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Abstract

This thesis focuses on the convergence analysis of stochastic nonlinear systems. Specifically,

it delves into the study of their asymptotic behavior, an area of paramount importance for com-

prehending the long-term dynamics of these systems and the systems with large populations. We

concentrate on two key aspects: firstly, the examination of the turnpike property within the con-

text of stochastic control problems, and secondly, the investigation of the convergence of N -player

games towards their corresponding mean field games (MFG).

Firstly, we investigate the asymptotic behavior of the systems with long-term dynamics and

the convergence is with respect to the time horizon. In the first project, we examine the limiting

behavior of a specific class of linear quadratic stochastic optimal control problems and their cor-

responding value functions as the time horizon approaches infinity. We establish the consistency

between the cell problem in weak KAM theory and the static optimization problem from the per-

spective of the turnpike property. Moreover, we provide the connection between the cell problem

and the ergodic cost problem, and then the classical turnpike property and the turnpike property

in terms of the cost function are identified.

Different from the first project, next we examine the system complexity. More precisely, we

consider the convergence behavior of systems with large populations. MFG has become widely

accepted as an approximation for the N -player games, especially when the number of players is

large enough. A fundamental question that arises in this context concerns the convergence rate of

this approximation.

In the second project, we study the convergence rate of the N -player Linear-Quadratic-Gaussian

(LQG) games with a Markov chain as the common noise towards its asymptotic MFG. By postulat-

ing a Markovian structure via two auxiliary processes for the first and second moments of the MFG

equilibrium and applying the fixed point condition in MFG, we first provide the characterization of

the equilibrium measure in MFG with a finite-dimensional Riccati system of ODEs. Additionally,

with an explicit coupling of the optimal trajectory of the N -player game driven by N dimensional

Brownian motion and MFG counterpart driven by one-dimensional Brownian motion, we obtain

the convergence rate O(N−1/2) with respect to 2-Wasserstein distance.

The number of states of the common noise considered in the above project is finite, thus it is

natural to consider the case when the number of states of the common noise is infinity. In the

third project, we focus on exploring the convergence properties of a generic player’s trajectory
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and empirical measures in an N -player LQG Nash game, where Brownian motion serves as the

common noise. The study establishes three distinct convergence rates concerning the representative

player and empirical measure. To investigate the convergence, our methodology relies on a specific

decomposition of the equilibrium path in the N -player game and utilizes the associated MFG

framework.

The basic structure of standard MFG theory assumes symmetry in the connections of the agents

but not necessarily in their dynamics. However, asymmetric graph connections in large population

games are considered in recent studies. In the network limit, a graphon gives the communication

weights. In the last project, we consider the solvability of graphon mean field games. A new type

of mean field games PDE system associated with the graphon mean field games is proposed. We

establish the existence of solutions via the application of Schauder’s fixed point theorem and obtain

the uniqueness of solution via the Lasry-Lions monotonicity assumption on the running cost.
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Chapter 1

Introduction

1.1 Introduction and motivation

In the realm of scientific inquiry, understanding the behavior of complex systems has been a fun-

damental pursuit, one that transcends disciplinary boundaries and holds profound implications for

diverse fields such as biology, physics, economics, and engineering. Within this rich tapestry of

complexity, stochastic nonlinear systems occupy a central role, characterized by their intricate dy-

namics and inherent randomness. These systems, while challenging to decipher, provide valuable

insights into the intricate dance of order and chaos that governs our world.

The thesis at hand embarks on a journey into the heart of this complexity, focusing on the

convergence analysis of stochastic nonlinear systems. Specifically, it delves into the study of their

asymptotic behavior, an area of paramount importance for comprehending the long-term dynam-

ics of these systems and the systems with large populations. The asymptotic behavior not only

holds significance from a theoretical standpoint but also bears immense importance in practical

applications. Analyzing the asymptotic behavior of systems characterized by long-term dynamics

and large populations is often a challenging work. This thesis, more specifically, concentrates on

two key aspects: firstly, the examination of the turnpike property within the context of stochastic

control problems, and secondly, the investigation of the convergence of N -player games towards

their corresponding mean field games (MFG).

1.1.1 Turnpike properties of stochastic control problem

Firstly, we investigate the asymptotic behavior, i.e., turnpike properties, of the systems with long-

term dynamics and the convergence is with respect to the time horizon.

The exploration of the turnpike property originated in the field of economics, serving as a tool to

analyze the stationary behavior during transient periods in long-horizon control problems. Initially

proposed by von Neumann [64], the terminology was later introduced by Dorfman, Samuelson, and

Solow [22]. The turnpike property characterizes scenarios where the solution to an optimization

problem concentrates on specific static points, evenly spaced along a defined path. Subsequently,

the turnpike phenomenon has garnered significant attention in both finite and infinite-dimensional

problems within deterministic discrete-time and continuous-time systems, see the book [15] as an
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excellent survey and a list of numerous references, including [62, 8, 57, 79, 70, 24, 81, 82, 83].

Notably, we highlight the works of [70, 71], delving into continuous-time linear quadratic (LQ)

problems for ordinary differential equations (ODE), and the recent publication by Sun, Wang, and

Yong [74], which addresses stochastic LQ optimal control problems. Additionally, Sun and Yong, as

discussed in [75], have established the exponential, integral, and mean-square turnpike properties

for optimal pairs in mean-field linear stochastic differential equations. This is contingent upon the

satisfaction of the stabilizability condition for the state equation.

Chapter 2 is mainly based on the paper [49], in which we examine the limiting behavior of a

specific class of linear quadratic stochastic optimal control problems and their corresponding value

functions as the time horizon approaches infinity. This collaborative work involves Professor Sixian

Jin from California State University San Marcos and Professor Qingshuo Song from Worcester

Polytechnic Institute. Firstly, we establish the consistency between the cell problem in weak KAM

theory and the static optimization problem from the perspective of the turnpike property. Secondly,

we provide the connection between the cell problem and the ergodic cost problem, and then the

classical turnpike property and the turnpike property in terms of the cost function are identified.

1.1.2 Convergence of mean field games with common noise

Different from the first project, next we examine the system complexity. More precisely, we consider

the convergence behavior of systems with large populations.

Mean field games theory was introduced by Lasry and Lions in their seminal paper [55], and

by Huang, Caines, and Malhame ([45, 42, 43, 41]). It aims to provide a framework for studying

the asymptotic behavior of N -player differential games being invariant under the reshuffling of the

players’ indices. For a comprehensive overview of recent advancements and relevant applications of

MFG theory, it is recommended to refer to the two-volume book by Carmona and Delarue ([16, 17])

published in 2018 and the references provided therein.

Mean field games have been widely accepted as an approximation for the N -player games,

particularly when the number of players, N , is large enough. A fundamental question that arises in

this context concerns the convergence rate of this approximation. Convergence can be analyzed from

different perspectives, such as convergence in value, the trajectory followed by the representative

player, or the behavior of the mean field term. Each of these perspectives offers valuable insights

into the behavior and characteristics of the MFG approximation. Furthermore, they raise a variety

of intriguing questions within this context.

In Chapter 3, we investigate the convergence rate of the N -player game, governed by a Markov

chain common noise, towards its asymptotic MFG under the linear-quadratic-Gaussian structure.

To achieve this, firstly, we introduce a Markovian structure using two auxiliary processes for the

first and second moments of the MFG equilibrium and employ the fixed point condition in MFG.

By doing so, we characterize the equilibrium measure in MFG with a finite-dimensional Riccati

system of ODEs. Consequently, we obtain the equilibrium path, equilibrium control, and the value

function in MFG. Subsequently, we address the N -player game under the LQG structure, and we

characterize its equilibrium path, equilibrium control, and the value function through a Riccati

system of ODEs with a dimension of O(N3). Leveraging the N -invariant algebraic structure of
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this system of ODEs, we establish a dimension reduction result, facilitating a comparison between

the equilibrium path in the N -player game and the equilibrium path in the MFG. To demonstrate

the convergence between the two equilibrium paths, we embed the equilibrium path in the N -

player game to the probability space of the equilibrium path in the MFG using a distribution copy,

leading to the achievement of the convergence result and the computation of the convergence rate.

Lastly, some numerical examples are presented to demonstrate the convergence result. This chapter

is based on the paper [50], which had been accepted by the journal Nonlinear Analysis: Hybrid

Systems in December 2023. It is a joint work with Dr. Jiaxuan Ye, Ph.D. student Peiyao Lai and

Professor Qingshuo Song from Worcester Polytechnic Institute.

Note that the number of states of the common noise considered in the Chapter 3 is finite, it is

natural to consider the case when the number of states of the common noise is infinity. Thus, we

consider the convergence rate of the mean field game with Brownian motion as its common noise

in the next chapter.

Chapter 4 is mainly based on [51], in which we focus on a class of one-dimensional linear-

quadratic-Gaussian mean field games with Brownian motion as the common noise. This collab-

orative work involves Dr. Jiaxuan Ye and Professor Qingshuo Song from Worcester Polytechnic

Institute. It is worth noting that the equilibrium path, equilibrium control, and the value func-

tion in MFG and the N -player game can be obtained by a similar methodology in Chapter 3.

Our main contribution is the establishment of three different convergence rates from the N -player

games to the corresponding mean field games. Firstly, we establish that the convergence rate of

the p-Wasserstein metric for the distribution of the representative player in the N -player game to

the distribution of the generic player in MFG is O(N−1/2) for p ∈ [1, 2]. Secondly, it demonstrates

that the convergence rate of the p-Wasserstein metric for the empirical measure of the equilibrium

path in the N -player game to the equilibrium measure in MFG under the Lp sense is O(N−1/(2p))

for p ∈ [1, 2]. Lastly, we show that the convergence rate of the uniform p-Wasserstein metric for

the empirical measure of the equilibrium path in the N -player game to the equilibrium measure in

MFG under the Lp sense is O(N−1/(2p)) for p ∈ (1, 2], and O(N−1/2 ln(N)) for p = 1. To investigate

these convergence rates, our methodology relies on a specific decomposition of the equilibrium path

in the N -player game and utilizes the associated MFG framework.

1.1.3 Graphon mean field games

The basic structure of standard MFG theory assumes a symmetry in the connections of the agents

but not necessarily of their dynamics. However, in the recent studies [10, 11, 12], asymmetric graph

connections in large population games are considered. Large subpopulations (or clusters) of agents

are placed at their particular nodes and communicate with the neighbouring subpopulations via

the graph edges. The graphs are heterogeneous with the edges having not necessarily identical

weights. In the network limit, a graphon gives the communication weights g(α, β), see for instance

the introductions to each of [10, 11, 12, 34] for the graphon MFG (GMFG) framework and [58]

for graphon theory. Therefore, it is interesting to investigate the large population games with

asymmetric graph connections.

Along with [10, 11, 12], in Chapter 5, we consider the solvability of a type of graphon mean
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field games. A new type of mean field games PDE system associated with the graphon mean

field games system is proposed in this project. The graphon mean field games system consists

of a collection of parameterized Hamilton-Jacobi-Bellman (HJB) equations and a collection of

parameterized Fokker-Planck-Kolmogorov equations. We establish the existence of solutions via

the application of Schauder’s fixed point theorem and obtain the uniqueness via the Lasry-Lions

monotonicity assumption on the running cost. The main difficulty is to obtain the regularity of the

solution and the sensitivity of the corresponding HJB equations and Fokker-Planck-Kolmogorov

equations. This chapter is mainly based on the paper [9], which is conducted in collaboration

with Professor Peter E. Caines from McGill University, Professor Daniel Ho from City University

of Hong Kong, Professor Minyi Huang from Carleton University, and Professor Qingshuo Song

from Worcester Polytechnic Institute. It had been accepted for publication in the journal ESAIM:

Control, Optimisation and Calculus of Variations in March 2022.
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Chapter 2

Long-time behavior of stochastic LQ

control problem

2.1 Introduction

In this chapter, we consider a Rd-valued standard Brownian motion {W (t)}t≥0 defined on a complete

filtered probability space (Ω,F ,F = {Ft}t≥0,P) which satisfies the usual conditions. Let T > 0 be

a given time horizon, | · | be the Euclidean norm of vectors in Rd, and ∥ · ∥2 be the spectral norm

of matrices. We use Lp
F(Ω × [0, T ]) to denote the space of all F-progressively measurable random

processes u = {u(t)}t∈[0,T ] satisfying E[
∫ T
0 |u(t)|pdt] < ∞. Consider the following diffusion process

given by a linear stochastic differential equation (SDE)

dX(t) = (AX(t) + u(t) + b) dt+ σdW (t), X(0) = x, t ≥ 0, (2.1.1)

where A ∈ Sd×d is a d× d symmetric constant matrix, b, x ∈ Rd are constant vectors, and σ ∈ R+

is a positive constant.

The classical stochastic LQ control problem over the finite time horizon [0, T ] is to find an

optimal control u∗T from the space U[0,T ] := L2
F(Ω× [0, T ]) such that the quadratic cost functional

JT (x;uT ) = E
[∫ T

0
L(X(t), uT (t))dt

]
(2.1.2)

is minimized for a given initial state x ∈ Rd, i.e.,

VT (x) := JT (x;u∗T ) = inf
uT∈U[0,T ]

JT (x;uT ), (2.1.3)

where

L(x, u) =
1

2

(
x⊤Qx+ |u|2

)
+ q⊤x+ r⊤u

with Q be a positive definite matrix in Sd×d and q, r ∈ Rd. The corresponding optimal path is

denoted by X∗
T (t) for t ∈ [0, T ]. Note that, we could set Q be in Rd×d in general.
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The turnpike property of the above finite time control problem is associated with the following

static optimization problem: Determine the point (x̂, û) to{
minimize F (x, u) := 1

2

(
x⊤Qx+ |u|2 + 2q⊤x+ 2r⊤u

)
+ 1

2σ
2trace(P ),

subject to Ax+ u+ b = 0d,
(2.1.4)

where 0d is the d-dimensional column vector with all entries are 0 and P is a positive definite

solution to

P 2 − 2AP −Q = Od.

In the above equation, Od is the d × d matrix in which all the entries are 0. If the underlying

control problem is deterministic, i.e., σ = 0, as it is shown in [70], the turnpike property refers to

the following estimation: There exist some λ > 0 and K > 0 independent of t and T such that

|X∗
T (t)− x̂|+ |u∗T (t)− û| ≤ K

(
e−λt + e−λ(T−t)

)
, ∀t ∈ [0, T ].

Indeed, this turnpike property reveals that, for a sufficiently large T , one can achieve a good

approximation of the optimal trajectory during the majority time period [δT, (1 − δ)T ] for some

0 < δ << 1/2 by simply staying at the stable point x̂ of the static optimization problem in the

sense

|X∗
T (t)− x̂|+ |u∗T (t)− û| ≤ 2Ke−λδT , ∀t ∈ [δT, (1− δ)T ], δ ∈ (0, 1/2).

However, extending this turnpike property to the stochastic control problem with σ > 0 poses

challenges. This is because the presence of Brownian noise makes it impossible for any control to

freeze the state unchanged at a fixed point. Recently, Sun and Yong (see Theorem 3.2 of [75])

proved the following (stochastic version) turnpike property

E
[
|X∗

T (t)−X∗(t)|2 + |u∗T (t)− u∗(t)|2
]
≤ K

(
e−λt + e−λ(T−t)

)
, ∀t ∈ [0, T ] (2.1.5)

by constructing two stochastic processes X∗ and u∗, independent to T , satisfying E[X∗(t)] =

x̂, E[u∗(t)] = û.

In this study, we aim to reexamine the turnpike property, approaching it from a distinct perspec-

tive: the cell problem within the framework of weak Kolmogorov–Arnold–Moser (KAM) theory.

Specifically, the objective of the cell problem is to seek the solution (v, c0) ∈ C2(Rd) × R to the

following equation

c0 = H
(
x,−∇v(x),−D2v(x)

)
, (2.1.6)

where the Hamiltonian H : Rd × Rd × Rd×d 7→ R is given by

H(x, p̄, q̄) := sup
u∈Rd

{
(Ax+ u+ b)⊤p̄+

1

2
σ2trace(q̄)− L(x, u)

}
.

Note that uniqueness does not apply to the cell problem, as (v, c0) is a solution if and only if

(v + k, c0) is also a solution for any k ∈ R. Therefore, when we refer to the uniqueness of the cell
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problem, we specifically mean uniqueness in the value of c0.

Initially, the weak KAM Theory was developed by Fathi [28] and Mather [61], and is linked to the

theory of homogenization for Hamilton-Jacobi (HJ) equations developed by Lions, Papanicolaou,

and Varadhan in [56]. It provides the connection between a type of control problem and the cell

problem, offering a representation of the optimal ergodic cost. In addition to its fundamental role

in the theory of homogenization, the weak KAM theory has also been used to study the long-time

behavior of dynamic control problems, including the ergodic behavior of the value function and

the corresponding HJ equation in the deterministic case (see [63, 7, 26, 27, 77]), as well as the

Hamilton-Jacobi-Bellman (HJB) equation in the stochastic case (see [4, 47, 20]).

Compared to the above literature, this Chapter provides a distinct approach to show the turn-

pike properties in stochastic control theory by using the cell problem in PDE and contributions can

be summarized as follows. Our first contribution lies in the formulation of a verification theorem

connecting the cell problem to a specific class of infinite time horizon control problems, referred

to as the probabilistic cell problem, see Lemma 5. Unlike the typical cell problem explored in the

existing literature (e.g., [77]), the underlying cell problem in our context lacks uniqueness due to the

non-compactness of the domain. It is the verification theorem, which establishes a tailored sufficient

condition to distinguish the right solution to the probabilistic cell problem from multiple solutions

of the cell problem. An immediate consequence of the verification theorem is the establishment of

a link between the cell problem and the static optimization problem.

Our second contribution provides the connection between the cell problem (2.1.6) and the

ergodic cost problem (refer to Remark 3.6.7 in [3]), which involves determining the constant

−c∗ := lim
T→∞

1

T
VT (x) = lim

T→∞

1

T
JT (x;u

∗
T ). (2.1.7)

The importance of this connection is that it unveils a new turnpike property in terms of the cost

function in addition to the aforementioned turnpike property of (2.1.5) with respect to the control

process and state process:

lim
T→∞

1

T
JT (x;u

∗) = −c∗, (2.1.8)

where u∗ is a T -independent control process obtained from the probabilistic cell problem, see

Theorem 9.

The five problems, namely, the Finite Time Stochastic Control Problem (2.1.3), the Static

Optimization Problem (2.1.4), the Cell Problem (2.1.6), the Ergodic Cost Problem (2.1.7), and

the Probabilistic Cell Problem introduced in this Section 2.1 will be interwoven throughout the

remainder of this manuscript in the following manner: In Section 2.2, we prove the verification of

the cell problem and further provide the consistency of the cell problem and the static optimization

problem. Additionally, we identify the turnpike properties of (2.1.5) and (2.1.8) in Section 2.3. To

further elucidate the results obtained in Section 2.3, we provide an illustrative example in Section

2.4. Proofs of certain lemmas are collected in Appendix 2.5.

Throughout this chapter, we use Sd×d to denote the space of all d× d symmetric matrices, and

A ≥ 0 (A > 0) to denote a positive semidefinite (definite) matrix. If A ≥ 0, then
√
A denotes

the unique B ≥ 0 satisfying B2 = A. We also use Od denote the d × d matrix in which all the
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entries are 0 and 0d to be the d-dimensional column vector with all entries are 0. We also pose the

following assumptions to coefficients:

(Cf) A ∈ Sd×d and Q > 0 are d × d symmetric constant matrices, b, x, q, r ∈ Rd are constant

vectors, and σ ∈ R+ is a positive constant.

2.2 Cell problem and the verification theorem

We commence our exploration with the solvability of the cell problem (2.1.6) within the framework

of weak KAM theory. In prevailing literature, the solution of the cell problem is unique up to

the constant. Interestingly, this uniqueness fails in our framework attributed to the absence of

compactness in the domain. This necessitates the formulation of a meticulously crafted verification

theorem: How can we discern the appropriate solution from the multitude available to accurately

characterize the associated optimal control problem?

2.2.1 Existence and nonuniqueness of the cell problem

We recall the cell problem: Find the solution (v, c0) ∈ C2(Rd)× R to the following equation

c0 = H
(
x,−∇v(x),−D2v(x)

)
,

where the Hamiltonian H : Rd × Rd × Rd×d 7→ R is given by

H(x, p̄, q̄) := sup
u∈Rd

{
(Ax+ u+ b)⊤p̄+

1

2
σ2trace(q̄)− L(x, u)

}
:= sup

u∈Rd

Hu(x, p̄, q̄). (2.2.1)

Lemma 1. The cell problem (2.1.6) can be solved by (v, c0) in the form of

v(x) =
1

2
x⊤Z1x+ x⊤Z2 + Z3

and

−c0 =
1

2
σ2trace(Z1) + b⊤Z2 −

1

2
|Z2 + r|2, (2.2.2)

where (Z1, Z2) ∈ Sd×d × Rd can be any solution pair to the system of equations{
Z2
1 − 2AZ1 −Q = Od,

(Z1 −A)Z2 − Z1b+ Z1r − q = 0d,
(2.2.3)

and Z3 ∈ R is an arbitrary constant.

Proof. Assume (v, c0) solves the cell problem (2.1.6) with v satisfying a quadratic form v(x) =
1
2x

⊤Z1x+ x⊤Z2 + Z3. Note that Z1 is symmetric, then ∇v(x) = Z1x+ Z2 and D2v(x) = Z1, and

thus the cell problem (2.1.6) can be rewritten by H(x,−(Z1x + Z2),−Z1) = c0. We first observe
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that

H(x, p̄, q̄) = (Ax+ ū(x, p̄) + b)⊤p̄+
1

2
σ2trace(q̄)− L(x, ū(x, p̄)),

where

ū(x, p̄) = p̄− r,

thus the cell problem can be reduced to

c0 =− (Ax− Z1x+ b− r − Z2)
⊤ (Z1x+ Z2)−

1

2
σ2trace(Z1)−

1

2
x⊤Qx

− 1

2
|Z1x+ Z2 + r|2 − q⊤x+ r⊤ (Z1x+ Z2 + r)

(2.2.4)

for all x ∈ Rd. By setting the linear and quadratic terms with respect to x on the right hand side

of (2.2.4) to 0, we obtain the system of equations (2.2.3). Combining like terms for the constants

in (2.2.4) provides the expression c0 of (2.2.2).

The uniqueness of c0 in the cell problem is established by Theorem 4.2 in [77] for the periodic

domain. However, it is noteworthy that the uniqueness does not extend to our setting defined by

equation (2.1.6). Recall that, by spectral theorem, if A > 0, it admits orthogonal decomposition

A = QDQ⊤ for some orthogonal matrix Q and diagonal matrix D = diag(λ1, λ2, . . . , λd) with

λi > 0. Moreover, any matrix in the form of B = Qdiag(±λ1,±λ2, . . . ,±λd)Q⊤ satisfies B2 = A.

In this below,
√
A is the unique choice of B satisfying B > 0 and B2 = A. Also,

√
A can be

represented by QD1/2Q⊤.

Lemma 2. There exists multiple solution pairs (Z1, Z2) of (2.2.3) in Sd×d×Rd, hence the c0 of the

cell problem (2.1.6) is not unique. Moreover, there exists unique solution pair (Z1, Z2) satisfying

D1 = Z1 −A > 0.

Moreover, Z1 and D1 are commutative, hence they share the same eigenvector matrix.

Proof. Taking transpose to the first equation of (2.2.3), we have Z2
1 −2Z1A−Q = Od as Z1, A and

Q are symmetric matrices, which implies that Z1 and A are commutative, i.e., Z1A = AZ1. Thus,

(Z1 −A)2 = A2 +Q holds. By spectral theorem, since A2 +Q > 0, there exists multiple solutions

to Z1 and the unique choice of Z1 to have D1 = Z1 −A > 0 is

Z1 = A+
√
A2 +Q.

Accordingly, from the second equation of (2.2.3), Z2 can be written in terms of Z1 as

Z2 = (Z1 −A)−1(Z1b− Z1r + q).

At the end, D1Z1 = Z1D1 = Z2
1 − AZ1 holds by commutativity of A and Z1, thus they have the

same eigenvector matrix by Page 305 of [73].
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2.2.2 Verification theorem to probabilistic cell problem

The lack of uniqueness in the determination of c0 as indicated by Lemma 2 introduces a compelling

challenge when striving to identify the optimal value for c0 in order to substantiate the verification

theorem associated with its probabilistic counterparts. In the following discussion, our objective

is to delineate the connection between the cell problem (2.1.6) and the probabilistic cell problem

(2.2.5)-(2.2.6), which is referred to the verification procedure in the context of the control theory.

2.2.2.1 Probabilistic cell problem

We consider the following probabilistic cell problem. Let P2(Rd) be the Wasserstein space of

probability measures µ on Rd satisfying
∫
Rd |x|2dµ(x) < ∞ endowed with 2-Wasserstein metric

W2(·, ·) defined by

W2(µ1, µ2) = inf
π∈Π(µ1,µ2)

(∫
Rd

∫
Rd

|x− y|2dπ(x, y)
) 1

2

,

where Π(µ1, µ2) is the collection of all probability measures on Rd×Rd with its marginals agreeing

with µ1 and µ2. Moreover, we denote that ⟨ϕ, µ⟩ to be

⟨ϕ, µ⟩ =
∫
Rd

ϕ(x)µ(dx)

for all function ϕ valued on Rd and all µ ∈ P2(Rd). To proceed, we define U as the collection of all

F progressively measurable processes such that

• its associated state process Xu = X given by

dX(t) = (AX(t) + u(t) + b) dt+ σdW (t), X(0) = x, t ≥ 0,

is well-defined;

• E[|X(t)|2] <∞ for all t > 0 and x ∈ Rd;

• the law of X(t) converges to some distribution µ∞ ∈ P2(Rd) in 2-Wasserstein metric W2, i.e.,

lim
t→∞

W2(Law(X(t)), µ∞) = 0.

For convenience, we also use U [µ∞] for a µ∞ ∈ P2(Rd) to denote the collection of u ∈ U such that

Law(Xu(t)) converges to µ∞.

We define the probabilistic cell problem below: Determine (V, c) such that

−c = inf
u∈U

lim sup
T→∞

1

T

∫ T

0
E [L(X(t), u(t))] dt, (2.2.5)
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and

V (x) = inf
u∈U [µ∗

∞]
lim sup
T→∞

∫ T

0
E [L(X(t), u(t)) + c] dt, (2.2.6)

where µ∗∞ is the distribution limit of the optimal path X∗ in the ergodic control problem (2.2.5).

Following the convention in stochastic control theory, we denote V (x) as the value function of

the probabilistic cell problem, provided it is well-defined. However, unlike the standard control

problem, the objective of the probabilistic cell problem is not solely to identify a value function V ;

rather, it involves determining a pair (V, c) among many solutions of the cell problem (2.1.6).

2.2.2.2 Verification for a general setting

In this part, we will prove a verification for an infinite-time control problem under a general settings

and all notations are independent to the rest of this chapter.

The cell problem in the general setting is to find the pair (v, c0) ∈ C2(Rd)× R such that

c0 = H
(
x,−∇v(x),−D2v(x)

)
:= sup

a
Ha
(
x,−∇v(x),−D2v(x)

)
, (2.2.7)

where Ha : Rd × Rd × Rd×d 7→ R for any a ∈ Rd is given by

Ha(x, p̄, q̄) = b̂(x, a) · p̄− L̂(x, a) +
1

2
σ̂2trace(q̄)

for some b̂ : Rd × Rd 7→ Rd, σ̂ ∈ R, and L̂ : Rd × Rd 7→ R.

Assumption 3. b̂ is Lipschitz continuous on Rd × Rd, and L̂ is locally Lipschitz continuous and

satisfies quadratic growth, i.e., for all (x, a) ∈ Rd × Rd,∣∣∣L̂(x, a)∣∣∣ ≤ K
(
1 + |x|2 + |a|2

)
for some K ∈ R.

At the same time, we define its associated probabilistic cell problem: Consider Rd-valued con-

trolled process X, with a given Rd-Brownian motion W (t), given by

dX(t) = b̂ (X(t), u(t)) dt+ σ̂dW (t), X(0) = x ∈ Rd, t ≥ 0.

The objective is to determine (V, c) such that

−c = inf
u∈U

lim sup
T→∞

1

T

∫ T

0
E
[
L̂(X(t), u(t))

]
dt, (2.2.8)

and

V (x) = inf
u∈U [µ∗

∞]
lim sup
T→∞

∫ T

0
E
[
L̂(X(t), u(t)) + c

]
dt, (2.2.9)

where µ∗∞ is the distribution limit of the optimal path X∗ in the ergodic control problem (2.2.8).
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Lemma 4. For an arbitrary control process u ∈ U [µ∞] and any function ϕ : Rd 7→ R with a

quadratic growth |ϕ(x)| ≤ K(1 + |x|2) for all x ∈ Rd, we have

lim
t→∞

E [ϕ(X(t))] = ⟨ϕ, µ∞⟩.

Proof. Since µt := Law(X(t)) converges to some µ∞ ∈ P2(Rd) in 2-Wasserstein distance, we have

lim
t→∞

E[|X(t)|2] =
∫
Rd

|x|2µ∞(dx).

By the Skorohod representation theorem, one can find another stochastic process Y (t) in a different

probability space, such that Y (t) → Y∞ almost surely, as well as, Law(Y (t)) = µt and Law(Y∞) =

µ∞. Hence, by the fact of

ϕ(Y (t)) ≤ K
(
1 + |Y (t)|2

)
, and E

[
K
(
1 + |Y (t)|2

)]
→ E

[
K
(
1 + |Y∞|2

)]
,

one can apply the dominated convergence theorem to Y (t) and obtain

lim
t→∞

E [ϕ(X(t))] = lim
t→∞

E [ϕ(Y (t))] = E
[
lim
t→∞

ϕ(Y (t))
]
= ⟨ϕ, µ∞⟩.

Lemma 5. Suppose Assumption 3 holds. Let (v, c0) ∈ C2(Rd)× R solves the cell problem (2.2.7).

In addition, we assume

1. ∇v is Lipschitz continuous;

2. There exists a unique maximizer of Ha(x, p̄, q̄) in the form of

ū(x, p̄) = argmax
a

Ha(x, p̄, q̄);

3. The distribution of the process X∗(t) controlled by u∗(t) = ū(X(t),−∇v(X(t))) converges to

some µ∗∞ ∈ P2(Rd) in 2-Wasserstein distance.

Then, the pair

(V := v − ⟨v, µ∗∞⟩, c0)

solves the probabilistic cell problem (2.2.8)-(2.2.9).

Proof. Since (v, c0) ∈ C2(Rd) × R solves the cell problem (2.2.7), for a control u ∈ U and its

associated state process Xu = X, by Itô’s formula, we obtain

v(X(t)) = v(x) +

∫ t

0

(
b̂(X(s), u(s)) · ∇v(X(s)) +

1

2
σ̂2∆v(X(s))

)
ds

+

∫ t

0
σ̂∇v(X(s)) · dW (s).
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Fixing t > 0 and taking expectation on both sides and note that

E
[∫ t

0
σ̂2 |∇v(X(s))|2 ds

]
≤ σ̂2K2E

[∫ t

0

(
1 + |X(s)|2

)
ds

]
≤ σ̂2K2

(
t+ E

[∫ t

0
|X(s)|2ds

])
is finite, we have

E [v(X(t))] = v(x) + E
[∫ t

0

(
b̂(X(s), u(s)) · ∇v(X(s)) +

1

2
σ̂2∆v(X(s))

)
ds

]
.

The cell problem (2.2.7) implies that, for all x, a ∈ Rd,

−b̂(x, a) · ∇v(x)− L̂(x, a)− 1

2
σ̂2∆v(x)− c0 ≤ 0,

hence

b̂(X(s), u(s)) · ∇v(X(s)) +
1

2
σ̂2∆v(X(s)) ≥ −L̂(X(s), u(s))− c0

for all s ∈ [0, t]. Thus

v(x) ≤ E [v(X(t))] + E
[∫ t

0

(
L̂(X(s), u(s)) + c0

)
ds

]
. (2.2.10)

The inequality (2.2.10) holds for all u ∈ U and equality holds if u = u∗.

Moreover, due to Lipschitz continuity of ∇v, the value function v satisfies a quadratic growth

condition, i.e., |v(x)| ≤ K(1 + |x|2) for all x ∈ Rd. By Lemma 4, we have

lim
t→∞

E [v(X(t))] = ⟨v, µ∞⟩,

where µ∞ is the distribution limit of Xt.

Hence, by taking lim supt→∞
1
t on both sides of (2.2.10), we have

−c0 ≤ lim sup
T→∞

1

T

∫ T

0
E
[
L̂(X(t), u(t))

]
dt.

The above inequality holds for all u ∈ U and equality holds if u = u∗. Thus, we conclude the first

identity of the probabilistic cell problem (2.2.8)-(2.2.9).

