and memory accessing possible.

1.2 Related Works

This dissertation is devoted to high-performance VLSI architecture design and im-
plementation for LDPC codes. Generally, state-of-art LDPC decoder architectures
can be divided into three categories: fully parallel method, serial method and partly
parallel method.

Blanksby et al. [7]| directly mapped the BP algorithm into hardware and imple-

mented a fully parallel irregular LDPC decoder. This method, through with high
throughput, requires huge amount of interconnections to complete the messages
passing within a random Tanner graph, leading to the average net length of 3nm
and the total chip area of 52.5 mm?. On the other side, Yeo et al. [80] designed a
serial decoder by sharing the computation units and updating messages in sequen-
tial. Serial method results in very simple hardware architecture but low decoding
throughput, which is usually unacceptable by real-world applications, due to the
large latency of ten-thousand cycles needed for decoding a codeword.

Since structured LDPC codes are architecture-aware, their decoders can be im-
plemented by partly parallel method to explore potential parallelism and improve
the throughput [85, 12, 51, 86, 37, 87, 77, 36]. Compared with random LDPC codes,
the H matrix of structured LDPC can be easily stored by storing only permutation
values of each small sub-matrix instead of the entire H matrix. Also, regularity in
the H matrix of structured LDPC codes enables easy control over the read/write
operations of VIT'C and CTV messages when decoding by employing a simple bitwise
counter, thus avoiding the huge interconnection network in [7]. QC LDPC decoders
proposed in [77, 79, 78, 17, 66, 28, 45, 70, 9, 25, 27, 67] also belong to the partly

parallel category.

1.3 Summary of Motivations and Contributions

This research is motivated by desires to explore high-performance LDPC decoder
architectures in terms of area efficiency, error-correcting capability, throughput and
rate flexibility. Although LDPC decoder has been an extensive research topic for
almost a decade, there are still many unresolved problems. With this dissertation,

we have considered existing VLSI design issues and developed various decoder ar-

chitectures to improve throughput, enhance flexibility and reduce complexity of an
LDPC decoder.
The specific motivations for the work and the corresponding contributions will

be summarized as follows.

1.3.1 Ultra-High-Throughput LDPC Decoder Architecture
Design

Motivation: With the increasing demand for high-data-rate wireless applications,
many recent communication systems employ ultra-high throughput channel codes
to match the data-rate requirements. For example, 802.15.3¢c standard is targeted
for the data rate of multi-giga bits per second (Gbps). However, conventional high-
throughput LDPC decoders proposed in |7, 46, 54| were implemented by employing
more hardware resources to operate at a higher parallelism, which consumed a large
amount of chip area. For example, the decoder in [46] achieves an equivalent input
throughput of 1 Gbps with a clock rate of only 200 MHz, an undoubtedly high
parallelism of 512 and a large chip area of 14.5 mm? under 90 nm process. Thus it
is desirable to investigate other methods to improve throughput.

Contribution: We proposed a parallel layered decoding architecture to achieve
ultra high throughput. Parallel layered decoding architecture not only keeps the
advantage of conventional layered decoding algorithm that can reduce the conver-
gence required number of iterations by half and thus double the throughput, but
also avoids the serial operations existing in conventional layered decoding algorithm
which limits overall throughput. Two other techniques were also applied: critical
path splitting and fixed message passing. The former optimizes the decoder’s critical
path and divides it into several pipelined stages. The latter avoids crossbar-based

large interconnect network, which usually bottlenecks an LDPC decoder to achieve

high clock rate. Both techniques improve the clock rate and thus the throughput of
an LDPC decoder without increasing parallelism and hardware resources. As a case
study, a rate-1/2 2304-bit irregular LDPC decoder was implemented using ASIC
design in 90 nm CMOS process. The decoder can achieve an input throughput of
1.1 Gbps, that is, 3 or 4 times improvement over state-of-art LDPC decoders, while

maintaining a comparable chip size of 2.9 mm?.

1.3.2 Flexible-Rate High-Throughput LDPC Decoder Archi-

tecture Design

Motivation: In wireless communication systems, it is desirable to adjust ECC
code rate according to the channel state information (CSI) to meet various service
requirements and channel conditions. For example, WiMax standard provides 6
different LDPC code patterns in 4 different rates (1/2,2/3A,2/3B,3/4A,3/4B,5/6) [4]. Al-
though there have been some research works on the design of flexible rate LDPC
decoders [68, 84, 52, 46, 66|, none of them can provide arbitrary code rate. More-
over, these decoders usually employ complicated interconnection network to switch
between different code patterns [84, 46, 66|, such as Benes networks used in [52],
which leads to signal congestion problem, large delay and low throughput. How to
design a flexible rate LDPC decoder with high throughput remains challenging.

Contribution: With the dissertation we proposed a rate-compatible (RC) LDPC
decoder architecture that can provide arbitrary code rate between the rate of the
mother code and 1. Codes with flexible rates were generated by puncturing the par-
ity bits of the mother code with negligible error performance degradation. Parallel
layered decoding architecture was also adopted to achieve high throughput where
complicated interconnect network was replaced by fixed wires. The proposed RC

LDPC decoder also helps solve the rate inflexibility problem existing in previous

6

parallel layered decoding architecture. As a case study, a RC-LDPC decoder based
on the rate-1/2 WiMax LDPC code is implemented in CMOS 90 nm process. The
decoder can achieve an input throughput of 975 Mbps and supports any rate between

1/2 and 1.

1.3.3 Efficient Decoder Architecture Design for LDPC Codes

with Special Structure

Motivation: Although current LDPC decoders can handle QC LPDC codes ef-
fectively and efficiently, it is still a problem when dealing with some specially con-
structed codes, such as the LDPC codes in CMMB standard whose sub-matrices
are weigh-2 superimposed matrices instead of identity matrices. The design of an
area-efficient LDPC decoder that supports multiple code patterns is essential for
wireless applications such as CMMB.

Contribution: We proposed a low-complexity LDPC decoder for CMMB systems.
An area-efficient layered decoding architecture based on min-sum algorithm is in-
corporated in the design. A reconfigurable architecture, which can support dual
rate LDPC codes specified in the CMMB standard, is constructed with minimal
overhead. A novel split-memory architecture is developed to efficiently handle the
weight-2 submatrices that are rarely seen in conventional LDPC decoders. In ad-
dition, the check-node processing unit is highly optimized to minimize complexity

and computing latency while facilitating a reconfigurable decoding core.

1.3.4 Efficient Architecture Design in LDPC-Like BP-Based

Circumstances

Motivation: Besides LDPC decoding, a large variety of algorithms in communica-
tion and signal processing can be viewed as instances of BP algorithm, which oper-
ates by iterative message passing on a bipartite graph [47]. For example, recent re-
search has focused on the application of the BP algorithm to detecting over a known
ISI channel 15, 62, 5|. The computational complexity of the BP-based detection in-
creases exponentially only with the number of the nonzero interferers, with respect to
the optimal maximum a posterior (MAP) algorithms or maximum-likelihood (ML)
algorithms whose computational complexity are exponential in channel length. BP-
based channel detector is needed especially in the sparse IST channel with long delay
spreads and only a few nonzero interferers, such as the underwater acoustic (UWA)
channels [62]. Thus it is desirable to investigate LDPC-like VLSI architectures for
applications under these circumstances.

Contribution: In this dissertation, we provided a feasible solution of detector archi-
tecture for random sparse IST channels. A reconfigurable architecture was developed
in order to switch flexible connections on the factor graph in the time-varying ISI
channels. Layered decoding and task rescheduling once used in LDPC decoding were
also incorporated to accelerate the iterative process. All of the tasks are managed by
the control unit implemented as a finite state machine (FSM). The proposed detec-
tor is implemented using ASIC design in 90 nm CMOS process and also prototyped
on an FPGA.

1.4 Outline

This dissertation is outlined as follows.

Chapter 2 reviews the fundamentals of LDPC codes and their decoding algo-
rithms that are used throughout this dissertation. Besides standard BP, other de-
coding algorithms such as loosely coupled algorithm, min-sum algorithm and layered
decoding algorithm are also presented.

Chapter 3 develops a ultra-high-throughput LDPC decoder architecture imple-
mentation with parallel layered decoding. We first explain how parallel layered de-
coding works and then presents how it can help split the critical path and eliminate
the interconnect network.

In Chapter 4, a puncturing-based RC LDPC decoder architecture that supports
any code rate 1/2 to 1 is designed and implemented. First we investigate various
puncturing schemes and pick up the optimal one in term of error performance.
Then we modify the parallel layered decoding architecture developed in Chapter 3
by adding a control block to carry out puncturing.

Chapter 5 presents a low-complexity LDPC decoder for CMMB systems. Split-
memory architecture is proposed to efficiently handle the weight-2 sub-matrices. A
reconfigurable architecture, which can support dual rate LDPC codes specified in
the CMMB standard, is then constructed with minimal overhead;

Chapter 6 presents VLSI implementation of a BP-based detector for sparse ISI
channels, such as underwater acoustic channel. Cache-like architecture is developed
by storing only the messages that current node interferes with.

Chapter 7 draws the conclusion.

Chapter 2

LDPC Codes and Decoding

Algorithms

In this Chapter, we reviews some fundamentals of LDPC codes, QC LDPC codes and
their decoding algorithms, including standard BP algorithm, min-sum algorithm,

loosely coupled algorithm and layered decoding algorithm.

2.1 Introduction of LDPC Codes

The LDPC codes can be described by a M x N sparse parity check matrix H, in
which most of the elements are 0’s and only a few are 1’s. M denotes the number
of parity check equations, that is, number of the check nodes, while IV is the block
length, that is, the number of variable nodes. Fig. 2.1(a) shows a rate-1/2 4x8
parity check matrix of a regular (8,4) LDPC code. In the decoding aspect, a parity
check matrix can be mapped into a bipartite graph, called the Tanner graph, with all
of the variable nodes on one side and check nodes on another. Locations of the non-

zero elements in the H matrix indicate the straight connections between variable

10

1100 0110
00111001
H =
1 0010110
01101001
(a)
c1 c2 c3 c4

Check Nodes

VTC Message/ \CTV Message

Variable Nodes
vi v2 v3 v4 V5 v6 v7 v8

(b)

Figure 2.1: Regular (8,4) LDPC codes: (a) Parity-check matrix (b) Tanner graph

nodes and check nodes, as illustrated in Fig. 2.1 (b). These connections can be also
considered as the messages (CTV messages and VTC messages) transmitting paths

when decoding using the iterative BP algorithm.

2.2 Quasi-Cyclic LDPC Codes

QC LDPC codes are a special class of the LDPC codes with structured H matrix

which can be generated from an m; x n, base matrix H,,.

Poo Po1 T Pon,-1
P P oo Pip o
H, = . o e (2.1)
L Pmb—l,O Pmb—l,l e Pmb—l,nb—l |

Each nonzero element P;; in the base matrix is a z X z submatrix that can
be expanded by circularly right-shifting an identity matrix with the shift value

defined by P;j. The structure of the parity check matrix makes it convenient to

11

determine the locations of the nonzero elements. Random connections between
CNUs and VNUs now become well-regulated and easy to handle. Therefore, QC-
LDPC codes are welcomed by several advanced communication standards, such as

802.11n, 802.15.3c and 802.16e.

2.3 Belief Propagation Algorithm

The BP algorithm provides an efficient and powerful method to decoding LDPC
codes. Standard BP algorithm in [24] is usually transformed into logarithmic domain
where additions can be used instead of the complex multiplication. Before presenting
the BP algorithm, we first make some definitions as follows: Let ¢, denote the n-th
bit of a codeword and y,, denote the corresponding received value from the channel.
Let 7pmn[k] (gmn[k]) be the CTV (VTC) message from check node m to variable node
n at the k-th iteration. Let N (m) denote the set of variables that participate in
check m and M (n) denote the set of checks that participate in variable n. The set
N (m) without variable n is denoted as N (m) \ n and the set M (n) without check

m is denoted as M (n) \ m.

1. Initialization:
Under the assumption of equal priori probability, compute the channel prob-

ability p,, (intrinsic information) of the variable node n, by:

Pyn | cn=0)

Pl [en=1) (2.2)

Pn = lOg

The CTV message 7,,, is set to be zero.

2. Iterative Decoding:

At the k-th iteration, for the variable node n, calculate VTC message ¢, [k]

12

Amn [k] = Pn+ Z Tm/n [k — 1] (23)

m/e{M(n)\m}
Meanwhile, the decoder can make a hard decision by calculating the APP

(a-posterior probability) by

Ak =pnt D rwnlk—1] (2.4)
m' €M (n)
Decide the n-th bit of the decoded codeword x,, = 0 if A, > 0 and z,, = 1
otherwise. The decoding process terminates when the entire codeword z =
[, @y » v v x| satisfy all of the M parity check equations: Hz = 0, or the
preset maximum number of iteration is consumed.

If the decoding process does not stop, then, calculate the CTV message r,,,

for the check node m, by

T"mn [k] = H Sign <an/ [kD

n'€{N(m)\n}

< [T (g (KD (2.5)

n'e{N(m)\n}

1+e®
1l—e*®

U (2) =V (x) = log

(2.6)

2.4 Min-Sum Algorithm

The nonlinear log — tanh function in the check node updating step is usually im-

plemented by Look-Up Table (LUT), which seriously increases the complexity and

operating latency of the CNU. In paper [78], the author proposed a method to bal-

ance the path latency of CNU and BNU by transferring one of the two log-tanh

13

functions from CNU to BNU. Another effective method is to use the min-sum al-
gorithm to lower the CNU complexity by approximating the CTV message with a

minimum operation, as shown in (2.7).

T'mn [k] = H sign <an’ [k])

n’e{N(m)\n}

(oAl W) x o) (2.7)

n'e{N(m)\n}

Here, a normalized factor « is introduced to compensate for the performance loss
exiting in the min-sum algorithm without compensation compared to BP algorithm
[23, 26, 10]. In this dissertation, « is set to be 0.75.

Using the min-sum algorithm, the look-up tables (LUTs) which implement the
intricate non-linear function in standard BP algorithm are now replaced by rather
simple comparators, resulting in simpler computation complexity of CNU. Besides,
storage resources can also be reduced, as only the minimum and second minimum

value of all of the VTC messages within a check node need to be stored.

2.5 Loosely Coupled Algorithm

In the BP algorithm, messages are transmitted between check nodes and variable
nodes iteratively to update each other. VI'C messages are renewed by channel prob-
abilities and CTV messages from the check nodes. Then, these renewed messages
need to be passed again to update the VTC messages. Every VTC and CTV message
should be transmitted immediately after they are renewed along the edges on the
Tanner graph. This large amount of transmitted messages causes an interconnec-
tion problem. Large chip area is occupied by interconnections and an area-efficient

decoder becomes a challenge.

14

Loosely coupled algorithm [36] was introduced to solve the complex interconnec-
tion problem. The decoder does not exchange the CTV and VTC messages between
the check nodes and variable nodes. Instead, it delivers only the check and variable
summation A,, and A,. At a variable node, given the check summation values A,,,
a VNU would first recover individual CTV message r,,, and then calculate the next
variable summation A,, which will be transmitted to CNUs. As a result, (2.3) and

(2.4) can now be modified as:

rom [k — 1] = (sign (A [k — 1]) X sign (¢, [k — 1]))
U (W (A b= 1) = U (g = 1)) (28)
Ak =pot+ Y rwnlk—1 (2.9)
m'eM(n)
dmn [k:] = Pn + Z T'm/n [k - 1] (2'10)

m/€{M(n)\m}
Similarly, at a check node, given the variable summation values A,,, a CNU would
first recover individual VTC message ¢,,,, and then calculate the next check summa-

tion A,,which will be transmitted to VNUs. As a result, (2.5) can now be modified

Qo [K] = Ay [K] = 7o [k — 1] (2.11)
Ap, [k] = H sign (an’ [k])
n’€N(m)
XU W (g [K]]) (2.12)
n’eN(m)

15

Tmn [k] = H sign <an/ [kD

n'€{N(m)\n}

<SS (g [H]) (2.13)
n’e{N(m)\n}
If the min-sum algorithm is also applied, then we only need to transmit the variable

summation A,, leading to further simplification in interconnection complexity [70].

2.6 Early Termination Strategy

As presented in the BP algorithm, the decoding process can be terminated by two
general conditions: one is the parity check equations Hx = 0, another is the actual
number of iterations exceeds the predefined maximum number. For regular LDPC
code decoding in paper [85], parity check equations become easy to verify, because
every clock cycles the decoded bits from the VNUs are within a same check and par-
ity check can be completed immediately after the decoded bits are decided. However,
for irregular codes such parity check method would lead to larger hardware resource,
longer decoding latency and lower decoding throughput, because extra storage re-
sources and clock cycles are required to save the hard decision bits and to verify to
see if the parity check equations are satisfied.

Another conventional termination method is to only set the maximum number
of iterations and stop at the preset number without considering if the parity check
equations are satisfied. The method will have little hurt to the error-correction
performance of the LDPC codes if the maximum number if sufficiently large. In
circuit level design, a simple counter will be fine to fully implement this termination
method. Thus, less hardware complexity is employed, compared with the parity

check equation method. However, the method cannot arbitrarily adjust the num-

16

ber of iterations and will cause a waste in high SNR channels such as wire-line
environments where fewer errors occur.

In order to address the drawbacks of the two existing termination criteria, we
propose a more convenient and robust “early termination” strategy [66] to balance
the throughput requirements and hardware usage. The early termination strategy
can not only dynamically adjust the number of iterations when dealing with com-
munication channels of different SNRs, but also be sufficient for the low-cost and
low-power hardware implementation.