Moreover, by taking lim supt→∞ on both sides of (2.2.10), we have

v(x) ≤ ⟨v, µ∞⟩+ lim sup
t→∞

∫ t

0
E
[
L̂(X(s), u(s)) + c0

]
ds

since E[|X(t)|2] < ∞ for all t > 0 and L̂(x, a) is quadratic growth with respect to x and a from

Assumption 3. The above inequality holds for arbitrary u ∈ U [µ∗∞], and an equality holds for u∗,

i.e.,

v(x) = ⟨v, µ∗∞⟩+ lim sup
t→∞

∫ t

0
E
[
L̂(X∗(s), u∗(s)) + c0

]
ds.
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Therefore, we conclude that

v(x)− ⟨v, µ∗∞⟩ = inf
u∈U [µ∗

∞]
lim sup
t→∞

∫ t

0
E
[
L̂(X(s), u(s)) + c0

]
ds.

2.2.2.3 Verification for LQG setting

In the following, we provide a complete characterization of the probabilistic cell problem (2.2.5)-

(2.2.6) in the LQ setting by the help of cell problem given by Lemma 1.

Theorem 6. Let (v, c0) ∈ C2(Rd)× R be the solution to the cell problem (2.1.6) in the form of

v(x) =
1

2
x⊤Z1x+ x⊤Z2

associated to the

Z1 = A+
√
A2 +Q, Z2 = (Z1 −A)−1(Z1b− Z1r + q). (2.2.11)

Then, the pair

(V := v − ⟨v, µ∗∞⟩, c0)

with

µ∗∞ = N
(
D−1

1 D2,
1

2
σ2D−1

1

)
, D1 = Z1 −A, D2 = b− r − Z2 (2.2.12)

solves the probabilistic cell problem (2.2.5)-(2.2.6). Moreover, the optimal path X∗ of the proba-

bilistic cell problem (2.2.5)-(2.2.6) is an OU process given by

dX∗(t) = (−D1X
∗(t) +D2) dt+ σdW (t), X∗(0) = x, (2.2.13)

whose distribution converges to µ∗∞ in 2-Wasserstein metric and the optimal control process u∗

admits a feedback form of

u∗(t) = ū (X∗(t),−∇v (X∗(t))) = −Z1X
∗(t)− Z2 − r, (2.2.14)

where

ū(x, p̄) = p̄− r.

Proof. From Lemma 1, we know that the cell problem (2.1.6) admits solutions (v, c0), where v is

in the form of

v(x) =
1

2
x⊤Z1x+ x⊤Z2 + Z3.

Note that v − ⟨v, µ∗∞⟩ is independent to Z3, hence it’s enough to show the results with Z3 = 0. By

Lemma 2, there exists unique choice of (Z1, Z2) of (2.2.3) such that D1 is positive definite.

Therefore, it’s enough to check all of the assumptions in Lemma 5. First of all, v is a quadratic

function and thus its first order derivative ∇v is Lipschitz continuous. Moreover, by the first order

condition, the maximizer of Ha of (2.2.1) uniquely exists in the form of (2.2.14).
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For the third assumption, we shall check the convergence of the process associated to the optimal

control. The explicit solution to (2.2.13) can be written by

X∗(t) = Φtx+

∫ t

0
Φt−sdsD2 + σ

∫ t

0
Φt−sdW (s),

where Φt is a d× d fundamental matrix satisfying Φ0 = Id and the homogeneous matrix ODE

dΦt = −D1Φtdt.

It is clear that X∗ is an Ornstein-Uhlenbeck (OU) process and

X∗(t) ∼ N (mt, νt),

where

mt = Φtx+

∫ t

0
Φt−sdsD2, νt = σ2

∫ t

0
Φ2
t−sds

By Lemma 2, there exists unique choice of the positive definiteD1, and one can write its orthogo-

nal diagonalization D1 = Q̃ΛQ̃⊤, where Q̃ is an orthogonal matrix and Λ = diag(λ1, λ2, . . . , λd) is a

diagonal matrix with all λi > 0. This implies that D1 has its inverse in the form of D−1
1 = Q̃Λ−1Q̃⊤

and Φt can be factored into Φt = e−D1t = Q̃e−ΛtQ̃⊤. Moreover, we have∫ t

0
Φt−sds = (Id − Φt)D

−1
1 ,

∫ t

0
Φ2
t−sds =

1

2
(Id − Φ2

t )D
−1
1 .

Therefore, the mean and variance of X∗
t can be rewritten as

mt = Φtx+ (Id − Φt)D
−1
1 D2, νt =

1

2
σ2(Id − Φ2

t )D
−1
1 .

In addition, due to the positive definiteness D1, Φt → 0 as t→ ∞ and there exist

m∞ = D−1
1 D2 ∈ Rd and ν∞ =

1

2
σ2D−1

1 ∈ Sd×d

such that mt converges to m∞ and νt converges to ν∞. Hence, we obtain the desired result that

X∗(t)
d−→ X̄ as t→ ∞, where

X̄ ∼ N (m∞, ν∞) := µ∗∞ (2.2.15)

is a normal random variable. The proof can be concluded from Lemma 5.

2.2.3 Consistency with the static optimization problem

The static optimization problem (2.1.4) plays an important role in the study of the turnpike prop-

erties of the control problem in the deterministic type [70, 79] and the stochastic type [74]. In

this subsection, we provide a result to show the equality between the constant −c0 from the cell

problem (2.1.6) and the value F (x̂, û) from the static optimization problem (2.1.4).
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Recall that L(x, u) = 1
2(x

⊤Qx + |u|2 + 2q⊤x + 2r⊤u) and F (x, u) = L(x, u) + 1
2σ

2trace(P ),

where P is a positive definite solution to P 2 − 2AP − Q = Od. The solution (x̂, û) to the static

optimization problem (2.1.4) is the one that solves{
Minimize L(x, u),

subject to u = −(Ax+ b),

since 1
2σ

2trace(P ) is a constant and it is independent with (x, u).

Lemma 7. The optimal static value to the static optimization problem (2.1.4) is

F (x̂, û) = −1

2
(Ab+ q −Ar)⊤

(
Q+A2

)−1
(Ab+ q −Ar) +

1

2
b⊤b− r⊤b+

1

2
σ2trace(P ), (2.2.16)

where P is a positive definite solution to

P 2 − 2AP −Q = Od,

and the optimal solution (x̂, û) is given by

x̂ = −
(
Q+A2

)−1
(Ab+ q −Ar),

û = A
(
Q+A2

)−1
(Ab+ q −Ar)− b.

Proof. Plugging u = −(Ax+ b), we know that L(x, u) is a quadratic function with respect to x and

it is given by

L(x, u) =
1

2
x⊤
(
Q+A2

)
x+ (Ab+ q −Ar)⊤x+

1

2
b⊤b− r⊤b.

It is straightforward to obtain the desired result by minimizing the quadratic function under the

condition that Q+A2 > 0.

Now, we are ready to show the consistency between −c0 and F (x̂, û).

Lemma 8. The constant −c0 of (2.1.6) is identical to the value F (x̂, û) of the static optimization

problem (2.1.4) .

Proof. It’s equivalent to verify the equality between the representation of in (2.2.2) and the optimal

static value in (2.2.16). Choosing Z1 be the solution to Z2
1−2AZ1−Q = Od such thatD1 = Z1−A is

positive definite, i.e., Z1 = A+
√
A2 +Q, we obtain that Z1 = P and Z2 = (Z1−A)−1(Z1b+q−Z1r).

To verify that −c0 = F (x̂, û), we only need to check that

b⊤Z2 −
1

2
|Z2 + r|2 = −1

2
(Ab+ q −Ar)⊤

(
Q+A2

)−1
(Ab+ q −Ar) +

1

2
b⊤b− r⊤b.
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By calculation and applying the representation of Z2, we have

b⊤Z2 −
1

2
|Z2 + r|2

= − 1

2

(
(Z1 −A)−1(Z1b+ q − Z1r) + r

)⊤ (
(Z1 −A)−1(Z1b+ q − Z1r) + r

)
+ b⊤(Z1 −A)−1(Z1b+ q − Z1r)

= − 1

2
(Z1b+ q − Z1r)

⊤ ((Z1 −A)−1
)2

(Z1b+ q − Z1r)−
1

2
r⊤r

+ (Z1b+ q − Z1r)
⊤ ((Z1 −A)−1

)2
(Z1b−Ab− Z1r +Ar)

=
1

2
(Z1b+ q − Z1r)

⊤ ((Z1 −A)−1
)2

(Z1b− Z1r − q − 2Ab+ 2Ar)− 1

2
r⊤r.

Note that Z1−A =
√
Q+A2, then ((Z1−A)−1)2 = (Q+A2)−1. Substituting Z1 by A+

√
Q+A2,

we could obtain

b⊤Z2 −
1

2
|Z2 + r|2

=
1

2
(Z1b+ q − Z1r)

⊤ (Q+A2
)−1

(Z1b− Z1r − q − 2Ab+ 2Ar)− 1

2
r⊤r

=
1

2

((
A+

√
Q+A2

)
(b− r) + q

)⊤ (
Q+A2

)−1
((
A+

√
Q+A2

)
(b− r)− q − 2Ab+ 2Ar

)
− 1

2
r⊤r

= − 1

2
(Ab+ q −Ar)⊤

(
Q+A2

)−1
(Ab+ q −Ar) +

1

2
(b− r)⊤(b− r)− 1

2
r⊤r

= − 1

2
(Ab+ q −Ar)⊤

(
Q+A2

)−1
(Ab+ q −Ar) +

1

2
b⊤b− r⊤b,

which yields the desired result.

2.3 Turnpike property

In this section, we uncover the turnpike property applicable to the optimal trajectory X∗ and op-

timal control u∗, both stemming from the probabilistic cell problem as outlined in (2.2.5)-(2.2.6).

Moreover, distinct from the aforementioned turnpike property elucidated by (2.1.5), we also estab-

lish the turnpike behavior concerning the cost function:

lim
T→∞

1

T
JT (x;u

∗) = −c∗,

where −c∗ := limT→∞
1
T JT (x;u

∗
T ) is the ergodic cost defined in (2.1.7). In other words, achieving

a near optimality in terms of the average cost over an extended period doesn’t require calculating

the optimal control u∗T for every T . Instead, one only needs to compute the optimal control u∗ for

the probabilistic cell problem.

To accomplish this objective, it becomes imperative to establish a relation between the cost

function JT (x;u
∗) with the u∗ from the probabilistic cell problem (2.2.5)-(2.2.6), and the corre-

sponding function VT (x) = JT (x, u
∗
T ) originating from the finite time stochastic control problem
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(2.1.3).

2.3.1 Main results on turnpike properties

To distinguish the finite time control problem (2.1.3) from the probabilistic cell problem (2.2.5)-

(2.2.6), we denote by {XT (t)}0≤t≤T as the underlying process controlled by finite time control

{uT (t)}0≤t≤T in the finite time stochastic control problem, while denote by {X(t)}t≥0 as the un-

derlying process controlled by infinite time control {u(t)}t≥0 in the probabilistic cell problem. In

other words, {XT (t)}0≤t≤T follows

dXT (t) = (AXT (t) + uT (t) + b) dt+ σdW (t), t ∈ [0, T ]

and {X(t)}t≥0 follows

dX(t) = (AX(t) + u(t) + b) dt+ σdW (t), t ≥ 0.

We also extend the cost functional for the finite time control problem (2.1.3) to an initial condition

XT (t) = x, that is

JT (t, x;uT ) := E
[∫ T

t
L(XT (s), uT (s))ds

∣∣∣∣XT (t) = x

]
,

where uT ∈ U[t,T ] is an admissible control between t and T and the value function is

VT (t, x) := JT (t, x;u∗T ) = inf
uT∈U[t,T ]

JT (t, x;uT )

with its optimal control and optimal path denoted by u∗T and X∗
T .

We recall that the value function V (x) of the probabilistic cell problem is defined in (2.2.5)-

(2.2.6) as

−c0 = inf
u∈U

lim sup
T→∞

1

T

∫ T

0
E [L(X(t), u(t))] dt

and

V (x) := inf
u∈U [µ∗

∞]
lim sup
T→∞

∫ T

0
E [L (Xt, ut) + c0] dt,

where µ∗∞ is the distribution limit of the optimal path X∗ in the ergodic control problem (2.2.5).

The optimal control and optimal path of the probabilistic cell problem is denoted by u∗ and X∗

respectively, which are characterized by Theorem 6. Note that, the constant c in the above definition

is replaced by c0 of the cell problem corresponding to Z1 such that D1 is positive definite according

to Theorem 6. Next, we present our main results.

Theorem 9. Let JT (0, x;u
∗) be the cost functional evaluated along the optimal control of the
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probabilistic cell problem u∗ on the finite time horizon [0, T ],

JT (0, x;u
∗) := E

[∫ T

0
L (XT (s), u

∗(s)) ds

]
.

For all x ∈ Rd, the following estimation holds:

0 ≤ JT (0, x;u
∗)− VT (0, x) = O(1).

Moreover, the constant c0 of the cell problem (2.1.6) is the ergodic cost defined via (2.1.7), i.e.,

c0 = lim
T→∞

1

T
VT (0, x), ∀x ∈ Rd.

From the results of Theorem 9, we could establish the turnpike behavior in terms of the average

cost function straightforwardly. Note that VT (0, x) ≤ JT (0, x;u
∗) = VT (0, x)+O(1), it follows that

lim
T→∞

1

T
JT (0, x;u

∗) = lim
T→∞

1

T
VT (0, x) = −c∗. (2.3.1)

Theorem 10. For all x ∈ Rd, there exist some λ > 0 and K > 0 independent of t and T such that

E
[
|X∗

T (t)−X∗(t)|2 + |u∗T (t)− u∗(t)|2
]
≤ K

(
e−λt + e−λ(T−t)

)
, ∀t ∈ [0, T ].

2.3.2 Proofs

The proofs of these two theorems rely on the analytical expressions of the value functions for both

the finite time control problem and probabilistic cell problem, and some comparison results between

solutions to the Riccati system of ODEs. We first present some preliminary lemmas with their proof

posted in Appendix 2.5. The first lemma gives an analytical expression for the value function of

the finite time control problem.

Lemma 11. The value function VT (t, x) of the finite time control problem has the following form

VT (t, x) =
1

2
x⊤Z̃1(t)x+ x⊤Z̃2(t) + Z̃3(t),

where {Z̃1(t), Z̃2(t), Z̃3(t) : t ∈ [0, T ]} solves the Riccati system of ODEs
˙̃Z1(t) + 2AZ̃1(t)− Z̃2

1 (t) +Q = Od;

˙̃Z2(t) +AZ̃2(t)− Z̃1(t)Z̃2(t) + Z̃1(t)(b− r) + q = 0d;

˙̃Z3(t) +
1

2
σ2trace(Z̃1(t)) + b⊤Z̃2(t)−

1

2
|Z̃2(t) + r|2 = 0,

(2.3.2)

with terminal conditions Z̃1(T ) = Od, Z̃2(T ) = 0d, Z̃3(T ) = 0. Moreover, the optimal feedback
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control of the finite time control problem is given by

u∗T (t) = −Z̃1(t)X
∗
T (t)− Z̃2(t)− r.

Next lemma gives a similar analytical structure for JT (t, x;u
∗), which is the cost functional of

the finite time control problem evaluated along the optimal control u∗ from the probabilistic cell

problem. Recall that (Z1, Z2) is the solution to the system of algebraic equations (2.2.3) in which

Z1 is uniquely chosen such that D1 to be positive definite, see Lemma 2.

Lemma 12. The cost functional JT (t, x;u
∗) of the finite time control problem evaluated along the

optimal control u∗ from the probabilistic cell problem has the form

JT (t, x;u
∗) =

1

2
x⊤f1(t)x+ x⊤f2(t) + f3(t),

where {f1(t), f2(t), f3(t) : t ∈ [0, T ]} solves the Riccati system of ODEs
ḟ1(t)− 2(Z1 −A)f1(t) +Q+ Z2

1 = Od;

ḟ2(t)− (Z1 −A)f2(t) + f1(t)(b− r − Z2) + Z1Z2 + q = 0d;

ḟ3(t) +
1

2
σ2trace(f1(t)) + (b− r − Z2)

⊤f2(t) +
1

2
(|Z2|2 − |r|2) = 0,

(2.3.3)

with terminal conditions f1(T ) = Od, f2(T ) = 0d, f3(T ) = 0.

From the above lemmas, we can observe that

JT (0, x;u
∗)− VT (0, x) =

1

2
x⊤Γ1(0)x+ x⊤Γ2(0) + Γ3(0), (2.3.4)

where, for i = 1, 2, 3,

Γi(t) = fi(t)− Z̃i(t), i = 1, 2, 3.

If we introduce γi by

γi(t) = Zi − Z̃i(t), i = 1, 2,

{Γi : i = 1, 2, 3} satisfies the following system of ODE
Γ̇1(t)− 2(Z1 −A)Γ1(t) + γ21(t) = Od;

Γ̇2(t)− (Z1 −A)Γ2(t) + Γ1(t)(b− r − Z2) + γ1(t)γ2(t) = 0d;

Γ̇3(t) +
1

2
σ2trace(Γ1(t)) + (b− r − Z2)

⊤Γ2(t) +
1

2
|γ2(t)|2 = 0,

(2.3.5)

with the terminal conditions Γ1(T ) = Od,Γ2(T ) = 0d,Γ3(T ) = 0. Moreover, {γ1, γ2} is the solution
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to the system of ODEs
γ̇1(t)− 2(Z1 −A)γ1(t) + γ21(t) = Od;

γ̇2(t)− (Z1 −A)γ2(t) + γ1(t)γ2(t) + γ1(t)(b− r − Z2) = 0d,
(2.3.6)

with the terminal conditions γ1(T ) = Z1 and γ2(T ) = Z2.

It is enough to give a proper estimations for the γ1, γ2 in (2.3.6) and Γ1,Γ2,Γ3 in (2.3.5) to

obtain the bound for the difference between JT (0, x;u
∗) and VT (0, x).

To proceed, we recall that

D1 = Z1 −A > 0, D2 = b− r − Z2.

Lemma 13. Let λ1 ≥ λ2 ≥ · · · ≥ λd > 0 be eigenvalues of D1 in a descending order. Then,

there exists a unique solution γ1, γ2 ∈ C1([0, T ]) of the system of ODEs (2.3.6) satisfying, for some

constant k > 0,

∥γ1(t)∥2 ≤ ke−2λd(T−t), |γ2(t)| ≤ ke−λd(T−t), ∀t ∈ [0, T ]. (2.3.7)

Moreover, γ1(t) is positive definite for all t ∈ [0, T ] and γ1 is an increasing function with respect to

Loewner order on [0, T ].

Proof. ODE satisfied by γ1 can be rewritten by

γ̇1(t)− 2D1γ1(t) + γ21(t) = Od, γ1(T ) = Z1.

Let τ = T − t and denote γ̄1(τ) = γ1(t), γ̄1 is the solution to the ODE

˙̄γ1(t) = −2D1γ̄1(t) + γ̄21(t), γ̄1(0) = Z1.

Recall that D1 = Q̃ΛQ̃⊤, where Q̃ is an orthogonal matrix and Λ is a diagonal matrix with

descending diagonal entries λi. Since Z1 and Z̃1(t) are symmetric matrices, γ̄1(t) is also symmetric

as their difference. Taking transpose to the equation satisfied by γ̄1, we have ˙̄γ1(t) = −2γ̄1(t)D1 +

γ̄21(t), which implies that D1 and γ̄1(t) are commute, i.e., D1γ̄1(t) = γ̄1(t)D1. Thus, γ̄1 and D1

share the same eigenvector matrix Q̃ by the results in Page 305 of [73].

Hence, we can write γ̄1(t) = Q̃Σ(t)Q̃⊤ for some Σ(t) = diag(σ1(t), σ2(t), . . . , σd(t)) for t ≥ 0. It

follows that

Σ̇(t) = −2ΛΣ(t) + Σ2(t), ∀t > 0 (2.3.8)

with initial condition γ̄1(0) = Q̃Σ(0)Q̃⊤ = Z1. It is equivalent to write

σ̇i(t) = −2λiσi(t) + σ2i (t), t > 0, i = 1, 2, . . . , d.

Note that 2D1 − Z1 = Z1 − 2A =
√
A2 +Q − A > 0 and 2D1 − Z1 = Q̃(2Λ − Σ(0))Q̃⊤, thus

2Λ− Σ(0) > 0, i.e., σi(0) < 2λi for i = 1, 2, . . . , d. Therefore, there exists unique solution {σi : i =
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1, 2, . . . , d} in the form of

0 < σi(t) =
2λi

1 +
(

2λi
σi(0)

− 1
)
e2λit

< max
i=1,2,...,d

(
2λiσi(0)

2λi − σi(0)

)
e−2λit := a1e

−2λit, ∀t ≥ 0.

Clearly, σi is strictly decreasing on [0,∞), which implies that γ̄1 is a strictly decreasing function on

[0,∞) with respect to Loewner order. Moreover, since λi > 0 for all i = 1, 2, . . . , d, γ̄1(t) is positive

definite for all t ≥ 0. Thus, we have

∥γ̄1(t)∥2 = ∥Σ(t)∥2 ≤ a1e
−2λdt, ∀t ≥ 0, (2.3.9)

which yields the desired result that

∥γ1(t)∥2 ≤ a1e
−2λd(T−t), t ∈ [0, T ]. (2.3.10)

Moreover, γ1(t) is positive definite for all t ∈ [0, T ] and γ1 is an increasing function with respect to

Loewner order on [0, T ].

By (2.3.6), γ2 satisfies the ODE

γ̇2(t) + (γ1(t)−D1)γ2(t) + γ1(t)D2 = 0d, γ2(T ) = Z2.

Let τ = T − t and denote γ̄2(τ) = γ2(t), γ̄2 is the solution to the ODE

˙̄γ2(t) = (γ̄1(t)−D1)γ̄2(t) + γ̄1(t)D2, γ̄2(0) = Z2.

Denote that A1(t) = γ̄1(t)−D1 for t ≥ 0, the explicit form of γ̄2 is given by

γ̄2(t) = e
∫ t
0 A1(s)dsZ2 +

∫ t

0
e
∫ t
s A1(r)drγ̄1(s)D2ds (2.3.11)

for all t ≥ 0, which implies that γ2 ∈ C1([0, T ]).

To proceed, we first observe from (2.3.9) that∥∥∥∥∫ t

0
Σ(s)ds

∥∥∥∥
2

≤
∫ t

0
∥Σ(s)∥2 ds ≤

a1
2λd

(1− e−2λdt) ≤ a1
2λd

.

From the fact that ∥eD∥2 = e∥D∥2 for any D ≥ 0, it implies that∥∥∥e∫ t
0 Σ(s)ds

∥∥∥
2
≤ a2 := exp

{
a1
2λd

}
.

Hence, we have ∥∥∥e∫ t
0 A1(s)ds

∥∥∥
2
=
∥∥∥e∫ t

0 (Σ(s)−Λ)ds
∥∥∥
2
≤
∥∥∥e∫ t

0 Σ(s)ds
∥∥∥
2

∥∥e−Λt
∥∥
2
≤ a2e

−λdt. (2.3.12)
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Therefore, the estimate of (2.3.11) is

|γ̄2(t)| ≤
∥∥∥e∫ t

0 A1(s)ds
∥∥∥
2
|Z2|+

∫ t

0

∥∥∥e∫ t
s A1(r)dr

∥∥∥
2
∥γ̄1(s)∥2 |D2|ds

≤ a2e
−λdt|Z2|+

∫ t

0
a2e

−λd(t−s)a1e
−2λdsds|D2|

≤
(
a2|Z2|+

a1a2|D2|
λd

)
e−λdt := a3e

−λdt

for all t ≥ 0. Thus, we obtain that

|γ2(t)| ≤ a3e
−λd(T−t), ∀t ∈ [0, T ]. (2.3.13)

Lemma 14. With eigenvalues of D1 denoted by Lemma 13, The system of ODEs (2.3.5) has a

unique solution Γ1,Γ2 and Γ3 ∈ C1([0, T ]), and satisfies the following properties for some constant

k > 0:

∥Γ1(t)∥2 ≤ ke−2λd(T−t), |Γ2(t)| ≤ ke−λd(T−t), |Γ3(t)| ≤ k (2.3.14)

for all t ∈ [0, T ].

Proof. We recall that, Γ1 satisfies the ODE

Γ̇1(t)− 2D1Γ1(t) + γ21(t) = Od, Γ1(T ) = Od,

which can be written in terms of γ1 in the form of

Γ1(t) =

∫ T

t
e2D1(t−s)γ21(s)ds, ∀t ∈ [0, T ].

From (2.3.10), the estimation of Γ1 is

∥Γ1(t)∥2 ≤
∫ T

t
e2λd(t−s)∥γ1(s)∥22ds ≤

a21
2λd

e−2λd(T−t) (2.3.15)

for all t ∈ [0, T ]. Moreover, from the explicit form of Γ1, it is clear that Γ1(t) is positive semi-definite

for all t ∈ [0, T ]. Similarly, the ODE for Γ2 is

Γ̇2(t)−D1Γ2(t) + Γ1(t)D2 + γ1(t)γ2(t) = 0d, Γ2(T ) = 0d,

which yields an expression in terms of γ1, γ2 and Γ1:

Γ2(t) =

∫ T

t
eD1(t−s) (Γ1(s)D2 + γ1(s)γ2(s)) ds, ∀t ∈ [0, T ].
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By the estimation (2.3.10), (2.3.13), and (2.3.15), for all t ∈ [0, T ],

|Γ2(t)| ≤
∫ T

t

∥∥∥eD1(t−s)
∥∥∥
2
(∥Γ1(s)∥2|D2|+ ∥γ1(s)∥2|γ2(s)|) ds

≤
∫ T

t
eλd(t−s)

(
a21
2λd

e−2λd(T−s)|D2|+ a1a3e
−3λd(T−s)

)
ds

≤ a21|D2|+ a1a3λd
2λ2d

e−λd(T−t) := a4e
−λd(T−t).

(2.3.16)

Next, the term Γ3 satisfies the ODE

Γ̇3(t) +
1

2
σ2trace(Γ1(t)) +D⊤

2 Γ2(t) +
1

2
|γ2(t)|2 = 0, Γ3(T ) = 0,

which can be rewritten with the above γ2,Γ1 and Γ2:

Γ3(t) =

∫ T

t

(
1

2
σ2trace(Γ1(s)) +D⊤

2 Γ2(s) +
1

2
|γ2(s)|2

)
ds, ∀t ∈ [0, T ].

Thus, we obtain the estimation for Γ3 with the help of (2.3.13), (2.3.15), and (2.3.16)

|Γ3(t)| ≤
∫ T

t

(
1

2
dσ2∥Γ1(s)∥2 + |D2||Γ2(s)|+

1

2
|γ2(s)|2

)
ds ≤ a5 (2.3.17)

for some constant a5 > 0.

Now, we are well prepared to prove Theorem 9.

Proof of Theorem 9. From (2.3.14) in Lemma 14, we have

|JT (0, x;u∗)− VT (0, x)| =
∣∣∣∣12x⊤Γ1(0)x+ x⊤Γ2(0) + Γ3(0)

∣∣∣∣
≤ 1

2
ke−2λdT |x|2 + ke−λdT |x|+ k.

Hence, for all x ∈ Rd, we obtain that JT (0, x;u
∗) − VT (0, x) = O(1). Since u∗T is the optimal

control of the finite time control problem, by the definition of VT (t, x) and JT (t, x;u), we have

0 ≤ JT (0, x;u
∗)− VT (0, x) for all x ∈ Rd. Therefore, we obtain the desired result.

Next, the estimations of γ1 and γ2 in (2.3.7) can help us to verify that the identity VT (0, x) +

c0T = o(T ) holds, where c0 is given by (2.2.2) and can also be obtained from the solution to the cell

problem. Note that VT (0, x) =
1
2x

⊤Z̃1(0)x+x
⊤Z̃2(0)+Z̃3(0), where {Z̃1(t), Z̃2(t), Z̃3(t) : t ∈ [0, T ]}

is the solution to the system of Riccati equation (2.3.2). Then, we only need to show that for all

x ∈ Rd

lim
T→∞

1

T

∣∣∣∣12x⊤Z̃1(0)x+ x⊤Z̃2(0) + Z̃3(0) + c0T

∣∣∣∣ = 0.
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From (2.3.7) in Lemma 13, we have the following inequalities∥∥∥Z̃1(0)
∥∥∥
2
= ∥Z1 − γ1(0)∥2 ≤ ∥Z1∥2 + ∥γ1(0)∥2 ≤ ∥Z1∥2 + ke−2λdT

and ∣∣∣Z̃2(0)
∣∣∣ = |Z2 − γ2(0)| ≤ |Z2|+ |γ2(0)| ≤ |Z2|+ ke−λdT ,

which implies that

lim
T→∞

1

T

∣∣∣∣12x⊤Z̃1(0)x+ x⊤Z̃2(0)

∣∣∣∣ = 0, ∀x ∈ Rd.

Moreover, from the ODE satisfied by Z3(t) in (2.3.2),

Z̃3(0) =

∫ T

0

(
1

2
σ2trace

(
Z̃1(s)

)
+ b⊤Z̃2(s)−

1

2

∣∣∣Z̃2(s) + r
∣∣∣2) ds

=

∫ T

0

(
−1

2
σ2trace (γ1(s))−D⊤

2 γ2(s)−
1

2
|γ2(s)|2

)
ds− c0T,

where c0 = −1
2σ

2trace(Z1)− b⊤Z2 +
1
2 |Z2 + r|2. Then, it follows that

lim
T→∞

1

T

∣∣∣Z̃3(0) + c0T
∣∣∣ = lim

T→∞

1

T

∣∣∣∣∫ T

0

(
−1

2
σ2trace (γ1(s))−D⊤

2 γ2(s)−
1

2
|γ2(s)|2

)
ds

∣∣∣∣ .
Using the triangle inequality and the estimations (2.3.7), we have

lim
T→∞

1

T

∣∣∣∣∫ T

0

(
−1

2
σ2trace (γ1(s))−D⊤

2 γ2(s)−
1

2
|γ2(s)|2

)
ds

∣∣∣∣
≤ lim

T→∞

1

T

∫ T

0

(
1

2
dσ2∥γ1(s)∥2 + |D2||γ2(s)|+

1

2
|γ2(s)|2

)
ds

≤ lim
T→∞

1

T

dkσ2 + 4|D2|k + k2

4λd
= 0,

which implies that limT→∞
1
T |Z̃3(0) + c0T | = 0. Therefore, we obtain the desired result that

lim
T→∞

1

T
|VT (0, x) + c0T | = 0, ∀x ∈ Rd,

i.e., VT (0, x) + c0T = o(T ) for all x ∈ Rd with c0 given by (2.2.2). The identical result between c0
and c∗ yields from Definition (2.1.7).

Recall Theorem 6: From (2.2.14) and (2.2.13), the optimal control u∗ of the probabilistic cell

problem is

u∗(t) = −Z1X
∗(t)− Z2 − r,

and the optimal path X∗ of the probabilistic cell problem is given by

dX∗(t) = −D1X
∗(t)dt+D2dt+ σdW (t),
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with X∗(0) = x, where D1 and D2 are given by (2.2.12). Moreover, the optimal path X∗(t) in

the probabilistic cell problem (2.2.5)-(2.2.6) converges in distribution to a normal random variable

X̄ ∼ N (m∞, ν∞) as t→ ∞, where m∞ = D−1
1 D2 and ν∞ = 1

2σ
2D−1

1 . Next, we prove the classical

turnpike property that is descried in Theorem 10.

Proof of Theorem 10. Here we assume the optimal path X∗ in (2.2.13) of the probabilistic cell

problem has the initial point X∗(0) = X̄ ∼ N (m∞, ν∞), a normal random variable independent to

the Brownian motion W , instead of a real-valued vector x ∈ Rd. To calculate E[|X∗
T (t)−X∗(t)|2],

we first observe that the optimal control of the finite time control problem is given by

u∗T (t) = −Z̃1(t)X
∗
T (t)− Z̃2(t)− r

from the results in Lemma 11. Thus the optimal path for the finite time control problem satisfies

dX∗
T (t) =

(
A− Z̃1(t)

)
X∗

T (t)dt+
(
b− r − Z̃2(t)

)
dt+ σdW (t). (2.3.18)

Denote that δT (t) = X∗
T (t)−X∗(t), by (2.2.13) and (2.3.18), we have

dδT (t) =
(
A− Z̃1(t)

)
δT (t)dt+ γ1(t)X

∗(t)dt+ γ2(t)dt

with the initial value δT (0) = X∗
T (0)−X∗(0) = x− X̄ ∼ N (x−m∞, ν∞).

Let Ā1(t) = A− Z̃1(t) = γ1(t)−D1 for all t ∈ [0, T ], then we have Ā1(t) = A1(T − t). By the

similar method as the estimation in (2.3.12), for 0 ≤ s ≤ t ≤ T , we have∥∥∥e∫ t
0 Ā1(r)dr

∥∥∥
2
≤ a2e

−λdt and
∥∥∥e∫ t

s Ā1(r)dr
∥∥∥
2
≤ a2e

−λd(t−s).

Applying the integrating factor method, we obtain the explicit form of δT (t) as

δT (t) = e
∫ t
0 Ā1(r)drδT (0) +

∫ t

0
e
∫ t
s Ā1(r)drγ1(s)X

∗(s)ds+

∫ t

0
e
∫ t
s Ā1(r)drγ2(s)ds.

Therefore, we have the following estimation:

E
[
|δT (t)|2

]
≤ 3

∥∥∥e∫ t
0 Ā1(r)dr

∥∥∥2
2
E
[
|δT (0)|2

]
+ 3E

[∣∣∣∣∫ t

0
e
∫ t
s Ā1(r)drγ1(s)X

∗(s)ds

∣∣∣∣2
]

+ 3

∣∣∣∣∫ t

0
e
∫ t
s Ā1(r)drγ2(s)ds

∣∣∣∣2 .
Firstly, by calculation,

3
∥∥∥e∫ t

0 Ā1(r)dr
∥∥∥2
2
E
[
|δT (0)|2

]
≤ 3a22E

[∣∣x− X̄
∣∣2] e−2λdt ≤ K1e

−2λdt

for some constant K1 ≥ 3a22E
[
|x− X̄|2

]
. Next, using the estimation for γ2 in (2.3.7) from Lemma
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13 and by Hölder’s inequality, we get

3

∣∣∣∣∫ t

0
e
∫ t
s Ā1(r)drγ2(s)ds

∣∣∣∣2 ≤ 3

∫ t

0

∥∥∥e∫ t
s Ā1(r)dr

∥∥∥2
2
ds

∫ t

0
|γ2(s)|2ds

≤ 3a22k
2

∫ t

0
e−2λd(t−s)ds

∫ t

0
e−2λd(T−s)ds ≤ K2e

−2λd(T−t)

for some constant K2 ≥
3a22k

2

4λ2
d
. Lastly, using the Hölder’s inequality again, we have

3E

[∣∣∣∣∫ t

0
e
∫ t
s Ā1(r)drγ1(s)X

∗(s)ds

∣∣∣∣2
]
≤ 3

∫ t

0

∥∥∥e∫ t
s Ā1(r)dr

∥∥∥2
2
ds E

[∫ t

0
∥γ1(s)∥22 |X∗(s)|2 ds

]
.

Similar with the calculation of expectation and variance of X∗ in Subsection 2.2.2.3, we know the

expectation and the variance of X∗(s) in (2.2.13) with the initial X∗(0) = X̄ is E [X∗(s)] = D−1
1 D2

and Var (X∗(s)) = 1
2σ

2D−1
1 respectively, which implies E[|X∗(s)|2] = a6 for all s > 0 for some

positive constant a6. Thus, from the estimation of γ1 in Lemma 13, we obtain the estimation as

follows

3E

[∣∣∣∣∫ t

0
e
∫ t
s Ā1(r)drγ1(s)X

∗(s)ds

∣∣∣∣2
]
≤ 3k2a6a

2
2

∫ t

0
e−2λd(t−s)ds

∫ t

0
e−4λd(T−s)ds ≤ K3e

−4λd(T−t)

for some constant K3 ≥
3k2a6a22

8λ2
d

.

To summarize from the above estimation results, we have

E
[
|δT (t)|2

]
≤ K1e

−2λdt +K2e
−2λd(T−t) +K3e

−4λd(T−t)

≤ K4

(
e−2λdt + e−2λd(T−t)

) (2.3.19)

for all t ∈ [0, T ] for some positive constant K4.

Similarly, from the optimal control of the probabilistic cell problem and the optimal control of

the finite time control problem, it is clear that

u∗T (t)− u∗(t) = γ1(t)X
∗(t)− Z̃1(t)δT (t) + γ2(t),

which yields the inequality

E
[
|u∗T (t)− u∗(t)|2

]
≤ 3

(
∥γ1(t)∥22 E

[
|X∗(t)|2

]
+
∥∥∥Z̃1(t)

∥∥∥2
2
E
[
|δT (t)|2

]
+ |γ2(t)|2

)
.

Due to the facts that γ1(t) = Z1 − Z̃1(t) and ∥γ1(t)∥2 ≤ ke−2λd(T−t), we have ∥Z̃1(t)∥2 ≤ ∥Z1∥2 +
ke−2λd(T−t) ≤ ∥Z1∥2 + k for all t ∈ [0, T ]. Applying the estimations (2.3.7) in Lemma 13 and the

inequality (2.3.19), we get the estimation

E
[
|u∗T (t)− u∗(t)|2

]
≤ K5

(
e−2λdt + e−2λd(T−t)

)
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for all t ∈ [0, T ] for some K5 > 0 independent of t and T . Therefore, let λ = 2λd, the classical

turnpike property

E
[
|X∗

T (t)−X∗(t)|2 + |u∗T (t)− u∗(t)|2
]
≤ K

(
e−λt + e−λ(T−t)

)
, ∀t ∈ [0, T ]

is obtained for some K ≥ K4 +K5.

Remark 15. In the above proof, we show the turnpike property between X∗
T (t) and the optimal

path X∗(t) in (2.2.13) for the probabilistic cell problem taking an initial X̄ ∼ N (m∞, ν∞) instead

of a real-valued vector x ∈ Rd. The reason for taking this normal random variable as the initial is

that the optimal path X∗(t) starting with any constant initial x ∈ Rd converges in distribution to

a normal random variable X̄ ∼ N (m∞, ν∞) as t → ∞ from (2.2.15). We refer the asymptomatic

X̄ ∼ N (m∞, ν∞) to be the equilibrium point of X∗(t) in (2.2.13). The proof of Theorem 10 when

X∗ taking an initial value x ∈ Rd follows a similar approach.

2.4 Example

In this section, we give an example to illustrate the results in Theorem 9 and Theorem 10. In this

example, we consider the case when d = 1.

Let A = 0, b = 0, Q = 1, q = 0, r = −1. Then, the underlying process (2.1.1) is reduced to

dX(t) = u(t)dt+ σdW (t), X0 = x,

and the cost functional (2.1.2) can be simplified as following

JT (0, x;u) = E
[
1

2

∫ T

0

(
X2(t) + u2(t)− 2u(t)

)
dt

]
.

Firstly, we verify the result in Theorem 9. It is clear that Z1 = 1 and Z2 = 1 when we take

Z1 > 0 from the results in Lemma 1, and {Z̃1(t), Z̃2(t), Z̃3(t) : t ∈ [0, T ]} is the solution to the

system of ODEs 

˙̃Z1(t)− Z̃2
1 (t) + 1 = 0;

˙̃Z2(t)− Z̃1(t)Z̃2(t) + Z̃1(t) = 0;

˙̃Z3(t) + Z̃2(t)−
1

2
Z̃2
2 (t) +

1

2
σ2Z̃1(t)−

1

2
= 0;

Z̃1(T ) = Z̃2(T ) = Z̃3(T ) = 0.

By calculation, we obtain the solution to the above system of ODEs as follows

Z̃1(t) =
1− e2t−2T

1 + e2t−2T
, Z̃2(t) = 1− e−

∫ T
t Z̃1(s)ds = 1− 2et−T

1 + e2t−2T
,

and

Z̃3(t) =
1

2
σ2(T − t)− 1

2
σ2 ln

(
2

1 + e2t−2T

)
+

1

2
− 1

1 + e2t−2T
.
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Similarly, we know that f1, f2, f3 is the solution to

ḟ1(t)− 2f1(t) + 2 = 0;

ḟ2(t)− f2(t) + 1 = 0;

ḟ3(t) +
1

2
σ2f1(t) = 0;

f1(T ) = f2(T ) = f3(T ) = 0,

which gives that

f1(t) = 1− e2t−2T , f2(t) = 1− et−T , f3(t) =
1

2
σ2(T − t)− 1

4
σ2 +

1

4
σ2e2t−2T .

Thus, we could obtain the difference between fi(t) and Z̃i(t) for i = 1, 2, 3 by

Γ1(0) = e−2T 1− e−2T

1 + e−2T
, Γ2(0) = e−T 1− e−2T

1 + e−2T
,

and

Γ3(0) =
1

4
σ2
(
e−2T − 1 + 2 ln

(
2

1 + e−2T

))
+

1

1 + e−2T
− 1

2
.

Note that for x ∈ R and T large enough,

JT (0, x;u
∗)− VT (0, x) =

1

2
Γ1(0)x

2 + Γ2(0)x+ Γ3(0) ≥ Γ3(0)−
(Γ2(0))

2

2Γ1(0)
≥ 0.

On the other hand side, we have

JT (0, x;u
∗)− VT (0, x)

=
e−2T (1− e−2T )

2(1 + e−2T )
x2 +

e−T (1− e−2T )

1 + e−2T
x+

σ2

4

(
e−2T − 1 + 2 ln

(
2

1 + e−2T

))
+

1

1 + e−2T
− 1

2
.

Let T → ∞, we find that

lim
T→∞

(JT (0, x;u
∗)− VT (0, x)) =

1

4
σ2(ln 4− 1) +

1

2
,

which yields that JT (0, x;u
∗) − VT (0, x) = O(1) for all x ∈ R. Thus, we obtain the desired result

in Theorem 9 under this example.

Next, we check the result in Theorem 10. It is easy to get that D1 = 1 and D2 = 0 from

(2.2.12). Denote δT (t) = X∗
T (t)−X∗(t), we have

dδT (t) = −Z̃1(t)δT (t)dt+
(
1− Z̃2(t)

)
dt+

(
1− Z̃1(t)

)
X∗(t)dt

with the initial value δT (0) = x− X̄ ∼ N (x, σ
2

2 ). Applying the integrating factor method, we have
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the explicit form of δT (t) as following

δT (t) = δT (0)e
−

∫ t
0 Z̃1(s)ds +

∫ t

0
e−

∫ t
s Z̃1(r)dr

(
1− Z̃2(s)

)
ds

+

∫ t

0
e−

∫ t
s Z̃1(r)dr

(
1− Z̃1(s)

)
X∗(s)ds.

Then, we get the estimation

E
[
|δT (t)|2

]
≤ 3e−

∫ t
0 2Z̃1(s)dsE

[
|δT (0)|2

]
+ 3

(∫ t

0
e−

∫ t
s Z̃1(r)dr

(
1− Z̃2(s)

)
ds

)2

+ 3E

[(∫ t

0
e−

∫ t
s Z̃1(r)dr

(
1− Z̃1(s)

)
X∗(s)ds

)2
]
.

Firstly, since δT (0) = x− X̄ ∼ N (x, σ
2

2 ), we know that

3e−
∫ t
0 2Z̃1(s)dsE

[
|δT (0)|2

]
= 3e−2t

(
1 + e2t−2T

1 + e−2T

)2(
x2 +

σ2

2

)
≤ 12e−2t

(
x2 +

σ2

2

)
.

Next, by the Hölder’s inequality and some simplifications, we can estimate the second term as

3

(∫ t

0
e−

∫ t
s Z̃1(r)dr

(
1− Z̃2(s)

)
ds

)2

≤ 12e−2(T−t).

Lastly, using the Hölder’s inequality again, we have

3E

[(∫ t

0
e−

∫ t
s Z̃1(r)dr

(
1− Z̃1(s)

)
X∗(s)ds

)2
]
≤ 24e−4T

∫ t

0
e4sE

[
(X∗(s))2

]
ds.

Similar with the calculation of expectation and variance of X∗ in Subsection 2.2.2.3, we know that

E [X∗(s)] = E
[
X̄
]
e−s = 0, Var (X∗(s)) =

σ2

2

(
1− e−2s

)
+ Var

(
X̄
)
e−2s =

σ2

2
,

as X̄ ∼ N (0, σ
2

2 ), which gives E[(X∗(s))2] = σ2

2 . Then

3E

[(∫ t

0
e−

∫ t
s Z̃1(r)dr

(
1− Z̃1(s)

)
X∗(s)ds

)2
]
≤ 3σ2e−4(T−t).

Thus, we obtain the desired inequality

E
[
|δT (t)|2

]
≤ 12

(
x+

σ2

2

)
e−2t + 12e−2(T−t) + 3σ2e−4(T−t)

≤ K6

(
e−2t + e−2(T−t)

)
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for all t ∈ [0, T ], where K6 = max{12(x+ σ2

2 ), 12 + 3σ2}. Similarly, since

u∗T (t)− u∗(t) = 1− Z̃2(t) +
(
1− Z̃1(t)

)
X∗(t)− Z̃1(t)δT (t),

by some analytical calculations and simplifications, we have

E
[
|u∗T (t)− u∗(t)|2

]
≤ K7

(
e−2t + e−2(T−t)

)
for all t ∈ [0, T ], where K7 ≥ 12+6σ2+3K6. Therefore, the desired turnpike property is obtained.

2.5 Appendix

Proof of Lemma 11. From the standard dynamic programming principle, we obtain the HJB equa-

tion {
−∂tVT (t, x) +H

(
x,−∇xVT (t, x),−D2

xVT (t, x)
)
= 0,

VT (T, x) = 0,
(2.5.1)

where

L(x, u) =
1

2

(
x⊤Qx+ |u|2 + 2q⊤x+ 2r⊤u

)
,

H(x, p̄, q̄) = sup
u∈R

{
(Ax+ u+ b)⊤p̄+

1

2
σ2trace(q̄)− L(x, u)

}
.

Taking derivative to the terms in the supermum with respect to u, and letting it be zero, we have

u+ r +∇xVT (t, x) = 0. Thus, the optimal feedback control is given by

u∗T (t) = − (r +∇xVT (t,X∗
T (t))) ,

and the value function VT (t, x) satisfies

0 = ∂tVT (t, x) + x⊤A∇xVT (t, x) + (b− r)⊤∇xVT (t, x)−
1

2
|∇xVT (t, x)|2

+
1

2
σ2∆xVT (t, x) +

1

2
x⊤Qx+ q⊤x− 1

2
|r|2.

(2.5.2)

Next, we give the semi-explicit solution to the HJB equation (2.5.1). Suppose the solution VT
to the HJB equation (2.5.1) is in C1,2([0, T ]× Rd), we assume the value function has the form

VT (t, x) =
1

2
x⊤Z̃1(t)x+ x⊤Z̃2(t) + Z̃3(t),

where Z̃1 : [0, T ] 7→ Sd×d, Z̃2 : [0, T ] 7→ Rd and Z̃3 : [0, T ] 7→ R are real-valued functions in
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C1([0, T ]). Then, it is straightforward to get that

∂tVT (t, x) =
1

2
x⊤ ˙̃Z1(t)x+ x⊤ ˙̃Z2(t) +

˙̃Z3(t),

∇xVT (t, x) = Z̃1(t)x+ Z̃2(t),

D2
xVT (t, x) = Z̃1(t).

Plugging the above terms into equation (2.5.2), we have

0 =
1

2
x⊤
(
˙̃Z1(t) + 2AZ̃1(t)− Z̃2

1 (t) +Q
)
x

+ x⊤
(
˙̃Z2(t) +AZ̃2(t)− Z̃1(t)Z̃2(t) + Z̃1(t)(b− r) + q

)
+ ˙̃Z3(t) +

1

2
σ2trace(Z̃1(t)) + b⊤Z̃2(t)−

1

2
|Z̃2(t) + r|2

for all x ∈ Rd with Z̃1(T ) = Od, Z̃2(T ) = 0d, and Z̃3(T ) = 0. Setting up the coefficients of linear

and quadratic terms with respect to x and constant to 0, we obtain the Riccati system of ODEs

(2.3.2). Moreover, from the explicit form of VT (t, x), the optimal feedback control of the finite time

control problem is given by u∗T (t) = −(Z̃1(t)X
∗
T (t) + Z̃2(t) + r) for all t ∈ [0, T ].

Proof of Lemma 12. From (2.2.14), the optimal control for the probabilistic cell problem is

u∗(t) = − (Z1X
∗(t) + Z2 + r) ,

which is a feedback control. If we take this control in the finite time control problem, then the

underlying process becomes

dXT (t) = (AXT (t)− (Z1XT (t) + Z2 + r) + b) dt+ σdW (t)

= −D1XT (t)dt+D2dt+ σdW (t)

with XT (0) = x, where D1 and D2 are constants given in (2.2.12). By inserting the optimal control

of the probabilistic cell problem into the cost functional of the finite time control problem, we

obtain JT (t, x;u
∗) equals to

E
[∫ T

t

(
1

2
X⊤

T (s)
(
Q+ Z2

1

)
XT (s) +X⊤

T (s)(Z1Z2 + q) +
1

2

(
|Z2|2 − |r|2

))
ds

]
.

From Feynman-Kac’s formula, if JT (·, ·;u∗) ∈ C1,2([0, T ]×Rd), it is the solution to the following

PDE 
∂tJT (t, x;u

∗) + (−D1x+D2)
⊤∇xJT (t, x;u

∗) +
1

2
σ2∆xJT (t, x;u

∗)

+
1

2
x⊤
(
Q+ Z2

1

)
x+ x⊤ (Z1Z2 + q) +

1

2

(
|Z2|2 − |r|2

)
= 0,

JT (T, x;u
∗) = 0.

(2.5.3)
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We consider that the solution to (2.5.3) has the form

JT (t, x;u
∗) =

1

2
x⊤f1(t)x+ x⊤f2(t) + f3(t),

where f1 : [0, T ] 7→ Sd×d, f2 : [0, T ] 7→ Rd and f3 : [0, T ] 7→ R are real-valued functions in C1([0, T ]).

Then, it is clear that

∂tJT (t, x;u
∗) =

1

2
x⊤ḟ1(t)x+ x⊤ḟ2(t) + ḟ3(t)

∇xJT (t, x;u
∗) = f1(t)x+ f2(t)

D2
xJT (t, x;u

∗) = f1(t).

Plugging the above terms into the PDE (2.5.3) satisfied by JT (t, x;u
∗), we obtain

1

2
x⊤ḟ1(t)x+ x⊤ḟ2(t) + ḟ3(t) + (−D1x+D2)

⊤(f1(t)x+ f2(t)) +
1

2
σ2trace(f1(t))

+
1

2
x⊤
(
Q+ Z2

1

)
x+ x⊤ (Z1Z2 + q) +

1

2

(
|Z2|2 − |r|2

)
= 0

for all x ∈ Rd with f1(T ) = Od, f2(T ) = 0d, and f3(T ) = 0. Setting up the coefficients of linear

and quadratic terms with respect to x and constant to 0, and plugging D1, D2 in (2.2.12) back, we

obtain (2.3.3).

33



34



Chapter 3

Convergence rate of LQG mean field

games with Markov chain as common

noise

3.1 Introduction

In this chapter, we study the convergence rate of equilibrium measures of N -player differential game

in the context of Linear-Quadratic (LQ) structure with a common noise to its limiting MFG system.

Different from the works mentioned above, the common noise in this chapter is a continuous-time

Markov chain (CTMC) instead of Brownian motion, which often models the real-world control

problems associated with hybrid systems. Markov chains are widely used to model systems that

exhibit randomness and transition between different states. In various real-world scenarios, espe-

cially in economics (see [78]), finance (see [85]), biology (see [86]), and engineering (see [84]), the

dynamics of systems can be effectively represented as discrete states with probabilistic transitions

between them. By using CTMC, the applications aim to model less frequently changing common

noises, such as government policies implemented by two different regimes.

LQ control problems have been widely recognized in the stochastic control theory due to their

broad applications. More importantly, LQ structure leads to solvability in a closed form, namely the

Ricatti system, and this usually sheds light on many fundamental properties of the control theory.

For this reason, LQ structure has also been studied in MFG with or without common noises for

its importance. The related literature include major and minor Linear-Quadratic-Gaussian (LQG)

Mean Field Games system ([39, 65, 30]); social optimal in LQG Mean Field Games ([44, 29]); the

LQG Mean Field Games with different model settings ([5, 37, 6, 38]); and LQG Graphon Mean

Field Games ([35]). Recently, LQ Mean Field Games with a Brownian motion as the common noise

have also been studied in [1, 76] with restrictions of the dependence of measure on its mean alone.

Moreover, some literature considers various topics of Mean Field control and game problems with

Markov chain common noise, see [59, 66, 67].

A fundamental question in this regard is the convergence rate of the N -player game to the

desired MFG system. A well-known result is about the convergence rate of value functions of the
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generic player, which can be shown O(N−1), see for instance [13, 14, 16, 17, 46]. In particular, [46]

establishes the convergence rate of value functions in the sense of

JN
1 (α̂1, α̂−1) ≤ JN

1 (α1, α̂−1) +O(N−1),

where JN
1 is the value of the first player in the N -player game and α̂ is the Nash equilibrium

decentralized control process for the Mean Field Game problem.

In contrast, the convergence rate of equilibrium measures is another challenging question due to

the complication of the correlation structures among N players. To be more concrete, we examine

the behavior of the X̂
(N)
it , who represents the equilibrium state of the i-th player at time t in the N -

player game defined within the probability space
(
Ω(N),F (N),F(N),P(N)

)
. Additionally, we denote

X̂t as the equilibrium path at time t derived from the associated MFG defined in the probability

space (Ω,F ,F,P). The question pertains to the convergence of X̂
(N)
1t as follows:

(Q) The Wp-convergence rate of the representative equilibrium path,

Wp

(
L
(
X̂

(N)
1t

)
,L
(
X̂t

))
= O

(
N−?

)
.

Here, Wp denotes the p-Wasserstein metric.

The existing literature extensively explores the convergence rate in this context. For (Q),

Theorem 2.4.9 of the monograph [14] establishes a convergence rate of O(N−1/2) using the W1

metric. More recently, [48] addresses (Q) by introducing displacement monotonicity and controlled

common noise, and Theorem 2.23 applies the maximum principle of forward-backward propagation

of chaos to achieve the same convergence rate. It is important to note that these results are not

applicable to the LQG framework, primarily due to the assumption concerning the linear growth

of the cost functional.

The main result of this chapter establishes that the equilibrium measures exhibit a convergence

rate of 1/2 concerning the 2-Wasserstein distance. The precise statement of this result can be found

in Theorem 21. In comparison to the aforementioned literature, two primary distinctions emerge.

Firstly, within the framework of Mean Field Games, the common noise is modeled as a Continuous-

Time Markov Chain. Secondly, a significant difference lies in the cost function’s behavior, as it

does not possess linear growth within the context of the LQG framework.

To obtain the desired convergence rate in this chapter, the first building block is the charac-

terization of the equilibrium measure of the limiting MFG by a finite-dimensional ODE system.

The key step leading us to a desired finite-dimensional system is that, instead of searching for the

infinite-dimensional function directly, we postulate a Markovian structure via two auxiliary pro-

cesses (3.3.1) governed by its finite-dimensional coefficient functions, which exhibits the distinct

feature of Markov chain common noise relatives to the Brownian motion counterpart.

The next stage towards the convergence rate is to compare the limiting MFG system to an

N -player game. In contrast to the characterization of the MFG system, it is relatively routine to

solve the N -player game due to its LQ structure. Therefore, the convergence rate problem can

be recasted to the following question about a coupling of the two following processes: For two
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equilibrium processes X̂ of MFG in Ω and X̂
(N)
1 of the N -player game in Ω(N), finding a random

process ZN in Ω whose distribution is identical to X̂
(N)
1 satisfying the estimate in the form of

E[|X̂t − ZN
t |2] = O

(
N−?

)
. For this purpose, we first show an N -invariant algebraic structure of

the seemingly intractable κN3 dimensional ODE system (3.4.1), which originated from [46, Huang

and Yang] as a dimensional reduction in the system with Brownian common noise. Thanks to this

N -invariant structure, the complex ODE system (3.4.1) can be reduced to the ODE system (3.4.5)

whose dimension agrees with the ODE (3.2.12) of MFG system. Moreover, X̂
(N)
1 can be repre-

sented as a stochastic flow driven by two Brownian motions W
(N)
1 and W

(N)
−1 := 1√

N−1

∑N
i=2W

(N)
i ,

which enables us to embed the equilibrium process X̂
(N)
1 to any probability space having only two

Brownian motions.

The rest of this chapter is outlined as follows: Section 3.2 presents a precise formulation of

the problem and two main results. Section 3.3 is devoted to the derivation of our first result: the

equilibrium of MFG. In Section 3.4, we show in detail the convergence of the N -player game to

MFG, which yields our second main result. Section 3.5 demonstrates the convergence by some

numerical examples. The conclusion and some possible future works are summarised in Section

3.6. Section 3.7 is an appendix that collects some related facts to support our main theme.

3.2 Problem setup and main results

First, we collect common notations used in this chapter in Subsection 3.2.1. Then, we set up

problems on MFG and the N -player game separately in Subsections 3.2.2 and 3.2.3. The main

results are presented in Subsection 3.2.4 and some interpretations of our main results are added in

Subsection 3.2.5.

3.2.1 Notations

Let T > 0 be a fixed terminal time and (Ω,FT ,F = {Ft : 0 ≤ t ≤ T},P) be a completed filtered

probability space satisfying the usual conditions, on which W and B are two independent standard

Brownian motions, and Y is a continuous time Markov chain (CTMC) independent of (W,B) taking

values in a finite state space Y = {1, 2, . . . , κ} with a generator

Q = (qi,j)i,j∈Y (3.2.1)

satisfying qi,j ≥ 0 for all i ̸= j ∈ Y and
∑

i ̸=j qi,j + qi,i = 0 for each i ∈ Y. In the above, the

Brownian motion B does not play any role in MFG problem formulation until the convergence

proof of the N -player game to MFG.

By Lp := Lp(Ω,P), we denote the space of random variables X on (Ω,FT ,P) with finite p-th

moment with norm ∥X∥p = (E [|X|p])1/p. We also denote by Lp
F := Lp

F([0, T ]× Ω) the space of all

F-progressively measurable random processes α = (αt)0≤t≤T satisfying

E
[∫ T

0
|αt|pdt

]
<∞.
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For any polish (complete separable metric) space (P,B(P ), d), we use δx to denote the Dirac

measure on the point x ∈ P . Then, the collection of all probabilities m on (P,B(P ), d) having finite

k-th moment is denoted by Pk(P ), i.e.

[m]k :=

∫
xkm(dx) <∞, ∀m ∈ Pk(P ).

The equilibrium of MFG with the common noise yields the conditional distribution. For real-

valued random variables X and Z in (Ω,FT ,P), we denote the distribution of X conditional on

σ(Z) by L(X|Z), or equivalently

L(X|Z)(A) = E[IA(X)|Z], ∀A ∈ FT .

Note that L(X|Z)(A) : Ω 7→ R is a σ(Z)-measurable random variable, therefore, L(X|Z) is σ(Z)-
measurable random probability distribution with k-th moment [L(X|Z)]k = E[Xk|Z], if it exists.

We refer to more details on the conditional distribution in Volume II of [17]. The next proposition

provides an embedding approach to prove a convergence in distribution, which will be used later

in the convergence of the N -player game to MFG.

Proposition 16. Suppose (Ω(N),F (N)
T ,P(N)) is a complete probability space. Let X(N) and X be

random variables of Ω(N) 7→ P and Ω 7→ P , respectively. Then, X(N) is convergent in distribution

to X, denoted by X(N) ⇒ X, if there exists ZN : Ω 7→ P satisfying L(ZN ) = L(X(N)), such that

ZN → X holds almost surely, i.e.

lim
N→∞

d(ZN , X) = 0, almost surely in P,

where d represents the metric assigned to the space P .

In this chapter, we formulate the N -player game in the completed filtered probability space

(Ω(N),F (N)
T ,F(N) := {F (N)

t : 0 ≤ t ≤ T},P(N)),

and Y (N) is the continuous time Markov chain in Ω(N) with the same generator given by (3.2.1)

and W (N) = (W
(N)
i : i = 1, 2, . . . , N) is an N -dimensional standard Brownian motion. We assume

Y (N) and W (N) are independent of each other.

For better clarity, we use the superscript (N) for a random variable to emphasize the probability

space Ω(N) it belongs to. For example, Proposition 16 denotes a random variable in Ω(N) by X(N),

while its distribution copy in Ω by ZN , but not by Z(N).

3.2.2 The equilibrium of MFG

In this section, we define the equilibrium of MFG associated with a generic player’s stochastic

control problem in the probability setting Ω, see Section 3.2.1.

Given a random measure flow m : (0, T ]× Ω 7→ P2(R), consider a generic player who wants to

38



minimize her expected accumulated cost on [0, T ]:

J(y, x, α) = E
[∫ T

0

(
1

2
α2
s + F (Ys, Xs,ms)

)
ds+G(YT , XT ,mT )

∣∣∣Y0 = y,X0 = x

]
(3.2.2)

with some given cost functions F,G : Y × R × P2(R) 7→ R and underlying random processes

(Y,X) : [0, T ] × Ω 7→ Y × R. Among three processes (Y,X,m), the generic player can control the

process X via α in the form of

Xt = X0 +

∫ t

0

(
b̃1(Ys, s)Xs + b̃2(Ys, s)αs

)
ds+Wt, ∀t ∈ [0, T ], (3.2.3)

where b̃1(·, ·) and b̃2(·, ·) are two deterministic functions. We assume that the initial state X0

is independent of Y . The Brownian motion W is the individual noise of the generic player, the

process Y of (3.2.1) represents the common noise, and m = (mt)0≤t≤T is a given random density

flow normalized up to total mass one.

The objective of the control problem for the generic player is to find its optimal control α̂ ∈
A := L4

F to minimize the total cost, i.e.

V [m](y, x) = J [m](y, x, α̂) ≤ J [m](y, x, α), ∀α ∈ A. (3.2.4)

Associated with the optimal control α̂, we denote the optimal path by X̂ = (X̂t)0≤t≤T . To introduce

MFG Nash equilibrium, it is often convenient to highlight the dependence of the optimal path and

optimal control of the generic player and its associated value on the underlying density flow m,

which are denoted by

X̂t[m], α̂t[m], and V [m],

respectively. Now, we present the definition of the equilibrium below, see also Volume II-P127 of

[17] for a general setup with a common noise.

Definition 17. Given an initial distribution L(X0) = m0 ∈ P2(R), a random measure flow m̂ =

m̂(m0) is said to be an MFG equilibrium measure if it satisfies the fixed point condition

m̂t = L(X̂t[m̂]|Y ), ∀0 < t ≤ T, almost surely in P. (3.2.5)

The path X̂ and the control α̂ associated to m̂ is called the MFG equilibrium path and equilibrium

control, respectively. The value function of the control problem associated with the equilibrium

measure m̂ is called as MFG value function, denoted by

U(m0, y, x) = V [m̂](y, x). (3.2.6)

The flowchart of MFG diagram is given in Figure 3.1. It is noted from the optimality condition

(3.2.4) and the fixed point condition (3.2.5) that

J [m̂](y, x, α̂) ≤ J [m̂](y, x, α), ∀α
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Figure 3.1: MFG diagram.

holds for the equilibrium measure m̂ and its associated equilibrium control α̂, while it is not

J [m̂](y, x, α̂) ≤ J [m](y, x, α), ∀α,m.

Otherwise, this problem turns into a McKean-Vlasov control problem discussed in [66]. Further-

more, it’s important to note that the Continuous-Time Markov Chain Y serves a role as common

noise. This is due to the fact that the mean field term is conditioned on the distribution of Y .

3.2.3 Equilibrium of the N-player game

The discrete counterpart of MFG is an N -player game, which is formulated below in the probability

space Ω(N), see Section 3.2.1 for more details on the probability setup.

Recall that, W
(N)
it and W

(N)
jt are independent Brownian motions for j ̸= i and they are called

individual noises in the N -player game. The common noise Y (N) is the continuous time Markov

chain in Ω(N) with the generator given by (3.2.1). Let the player i follow the dynamic, for i =

1, 2, . . . , N ,

dX
(N)
it =

(
b̃1(Y

(N)
t , t)X

(N)
it + b̃2(Y

(N)
t , t)α

(N)
it

)
dt+ dW

(N)
it , X

(N)
i0 = x

(N)
i . (3.2.7)

The cost function for player i associated to the control α(N) = (α
(N)
i : i = 1, 2, . . . , N) is

JN
i (y, x(N), α(N)) = E

[∫ T

0

(
1

2
|α(N)

it |2 + F (Y
(N)
t , X

(N)
it , ρ(X

(N)
t ))

)
dt+

G(Y
(N)
T , X

(N)
iT , ρ(X

(N)
T ))

∣∣∣X(N)
0 = x(N), Y

(N)
0 = y

]
,

(3.2.8)

where x(N) = (x
(N)
1 , x

(N)
2 , . . . , x

(N)
N ) is an RN -valued random vector in Ω(N) to denote the initial
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state for N player, α
(N)
i ∈ A(N) := L4

F(N) , and

ρ(x(N)) =
1

N

N∑
i=1

δ
x
(N)
i

is the empirical measure of a vector x(N) with Dirac measure δ. We use the notation for the control

α(N) = (α
(N)
i , α

(N)
−i ) = (α

(N)
1 , α

(N)
2 , . . . , α

(N)
N ).