The pivot of the early termination strategy lies in that hard decisions from
previous iteration are stored and compared with newly generated hard decisions. If
all of the decoded bits at current iteration are identical with those of the previous
iteration, then the decoder indicates a successful decoding of current codeword and
jumps out of the iterative process. Otherwise, the decoding process would continue
until two successive hard decisions become the same or the maximum number of
iterations is satisfied. As indicated in [66], for the LDPC code used in this paper,
we only need to check 1152 information bits instead of 2304 bits, because it is a
rate-1/2 systematic linear block code.

Fig. 2.2 shows the hardware architecture of the early termination strategy. It
mainly consists of XOR gates, OR gates and registers which are used to save the
hard decisions. At every iteration cycle, hard decisions of previous iteration are
retrieved from registers and XORed with current decisions to generate an array
of intermediate signals same diff. Then each bits of the same diff signal are
ORed to generate the flag signal. A high-level flag signal indicates difference of
hard decisions between the two successive iterations and then the decoding process
will continue if the predefined number of iteration is not satisfied. Otherwise, a low-

level flag signal tells identity of the two successive hard decisions and the process

17

1152

Y

Hard Decisons

Register File (1152 bits)

1152 1152
Y Y

Bit-Wise XOR

1152 1 same_diff
A 4

Reduction OR

l flag

Figure 2.2: Implementation of early termination strategy

will stop.

2.7 Layered Decoding Algorithm

In BP algorithm [24], the two-phase mutual messages, namely VTC messages ¢
and CTV messages r,,,, are updated by separate processing units and passed to each
other iteratively. ¢,,, updates will not start until all of the r,,, are prepared and vice
versa. In horizontal layered decoding, the CTV message from the current layer will
be passed vertically to all other unprocessed layers that belong to the same variable
node. In each iteration, the horizontal layers are processed sequentially from the
top to the bottom layer.

As an example, the H matrix of rate-1/2 LDPC code from 802.16e standard is
quasi-cyclic, which consists of sub-matrices that are generated by circularly shifting
an identity matrix, as shown in Fig. 2.3. Such structure is well suited for horizontal
layered decoding as each sub-matrix has the column weight of one and we can treat
each row of the base matrix as a layer. Message passing flow of layered decoding for

the selected H matrix is illustrated in Fig. 2.4.

18

1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 21 22 23 24
1 94 | 73 55 | 83 7 0
2 27 2179 9 12 0 0
3 24 | 22 | 81 33 0 0 0
4 61 47 65 | 25 0 0
5 39 84 a1 | 72 0 0
6 46 | 40 82 79 0 0 0
7 95 | 53 14 | 18 0 0
8 1| 73 2 47 0 0
9 12 83 | 24 43 51 0 0
10 94 59 70 | 72 0 0
11 7 65 39 | 49 0 0
12 | 43 66 41 26 7 0

Figure 2.3: Parity-check matrix for the selected rate-1/2 LDPC code in 802.16e

standard.

Layer 1
((CNU1)

Layer 2
(CNU2)
Layer 3
(CNU3)
Layer 4
.- (CNU4)

Layer 12
(CNU12)

1 2 3 4 5 6 o
94l731 | | | -
Vv T ===
27 22| eeees
i ol mlililion. Siusiions
24| 22|81 oo
il el e il
61 47111100
=T o k2 T i
To Layer 9
Frt-;m Lay-erQ) I-:rom L-ayer10)
43 66 | --eee-

Figure 2.4: Message passing flow in horizontal layered decoding.

19

nmy A E
| < 1, H Read
cTV ' Network 1 I
Layer 1 ——| CNuU1 : A
Memory 1 | 71y, E Wiite Iy
' Network 1
Decoded 1 E
a
... ,5
Serial Tiny Jn; : Read
. —> [. —]
operation cTV ' Network j APP
. CNUj :
Iag,;l:y Layer Memoryj [7;n, / : Write AM]I Memory
' > Network j
Decoded j E
a
... i
712 ny A :
2 12,n !
I |« et : Read I
cTV : Network 12
Laver 12 CNU12 : A
v ayer Memory 12 |r; - : Wiite 12,19
1 Network 12 >
Decoded 12}
e

Figure 2.5: Architecture of horizontal layered decoding with loosely coupled algo-
rithm.

20

Loosely coupled algorithm is also adopted in this work to reduce the intercon-
nection complexity. As illustrated in Fig. 2.5, at the j-th layer, the VTC mes-
sages are first recovered from the variable summations A, and the CTV message
from memories, as in (6). At the output of CNUj, the updated CTV messages
{rjn; | n; € N(j)} in (7) are stored back to the CTV memories. Variable summa-
tion {A,, | n; € N (j)} are renewed as in (8) and sent back to the APP memory.

The entire flow can be expressed as follows:

Qj,nj = Anj — Tj,nj (214)

Tim; = H stgn (‘Jj,n;)

n (N G)\ns}

Ay = Qjny +Tim, (2.16)

Compared with conventional layered decoding algorithm, it can be observed
that loosely coupled algorithm does not require variable node operations. In other
words, VNUs can be eliminated since their main function of updating the variable
summations A, can be done by CNUs using VTC messages 7, [k] from previous

layers, as indicated in (2.16).

21

Chapter 3

High-Throughput LDPC Decoder
Architecture with Parallel Layered

Decoding

3.1 High Throughput Strategies

With the increasing demand for high-data-rate wireless applications, many recent
communication systems employ ultra-high throughput channel codes to match the
data-rate requirements. For example, 802.15.3¢c standard is targeted for the data
rate of multi-giga bits per second (Gbps), thus LDPC codes are preferred compared
with convolutional codes and Turbo codes. However, it is a great challenge to design
a high-through LDPC decoder due to the complexity of decoding algorithm. Since
QC-LDPC codes are increasingly popular in emerging communication standards, we

focus on the design and architecture of QC-LDPC decoder in this paper.

22

The throughput of an LDPC decoder can be calculated as

Freq x Block Length
Cyclesper Iter x Numof Iter

Throughput = (3.1)

Therefore, three strategies can be attempted in order to improve the throughput:
reducing the number of iterations required for convergence, reducing the decod-
ing latency per iteration and improving the operating frequency. Correspondingly,
three architecture-aware schemes are studied in this paper, including layered de-
coding algorithm, parallel layered decoding architecture, and critical path splitting
technique.

First, layered decoding algorithm is adopted to reduce the required number of
iterations by a factor of two for any given SNR, compared with the standard BP
algorithm. Hence, the decoding throughput is supposed to be doubled without
any bit error performance loss. Generally, there are two layered decoding methods:
horizontal layered decoding [51, 33, 45, 9, 25, 28| and vertical layered decoding
[82]. It has been proved these two methods are theoretically equivalent and both
can converge twice as fast as the BP algorithm [65]. In this paper, we employ
the horizontal layered decoding strategy because it is favorable for the min-sum
algorithm.

Secondly, we propose a novel scheme namely parallel layered decoding archi-
tecture that enables concurrent processing among all layers. In traditional layered
decoding architecture, the layers are processed sequentially which leads to longer de-
coding latency per iteration [33]. In parallel layered decoding architecture, precisely
scheduled message passing among different layers guarantees that all updated mes-
sages are passed to their designated locations in connected layers. The parity-check

matrix optimization procedure adds specific offsets to each layer (row) in the base

23

parity check matrix, making the idle time intervals between connected layers suffi-
ciently large for message passing. Moreover, parallel layered decoding architecture
supports the decoding architecture in which check node updates unit (CNU) and
variable node updates unit (VNU) are combined into a single functional unit. Thus,
no extra clock cycles are needed to complete the variable node update as they have
been merged into the CNU. As a result, the number of clock cycles per iteration
in parallel layered decoding architecture can be reduced by 75% compared with the
existing architectures.

Finally, the technique of reducing critical path delay is proposed to improve the
operating frequency at circuit-level. The combination of CNU and VNU results a
long critical path in the decoder implementation [66], which limits the maximum
clock speed. Fortunately, there are idle time intervals among different layers which
allows the iterative messages to be processed and passed to the next layer within
several clock cycles. Therefore, we can insert registers to split the CNU (including
the VNU) into several pipelined stages. Consequently, the critical path is split into
multiple stages and the clock speed can be improved dramatically, on condition
that the number of stages does not exceed the idle time intervals. In practice, this
critical path splitting method can increase the maximum frequency of the decoder
by a factor of 3 or higher.

To demonstrate the aforementioned three techniques, a rate-1/2 2304-bit QC-
LDPC code is selected from 802.16e standard as a case study. In addition, existing
techniques such as min-sum algorithm and loosely coupled algorithm are also em-
ployed to simplify decoding complexity and to reduce the chip area of the decoder

design.

24

3.2 Parallel Layered Decoding Architecture

As discussed above, the essential reason that layered decoding algorithm can reduce
the number of iterations is that the latest extrinsic messages are passed to and
employed by the subsequent layers within the current iteration. Therefore, layered
decoding requires layers to be processed sequentially, which results a large decoding
latency per iteration. A method of increasing parallelism inside a layer is proposed
in [51, 45], but all layers are still processed in series. Although decoding throughput
can be improved, this method introduces crossbar-based interconnection networks
that increase the hardware complexity.

Motivated by the partly parallel mechanism mentioned in [85], we propose the
parallel layered decoding architecture that allows all layers to be processed concur-
rently. Each layer generates and sends updated messages and at the same time it
also receives the updated messages from other layers. Unlike the method proposed
in [51, 45|, parallel layered decoding architecture uses parallel processing among all
layers and serial processing within each layer. Detailed message processing flow at

the j-th layer (CNU) can be summarized as

1. Fetch the corresponding variable summations {A,, |n; € N (j)} from the

APP memory and CTV messages {7}, | n; € N (j)} from local CTV memory.
2. Calculate the VTC messages {q;, | n; € N (j)} in the same row using (2.14).

3. Calculate horizontally to obtain new CTV messages {75, | n; € N (j)}, as in

(2.15).
4. Tmmediately update the variable summations {A,, | n; € N (j)} using (2.16).

5. Deliver the new variable summation A—n] to the same location at another layer.

25

9¢

"S9TAD YDO[D JUAIIYIP INO0J Je snjejs SUISSed0IJ :1°¢ 9Indi

—_
Start at row 1

Layer4 (CNU4)

Messages (cycle

—_
Start at row 1

Layerd (CNU9)

APP
Messages

—

APP Start at row 1

Messages
Layer12 (CNU12)

APP Col 13

Cycle 0 Cycle 18 Cycle 31 Cycle 47
Col 62 Col 80 Col 93 Col 13
(cycle 0)* (cycle 18)L (cycle 31)l J(cycle 47)
\ - X k \
61 61 61 & 61
N
Col 31 Col 44 Col 60
0) J (cycle 18) J i(cycle 31) (cycle 47) i
N — N\
12 12
N\ N\
Col 44 Col 62 Col 75 Col 91
(cycle 0) | (cycle 18) | (cycle 31) | (cycle 47) |

N

43

Hereby, we explain how to pass A—n] messages in parallel layered decoding archi-
tecture. Instead of passing A—nj to all unprocessed layers as in conventional layered
decoding, parallel layered decoding architecture only sends A—nj to the layer that
will use it next. Let us take the first column of the H base matrix as an example.
None-zero entries are at the 4th, 9th and 12th layer whose permutation numbers
are 61, 12 and 43, respectively. Now we suppose that at cycle 0 each of these three
corresponding CNUs starts to process from the first row of the sub-matrix, corre-
sponding to the 62th, 13th and 44th column indices. In general, corresponding row

and column indices of the entry being processed at cycle [can be calculated as

Tindexr — l (32)

Cindex = mod (1 + 1+ s (7,7), 96) (3.3)

In Fig. 3.1, it illustrates the message passing routes in parallel layered decoding
architecture using the the first column of the parity check matrix in Fig. 1 as an
example. The operation sequence in time of these three layers is described as the

following:

1. At cycle 0, CNUs at layers 4, 9 and12 start to process simultaneously from
row 1 of each sub-matrix, corresponding to column 62, column 13 and column

44 according to (3.3).

2. At cycle 18, all three layers are processing at row 19, corresponding to column
80 (in layer 4), column 31 (in layer 9) and column 62 (in layer 12). Layer 12
calls for the latest summation message of column 62 which has already been
updated by layer 4. Therefore, the updated variable summations at layer 4

should be sent to layer 12 (Layer 4 —Layer 12).

27

Layer 4 Layer 2
61) (22)
Layer 3
(81)
Layer 6
Layer 9 40)
(12) Layer 9
(24)
Layer 10
(94)
Layer 12 Layer 12
(43) (66)
(@) ()

Figure 3.2: Variable summations passing directions of the H base matrix: (a) for
column 1 (b) for column 6.

3. At cycle 31, all three layers are processing at row 32, corresponding to column
93 (in layer 4), column 44 (in layer 9) and column 75(in layer 12). Layer 9
calls for the latest summation message of column 44 which has already been
updated by layer 12. Therefore, the updated variable summations at layer 12

should be sent to layer 9 (Layer 12 —Layer 9).

4. Similarly, at cycle 47, all three layers are processing row 48, corresponding to
column 13 (in layer 4), column 60 (in layer 9) and column 91 (in layer 12).
Layer 4 calls for latest summation message of column 13 which has already
been updated by layer 9. Therefore, the updated variable summations at layer

9 should be sent to layer 4 (Layer 9 —Layer 4).

Based on the description above, message passing routes for column 1 of base
matrix is shown in Fig. 3.2(a). An additional example is illustrated in Fig. 3.2(b)
for column 6 of the base matrix. In general, we can determine the message passing
routes among layers based on the their permutation values. For each column, we
can sort the permutation values of all layers in descending order. Each layer then

passes messages to the next layer with a smaller permutation value. Moreover, the

28

Layer Offset 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 21 22 23 24
1 +0 9 | 73 55 | 83 7 0
2 +8 35 30 | 87 | 17 20 8 8
3 +0 24 | 22| 81 33 0 0 0
4 +12 73 59 77| 37 12 | 12
5 +84 27 72 29 | 60 84 | 84
6 +0 46 | 40 82 79 0 0 0
7 +88 87 | 45 6 10 88 | 88
8 +8 27 | 81 10 55 8 8
9 +0 12 83 | 24 43 51 0 0
10 +16 14 75 86 | 88 16 | 16
11 +0 7 65 39 | 49 0 0
12 +80 27 50 25 10 | 87 80

Figure 3.3: Offset-modified parity-check matrix for rate-1/2 LDPC code in 802.16e.

i CycleO | Cycle1 | Cycle2 | Cycle3 | Cycle4 | Cycle5 | -

[A I A

iRead! Calculate new APP ! Transmit ¢ Used by other layers
Pold ¢} tand save !
APP APP in

memories

Figure 3.4: Timing diagram for parallel layered decoding architecture.

layer with the smallest permutation value loops back and connects to the layer with
the largest value. This message passing scheme guarantees the updated messages

among all layered are processed progressively within each iteration.

3.3 Critical Path Splitting

According to the message passing mechanism explained above, we suppose CNUs in
all layers start at row 1 of each sub-matrix. Actually, the CNUs can start to operate
from different rows, which is equivalent to adding an offset to the permutation value
of each layer. For example, Fig. ?? shows a modified H base matrix with a set
of offset values added for different layers. The offset values are carefully selected,

such that the difference of modified permutation values between any two layers is

29

at least 5. It means each layer needs to read, update, store and pass the message to
the next connected layer with 5 clock cycles. The detail steps for the processing in
a layer are shown in in Fig. 3.4. In other words, each CNU has a period of 4 cycles
to complete the task of reading old message and update new message, as indicated
in (2.14) to (2.16). The message passing rule remains the same, except that the
updated permutation values should be used to determine the connections in PLDA.

From Fig. 3.3, we can see that the row weight of each layer is either 6 or 7, which
requires 6 or 7 messages to be compared in the CNU. Combined with other nec-
essary functions such as adding, rounding and memory read/write, CNU becomes
the critical path that limits the maximum operating frequency of the decoder. Tak-
ing advantage of the 4-cycle time intervals, we can split the critical path of CNU
into 4 pipelined stages by inserting 3 levels of registers. An optimal splitting yields
balanced delays among the pipeline stages. The implementation of critical path

splitting will be given in Section 3.4.2.

3.4 Proposed Decoder Architecture

In order to prove the concept of our proposed parallel layered decoding architecture
and high-throughput strategies, a rate-1/2 2304-bit QC-LDPC code selected from
802.16e standard is designed based on the offset-modified H matrix. The size of
each sub-matrix is chosen to be 96 x 96. Before constructing the functional units
of the decoder, we first perform fixed-point analysis to quantize the word-length of
messages. In fact, word-length quantization is a tradeoff between memory resources
and bit-error-rate performance. Fig. 3.5 shows the BER performance of the selected
rate-1/2 LDPC code using message word-length (3,2). As demonstrated in [?], 5

bits (3 bits for the integer part and 2 bits for the fractional part) are adequate

30

10

T
—#— Floating Standard BP @ 20 iter |]
—— Floating Min—-Sum @ 20 iter]
—©6— Floating Min-Sum @ 10 iter
—#— Floating Proposed @ 10 iter E
—»— Fixed(3,2) Proposed @ 10 iter |]

10§

Bit Error Rate

10 'k

107 I L I
0.5 1 15 2 25

SNR(dB)

Figure 3.5: BER performance comparison of different decoding algorithms.

for representing the absolute values of the extrinsic messages. Considering one
additional sign bit, we choose 6 bits fixed-point representation for messages in this

implementation.

3.4.1 Overall Decoder Architecture

The overall architecture of the QC-LDPC decoder is shown in Fig. 3.6. It consists
of check node processing units (CNUs), APP memory banks, CTV memory banks
and hard-decision units. The entire H matrix is divided into 12 layers and each
layer employs a dedicated CNU. APP memory banks and CTV memory banks
are used to store variable summations and CTV messages. Each non-zero sub-
matrix corresponds to one APP memory unit and one CTV memory unit. In layered
decoding, each APP memory exports a summation message to the CNU and imports
a new summation message from the CNU of another layer. Similarly, each CTV
memory exports a CTV message to the CNU and imports a new CTV message

from the same CNU for each layer. As a result, single-port memories that support

31

(48

"SOP0Y DJAT-O I0J 9IN99991TYdIR FUIPOISP PalaAe] [o[fered [[eIOA() :9°¢ 9INSI

Layer 1

Layer 2

Layer 12

APP Mem Bank

APP Mem 1

Tl"”i . Al,nl
cTV o U D e | Mem 1-2 ” Mem 1-3 ” Mem 1-9 |
Memory 1 1 5| Connection .: | Mem 1-10 ” Mem 1-13 ” Mem 1-14 |
i V7| Wires 1 :
Pl LT b
__ . b APP Mem 2
"2 Ny, ! 1 [[Memz2 |[Memzs |[Memz7 |
> - : -
etV CcNU2 : L _> 1! |[Memzs |[Mem212 |[Mem2-14 |
M 2 : . . !
emory an A2,n2 ; > C;Cir:ee;:tlzon : l_>
Decoded 2 L —> :
| ;
""""""""""""""""""""""""""""""""" 5 :
H |
H |
H |
| i
.. é : APP Mem 12
Ti2,m, 12,m 5 :
- > -« + L [Mem12-1 || Mem 126 |[Mem 128 |
emory 12 |7, 2 Ry | T [Mem 1212 - -
& : i || Connection | : . em [[Mem 12-13 || Mem 12-24 |
- v | Wires12 | -3
Decoded 12; L >

concurrent read and write operations are used in the design. Since there are 76 sub-
matrices in total, the APP memory bank and the CTV memory bank each consists
of 76 small single-port memory units.

Each layer in the parallel layered decoding architecture corresponds to 6 or 7
APP memory units, which means that the updated variable summations of the j-
th layer m will be delivered to APP memory units in other layers based on the
message passing scheme described in Section 77 and Fig. 3.2. Therefore, these
variable summations are passed to their destinations through fixed connection wires

instead of crossbar-based networks.

3.4.2 Pipelined Architecture for CNU

For check node update, each layer employs a CNU to perform a series of functions
including subtraction, comparison and addition. Consequently, the CNU becomes
the longest delay path in timing. In min-sum algorithm, a CNU needs to compare
6 or 7 numbers to find the minimum value and its location as well as the second
minimum value. Thus, the comparator becomes a key component in a CNU. A
2-input comparator consists of an adder and a multiplexer. A 3-input compara-
tor can be implemented with three adders, five multiplexers and some basic logic
gates. Based on comparison units of 2-input and 3-input comparators, 6-input or 7-
input comparator can be constructed by combining three levels of 2-input or 3-input
comparators, as shown in Fig. 3.7.

Fig. 3.7 shows detailed architecture of CNU and its functional block inside. The
subtractor and adder blocks fulfill the functions defined in (2.14) and (2.16), respec-
tively. Two quantizers are inserted to prevent the CTV and variable summations
from overflow during computation. The abs block calculates the absolute values

of VTC messages and the compare € select block determines the values of CTV

33

Delay (ns)

Critical Path Here

I I I
Stage 1 l Stage 2 l Stage 3 l Stage 4
063 I 066 I 0.86 I 08
0.34 0.29 I 0.10 0.13 0.43 | 0.43 0.43 I 0.39 0.06 0.25 0.10
Mem sub | Quantize Abs comp3 | comps comps | Compare sign Adder Quantize
Reading | | | & Select
APP 1 VTC 1 ; Vet APP_new 1
::I&,—» > Compare Adder |—’ >
ST > & Select CTV_new 1
APP 2 VTG 2 vic2 APP_new 2
o ’ » Compare ————
CTV 2 i & Select CTV_new
APP 3 vTC3 Comp_7 vic3
1 R Ly min min] Compare —>APP_new 3
CTv3 Comp_3 Comp_3 | &Select CTV_new 3
min2 min2 VTC4 "
APP 4, VTC 4] Quantize) r —l |] Compare Adder Quantize M
Sub Abs() . —] el Sign()
cIv 4 min Ly in 1 CTV_new 4
Comp_3 Comp_3 VTIC5
APPS VTC5 > min2 min2 |_ Compare M
) — | & Seleot CTV_new s
CTVsS p
VTC6
APP 6 Varel) |] Compare mﬁ
> & Select CTV_new 6
CTVé pu
> VTC7
APPT vicr [Compare APP_new 7
::Im—') 8 Select CTV_new 7

Figure 3.7: CNU architecture with critical path splitting into 4 pipelined stages.

34

Col 13 Col28 Col 74
v

—_

Start atrow 13

Layer4 (CNU4) \\ (‘75;)

\App

P Sub_Mem 1

—_

Start at row1—7
Layer9 (CNU9) \
(12)

N
Sub_Mem 2 «— |

N

N

Layer12 (CNU12) (;% \

N
[3>sub_Mmem 3

—_

Start at row 81

Figure 3.8: Register allocation in each section of the hard decisions.

messages.

As explained in Section 3.3, in order to reduce the critical path delay and improve
clock speed, a CNU can be split into 4 pipelined stages by inserting 3 set of registers.
Registers are carefully inserted such that all 4 pipeline stages have approximately
the same delay, since maximum frequency is determined by the longest delay path.

Delays of each functional unit and the pipeline stages are also shown in Fig. 3.7.

3.4.3 Decision Units

The output bits of the LDPC decoder are decided by the signs of the variable sum-
mations. In traditional horizontal layered decoding, decisions can be made during
the variable node processing at the bottom layer. Parallel layered decoding archi-
tecture operates in a slightly different way in which every layer generates variable

summations during each iteration, as CNUs in different layers are working concur-

35

rently. As illustrated in Fig. 3.8, let us take the first column of the modified H base
matrix with offset as an example. CNU 4, CNU 9 and CNU 12 start to operate
from row 13, row 1 and row 81, respectively, as defined by the offset values shown
in Fig. 3.3, which correspond to column 74, column 13 and column 28, respectively.
According to the message passing rule derived in Section 3.4.2, variable summations
passing routes of the first column is Layer 4—Layer 12—Layer 9—Layer 4, also
shown in Fig. 3.8. After completion of each iteration, the final variable summations
for columns 13 through 27 are stored at layer 12. Variable summations for columns
28 through 73 are stored at layer 4. Similarly, variable summations for column 74
through 12 are stored at layer 9. Therefore, the hard decision bits for columns 1
through 96 are stored in the memories distributed in 3 different layers.

In this design, we employ a convenient and robust “early termination” strategy,
similar to [64, 66]. The pivot of the early termination strategy lies in that the hard
decision bits from previous iteration are stored and compared with the decision bits
from current iteration. If all decoded bits are identical, then the decoder indicates
successful decoding of a codeword and the iterative decoding terminates. Otherwise,

the decoding process continues until the maximum number of iterations is reached.

3.5 Implementation Results

In order to evaluate the performance of our proposed parallel layered decoding ar-
chitecture, we implement a rate-1/2 2304-bit QC-LDPC decoder in TSMC 90nm
1.0V CMOS technology with 8-layer metals. We complete synthesis and core area
place and route using Synopsys tools.

Implementation results show that the decoder can operate at a maximum fre-

quency of 950MHz after synthesis, corresponding to 2.2Gbps decoding throughput

36

Figure 3.9: Layout of the decoder core area.

using 10 iterations. A total of 152 single-port memory units each with size of 96 x 6
bits (including one sign bit for each message) are employed, which sums up to
87,752 bits of memory use and occupies more than 75% of the core area. Parallel
layered decoding architecture only needs (p + 3) x Iter clock cycles for the decoding
process and p is the size of the sub-matrix. In [66] and [70], this number rises to
p X (4 x Iter +1) and p x (5 x Iter) + 12, respectively. Hence, under the same
number of iterations, parallel layered decoding architecture could reduce the decod-
ing latency by approximately 75%. Moreover, the implementation results show that
the maximum operating frequencies with and without critical path splitting method
are 950MHz and 305MHz, respectively, which demonstrates an improvement of the
decoder speed by a factor of 3. Combined with layered decoding algorithm that
doubles the convergence speed, our proposed architecture can significantly improve
the throughput of the QC-LDPC decoder up to multi-Gbps.

Fig. 3.9 shows the layout view of the decoder core area of 1.8mm x 1.6mm
and the logic density of 70%. The design does not have a crossbar interconnection
network, since parallel layered decoding architecture employs fixed message passing

paths Single-port memories are generated by Synopsys DesignWare tool and thus

37

8¢

Table 3.1: Overall comparison between proposed decoder and other existing LDPC decoders.

C. Liu [45] | X. Shih [66] | T. Brack [9] | G. Gentile [25] | Y. Ueng [70] | M. Karkooti [?] | Proposed Decoder
Code Length | 57672304 57672304 57672304 57672304 2304 1944 2304
Frequency 150MHz 83.3MHz 333MHz 400MHz 200MHz 412MHz 950MHz
Iterations 20 278 10, 15 15 4.6 (average) 15 10
Throughput | 105Mbps | 607220Mbps | 133-928Mbps | 128-746Mbps 106Mbps 736MHz 2.2Gbps
Technology 90nm 130nm 130nm 65nm 180nm 130nm 90nm
Area 6.25mm? 8.29mm? 3.83mm? 0.59mm? - 2.4mm? 2.9mm?
Power 264mW 22mW - - - 502mW 870mW

flattened during synthesis and place and route design flow. The core area of the
decoder is 2.9mm? and the estimated power consumption is 870 mW.

Table 3.1 shows the decoder implementation results compared with the existing
QC-LDPC decoders. Note that the throughput values from [9, 25| are recalculated
based on the decoded bits for fair comparison to other implementations listed in Ta-
ble 3.1. We show that the proposed decoder can achieve higher decoding throughput
with comparable or smaller chip area. The decoder consumes more power mainly

due to its high operating frequency.

3.6 Summary

LDPC codes are widely used in recent communication systems due to their superior
error-correction performance. In this chapter, we proposed a new architecture to
improve the throughput of QC-LDPC decoders. With parallel layered decoding ar-
chitecture and critical path splitting technique, the decoder implementation, which
uses TSMC 90nm technology, can achieve 2.2 Gbps decoding throughput for selected
rate-1/2 irregular QC-LDPC codes. In addition, min-sum and loosely coupled algo-
rithms are employed for area efficiency and the core size is 2.9mm?. The proposed
parallel layered decoding architecture is suitable for the near-capacity channel codes

and to meet the increasing demand of high data rate communication systems.

39

Chapter 4

High-Throughput Rate-Compatible
LDPC Decoder Architecture

4.1 Introduction

Recently, there is a growing interest in rate-compatible (RC) LDPC codes and their
applications. On time-varying channels, it is desirable to adjust the FEC code rate
according to the channel state information (CSI). Rate compatibility is also de-
sirable for communications in the type-IT hybrid automatic-repeat-request (ARQ)
protocols [42]. The concept of RC LDPC codes was first proposed in [32, 30, 31| by
puncturing the parity bits of a low-rate randomly constructed LDPC code (called
the mother code). The punctured codes showed good error performance, but the
complicated puncturing algorithm and large block size were not practical for hard-
ware implementation. Later, finite-length puncturing patterns were proposed in [29]
by introducing the definition of k-step recovery (k-SR) variable node. Based on the
k-SR theory, several studies were presented on puncturing schemes for QC LDPC

codes with dual-diagonal parity structure [13, 58|. Nevertheless, the hardware design

40

of RC LDPC decoder has not yet been well studied.

From the hardware implementation prospective, there are many existing research
work on VLSI implementation of LDPC decoders for single-rate codes [85, 12, 51,
86, 77, 17, 16] and multi-rate codes [52, 44, 81, 68, 84, 46, 66|. With the increasing
demand for high-data-rate wireless applications, high-throughput LDPC decoder
architectures are in need. In our previous work presented in Chapter 3 (also see
[83]), we proposed a parallel layered decoding architecture that can provide up to 1
Gbps input throughput owing to the concurrent processing of all layers and the split
critical path resulting much faster clock speed. However, the parallel layered de-
coding architecture has a major drawback. Because it uses fixed connections among
layers, the custom designed decoder only fits one specific code. That provides the
motivation for us to conduct further research to solve the flexibility problem.

In this paper, we investigate the puncturing schemes for rate-compatible LDPC
codes and their hardware implementations. For QC LDPC codes with dual-diagonal
parity structure, an efficient puncturing scheme is selected which includes the weight-
3 vertical sub-matrix in the puncturing block. As a case study using the rate-1/2
WiMax LDPC code, we show that the selected puncturing scheme results in the
bit-error-rate (BER) performance degradation of less than 0.2dB compared with
dedicated WiMax codes at four different code rates. Subsequently, we incorporate
the puncturing scheme into the parallel-layered-decoding based architecture for the
design of a RC LDPC decoder. The decoder is implemented in CMOS 90 nm process
and can achieve an input throughput of 975 Mbps at 10 iterations. It supports any
arbitrary rates between rate of the mother code and 1.

The rest of this chapter is organized as follows. Section 4.2 introduces the back-
ground of RC LDPC codes and a comparison of different puncturing schemes. The

high-throughput RC LDPC decoder architecture is presented in Section 4.3. Sec-

41

tion 4.4 gives the implementation results by comparing with some existing WiMax

LDPC decoders, followed by summary and future work in Section 4.5.

4.2 Puncturing Schemes for Rate-Compatible LDPC

Codes

4.2.1 Quasi-Cyclic LDPC Codes with Dual-Diagonal Parity

Structure

As introduced in Section 2.2, QC LDPC codes are a special class of structured
LDPC codes which are well suited for hardware implementation. In [56], a special
class of systematic codes is defined based on QC LDPC codes. The base matrix
H, can be partitioned into two parts, the systematic bits matrix H, on the left and
the parity bits matrix H, on the right, such that Hy = | (Hg)m,xk,:(Hp)myxms |
where k, = n, —m;. The parity bits matrix H,, can be further partitioned into two
sections: the left most column H, is a weigh-3 matrix and the remaining columns

H, is a dual-diagonal matrix.

Ho Hd
Po,| I 0 0 0
0 |Py, I - 0O 0
0 Py, 0 0
H, - (4.1)
Pp
I 0
0 0 : Pbmb_z I
P,| 0 0 0 Py,

42

We refer such structure as “dual-diagonal parity structure”. The original purpose
of this structure as in [56] was intended for fast encoding because it guarantees
linear time encoding efficiency. Consequently, the dual-diagonal parity structure
has been adopted in many LDPC codes including those in the WiMax standard
[4]. In WiMax codes, the secondary diagonal elements Py, Pp,, - - - Py, _, are also
identity matrices. Then the connections between the parity bit nodes and the check
bit nodes become zigzag edges. In this paper, we focus on the puncturing schemes
and decoder design for rate-compatible LDPC codes with such dual-diagonal parity

structures.

4.2.2 Rate-Compatible LDPC Codes

Rate compatibility can be achieved by puncturing the parity bits of the mother code.
If belief-propagation (BP) algorithm [24] is employed for decoding, puncturing can
be carried out by simply setting the log-likelihood ratios (LLRs) of the punctured
bits to zeros (in logarithmic domain). Several puncturing schemes have been pro-
posed for randomly constructed LDPC codes [32, 30, 31| and for short-length LDPC
codes [29]. The punctured codes, though at different code rates, are originated from
the same mother code. Therefore, only one encoder and decoder is needed.

A major advantage of using rate-compatible codes is to reduce the storage mem-
ory. For instance, the WiMax standard lists six different LDPC codes for four dif-
ferent rates (1/2,2/3A,2/3B,3/4A3/4B,5/6). A typical WiMax LDPC encoder/decoder
design [9, 25, 66, 45] must store the parity-check matrices of all six codes. In
addition, it also requires a complicated switching network that can change the con-
nections among VNUs and CNUs for each different code. Rate-compatible codes
avoid the storage overhead as well as the potential latency problem caused by the

large switching network. In communication systems, rate-compatible codes are also

43

v1 v2 v3 v4 v5 v6 v7 v8

(k-1) -SR k-SR (k-1) -SR
Node Node Node

@ : Unpunctured Node
QO : Punctured Node

Figure 4.1: Description of 1-SR node and k-SR node.

suitable for the hybrid ARQ protocols [42], because the transmitter can add redun-
dancies progressively by puncturing the mother code based on the CSI.

Since rate-compatible codes have many advantages listed above, a prominent
question is: can they provide comparable error performance with the unpunctured
codes? For fair comparison, the unpunctured codes are referred to dedicated codes
with the same length of the punctured codes. Before presenting the detail puncturing
schemes, we first introduce the definition of the k-SR variable node [29].

A punctured variable node v is called 1-step recoverable (1-SR) if there is at least
one connected check node ¢, called survived check node, such that all other variable
nodes connected to ¢ are not punctured except for v. It is called 1-SR because such a

punctured variable node can be recovered in one iteration on binary erasure channel

44

(BEC). An example of 1-SR node is shown in Fig. 4.1(a). The punctured variable
node v1 is connected to two check nodes, i.e. node cl and ¢3. One of these two
check nodes, node cl, has four neighboring variable nodes, namely v1, v2, v6 and
v7. Except for node v1, all other variable nodes, v2, v6 and v7, are not punctured.
Therefore, variable node v1 is called 1-SR node.