Definition 18. 1. The value function of player i for i = 1, 2, . . . , N of the Nash game is defined

by V N = (V N
i : i = 1, 2, . . . , N) satisfying the equilibrium condition

V N
i (y, x(N)) = JN

i (y, x(N), α̂
(N)
i , α̂

(N)
−i ) ≤ JN

i (y, x(N), α
(N)
i , α̂

(N)
−i ), (3.2.9)

for all α
(N)
i ∈ A(N).

2. The equilibrium path of the N -player game is the random path X̂
(N)
t = (X̂

(N)
1t , X

(N)
2t , . . . , X̂

(N)
Nt )

driven by (3.2.7) associated to the control α̂
(N)
t satisfying the equilibrium condition of (3.2.9).

3.2.4 The main result with quadratic cost structures

We consider the following two functions F,G : Y × R× P2(R) 7→ R in the cost functional (3.2.2):

F (y, x,m) = h(y)

∫
R
(x− z)2m(dz), (3.2.10)

and

G(y, x,m) = g(y)

∫
R
(x− z)2m(dz), (3.2.11)

for some h, g : Y 7→ R+. In this case, the F and G terms in (3.2.8) of the N -player game can be

written by

F (Y
(N)
t , X

(N)
it , ρ(X

(N)
t )) =

h(Y
(N)
t )

N

N∑
j=1

(X
(N)
it −X

(N)
jt )2,

and

G(Y
(N)
T , X

(N)
iT , ρ(X

(N)
T )) =

g(Y
(N)
T )

N

N∑
j=1

(X
(N)
iT −X

(N)
jT )2,

respectively.

Remark 19. First, we note that F and G possess the quadratic structures in x. Secondly, the

coefficients h(y) and g(y) provide the sensitivity to the mean field effects, which depend on the

current CTMC state. For another remark, let us consider the scenario where the number of states

is 2 and sensitivities are invariant, say

h(0) = h(1) = h, g(0) = g(1) = 0.
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Then the cost function and hence the entire problem is free from the common noise. Interestingly,

as shown in the Appendix 3.7.1, there is no global solution for MFG when h < 0, while there is a

global solution when h > 0.

Moreover, the uniqueness of Mean Field Game can be achieved under the displacement mono-

tonicity condition. It is easy to check that (3.2.10)-(3.2.11) satisfy the displacement monotonicity

condition. Note that

Fx(y, x,m) = 2h(y)(x− [m]1), Gx(y, x,m) = 2g(y)(x− [m]1),

which gives that

E [(Fx(y,X1,mX1)− Fx(y,X2,mX2)) (X1 −X2)] = 2h(y)
(
E
[
(X1 −X2)

2
]
− (E[X1]− E[X2])

2
)
≥ 0

for all y ∈ Y if h > 0 on Y, where mX1 and mX2 is the law of X1 and X2 respectively. Similarly,

we can obtain that

E [(Gx(y,X1,mX1)−Gx(y,X2,mX2)) (X1 −X2)] ≥ 0

for all y ∈ Y if g > 0 on Y. Therefore, we require positive values for all sensitivities for simplicity. It

is of course an interesting problem to investigate the explosion when some sensitivities are negative.

Wrapping up the above discussions, we impose the following assumptions:

(A0) b̃1(y, ·), b̃2(y, ·) : [0, T ] 7→ R are continuous functions for all y ∈ Y.

(A1) The cost functions are given by (3.2.10)-(3.2.11) with h, g > 0; The initial X0 of MFG satisfies

E[X2
0 ] <∞.

(A2) In addition to (A1), the initial x(N) = (x
(N)
1 , x

(N)
2 , . . . , x

(N)
N ) of the N -player game is a vector

of i.i.d. random variables in Ω(N) with the same distribution as the initial L(X0) of MFG.

Our objective for this chapter is to understand the Nash equilibrium of MFG and its connection

to the N -player game equilibrium:

(P1) With Assumptions (A0), (A1), and (A2), obtain the convergence rate of (X̂
(N)
1t , Y (N)) from

the N -player game of Definition 18 to (X̂t, Y ) from MFG of Definition 17 in distribution.

To answer (P1), it is critical to have a solid understanding of the joint distribution (X̂t, Y ) for the

underlying MFG, which yields another question:

(P2) With Assumptions (A0) and (A1), characterize the MFG equilibrium path X̂, as well as

associated equilibrium measure m̂ along the Definition 17;

For our first main result, we first answer (P2) via the following Riccati system for unknowns
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(ay, by, cy, ky : y ∈ Y): 

a′y + 2b̃1yay − 2b̃22ya
2
y +

κ∑
i=1

qy,iai + hy = 0,

b′y +
(
2b̃1y − 4b̃22yay

)
by +

κ∑
i=1

qy,ibi + hy = 0,

c′y + ay + by +
κ∑

i=1

qy,ici = 0,

k′y − 2b̃22ya
2
y + 4b̃22yayby + 2b̃1yky +

κ∑
i=1

qy,iki = 0,

ay(T ) = by(T ) = gy , cy(T ) = ky(T ) = 0,

(3.2.12)

where hy = h(y), gy = g(y) for y ∈ Y. Next, we present our first main result about the equilibrium

path, the equilibrium control, and the value function in MFG.

Theorem 20 (MFG). Under (A0)-(A1), there exists a unique solution (ay, by, cy, ky : y ∈ Y) for

the Riccati system (3.2.12). With these solutions, the MFG equilibrium path X̂ = X̂[m̂] is given by

dX̂t =
(
b̃1(Yt, t)X̂t − 2b̃22(Yt, t)aYt(t)

(
X̂t − µ̂t

))
dt+ dWt, X̂0 = X0, (3.2.13)

with equilibrium control

α̂t = −2b̃2(Yt, t)aYt(t)
(
X̂t − µ̂t

)
, (3.2.14)

where

dµ̂t = b̃1(Yt, t)µ̂tdt, µ̂0 = E[X0].

Moreover, the value function U is

U(m0, y, x) = ay(0)x
2−2ay(0)x[m0]1 + ky(0)[m0]

2
1 + by(0)[m0]2 + cy(0), y ∈ Y.

The proof of theorem 20 is based on the Markovian structure of the equilibrium and the fixed

point condition of the MFG problem, and it is provided in Subsection 3.3.3. The next theorem

establishes the convergence result and answers the problem (P1) with the convergence rate 1
2 .

Theorem 21 (Convergence rate). Under Assumptions (A0)-(A1)-(A2), the joint law (X̂
(N)
1t , Y

(N)
t )

of the N -player game converges in distribution to that of the MFG equilibrium (X̂t, Yt) for any

t ∈ (0, T ] at the convergence rate

W2

(
L(X̂(N)

1t , Y
(N)
t ),L(X̂t, Yt)

)
= O

(
N− 1

2

)
, as N → ∞.

The proof of Theorem 21 is given in Subsection 3.4.3 since it needs the comparison between the

equilibrium path X̂
(N)
1t in the N -player game and the equilibrium path X̂t in MFG.
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3.2.5 Remarks on the main results

One can interpret the main results in plain words: For the N -player game with dynamic (3.2.7) and

cost structure (3.2.8) for large N , the equilibrium control of the generic player can be effectively

approximated by steering itself toward the population center µ̂t depending only on the function

b̃1(·) and the entire past of the common noise, whose velocity is dependent on only the function b̃2(·)
and the entire past of the common noise. The effectiveness can be quantified by the convergence

rate of 1/2 for the one-dimensional MFG under LQ structure and CMTC common noise. A natural

question is whether the convergence rate can be generalized to more general settings.

We may utilize the above outcome to depict a simplified scenario of traffic flow control, where

individual vehicles strive to minimize their own costs while taking into account their impact on

overall traffic dynamics. We could denote the dynamics of vehicle i within a city by X
(N)
i , and em-

ploy the common noise Y (N) to represent traffic conditions across various districts or intersections.

Each vehicle’s behavior is influenced not only by its driving habits and preferences but also by the

traffic situation in different districts or intersections of the city. Additionally, vehicles must factor

in their proximity to traffic centers and endeavor to find more efficient routes to their destinations.

This chapter focuses on the one-dimensional problem to avoid unnecessary symbol complexity.

The main convergence rate 1/2 still holds for multidimensional problems using the same coupling

procedure. For convenience to check, we summarize the computation involved in multidimensional

problems in Appendix 3.7.5.

The current coupling procedure can also be adapted with suitable modifications to the LQ Mean

Field Game problems with Brownian common noise, see [51]. In particular, the reduction of the

O(N3)-dimensional ODE can be conducted similarly and the convergence rate is still maintained

as 1/2. However, the dependence of the mean and variance process on the common noise and

subsequent calculations are significantly different from the current chapter, see Definition 4 of [51].

Indeed, choosing the CTMC common noise instead of Brownian motion does not simplify the

underlying problem, since it preserves the path-dependence feature of the equilibrium measure. On

the contrary, the advantage of CTMC common noise is that the applications aim to model less

frequently changing environment settings, such as government policies implemented by multiple

different regimes. Due to its realistic applications, stochastic control theory perturbed by CTMC is

extensively studied in the context of hybrid control problems, see books [60, 80] and the references

therein.

We close this section with a remark on the uniqueness. The uniqueness of Mean Field Game can

be achieved under Lasry-Lions monotonicity [55] or displacement monotonicity [33] and our setting

in Section 3.2.2 satisfies the displacement monotonicity. Thus, the convergence of Theorem 21

implies that the unique equilibrium path of the N -player game converges to the unique equilibrium

paths of the limiting MFG, which is characterized by Theorem 20.

3.3 Main results of MFG

This section is devoted to the proof of the first main result Theorem 20 on the MFG solution. First,

we outline the scheme based on the Markovian structure of the equilibrium by reformulating the
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MFG problem in Subsection 3.3.1. Next, we solve the underlying control problem in Subsection 3.3.2

and provide the corresponding Riccati system. Finally, Subsection 3.3.3 proves Theorem 20 by

checking the fixed point condition of MFG problem.

3.3.1 Overview

By Definition 18, to solve for the equilibrium measure, one shall search the infinite dimensional

space of the random measure flows m : (0, T ]×Ω 7→ P2(R), until a measure flow satisfies the fixed

point condition mt = L(X̂t|Y ),∀t ∈ (0, T ], see Figure 3.1, which requires to check the following

infinitely many conditions:

[mt]k = E[X̂k
t |Y ], ∀k = 1, 2, . . . ,

if they exist.

The first observation is that the cost functions F and G in (3.2.10)-(3.2.11) are dependent on

the measure m only via the first two moments:

F (y, x,m) = h(y)(x2 − 2x[m]1 + [m]2),

G(y, x,m) = g(y)(x2 − 2x[m]1 + [m]2).

Therefore, the underlying stochastic control problem for MFG can be entirely determined by the

input given by R2 valued random process µt = [mt]1 and νt = [mt]2, which implies that the fixed

point condition can be effectively reduced to check two conditions only:

µt = E[X̂t|Y ], νt = E[X̂2
t |Y ].

This observation effectively reduces our search from the space of random measure-valued processes

m : (0, T ]× Ω 7→ P2(R) to the space of R2-valued random processes (µ, ν) : (0, T ]× Ω 7→ R2.

Note that, if underlying MFG have no common noise Y , then (µ, ν) is a deterministic mapping

[0, T ] 7→ R2 and the above observation is enough to reduce the original infinite-dimensional MFG

into a finite-dimensional system. However, the following example shows that this is not the case

for MFG with a common noise and it becomes the main drawback to characterizing MFG via a

finite-dimensional system.

Example 1. To illustrate, we consider the following uncontrolled mean field dynamics: Let the

mean field term µt := E[X̂t|Y ], where the underlying dynamic is given by

dX̂t = −µtYtdt+ dWt.

• µt is path dependent on Y , i.e.,

µt = µ0 exp
{
−
∫ t

0
Ysds

}
.

This implies that no finite dimensional system is possible to characterize the process µt, since

the (t, Y ) 7→ µt is a function on an infinite dimensional domain.
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• µt is Markovian, i.e.,

dµt = −Ytµtdt.

It might be possible to characterize µt via a function (t, Yt, µt) 7→ dµt

dt on a finite dimensional

domain.

To solidify the above idea, we need to postulate the Markovian structure for the first and second

moments of the MFG equilibrium. More precisely, our search for the equilibrium will be confined

to the space M of measure flows whose first and second moment exhibits Markovian structure.

Definition 22. The space M is the collection of all FY
t -adapted measure flows m : [0, T ] × Ω 7→

P2(R), whose first moment [mt]1 := µt and second moment [mt]2 := νt satisfy

µt = µ0 +

∫ t

0
(w0(Ys, s)µs + w1(Ys, s)) ds,

νt = ν0 +

∫ t

0

(
w2(Ys, s)µs + w3(Ys, s)νs + w4(Ys, s)µ

2
s + w5(Ys, s)

)
ds,

(3.3.1)

for all t ∈ [0, T ] and for some smooth deterministic functions (wi : i = 0, 1, . . . , 5).

Figure 3.2: Equivalent MFG diagram.

The flowchart for our equilibrium is depicted in Figure 3.2. Subsection 3.3.2 covers the derivation

of the Riccati system for the LQG system with a given population measure flow m ∈ M, which

provides the key building block to MFG. In Subsection 3.3.3, we check the fixed point condition and

provide a finite-dimensional characterization of MFG, which gives the first main result Theorem

20.

3.3.2 The generic player’s control with a given population measure

The advantage of the generic player’s control problem associated with m ∈ M is that its optimal

path can be characterized via the following classical stochastic control problem:

46



• (P3) Given smooth functions w = (wi : i = 0, 1, . . . , 5), find the optimal value V̄ = V̄ [w]

V̄ (y, x, t, µ̄, v̄) = inf
α∈A

E
[∫ T

t

(
1

2
α2
s + F̄ (Ys, Xs, µs, νs)

)
ds

+Ḡ(YT , XT , µT , νT )
∣∣Yt = y,Xt = x, µt = µ̄, νt = ν̄

]
underlying R4-valued processes (Y,X, µ, ν) defined through (3.2.1)-(3.2.3)-(3.3.1) with the

finite dimensional cost functions: F̄ , Ḡ : R4 7→ R given by

F̄ (y, x, µ̄, ν̄) = h(y)(x2 − 2xµ̄+ ν̄),

Ḡ(y, x, µ̄, ν̄) = g(y)(x2 − 2xµ̄+ ν̄),

where µ̄, ν̄ are scalars, while µ, ν are used as processes.

Lemma 23. Given m ∈ M associated with w = (wi : i = 0, 1, . . . , 5), the player’s value (3.2.4)

under assumption (A1) is

U [m0](y, x) = V̄ (y, x, 0, [m0]1, [m0]2),

and the optimal control has a feedback form

α̂t = ᾱ(Yt, Xt, t, µt, νt)

underlying the processes (Y,X, µ, ν) defined through (3.2.1)-(3.2.3)-(3.3.1), whenever there exists a

feedback optimal control ᾱ for the problem (P3).

Proof. Due to the quadratic cost structure in (3.2.10)-(3.2.11), we have enough regularity to all

concerned value functions and the details are omitted.

Next, we turn to the solution to the control problem (P3).

3.3.2.1 HJB equation

For the simplicity of notations, for each i ∈ {0, 1, 2, 3, 4, 5} and y ∈ Y, denote the function

(x, t, µ̄, ν̄) 7→ v(y, x, t, µ̄, ν̄) as vy, and denote t 7→ wi(y, t) as wiy. We apply similar notations

for other functions whenever they have a variable y ∈ Y. Formally, under enough regularity condi-

tions, the value function V̄ defined in (P3) is the solution v of the following coupled HJBs
∂tvy + b̃1yx∂xvy −

1

2

(
b̃2y∂xvy

)2
+

1

2
∂xxvy + ∂µvy (w0yµ̄+ w1y)+

∂νvy
(
w2yµ̄+ w3yν̄ + w4yµ̄

2 + w5y

)
+

κ∑
i=1

qy,ivi + F̄y = 0,

vy(x, T, µT , νT ) = Ḡy(x, µT , νT ), y ∈ Y.

(3.3.2)

Furthermore, the optimal control has to admit the feedback form of

α̂(t) = −b̃2(Yt, t)∂xv(Yt, X̂t, t, µt, νt). (3.3.3)
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Next, we identify what conditions are needed for equating the control problem (P3) and HJB

equation. Denote

S =

v ∈ C∞ :

(1 + |x|2)−1(|v|+ |∂tv|)+
(1 + |x|)−1(|∂xv|+ |∂µv|+ |∂νv|) + |∂xxv| < K,

∀(y, x, t, µ, ν), for some K

 .

Lemma 24. (Verification theorem) Consider the control problem (P3) with some given smooth w.

Suppose there exists a solution v ∈ S of (3.3.2). Then, vy(x, t, µ̄, ν̄) = V̄ (y, x, t, µ̄, ν̄) holds, and an

optimal control is provided by (3.3.3).

Proof. We first prove the verification theorem. Since v ∈ S, for any admissible α ∈ L4
F, the process

Xα is well defined and one can use Dynkin’s formula given by Lemma 34 to write

E [v(YT , XT , T, µT , νT )] = v(y, x, t, µ̄, ν̄) + E
[∫ T

t
Gα(s)v(Ys, Xs, s, µs, νs)ds

]
,

where

Gaf(y, x, s, µ̄, ν̄) =

(
∂t +

(
b̃1yx+ b̃2ya

)
∂x +

1

2
∂xx +Q+ (w0yµ̄+ w1y) ∂µ̄+(

w2yµ̄+ w3yν̄ + w4yµ̄
2 + w5y

)
∂ν̄
)
f(y, x, s, µ̄, ν̄).

Note that HJB actually implies that

inf
a

{
Gav +

1

2
a2
}

= −F̄ ,

which again implies

−Gav ≤ 1

2
a2 + F̄ .

Hence, we obtain that for all α ∈ L4
F,

v(y, x, t, µ̄, ν̄)

= E
[∫ T

t
−Gα(s)v(Ys, Xs, s, µs, νs)ds

]
+ E [v(YT , XT , T, µT , νT )]

≤ E
[∫ T

t

(
1

2
α2(s) + F̄ (Ys, Xs, µs, νs)

)
ds

]
+ E

[
Ḡ(YT , XT , µT , νT )

]
= J(y, x, t, α, µ̄, ν̄).

In the above, if α is replaced by α̂ given by the feedback form (3.3.3), then since ∂xv is Lipschitz

continuous in x, there exists corresponding optimal path X̂ ∈ L4
F. Thus, α̂ is also in L4

F. One can

repeat all above steps by replacing X and α by X̂ and α̂, and ≤ sign by = sign to conclude that v

is indeed the optimal value.
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3.3.2.2 LQG solution

Note that, the costs F̄ and Ḡ of (P3) are quadratic functions in (x, µ̄, ν̄), while the drift function

of the process ν of (3.3.1) is not linear in (x, µ̄, ν̄). Therefore, the control problem (P3) does not

fall into the standard LQG control framework. Nevertheless, similar to the LQG solution, we guess

the value function as a quadratic function in the form of

vy(x, t, µ̄, ν̄) =ay(t)x
2 + dy(t)x+ ey(t)µ̄+ fy(t)xµ̄+ ky(t)µ̄

2 + by(t)ν̄ + cy(t), y ∈ Y. (3.3.4)

With the above setup, for t ∈ [0, T ], the optimal control is

α̂t = −b̃2(Yt, t)∂xv(Yt, X̂t, t, µt, νt) = −b̃2(Yt, t)
(
2aYt(t)X̂t + dYt(t) + fYt(t)µt

)
, (3.3.5)

and the optimal path X̂ is

dX̂t =
(
b̃1(Yt, t)X̂t − b̃22(Yt, t)

(
2aYt(t)X̂t + dYt(t) + fYt(t)µt

))
dt+ dWt. (3.3.6)

Denote the following ODE systems for y ∈ Y,

a′y + 2b̃1yay − 2b̃22ya
2
y +

κ∑
i=1

qy,iai + hy = 0,

d′y + b̃1ydy − 2b̃22yaydy + fyw1y +
κ∑

i=1

qy,idi = 0,

e′y − b̃22ydyfy + 2kyw1y + eyw0y + byw2y +
κ∑

i=1

qy,iei = 0,

f ′y + b̃1yfy − 2b̃22yayfy + fyw0y +
κ∑

i=1

qy,ifi − 2hy = 0,

k′y −
1

2
b̃22yf

2
y + 2kyw0y + byw4y +

κ∑
i=1

qy,iki = 0,

b′y + byw3y +
κ∑

i=1

qy,ibi + hy = 0,

c′y + ay −
1

2
b̃22yd

2
y + eyw1y + byw5y +

κ∑
i=1

qy,ici = 0,

(3.3.7)

with terminal conditions

ay(T ) = gy, by(T ) = gy, cy(T ) = 0, dy(T ) = 0,

ey(T ) = 0, fy(T ) = −2gy, ky(T ) = 0.
(3.3.8)

Lemma 25. Suppose there exists a unique solution (ay, by, cy, dy, ey, fy, ky : y ∈ Y) to the ODE
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system (3.3.7)-(3.3.8) on [0, T ]. Then the value function of (P3) is

V̄ (y, x, t, µ̄, ν̄) = vy(x, t, µ̄, ν̄)

= ay(t)x
2 + dy(t)x+ ey(t)µ̄+ fy(t)xµ̄+ ky(t)µ̄

2 + by(t)ν̄ + cy(t)
(3.3.9)

for y ∈ Y and the optimal control and optimal path are given by (3.3.5) and (3.3.6), respectively.

Proof. With the form of value function vy given in (3.3.4) and the first and second moment of the

conditional population density given in (3.3.1), we have

∂tvy = a′y(t)x
2 + d′y(t)x+ e′y(t)µ̄+ f ′y(t)xµ̄+ k′y(t)µ̄

2 + b′y(t)ν̄ + c′y(t),

∂xvy = 2xay(t) + dy(t) + fy(t)µ̄,

∂xxvy = 2ay(t),

∂µ̄vy = ey(t) + fy(t)x+ 2ky(t)µ̄,

∂ν̄vy = by(t),

for y ∈ Y. Plugging them back to the coupled HJBs in (3.3.2), we get a system of ODEs in (3.3.7)

by equating x, µ̄, ν̄-like terms in each equation.

Therefore, any solution (ay, by, cy, dy, ey, fy, ky : y ∈ Y) of ODE system (3.3.7) leads to the solu-

tion of HJB (3.3.2) in the form of the quadratic function given by (3.3.9). Since the (ay, by, cy, dy, ey, fy, ky :

y ∈ Y) are differentiable functions on the closed set [0, T ], they are also bounded, and the function

v meets regularity conditions required by Lemma 24 to conclude the desired result.

3.3.3 Fixed point condition and the proof of Theorem 20

Going back to the ODE system (3.3.7), there are 7κ equations, while we have total 13κ deterministic

functions of [0, T ]× R to be determined to characterize MFG. Those are

(ay, by, cy, dy, ey, fy, ky : y ∈ Y) and (wiy : i = 0, 1, . . . 5, y ∈ Y).

In the following, we identify the missing 6κ equations by checking the fixed point condition:

µs = E
[
X̂s

∣∣∣Y ] , νs = E
[
X̂2

s

∣∣∣Y ] , ∀s ∈ [0, T ], (3.3.10)

where µ and ν are two auxiliary processes (µ, ν)[w] defined in (3.3.1), see Figure 3.2. This leads to

a complete characterization of the equilibrium for the MFG posed by (P2).

Note that based on the dynamic of the optimal X̂ defined in (3.3.6), the fixed point condition

(3.3.10) implies that the first moment µ̂s := E[X̂s

∣∣∣Y ] and the second moment ν̂s := E[X̂2
s

∣∣∣Y ] of

the optimal path conditioned on Y satisfy
µ̂s = µ̄+

∫ s

t

((
b̃1(Yr, r)− b̃22(Yr, r) (2aYr(r) + fYr(r))

)
µ̂r − b̃22(Yr, r)dYr(r)

)
dr,

ν̂s = ν̄ +

∫ s

t

(
1 + 2b̃1(Yr, r)ν̂r − b̃22(Yr, r)

(
4aYr(r)ν̂r + 2dYr(r)µ̂r + 2fYr(r)µ̂

2
r

))
dr,

(3.3.11)

50



for s ≥ t. Note that under the optimal control in (3.3.5), comparing the terms in (3.3.1) and

(3.3.11), we obtain another 6κ equations:

w0y = b̃1y − 2b̃22yay − b̃22yfy, w1y = −b̃22ydy, w2y = −2b̃22ydy,

w3y = −4b̃22yay + 2b̃1y, w4y = −2b̃22yfy, w5y = 1,
(3.3.12)

for y ∈ Y. Using further algebraic structures, one can reduce the ODE system of 13κ equations

composed by (3.3.7) and (3.3.12) into a system of 4κ equations of the form (3.2.12) for the MFG

characterization in Theorem 20.

Proof of Theorem 20. Since ay (y ∈ Y) has the same expressions as (3.2.12), its existence,

uniqueness and boundedness are shown in Lemma 38. Given ay (y ∈ Y) and smooth bounded w’s,

(by, dy, ey, fy : y ∈ Y)

is a coupled linear system, and their existence, uniqueness and boundedness is shown by Theorem

12.1 in [2]. Similarly, given (by, dy, fy : y ∈ Y), (ky, cy : y ∈ Y) is a linear system, and their existence

and uniqueness is also guaranteed by Theorem 12.1 in [2].

The ODE system (3.3.7) can be rewritten by

a′y + 2b̃1yay − 2b̃22ya
2
y +

κ∑
i=1

qy,iai + hy = 0,

d′y + b̃1ydy − 2b̃22yaydy − b̃22yfydy +
κ∑

i=1

qy,idi = 0,

e′y − b̃22ydyfy − 2b̃22ykydy + ey

(
b̃1y − 2b̃22yay − b̃22yfy

)
− 2b̃22ybydy +

κ∑
i=1

qy,iei = 0,

f ′y + b̃1yfy − 2b̃22yayfy + fy

(
b̃1y − 2b̃22yay − b̃22yfy

)
+

κ∑
i=1

qy,ifi − 2hy = 0,

k′y −
1

2
b̃22yf

2
y + 2ky

(
b̃1y − 2b̃22yay − b̃22yfy

)
− 2b̃22ybyfy +

κ∑
i=1

qy,iki = 0,

b′y + by

(
−4b̃22yay + 2b̃1y

)
+

κ∑
i=1

qy,ibi + hy = 0,

c′y + ay −
1

2
b̃22yd

2
y − 2b̃22ydyey + by +

κ∑
i=1

qy,ici = 0,

with the terminal conditions

ay(T ) = gy, by(T ) = gy, cy(T ) = 0, dy(T ) = 0, ey(T ) = 0, fy(T ) = −2gy, ky(T ) = 0.

Since ay, by (y ∈ Y) has the same expressions as (3.2.12), its existence, uniqueness and bound-

edness are shown in Lemma 38. Meanwhile, with the given (ay, by : y ∈ Y), we denote ly = 2ay+fy,
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and then

l′y + 2b̃1yly − b̃22yl
2
y +

κ∑
i=1

qy,ili = 0 , ly(T ) = 0.

By Lemma 36 and Lemma 37 in Appendix, there exists a unique solution for ly (y ∈ Y), which is

ly = 0, y ∈ Y. This gives fy = −2ay and d′y + b̃1ydy +
∑κ

i=1 qy,idi = 0, which implies dy = 0, y ∈ Y.

Then, the equation for ey can be simplified as e′y + b̃1yey +
∑κ

i=1 qy,iei = 0, which indicates that

ey = 0, y ∈ Y. For ky, cy, with the given of (ay, by : y ∈ Y), we have

k′y + 2b̃1yky − 2b̃22ya
2
y + 4b̃22yayby +

κ∑
i=1

qy,iki = 0 , ky(T ) = 0,

c′y + ay + by +
κ∑

i=1

qy,ici = 0 , cy(T ) = 0.

The existence and uniqueness of the solution for ky, cy (y ∈ Y) are yielded by Theorem 12.1 in [2].

Note that in this case, since 2ay + fy = 0 and dy = 0 for y ∈ Y, from (3.3.11) we have

µ̂s = µ̄+

∫ s

t
b̃1(Yr, r)µ̂r dr

for all s ∈ [t, T ]. Then

ν̂s = ν̄ +

∫ s

t

(
1 + 2b̃1(Yr, r)ν̂r − 4b̃22(Yr, r)aYr(r)ν̂r + 4b̃22(Yr, r)aYr(r)µ̂

2
r

)
dr.

Plugging dy = 0 for y ∈ Y back to (3.3.5), we obtain the optimal control by

α̂s = −2b̃22(Ys, s)aYs(s)
(
X̂s − µ̂s

)
.

Since we have dy = 0 for y ∈ Y, the value function can be simplified from (3.3.4) to

vy(x, t, µ̄, ν̄) = ay(t)x
2−2ay(t)xµ̄+ ky(t)µ̄

2 + by(t)ν̄ + cy(t).

By the equivalence Lemma 23, it yields the value function U of Theorem 20 . Moreover, since

fy = −2ay and ky ̸= 0, the ODE system (3.3.7) together with (3.3.12) can be reduced into (3.2.12).

From the Lemma 38, the existence and uniqueness of (ay, by, cy, ky : y ∈ Y) in (3.2.12) is guaranteed.

3.4 The N-player game and its convergence to MFG

In this section, we show the convergence of theN -player game to MFG. To simplify the presentation,

we may omit the superscript (N) for the processes in the probability space Ω(N), whenever there

is no confusion. First, we solve the N -player game in Subsection 3.4.1, which provides a Riccati

system consisting of O(N3) equations. Subsection 3.4.2 reduces the corresponding Riccati system

52



into an ODE system whose dimension is independent of N . This becomes the key building block

of the convergence rate obtained in Subsection 3.4.3. To obtain the convergence rate, Subsection

3.4.3 provides an explicit embedding of some processes in Ω(N) into the probability space Ω. Note

that, Ω(N) is much richer than Ω since Ω(N) contains N Brownian motions while Ω has only two

Brownian motions. Therefore, careful treatment has to be carried out to some processes of our

interest, otherwise, such an embedding is in general implausible.

3.4.1 Characterization of the N-player game by Riccati system

The N -player game is indeed an N -coupled stochastic LQG problem by its very own definition, see

Subsection 3.2.3. Therefore, the solution can be derived via Riccati system with the existing LQG

theory given below: For i = 1, 2, . . . , N , y ∈ Y,

A′
iy + 2b̃1yeie

⊤
i Aiy − 2b̃22yA

⊤
iyeie

⊤
i Aiy +

N∑
j ̸=i

(
2b̃1yeje

⊤
j Aiy − 4b̃22yA

⊤
jyeje

⊤
j Aiy

)
+

κ∑
j=1

qy,jAij +
hy
N

N∑
j ̸=i

(ei − ej) (ei − ej)
⊤ = 0,

B′
iy +

N∑
j ̸=i

(
b̃1yeje

⊤
j Biy − 2b̃22yA

⊤
iyeje

⊤
j Bjy − 2b̃22yA

⊤
jyeje

⊤
j Biy

)
+b̃1yeie

⊤
i Biy − 2b̃22yA

⊤
iyeie

⊤
i Biy +

κ∑
j=1

qy,jBij = 0,

C ′
iy −

1

2
b̃22yB

⊤
iyeie

⊤
i Biy −

N∑
j ̸=i

b̃22yB
⊤
jyeje

⊤
j Biy +

N∑
j=1

tr(Ajy) +
κ∑

j=1

qy,jCij = 0,

Aiy(T ) =
gy
N

Λi, Biy(T ) = 0 · 1N , Ciy(T ) = 0,

(3.4.1)

where the solutions consist of N ×N symmetric matrices Aiy’s, N -dimensional vectors Biy’s, and

Ciy ∈ R. In the above, 1N is the N -dimensional vector with all entries are 1, Λi’s are N × N

matrices with diagonal 1 except (Λi)ii = N − 1, (Λi)ij = (Λi)ji = −1 for any j ̸= i and the rest

entries as 0, and ei’s are the N -dimensional natural basis.

Lemma 26. Suppose (Aiy, Biy, Ciy : i = 1, 2, . . . , N, y ∈ Y) is the solution of (3.4.1). Then, the

value functions of the N -player game defined by (3.2.9) are

Vi(y, x
(N)) = (x(N))⊤Aiy(0)x

(N) + (x(N))⊤Biy(0) + Ciy(0), i = 1, 2, . . . , N.

Moreover, the path and the control under the equilibrium are

dX̂it =
(
b̃1(Yt, t)X̂it − b̃22(Yt, t)

(
2(AiYt)

⊤
i X̂t + (BiYt)i

))
dt+ dWit, i = 1, 2, . . . , N, (3.4.2)

and

α̂it = −b̃2(Yt, t)
(
2(AiYt)

⊤
i X̂t + (BiYt)i

)
,
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where (A)i denotes the i-th column of matrix A, (B)i denotes the i-th entry of vector B and

X̂t = [X̂1t, X̂2t, . . . , X̂Nt]
⊤.

Proof. It is standard that, under enough regularities, the value function V (y, x(N)) = (V1, V2, . . . , VN )

(y, x(N)) of the N -player game can be lifted to the solution viy(x
(N), t) of the following system of

HJB equations, for i = 1, 2, . . . , N and y ∈ Y,

∂tviy + b̃1yxi∂iviy −
1

2

(
b̃2y∂iviy

)2
+

N∑
j ̸=i

(
b̃1yxj − b̃22y∂jvjy

)
∂jviy

+
1

2
∆viy +

κ∑
j=1

qy,jvij +
hy
N

N∑
j ̸=i

(
(ei − ej)

⊤ x(N)
)2

= 0,

viy(x
(N), T ) =

gy
N

N∑
j ̸=i

(
(ei − ej)

⊤x(N)
)2
.

(3.4.3)

Then, the value functions V of the N -player game defined by (3.2.9) is Vi(y, x
(N)) = viy(x

(N), 0)

for all i = 1, 2, . . . , N . Moreover, the path and the control under the equilibrium are

dX̂it =
(
b̃1(Yt, t)X̂it − b̃22(Yt, t)∂iviYt(X̂t, t)

)
dt+ dWit, i = 1, 2, . . . , N,

and

α̂it = −b̃2(Yt, t)∂iviYt(X̂t, t).

The proof is the application of Dynkin’s formula and the details are omitted here. Due to its LQG

structure, the value function leads to a quadratic function of the form

viy(x
(N), t) = (x(N))⊤Aiy(t)x

(N) + (x(N))⊤Biy(t) + Ciy(t).

For each i = 1, 2, . . . , N , after plugging Viy into (3.4.3), and matching the coefficient of variables,

we get the desired results.

3.4.2 Reduced Riccati form for the equilibrium

So far, the N -player game and MFG have been characterized by Lemma 26 and Theorem 20,

respectively. One of our main objectives is to investigate the convergence of the generic optimal

path X̂
(N)
1t of the N -player game generated (3.4.1)-(3.4.2) to the optimal path X̂t of MFG generated

by (3.2.12)-(3.2.13).

Note that X̂t relies only on κ functions (ay : y ∈ Y) from the simple ODE system (3.2.12)

while ρ(X̂
(N)
t ) depends on O(N3) functions from (Aiy : i = 1, 2, . . . , N, y ∈ Y) solved from a huge

Riccati system (3.4.1). Therefore, it is almost a hopeless task for a meaningful comparison between

these two processes without gaining further insight into the complex structure of the Riccati system

(3.4.1).

To proceed, let us first observe some hidden patterns from a numerical result for the solution

of Riccati (3.4.1). The following matrix shows A20 at t = 1 for N = 5 with the same parameters
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as in Figure 3.3 and Figure 3.4 in Section 3.5.1:

A20(1) =


0.1319 −0.1924 0.0202 0.0202 0.0202

−0.1924 0.7696 −0.1924 −0.1924 −0.1924

0.0202 −0.1924 0.1319 0.0202 0.0202

0.0202 −0.1924 0.0202 0.1319 0.0202

0.0202 −0.1924 0.0202 0.0202 0.1319

 .

Interestingly enough, we observe that the entire 25 entries of A20(1) indeed consists of 4 dis-

tinct values. Moreover, similar computation with different values of N only yields a larger table

depending on N , but always consists of 4 values. Inspired by this accidental discovery from the

above numerical example, we may want to believe and prove a pattern of the matrix Aiy in the

following form:

(Aiy)pq =


a1y(t), if p = q = i,

a2y(t), if p = q ̸= i,

a3y(t), if p ̸= q, p = i or q = i,

a4y(t), otherwise,

(3.4.4)

for y ∈ Y. The next result justifies the above pattern: the N2 entries of the matrix Aiy can be

embedded to a 2κ-dimensional vector space no matter how big N is.

Lemma 27. There exists a unique solution (aN1y, a
N
2y) from the ODE system(3.4.5)

a′1y + 2b̃1ya1y −
2(N + 1)

N − 1
b̃22ya

2
1y +

κ∑
j=1

qy,ja1j +
N − 1

N
hy = 0,

a′2y + 2b̃1ya2y +
2

(N − 1)2
b̃22ya

2
1y −

4N

N − 1
b̃22ya1ya2y +

κ∑
j=1

qy,ja2j +
hy
N

= 0,

a1y(T ) =
N − 1

N
gy, a2y(T ) =

gy
N
,

(3.4.5)

for y ∈ Y. Moreover, the path and the control of player i under the equilibrium are

dX̂
(N)
it =

b̃1(Y (N)
t , t)X̂

(N)
it − 2b̃22(Y

(N)
t , t)aN

1Y
(N)
t

(t)

X̂(N)
it − 1

N − 1

N∑
j ̸=i

X̂
(N)
jt

 dt+ dW
(N)
it ,

(3.4.6)

and

α̂
(N)
it = −2b̃2(Y

(N)
t , t)aN

1Y
(N)
t

(t)

X̂(N)
it − 1

N − 1

N∑
j ̸=i

X̂
(N)
jt


for i = 1, 2, . . . , N .

Proof. It is obvious to see that in the Riccati system (3.4.1), Biy = 0 for all i = 1, 2, . . . , N and
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y ∈ Y. Note that in this case, for i = 1, 2, . . . , N , the optimal control is given by

α̂
(N)
i = −2b̃2(Y

(N)
t , t)

N∑
j=1

(A
iY

(N)
t

)ijX̂
(N)
jt = −2b̃2(Y

(N)
t , t)

(
A

iY
(N)
t

)⊤
i
X̂

(N)
t .

Plugging the pattern (3.4.4) into the differential equation of Aiy, we have

a′1y + 2b̃1ya1y − 2b̃22ya
2
1y − 4(N − 1)b̃22ya

2
3y +

κ∑
j=1

qy,ja1j +
N − 1

N
hy = 0,

a′2y + 2b̃1ya2y − 2b̃22ya
2
3y − 4b̃22y (a1ya2y + (N − 2)a3ya4y) +

κ∑
j=1

qy,ja2j +
hy
N

= 0,

a′3y + 2b̃1ya3y − 2b̃22ya1ya3y − 4b̃22y
(
a1ya3y + (N − 2)a23y

)
+

κ∑
j=1

qy,ja3j −
hy
N

= 0,

a′3y + 2b̃1ya3y − 2b̃22ya1ya3y − 4b̃22y (a2ya3y + (N − 2)a3ya4y) +
κ∑

j=1

qy,ja3j −
hy
N

= 0,

a′4y + 2b̃1ya4y − 2b̃22ya
2
3y − 4b̃22y (a2ya3y + a1ya4y + (N − 3)a3ya4y) +

κ∑
j=1

qy,ja4j = 0,

which gives a1y + (N − 2)a3y = a2y + (N − 2)a4y since two expressions for a3y should be identical.

This implies that (a1y + (N − 2)a3y)
′ = (a2y + (N − 2)a4y)

′ or

− 2b̃1ya1y + 2b̃22ya
2
1y + 4(N − 1)b̃22ya

2
3y −

N − 1

N
hy −

κ∑
j=1

qy,ja1j

+ (N − 2)
(
− 2b̃1ya3y + 2b̃22ya1ya3y + 4b̃22y (a2ya3y + (N − 2)a3ya4y)−

κ∑
j=1

qy,ja3j +
hy
N

)
=− 2b̃1ya2y + 2b̃22ya

2
3y + 4b̃22y (a1ya2y + (N − 2)a3ya4y)−

κ∑
j=1

qy,ja2j −
hy
N

+ (N − 2)
(
− 2b̃1ya4y + 2b̃22ya

2
3y + 4b̃22y (a1ya4y + a2ya3y + (N − 3)a3ya4y)−

κ∑
j=1

qy,ja4j

)
.

After combining terms and substituting a2y +(N − 2)a4y with a1y +(N − 2)a3y, we get a21y +(N −
2)a1ya3y − (N − 1)a23y = 0, which yields a3y = a1y or a3y = − 1

N−1a1y. Note that a3y ̸= a1y due to

their different differential equations. Hence, we can conclude that a3y = − 1
N−1a1y. In conclusion,
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for i = 1, 2, . . . , N , Aiy (y ∈ Y) has the following expressions:

(Aiy)pq =



a1y(t), if p = q = i,

a2y(t), if p = q ̸= i,

− 1

N − 1
a1y(t), if p ̸= q, p = i or q = i,

1

(N − 1)(N − 2)
a1y(t)−

1

N − 2
a2y(t), otherwise.

The existence and uniqueness of (3.4.1) is equivalent to the existence and uniqueness of (3.4.5).

For a1y, the existence and uniqueness can be deduced from Lemma 36 and 37. Given a1y’s, a2y’s

are linear equations, thus their existence and uniqueness are guaranteed by Theorem 12.1 in [2].

Together with previous discussions, we conclude the results.

3.4.3 Convergence

Based on the current progress, let us reiterate our goal (P1) for the convergence. Our objective is the

convergence of the joint distribution L(X̂(N)
1t , Y

(N)
t ) of the N -player game generated (3.4.5)-(3.4.6)

in the probability space Ω(N) to the distribution L(X̂t, Yt) of MFG generated by (3.2.12)-(3.2.13)

in the probability space Ω. More precisely, we want to find a number η > 0 satisfying

W2

(
L(X̂(N)

1t , Y
(N)
t ),L(X̂t, Yt)

)
= O

(
N−η

)
, (3.4.7)

where W2 is the 2-Wasserstein metric. This procedure is given in the following two steps:

1. We will construct a process ZN in the probability space Ω, who provides exact copy of the

joint distribution in the sense of

L(X̂(N)
1t , Y

(N)
t ) = L(ZN

t , Yt), ∀t ∈ [0, T ].

Note that, the (3.4.6) shows that X̂
(N)
1t correlates to N many Brownian motions {W (N)

i : i =

1, 2, . . . , N} from a much richer space Ω(N) while Ω is a much smaller space having only two

Brownian motions W and B. Therefore, such an embedding essentially requires to represent

X̂
(N)
1t by two independent Brownian motions and is in general not possible. However, due to

the symmetric structure of MFG (or the nature of the mean field effect), the embedding is

possible and the details are provided in Lemma 28.

2. By Proposition 16, we can use distribution copy (ZN , Y ) in Ω to write

W2
2

(
L(X̂(N)

1t , Y
(N)
t ),L(X̂t, Yt)

)
≤ E

[∣∣∣ZN
t − X̂t

∣∣∣2] . (3.4.8)

To obtain the estimate of the above right hand side, we shall compare the (3.4.9) of ZN and

(3.2.13) of X̂, and it becomes essential to obtain the convergence rate of the ODE system

(3.4.5) towards the ODE system (3.2.12). The details are provided in Lemma 29.
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Lemma 28. Let {Xi
0 : i ∈ N} be i.i.d. random variables in Ω independent to (W,B, Y ) with

X1
0 = X0. Let ZN be the solution of

ZN
t = X0 +

∫ t

0
b̃1(Ys, s)Z

N
s ds−

∫ t

0
2b̃22(Ys, s)â

N
1Ys

(s)
(
ZN
s − X̄N

s

)
ds+Wt, (3.4.9)

where

dX̄N
t = b̃1(Yt, t)X̄

N
t dt+

√
N − 1

N
dBt +

1

N
dWt, X̄N

0 =
1

N

N∑
i=1

Xi
0,

and

âN1y =
N

N − 1
aN1y.

In the above, aN1y is from the ODE system(3.4.5). Then, (ZN
t , Yt) in (Ω,FT ,P) has the same

distribution as (X̂
(N)
1t , Y

(N)
t ) in (Ω(N),F (N)

T ,P(N)).

Proof. Continued from the Lemma 27, player i’s path in the N -player game follows

X̂
(N)
it = x

(N)
i +

∫ t

0
b̃1(Y

(N)
s , s)X̂

(N)
is ds

−
∫ t

0
2b̃22(Y

(N)
s , s)aN

1Y
(N)
s

(s)

X̂(N)
is − 1

N − 1

N∑
j ̸=i

X̂
(N)
js

 ds+W
(N)
it .

With the notation

X̄(N)
s =

1

N

N∑
i=1

X̂
(N)
is ,

one can rewrite the path by

X̂
(N)
it = x

(N)
i +

∫ t

0
b̃1(Y

(N)
s , s)X̂

(N)
is ds

−
∫ t

0
2b̃22(Y

(N)
s , s)âN

1Y
(N)
s

(s)
(
X̂

(N)
is − X̄(N)

s

)
ds+W

(N)
it .

(3.4.10)

By adding up the above equations (3.4.10) indexed by i = 1 to N , one can have

X̄
(N)
t = x̄(N) +

∫ t

0
b̃1(Y

(N)
s , s)X̄(N)

s ds+
1

N

N∑
i=1

W
(N)
it

= x̄(N) +

∫ t

0
b̃1(Y

(N)
s , s)X̄(N)

s ds+

√
N − 1

N

(√
N − 1W̄

(N)
−it

)
+

1

N
W

(N)
it ,

(3.4.11)

where W̄
(N)
−it := 1

N−1

∑
j ̸=iW

(N)
jt .
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Next, we define solution maps of (3.4.10) and (3.4.11):

Ḡt(x, ϕ,W1,W2) = Et(ϕ)
(
x+

∫ t

0
Es(−ϕ)d(W1s +W2s)

)
(3.4.12)

and

Gt(x, ϕ1, ϕ2, ϕ3,W ) = xEt(ϕ1 − ϕ2) + Et(ϕ1 − ϕ2)

∫ t

0
Es(−ϕ1 + ϕ2) (ϕ2(s)ϕ3(s)ds+ dWs) , (3.4.13)

where

Et(ϕ) = exp

{∫ t

0
ϕsds

}
.

Now, we can rewrite X̄
(N)
t of (3.4.11) and X̂

(N)
1t of (3.4.10) as

X̄
(N)
t = Ḡt

(
1

N

N∑
i=1

x
(N)
i , b̃1(Y

(N)
. , ·),

√
N − 1

N

(√
N − 1W̄

(N)
−1

)
,
1

N
W

(N)
1

)
,

and

X̂
(N)
1t = Gt

(
x
(N)
1 , b̃1(Y

(N)
· , ·), 2b̃2(Y (N)

· , ·)âN1 (Y
(N)
· , ·), X̄(N)(·),W (N)

1

)
Meanwhile, (ZN , X̄N ) of (3.4.9) can also be written in the form of

X̄N
t = Ḡt

(
1

N

N∑
i=1

Xi
0, b̃1(Y., ·),

√
N − 1

N
B,

1

N
W

)
,

and

ZN
t = Gt

(
X0, b̃1(Y·, ·), 2b̃2(Y·, ·)âN1 (Y·, ·), X̄N (·),W

)
(3.4.14)

Finally, the fact that the distribution of (ZN , Y ) in the space Ω is identical distribution to (X̂
(N)
1 , Y (N))

in Ω(N) comes from the followings:

• b̃1, b̃2, â
N
1 are deterministic functions.

• The random processes (
√
N − 1W̄

(N)
−1 ,W

(N)
1 , Y (N)) are independent mutually in Ω(N), while

the random elements (B,W, Y ) are also independent triples. Moreover, two random triples

have identical joint distributions.

• Initial states are generated from identical joint distributions {x(N)
i : i = 1, 2, . . . , N} and

{Xi
0 : i = 1, 2, . . . , N}.

Therefore, (ZN , Y ) and (X̂
(N)
1 , Y (N)) have the same distributions. This completes the proof.

In view of (3.4.8), we shall estimate the second moment E[|ZN
t − X̂t|2]. First, we can rewrite

X̂ of (3.2.13) using above representations via Gt:

X̂t = Gt

(
X0, b̃1(Y·, ·), 2b̃2(Y·, ·)a(Y·, ·), µ̂(·),W

)
,
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which leads to a better comparison with ZN in the form of (3.4.14). To proceed, a Lipschitz

properties of Gt are useful for the estimate of the second moment, whose proof is relegated to the

Appendix 3.7.3. Throughout the proof of the next lemma, we will use K in various places as a

generic constant which varies from line to line.

Lemma 29. The convergence rate under the Wasserstein metric W2(·, ·) is

W2

(
L(X̂(N)

1t , Y
(N)
t ),L(X̂t, Yt)

)
= O

(
N− 1

2

)
.

Proof. In view of (3.4.8), we start with

W2
2

(
L(X̂(N)

1t , Y
(N)
t ),L(X̂t, Yt)

)
≤ E

[∣∣∣ZN
t − X̂t

∣∣∣2]
= E

[∣∣∣Gt

(
X0, b̃1(Y·, ·), 2b̃2(Y·, ·)âN1 (Y·, ·), X̄N (·),W

)
−Gt

(
X0, b̃1(Y·, ·), 2b̃2(Y·, ·)a(Y·, ·), µ̂(·),W

)∣∣∣2]
:= E

[
|I1(t)− I2(t)|2

]
.

Applying the Lipschitz continuity of (ϕ2, ϕ3) 7→ Gt(x, ϕ1, ϕ2, ϕ3,W ) by Appendix 3.7.3 on the

conditional expectation E
[
|I1(t)− I2(t)|2

∣∣∣Y ], we have

E
[
|ZN

t − X̂t|2
]
≤ KE

[
sup

0≤t≤T

(
2b̃2(Yt, t)â

N
1Yt

(t)− 2b̃2(Yt, t)aYt(t)
)2

+ sup
0≤t≤T

(
X̄N (t)− µ̂(t)

)2]

≤ KE

[
sup

0≤t≤T

∣∣∣b̃2(Yt, t)∣∣∣2 sup
0≤t≤T

∣∣âN1Yt
(t)− aYt(t)

∣∣2 + sup
0≤t≤T

∣∣X̄N (t)− µ̂(t)
∣∣2]

≤ KE

[
sup

0≤t≤T

∣∣âN1Yt
(t)− aYt(t)

∣∣2 + sup
0≤t≤T

∣∣X̄N (t)− µ̂(t)
∣∣2] .

From the dynamic of X̄N and µ̂,
d
(
X̄N

t − µ̂t
)
= b̃1(Yt, t)

(
X̄N

t − µ̂t
)
dt+

√
N − 1

N
dBt +

1

N
dWt,

X̄N
0 − µ̂0 =

1

N

N∑
i=1

Xi
0 − µ̂0,

which can be written in terms of Ḡt of (3.4.12):

X̄N (t)− µ̂(t) = Ḡt

(
1

N

N∑
i=1

Xi
0 − µ̂0, b̃1(Y., ·),

√
N − 1

N
B,

1

N
W

)
.
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Using the fact of
∣∣∣b̃1y∣∣∣

∞
<∞ and Ito’s isometry, this yields the following estimation:

E

[
sup

0≤t≤T

∣∣X̄N (t)− µ̂(t)
∣∣2] ≤ K

 1

N
+ E

∣∣∣∣∣ 1N
N∑
i=1

Xi
0 − µ̂0

∣∣∣∣∣
2
 .

Note that, by central limit theorem, we have

NE

∣∣∣∣∣ 1N
N∑
i=1

Xi
0 − µ̂0

∣∣∣∣∣
2
 = E

∣∣∣∣∣
∑N

i=1(X
i
0 − µ̂0)√
N

∣∣∣∣∣
2
→ V ar(X1

0 ) <∞, N → ∞,

and we conclude that

E

[
sup

0≤t≤T

∣∣X̄N (t)− µ̂(t)
∣∣2] = O(N−1). (3.4.15)

Next we investigate the boundness of

sup
0≤t≤T

∣∣âN1Yt
(t)− aYt(t)

∣∣2 .
From (3.4.5) and âN1y = N

N−1a
N
1y, we have

(
âN1y
)′
+ 2b̃1yâ

N
1y −

2(N + 1)

N
b̃22y
(
âN1y
)2

+
κ∑

i=1

qy,iâ
N
1i + hy = 0

âN1y(T ) = gy.

Define uy = ay − âN1y, let τ = T − t and denote uy(τ) := uy(T − t), we have
u′y(τ) = 2b̃1y(τ)uy(τ)− 2b̃22y(τ)

(
ay(τ) + âN1y(τ)

)
uy(τ)

+
2

N
b̃22y(τ)

(
âN1y(τ)

)2
+

κ∑
i=1

qy,iui(τ)

uy(0) = 0,

(3.4.16)

which gives that

uy(τ) =

∫ τ

0

(
2b̃1y(s)uy(s)− 2b̃22y(s)

(
ay(s) + âN1y(s)

)
uy(s) +

2

N
b̃22y(s)

(
âN1y(s)

)2
+

κ∑
i=1

qy,iui(s)

)
ds.

Thus for τ ∈ [0, T ],

|uy(τ)| ≤
∫ τ

0

(
2
∣∣∣b̃1y∣∣∣

∞
|uy(s)|+ 2

∣∣∣b̃2y∣∣∣2
∞

(
|ay|∞ +

∣∣âN1y∣∣∞) |uy(s)|
+

2

N

∣∣∣b̃2y∣∣∣2
∞

∣∣âN1y∣∣2∞ +
κ∑

i=1

|qy,i||ui(s)|

)
ds.
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Let
(∣∣∣b̃1y∣∣∣

∞
,
∣∣∣b̃2y∣∣∣

∞
, |ay|∞,

∣∣âN1y∣∣∞ , supi∈Y |qy,i|
)
≤ K1, then

|uy(τ)| ≤
2

N
K4

1T +

∫ τ

0

((
2K1 + 4K3

1

)
|uy(s)|+K1

κ∑
i=1

|ui(s)|

)
ds.

By adding up the above equation indexed by y = 1 to κ, one can have

κ∑
y=1

|uy(τ)| ≤
2κK4

1T

N
+
(
2K1 + 4K3

1 + κK1

) ∫ τ

0

κ∑
y=1

|uy(s)|ds.

Let K2 = 2κK4
1T and K3 = 2K1 + 4K3

1 + κK1, by the Grönwall’s inequality,

κ∑
y=1

|uy(τ)| ≤
K2

N
eK3τ ≤ K2

N
eK3T , ∀τ ∈ [0, T ],

which implies that
κ∑

y=1

|uy(τ)| ≤
K

N
, ∀τ ∈ [0, T ].

Thus, we have

sup
0≤t≤T

∣∣âN1Yt
(t)− aYt(t)

∣∣2 ≤ K

N2
, almsot surely. (3.4.17)

Therefore, the convergence is obtained from (3.4.15) and (3.4.17):

W2
2

(
L(ZN

t ),L(X̂t)
)
≤KE

[
sup

0≤t≤T

∣∣âN1Yt
(t)− aYt(t)

∣∣2 + sup
0≤t≤T

∣∣X̄N (t)− µ̂(t)
∣∣2] = O(N−1).

3.5 Numerical results

3.5.1 Simulations of Riccati system, the value function and optimal control of

the generic palyer

We have derived a 4κ dimensional Riccati ODE system (3.2.12) to determine the parameter func-

tions

(ay, by, cy, ky : y ∈ Y)

needed for the characterization of the equilibrium and the value function. Meanwhile, we also show

the solvability of the Riccati ODE system in Section 3.3.

As mentioned earlier, different from the MFG characterization with the common noise, the

derived Riccati system is essentially finite-dimensional. In this subsection, we present a numerical
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experiment and show some numerical results for solving the Riccati system to demonstrate its

computational advantages.

For the illustration purpose, assume the finite time horizon is given with T = 5 and the coeffi-

cients of the dynamic equation are listed below:

Y = {0, 1},

Q =

[
−0.5 0.5

0.6 −0.6

]
,

b̃1(·, ·) = 0, b̃2(·, ·) = 1,

h0 = 2, h1 = 5, g0 = 3, g1 = 1,

µ0 = 0, ν0 = 2.

Firstly, using the forward Euler’s method with the step size δ = 10−2, we can obtain trajectories

of (ay, by, cy : y ∈ Y), which is the solution of ODE system (3.2.12). Next, using the trajectories of

the parameter functions and Markov chain Yt, we can achieve the simulations for α̂t and X̂t. The

Matlab code can be found at https://github.com/JiaminJIAN/Regime_switching_MFG.
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Figure 3.3: Simulations for ay, V, α and ν.

As shown in Figure 3.3, people tend to centralize since the conditional second moment of the

population density νt is always decreasing.

3.5.2 Convergence of the N-player game

In Section 3.4, we showed that the generic player’s path for the N -player game is convergent to

the generic player’s path for MFG. In this subsection, we demonstrate the convergence of the

conditional first moment, conditional second moment, and the value functions of the N -player

game to the corresponding terms of the generic player in the Mean Field Game setup by using

some numerical examples.
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Figure 3.4: Simulations for by and cy.

The following figures show the value functions, µ(N) and ν(N) under N ∈ {10, 20, 50, 100} with

the same parameters’ settings as in Figure 3.3 and Figure 3.4 in Section 3.5.1. We can clearly see

the convergence to the solution of the generic player in Figure 3.5 and Figure 3.6.
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Figure 3.5: Simulations for µt and νt.

3.6 Conclusion

This chapter investigates the convergence rate of the N -player game, governed by a Markov chain

common noise, towards its asymptotic MFG under the LQG structure. To achieve this, firstly, we

introduce a Markovian structure using two auxiliary processes for the first and second moments of

the MFG equilibrium and employ the fixed point condition in MFG. By doing so, we characterize

the equilibrium measure in MFG with a finite-dimensional Riccati system of ODEs. Consequently,

we obtain the equilibrium path, equilibrium control, and the value function in MFG.
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Figure 3.6: Simulation of player 1’s optimal value function V .

Subsequently, we address the N -player game under the LQG structure, and we characterize its

equilibrium path, equilibrium control, and the value function through a Riccati system of ODEs

with a dimension of O(N3). Leveraging the N -invariant algebraic structure of this system of ODEs,

we establish a dimension reduction result, facilitating a comparison between the equilibrium path

X̂
(N)
1 in the N -player game and the equilibrium path X̂ in the MFG.

To demonstrate the convergence between the two equilibrium paths, we embed X̂
(N)
1 from Ω(N)

to Ω using a distribution copy ZN ∈ Ω, leading to the achievement of the convergence result

and the computation of the convergence rate. Lastly, some numerical examples are presented to

demonstrate the convergence result.

In the future, firstly, we can consider the MFG in more general settings, such as with time

delays and Poisson jumps. Next, except for considering the LQG structure, we could consider

the convergence of MFG with common noise under more general structures. Furthermore, in this

chapter, we require positive values for all sensitivities in the cost functional. We find that there is

no global solution for MFG when the coefficient of the cost functional is negative, while there is a

global solution when the coefficient is positive. So, it is also an interesting problem to investigate

the explosion when some sensitivities are negative.

3.7 Appendix

3.7.1 Some explicit solutions on LQG-MFG

In this part, we only provide explicit solutions to some LQG-MFG without the common noise. The

methodology could be the utilization of the standard Stochastic Maximum Principle or Dynamic

Programming approach, and all proofs will be omitted.

Suppose the position of a generic player Xt follows

dXt = αtdt+ σdWt, X0 ∼ N (0, 1).
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The goal of the generic player is to minimize the running cost

inf
α∈A

E
[∫ T

0

(
1

2
α2
t + h

∫
R
(Xt − y)2m(t, dy)

)
dt

]
,

subject to

mt = Law(Xt), ∀t ∈ [0, T ],

where h ∈ R is a constant.

Denote

V (x, t) = inf
α

E
[∫ T

t

(
1

2
α2
s + h

∫
R
(Xs − y)2m(s, dy)

)
ds

∣∣∣∣Xt = x

]
.

Note that the model can be characterized by Hamilton-Jacobian-Bellman equation coupled by

Fokker-Planck-Kolmogorov equation:
∂tV +

1

2
σ2∂xxV − 1

2
(∂xV )2 + F (x,m) = 0, (t, x) ∈ [0, T ]× R,

∂tm− 1

2
σ2∂xxm− ∂x(m∂xV ) = 0, (t, x) ∈ [0, T ]× R,

m0 ∼ N (0, 1), V (x, T ) = 0, x ∈ R,

where F (x,m) = h
∫
R(x− y)2m(dy).

The monotonicity condition on the source term F in the variable m plays a crucial role in the

uniqueness of the MFG system. A monotone function f : R 7→ R is said to be increasing if it

satisfies (f(x1) − f(x2))(x1 − x2) ≥ 0 , and decreasing if −f is increasing. This definition can be

generalized to an infinite dimensional function F (x,m).

Definition 30. The real function F on R × P2(R) is said to be monotone, if, for all m ∈ P2(R),
the mapping R ∋ x 7→ F (x,m) is at most of quadratic growth, and for all m1, m2 it satisfies∫

R
(F (x,m1)− F (x,m2)) d(m1 −m2)(x) ≥ 0.

F is said to be anti-monotone, if (−F ) is monotone.

According to [13], if F is monotone, then MFG have at most one solution. Interestingly, the

monotonicity of F is dependent on the sign of h.

Lemma 31. F (x,m) = h
∫
R(x− y)2m(dy) is monotone if h < 0, and anti-monotone if h > 0.

A natural question is how the MFG system behaves differently to the monotonicity of F?
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3.7.1.1 Case I: h > 0

Lemma 32. For h > 0, there exists a solution (may not be unique) to the MFG system in the form

of V (x, t) = f1(t)x
2 + f3(t) and m(t) ∼ N (0, γ(t)), where

f1(t) =

√
h

2

1− e−2
√
2h(T−t)

1 + e−2
√
2h(T−t)

,

γ(t) = e−
∫ t
0 4f1(s)ds

(
1 +

∫ t

0
σ2e

∫ s
0 4f1(u)duds

)
,

f3(t) =

∫ T

t
(σ2f1(s) + hγ(s))ds.

3.7.1.2 Case II: h < 0

Lemma 33. For h < 0, there exists a unique solution in (t0, T ] to the MFG system in the form of

V (x, t) = g1(t)x
2 + g3(t) and m(t) ∼ N (0, λ(t)), where

g1(t) = −
√

−h
2
tan

(√
−2h(T − t)

)
,

λ(t) = e−
∫ t
0 4g1(s)ds

(
1 +

∫ t

0
σ2e

∫ s
0 4g1(u)duds

)
,

g3(t) =

∫ T

t
(σ2g1(s) + hλ(s))ds,

t0 = max

(
0, T − 1√

−2h

π

2

)
.

3.7.1.3 Remark

When h > 0, the cost is anti-monotone, and there exists at least one global solution. When h < 0,

the cost is monotone, and there exists at most one solution. Unfortunately, this solution lives in

a short period. Lemma 33 coincides with the notes in Section 3.8 of [16] saying that due to the

opposite time evolution of the system of HJB-FPK, the existence of the solution may exist for only

a short period.

3.7.2 Dynkin’s formula for a regime-switching diffusion with a quadratic func-

tion

Since the running cost (3.2.10) has a quadratic growth in the state variable, the value function

V [m̂](y, x, t) is expected to possess similar growth. Next, we present a version of Dynkin’s formula

for the functions of quadratic growth, which is sufficient for our purpose. Throughout this subsec-

tion, we will use K in various places as a generic constant that varies from line to line. The notions

of this subsection are independent of other parts of the chapter.
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Lemma 34. Let X be the Rd-valued process satisfying

Xt = X0 +

∫ t

0

(
b̃1(Ys, s)Xs + b̃2(Ys, s)αs

)
ds+

∫ t

0
σ(s)dWs,

where Y is CTMC with a generator

Y ∼ Q = (qij)i,j=1,2,...,κ,

Suppose σ(·), b̃1(y, ·) and b̃2(y, ·) are continuous functions on [0, T ] for every y ∈ Y := {1, 2, . . . , κ}.
If X0 ∈ L4, α ∈ L4

F and f : Y ×Rd × R 7→ R satisfies, for some large K

sup
y∈Y,t∈[0,T ]

{|f(y, x, t)|+ (1 + |x|)|∇f(y, x, t)|+ (1 + |x|)2|∆f(y, x, t)|+ |∂tf(y, x, t)|} ≤ K(|x|2 + 1),

then the following identity holds for all t ∈ [0, T ]:

E [f(Yt, Xt, t)] = E [f(Y0, X0, 0)] + E
[∫ t

0
(∂t + Lαs +Q)f(Ys, Xs, s)ds

]
,

where

Laf(y, x, s) =

(
1

2
Tr
(
σsσ

⊤
s ∆
)
+
(
b̃1yx+ b̃2ya

)
· ∇x

)
f(y, x, s)

and

Qf(y, x, s) =
n∑

i=1

qy,if(i, x, s).

Proof. It’s enough to show that the local martingale defined by Itô’s formula

Mf
t = f(Yt, Xt, t)− f(Y0, X0, 0)−

∫ t

0
(∂t + Lαs +Q)f(Ys, Xs, s)ds (3.7.1)

is uniformly integrable, hence is a true martingale.