The definition of £-SR node can be extended from 1-SR node such that at least
one connected check node ¢, called the survived check node, contains one or more
(k — 1)-SR variable nodes while others are m-SR node, where 0 < m < k — 1 [29].
On BEC, a k-SR node can be recovered in kth iteration. Obviously, a k;-SR node
is more reliable than a k9-SR node if k; < k9. An illustration of k-SR node is shown

in Fig. 4.1(b).

4.2.3 Selected Puncturing Scheme

Since a k1-SR node is more reliable than a k>-SR node if k1 < ko, we first maximize
the size of the 1-SR group G in order to minimize the error performance loss of
the punctured codes. Then we try to maximize the size of the 2-SR group G, and
so on. In other words, for the groups {G1,Gs---G,} the punctured scheme will
puncture the low indexed group first.

The puncturing procedure can be divided into two steps: (1) the punctured block
selection and (2) the punctured bits selection inside a block.

First, we will investigate how to select punctured blocks. As an example, we
present an efficient puncturing scheme by puncturing the rate-1/2 2304-bit mother
code from WiMax standard [4], as shown in Fig. 4.2. It includes 1152 parity bits
which are partitioned into 12 blocks with the block size of 96 bits. Due to the zigzag
pattern of the parity structure, the grouping of k-SR node becomes easy to handle

[13]. For example, if a rate-2/3 LDPC code is obtained by puncturing the mother

45

- H >
- Hg > P
Ho | Hgq >
N \\\\
\\ \\
SANEN
N N
N (N
N
N
NN N
\\ \
N AN
N N
A NEN N

0 1 2 3 4 5 6 7 8 9 1011

Figure 4.2: Parity-check matrix for the selected rate-1/2 LDPC code in WiMax.

code, half of the parity bits, i.e., 6 blocks (or 576 bits) are punctured. Table T shows
three puncturing schemes in which the 6 punctured blocks are all 1-SR nodes. PBI
denotes the punctured block index and SC denotes the number of survived checks
corresponding to each punctured block.

Despite of the same number of 1-SR nodes, the error performances of the three
schemes still differ from each other, as shown in Fig. 4.3. The number of survived
checks, as listed in Table 4.1, has an impact on the error performance of the punc-
tured code. Scheme 1 and scheme 3 both have more survived checks than scheme
2. Therefore, the BER performances of scheme 1 and scheme 3 are better than that
of scheme 2.

Scheme 1 is the puncturing scheme proposed in [58], in which the weight-3 block,
i.e., H,, is not punctured. In contrary, scheme 3 selects the weight-3 block for punc-
turing. Simulation results in Fig. 4.3 show that scheme 3 has better error perfor-
mance than scheme 1 over AWGN channels. This is largely because the punctured

weight-3 variable nodes have more neighboring checks which can provide more in-

46

BER, Rate=2/3, Number of iterations=10 with layered decoding

BER

—©— Scheme 1
—3¢— Scheme 2
=f— Scheme 3
_2| = = Dedicated

1 15 2 25 3
SNR per bit

Figure 4.3: BERs of the three punctured codes and the dedicated code at rate 2/3
over AWGN channels.

Table 4.1: Three puncturing schemes for achieving rate 2/3 from rate 1/2 mother
code

Scheme 1 Scheme 2 | Scheme 3
PBI |SC|PBI|SC]|PBI|SC

1 2 0 1 0 2

3 2 1 1 2 2

5 2 3 1 4 2

7 2 4 1 6 1

9 2 6 1 8 2

11 2 7 1 10 2
Total SC | 12 6 11

47

Table 4.2: Index of punctured blocks at different desired rates

| Num | Rate | PuncBits | Punc Blk Idx (PBI) | Surv Blk Idx (SBI) |
1 [1/2-12/23 1-96 0 0,1,2,3,4,5,6,7,8,9,10,11
2 |12/23-6/11] 97-192 0, 10 1,2,3,4,5,6,7,8,9,10,11
3 | 6/11-4/7 | 193-288 02,10 1,3,4,5,6,7,8,9,10,11
4 4/7-3/5 | 289 -384 0,2,8,10 1,3,4,5,6,7,9,10,11
5 [3/5-12/19 | 385 -480 0,2,4,8,10 1,3,5,6,7,9,10,11
6 | 12/19-2/3 | 481-576 0,2,4,6,8,10 1,3,5,7,9,10,11
7 | 2/3-12/17 | 577-672 0,2,4,6,8,9,10 1,3,5,7,9,11
8 | 12/17-3/4 | 673-768 0,1,2,4,6,8,9,10 1,3,5,7,11
9 3/4-4/5 | 769 - 864 0,1,2,4,5,6,8,9,10 3,5,7,11
10 | 4/5-6/7 | 865 - 960 0,1,2,4,5,6,7,8,9,10 3,7,11
11 | 6/7-12/13 | 961 -1056 | 0,1,2,3,4,5,6,7,8,9,10 3,11
12 [12/13-1 |1057-11520,1,2,3,4,5,6,7,8,9,10,11 11

formation during the decoding iterations. Thus, puncturing the weight-3 block as
in scheme 3 is recommended. Table 4.2 shows the selected puncturing scheme when
1, 2, ... 12 blocks are punctured, which corresponds to a group of code rates of
12/23, 12/22, ... 12/12. Here we name this group of rates as “block rate”.

If the desired rate is between two consecutive block rates, we can puncture a
block partially by taking some bits out of a block. In “Punc Blk Idx (PBI)” column
of Table 4.2, the normal numbers indicate the entire blocks are punctured and an
italic number indicates the designated block which may be punctured partially if
needed. The punctured bits within that block are selected based on the following
procedure [58]. In order to disperse the punctured bits within a block, a special
sequence u, is generated recursively from wu; as in (4.2) through (4.3) and (4.4),

where z is the size of the submatrix.

48

U9 = {uk(O),uk(0)+k, uk(l),uk(1)+k, RN

Ukyr1 — {k, Uk(O), Uk;(o)‘i‘k‘i‘l, SR

w(k—1), up(k—1)+k+1}, (4.4)

Next, the actual punctured bit sequence /, is adjusted from u, based on the val-
ues of by, [and ¢ using (4.5), where [is the row number of P, by is the permutation
value of Py and ¢ is the permutation value of Pq in the weight-3 submatrix H,

from (4.1). For the selected rate-1/2 WiMax code, z = 96, ¢ = 7 and [= 6.

, mod (bou,, z) (if PBI <) (4.5)
mod ((z —q)u,, z) (if PBI >1) .

Note that u/ is a sequence with length of z, and each element v/ (i), 7 = 0,1, ..., 2—1,
indicates the column index of the bit to be punctured within the block. In practice,
the sequence is computed and stored in a LUT. As soon as the number of punctured
bits is calculated from the given rate, the indices for the punctured blocks and the
bits of the partially punctured block can be looked up instantly. More details will

be discussed in the decoder implementation.

49

4.3 High-Throughput Rate-Compatible LDPC De-

coder Architecture

4.3.1 Summary of the Parallel Layered Decoding Architec-

ture

LDPC codes can be effectively decoded using belief-propagation (BP) algorithm [24].
Two phases of messages, check-to-variable (CTV) messages and variable-to-check
(VTC) messages, are transmitted along the edges of Tanner graph to update each
other iteratively. Min-sum algorithm and modified min-sum algorithm [23, 26, 10|
have been introduced to reduce the complexity of CTV message updating.

Layered decoding algorithm [51, 9, 25, 45, 33, 28] has been adopted to reduce the
number of iterations by a factor of two, compared with the standard BP algorithm.
Hence, the decoding throughput can be improved without any bit error performance
loss. In BP algorithm, VTC updates do not start until all of the CTV messages are
received and vice verse. In horizontal layered decoding algorithm, the updated CTV
messages from the current layer are passed vertically to all layers below for the same
variable node. In each iteration, the horizontal layers are processed sequentially from
the top to the bottom layers.

The overall decoding procedure for a m x n parity check matrix with min-sum

and layered decoding algorithm is summarized as follows:

Qi (K] = Ay [K] = 7, K] (05 € N (7)) (4.6)

20

= [TL sion (g W)

nje{N()\ns}
X min e Bl X« 4.7
(n&qzv(j)\nj}{}q]’ s el) (4.7

Ay (K] = @i, (K] + 75n, K] (4.8)

The details about layer decoding algorithm can be referred to [51, 9, 25, 45, 33,
28]. However, traditional layered decoding algorithm processes layers in sequential
order, which results in a large decoding latency per iteration. A method of increasing
parallelism inside a layer is proposed in [51, 45|, but all layers are still processed
in series. Although decoding throughput can be improved, this method introduces
crossbar-based interconnection networks that increase the hardware complexity.

In Chapter 3 (also see [83]), a parallel layered decoding architecture was proposed
which allows all layers to be processed in parallel. Each layer has an individual CNU
which generates and sends updated messages and at the same time also receives
the updated messages from other layers. Unlike the method proposed in [51, 45],
parallel layered decoding architecture uses parallel processing among all layers and
serial processing within each layer. In parallel layered decoding, the message passing
routes among layers are based on their permutation values as in the parity-check
matrix. Fig. 3.3 shows the values in the parity check of the rate 1/2 WiMax codes.
For each vertical block, we first sort the permutation values of all layers in descending
order. Subsequently, we designate each layer to pass its message to another layer
which has the next smaller permutation value in the same column. Finally, the
layer with the smallest permutation value loops back and connects to the layer with

the largest value. This message passing scheme guarantees the updated messages

ol

among all layered are processed progressively within each iteration. This designated
message passing scheme works well, because the rows within each layer are processed
sequentially and the updated messages are passed only to the layer who is going to
process the same column next.

It is worth mentioning that we have tentatively added an offset to the permuta-
tion values for each layers as in Fig. 3.3, which is equivalent to show that the CNUs
start to process from different rows (instead of already start from row 1). From the
decoding prospective, changing the processing order in each layer does not affect
the performance nor throughput of a decoder. In fact, the offset values are carefully
selected such that the difference of the modified permutation values between any
two layers is at least 5. It means that each layer (or CNU) has a time span of 5
clock cycles to read, update, store and then pass the message to the next connected
layer. The main advantage is that we can design the CNUs, which are usually the
critical path in decoder design, into 5-stage pipeline architecture. This is called
critical path splitting technique in 3, which reduce the latency of the critical path
and thus improve the clock speed and decoding throughput.

The major issue of the aforementioned parallel layered decoding architecture is
that the concurrent message passing routes among all layers are fixed and optimized
for the specific code. As mentioned in Section 4.1, rate compatible LDPC codes
or at least multiple rates are desirable for communication systems on time-varying
channels. Thus, we investigate various puncturing schemes and incorporate the rate
compatibility into parallel layered decoding architecture to provide the much needed

flexibility, without sacrificing its advantage of high throughput.

52

CTV ;@y < 4 * *
et | Momory || N R e] e £ AT
M m.g H >H - x y ol :I * Mem 1
™

l\ﬂllllllIIll'lllmllllﬂulllmlllIIllllllllll.f%lllllIIllllllllllll

Decoded 1 : Y : Y
From To From To
Layer 8 Layer 4 Layer 8 Layer 6

T2m,
CTv >
”o oooooooooooooooooooo >ww
Layer2 | Memory |— | 5 | i 20 i Mem22 |1 23 1 [Mem2-12 |1 225 1 e 2-24
WS AR REETERTEE S e . Mem 2
2 - Aoy, : !
hbegeecceas llllllIIll.'llllllllllllllIIlIJllllmllll.fllllllIIllllllllllll
Decoded 2 Y H ' :
Layer 8 + Layer9 m
To From w To w From To From
Layer9 Layer 4 H Layer3 Layer6 Layer 11 Layer 11
A A ' 1 A ' A
12,m5 , 1 H H H :
crv -~ Py .
CNU : : : : APP
Layer 12| Memory R [Mem 12-12} || Nem 12-13 |§ - [Mem 12-24
rion| 12 — Mem 12
12 -« Ao, : Do teoat oo !
b e llllthlilllllllllllllllllllllllIlllllll.ll.llllllllllll‘lllllll

Decoded 12

Figure 4.4: Overall architecture of a rate-compatible LDPC decoder.
53

4.3.2 RC LDPC Decoder Design

The overall architecture of the RC LDPC decoder is shown in Fig. 4.4. It consists of
CNUs, LLR initialization block, APP memory banks, CTV memory banks and bit
decision units. It is similar to a regular PLDA design except for the initialization
of the APP memory. Using the rate-1/2 WiMax code as an example, the entire
H;, matrix is divided into 12 layers and each layer has a dedicated CNU. APP
memory banks and CTV memory banks are used to store APP messages and CTV
messages. Each nonzero elements in the base parity check matrix corresponds to
one APP memory unit and one CTV memory unit. Each APP memory exports
APP messages to the CNU and each CTV memory also exports CTV messages
to the CNU. The CNU first calculates the VTC messages (as indicated in (4.6)),
then calculate the updated set of CTV and APP messages (as indicated in (4.7)
and (4.8)), and finally imports updated CTV message to CTV memory banks and
updated APP messages to APP memory banks. Therefore, the CNU becomes the
critical path of the PLDA which limits the maximum frequency.

However, as indicated in Section 4.3.1, an interval of 5 clock cycles is available
for the APP message passing from one layer to another if offset-modified parity-
check matrix in Fig. 3.3 is used. Considering the memory writing operation which
will cost one clock cycle, a split CNU with 4 pipeline stages can be designed by
inserting some registers to the original CNU, bringing in reduced critical path delay
and improved maximum frequency.

The puncturing scheme is implemented by patching the LLRs of the punctured
parity bits to be 0’s, which is called LLR initialization. The length of the actual
received codeword is smaller than that of the original mother code because of the
punctured bits. For the selected puncturing scheme, the punctured blocks and bits

listed in Table II should be initialized to zeros.

54

12x12 LUT

000+:+001 } 000+** 010 100+ 000

Add IdX_bIk > 000010 § 000+ 100 & 000--- 000
r
clk —» ess
Generator | addr_mem
y y 010+++000 § 100--- 000 000 ** 000
- - 910°+-000 } 100---000 % ..
idX rate 100---000 » 000-... 000 000 --- 000
— A
— idx_rate n_mem
n_punc > <967 R + —]'
:II <1927 II »(+ LLR
;lﬁl - ent en2 en12
<2847 D) T
Yy VY Yy VY Yy Y Y
[Mem 113]} i[Mem 114 |} 5
[Mem6-13 |} i Mem 214 |i E
» =960 - [Mem1243]: “MemBank2 Mem Bank 12
Mem Bank 1
» < 2 |
> < 10567 I
Memory Banks

Comparators Adder

Figure 4.5: Architecture of LLR Initialization Block.

Fig. 4.5 shows the architecture of the LLR Initialization Block, including a
group of Comparators, a Decoder, an Address Generator and a 12 x 12 look-up table
(LUT). The LLRs from the channel are stored in assigned memory banks and the
others are set to be 0’s. Based on the length of the punctured bits (n_ punc), the
rate of the code can be deduced using a group of Comparators and an Adder. The
thresholds of the comparators are set to be the multiples of the sub-matrix size
z, which is 96 for the mother code. Each comparator compares n_ punc with one
threshold and returns 1 if n_punc is greater and 0 otherwise. Totally there are
11 comparison results. These results are sent to a decoder to determine the range
of the punctured code. Here the decoder is simply composed of a group of adders
which add all of the comparison results to get the idz_rate signal. For example, if

the length of the punctured bits is smaller than 96, then each comparator returns a

95

idx_rate

Clock - idx_blk

clk » addr_mem

o
2
\i
i
-

Figure 4.6: Architecture of the Address Generator.

0 and #dz_ rate is therefore 0. This corresponds to row 1 in Table 4.2 and the rate
lies between 1/2 and 12/23. The Address Generator generates addresses for the
memory banks, as well as the 12 x 12 LUT. Signal idz_ blk denotes which memory
bank is being written with the LLRs at a time instant. The 12 x 12 LUT stores
the enable signal for the memory banks to decide which memory should be written
by LLRs at a time constant. Thus, the contents of the 12 x 12 LUT represent the
puncturing bit selection as in Table 4.2.

The detail design of the Address Generator is shown in Fig. 4.6. The core
component is an accumulator which accumulates every clock cycle and outputs two
signals idz_ blk and addr _mem, one for the 12 x 12 LUT to select the enable sig-
nal and another for the memory banks as the write address. However, it can be
observed from Table IT that for every rate range, only one vertical block is partially
punctured and the rest are entirely punctured. In other words, the clock accumu-
lator will accumulate every 96 cycles unless for the partially punctured block that
it accumulates at a smaller number of cycles which is determined by the number of
punctured bits in this block. Therefore, a LUT is used here to store the index of the

partially punctured block based on Table II, in order to indicate the clock accumu-

26

lator to accumulate at a different step when meeting with the partially punctured

block. The content of the LUT is exactly the italic numbers in Table 4.2.

4.4 Experimental Results

For experimental study, we implement the selected puncturing scheme for the WiMax
LDPC codes. We choose the rate-1/2 LDPC code in the WiMax standard as the
mother code. Numerical simulations are performed to verify the BER performance
between the punctured codes and the dedicated codes at three different rates. Fur-
thermore, the rate compatible LDPC decoder are developed based on the parallel
layered decoding architecture and then implemented using standard cell ASIC design

flow.

4.4.1 Simulation Results for Punctured WiMax Codes

The BER performance of a group of punctured LDPC codes are presented in Fig.
4.7. The rate of mother code is 1/2 and the code length is 2304 bits. Five different
rates are generated using the selected punctured schemes, i.e., 3/5, 2/3, 3/4, 5/6
and 6/7. The corresponding number of punctured bits are 384, 576, 768, 922 and
960. Thus the code length of the punctured codes are 1920, 1728, 1536, 1382 and
1344, respectively.