First, note that from the assumptions on X0 and α, we have

E
[
∥Xt∥4

]
≤ KE

[
∥X0∥4 +

∫ t

0
∥b̃1(Ys, s)Xs + b̃2(Ys, s)αs∥4ds+

∫ t

0
∥σsWs∥4ds

]
≤ KE

[
∥X0∥4 +

∫ t

0
∥Xs∥4ds+

∫ t

0
∥αs∥4ds+

∫ t

0
∥σsWs∥4ds

]
≤ K +K

∫ t

0
E
[
∥Xs∥4

]
ds,

where K is a generic constant that varies from line to line. Then, by the Grönwall’s inequality,

E
[
∥Xt∥4

]
≤ KeKt ≤ K,

which implies that {Xt : 0 ≤ t ≤ T} is L4 bounded uniformly in t.
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On the other hand, since x 7→ f(y, x, t) is at most quadratic growth uniformly in (y, t), we

conclude that f(Yt, Xt, t) is uniformly L2 bounded from the fact

sup
t∈[0,T ]

E
[
f2(Yt, Xt, t)

]
≤ K sup

t∈[0,T ]
E
[
∥Xt∥4

]
+K ≤ K.

The uniform L2-boundedness of
∫ t
0 ∂tf(Ys, Xs, s)ds follows from our assumption on ∂tf . Similarly,

since Qf has a quadratic growth uniformly in y and t, and{∫ t

0
Qf(Ys, Xs, s)ds : 0 ≤ t ≤ T

}
is L2 bounded. At last, we have

E

[(∫ t

0
Lαsf(Ys, Xs, s)ds

)2
]

≤ KE

[∫ t

0

((
b̃1(Ys, s)Xs + b̃2(Ys, s)αs

)
· ∇f +

1

2
Tr
(
σsσ

⊤
s ∆f

))2

(Ys, Xs, s)ds

]

≤ KE
[∫ t

0
∥b̃1(Ys, s)Xs + b̃2(Ys, s)αs∥2∥∇f∥2(Ys, Xs, s)ds

]
+KE

[∫ t

0

1

4
∥Tr

(
σsσ

⊤
s ∆f

)
∥2(Ys, Xs, s)ds

]
≤ KE

[∫ t

0
∥αs∥4ds

]
+KE

[∫ t

0
∥Xs∥4ds

]
+KE

[∫ t

0
|∇f |4(Ys, Xs, s)ds

]
+KE

[∫ t

0

1

4
∥Tr∆f∥2 (Ys, Xs, s) ds

]
.

Since ∇f is linear growth in x, the second term supt∈[0,T ] E
[∫ t

0 ∥∇f∥
4(Ys, Xs, s)ds

]
is finite. To-

gether with assumptions on ∆f and α, we have uniform L2-boundedness of
∫ t
0 L

αsf(Ys, Xs, s)ds.

As a result, each term of the right-hand side of (3.7.1) is uniform L2-bounded in t, and thus

Mf
t belongs to L2

F and this implies the uniform integrability.

3.7.3 Proof of the property of G

Lemma 35. Define

Et(ϕ) = exp

{∫ t

0
ϕsds

}
,

and

Gt(x, ϕ1, ϕ2, ϕ3,W ) = xEt(ϕ1 − ϕ2) + Et(ϕ1 − ϕ2)

∫ t

0
Es(−ϕ1 + ϕ2) (ϕ2(s)ϕ3(s)ds+ dWs) ,
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where x is a given constant, ϕ1, ϕ2, ϕ3 are RCLL functions on [0, T ]. Then

E
[∣∣Gt(x

1, ϕ1, ϕ
1
2, ϕ

1
3,W )−Gt(x

2, ϕ1, ϕ
2
2, ϕ

2
3,W )

∣∣2]
≤ K

(
|x1 − x2|2 + sup

0≤t≤T
|ϕ12(t)− ϕ22(t)|2 + sup

0≤t≤T
|ϕ13(t)− ϕ23(t)|2

)
.

Proof. Firstly, it can be shown that G(·, ϕ1, ϕ2, ϕ3,W ) is Lipschitz continuous with respect to x

E
[∣∣Gt(x

1, ϕ1, ϕ2, ϕ3,W )−G(x2, ϕ1, ϕ2, ϕ3,W )
∣∣] ≤ ∣∣x1Et(ϕ1 − ϕ2)− x2Et(ϕ1 − ϕ2)

∣∣
≤ Et(ϕ1 − ϕ2)|x1 − x2|
≤ K(|ϕ1|∞, |ϕ2|∞, T )|x1 − x2|.

Next, we have

E
[∣∣Gt(x, ϕ1, ϕ2, ϕ

1
3,W )−G(x, ϕ1, ϕ2, ϕ

2
3,W )

∣∣2]
=

∣∣∣∣Et(ϕ1 − ϕ2)

∫ t

0
Es(ϕ1 − ϕ2)ϕ2(s)(ϕ

1
3(s)− ϕ23(s))ds

∣∣∣∣2
≤ Et(2ϕ1 − 2ϕ2)

(∫ t

0
Es(ϕ1 − ϕ2)|ϕ2(s)||(ϕ13(s)− ϕ23(s))|ds

)2

≤ K(|ϕ1|∞, |ϕ2|∞, T )
(∫ T

0
|ϕ13(s)− ϕ23(s)|ds

)2

≤ K(|ϕ1|∞, |ϕ2|∞, T ) sup
0≤t≤T

∣∣ϕ13(t)− ϕ23(t)
∣∣2 .

Similarly, for ϕ12(·), ϕ22(·) ∈ C([0, T ]),

E
[∣∣Gt(x, ϕ1, ϕ

1
2, ϕ3,W )−G(x, ϕ1, ϕ

2
2, ϕ3,W )

∣∣2]
≤ K

∣∣xEt(ϕ1 − ϕ12)− xEt(ϕ1 − ϕ22)
∣∣2

+K

∣∣∣∣Et(ϕ1 − ϕ12)

∫ t

0
Es(−ϕ1 + ϕ12)ϕ

1
2(s)ϕ3(s)ds− Et(ϕ1 − ϕ22)

∫ t

0
Es(−ϕ1 + ϕ22)ϕ

2
2(s)ϕ3(s)ds

∣∣∣∣2
+KE

[∣∣∣∣Et(ϕ1 − ϕ12)

∫ t

0
Es(−ϕ1 + ϕ12)dWs − Et(ϕ1 − ϕ22)

∫ t

0
Es(−ϕ1 + ϕ22)dWs

∣∣∣∣2
]

:= K(J1 + J2 + J3).

Note that by the mean-value theorem and the continuity of ϕ1, ϕ
1
2 and ϕ22 on [0, T ], we can get

J1 =
∣∣xEt(ϕ1 − ϕ12)− xEt(ϕ1 − ϕ22)

∣∣2
= x2

(
e
∫ t
0 (ϕ1(s)−ϕ1

2(s))ds − e
∫ t
0 (ϕ1(s)−ϕ2

2(s))ds
)2

≤ K
(
x,
∣∣ϕ12∣∣∞ ,

∣∣ϕ22∣∣∞ , T
)
e
∫ t
0 2ϕ1(s)ds

∣∣ϕ12 − ϕ22
∣∣2
∞

≤ K
(
x, |ϕ1|∞,

∣∣ϕ12∣∣∞ ,
∣∣ϕ22∣∣∞ , T

) ∣∣ϕ12 − ϕ22
∣∣2
∞ ,
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and

J3 = E

[∣∣∣∣Et(ϕ1 − ϕ12)

∫ t

0
Es(−ϕ1 + ϕ12)dWs − Et(ϕ1 − ϕ22)

∫ t

0
Es(−ϕ1 + ϕ22)dWs

∣∣∣∣2
]

= E
[∣∣∣∣Et(ϕ1 − ϕ12)

∫ t

0
Es(−ϕ1 + ϕ12)dWs − Et(ϕ1 − ϕ12)

∫ t

0
Es(−ϕ1 + ϕ22)dWs

+ Et(ϕ1 − ϕ12)

∫ t

0
Es(−ϕ1 + ϕ22)dWs − Et(ϕ1 − ϕ22)

∫ t

0
Es(−ϕ1 + ϕ22)dWs

∣∣∣∣2
]

≤ 2Et(2ϕ1 − 2ϕ12)

∫ t

0

(
Es(−ϕ1 + ϕ12)− Es(−ϕ1 + ϕ22)

)2
ds

+ 2
(
Et(ϕ1 − ϕ12)− Et(ϕ1 − ϕ22)

)2 ∫ t

0
Es(−2ϕ1 + 2ϕ22)ds

≤ K
(
|ϕ1|∞,

∣∣ϕ12∣∣∞ ,
∣∣ϕ22∣∣∞ , T

) ∣∣ϕ12 − ϕ22
∣∣2
∞ .

Lastly, using the similar argument, we have

J2 =

∣∣∣∣Et(ϕ1 − ϕ12)

∫ t

0
Es(−ϕ1 + ϕ12)ϕ

1
2(s)ϕ3(s)ds− Et(ϕ1 − ϕ22)

∫ t

0
Es(−ϕ1 + ϕ22)ϕ

2
2(s)ϕ3(s)ds

∣∣∣∣2
=

∣∣∣∣Et(ϕ1 − ϕ12)

∫ t

0
Es(−ϕ1 + ϕ12)ϕ

1
2(s)ϕ3(s)ds− Et(ϕ1 − ϕ22)

∫ t

0
Es(−ϕ1 + ϕ12)ϕ

1
2(s)ϕ3(s)ds

+ Et(ϕ1 − ϕ22)

∫ t

0
Es(−ϕ1 + ϕ12)ϕ

1
2(s)ϕ3(s)ds− Et(ϕ1 − ϕ22)

∫ t

0
Es(−ϕ1 + ϕ22)ϕ

2
2(s)ϕ3(s)ds

∣∣∣∣2
≤ 2

∣∣∣∣(Et(ϕ1 − ϕ12)− Et(ϕ1 − ϕ22)
) ∫ t

0
Es(−ϕ1 + ϕ12)ϕ

1
2(s)ϕ3(s)ds

∣∣∣∣2
+ 2

∣∣∣∣Et(ϕ1 − ϕ22)

(∫ t

0
Es(−ϕ1 + ϕ12)ϕ

1
2(s)ϕ3(s)ds−

∫ t

0
Es(−ϕ1 + ϕ22)ϕ

2
2(s)ϕ3(s)ds

)∣∣∣∣2
≤ K

(
|ϕ1|∞,

∣∣ϕ12∣∣∞ ,
∣∣ϕ22∣∣∞ , |ϕ3|∞ , T

) ∣∣ϕ12 − ϕ22
∣∣2
∞

+ 2

∣∣∣∣Et(ϕ1 − ϕ22)

(∫ t

0
Es(−ϕ1 + ϕ12)ϕ

1
2(s)ϕ3(s)ds−

∫ t

0
Es(−ϕ1 + ϕ22)ϕ

1
2(s)ϕ3(s)ds

)
+ Et(ϕ1 − ϕ22)

(∫ t

0
Es(−ϕ1 + ϕ22)ϕ

1
2(s)ϕ3(s)ds−

∫ t

0
Es(−ϕ1 + ϕ22)ϕ

2
2(s)ϕ3(s)ds

)∣∣∣∣2
≤ K

(
|ϕ1|∞,

∣∣ϕ12∣∣∞ ,
∣∣ϕ22∣∣∞ , |ϕ3|∞ , T

) ∣∣ϕ12 − ϕ22
∣∣2
∞ .

Sum up the above inequalities for J1, J2 and J3, then

E
[∣∣Gt(x, ϕ1, ϕ

1
2, ϕ3,W )−G(x, ϕ1, ϕ

2
2, ϕ3,W )

∣∣2]
≤ K

(
x, |ϕ1|∞,

∣∣ϕ12∣∣∞ ,
∣∣ϕ22∣∣∞ , |ϕ3|∞ , T

) ∣∣ϕ12 − ϕ22
∣∣2
∞ .

Thus, we can obtain the desired result.
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3.7.4 Proof of the existence and uniqueness of the ODE system

Consider the following ODE systema
′
y + C1b̃1yay − C2b̃

2
2ya

2
y +

κ∑
i=1

qy,iai + hy = 0,

ay(T ) = gy,

(3.7.2)

for y ∈ Y = {1, 2, . . . , κ}, where C1, C2, hy, gy are in R+. We need to show the existence and

uniqueness of the solution to (3.7.2). Define T
(N)
y as

T (N)
y [a](t) =

[(
gy +

∫ T

t

(
hy + C1b̃1y(s)ay(s)− C2b̃

2
2y(s)a

2
y(s) +

κ∑
i=1

qy,iai(s)

)
ds

)
∧N

]
∨ 0,

where a = [a1, a2, . . . , aκ]
⊤. Let D = {f ∈ C([0, T ]) : 0 ≤ supt∈[0,T ] f(t) ≤ N}. Note that

T
(N)
y (y ∈ Y) maps Dκ to Dκ.

Lemma 36. For fixed N , there exists a unique solution in C([0, T ]) to

a = T (N)
y [a]. (3.7.3)

Proof. Denote the norm ∥f∥k =
∥∥ektmaxy∈Y |fy|

∥∥
∞, where k needs to be determined later and f

is a κ dimensional vector with entry of fy, y ∈ Y, which is equivalent to the infinite norm. Define

the iteration rule a
(n+1)
y = T

(N)
y

[
a
(n)
y

]
for y ∈ Y. Note that∥∥∥ekt (a(n+1)

y (t)− a(n)y (t)
)∥∥∥

∞

≤ sup
t∈[0,T ]

ekt
∫ T

t

(
C1

∣∣∣b̃1y∣∣∣
∞

∣∣∣a(n)y (s)− a(n−1)
y (s)

∣∣∣+ C2

∣∣∣b̃2y∣∣∣2
∞

∣∣∣∣(a(n)y (s)
)2

−
(
a(n−1)
y (s)

)2∣∣∣∣
+

κ∑
i=1

qy,i

∣∣∣a(n)i (s)− a
(n−1)
i (s)

∣∣∣) ds
≤ sup

t∈[0,T ]
ekt
∫ T

t

(
C1

∣∣∣b̃1y∣∣∣
∞

∣∣∣a(n)y (s)− a(n−1)
y (s)

∣∣∣+ 2NC2

∣∣∣b̃2y∣∣∣2
∞

∣∣∣a(n)y (s)− a(n−1)
y (s)

∣∣∣
+

κ∑
i=1

qy,i

∣∣∣a(n)i (s)− a
(n−1)
i (s)

∣∣∣) ds
≤ sup

t∈[0,T ]
ekt
∫ T

t
e−ks

(
C1

∣∣∣b̃1y∣∣∣
∞

+ 2NC2

∣∣∣b̃2y∣∣∣2
∞

+ κmax
i∈Y

|qy,i|
)∥∥∥a(n) − a(n−1)

∥∥∥
k
ds

≤
C1

∣∣∣b̃1y∣∣∣
∞

+ 2NC2

∣∣∣b̃2y∣∣∣2
∞

+ κmaxi∈Y |qy,i|

k

∥∥∥a(n) − a(n−1)
∥∥∥
k
.
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Choose k > C1

∣∣∣b̃1y∣∣∣
∞

+ 2NC2

∣∣∣b̃2y∣∣∣2
∞

+ κmaxi∈Y |qy,i|, then

∥∥∥a(n+1) − a(n)
∥∥∥
k
≤
C1

∣∣∣b̃1y∣∣∣
∞

+ 2NC2

∣∣∣b̃2y∣∣∣2
∞

+ κmaxi∈Y |qy,i|

k

∥∥∥a(n) − a(n−1)
∥∥∥
k
,

which gives us a contraction mapping from Dκ to Dκ. Hence, by the Banach fixed point theorem,

there exists a unique solution to (3.7.3).

Next, we want to show that for large enough N , the solution to (3.7.3) is also the solution to

(3.7.2).

Lemma 37. For

N ≥ eKT

 κ∑
y=1

gy + T

κ∑
y=1

hy

 ,

where K := C1maxy∈Y

∣∣∣b̃1y∣∣∣
∞

+ maxi∈Y
∑κ

y=1 |qy,i|, the solution a(N) to (3.7.3) satisfies the in-

equalities

0 ≤ gy +

∫ T

t

(
hy + C1b̃1y(s)a

(N)
y (s)− C2b̃

2
2y(s)

(
a(N)
y (s)

)2
+

κ∑
i=1

qy,ia
(N)
i (s)

)
ds ≤ N (3.7.4)

for all t ∈ [0, T ], where y ∈ Y.

Proof. For simplicity of notations, ay is used instead of a
(N)
y for y ∈ Y if there is no confusion.

First, for y ∈ Y, we prove the positiveness of ay by contradiction. Suppose ay (y ∈ Y) are not

positive functions on [0, T ]. Since a1 is continuous and a1(T ) = g1 > 0, there exists some τ1 ∈ [0, T ]

as the closest time to T such that a1(τ1) = 0. Note that finding such a τ1 is possible. Let tn ∈ [0, T ]

be a non-decreasing sequence such that a1(tn) = 0, there exists some τ1 such that tn → τ1 < T as

n → ∞ since a1 is continuous and a1(T ) = g1 > 0. By the continuity of a1, we have a1(τ1) = 0,

which gives the desirable point τ1. Then for all t ∈ (τ1, T ], a1(t) > 0 and it implies that a′1(τ1) > 0.

In this case, plugging t = τ1 to (3.7.2), we have

a′1(τ1) = −h1 −
κ∑

i ̸=1

q1,iai(τ1) > 0,

which implies there is some y ∈ Y and y ̸= 1 such that ay(τ1) < 0. Without loss of generality, we

let a2(τ1) < 0. Since a2 is continuous on [0, T ] and a2(T ) = g2 > 0, from the intermediate value

theorem, there exists some τ2 ∈ (τ1, T ) such that a2(τ2) = 0 and a′2(τ2) > 0. This indicates that

a′2(τ2) = −h2 −
∑κ

i ̸=2 q2,iai(τ2) > 0 by plugging t = τ2 back to (3.7.2), and it implies that there is

some y ∈ Y and y ̸= 1, 2 such that ay(τ2) < 0 since we already know a1(τ2) > 0. Without loss of

generality, we can let a3(τ2) < 0. By induction with the same argument, there is a τκ ∈ (τκ−1, T )
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such that aκ(τκ) = 0 and a′κ(τκ) > 0, which gives

a′κ(τκ) + hκ +
κ∑

i ̸=κ

qκ,iai(τκ) = 0.

But it contradicts with the fact that

a′κ(τκ) > 0, hκ > 0, qκ,i > 0, ai(τκ) > 0

for i ∈ {1, 2, . . . , κ− 1}. Thus the positiveness of ay on [0, T ] for all y ∈ Y is obtained.

Next, we prove the upper boundness for the integral in (3.7.4). Note that for all t ∈ [0, T ] and

y ∈ Y, let τ = T − t, we have

a′y(τ) = hy + C1b̃1y(τ)ay(τ)− C2b̃
2
2y(τ)a

2
y(τ) +

κ∑
i=1

qy,iai(τ),

and thus

κ∑
y=1

a′y(τ) =

κ∑
y=1

hy + C1

κ∑
y=1

b̃1y(τ)ay(τ)− C2

κ∑
y=1

b̃22y(τ)a
2
y(τ) +

κ∑
y=1

κ∑
i=1

qy,iai(τ)

≤
κ∑

y=1

hy + C1max
y∈Y

∣∣∣b̃1y∣∣∣
∞

κ∑
y=1

ay(τ) +

κ∑
y=1

κ∑
i=1

|qy,i|ai(τ)

≤
κ∑

y=1

hy +

κ∑
i=1

C1max
y∈Y

∣∣∣b̃1y∣∣∣
∞

+

κ∑
y=1

|qy,i|

 ai(τ)

≤
κ∑

y=1

hy +K
κ∑

i=1

ai(τ),

where

K := C1max
y∈Y

∣∣∣b̃1y∣∣∣
∞

+max
i∈Y

κ∑
y=1

|qy,i|

with
∑κ

y=1 ay(T ) =
∑κ

y=1 gy. By Grönwall’s inequality, for all τ ∈ [0, T ],

κ∑
y=1

ay(τ) ≤ eKT

 κ∑
y=1

gy + T

κ∑
y=1

hy

 .

Hence ay(t) ≤ eKT
(∑κ

y=1 gy + T
∑κ

y=1 hy

)
for all t ∈ [0, T ] and y ∈ Y. Hence, when

eKT

 κ∑
y=1

gy + T

κ∑
y=1

hy

 ≤ N,
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(3.7.4) holds.

Lemma 38. With the given of hy, gy ∈ R+, y ∈ Y, there exists a unique solution to the Riccati

system (3.2.12).

Proof. The existence, uniqueness and boundedness of the solution to ay (y ∈ Y) are shown in

Lemma 36 and Lemma 37. Given (ay : y ∈ Y), the coefficient functions by (y ∈ Y) form a linear

ordinary differential equation system. Their existence and uniqueness are guaranteed by Theorem

12.1 in [2]. Similarly, with the given of (ay, by : y ∈ Y), the coefficient functions cy, ky (y ∈ Y)

also form a linear ordinary differential equation system. Applying the Theorem 12.1 in [2], we can

obtain the existence and uniqueness of cy, ky (y ∈ Y).

3.7.5 Multidimensional problem

In this subsection, we consider the multidimensional problem, which is a straightforward exten-

sion of the previous one-dimensional setup. The same type of Ricatti system to characterize the

equilibrium and the value function is obtained, and we have a similar result as the Theorem 20.

Suppose that Xt, Wt and αt take values in Rd, and all components of Wt are independent.

Suppose that the dynamic of the generic player is given by

Xt = X0 +

∫ t

0

(
b̃1(Ys, s)Xs + b̃2(Ys, s)αs

)
ds+Wt.

Consider the cost function

J [m](y, x, t, µ̄, ν̄)

= E
[∫ T

t

(
1

2
∥αs∥22 + h(Ys)

∫
Rd

∥Xs − z∥22m(dz)

)
ds

+g(YT )

∫
Rd

∥XT − z∥22m(dz)

∣∣∣∣Xt = x, Yt = y, µt = µ̄, νt = ν̄

]
= E

[∫ T

t

(
1

2
α⊤
s αs + h(Ys)

(
X⊤

s Xs − 2µ⊤s Xs + νs · 1d

))
ds

+g(YT )
(
X⊤

T XT − 2µ⊤TXT + νT · 1d

)∣∣∣Xt = x, Yt = y, µt = µ̄, νt = ν̄
]
,

where m is the joint density function in Rd, and µ, ν take value in Rd. For y ∈ Y, define the Riccati
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system 

a′y + 2b̃1yay − 2b̃22ya
2
y +

κ∑
i=1

qy,iai + hy = 0,

b′y +
(
2b̃1y − 4b̃22yay

)
by +

κ∑
i=1

qy,ibi + hy = 0,

c′y + day + dby +
κ∑

i=1

qy,ici = 0,

k′y − 2b̃22ya
2
y + 4b̃22yayby + 2b̃1yky +

κ∑
i=1

qy,iki = 0,

ay(T ) = by(T ) = gy , cy(T ) = ky(T ) = 0.

(3.7.5)

Theorem 39 (Verification theorem for MFG). There exists a unique solution (ay, by, cy, ky : y ∈ Y)

for the Riccati system (3.7.5). With these solutions, for t ∈ [0, T ], the MFG equilibrium path follows

X̂ = X̂[m̂] is given by

dX̂t =
(
b̃1(Yt, t)X̂t − 2b̃22(Yt, t)aYt(t)

(
X̂t − µ̂t

))
dt+ dWt, X̂0 = X0,

with equilibrium control α̂t = −2b̃2(Yt, t)aYt(t)
(
X̂t − µ̂t

)
, where

dµ̂t = b̃1(Yt, t)µ̂tdt, µ̂0 = E[X0].

Moreover, the value function U is

U(m0, y, x) = ay(0)x
⊤x− 2ay(0)x

⊤[m0]1 + ky(0)[m0]
⊤
1 [m0]1 + by(0)[m0]

⊤
2 1d + cy(0)

for y ∈ Y.

The proof is similar to the one-dimensional problem, and we don’t show the details here.
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Chapter 4

Convergence rate of LQG mean field

games with Brownian motion as

common noise

4.1 Introduction

In this chapter, we examine the behavior of the triangular array X̂
(N)
t = (X̂

(N)
it : 1 ≤ i ≤ N) as

N → ∞, where X̂
(N)
it represents the equilibrium state of the i-th player at time t in the N -player

game, defined within the probability space
(
Ω(N),F (N),F(N),P(N)

)
. Additionally, we denote X̂t as

the equilibrium path at time t derived from the associated MFG, defined in the probability space

(Ω,F ,F,P).
Considering the identical but not independent distribution L(X̂(N)

it ), the first question pertains

to the convergence of X̂
(N)
1t , which represents the generic path. It can be framed as follows:

(Q1) The Wp-convergence rate of the representative equilibrium path,

Wp

(
L
(
X̂

(N)
1t

)
,L
(
X̂t

))
= O

(
N−?

)
.

Here, Wp denotes the p-Wasserstein metric.

The existing literature extensively explores the convergence rate in this context. For (Q1),

Theorem 2.4.9 of the monograph [14] establishes a convergence rate of O(N−1/2) using the W1

metric. More recently, [48] addresses (Q1) by introducing displacement monotonicity and controlled

common noise, and Theorem 2.23 applies the maximum principle of forward-backward propagation

of chaos to achieve the same convergence rate. Within the LQG framework, [50] also provides a

convergence rate of 1/2 for the representative player.

The second question pertains to the convergence of the mean-field term, which is equivalent

to the convergence of the empirical measure ρ(X̂
(N)
t ) = 1

N

∑N
i=1 δX̂(N)

it

of N players. Given the

Brownian motion, denoted as W̃t, to be the common noise, the problem lies in determining the rate
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of convergence of the empirical measures to the MFG equilibrium measure

m̂t = L
(
X̂t

∣∣∣FW̃
t

)
, ∀t ∈ (0, T ].

Thus, the second question can be stated as follows:

(Q2) The Wp-convergence rate of empirical measures in Lp sense,

(
E
[
Wp

p

(
ρ
(
X̂

(N)
t

)
,L
(
X̂t

∣∣∣FW̃
t

))]) 1
p
= O

(
N−?

)
.

As for (Q2), Theorem 3.1 of [21] provides an answer, stating that the empirical measures

exhibit a convergence rate of O(N−1/(2p)) in the Wp distance for p ∈ [1, 2]. In [21], they also

explore a related question that is both similar and more intriguing, which concerns the uniform

Wp-convergence rate:

(Q3) The t-uniform Wp-convergence rate of empirical measures in Lp sense,

(
E

[
sup

t∈[0,T ]
Wp

p

(
ρ
(
X̂

(N)
t

)
,L
(
X̂t

∣∣∣FW̃
t

))]) 1
p

= O
(
N−?

)
.

The answer provided by Theorem 3.1 in [21] reveals that the uniform convergence rate, as formulated

in (Q3), is considerably slower compared to the convergence rate mentioned in (Q2). Specifically,

the convergence rate for (Q3) is O
(
N−1/(d+8)

)
when p = 2, where d represents the dimension of

the state space.

In this chapter, we specifically focus on a class of one-dimensional Linear-Quadratic-Gaussian

(LQG) Mean Field Nash Games with Brownian motion as the common noise. It is important to

note that the assumptions made in the aforementioned papers except [50] only account for linear

growth in the state and control elements for the running cost, thus excluding the consideration of

LQG. It is also noted that differences between [50] and the current chapter lie in various aspects:

(1) The problem setting in this chapter considers Brownian motion as the common noise, whereas

[50] employs a Markov chain. This discrepancy leads to significant differences in the subsequent

analysis; (2) The work in [50] does not address the questions posed in (Q2) and (Q3).

Our main contribution is the establishment of the convergence rate of all three questions in

the above in LQG framework. Firstly, this chapter establishes that the convergence rate of the

p-Wasserstein metric for the distribution of the representative player is O(N−1/2) for p ∈ [1, 2].

Secondly, it demonstrates that the convergence rate of the p-Wasserstein metric for the empirical

measure in the Lp sense is O(N−1/(2p)) for p ∈ [1, 2]. Lastly, this chapter shows that the convergence

rate of the uniform p-Wasserstein metric for the empirical measure in the Lp sense is O(N−1/(2p))

for p ∈ (1, 2], and O(N−1/2 ln(N)) for p = 1.

It is worth noting that the convergence rates obtained for (Q1) and (Q2) in the LQG framework

align with the results found in existing literature, albeit under different conditions. Additionally,

it is revealed that the uniform convergence rate of (Q3) may be slower than that of (Q2), which
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is consistent with the observations made by [21] from a similar perspective. Interestingly, when

considering the specific case where p = 2 and d = 1, the uniform convergence rate of (Q3) is estab-

lished as O(N−1/9) according to [21], while it is determined to be O(N−1/4) within our framework

that incorporates the LQG structure.

Regarding (Q2), if the states (X̂
(N)
it : 1 ≤ i ≤ N) were independent, the convergence rate

could be determined as 1/(2p) based on Theorem 1 of [32] and Theorem 5.8 of [16], which provide

convergence rates for empirical measures of independent and identically distributed sequences.

However, in the mean-field game, the states X̂
(N)
it are not independent of each other, despite

having identical distributions. The correlation is introduced mainly by two factors: One is the

system coupling arising from the mean-field term and the other is the common noise. Consequently,

determining the convergence rate requires understanding the contributions of these two factors to

the correlation among players.

In our proof, we rely on a specific decomposition (refer to Lemma 53 and the proof of the main

theorem) of the underlying states. This decomposition reveals that the states can be expressed as

a sum of a weakly correlated triangular array and a common noise. By analyzing the behavior of

these components, we can address the correlation and establish the convergence rate.

Additionally, it is worth mentioning that a similar technique of dimension reduction in N -player

LQG games have been previously utilized in [46] and related papers to establish decentralized Nash

equilibria and the convergence rate in terms of value functions.

The remainder of the chapter is organized as follows: Section 4.2 outlines the problem setup

and presents the main result. The proof of the main result, which relies on two propositions, is

provided in Section 4.3. We establish the proof for these two propositions in Section 4.4 and Section

4.5. Some lemmas are given in the Appendix.

4.2 Problem setup and main results

4.2.1 The formulation of equilibrium in mean field games

In this section, we present the formulation of the MFG in the sample space Ω.

Let T > 0 be a given time horizon. We assume that W = {Wt}t≥0 is a standard Brownian

motion constructed on the probability space (Ω̄, F̄ = F̄T , P̄, F̄ = {F̄t}t≥0). Similarly, the pro-

cess W̃ = {W̃t}t≥0 is a standard Brownian motion constructed on the probability space (Ω̃, F̃ =

F̃T , P̃, F̃ = {F̃t}t≥0). We define the product structure as follows:

Ω = Ω̄× Ω̃, F , F = {Ft}t≥0, P,

where (F ,P) is the completion of (F̄ ⊗ F̃ , P̄ ⊗ P̃) and F is the complete and right continuous

augmentation of {F̄t ⊗ F̃t}t≥0.

Note that, W and W̃ are two Brownian motions from separate sample spaces Ω̄ and Ω̃, they

are independent of each other in their product space Ω. In our manuscript, W is called individual

or idiosyncratic noise, and W̃ is called common noise, see their different roles in the problem

formulation later defined via fixed point condition (4.2.4). To proceed, we denote by Lp := Lp(Ω,P)
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the set of random variables X on (Ω,F ,P) with finite p-th moment with norm ∥X∥p = (E [|X|p])1/p

and by Lp
F := Lp

F(Ω× [0, T ]) the space of all R valued F-progressively measurable random processes

α such that

E
[∫ T

0
|αt|pdt

]
<∞.

Let Pp(R) denote the Wasserstein space of probability measures µ on R satisfying
∫
R |x|pdµ(x) <

∞ endowed with p-Wasserstein metric Wp(·, ·) defined by

Wp(µ, ν) = inf
π∈Π(µ,ν)

(∫
R×R

|x− y|pdπ(x, y)
) 1

p

,

where Π(µ, ν) is the collection of all probability measures on R × R with its marginals agreeing

with µ and ν.

Let X0 ∈ L2 be a random variable that is independent with W and W̃ . For any control α ∈ L2
F,

consider the state X = {Xt}t≥0 of the generic player governed by a stochastic differential equation

(SDE)

dXt = αtdt+ dWt + dW̃t (4.2.1)

with the initial valueX0, where the underlying processX : [0, T ]×Ω 7→ R. Given a random measure

flow m : (0, T ]× Ω 7→ P2(R), the generic player wants to minimize the expected accumulated cost

on [0, T ]:

J(x, α) = E
[∫ T

0

(
1

2
α2
s + F (Xs,ms)

)
ds

∣∣∣∣X0 = x

]
(4.2.2)

with some given cost function F : R× P2(R) 7→ R.
The objective of the control problem for the generic player is to find its optimal control α̂ ∈

A := L4
F to minimize the total cost, i.e.,

V [m](x) = J [m](x, α̂) ≤ J [m](x, α), ∀α ∈ A. (4.2.3)

Associated to the optimal control α̂, we denote the optimal path by X̂ = {X̂t}t≥0.