To verify the selected puncturing scheme, dedicated LDPC codes at rate 2/3,
3/4 and 5/6 from WiMax standard are simulated to compare their performance
with the punctured codes, also shown in Fig. 4.7. At each rate, a specific mode is
selected from the 19 modes of each WiMax code to make the selected code lengths
of the dedicated codes equal or similar to those of the punctured codes. The code

lengths of the dedicated codes at rate 2/3, 3/4 and 5/6 are adjusted to 1728, 1536

57

BER, Number of interations=10 with layered decoding

BER
I
o

- * = Mother Code, Rate=1/2
=—H&— Punctured, Rate=3/5

107 - © = Dedicated, Rate=2/3 E
== Punctured, Rate=2/3 :"
= # = Dedicated, Rate=3/4

107° Punctured, Rate=3/4

= 4+ = Dedicated, Rate=5/6 |
=—f— Punctured, Rate=5/6 e
_;| =—@— Punctured, Rate=6/7

|
1 15 2 25 3 35 4
SNR per bit

Figure 4.7: BERs of the punctured LDPC codes over AWGN channels.

and 1344, equivalent or similar to those of the corresponding punctured codes whose
code lengths are 1728, 1536 and 1382. Fig. 4.7 shows that the BER of the punctured
code is very close to the dedicated code, with less than 0.2dB performance loss at

BER of 1075.

4.4.2 Hardware Implementation Results

In order to demonstrate the combined system performance of the selected rate com-
patible LDPC codes and the PLDA architecture, we implement the rate LDPC
decoder in TSMC 90 nm technology with 8 layers. We complete the synthesis and
core area place and route using the standard Synopsys tools.

Implementation results show that the decoder can operate at a maximum fre-
quency of 838 MHz after synthesis, which corresponds to a constant input through-

put of 975 Mbps for all code rates. Fig. 4.8 shows the layout view of the decoder

o8

Figure 4.8: Layout of the proposed decoder chip.

with the core area of 1.96 mm? and the logic density of 70%. Read/write memories
are generated by Synopsys DesignWare tool and thus flattened during synthesis and
place and route process. The estimated power consumption of the decoder core is
650 mW running at 838 MHz clock frequency.

We also compare the proposed RC LDPC decoder design with several other
existing WiMax LDPC decoder implementations, as listed in Table 4.3. For fair
comparison, we first scale all the decoders to 65 nm technology node. Then, a
metric called the throughput-to-area ratio (TAR) is introduced show how much
throughput a decoder can achieve per area unit. Table 4.3 shows that the proposed
decoder can provide higher throughput using smaller chip area. More interestingly,
the proposed decoder design can provide any arbitrary code rate between 1/2 and

1 as opposed to only 4 selected rates in the existing WiMax LDPC decoders.

29

09

Table 4.3: Overall comparison between proposed decoder and other existing WiMax LDPC decoders

C. Liu [44] T. Brack [9] X. Shih [66] C. Liu [45] Proposed
Supported Rates 1/2,2/3,3/4,5/6 | 1/2,2/3,3/4,5/6 | 1/2,2/3,3/4,5/6 | 1/2,2/3,3/4, 5/6 | Any rate between 1/2 and 1

Frequency (MHz) 300 333 83.3 150 1100
Iterations 20 10, 15 278 20 10

Throughput (Mbps) 212 83-155 607220 105 1280
Technology (nm) 90 130 130 90 65

Area (mm?) 6.22 3.83 8.29 6.25 1.96

Area scaled to 65 nm (mm?) 3.24 0.96 2.07 3.26 1.96

TAR (Mb -5 "mm ?) 65.4 865" 161.5 20.0-106.3 32.2 653.1

4.5 Summary

This paper presents the algorithm, design and implementation of a rate-compatible
LDPC decoder. Using the selected puncturing scheme, the BER performances of
the punctured codes are comparable with the dedicated codes with less than 0.2 dB
performance degradation in simulation results. In addition, rate compatible LDPC
codes provide an ideal solution to the flexibility problem of the parallel layered de-
coding architecture. Considering the WiMax standard, a rate compatible LDPC
decoder is designed using the rate-1/2 code as mother code. The hardware imple-
mentation shows the maximum input throughput of 975 Mbps. Comparing to a
multi-rate LDPC decoder, the rate compatible design can eliminate the memory
to store multiple codes and the network to switch among them. Therefore, rate-
compatible LDPC coder are highly desirable for advanced wireless communication

systems.

61

Chapter 5

Low-Complexity LDPC Decoder

Architecture for CMMB Systems

5.1 Introduction

Mobile digital broadcasting TV is an emerging area for next-generation multime-
dia communications and entertainment service. Several communication standards
have already taken place worldwide, including DVB-H [21] in Europe, T-DMB [2]
in Korea, and ISDB-T [3] in Japan. The China Multimedia Mobile Broadcasting
(CMMB) standard [1, 76], ratified in 2006, is the mobile television and multimedia
standard developed and specified by the State Administration of Radio, Film, and
Television (SARFT) in China. Both high data rate and high reliability are desirable
for broadcasting networks, which requires high-throughput forward error correction
(FEC) codes with excellent error correcting performance.

LDPC code is therefore an ideal candidate due to its near-shannon-limit error
performance and inherent parallelism for parallel implementation. They have been

chosen as the ECC for CMMB together with Reed-Solomon (RS) codes. The mo-

62

bility requirement of CMMB standard demands for an area efficient and low-power
LDPC decoder. In recent years, many research projects have been focused on re-
ducing memory size and complexities of node processing units and interconnection
network in LDPC decoders [85, 51, 36, 78].

With the increasing popularity of mobile handheld devices, it demands for a
low-complexity FEC decoder that is both area efficient and low power. In recent
years, many research projects have been focused on the reduction of memory size
and simplifying the complexity of interconnection network in an LDPC decoder.
Memory-efficient architectures are constructed by employing min-sum algorithm [78|
and memory-aware architecture [51]. Complicated interconnects can be reduced by
the partially parallel architectures [85, 51| and further optimized by the loosely
coupled algorithm [36]. While layered decoding architectures addressing weight-1
matrices are presented in [45], the novelty of this paper lies in the low-complexity
architecture design for layered decoding with weight-2 matrices.

In this chapter, we present the architecture and implementation of an LDPC
decoder for CMMB standard. The main contributions of this paper are listed as
follows: (1) A reconfigurable architecture, which can support dual rate LDPC codes
specified in the CMMB standard, is constructed with minimal overhead; (2) Split-
memory architecture is proposed to efficiently handle the weight-2 superimposed
sub-matrices. The proposed techniques takes advantages of the regular structure in
both rate 1/2 and 3/4 codes in CMMB standard and they apply well to the codes
with a few weight-2 sub-matrices.

The rest of this chapter is organized as follows. The QC-LDPC code structure
in the CMMB standard and its decoding algorithms are introduced in Section 5.2.
The reconfigurable architecture of the dual-rate LDPC decoder design is presented

in Section 5.3. Memory reduction technique and simplified read /write networks are

63

Circulant H matrix: rate=1/2

1 T T T T

Check Nodes
N
w
o
(5]
/

\\
4097 N

N

1 | | |
0 1000 2000 3000 4000 5000 6000
Variable Nodes

@

Circulant H matrix: rate=3/4

|
7000

|
8000

9000

1 T T T T

N

513 A \

Check Nodes
-
N
[e0]
=
4
/
/

1537 N N N

N\ \
1793
AN

A
N\

S
&
/.

\ | \

N\

AN

| Il)
0 1000 2000 3000 4000 5000 6000
Variable Nodes

(b)

Figure 5.1: Structure of the parity check matrix for LDPC codes in CMMB standard:

(a) rate-1/2; (b) rate-3/4.

discussed in Section 5.4. Section 5.5 shows the ASIC implementation of the decoder

and its performance results, followed by the summary in Section 5.6.

5.2 QC-LDPC Codes in CMMB Standard

Fig. 5.1 shows the structures of the base matrix H for the LDPC codes defined
in the CMMB standard, including the rate-1/2 code and the rate-3/4 code. They
belong to the class of QC-LDPC codes that can be expanded from the base matrix,
and the size of each sub-matrix is 256 x 256. In fact, the original parity check matrix

in the CMMB standard is regular but not well structured. We obtain an equivalent

64

7000

8000

1
9000

QC form as shown in Fig. 5.1 through proper column permutations. The size of
the base matrix H is 18 x 36 for the rate-1/2 code and is 9 x 36 for the rate-3/4
code. A blank element can be expanded as a 256 x 256 all zero sub-matrix. A non-
blank element can generally be expanded as a 256 x 256 circularly shifted identity
matrix, also called weight-1 sub-matrix, except for a few weight-2 sub-matrices. As
highlighted in Fig. 5.1, there is one weight-2 sub-matrix in the rate-1/2 code and
three of them in the rate-3/4 code. To the best of our knowledge, the QC-LDPC
decoder with weight-2 sub-matrices has not been much studied. Most of the existing
works were focused on QC codes with all weight-1 sub-matrices, e.g. [45].

Both rate-1/2 and 3/4 codes in CMMB standard are regular LDPC codes with
code length of 9216 bits and column weight of 3. Row weight of the rate-3/4 code
is 12, twice of the row weight of the rate-1/2 code which is 6. Therefore, the total
number of none-zero elements in both codes are exactly the same, which is a unique
property for the design of a unified decoder that can support dual rates as specified

in CMMB standard.

5.3 Dual-rate Decoder Design

Before constructing the functional units of the decoder, we first perform fixed-point
simulations to quantize the word-length of messages. In fact, word-length quanti-
zation is a tradeoff between memory size and bit-error-rate performance. Fig. 5.2
shows the BER performance of the LDPC codes in CMMB with CTV message rep-
resentations in floating point and word-length (3,1) which corresponds to 3 bits of
integer part and 1 bit of the fractional part. Considering a sign bit, we choose 5-bit
fixed-point representation for the CTV messages in the design. APP messages are

6-bit representations in our design, including a sign bit, 4 bits of integer part and 1

65

BPSK, AWGN, Num of Iteration = 15

10 7 T
10°} .
Q
g
C 10 .
o
o
.a;i
10°F .
—O— Fixed (3,1) for rate 1/2 '
= © = Floating for rate 1/2
107k —@— Fixed (3,1) for rate 3/4 |
= @ = Floating for rate 3/4 ‘
2 2.2 2.4 2.6 2.8
SNR per bit

Figure 5.2: BER performance for different rates and quantization schemes.

bit of fractional part.

5.3.1 Overall Architecture

Fig. 5.3 shows the overall decoder architecture for CMMB LDPC codes. The CTV
memory is used to store the CTV messages corresponding to one row in the H
matrix of the QC-LDPC code. Instead of storing 6 CTV messages in each row
(because the rate 1/2 codes have the row weight of 6), a concatenated message is
stored consisting of four elements: the minimum magnitude; the second minimum
magnitude; the relative location index of the minimum magnitude; and the signs of
all messages in this row. Since there are 6 elements in each row for rate-1/2 code,
only 3 bits are needed to represent the relative location index. The recovery unit is
to recover the individual CTV message from its compressed form. The APP memory
bank stores the APP messages for each column and it loads the intrinsic messages
from the channel at initialization. The read network fetches the APP messages

from APP memory bank according to the locations of nonzero elements in each row.

66

Tim.n (compressed form)

qm,n
Adder_1
> CTv — Recoyery CNU Adder 2
Memory Unit
addrTcs_nT Twen_n A,
clk Control Read ctl Write
—> . P >
Unit ctl Network Network
1 Decoded
5| Decoded | o
v Memory | output
addr
cs n
—) | A Ao | e Ass
wen_n

APP Memory Bank

Figure 5.3: Overall architecture of the CMMB LDPC decoder.

Adder_ 1 recovers the VTC message as in (?7?) and then sends it to the CNU. The
CNU reads the VTC messages from adder 1 and updates the CTV messages. The
compressed form of the updated CTV messages is saved in the CTV memory, while
in original form they are sent to adder 2 for updating the APP messages as defined
n (?77?). Subsequently, the write network stores the updated APP messages to the

APP memory bank. The decoded memory stores the output bits after the decision.

5.3.2 Dual-Rate CNU Design

Before describing the dual-rate CNU architecture, we first elaborate CNU design for
the rate-1/2 codes. Fig. 5.4 can be viewed as two rate-1/2 CNUs in parallel. For
implementation of the min-sum algorithm, the CNU requires a 6-number comparator
to find the minimum and second minimum values of the VTC messages in each row.

Here we employ a pseudo-rank order filter (PROF) based design derived from a

67

89

'$0p0d DJAT GININD (/€ ‘z/T) orea-fenp 103 N JO AINRNYITY F'¢ oINS

sign logic

Al

PROF

Yy

PROF

sign
> (To Adder_2)
signs_0 —— CTV 0_0
min_loc min_loc_OV —>CTV 1_0
LB, ol covery [CTV 2.0
> sminZ T Y1 scrvso
vl i | min —> CTV 4_0
e ; > CTV5.0
...... et E
@ min2_0 } loc_0 : cTv
- - _compressed_0
_(:)— loc_1 -
min_0 T (To CTV Memory)
E min_seIE E
: : H (To Adder_2)
--E E E min_loc_1
— H H —— CTV0_1
-2 l.p]
> i —> CTV 1_1
PROF mln? . L recove vz
— mn LT Y1 crvai
min2_1 signs_1 —> CTV 4_1
@ B > CTV 5_1
min_1
CcTV
_compressed_1

VTC 0_0=7T1% compare

vic 1 o=-t»{ &swap

VTC 20— compare

VTC 3_0 »| & swap

VTc4.0 [£ A — /
VTC5_0 » & swap

VTC 0_1 == compare

vTc 1 1=—t» &swap

viCc2 1 > compare

VTC 3 1 » & swap

vTC 4 1 »| compare [~"TTTTTTTeeTmeeee ‘
VTC 5_1 »| & swap

sign logic

y

(To CTV Memory)

82 : ----|

b1>a2? S
at > T index

al>bv2? | iiice-- becbooooeen >
RNIAVAN STVYY

5 data

al>b1 [~ detection

b1 »| & swap? ;
\ > m2

\ » m1

Figure 5.5: The design of an PROF-based comparator .

previous work [78], as shown in Fig. 5.3.2. The PROF can output the minimum
and second minimum magnitudes of two pairs of inputs. For each pair, two elements
are compared and the one with larger value is placed on the top. Thus, the compare
€ swap blocks are added before the PROF blocks to sort the magnitudes of each
pair of inputs. To assist recording the positions of the minimum values, the compare
& swap block outputs a bit value 0 if two inputs are swapped. Otherwise, it outputs
1 as shown in the dotted line. Similarly, the PROF block also indicates the location
of the minimum magnitude by setting an output 0 if the minimum value belongs to
the upper pair and 1 otherwise.

In order to achieve a fully functional LDPC decoder for CMMB standard, the
proposed architecture must support both code rates of 1/2 and 3/4. Instead of intro-
ducing a large switch network as in other multi-rate LDPC decoder which increases
the complexity and area, here we innovatively extend the rate-1/2 CNU design and
make it compatible with rate-3/4 by adding a few extra multiplexers together with
minor modification of several functional units. With minimum overhead, we can

achieve a reconfigurable architecture for dual-rate decoding.

69

For the rate-3/4 implementation, the CNU has to deal with the row weight of 12,
twice that of the rate-1/2 codes. The idea is to combine two rate-1/2 CNUs, namely
CNUO and CNU1, into a single rate-3/4 CNU design as shown in Fig. 5.4. Here we
briefly elaborate the process of constructing the dual-rate CNU. For rate-3/4 codes,
a 12-number comparator is required. Therefore, a row is divided into two sets, each
of which has a weight of 6. Then, two CNUs each with a 6-number comparator are
assigned to process two sets of CTV messages in parallel. As expected, each set
produces the minimum and the second minimum magnitudes. Now we introduce
an additional PROF block to compare these two sets of minimum magnitudes that
belong to the same row (denoted as signal min and min2). Signal min_ sel is set to 0
if the minimum value from CNUQO is selected and set to 1 if the minimum value from
CNU1 is selected. The locations of these two sets of minimum values are denoted
by signals loc_ 0 and loc_ 1, respectively.

An additional multiplexer is introduced to assign the index location of the min-
imum value. If min_ sel is set to 0, which indicates the minimum value of the row
belongs to CNUO, the 3-bit location signal loc_0 is passed to the upper recovery
block through signal min_loc 0. The location signal of the lower recovery block is
assigned with idle value 111, which indicates that the minimum magnitude is not
contained in CNU1. Similarly, the location index is passed to the lower recovery
block if CNU1 contains the minimum magnitude of the row.

As we can see from Fig. 5.4, the overall operations of the reconfigurable CNU
remain the same. The introduced overhead is minimum and does not affect the
decoder throughput or frequency of the circuits. Therefore, this is a very efficient

approach to design a reconfigurable dual-rate decoder.

70

CTv
Memory

Submatrix

APP Memory

Figure 5.6: Element correspondence relations between CTV memory and APP mem-
ory.

5.3.3 Memory Access for Partially Parallel Layered Decoding

To increase the decoding throughput, multiple rows can be processed in parallel
which is usually referred as partially parallel layered decoding. For parallelism
factor p, it requires access of the CTV messages for p consecutive rows in one clock
cycle. Therefore, we group p rows of CTV messages into a single entry in the
CTV memory. Similarly, p columns of APP messages can also be grouped into a
single entry in the APP memory. However, the alignment of row and column-based
memory partitions may not match exactly, depending on the permutation value of
the sub-matrix. As shows in Fig. 5.6, the p CTV messages from an entry of the
CTV memory correspond to p APP messages that are stored in 2 adjacent locations
in the APP memory. Therefore, a shift register can be used for storing and selection
of the appropriate APP messages read from the memory.

The parallelism factor p is usually chosen as a number that divides [, where [is
the size of the sub-matrix (I = 256 for CMMB codes). Practically, two APP memory
locations can be read in 2 consecutive clock cycles and the data are stored in a shift
register with the size of 2p. The permutation value s;; of the sub-matrix determines

which p messages are to be selected. It can be proved that the corresponded p

71

messages are located between (s%p+ 1) and (p — 1+ s;;%p) in the shift register,

where the shift control signal assigned by (s;;%p) has the bit width of [logs (p)].

5.3.4 Split-Memory Architecture for Weight-2 Sub-matrices

A major challenge of decoder design in CMMB standard is to handle the weight-2
sub-matrices in the H base matrix highlighted in Fig. 5.1. Each weight-2 sub-
matrix is composed of 2 superimposed cyclic-shifted identity matrices, as opposed
to 1 shifted identity matrix for weight-1 sub-matrix. Considering layered decoding,
in [55], a simplified layered decoding algorithm is proposed to deal with such su-
perposed sub-matrices without APP message passing inside each sub-matrix. To
fulfill a complete layered decoding algorithm with weight-2 sub-matrices, the CNU
needs to read two APP messages from two different memory locations at the same
time. Similarly, two updated APP messages must be written back to memory in the
same clock cycle. Therefore, a dual-read, dual-write memory is needed to support
the operations. However, dual-port memories are not desirable for implementation
because of increased area and power consumption.

Hereby, we propose a novel split-memory architecture that consists of two single-
port memories to handle the weight-2 sub-matrix. Fig. 5.7 shows the memory
structure. A weight-2 sub-matrix is decomposed into two weight-1 sub-matrices
so and sp, and each uses a single-port memory to store the APP messages. One
memory stores APP messages corresponding to permutation value sy and another
to permutation value s;. Without loss of generality, we suppose sqg < s;. Each
row ¢ corresponds to two columns jo and j;. Two APP messages from column j
and j; are sent to the CNU through the read network, while the updated APP
messages Aj, and A;, are interchanged before being stored in the other memory,

as shown in Fig. 5.7(a). In this case, it can be guaranteed that the CNU receives

72

So S; So Jo 8 So St Ji

(b)

Figure 5.7: Split-memory design for handling the weight-2 sub-matrices.

73

the most updated APP messages within the same iteration. More specifically, the
processing of columns [s; [— 1] and [0, so — 1] for sub-matrix s, incorporates the
newest APP messages that have just been updated as in the sub-matrix s;. Similarly,
the processing of columns [sq, s; — 1] for sub-matrix s; involves the newest APP
messages updated as in the sub-matrix sg. Upon completion of the processing
of the weight-2 sub-matrix, the newest APP messages corresponding to columns
(1,0l —1] U [0, so — 1] are stored in memory MO and the newest APP messages
corresponding to columns [sg, s; — 1] are stored in memory M1. When processing
many other regular weight-1 sub-matrices, a multiplexer is used to read the correct
APP messages for the columns involved with the weight-2 sub-matrices. As in
Fig. 5.7(b), the APP messages from memory MO0 is selected if the column index
J € [s1,l—1]U 0, sp — 1]. Otherwise, APP messages from M1 is selected if j €
[s0, 51 — 1].

The key advantage of the proposed split-memory architecture is that it makes
the processing of weight-2 sub-matrices the same as that of regular weight-1 sub-
matrices. It does not introduce additional delays to slow down the decoding through-
put. Moreover, there is no performance lost for layered decoding using the proposed

split-memory architecture.

5.3.5 Number of Pipeline Stages

For the overall decoder architecture shown in Fig. 5.3, there is a long data path
beginning from the APP memory, through read network, CNU, two adders, write
network, and returning to the APP memory. In order to improve the overall clock
frequency, this path is split into several pipeline stages. After reading the APP
message from memory, it should allow multiple clock cycles to complete the CNU

processing, update the APP messages for the current layer and store them back to

74

the memory. In fact, it is not necessary to immediately write back the updated
APP messages unless the same columns are used again during the processing of
following layers. However, the number of the pipeline stages can not be arbitrarily
determined because of the constraint brought by the weight-2 sub-matrices during
layered decoding.

The weight-2 sub-matrices are composed of two overlapped weight-1 sub-matrices
with the permutation values of sy and s;. Without loss of generality, we suppose
that s; > sg. At row i, it corresponds to two columns and the difference of two

column indices is calculated as

s1—380, Fo i€[0,l—s1—1U[l—s9—1,1—1]

l—(Sl—SQ) iE[Z—Sl,Z—SO—Q]

The minimal value of A; is denoted as A,,;,. For each weight-2 sub-matrix, two
columns are processed currently. As described in the split-memory architecture in
Section 4.2, the columns that are processed by sub-matrix sq first must be stored
back to the APP memory before sub-matrix s; starts to process the same column
again, and vice verse for the columns processed by s;first. Considering the partially
parallel architecture that processes p rows each time, the property of the weight-2
sub-matrix requires APP message to be updated and stored back within [A,;,/p]
clock cycles. In CMMB LDPC codes, there are four weight-2 sub-matrices, including
1 in the rate-1/2 codes and 3 in the rate-3/4 codes as shown in Fig. 5.1. The
permutation values of the four sub-matrices are (0, 146), (0, 208), (0, 145), and (0,
138), respectively. Thus A\, is 48, which corresponds to the sub-matrix at row 0
column 7 in the H base matrix of the rate-3/4 codes. If we choose the parallelism
factor as 8, then the number of pipeline stages is 6. The decoder implementation

with 6-stage pipeline shows that it can reduce the critical path delay and results in

75

high clock frequency.

5.4 Area-Efficient Design Techniques

5.4.1 Memory Reduction

Memory usually dominates the overall chip area and power consumption in an LDPC
decoder [51] because iterative messages at each check nodes and variable nodes must
be stored for the processing in subsequent iterations. Min-sum algorithm simplifies
the storage requirement at the check node. As mentioned earlier, the CTV messages
for a row are saved in a compressed form that includes the minimum magnitude, the
second minimum magnitude, the relative location index of the minimum magnitude
and the signs of the CTV messages in this row. As an example, the row weight of
rate-1/2 codes is 6 and each CTV message is quantized into 5 bits. For m rows,
the size of the CTV memories can be reduced from 30m bits to 17m bits, which is
about 43% memory reduction.

In addition, the proposed layered decoding algorithm only requires the storage
of APP messages instead of the actual VTC messages. It reduces the memory size
since each column only needs to store one APP message. For example, the LDPC
codes in CMMB has a column weight of 3, which indicates that the required memory

to store variable node information is reduced by 66.7%.

5.4.2 Read/Write Networks

As the key part of the decoder, read and write networks control the messages passing
between APP memory and CNU. In general, a structural (m,n) code such as the

QC-LDPC code in CMMB can reduce a large m x n read and write networks to a

76

e
o
ASR
e
o

A, > Port 0 Port 0 ay
2 > > > > Ay
A . Mux > »| Demux - A
Ay > > Ay
A > > A
ﬁfi > > ﬁs
7 > > 7
> Port 1 Port 1 >
ﬁz | Mux > 2 Demux > ﬁz
Ay > > Ay
A =/I/ > Ap
%30 > > ﬁ\\so
31 > - {131
- Port 5 Port 5 -
ﬁ” =] Mux — Demux > 232
33 L L 33
Agy > > Ay
Ass > > Az

(a) (b)

Figure 5.8: For rate-1/2 codes (a) Architecture of read network; (b) Architecture of
write network.

Table 5.1: Connections of input and output ports in the read network for the rate-1/2
codes

‘ Input Ports ‘ Output Ports ‘
Ao, A1, Ao, Az, Ay, As Port 0
Ag, A7, Ag, Ag, Ao, Aqy Port 1
A1g, M3, Ay, Ais, Aig, Air Port 2

Mg, Avg, Aog, Aoy, Ao, Aoz, Aoy Port 3
Nog, Aoy, Nos, Agg, Aoz, Aag, Ao Port 4
A3, Az, Ao, Ags, Asa, Ass Port 5

7

Table 5.2: Connections of input and output ports in the read network for the rate-3/4
codes

| Input Ports | Output Ports |
Ao, A1, Ay Port 0
Ag, Ay, As Port 1
Ag, A7, Ag, Ag Port 2
Ag, Ag, Nig, Ay, Ao Port 3
Ao, Avz, Aigy Ags Port 4
Az, Ais, Aig, Ai7, Moo Port 5
Ais, Mg, Ago Port 6
Not, Ao, Nos, Aoy Port 7
Aoy, Nos, Ao Port 8
Aoy, Nog, Nog, Agp Port 9
Asg, Asg, Az, Asp, Asg Port 10
Aso, Asz, Agy, Ass Port 11

much smaller my, x n, switching network, which is 18 x 36 for rate-1/2 CMMB codes.
The size of the network can be further reduced by exploiting the structure of the
QC codes. As seen from Fig. 5.1, the row weight of rate-1/2 code is limited to 6,
which simplifies the number of cyclic shift patterns in a horizontal block. Therefore,
the network can be further reduced to the size of 36 x 6. Moreover, the output
ports of the read network do not need to connect all 36 input ports. From Fig.
5.1, we can draw that the first output port of the read network only needs to be
connected with the APP memories Ag, A1, As, A3, Ay and A5, as the first 6 columns
in the base matrix. The connections between the input and output ports of the
read network for the rate-1/2 codes are listed in Table 5.4.2. Therefore, only four
6 x 1 multiplexers and two 7 x 1 multiplexers are required to implement the read
network. Similarly, four 1 x 6 de-multiplexers and two 1 x 7 de-multiplexers are used
to implement the write network. The architectures of the read network and write
network for rate-1/2 codes are shown in Fig. 5.8. Applying the same simplification

technique, the connections of the input and the output ports of the read network

78

for the rate-3/4 codes are listed in Table 5.4.2.

5.5 Implementation results

To evaluate the performance of the proposed architectures, we implemented the dual-
rate 9216-bit LDPC decoder in 90nm 1.0V CMOS technology with 8-layer metals.
Synthesis results show that the decoder can operate at a maximal frequency of 431
MHz. The parallelism factor is 8 and the number of pipeline stages is 6. Because
there are 18 horizontal blocks in the H matrix and each block can be expanded to a
256 x 256 sub-matrix, the number of clock cycles per iteration is 18 x 256 /845 = 58]1.
The decoder is capable to process the two rates specified in CMMB standard with
a maximum decoding throughput of 456 Mbps at 15 iterations. If calculated by the
information bits, the effective throughput is 228 Mbps for the rate-1/2 code and 342
Mbps for the rate-3/4 code.

The decoder chip consumes a core area of 2.1mm x 2.1mm and power con-
sumption of 115mW. SRAMs are generated by Synopsys DesignWare tool and thus
flattened during synthesis and chip layout. In practice, we can operate the decoder
at a reduced clock frequency while significantly lowering the supply voltage, which
takes advantage of high throughput of current design. Thus the resultant design
should be more power efficient.

Table 5.5 shows the decoder implementation results compared with other LDPC
decoders with long code length, such as LDPC codes in DVB-S2 standard. In
the proposed decoder, over 75% of the core area is consumed by SRAMs, which are
synthesized memory blocks. While in [72, 71|, the memories are customized memory
modules which are area-efficient and low-power. But still, the proposed decoder is

able to achieve higher decoding throughput with comparable chip area.

79

08

Table 5.3: Overall comparison between proj

posed decoder and other existing irregular decoders

F. Kienle [38] | J. Dielessen [18] | P. Urard [72] | P. Urard [71] Proposed Decoder

Code Length 64800 64800 16200/64800 16200/64800 9216
Frequency 270MHz - 300MHz 174MHz 431MHz

Iterations 30 30 programmable | programmable 15
Throughput 255Mbps 90Mbps 135Mbps 105Mbps 228Mbps or 342Mbps
Technology 130nm 90nm 90nm 65nm 90nm

Memory - - 2.832M bits 3.18M bits 170K bits

Area 22.7mm? 4.1mm? 15.8mm? 6.07mm? 4.4mm?

5.6 Summary

In this paper, we present a low-complexity QC-LDPC decoder implementation to
support dual-rate LDPC codes specified by the CMMB standard. Various opti-
mizations are incorporated in the design to reduce complexity and latency of com-
putational units, to minimize memory usage, and to simplify the switching network.
Min-Sum based layered decoding is employed to achieve effective high decoding
throughput with low computation complexity. A split-memory technique is pro-
posed to efficiently handle exceptional weight-2 sub-matrices. Reconfiguration for

supporting dual-rate LDPC codes is enabled with minimal hardware overhead.

81

Chapter 6

Design of Belief-Propagation Based

Detectors for Sparse ISI Channels

6.1 Introduction

Sparse channels are most often found in underwater acoustic communications (UWA)
and ultra-wideband communications (UWB) both of which have attracted lots of
interests in recent years. For instance, the underwater acoustic communication sys-
tems have large delay spreading and multipath propagation. The channel is usually
modeled with large delay spread and high sparsity. It is a challenge to design a
low-complexity detector with acceptable error performance for sparse channel. Tra-
ditional approaches such as Viterbi algorithm is optimal but the complexity is too
high for long channel length. In recent years, a group of researchers in signal pro-
cessing and communications proposed to use the BP algorithm for symbol detection
over a known ISI channel [41, 62]. The computational complexity of the BP-based
detection is solely determined by the number of the nonzero interferers. On the

contrary, the complexities of the optimal maximum a posterior (MAP) algorithms

82

or maximum-likelihood (ML) algorithms increase exponentially as of the channel
length. Therefore, BP-based channel detector is considered in the sparse ISI channel
with long delay spreads and only a few nonzero interferers, such as the underwater
acoustic channels [62].

The BP algorithm was popularly used to represent the iterative decoding of
LDPC codes [24] on a factor graph (also called Tanner graph). While applying the
BP algorithm to detect symbols over a known ISI channel, the input and output
symbols of the sparse channel are described as the variable nodes and check nodes
on the factor graph, respectively.

Architecture of the BP-based detector can be referred to the architecture of an
LDPC decoder [85, 83]. The main functional blocks include memories for storing
the iterative messages, node processing units (including check node units (CNUs)
and variable node units (VNUs)), connection networks and other control blocks.
However, the LDPC codes are usually designed to have some special structure to
facilitate parallel node processing and reduce the complexity of controlling and mes-
sage passing, such as QC LDPC codes [83]. Although we can model the sparse
channel using similar factor graph structure, the major challenge of a BP-based
detector design lies in that the channel structure is lack of regularity due to the
random locations of the interferers in a time-varying ISI channel.

In this chapter, we provide a feasible and efficient solution for such type of
random ISI channels. A reconfigurable architecture of the BP-based detector is
design, which can change the connections in the factor graph for time-varying ISI
channels. The channel state information (CSI) including the connections between
CNUs and VNUs are stored in registers which can be updated if the CSI changes.
Layered decoding algorithm is also incorporated to accelerate the iterative latency.

All of the tasks are managed by the control unit implemented as a finite state

83

machine (FSM). The proposed detector is implemented using ASIC design in TSMC
90 nm CMOS process and also prototyped on an FPGA.

The rest of this chapter is organized as follows. In section 6.2, the BP algorithm
and layered decoding algorithm for the ISI channels is introduced. Section 6.3
presents the the simulation results. The detector architecture is presented in Section
7?7 and the implementation results is presented in 5. Finally, Section 6 draws the

conclusion.

6.2 Channel Model and Decoding Algorithms

6.2.1 Channel Model and Factor Graph Representation

In a wireless communication system through a discrete-time ISI channel with noise,
the information bits d is first encoded by the forward error correction (FEC) encoder
to add redundant information to the stream of information bits in a way that allows
errors which are introduced by the noise in the channel to be corrected. The coded
bits ¢ are then enter the modulator to be converted into signals appropriate for
transmission over the channel. For simplicity, the binary phase-shift keying is used
in this paper. The modulated symbols, i.e., the input of the channel z, are corrupted

by interference and noise in the channel, which can be written as

L—1
Yn = Zflxnfl + wn (61)
=0

where L is the channel length and F = {fy, f1,----- fr—1} denotes the equivalent
impulse response of the ISI channel. Here we assume F' is known to the detector
already. The number of nonzero elements in F' is actually the number of the nonzero

interferers, denoted by D.

84

B : Check Nodes
@ : Variable Nodes

Figure 6.1: Factor graph of an IST channel.

The factor graph representation of an ISI channel is shown in Fig. 6.1 with L =4
and F' = {1, 0, 1, 0.2}. The input and the output of the channel are denoted as
variable nodes and check nodes, respectively. The connections between the check
nodes and variable nodes represent the dependencies of the output on the channel

input symbols. The number on the edge denotes the amplitude of each tap in F'.

6.2.2 Belief-Propagation Algorithm

Before presenting the BP algorithm [62], we first give some definitions as follows:
Let 7,—n—;[k] be the CTV message from check node n to variable node n — j during
the k-th iteration. Let g,,_.,;[k| be the VTC message from variable node n to check

node n + 7.

1. Initialization:
Under the assumption of equal priori probability, compute the channel log-

likelihood ratio (LLR) p,, (intrinsic information) of the variable node n, by:

P(yn|xn:+1)
P(yn|l‘n:_1)

pn = log (6.2)

For uncoded systems, p, = 0. The CTV message 7,_.,,—; is initially set to zero

and the APP messages A, is initially set to be p,.