Next, to introduce the MFG Nash equilibrium, it is useful to emphasize the dependence of

the optimal path and optimal control of the generic player, as well as its associated value, on

the underlying measure flow m. These quantities are denoted as X̂t[m], α̂t[m], J [m], and V [m],

respectively.

We now present the definitions of the equilibrium measure, equilibrium path, and equilibrium

control. Please also refer to page 127 of [17] for a general setup with a common noise.

Definition 40. Given an initial distribution L(X0) = m0 ∈ P2(R), a random measure flow m̂ =

m̂(m0) is said to be an MFG equilibrium measure if it satisfies the fixed point condition

m̂t = L
(
X̂t[m̂]

∣∣∣ F̃t

)
, ∀0 < t ≤ T, almost surely in P. (4.2.4)

The path X̂ and the control α̂ associated with m̂ are called the MFG equilibrium path and equilibrium
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control, respectively.

Figure 4.1: MFG diagram 2.

The flowchart of the MFG diagram is given in Figure 4.1. It is noted from the optimality

condition (4.2.3) and the fixed point condition (4.2.4) that

J [m̂](x, α̂) ≤ J [m̂](x, α), ∀α

holds for the equilibrium measure m̂ and its associated equilibrium control α̂, while it is not

J [m̂](x, α̂) ≤ J [m](x, α), ∀α,m.

Otherwise, this problem turns into a McKean-Vlasov control problem, which is essentially different

from the current Mean Field Games setup. Readers refer to [19, 18] to see the analysis of this

different model as well as some discussion of the differences between these two problems.

4.2.2 The formulation of Nash equilibrium in the N-player game

In this subsection, we set up the N -player game and define the Nash equilibrium of the N -player

game in the sample space Ω(N). Firstly, let W (N) = (W
(N)
i : i = 1, 2, . . . , N) be an N -dimensional

standard Brownian motion constructed on the space (Ω̄(N), F̄ (N), P̄(N), F̄(N) = {F̄ (N)
t }t≥0) and W̃ =

{W̃t}t≥0 be the common noise in MFG defined in Section 4.2.1 on (Ω̃, F̃ , P̃). The probability space

for the N -player game is
(
Ω(N),F (N),F(N),P(N)

)
, which is constructed via the product structure

with

Ω(N) = Ω̄(N) × Ω̃, F (N), F(N) =
{
F (N)
t

}
t≥0

, P(N).

where (F (N),P(N)) is the completion of (F̄ (N) ⊗ F̃ , P̄(N) ⊗ P̃) and F(N) is the complete and right

continuous augmentation of {F̄ (N)
t ⊗ F̃t}t≥0.
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Consider a stochastic dynamic game withN players, where each player i ∈ {1, 2, . . . , N} controls
a state process X

(N)
i = {X(N)

it }t≥0 in R given by

dX
(N)
it = α

(N)
it dt+ dW

(N)
it + dW̃t, X

(N)
i0 = x

(N)
i (4.2.5)

with a control α
(N)
i in an admissible set A(N) := L4

F(N) and random initial state x
(N)
i .

Given the strategies α
(N)
−i = (α

(N)
1 , . . . , α

(N)
i−1 , α

(N)
i+1 , . . . , α

(N)
N ) from other players, the objective

of player i is to select a control α
(N)
i ∈ A(N) to minimize her expected total cost given by

JN
i

(
x(N), α

(N)
i ;α

(N)
−i

)
= E

[∫ T

0

(
1

2

(
α
(N)
it

)2
+ F

(
X

(N)
it , ρ

(
X

(N)
t

)))
dt

∣∣∣∣X(N)
0 = x(N)

]
,

(4.2.6)

where x(N) = (x
(N)
1 , x

(N)
2 , . . . , x

(N)
N ) is a RN -valued random vector in Ω(N) to denote the initial

state for N players, and

ρ
(
x(N)

)
=

1

N

N∑
i=1

δ
x
(N)
i

is the empirical measure of the vector x(N) with Dirac measure δ. We use the notation α(N) :=

(α
(N)
i , α

(N)
−i ) = (α

(N)
1 , α

(N)
2 , . . . , α

(N)
N ) to denote the control from N players as a whole. Next, we

give the equilibrium value function and equilibrium path in the sense of the Nash game.

Definition 41. 1. The value function of player i for i = 1, 2, . . . , N of the Nash game is defined

by V N = (V N
i : i = 1, 2, . . . , N) satisfying the equilibrium condition

V N
i

(
x(N)

)
:= JN

i

(
x(N), α̂

(N)
i ; α̂

(N)
−i

)
≤ JN

i

(
x(N), α

(N)
i ; α̂

(N)
−i

)
, (4.2.7)

for all α
(N)
i ∈ A(N).

2. The equilibrium path of the N -player game is the N -dimensional random path X̂
(N)
t =

(X̂
(N)
1t , X̂

(N)
2t , . . . , X̂

(N)
Nt ) driven by (4.2.5) associated to the control α̂

(N)
t satisfying the equilib-

rium condition of (4.2.7).

4.2.3 Main result

We consider three convergence questions on the N -player game defined in Ω(N): The first one is

the convergence of the representative path X̂
(N)
it , the second one is the convergence of the empirical

measure ρ(X̂
(N)
t ), while the last one is the t-uniform convergence of the empirical measure ρ(X̂

(N)
t ).

To be precise, we shall assume the following throughout this chapter:

Assumption 42. • E[|X0|q] <∞ for some q > 4.

• The initials X
(N)
i0 of the N -player game are i.i.d. random variables in Ω(N) with the same

distribution as L(X0) in the MFG.
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Note that the equilibrium path X̂
(N)
t = (X̂

(N)
it : i = 1, 2, . . . , N) is a vector-valued stochastic

process. Due to the Assumption 42, the game is invariant to index reshuffling of N players and the

elements in (X̂
(N)
it : i = 1, 2, . . . , N) have identical distributions, but they are not independent of

each other.

So, the first question on the representative path is indeed about X̂
(N)
1t in Ω(N) and we are

interested in how fast it converges to X̂t in Ω in distribution:

(Q1) The Wp-convergence rate of the representative equilibrium path,

Wp

(
L
(
X̂

(N)
1t

)
,L
(
X̂t

))
= O

(
N−?

)
.

The second question is about the convergence of the empirical measure ρ(X̂
(N)
t ) of the N -player

game defined by

ρ
(
X̂

(N)
t

)
=

1

N

N∑
i=1

δ
X̂

(N)
it

.

We are interested in how fast this converges to the MFG equilibrium measure given by

m̂t = L
(
X̂t

∣∣∣ F̃t

)
, ∀t ∈ (0, T ].

(Q2’) The Wp-convergence rate of empirical measures,

Wp

(
ρ
(
X̂

(N)
t

)
,L
(
X̂t

∣∣∣ F̃t

))
= O

(
N−?

)
.

Note that the left-hand side of the above equality is a random quantity and one shall be

more precise about what the Big O notation means in this context. Indeed, by the definition

of the empirical measure, ρ(X̂
(N)
t ) is a random distribution measurable by σ-algebra generated

by the random vector X̂
(N)
t . On the other hand, L(X̂t|F̃t) is a random distribution measurable

by the σ-algebra F̃t. Therefore, from the construction of the product probability space Ω(N) in

Section 4.2.2, both random distributions ρ(X̂
(N)
t ) and L(X̂t|F̃t) are measurable with respect to

F (N)
t = F̄ (N)

t ⊗ F̃t. Consequently, Wp(ρ(X̂
(N)
t ),L(X̂t|F̃t)) is a random variable in the probability

space (Ω(N),F (N),P(N)) and we will focus on a version of (Q2’) in the Lp sense:

(Q2) The Wp-convergence rate of empirical measures in Lp sense for each t ∈ [0, T ],

(
E
[
Wp

p

(
ρ
(
X̂

(N)
t

)
,L
(
X̂t

∣∣∣ F̃t

))]) 1
p
= O

(
N−?

)
.

In addition, we also study the following related question:

(Q3) The t-uniform Wp-convergence rate of empirical measures in Lp sense,

(
E

[
sup

0≤t≤T
Wp

p

(
ρ
(
X̂

(N)
t

)
,L
(
X̂t

∣∣∣ F̃t

))]) 1
p

= O
(
N−?

)
.
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In this chapter, we will study the above three questions (Q1), (Q2), and (Q3) in the framework

of LQG structure with Brownian motion as a common noise with the following function F in the

cost functional (4.2.2).

Assumption 43. Let the function F : R× P2(R) 7→ R be given in the form of

F (x,m) = k

∫
R
(x− z)2m(dz) = k(x2 − 2x[m]1 + [m]2) (4.2.8)

for some k > 0, where [m]1, [m]2 are the first and second moment of the measure m.

The main result of this chapter is presented below. Let us recall that q denotes the parameter

defined in Assumption 42.

Theorem 44. Under Assumptions 42-43, for any p ∈ [1, 2], we have

1. The Wp-convergence rate of the representative equilibrium path is 1/2, i.e.,

Wp

(
L
(
X̂

(N)
1t

)
,L
(
X̂t

))
= O

(
N− 1

2

)
.

2. The Wp-convergence rate of empirical measures in Lp sense is

E
[
Wp

p

(
ρ
(
X̂

(N)
t

)
,L
(
X̂t

∣∣∣ F̃t

))]
= O

(
N− 1

2

)
.

3. The uniform Wp-convergence rate of empirical measures in Lp sense is

E

[
sup

0≤t≤T
Wp

p

(
ρ
(
X̂

(N)
t

)
,L
(
X̂t

∣∣∣ F̃t

))]
=

O
(
N− 1

2 ln(N)
)
, if p = 1,

O
(
N− 1

2

)
, if 1 < p ≤ 2.

We would like to provide some additional remarks on our main result. Firstly, the cost function

F defined in (4.2.6) applies to the running cost for the i-th player in the N -player game, and it

takes the form:

F
(
X

(N)
it , ρ

(
X

(N)
t

))
=

k

N

N∑
j=1

(
X

(N)
it −X

(N)
jt

)2
. (4.2.9)

Interestingly, if k < 0, although F does satisfy the Lasry-Lions monotonicity ([13]) as demonstrated

in Appendix 6.1 of [50], there is no global solution for MFG due to the concavity in x. On the

contrary, when k > 0, F satisfies the displacement monotonicity proposed in [33] as shown by the

following derivation:

E [(Fx(X1,L(X1))− Fx(X2,L(X2)))(X1 −X2)] = 2k
(
E
[
(X1 −X2)

2
]
− (E[X1 −X2])

2
)
≥ 0.
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4.3 Proof of the main result with two propositions

Our objective is to investigate the relations between (X̂
(N)
1t , X̂

(N)
2t , . . . , X̂

(N)
Nt ) and X̂t described in

(Q1), (Q2), and (Q3). In this part, we will give the proof of Theorem 44 based on two propositions

whose proofs will be given later.

Proposition 45. Under Assumptions 42-43, the MFG equilibrium path X̂ = X̂[m̂] is given by

dX̂t = −2a(t)
(
X̂t − µ̂t

)
dt+ dWt + dW̃t, X̂0 = X0, (4.3.1)

where a is the solution of

a′(t)− 2a2(t) + k = 0, a(T ) = 0, (4.3.2)

and µ̂ is

µ̂t := E
[
X̂t

∣∣∣ F̃t

]
= E[X0] + W̃t.

Moreover, the equilibrium control follows

α̂t = −2a(t)
(
X̂t − µ̂t

)
. (4.3.3)

Proposition 46. Suppose Assumptions 42-43 hold. For the N -player game, the path and the

control of player i under the equilibrium are given by

dX̂
(N)
it = −2aN (t)

X̂(N)
it − 1

N − 1

N∑
j ̸=i

X̂
(N)
jt

 dt+ dW
(N)
it + dW̃t, (4.3.4)

and

α̂
(N)
it = −2aN (t)

X̂(N)
it − 1

N − 1

N∑
j ̸=i

X̂
(N)
jt


respectively for i = 1, 2, . . . , N , where aN is the solution of

a′ − 2(N + 1)

N − 1
a2 +

N − 1

N
k = 0, a(T ) = 0. (4.3.5)

4.3.1 Preliminaries

We first recall the convergence rate of empirical measures of i.i.d. sequence provided in Theorem 1

of [32] and Theorem 5.8 of [16].

Lemma 47. Let d = 1 or 2. Suppose {Xi : i ∈ N} is a sequence of d dimensional i.i.d. random

variables with E[|X1|q] <∞ for some q > 4. Then, the empirical measure

ρN (X) =
1

N

N∑
i=1

δXi
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satisfies

E
[
Wp

p

(
ρN (X),L(X1)

)]
=


O
(
N−1/2

)
, if p ∈ (1, 2],

O
(
N−1/2

)
, if p = 1, d = 1,

O
(
N−1/2 lnN

)
, if p = 1, d = 2.

Next, we give the definition of some notations that will be used in the following part. Denote

Cb(Rd) to be the collection of bounded and continuous functions on Rd, and let C1
b (Rd) ⊂ Cb(Rd)

be the space of functions on Rd whose first order derivative is also bounded and continuous.

Lemma 48. Suppose m1,m2 are two probability measures on B(Rd) and f ∈ C1
b (Rd,R), where

B(Rd) is the Borel set on Rd. Then,

Wp(f∗m1, f∗m2) ≤ |Df |0Wp(m1,m2),

where f∗mj is the pushforward measure for j = 1, 2, and |Df |0 = supx∈Rd max{|∂xif(x)| : i =

1, 2, . . . , d}.

Proof. We define a function F (x, y) = (f(x), f(y)) : R2d 7→ R2. Note that, for any π ∈ Π(m1,m2),

F∗π ∈ Π(f∗m1, f∗m2), i.e.,

F∗Π(m1,m2) ⊂ Π(f∗m1, f∗m2).

Therefore, we have the following inequalities:

Wp
p(f∗m1, f∗m2) = inf

π′∈Π(f∗m1,f∗m2)

∫
R2

|x− y|pπ′(dx, dy)

≤ inf
π′∈F∗Π(m1,m2)

∫
R2

|x− y|pπ′(dx, dy)

= inf
π∈Π(m1,m2)

∫
R2d

|f(x)− f(y)|pπ(dx, dy)

≤ |Df |p0 inf
π∈Π(m1,m2)

∫
R2d

|x− y|pπ(dx, dy)

= |Df |p0W
p
p(m1,m2).

Lemma 49. Let {Xi : i ∈ N} be a sequence of d dimensional random variables in (Ω,F ,P). Let

f ∈ C1
b (Rd). We also denote by f(X) the sequence {f(Xi) : i ∈ N}. Then

Wp

(
ρN (f(X)),L(f(X1))

)
≤ |Df |0Wp

(
ρN (X),L(X1)

)
, almost surely

where |Df |0 = supx∈Rd max{|∂xif(x)| : i = 1, 2, . . . , d}.

Proof. For any sequence {ci : i ∈ N} in Rd, the empirical measure ρN (c) := 1
N

∑N
i=1 δci satisfies

ρN (f(c)) = f∗ρ
N (c),
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since

⟨ϕ, ρN (f(c))⟩ = 1

N

N∑
i=1

ϕ(f(ci)) = ⟨ϕ ◦ f, ρN (c)⟩, ∀ϕ ∈ Cb(Rd).

This implies that

ρN (f(X)) = f∗ρ
N (X), almost surely.

On the other hand, we also have

L(f(X1))(A) = P(f(X1) ∈ A) = P(X1 ∈ f−1(A)) = f∗L(X1)(A), ∀A ∈ B(Rd).

Therefore, the conclusion follows by applying Lemma 48.

4.3.2 Empirical measures of a sequence with a common noise

We are going to apply lemmas from the previous subsection to study the convergence of empirical

measures of a sequence with a common noise in the following sense.

Definition 50. We say a sequence of random variables X = {Xi : i ∈ N} is a sequence with a

common noise, if there exists a random variable β such that

• X − β = {Xi − β : i ∈ N} is a sequence of i.i.d. random variables,

• β is independent to X − β.

By this definition, a sequence with a common noise is i.i.d. if and only if β is a deterministic

constant.

Example 2. Let q > 4 be a given constant and X = {Xi : i ∈ N} be a 1-dimensional sequence of

Lq random variables with a common noise term β, where

Xi − β = γi + λαi.

In above, {(αi, γi) : i ∈ N} is a sequence of 2-dimensional i.i.d. random variables independent to

β, and λ is a given non-negative constant. Let ρN (X) be the empirical measure defined by

ρN (X) =
1

N

N∑
i=1

δXi .

The first question is

(Qa) In Example 2, where does ρN (X) converge to?

For any test function ϕ ∈ Cb(R),

⟨ϕ, ρN (X)⟩ = 1

N

N∑
i=1

ϕ(Xi) =
1

N

N∑
i=1

ϕ(γi + λαi + β).
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Since β is independent to (αi, γi), by Example 4.1.5 of [23] together with the Law of Large Numbers,

we have

1

N

N∑
i=1

ϕ(γi + λαi + c) → E[ϕ(γ1 + λα1 + c)] = E[ϕ(γ1 + λα1 + β)|β = c], ∀c ∈ R.

Therefore, we conclude that

⟨ϕ, ρN (X)⟩ → E[ϕ(γ1 + λα1 + β)|β], β − a.s.

= ⟨ϕ,L(γ1 + λα1 + β|β)⟩, β − a.s.

Hence, the answer for the (Qa) is

• ρN (X) ⇒ L(X1|β), β-a.s. More precisely, since all random variables are square-integrable,

the weak convergence implies, for all p ∈ [1, 2],

Wp

(
ρN (X),L (X1|β)

)
→ 0, β − a.s.

The next question is

(Qb) In Example 2, what’s the convergence rate in the sense E
[
Wp

p

(
ρN (X),L (X1|β)

)]
?

Since β is independent to γ1 + λα1, by Example 4.1.5 of [23], we have

E[ϕ(γ1 + λα1 + β)|β = c] = E[ϕ(γ1 + λα1 + c)], ∀ϕ ∈ Cb(R), c ∈ R,

or equivalently, if one takes c = β(ω),

L(X1|β)(ω) = L(γ1 + λα1 + β|β)(ω) = L(γ1 + λα1 + c).

On the other hand, with c = β(ω),

ρN (X)(ω) = ρN (X(ω)) =
1

N

N∑
i=1

δγi(ω)+λαi(ω)+c.

From the above two identities, with c = β(ω), we can write

Wp

(
ρN (X)(ω),L(X1|β = c)(ω)

)
= Wp

(
1

N

N∑
i=1

δγi(ω)+λαi(ω)+c,L(γ1 + λα1 + c)

)
. (4.3.6)

Now we can conclude (Qb) in the next lemma.

Lemma 51. Let p ∈ [1, 2] be a given constant. For a sequence X = {Xi : i ∈ N} with a common

noise β as of Example 2, we have

E
[
Wp

p

(
ρN (X),L(X1|β)

)]
= O

(
N− 1

2

)
.
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Proof. Originally, Xi = γi + λαi + β of Example 2 are dependent due to the common term β. We

apply (4.7.2) in Lemma 60 in Appendix to (4.3.6) and obtain

Wp

(
ρN (X)(ω),L(X1|β)(ω)

)
= Wp

(
1

N

N∑
i=1

δγi(ω)+λαi(ω)+β(ω),L(γ1 + λα1 + β(ω))

)
= Wp

(
ρN (γ(ω) + λα(ω)),L(γ1 + λα1)

)
.

Now, the convergence of empirical measures is equivalent to the ones of i.i.d. sequence {γi + λαi :

i ∈ N}. The conclusion follows from Lemma 47.

Next, we present the uniform convergence rate by combining Lemma 49.

Lemma 52. In Example 2, we use X(λ) to denote X to emphasize its dependence on λ. Then,

E

[
sup

λ∈[0,1]
Wp

p

(
ρN (X(λ)),L (X1(λ)|β)

)]
=

O
(
N− 1

2 ln(N)
)
, if p = 1,

O
(
N− 1

2

)
, if 1 < p ≤ 2.

Proof. Note that, by (4.7.2) in Lemma 60 in Appendix,

Wp
p

(
ρN (X(λ)),L (X1(λ)|β)

)
= Wp

p

(
ρN (γ + λα),L (γ1 + λα1)

)
.

Next, applying Lemma 49 with f(x, y) = x+ λy, we obtain

sup
λ∈[0,1]

Wp
p

(
ρN (γ + λα),L (γ1 + λα1)

)
≤ sup

λ∈[0,1]
max{1, λp}Wp

p

(
ρN ((γ, α)),L ((γ1, α1))

)
= Wp

p

(
ρN ((γ, α)),L ((γ1, α1))

)
.

At last, using Lemma 47 for the 2-dimensional i.i.d. sequence {(γi, αi) : i ∈ N}, we obtain the

desired conclusion.

4.3.3 Generalization of the convergence to triangular arrays

Unfortunately, (X̂
(N)
1t , X̂

(N)
2t , . . . , X̂

(N)
Nt ) of the N -player’s game does not have a clean structure with

a common noise term β given in Example 2. Therefore, we need a generalization of the convergence

result in Example 2 to a triangular array. To proceed, we provide the following lemma.

Lemma 53. Let λ > 0, q > 4, and

XN
i (λ) = γNi + λαN

i +∆N
i (λ) + β, and X̂(λ) = γ̂ + λα̂+ β,

where

• (γN , αN ) = {(γNi , αN
i ) : i ∈ N} is a sequence of 2-dimensional i.i.d. random variables with

distribution identical to L((γ̂, α̂)) with (γ̂, α̂) ∈ Lq for some q > 4,

• β ∈ Lq is independent to the random variables (γNi , α
N
i , γ̂, α̂),
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• max
i=1,2,...,N

E

[
sup

λ∈[0,1]
|∆N

i (λ)|2
]
= O(N−1).

Let ρN (XN ) be the empirical measure given by

ρN (XN ) =
1

N

N∑
i=1

δXN
i
.

Then, we have the following three results: For p ∈ [1, 2],

Wp

(
L
(
XN

1 (λ)
)
,L
(
X̂(λ)

))
= O

(
N− 1

2

)
, (4.3.7)

sup
λ∈[0,1]

E
[
Wp

p

(
ρN
(
XN (λ)

)
,L
(
X̂(λ)

∣∣∣β))] = O
(
N− 1

2

)
, (4.3.8)

and

E

[
sup

λ∈[0,1]
Wp

p

(
ρN
(
XN (λ)

)
,L
(
X̂(λ)

∣∣∣β))] =

O
(
N− 1

2 ln(N)
)
, if p = 1,

O
(
N− 1

2

)
, if p > 1.

(4.3.9)

Proof. We will omit the dependence of λ if there is no confusion, for instance, we use X in lieu of

X(λ). Since L(X̂) = L(XN
1 −∆N

1 ), the first result (4.3.7) directly follows from

Wp
p

(
L
(
XN

1

)
,L
(
X̂
))

≤ E
[∣∣∆N

1

∣∣p] ≤ (E [∣∣∆N
1

∣∣2]) p
2
= O

(
N− p

2

)
.

Next, we set Y N
i (λ) = γNi + λαN

i + β. By the definition of empirical measures, we have

Wp
p

(
ρN
(
XN

)
, ρN

(
Y N
))

≤ 1

N

N∑
i=1

∣∣XN
i − Y N

i

∣∣p = 1

N

N∑
i=1

∣∣∆N
i

∣∣p . (4.3.10)

From the third condition on ∆N
i , we obtain

E
[
Wp

p

(
ρN
(
XN

)
, ρN

(
Y N
))]

= O
(
N− p

2

)
.

By Lemma 51, we also have

E
[
Wp

p

(
ρN
(
Y N
)
,L
(
X̂
∣∣∣β))] = O

(
N− 1

2

)
.

In the end, (4.3.8) follows from the triangle inequality together with the fact that p ≥ 1. Finally,

for the proof of (4.3.9), we first use (4.3.10) to write

Wp
p

(
ρN
(
XN (λ)

)
,L
(
X̂(λ)

∣∣∣β)) ≤ 2p−1

(
Wp

p

(
ρN
(
Y N (λ)

)
,L
(
X̂(λ)

∣∣∣β))+ 1

N

N∑
i=1

∣∣∆N
i (λ)

∣∣p) .
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Applying Lemma 52 and the third condition on ∆N
i (λ), we can conclude (4.3.9).

4.3.4 Proof of Theorem 44

For simplicity, let us introduce the following notations:

Et(a) = exp

{∫ t

0
a(s)ds

}
, Et(a,M) =

∫ t

0
Es(a)dMs

for a deterministic function a(·) and a martingale M = {Mt}t≥0. With these notations, one can

write the solution to the Ornstein–Uhlenbeck process

dXt = −atXtdt+ dMt

for a determinant function a in the form of

Et(a)Xt = X0 + Et(a,M). (4.3.11)

For MFG equilibrium, we define

X̃t = X̂t − µ̂t.

According to (4.3.1) in Proposition 45, X̃ satisfies the following equation:

X̃t = X̃0 −
∫ t

0
2asX̃sds+Wt.

Next, we express the solution of the above SDE in the form of

Ỹt := Et(2a)X̃t = X̃0 + Et(2a,W ).

Note that Ỹ and µ̂ are independent. Therefore, X̂ admits a decomposition of two independent

processes as

X̂t = X̃t + µ̂t.

Furthermore, we have

Ŷt := Et(2a)X̂t = X̃0 + Et(2a,W ) + Et(2a)
(
µ̂0 + W̃t

)
.

In the N -player game, we define the following quantities:

X̄
(N)
t =

1

N

N∑
i=1

X̂
(N)
it , W̄

(N)
t =

1

N

N∑
i=1

W
(N)
it ,

and

X̃
(N)
it = X̂

(N)
it − X̄

(N)
t .
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It is worth noting that, by Proposition 46, we have

X̂
(N)
it = X̂

(N)
i0 −

∫ t

0
2

N

N − 1
aN (s)

X̂(N)
is − 1

N

N∑
j=1

X̂
(N)
js

 ds+W
(N)
it + W̃t

for all i = 1, 2, . . . , N , then the mean-field term satisfies

X̄
(N)
t = X̄

(N)
0 + W̄

(N)
t + W̃t

and the i-th player’s path deviated from the mean-field path can be rewritten by

X̃
(N)
it = X̃

(N)
i0 −

∫ t

0
2âN (s)X̃

(N)
is ds+W

(N)
it − W̄

(N)
t ,

where

âN =
N

N − 1
aN .

Next, we introduce

Ŷ
(N)
it = Et

(
2âN

)
X̂

(N)
it , Ỹ

(N)
it = Et

(
2âN

)
X̃

(N)
it , Ȳ

(N)
t = Et

(
2âN

)
X̄

(N)
t .

Consequently, we obtain the following relationships:

Ỹ
(N)
it = X̃

(N)
i0 + Et

(
2âN ,W

(N)
i − W̄ (N)

)
,

Ȳ
(N)
t = Et

(
2âN

) (
W̄

(N)
t + W̃t + X̄

(N)
0

)
,

and

Ŷ
(N)
it = Ȳ

(N)
it + Ỹ

(N)
it .

To compare the process Ŷ
(N)
it with the target process

Ŷt = X̃0 + Et (2a,W ) + Et(2a)
(
µ̂0 + W̃t

)
= X̃0 + λtZt + Et(2a)

(
µ̂0 + W̃t

)
,

(4.3.12)

where

λt =

(∫ t

0
Es(4a)ds

)1/2

,

and

Zt = λ−1
t Et (2a,W ) ∼ N (0, 1),
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we write Ŷ
(N)
it by

Ŷ
(N)
it = X̃

(N)
i0 + Et

(
2a,W

(N)
i

)
+∆

(N)
it + Et(2a)

(
µ̂0 + W̃t

)
= X̃

(N)
i0 + λtZ

(N)
it +∆

(N)
it + Et(2a)

(
µ̂0 + W̃t

)
,

(4.3.13)

where

Z
(N)
it = λ−1

t Et
(
2a,W

(N)
i

)
∼ N (0, 1),

and
∆

(N)
it =

(
Et
(
2âN ,W

(N)
i

)
− Et

(
2a,W

(N)
i

))
− Et

(
2âN , W̄ (N)

)
+
(
Et
(
2âN

)
− Et(2a)

) (
µ̂0 + W̃t

)
+ Et

(
2âN

) (
X̄

(N)
0 − µ̂0 + W̄

(N)
t

)
:= I

(N)
it + II

(N)
t + III

(N)
t + IV

(N)
t .

(4.3.14)

To apply Lemma 53 to the processes of (4.3.13) and (4.3.12), we only need to show the second

moment on supt∈[0,T ]∆
(N)
it is O(N−1) for each i = 1, 2, . . . , N . In the following analysis, we will

utilize the explicit solution of the ODE:

• Let c, d > 0 be two constants. The solution of

v′(t)− c2v2(t) + d2 = 0, v(T ) = 0

is

v(t) =
d

c
· 1− e2dc(t−T )

1 + e2dc(t−T )
. (4.3.15)

We will employ this solution to derive the second-moment estimations of supt∈[0,T ]∆
(N)
it .

1. From (4.3.15), we have an estimation of

∣∣aN (t)− a(t)
∣∣ = k|T − t|

N
+ o

(
N−1

)
. (4.3.16)

Therefore, we have ∣∣Et(2âN )− Et(2a)
∣∣ = 2t(T − t)

N
+ o

(
N−1

)
(4.3.17)
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and thus by Burkholder-Davis-Gundy (BDG) inequality

E

[
sup

t∈[0,T ]

(
I
(N)
it

)2]
= E

[
sup

t∈[0,T ]

(∫ t

0

(
Es
(
2âN

)
− Es (2a)

)
dW

(N)
is

)2
]

≤ CE

[(∫ T

0

(
Es
(
2âN

)
− Es (2a)

)
dW

(N)
is

)2
]

for some constant C > 0

= C

∫ T

0

(
Es
(
2âN

)
− Es (2a)

)2
ds

= O
(
N−2

)
.

2. Since âN is uniformly bounded by
√
k/2, II

(N)
t is a martingale with its quadratic variance

[II(N)]T =
1

N

∫ T

0
Es(4âN )ds = O

(
N−1

)
.

So, we have

E

[
sup

t∈[0,T ]

(
II

(N)
t

)2]
= O

(
N−1

)
.

3. From the estimation (4.3.17), we also have

E

[
sup

t∈[0,T ]

(
III

(N)
t

)2]
= O

(
N−2

)
.

4. By the assumption of i.i.d. initial states, we have

E

[
sup

t∈[0,T ]

(
IV

(N)
t

)2]
= ET

(
4âN

)(
V ar

(
X̄

(N)
0

)
+ E

[
sup

t∈[0,T ]

(
W̄

(N)
t

)2])
= O

(
N−1

)
.

As a result, we have the following expression:

E

[
sup

t∈[0,T ]

(
∆

(N)
it

)2]
= O

(
N−1

)
, ∀i = 1, 2, . . . , N. (4.3.18)

By combining equations (4.3.12), (4.3.13), and (4.3.18), we can conclude Theorem 44 by applying

Lemma 53.

4.4 Proposition 45: Derivation of the MFG path

This section is dedicated to proving Proposition 45, which provides insights into the MFG solu-

tion. To proceed, in Subsection 4.4.1, we begin by reformulating the MFG problem, assuming a

Markovian structure for the equilibrium. Then, in Subsection 4.4.2, we solve the underlying control
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problem and derive the corresponding Riccati system. Finally, in Subsection 4.4.3, we examine the

fixed-point condition of the MFG problem, leading to the conclusion.

4.4.1 Reformulation

To determine the equilibrium measure, as defined in Definition 41, one needs to explore the infinite-

dimensional space of random measure flows m : (0, T ] × Ω → P2(R) until a measure flow satisfies

the fixed-point condition mt = L(X̂t|F̃t) for all t ∈ (0, T ], as illustrated in Figure 4.1.

The first observation is that the cost function F in (4.2.8) is only dependent on the measure m

through the first two moments with the quadratic cost structure, which is given by

F (x,m) = k(x2 − 2x[m]1 + [m]2).

Consequently, the underlying stochastic control problem for MFG can be entirely determined by

the input given by the R2 valued random processes µt = [mt]1 and νt = [mt]2, which implies that

the fixed point condition can be effectively reduced to merely checking two conditions:

µt = E
[
X̂t

∣∣∣ F̃t

]
, νt = E

[
X̂2

t

∣∣∣ F̃t

]
.

This observation effectively reduces our search from the space of random measure-valued processes

m : (0, T ]× Ω 7→ P2(R) to the space of R2-valued random processes (µ, ν) : (0, T ]× Ω 7→ R2.