85

2. Calculating the VTC messages:
At the k-th iteration, for variable node n, calculate VTC message ¢,,—n+; [K]
by
Gnonj (k] = An [k = 1] = rngjon [k — 1] (6.3)

3. Calculating the CTV messages:
Calculate the CTV message 7,.,—; by (6.4). Here b,, = (d,, + 1)/2.

2

L
—|Yn — lZflxn—l L
PR— :0 . .
I B D D s
1=0,i#j
I 2
—\Yn — Zflxn—l L
— max l:g + Z bni * Qui—n [K] |(6.4)
Vaiz,_j=—1 20 =0

4. Renew the APP messages:

Then the APP (a-posterior probability) messages are renewed as follows

Ay [k] = Qn—n+j [k:] + Tntion [k:] (6'5)

5. Deciding hard bits:
If the preset maximum number of iterations is reached, decide the n-th bit of

the decoded codeword z,, = +1 if A,, > 0 and z,, = —1 otherwise.

86

BER performance of LDA-based BP algorithm

BER

10 [= = = Original BP @ 6 iterations ~ |:iiiiiiiiiiii O
—6— Original BP @ 3 iterations
10° LDA-based BP @ 3 iterations ‘
0 2 4 6 8 10 12
SNR (dB)

Figure 6.2: BER comparison between original BP algorithm and LDA-based BP
algorithm.

6.2.3 Layered Decoding Algorithm

In order to alleviate message dependency and reduce decoding latency, we borrow
the layered decoding algorithm from LDPC decoding to use it here in the BP-
based detector design. Layered decoding is performed in a way that each check
node is treated as a layer and within an iteration, renewed CTV messages from
current horizontal layer will be transmitted vertically to other unprocessed layers
that belong to the same variable nodes as the newly updated messages. In this
way, layered decoding is able to reduce the required number of iterations by half
for a given SNR, as shown in Fig. 6.2. In this figure, the sparse ISI channel is
characterized by L = 6 and F = {0.408, 0, 0, 0, 0.816, 0.408}.

6.3 Simulation Results

In this section, we evaluate the performance of the proposed algorithm by Matlab

simulation in term of bit error rate (BER) versus signal-to-nose ratio (SNR) per bit

87

BER performances for different quantization schemes of received data
10

I
+

7 7.5 8 8.5 9 9.5 10
SNR per bit

Figure 6.3: BER performance for various quantization schemes of received data.

Ey/Ny. The finite word length effect on the detector performance is also analyzed
to minimize the required word length of every kind of message. In this paper, the
channel model is characterized as a 64-tap channel (L = 64) with typically 4 nonzero
interferers (D = 4). The data are modulated by BPSK and transferred over AWGN
channel.

Let us first examine the quantization of the received data y, in (6.4). A short
word length would result in poor BER performance. Hereby through simulation we
try to find an optimal quantization scheme with the shortest word length as well as
no significant BER performance loss.

The quantization scheme can be express as 7 : f, in which the received data are
quantized to ¢ integer bits and f fractional bits. Various quantization schemes for
the received data are investigated from 1 : 1 to 4 : 3. Error performances for some

typical quantization schemes, such as 1 : 1, 1:2,2:1,2:2, 3:2, 3:3, and

88

BER performances for different quantization schemes of extrinsic messages

BER

—4 43 Il Il Il Il L
7 7.5 8 8.5 9 9.5 10
SNR per bit

10

Figure 6.4: BER performance for various quantization schemes of extrinsic messages.

4 : 3, are depicted in Fig. 6.3. It is observed that the difference between 3 : 2 and
3 : 3 is negligible within a wide range of BER, while the difference 3 : 2 and 2 : 2 is
significant. Thus it turns out that using the 3 : 2 scheme for the received data seems
to be the optimal tradeoff between hardware complexity and decoding performance.

Similarly, the quantization for the extrinsic messages are also analyzed. Error
performances for some typical quantization schemes, such as 1:2,2:1,2:2,3:1,
3:2,3:3,4:2,and 4 : 3 for the CTV and VTC messages, are depicted in Fig. 6.4.
Also, as the APP message is the sum of several CTV messages, the quantization
scheme for an APP message is (i +2) : f if the corresponding CTV quantization
scheme is denoted as i : f. It is observed that the difference between 4 : 2 and
4 : 3 is negligible within a wide range of BER, while the difference 4 : 2 and 3: 2 is
significant. Since scheme 4 : 2 and 3 : 3 have the same length, 4 : 2 is preferred due

to better BER performance. Thus it turns out that using the 4 : 2 scheme for the

89

extrinsic messages (6 : 2 for the APP messages) seems to be the optimal tradeoff

between hardware complexity and decoding performance.

6.4 Detector Architecture Design

6.4.1 Overall Architecture

In this section, we propose an effective architecture for the BP-based detector with
layered decoding. Overall architecture is shown in Fig. 6.5. In this section, the
channel model is characterized as a 64-tap channel (L = 64) with typically 6 nonzero
interferers (D = 4). The length of each frame of data is 2048 bits. The detector
mainly consists of two memories which store the extrinsic messages, a cache which
is used to store extrinsic messages for check node currently being processed, a CNU
responsible for the check node update shown in (6.4) and a control unit which
switches from one state to another. The LDA is implemented by processing each
check node (layer) one by one and the processing of each check node can be divided
into several states. The proposed architecture is also reconfigurable in order to
switch flexible connections on the factor graph in the time-varying ISI channels.

Below are the detailed descriptions of each state and how to control them.

1. The APP messages are initialized by channel LLRs and stored in APP Memory
with the size of n X mg,,. n is the length of a frame of data steam and 1y,
denotes the length of the quantized APP messages. Here n = 2048 = 2 and
Mapp = 6 + 2 = 8 according to the word length analysis presented in Section

3.

2. An APP message is read from the APP Memory and written to the Cache. A

PC' (program counter) is applied to indicate the index of currently processed

90

from
h

/ CTVWiite
estimator | write CSl Read | | o |Parallel Serial Addr
data raq data input output
9 Parallel-to-serial Y Read
shift registers ChannelRead Write data
1 :i_i_) APPRead ; i ™ data
“ LSBs CacheRead Mec;\;ry
PCAccu LSBs
- CTV CTV
APPWrite! AF’F\’(W/'ite ; : ™ inputs
pe : ReadRenew\:/ EacheiR outputs
» L -
Iy, | uj{Addr o || Addr "1°S! cNu
64— % Yn »| Received \pp
hannel H ignal
cLir;:e Read outputs
d .. Read o . data| | i e APD
Write > Write gl M inputs
u data u LY
| x data p| x data X
gz % Cache
éChannelRead APP APPRead A CacheRead DecisionZ Demux
i Memory| ¢+
output
» Decision —»

Figure 6.5: Overall detector architecture.

91

layer (ICL), which is actually the address of the APP memory and the CTV
memory. The size of the Cache is L X m,y, and L = 64 = 25 is the channel
length (L < n). When the detector starts to process layer j + 1 after layer j,
only one new APP message (A;;1) is needed and others are either replaced by

new APP messages from CNU or remain unchanged.

. APP messages corresponding to current layer are read from Cache. The read
addresses are from the CSI reg which stores CSI including the relative inter-
ferer locations (RIL) and interferer coefficients. CSI is obtained from the chan-
nel estimator and is flexible depending on the time-varying channel. Mean-
while, CTV messages are also fetched and the CNU complete the task defined

in (6.3), (6.4) and (6.5).

. Renewed CTYV messages are stored back into CTV Memory and renewed APP
messages are stored back to Cache. Signal APPRead is used to switch between
writing a new APP message from the APP Memory or writing renewed APP

messages from the CNU.

. When the detector starts to process layer j + 1, variable nodes in the range
[j — L+ 2, j + 1] are all potential interferers. Hereby, variable node j — L + 1
will never be used again within this iteration and corresponding APP message
A;_p41 must be stored back to the APP memory and prepared for the use
in the next iteration. Signal StoreUpdate decides where the output of the
Cache should go: the CNU or the APP memory? Also, at the input the APP
memory, signal ChannelRead controls what to be saved in the APP memory:

channel LLRs or the APP messages.

. Particularly, if the preset number of iterations is reached, the APP messages

do not need to store back to the APP memory and are controlled by signal

92

CTV

inputs APP
outputs
-
g
S=@ >
P
(1)
VS-I-J
Sel-and-Sum |
i > i
) o4 Sel-and-Sum [
inputs Ll : bl
'y

Sel-and-Sum |-

Rt ¢ -
-1
-1
s > Max
-1
-
-1
-
Reschedule — -
16, Network | K PSR >
Y nnd CTV
'. outputs
g ™ Max
-
]
-
“

Figure 6.6: Architecture of the CNU.

Decision and delivered directly to the Decision unit to decide the hard bits.

6.4.2 Architecture of CNU

The CNU architecture is illustrated in Fig. 6.6. Its functionality covers equation

(6.3), (6.4) and (6.5). As here the number of nonzero interferers D is 4, totally

2

L
—|Yn— E f1xn_i L
2P = 16 values of the term l§+ + > bniGn_inl|k] | should be
i=0,i#]

calculated, as indicated in (6.4). Among these 16 values, 8 will be used to calculate
the minuend term (first maximum function) in (6.4) and another 8 values are for the
subtrahend term (second maximum function). Parallel architecture is constructed

to calculated the 16 values concurrently and a Reschedule Network is designed to

93

644

i 564
64 =

Cache

644

APP
Memory

Figure 6.7: Direct-mapped Cache Architecture

partition the 16 values into two groups, one for the minuend and another for the

subtrahend.

6.4.3 Cache-Like Architecture

The LLRs from the channel and the APP messages from the belief propagation
will be stored in the APP Memory during the iterative process. Layered decod-
ing algorithm is implemented by processing the check nodes one by one and each
check node is considered as one layer. However, at each check node (layer), only
D variable nodes out of previous L nodes are connected with current check node.
In other words, D VTC messages from previous L variable nodes are selected and
sent to CNU for iterative processing. Therefore, as shown in Fig. 6.5, a cache-like
architecture is developed in which a Cache is used to read L. APP messages from
the main memory (the APP Memory) and then provide D useful APP messages for
the CNU.

94

Fig. 6.7 shows the direct mapping from the APP Memory to the Cache in which
each APP message is mapped to exact one location in the Cache. Since n = 2048
and L = 64, in this paper a 32 : 1 direct-mapped cache is used. L consecutive APP
messages are copied from the APP Memory to the Cache, but the start-point of
these L consecutive messages may not be stored in the first location of the Cache.
Actually the L messages are stored in a circulant shifted format with the shift value
determined by the least significant bits (LSBs) of the ICL, as shown in Fig 6.5.
Below are the detailed conclusions on how to set the addresses for the APP Memory

and the Cache:

1. When storing the updated APP message back from the Cache to the APP
Memory, the address for the Cache is the LSBs of the ICL and the address for

the APP memory equals to IC'L — 64.

2. When reading new APP message from the APP Memory to the Cache, the
address for the Cache is the LSBs of the ICL and the address for the APP

memory equals to ICL.

3. When reading D = 4 APP messages from the Cache, the address for the Cache
is the sum of the RIL and the shift value of the 64 consecutive messages which

equals to the LSBs of the ICL plus 1, as depicted in Fig. 6.5.

6.5 Implementation Results

To evaluate the performance of our proposed schemes, a BP-based detector with the
frame size of 2048 bits is synthesized and implemented on both FPGA and ASIC
platforms. Implemented on Xilinx XC2VP30 device, the maximum frequency is 56.2

MHz which corresponding to the throughput of 1.44 Mbps with 3 iterations.

95

The same architecture is implemented and synthesized using TSMC 90nm ASIC
technology. The synthesized detector can achieve a maximum throughput of 3.48
Mbps for 3 decoding iterations. The core area of the detector is 1.8mm? and the

power consumption is 54 mW at the maximum frequency of 136 MHz.

6.6 Summary

In this chapter, a low-complexity detector design was presented for sparse ISI chan-
nels using the belief-propagation algorithm. The layered decoding algorithm is also
employed in the design. Simulation results show the 3 : 2 quantization scheme
for the received data and 4 : 2 scheme for the extrinsic messages cause negligi-
ble BER performance loss but would reduce the hardware complexity significantly.
The proposed detector for sparse ISI channels is implemented on both FPGA and
ASIC platforms, which demonstrate the real-time performance of 3.48 Mbps and

1.44 Mbps throughput, respectively.

96

Chapter 7

Conclusions

This dissertation investigated several VLSI design issues for iterative belief propaga-
tion (BP) algorithm, including high-performance LDPC decoders and IST detectors
with the goal to reduce chip area and/or achieve high-throughput and/or rate flex-
ible implementations.

A parallel layered decoding LDPC decoder architecture was proposed to achieve
ultra high throughput. Sequential operations on layers in traditional layered de-
coding architecture was replaced by concurrent message calculations and transmis-
sions among all layers according to certain rules that won’t change the nature of
layered decoding algorithm. Besides concurrent processing, this architecture also
enables pipelined critical path and avoids the complicated interconnection network
which is usually considered as the barrier for high-throughput LDPC decoders. All
above methods contribute to a high-throughput LDPC decoder and push the input
throughput to more than 1 Gbps.

Then, we extended our proposed parallel layered decoding architecture to punc-
tured LDPC codes and developed a decoder architecture with both high throughput

and rate flexibility. We studied several puncturing schemes and picked up one that

97

has the best error performance and least BER degradation compared with ded-
icated codes. A corresponding implementation of the selected puncturing scheme
was designed and added to the parallel layered decoding architecture. The proposed
LDPC decoder can achieve an input throughput of 975 Mbps and supports any rate
between 1/2 and 1.

Furthermore, we proposed a low-complexity, area-efficient LDPC decoder archi-
tecture that is compatible with China Multimedia Mobile Broadcasting (CMMB)
standard. Using resource-sharing, the check node unit in this architecture can switch
between the two required code rates in CMMB. Split-memory architecture enables
effective implementation of layered decoding algorithm on weigh-2 superimposed
matrices.

Finally, we developed a detector architecture for sparse ISI channels which is also
based on sparse matrix and BP algorithm, like the LDPC decoder. Bipartite graph,
min-sum algorithm and layered decoding algorithm, which are popular in LPDC
decoding, are also applied here. Unlike the LDPC codes, for detecting in sparse
ISI channels, variable nodes are possibly connected to part, not all, of the check
nodes. Hence, a cache-based detector architecture was proposed to use a cache
to store messages from/to check nodes that interfere with current variable node.
Also, the detector architecture is reconfigurable to support any possible connections
between variable nodes and check nodes. To our best knowledge, this is the first

VLSI realization of BP-based detector based upon the available literature resources.

98

Bibliography

[1] Mobile Multimedia Broadcasting (P. R. China) Part 1: Framing Structure,

Channel Coding and Modulation for Broadcasting Channel.
[2] [Onleine]: http://eng.t-dmb.org/.
[3] [Online/: hitp://www.dibeg.orq/techp /techp.htm.
[4] [Online]: hitp://www.ieee802.0rq/16/tge.

[5] E. Aktas, “Belief Propagation with Gaussian Priors for Pilot-Assisted Commu-
nication over Fading ISI Channels,” IEEE Trans. Wireless Commun., vol. 8,

no. 4, pp. 2056-2066, Apr. 2009.

[6] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon Limit Error-
Correcting Coding and Decoding: Turbo-Codes,” in Proc. IEEE Intl. Conf.
Commun. (ICC 1993), vol. 2, May 1993, pp. 1064-1070.

[7] A. Blanksby and C. Howland, “A 690-mW 1-Gb/s 1024-b, rate-1/2 low-density
parity-check code decoder,” IEEE J. Solid-State Circuits, vol. 37, no. 3, pp.

404-412, Mar 2002.

[8] R. Bose and R.-C. D.K., “On a Class of Error Correction Binary Group Codes,”
Inform. Control, vol. 3, pp. 68-79, Mar. 1960.

99

[9]

[10]

[11]

[12]

[13]

[14]

[15]

T. Brack, M. Alles, F. Kienle, and N. Wehn, “A Synthesizable IP Core for
WiMAX 802.16E LDPC Code Decoding,” in Proc. IEEFE 17th Int. Symp. Per-

sonal, Indoor and Mobile Radio Communications, Sep. 2006, pp. 1-5.

J. Chen, A. Dholakia, E. Eleftheriou, M. Fossorier, and X.-Y. Hu, “Reduced-
Complexity Decoding of LDPC Codes,” IEEE Trans. Commun., vol. 53, no. 8,
pp. 1288-1299, Aug. 2005.

L. Chen, J. Xu, I. Djurdjevic, and S. Lin, “Near-Shannon-Limit Quasi-Cyclic
Low-Density Parity-Check Codes,” IEEE Trans. Commun., vol. 52, no. 7, pp.
1038-1042, Jul. 2004.

Y. Chen and D. Hocevar, “A FPGA and ASIC Implementation of Rate 1/2,
8088-b Irregular Low Density Parity Check Decoder,” in Proc. IEFE GLOBE-
COM 2003, vol. 1, Dec. 2003, pp. 113-117.

E. Choi, S. Suh, and J. Kim, “Rate-Compatible Puncturing for Low-Density
Parity-Check Codes with Dual-Diagonal Parity Structure,” in Proc. IEEE
Symp. Person. Indoor Mobile Radio Commun. (PIMRC), vol. 4, Sep. 2005,
pp. 2642-2646.

S. Y. Chung, G. Forney, T. Richardson, and R. Urbanke, “On the Design of
Low-Density Parity-Check Codes within 0.0045 dB of the Shannon Limit,”
IEEE Commun. Lett., vol. 5, no. 2, pp. 5860, Feb. 2001.

G. Colavolpe and G. Germi, “On the Application of Factor Graphs and the
Sum-Product Algorithm to IST Channels,” IEEE Trans. Commun., vol. 53,
no. 4, p. 746, Apr. 2005.

100

[16]

[17]

18]

[19]

[20]

21]

[22]

23]

O. Daesun and K. Parhi, “Min-Sum Decoder Architectures with Reduced Word
Length for LDPC Codes,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57,
no. 1, pp. 105 —115, Jan. 2010.

Y. Dai, N. Chen, and Z. Yan, “Memory Efficient Decoder Architectures for
Quasi-Cyclic LDPC Codes,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55,
no. 9, pp. 2898-2911, Oct. 2008.

J. Dielissen, A. Hekstra, and V. Berg, “Low Cost LDPC Decoder for DVB-S2,”

in Proc. Design, Autom. Test Fur., 2006, pp. 130-135.

I. Djurdjevic, J. Xu, K. Abdel-Ghaffar, and S. Lin, “A Class of Low-Density
Parity-Check Codes Constructed Based on Reed-Solomon Codes with Two In-
formation Symbols,” IEEE Commun. Lett., vol. 7, no. 7, pp. 317-319, Jul.

2003.
P. Elias, “Coding for Noisy Channels,” IRE Conv. Rec., vol. 4, pp. 37-47, 1955.

European Telecommunications Standards Institude (ETSI), “Digital Video
Broadcasting (DVB): Transmission System for Handheld Terminals,” EN 302
307 V1.1.1. hitp://www.dvb. org.

M. Fossorier, “Quasicyclic low-density parity-check codes from circulant permu-
tation matrices,” IEEFE Trans. Inf. Theory, vol. 50, no. 8, pp. 1788-1793, Aug.
2004.

M. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity iterative de-
coding of low-density parity-check codes based on belief propagation,” IEFEE
Trans. Commun., vol. 47, no. 5, pp. 673—680, May 1999.

101

[24]

[25]

[26]

27]

28]

[29]

[30]

[31]

R. Gallager, “Low-Density Parity-Check Codes,” IRE Tans. Inf. Theory, vol. 7,
pp. 21-28, 1962.

G. Gentile, M. Rovini, and L. Fanucci, “Low-Complexity Architectures of A
Decoder for IEEE 802.16e LDPC Codes,” in Proc. Furomicro Conf. Digital
System Design (DSD), Aug. 2007, pp. 369-375.

E. B. Guilloud and J. Danger, “A-Min Decoding Algorithm of Regular and Ir-
regular LDPC codes,” in Proc. 3rd Int. Symp. Turbo Codes and Related Topics,
Sep. 2003, pp. 451-454.

K. Gunnam, G. Choi, W. Wang, and M. Yeary, “Multi-Rate Layered Decoder
Architecture for Block LDPC Codes of the IEEE 802.11n Wireless Standard,”
in IEEE ISCAS 2007, May 2007, pp. 1645-1648.

K. Gunnam, G. Choi, M. Yeary, and M. Atiquzzaman, “VLSI architectures
for layered decoding for irregular LDPC codes of WiMax,” in Proc. IEEE Int.
Conf. Commun. (ICC), Jun. 2007, pp. 4542-4547.

J. Ha, J. Kim, D. Klinc, and S. McLaughlin, “Rate-Compatible Punctured
Low-Density Parity-Check Codes with Short Block Lengths,” IEEE Trans. Inf.
Theory, vol. 52, no. 2, pp. 728-738, Feb. 2006.

J. Ha, J. Kim, and S. McLaughlin, “Puncturing for Finite Length Low-Density
Parity-Check Codes,” in Proc. Inter. Symp. Inform. Theory (ISIT), Jun. 2004,

p. 151.

——, “Rate-Compatible Puncturing of Low-Density Parity-Check Codes,”
IEEE Trans. Inf. Theory, vol. 50, no. 11, pp. 2824-2836, Nov. 2004.

102

[32]

33]

[34]

[35]

[36]

37]

[38]

[39]

J. Ha and S. McLaughlin, “Optimal Puncturing Distributions for Rate-
Compatible Low-Density Parity-Check Codes,” in Proc. Inter. Symp. Inform.
Theory (ISIT), Jun. 2003, p. 233.

D. Hocevar, “A reduced complexity decoder architecture via layered decoding
of LDPC codes,” in Proc. IEEE Workshop on Signal Process. Syst. (SiPS), Oct.
2004, pp. 107-112.

A. Hocquenghem, “Codes corecteurs d’erreurs,” Chiffres, vol. 2, pp. 147-156,
1959.

S. J. Johnson and S. R.Weller, “Codes for Iterative Decoding from Partial Ge-
ometries,” in Proc. IEEE Intl. Symp. Inform. Theory, Jul. 2002, p. 310.

S.-H. Kang and I.-C. Park, “Loosely Coupled Memory-Based Decoding Archi-
tecture for Low Density Parity Check Codes,” IEEE Trans. Circuits Syst. I,

Reg. Papers, vol. 53, no. 5, pp. 1045-1056, May 2006.

M. Karkooti and J. Cavallaro, “Semi-Parallel Reconfigurable Architectures for
Real-Time LDPC Decoding,” in Proc. ITCC; 2004, vol. 1, Apr. 2004, pp. 579—
585.

F. Kienle, T. Brack, and N. Wehn, “A Synthesizable IP Core for DVB-S2 LDPC
Code Decoding,” in Proc. Design, Autom. Test Fur., vol. 3, Mar. 2005, pp. 100—

105.

Y. Kou, S. Lin, and M. Fossorier, “Low Density Parity Check Codes Based on
Finite Geometries: A Rediscovery and New Results,” IEEE Trans. Inf. Theory,
vol. 47, no. 7, pp. 2711-2736, Nov. 2001.

103

[40]

[41]

[42]

[43]

[44]

[45]

|46]

[47]

——, “Low Density Parity Check Codes Based on Finite Geometries: A Redis-

covery,” in Proc. IEEFE Intl. Symp. Inform. Theory, Jun. 2000, p. 200.

B. Kurkoski, P. Siegel, and J. Wolf, “Joint Message-Passing Decoding of LDPC
Codes and Partial-Response Channels,” IEEE Trans. Inf. Theory, vol. 48, no. 6,
pp- 1410-1422, Jun. 2002.

J. Li and K. Narayanan, “Rate-Compatible Low Density Parity Check Codes

for Capacity-Approaching ARQ Schemes in Packet Data Communications,” in
Proc. Int. Conf. on Comm., Internet, and Info. Tech.(CIIT), Nov. 2002.

7. Li and B. Kumar, “A Class of Good Quasi-Cyclic Low-Density Parity Check
Codes Based on Progressive Edge Growth Graph,” in Proc. 38th Asilomar Conf.
Signals, Syst. Comput., vol. 2, Nov. 2004, pp. 1990-1994.

C. Liu, C. Lin, S. Yen, C. Chen, H. Chang, C. Lee, Y. Hsu, and S. Jou, “Design
of A Multimode QC-LDPC Decoder Based on Shift-Routing Network,” IEEE
Trans. Circuits Syst. II, Exp. Briefs, vol. 56, no. 9, pp. 734 =738, Sep. 2009.

C.-H. Liu, S.-W. Yen, C.-L.. Chen, H.-C. Chang, C.-Y. Lee, Y.-S. Hsu, and
S.-J. Jou, “An LDPC Decoder Chip Based on Self-Routing Network for IEEE
802.16e Applications,” IEEFE J. Solid-State Circuits, vol. 43, no. 3, pp. 684-694,
Mar. 2008.

L. Liu and C.-J. Shi, “Sliced Message Passing: High Throughput Overlapped
Decoding of High-Rate Low-Density Parity-Check Codes,” IEEE Trans. Cir-
cuits Syst. I, Reg. Papers, vol. 55, no. 11, pp. 3697-3710, Dec. 2008.

H.-A. Loeliger, “An Introduction to Factor Graphs,” IEEFE Signal Process. Mag.,

vol. 21, no. 1, pp. 2841, Jan. 2004.

104

48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

R. Lucas, M. Fossorier, Y. Kou, and S. Lin, “Iterative Decoding of One-Step
Majority Logic Deductible Codes Based on Belief Propagation,” IEEE Trans.
Commun., vol. 48, no. 6, pp. 931-937, Jun. 2000.

D. MacKay, “Good Error-Correcting Codes Based on Very Sparse Matrices,”
IEEE Trans. Inf. Theory, vol. 45, no. 2, pp. 399-431, Mar. 1999.

D. MacKay and R. Neal, “Near Shannon Limit Performance of Low Density
Parity Check Codes,” Electron. Lett., vol. 32, no. 18, p. 1645, Aug. 1996.

M. Mansour and N. Shanbhag, “High-throughput LDPC decoders,” IEEE
Trans. Very Large Scale Integr.(VLSI) Syst., vol. 11, no. 6, pp. 976-996, Dec.
2003.

G. Masera, F. Quaglio, and F. Vacca, “Implementation of A Flexible LDPC
Decoder,” IEEE Trans. Circuits Syst. II, Fxp. Briefs, vol. 54, no. 6, pp. 542—
546, Jun. 2007.

T. Mittleholzer, “Efficient Encoding and Minimum Distance Bounds of Reed-
Solomon-Type Array Codes,” in Proc. IEEFE Intl. Symp. Inform. Theory, Jul.

2002, p. 282.

T. Mohsenin and B. Baas, “High-throughput Idpc decoders using a multiple
split-row method,” in Proc. ICASSP 2007, vol. 2, Apr. 2007, pp. IT-13-11-16.

S. Muller, M. Schreger, M. Kabutz, M. Alles, F. Kienle, and N. Wehn, “A
novel LDPC decoder for DVB-S2 IP,” in Proc. Design, Automation and Test
in Europe, (DATE’09), April 2009, pp. 1308-1313.

S. Myung, K. Yang, and J. Kim, “Quasi-Cyclic LDPC Codes for Fast Encod-
ing,” IEEE Trans. Inf. Theory, vol. 51, no. 8, pp. 2894-2901, Aug. 2005.

105

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

T. Okamura, “Designing LDPC Codes Using Cyclic Shifts,” in Proc. IEEE Intl.

Symp. Inform. Theory, Jun. 2003, p. 151.

H. Park, K. Kim, D. Kim, and K. Whang, “Structured Puncturing for
Rate-Compatible B-LDPC Codes with Dual-Diagonal Parity Structure,” IEEFE
Trans. Wireless Commun., vol. 7, no. 10, pp. 3692—-3696, Oct. 2008.

R. S. Reed and S. G., “Polynomial Codes over Certain Fields,” J. Soc. Ind.
Appl. Math., vol. 8, pp. 300-304, Jun. 1960.

T. Richardson, M. Shokrollahi, and R. Urbanke, “Design of Capacity-
Approaching Irregular Low-Density Parity-Check Codes,” IEEE Trans. Inf.
Theory, vol. 47, no. 2, pp. 619-637, Feb. 2001.

T. Richardson and R. Urbanke, “The Capacity of Low-Density Parity-Check
Codes under Message-Passing Decoding,” IEEE Trans. Inf. Theory, vol. 47,
no. 2, pp. 599-618, Feb. 2001.

S. Roy, T. Duman, and V. McDonald, “Error rate improvement in underwater
mimo communications using sparse partial response equalization,” IEFE .J.

Ocean. Eng., vol. 34, no. 2, pp. 181-201, Apr. 2009.

C. E. Shannon, “A Mathematical Theory of Communications,” Bell Syst. Tech.

J., pp. 379-423, Jul. 1948.

R. Shao, S. Lin, and M. Fossorier, “IT'wo Simple Stopping Criteria for Turbo
Decoding,” IEEFE Trans. Commun., vol. 47, no. 8, pp. 1117-1120, Aug. 1999.

E. Sharon, S. Litsyn, and J. Goldberger, “Efficient Serial Message-Passing
Schedules for LDPC Decoding,” IEEE Trans. Inf. Theory, vol. 53, no. 11, pp.
4076-4091, Nov. 2007.

106

[66]

67]

[68]

[69]

[70]

[71]

[72]

X.-Y. Shih, C.-Z. Zhan, C.-H. Lin, and A.-Y. Wu, “An 8.29 mm? 52 mW Multi-
Mode LDPC Decoder Design for Mobile WiMAX System in 0.13 um CMOS

Process,” IEEE J. Solid-State Circuits, vol. 43, no. 3, pp. 672—683, Mar. 2008.

C. Studer, N. Preyss, C. Roth, and A. Burg, “Configurable High-Throughput
Decoder Architecture for Quasi-Cyclic LDPC codes,” in Proc. 4/2th Asilomar

Conf. Signals, Syst., Comput., Oct. 2008, pp. 1137-1142.

Y. Sun and J. Cavallaro, “A Low-Power 1-Gbps Reconfigurable LDPC Decoder
Design for Multiple 4G Wireless Standards,” in Proc. 2008 IEEE Int. SOC
Conf., Sep. 2008, pp. 367-370.

R. Tanner, “A Recursive Approach to Low Complexity Codes,” IEEE Trans.
Inf. Theory, vol. 27, no. 5, pp. 533-547, Sep. 1981.

Y.-L. Ueng, C.-J. Yang, Z.-C. Wu, C.-E. Wu, and Y.-L. Wang, “VLSI Decoding
Architecture with Improved Convergence Speed and Reduced Decoding Latency
for Irregular LDPC Codes in WiMAX,” in Proc. IEEE ISCAS 2008, May 2008,
pp- 920-523.

P. Urard, L. Paumier, V. Heinrich, N. Raina, and N. Chawla, “A 360mW
105Mb/s DVB-S2 Compliant Codec based on 64800b LDPC and BCH Codes
Enabling Satellite-Transmission Portable Devices,” IEEE ISSCC Dig. Tech.
Papers, pp. 310-311, Feb. 2008.

P. Urard, E. Yeo, L. Paumier, P. Georgelin, T. Michel, V. Lebars,
E. Lantreibecq, and B. Gupta, “A 135Mb/s DVB-S2 Compliant Codec Based on
64800b LDPC and BCH Codes,” IEEE ISSCC Dig. Tech. Papers, pp. 446609,
Feb. 2005.

107

73]

[74]

[75]

[76]

[77]

78]

[79]

[80]

B. Vasic, “Combinatorial Constructions of Low-Density Parity-Check Codes for
Iterative Decoding,” in Proc. IEEFE Intl. Symp. Inform. Theory, Jul. 2002, p.
312.

A. Viterbi, “Error Bounds for Convolutional Codes and an Asymptotically Op-
timum Decoding Algorithm,” IEEE Trans. Inf. Theory, vol. 13, no. 2, pp. 260—

269, Apr. 1967.

P. O. Vontobel and R. M. Tanner, “Construction of Codes Based on Finite
Generalized Quadrangles for Iterative Decoding,” in Proc. IEEE Intl. Symp.
Inform. Theory, Jun. 2001, p. 223.

P. Wang and Y. Chen, “Low-Complexity Real-Time LDPC Encoder Design for
CMMB,” in Proc. ITHMSP 08, Aug. 2008, pp. 1209-1212.

Z. Wang and Z. Cui, “A Memory Efficient Partially Parallel Decoder Archi-
tecture for QC-LDPC Codes,” in Proc. 39th Asilomar Conf. Signals, Syst.,
Comput., Nov. 2005, pp. 729-733.

——, “Low-Complexity High-Speed Decoder Design for Quasi-Cyclic LDPC
Codes,” IEEE Trans. Very Large Scale Integr.(VLSI) Syst., vol. 15, no. 1, pp.
104-114, Jan. 2007.

Z. Wang and Q. wei Jia, “Low Complexity, High Speed Decoder Architecture
for Quasi-Cyclic LDPC Codes,” in Proc. IEEE ISCAS 2005, May 2005, pp.
5786-5789.

E. Yeo, P. Pakzad, B. Nikolic, and V. Anantharam, “VLSI architectures for
iterative decoders in magnetic recording channels,” IEEFE Trans. Magn., vol. 37,

no. 2, pp. 748-755, Mar. 2001.

108

[81]

82]

[83]

[84]

[85]

[86]

[87]

C. Zhang, Z. Wang, J. Sha, L. Li, and J. Lin, “Flexible LDPC Decoder Design
for Multigigabit-per-Second Applications,” IEEE Trans. Circuits Syst. I, Reg.

Papers, vol. 57, no. 1, pp. 116-124, Jan. 2010.

J. Zhang and M. Fossorier, “Shuffled iterative decoding,” IEFEE Trans. Com-
mun., vol. 53, no. 2, pp. 209-213, Feb. 2005.

K. Zhang and X. Huang, “High-Throughput Layered Decoder Implementation
for Quasi-Cyclic LDPC Codes,” IEEFE J. Select. Areas Commun., vol. 27, no. 6,
pp- 985-994, Aug. 2009.

L. Zhang, .. Gui, Y. Xu, and W. Zhang, “Configurable Multi-Rate Decoder
Architecture for QC-LDPC Codes Based Broadband Broadcasting System,”
IEEE Trans. Broadcast., vol. 54, no. 2, pp. 226235, Jun. 2008.

T. Zhang and K. Parhi, “VLSI implementation-oriented (3,k)-regular low-
density parity-check codes,” in Proc. IEEE Workshop on Signal Process. Syst.
(SiPS), 2001, pp. 25-36.

H. Zhong and T. Zhang, “Design of VLSI Implementation-Oriented LDPC
Codes,” in Proc. IEEE VTC 2003, vol. 1, Oct. 2003, pp. 670-673.

——, “Block-LDPC: A Practical LDPC Coding System Design Approach,”
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52, no. 4, pp. 766775, Apr.
2005.

109