It is important to note that if the underlying MFG does not involve common noise, the afore-

mentioned observation is adequate to transform the original infinite-dimensional MFG into a finite-

dimensional system. In this case, the moment processes (µ, ν) become deterministic mappings

[0, T ] → R2. However, the following example demonstrates that this is not applicable to MFG

with common noise, which presents a significant drawback in characterizing LQG-MFG using a

finite-dimensional system.

Example 3. To illustrate this point, let’s consider the following uncontrolled mean field dynamics:

Let the mean field term µt := E[X̂t|F̃t], where the underlying dynamic is given by

dX̂t = −µtW̃tdt+ dWt + dW̃t, X̂0 = X0.

Here are two key observations:

• µt is path dependent on entire path of W̃ , i.e.,

µt = µ0e
−

∫ t
0 W̃sds + e−

∫ t
0 W̃sds

∫ t

0
e
∫ s
0 W̃rdrdW̃s.

This implies that the (t, W̃ ) 7→ µt is a function on an infinite dimensional domain.

• µt is Markovian, i.e.,

dµt = −µtW̃tdt+ dW̃t.

It is possible to express the µt via a SDE with finite-dimensional coefficient functions of (t, µt).
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To make the previous idea more concrete, we propose the assumption of a Markovian structure

for the first and second moments of the MFG equilibrium. In other words, we restrict our search

for equilibrium to a smaller space M of measure flows that capture the Markovian structure of the

first and second moments.

Definition 54. The space M is the collection of all F̃t-adapted measure flows m : [0, T ] × Ω 7→
P2(R), whose first moment [mt]1 := µt and second moment [mt]2 := νt satisfy a system of SDE

µt = µ0 +

∫ t

0
(w1(s)µs + w2(s)) ds+ W̃t,

νt = ν0 +

∫ t

0

(
w3(s)µs + w4(s)νs + w5(s)µ

2
s + w6(s)

)
ds+ 2

∫ t

0
µsdW̃s,

(4.4.1)

for some smooth deterministic functions (wi : i = 1, 2, . . . , 6) for all t ∈ [0, T ].

Figure 4.2: Equivalent MFG diagram 2.

The MFG problem originally given by Definition 40 can be recast as the following combination

of stochastic control problem and fixed point condition:

• RLQG(Revised LQG):

Given smooth functions w = (wi : i = 1, 2, . . . , 6), we want to find the value function V̄ =

V̄ [w] : [0, T ]× R3 → R and optimal path (X̂, µ̂, ν̂)[w] from the following control problem:

V̄ (t, x, µ̄, ν̄) = inf
α∈A

E
[∫ T

t

(
1

2
α2
s + F̄ (Xs, µs, νs)

)
ds

∣∣∣∣Xt = x, µt = µ̄, νt = ν̄

]
with the underlying process X of (4.2.1) and (µ, ν) of (4.4.1) and with the cost functions:

F̄ : R3 7→ R given by

F̄ (x, µ̄, ν̄) = k(x2 − 2xµ̄+ ν̄),

where µ̄, ν̄ are scalars, while µ, ν are used as processes.

• RFP(Revised fixed point condition):

96



Determine w satisfying the following fixed point condition:

µ̂s = E
[
X̂s

∣∣∣ F̃s

]
and ν̂s = E

[
X̂2

s

∣∣∣ F̃s

]
, ∀s ∈ [0, T ]. (4.4.2)

The equilibrium measure is then N (µ̂t, ν̂t − µ̂2t ).

Remark 55. It is important to highlight that the Markovian structure for the first and second

moments of the MFG equilibrium in this manuscript differs significantly from that presented in

[50]. In [50], the processes µt and νt are pairs of processes with finite variation, while in our case,

they are quadratic variation processes.

Specifically, in [50], the coefficient functions depend on the common noise Y , whereas in (4.4.1),

the coefficient functions (wi : i = 1, 2, . . . , 6) are independent of the common noise W̃ . Instead, the

first and second moments of the MFG equilibrium are only influenced by the common noise through

an additive term.

4.4.2 The generic player’s control with a given population measure

This section is devoted to the control problem RLQG parameterized by w.

4.4.2.1 HJB equation

To simplify the notation, let’s denote each function wi(t) as wi for i ∈ {1, 2, . . . , 6}. Assuming

sufficient regularity conditions, and according to the dynamic programming principle (refer to [69]

for more details), the value function V̄ defined in the RLQG problem can be obtained as a solution

v of the following Hamilton-Jacobi-Bellman (HJB) equation
∂tv + inf

a∈R

(
a∂xv +

1

2
a2
)
+ (w1µ̄+ w2) ∂µ̄v +

(
w3µ̄+ w4ν̄ + w5µ̄

2 + w6

)
∂ν̄v + ∂xxv +

1

2
∂µ̄µ̄v

+∂xµ̄v + 2µ̄2∂ν̄ν̄v + 2µ̄∂µ̄ν̄v + 2µ̄∂xν̄v + k(x2 − 2µ̄x+ ν̄) = 0,

v(T, x, µT , νT ) = 0.

Therefore, the optimal control has to admit the feedback form of

α̂(t) = −∂xv
(
t, X̂t, µt, νt

)
, (4.4.3)

and then the HJB equation can be reduced to
∂tv −

1

2
(∂xv)

2 + (w1µ̄+ w2) ∂µ̄v +
(
w3µ̄+ w4ν̄ + w5µ̄

2 + w6

)
∂ν̄v + ∂xxv +

1

2
∂µ̄µ̄v

+∂xµ̄v + 2µ̄2∂ν̄ν̄v + 2µ̄∂µ̄ν̄v + 2µ̄∂xν̄v + k(x2 − 2µ̄x+ ν̄) = 0,

v(T, x, µT , νT ) = 0.

(4.4.4)
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Next, we identify what conditions are needed for equating the control problem RLQG and the

above HJB equation. Denote S to be the set of v such that v ∈ C∞ satisfies(
1 + |x|2

)−1
(|v|+ |∂tv|) + (1 + |x|+ |µ|)−1 (|∂xv|+ |∂µv|)

+ (|∂xxv|+ |∂xµv|+ |∂µµv|+ |∂νv|) < K

for all (t, x, µ, ν) for some positive constant K.

Lemma 56. Consider the control problem RLQG with some given smooth functions w = (wi : i =

1, 2, . . . , 6).

1. (Verification theorem) Suppose there exists a solution v ∈ S of (4.4.4). Then v(t, x, µ̄, ν̄) =

V̄ (t, x, µ̄, ν̄), and an optimal control is provided by (4.4.3).

2. Suppose that the value function V̄ belongs to S, and then V̄ (t, x, µ̄, ν̄) solves HJB equation

(4.4.4). Moreover, α̂ of (4.4.3) is an optimal control.

Proof. 1. First, we prove the verification theorem. Since v ∈ S, for any admissible α ∈ H4
F, the

process Xα is well defined and one can apply Itô’s formula to obtain

E [v(T,XT , µT , νT )] = v(t, x, µ̄, ν̄) + E
[∫ T

t
Gα(s)v(s,Xs, µs, νs)ds

]
,

where

Gaf(s, x, µ̄, ν̄) =
(
∂t + a∂x + ∂xx + (w1µ̄+ w2) ∂µ̄ +

(
w3µ̄+ w4ν̄ + w5µ̄

2 + w6

)
∂ν̄

+
1

2
∂µ̄µ̄ + 2µ̄2∂ν̄ν̄ + ∂xµ̄ + 2µ̄∂µ̄ν̄ + 2µ̄∂xν̄

)
f(s, x, µ̄, ν̄).

Note that the HJB equation actually implies that

inf
a

{
Gav +

1

2
a2
}

= −F̄ ,

which again yields

−Gav ≤ 1

2
a2 + F̄ .

Hence, we obtain that for all α ∈ H4
F,

v(t, x, µ̄, ν̄)

= E
[∫ T

t
−Gα(s)v(s,Xs, µs, νs)ds

]
+ E [v(T,XT , µT , νT )]

≤ E
[∫ T

t

(
1

2
α2(s) + F̄ (Xs, µs, νs)

)
ds

]
= J(t, x, α, µ̄, ν̄).
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In the above, if α is replaced by α̂ given by the feedback form (4.4.3), then since ∂xv is

Lipschitz continuous in x, there exists corresponding optimal path X̂ ∈ H4
F. Thus, α̂ is also

in H4
F. One can repeat all the above steps by replacing X and α by X̂ and α̂, and ≤ sign by

= sign to conclude that v is indeed the optimal value.

2. The opposite direction of the verification theorem follows by taking θ → t for the dynamic

programming principle, for all stopping time θ ∈ [t, T ],

V̄ (t, x, µ̄, ν̄)

= E
[∫ θ

t

(
1

2
α2
s + F̄ (Xs, µs, νs)

)
ds+ V̄ (θ,Xθ, µθ, νθ)

∣∣∣∣Xt = x, µt = µ̄, νt = ν̄

]
,

which is valid under our regularity assumptions on all the partial derivatives.

4.4.2.2 LQG solution

It is worth noting that the costs F̄ of RLQG are quadratic functions in (x, µ̄, ν̄), while the drift

function of the process ν of (4.4.1) is not linear in (x, µ̄, ν̄). Therefore, the stochastic control

problem RLQG does not fit into the typical LQG control structure. Nevertheless, similarly to the

LQG solution, we guess the value function to be a quadratic function in the form of

v(t, x, µ̄, ν̄) = a(t)x2 + b(t)µ̄2 + c(t)ν̄ + d(t) + e(t)x+ f(t)µ̄+ g(t)xµ̄. (4.4.5)

Under the above setup for the value function v, for t ∈ [0, T ], the optimal control is given by

α̂t = −∂xv(t, X̂t, µt, νt) = −2a(t)X̂t − e(t)− g(t)µt, (4.4.6)

and the optimal path X̂ isdX̂t =
(
−2a(t)X̂t − e(t)− g(t)µt

)
dt+ dWt + dW̃t,

X̂0 = X0.
(4.4.7)

To proceed, we introduce the following Riccati system of ODEs for t ∈ [0, T ],

a′ − 2a2 + k = 0,

b′ − 1

2
g2 + 2bw1 + cw5 = 0,

c′ + cw4 + k = 0,

d′ − 1

2
e2 + fw2 + cw6 + 2a+ b+ g = 0,

e′ − 2ae+ w2g = 0,

f ′ − eg + w1f + 2bw2 + cw3 = 0,

g′ − 2ag + w1g − 2k = 0,

(4.4.8)
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with terminal conditions

a(T ) = b(T ) = c(T ) = d(T ) = e(T ) = f(T ) = g(T ) = 0. (4.4.9)

Lemma 57. Suppose there exists a unique solution (a, b, c, d, e, f, g) to the Riccati system of ODEs

(4.4.8)-(4.4.9) on [0, T ]. Then the value function of (RMFG) is given by

V̄ (t, x, µ̄, ν̄) = v(t, x, µ̄, ν̄)

= a(t)x2 + b(t)µ̄2 + c(t)ν̄ + d(t) + e(t)x+ f(t)µ̄+ g(t)xµ̄
(4.4.10)

for t ∈ [0, T ] and the optimal control and optimal path are given by (4.4.6) and (4.4.7), respectively.

Proof. With the form of value function v given in (4.4.5) and the conditional first and second

moment of X̂t under the σ-algebra F̃t given in (4.4.1), we have

∂tv = a′(t)x2 + e′(t)x+ b′(t)µ̄2 + f ′(t)µ̄+ g′(t)xµ̄+ c′(t)ν̄ + d′(t),

∂xv = 2xa(t) + e(t) + g(t)µ̄,

∂xxv = 2a(t),

∂µ̄v = 2b(t)µ̄+ f(t) + g(t)x,

∂ν̄v = c(t),

∂µ̄µ̄v = 2b(t),

∂xµ̄v = g(t),

∂µ̄ν̄v = ∂ν̄ν̄v = ∂xν̄v = 0.

Plugging them back to the HJB equation in (4.4.4), we get a system of ODEs in (4.4.8) by equating

x, µ̄, ν̄-like terms in each equation with the terminal conditions given in (4.4.9).

Therefore, any solution (a, b, c, d, e, f, g) of a system of ODEs (4.4.8) leads to the solution of

HJB (4.4.4) in the form of the quadratic function given by (4.4.10). Since the (a, b, c, d, e, f, g)

are differentiable functions on the closed set [0, T ], they are also bounded, and thus the regularity

conditions needed for v ∈ S is valid. Finally, we invoke the verification theorem given by Lemma

56 to conclude the desired result.

4.4.3 Fixed point condition and the proof of Proposition 45

Returning to the ODE system (4.4.8), there are 7 equations, whereas we need to determine a total

of 13 deterministic functions of [0, T ]× R to characterize MFG. These are

(a, b, c, d, e, f, g) and (wi : i = 1, 2, . . . , 6).

In this below, we identify the missing 6 equations by checking the fixed point condition of RFP.

This leads to a complete characterization of the equilibrium for MFG in Definition 40.

Lemma 58. With the dynamic of the optimal path X̂ defined in (4.4.7), the fixed point condition

(4.4.2) implies that the first moment µ̂s := E[X̂s|F̃s] and the second moment ν̂s := E[X̂2
s |F̃s] of the
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optimal path conditioned on F̃t satisfy
µ̂s = µ̄+

∫ s

t
((−2a(r)− g(r)) µ̂r − e(r)) dr + W̃s,

ν̂s = ν̄ +

∫ s

t

(
2− 4a(r)ν̂r − 2e(r)µ̂r − 2g(r)µ̂2r

)
dr +

∫ s

t
2µ̂rdW̃r,

(4.4.11)

for s ≥ t, and thus the coefficient functions w = (wi : i = 1, 2, . . . , 6) in (4.4.1) satisfy the following

equations:

w1 = −2a− g, w2 = −e, w3 = −2e, w4 = −4a, w5 = −2g, w6 = 2, ∀t ∈ [0, T ]. (4.4.12)

Proof. With the dynamic of the optimal path X̂ given by (4.4.7), we have

X̂t = X0 +

∫ t

0

(
−2a(s)X̂s − e(s)− g(s)µ̂s

)
ds+Wt + W̃t,

and since the functions a, e, g are continuous on [0, T ], then we can change of order of integration

and expectation and it yields

µ̂t = E
[
X̂t

∣∣∣ F̃t

]
= E

[
X0| F̃t

]
+

∫ t

0
(−2a(s)µ̂s − e(s)− g(s)µ̂s) ds+ E

[
Wt + W̃t

∣∣∣ F̃t

]
= E

[
X0| F̃t

]
+

∫ t

0
(−2a(s)µ̂s − e(s)− g(s)µ̂s) ds+ W̃t.

Similarly, applying Itô’s formula, we obtain

X̂2
t = X2

0 +

∫ t

0

(
2− 4a(s)X̂2

s − 2e(s)X̂s − 2g(s)µ̂sX̂s

)
ds+

∫ t

0
2X̂sdWs +

∫ t

0
2X̂sdW̃s,

and it follows that

ν̂t = E
[
X̂2

t

∣∣∣ F̃t

]
= E

[
X2

0

∣∣ F̃t

]
+

∫ t

0

(
2− 4a(s)ν̂s − 2e(s)µ̂s − 2g(s)µ̂2s

)
ds+ E

[∫ t

0
2X̂sdWs +

∫ t

0
2X̂sdW̃s

∣∣∣∣ F̃t

]
= E

[
X2

0

∣∣ F̃t

]
+

∫ t

0

(
2− 4a(s)ν̂s − 2e(s)µ̂s − 2g(s)µ̂2s

)
ds+

∫ t

0
2µ̂sdW̃s.

Thus the desired result in (4.4.11) is obtained. Next, comparing the terms in (4.4.1) and (4.4.11),

to satisfy the fixed point condition in MFG, we require another 6 equations in (4.4.12) for the

coefficient functions w = (wi : i = 1, 2, . . . , 6).

Using further algebraic structures, one can reduce the ODE system of 13 equations composed

by (4.4.8) and (4.4.12) into a system of 4 equations.
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Proof of Proposition 45. Let the smooth and bounded functions {wi : i = 1, 2, . . . , 6} be given,

the functions (a, b, c, d, e, f, g) in (4.4.8) is a coupled linear system, and thus their existence, unique-

ness and boundedness is shown by Theorem 12.1 in [2].

Plugging the 6 equations in (4.4.12) to the ODE system (4.4.8), we obtain

a′ − 2a2 + k = 0,

b′ − 1

2
g2 − 4ab− 2bg − 2cg = 0,

c′ − 4ac+ k = 0,

d′ − 1

2
e2 − ef + 2c+ 2a+ b+ g = 0,

e′ − 2ae− eg = 0,

f ′ − eg − 2af − gf − 2be− 2ce = 0,

g′ − 4ag − g2 − 2k = 0,

with the terminal conditions

a(T ) = b(T ) = c(T ) = d(T ) = e(T ) = f(T ) = g(T ) = 0.

Let l = 2a+ g, and it is easy to obtain

l′(t)− l2(t) = 0, l(T ) = 0,

which implies that l(t) = 2a(t) + g(t) = 0 for all t ∈ [0, T ]. This gives the result that g = −2a and

it yields e′ = 0. Then with e(T ) = 0, we have e(t) = 0 for all t ∈ [0, T ] and thus one can obtain

f ′ = 0, which indicates that f(t) = 0 for all t ∈ [0, T ] as f(T ) = 0. Therefore the ODE system

(4.4.8) can be simplified to the following form about (a(t), b(t), c(t), d(t) : t ∈ [0, T ]):

a′(t)− 2a2(t) + k = 0,

b′(t)− 2a2(t) + 4a(t)c(t) = 0,

c′(t)− 4a(t)c(t) + k = 0,

d′(t) + b(t) + 2c(t) = 0,

(4.4.13)

with the terminal conditions

a(T ) = b(T ) = c(T ) = d(T ) = 0. (4.4.14)

The unique solvability of the Riccati system (4.4.13)-(4.4.14) is proven in Lemma 61 in the Ap-

pendix. Note that the solution a of (4.3.2) is consistent with the solution of the Riccati system

given by equations (4.4.13)-(4.4.14).
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In this case, since 2a + g = 0 and e = 0 for all t ∈ [0, T ], it follows that µ̂s = µ̄ + W̃s for all

s ∈ [t, T ] from the fixed point result (4.4.11). Similarly,

ν̂s = ν̄ +

∫ s

t

(
2 + 4a(r)µ̂2r − 4a(r)ν̂r

)
dr +

∫ s

t
2µ̂r dW̃r, ∀s ∈ [t, T ].

Plugging e = 0 and µ̂s = µ̄+ W̃r back to (4.4.6), we obtain the optimal control by

α̂s = 2a(s)(µ̄+ W̃s − X̂s).

Moreover, since e = f = 0 and g = −2a for s ∈ [t, T ], the value function can be simplified from

(4.4.5) to

v(t, x, µ̄, ν̄) = a(t)x2 − 2a(t)xµ̄+ b(t)µ̄2 + c(t)ν̄ + d(t).

This concludes Proposition 45.

4.5 The N-Player Game

This section focuses on proving Proposition 46 regarding the corresponding N -player game. For

simplicity, we can omit the superscript (N) when referring to the processes in the sample space

Ω(N).

To begin, we address the N -player game in Subsection 4.5.1, where we solve it and obtain a

Riccati system containing O(N3) equations. Subsequently, we reduce the relevant Riccati system

to an ODE system in Subsection 4.5.2, which has a dimension independent of N . This simplified

system forms the fundamental component of the convergence result.

4.5.1 Characterization of the N-player game by Riccati system

It is important to emphasize that based on the problem setting in Subsection 4.2.2 and the running

cost for each player specified in (4.2.9), the N -player game can be classified as an N -coupled

stochastic LQG problem. As a result, the value function and optimal control for each player can

be determined by means of the following Riccati system:

For i = 1, 2, . . . , N , consider

A′
i − 2A⊤

i eie
⊤
i Ai − 4

N∑
j ̸=i

A⊤
j eje

⊤
j Ai +

k

N

N∑
j ̸=i

(ei − ej) (ei − ej)
⊤ = 0,

B′
i − 2A⊤

i eie
⊤
i Bi − 2

N∑
j ̸=i

(
A⊤

i eje
⊤
j Bj +A⊤

j eje
⊤
j Bi

)
= 0,

C ′
i −

1

2
B⊤

i eie
⊤
i Bi −

N∑
j ̸=i

B⊤
j eje

⊤
j Bi + 2tr(Ai) = 0,

Ai(T ) = Bi(T ) = Ci(T ) = 0,

(4.5.1)
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where Ai is N ×N symmetric matrix, Bi is N -dimensional vector, Ci ∈ R is a real constant, and

ei is the i-th natural basis in RN for each i = 1, 2, . . . , N .

Lemma 59. Suppose (Ai, Bi, Ci : i = 1, 2, . . . , N) is the solution of the Riccati system (4.5.1).

Then, the value functions of the N -player game defined by (4.2.7) is

Vi

(
x(N)

)
=
(
x(N)

)⊤
Ai(0)x

(N) +
(
x(N)

)⊤
Bi(0) + Ci(0), i = 1, 2, . . . , N.

Moreover, the path and the control under the equilibrium are given by

dX̂
(N)
it =

(
−2(Ai(t))

⊤
i X̂

(N)
t − (Bi(t))i

)
dt+ dW

(N)
it + dW̃t, (4.5.2)

and

α̂
(N)
it = −2(Ai(t))

⊤
i X̂

(N)
t − (Bi(t))i

for each i = 1, 2, . . . , N , where (A)i denotes the i-th column of matrix A, (B)i denotes the i-th

entry of vector B and X̂
(N)
t = [X̂

(N)
1t , X̂

(N)
2t , . . . , X̂

(N)
Nt ]⊤.

Proof. From the dynamic programming principle, it is standard that, under enough regularities,

the players’ value function V (x(N)) = (V1, V2, . . . , VN )(x(N)) can be lifted to the solution vi(t, x
(N))

of the following system of HJB equations, for i = 1, 2, . . . , N ,
∂tvi + inf

ait∈R

(
ait∂xivi +

1

2
a2it

)
+

N∑
j ̸=i

ajt∂xjvi +∆vi +
k

N

N∑
j ̸=i

(
(ei − ej)

⊤ x(N)
)2

= 0,

vi

(
T, x(N)

)
= 0.

Note that with ait = −∂xivi
(
t, x(N)

)
for each i = 1, 2, . . . , N , the term in the infimum attains the

optimal value and thus the HJB equation can be reduced to
∂tvi −

1

2
(∂xivi)

2 −
N∑
j ̸=i

∂xjvj∂xjvi +∆vi +
k

N

N∑
j ̸=i

(
(ei − ej)

⊤ x(N)
)2

= 0,

vi

(
T, x(N)

)
= 0.

(4.5.3)

Then, the value functions V of the N -player game defined by (4.2.7) is Vi(x
(N)) = vi(0, x

(N)) for

all i = 1, 2, . . . , N . Moreover, the path and the control under the equilibrium are given by

dX̂
(N)
it = −∂xivi

(
t, X̂

(N)
t

)
dt+ dW

(N)
it + dW̃t,

and

α̂
(N)
it = −∂xivi

(
t, X̂

(N)
t

)
for i = 1, 2, . . . , N . The proof is the application of Itô’s formula and the details are omitted here.
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Due to its LQG structure, the value function leads to a quadratic function of the form

vi

(
t, x(N)

)
=
(
x(N)

)⊤
Ai(t)x

(N) +
(
x(N)

)⊤
Bi(t) + Ci(t).

Plugging Vi into (4.5.3), and matching the coefficient of variables, we get the Riccati system of

ODEs in (4.5.1) and the desired results are obtained.

4.5.2 Proof of Proposition 46: Reduced Riccati form for the equilibrium

At present, MFG and the corresponding N -player game can be characterized by Proposition 45

and Lemma 59, respectively. One of our primary objectives is to examine the convergence of the

representative optimal path X̂
(N)
1t generated by the N -player game defined in (4.5.1)-(4.5.2) to the

optimal path X̂t of the MFG described in Proposition 45.

It should be noted that X̂t is solely dependent on the function a(t), as indicated in the ODE

(4.3.2). In contrast, X̂
(N)
1t depends on O(N3) many functions derived from the solutions of a sub-

stantial Riccati system (4.5.1) involving matrices (Ait, Bit : i = 1, 2, . . . , N). Consequently, com-

paring these two processes meaningfully becomes an exceedingly challenging task without gaining

further insight into the intricate structure of the Riccati system (4.5.1).

Proof of Proposition 46. Inspired from the setup in [50] and [46], we may seek a pattern for the

matrix Ai in the following form:

(Ai)pq =


a1(t), if p = q = i,

a2(t), if p = q ̸= i,

a3(t), if p ̸= q, p = i or q = i,

a4(t), otherwise.

(4.5.4)

The next result justifies the above pattern: the N2 entries of the matrix Ai can be embedded to a

2-dimensional vector space no matter how big N is.

For the Riccati system (4.5.1), with the given of Ai and suppose each function in Ai is continuous

on [0, T ], it is obvious to see that Bi = 0 for all t ∈ [0, T ] and for all i = 1, 2, . . . , N . Note that in

this case, for i = 1, 2, . . . , N , the optimal control is given by

α̂i = −2

N∑
j=1

(Ai)ijX̂
(N)
jt = −2 (Ai)

⊤
i X̂

(N)
t ,

where (A)i is the i-th column of matrix A.

Plugging the pattern (4.5.4) into the differential equation of Ai, we obtain the following system
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of ODEs: 

a′1 − 2a21 − 4(N − 1)a23 +
N − 1

N
k = 0,

a′2 − 2a23 − 4a1a2 − 4(N − 2)a3a4 +
k

N
= 0,

a′3 − 2a1a3 − 4a1a3 − 4(N − 2)a23 −
k

N
= 0,

a′3 − 2a1a3 − 4a2a3 − 4(N − 2)a3a4 −
k

N
= 0,

a′4 − 2a23 − 4a2a3 − 4a1a4 − 4(N − 3)a3a4 = 0

with the terminal conditions

a1(T ) = a2(T ) = a3(T ) = a4(T ) = 0.

It is worth noting that there are two ODEs for a3, and the two expressions should be equal, thus

a1a3 + (N − 2)a23 = a2a3 + (N − 2)a3a4,

which implies that (a1 + (N − 2)a3)
′ = (a2 + (N − 2)a4)

′ or

2a21 + 2(N − 2)a1a3 + 4(N − 1)a23 + 4(N − 2)a2a3 + 4(N − 2)2a3a4 −
k

N

= 2(N − 1)a23 + 4a1a2 + 4(N − 2)(a2a3 + a3a4 + a1a4) + 4(N − 2)(N − 3)a3a4 −
k

N
.

After combining terms and substituting a2 + (N − 2)a4 with a1 + (N − 2)a3, we get

a21 + (N − 2)a1a3 − (N − 1)a23 = 0,

which yields a3 = a1 or a3 = − 1
N−1a1. Note that, since a1 and a3 satisfies different differential

equations, it follows that a3 ̸= a1. Hence, we can conclude that a3 = − 1
N−1a1. Next, from the

equation a1 + (N − 2)a3 = a2 + (N − 2)a4, we have

a4 =
1

N − 2
a1 + a3 −

1

N − 2
a2.

In conclusion, for i = 1, 2, . . . , N , Ai has the following expressions:

(Ai)pq =



a1(t), if p = q = i,

a2(t), if p = q ̸= i,

− 1

N − 1
a1(t), if p ̸= q, p = i or q = i,

1

(N − 1)(N − 2)
a1(t)−

1

N − 2
a2(t), otherwise,
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where a1 and a2 satisfies the system of ODEs (4.5.5)
a′1 −

2(N + 1)

N − 1
a21 +

N − 1

N
k = 0,

a′2 +
2

(N − 1)2
a21 −

4N

N − 1
a1a2 +

k

N
= 0,

a1(T ) = a2(T ) = 0.

(4.5.5)

The existence and uniqueness of Ai in (4.5.1) are equivalent to the existence and uniqueness of

(4.5.5). Firstly, the existence, uniqueness, and boundness of a1 in (4.5.5) is from the same argument

for a in (4.4.13), which is shown as the proof of Lemma 61 in Appendix. The explicit solution of

a1 is given by

a1(t) =

√
k

2

(N − 1)2

N(N + 1)

1− e
−2

√
2
√

N+1
N

k(T−t)

1 + e
−2

√
2
√

N+1
N

k(T−t)

for all t ∈ [0, T ]. Next, with the given of a1, the existence, uniqueness, and boundness of a2 in

(4.5.5) is guaranteed by Theorem 12.1 in [2]. Therefore, we can express the equilibrium paths and

associated controls as the following:

dX̂
(N)
it = −2aN1 (t)

X̂(N)
it − 1

N − 1

N∑
j ̸=i

X̂
(N)
jt

 dt+ dW
(N)
it + dW̃t, (4.5.6)

and

α̂
(N)
it = −2aN1 (t)

X̂(N)
it − 1

N − 1

N∑
j ̸=i

X̂
(N)
jt


respectively for i = 1, 2, . . . , N , where aN1 is the solution to the ODE for a1 in (4.5.5). This concludes

Proposition 46.

4.6 Further remark

We have now established Proposition 45 concerning the MFG in Section 4.4 and Proposition 46

regarding the N -player game in Section 4.5. With these propositions proven, we are now able to

conclude the proof of Theorem 44, which was presented in Section 4.3.4.

4.7 Appendix

Lemma 60. Let Wp be the p-Wasserstein metric. If X and Y are two real-valued random variables

and c is a constant, then

Wp(L(X),L(Y )) = Wp(L(X + c),L(Y + c)). (4.7.1)

107



Moreover, if α = {αi : i ∈ N} is a sequence of random variables, then

Wp

(
1

N

N∑
i=1

δαi+c,L(Y + c)

)
= Wp

(
1

N

N∑
i=1

δαi ,L(Y )

)
. (4.7.2)

Proof. By definition of the p-Wasserstein metric, we have:

Wp(L(X),L(Y )) =

(
inf

π∈Π(L(X),L(Y ))

∫
R2

|x− y|pdπ(x, y)
) 1

p

,

where Π(L(X),L(Y )) is the set of all joint probability measures with marginals L(X) and L(Y ).

Similarly,

Wp(L(X + c),L(Y + c)) =

(
inf

π∈Π(L(X+c),L(Y+c))

∫
R2

|x− y|pdπ(x, y)
) 1

p

,

where Π(L(X + c),L(Y + c)) is the set of all joint probability measures with marginals L(X + c)

and L(Y + c).

Now, consider the mapping Φ : R2 → R2 given by Φ(x, y) = (x + c, y + c). For any π ∈
Π(L(X),L(Y )), the pushforward measure of π under Φ belongs to Π(L(X + c),L(Y + c)), i.e.,

π′ = Φ∗π ∈ Π(L(X + c),L(Y + c)). Thus, we have

Φ∗Π(L(X),L(Y )) ⊂ Π(L(X + c),L(Y + c)).

Moreover, Φ is bijective and measure preserving, then∫
R2

|x− y|pdπ′(x, y) =
∫
R2

|(x+ c)− (y + c)|pdπ(x, y) =
∫
R2

|x− y|pdπ(x, y).

Therefore, we know that

Wp
p (L(X),L(Y )) = inf

π∈Π(L(X),L(Y ))

∫
R2

|x− y|pdπ(x, y)

= inf
π∈Π(L(X),L(Y ))

∫
R2

|x− y|pdΦ∗π(x, y)

= inf
π′∈Φ∗Π(L(X),L(Y ))

∫
R2

|x− y|pdπ′(x, y)

≥ Wp
p(L(X + c),L(Y + c)).

by the definition of the p-Wasserstein metric. If we apply the above inequality to X ′ = X + c,

Y ′ = Y + c, and c′ = −c, the opposite inequality is provided. Thus, it completes the proof of

(4.7.1).
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Next, we note that

1

N

N∑
i=1

δαi+c = L(αu + c|α),

where u be a uniform random variable on {1, 2, . . . , N} independent to α. Using (4.7.1), we conclude

(4.7.2) from

Wp

(
1

N

N∑
i=1

δαi+c,L(Y + c)

)
= Wp (L(αu + c|α),L(Y + c))

= Wp (L(αu|α),L(Y ))

= Wp

(
1

N

N∑
i=1

δαi ,L(Y )

)
.

Lemma 61. Under the Assumption 43, there exists a unique solution (a(t), b(t), c(t), d(t) : t ∈ [0, T ])

for the Riccati system of ODEs (4.4.13)-(4.4.14) and the solution can given explicitly by

a(t) =

√
k

2

1− e−2
√
2k(T−t)

1 + e−2
√
2k(T−t)

,

b(t) =

∫ T

t

(
4a(s)c(s)− 2a2(s)

)
ds,

c(t) = k

∫ T

t
e
∫ s
t −4a(r)drds,

d(t) =

∫ T

t
(b(s) + 2c(s)) ds.

Proof. Firstly, with the given of k > 0, we can solve the ODE

a′(t)− 2a2(t) + k = 0, a(T ) = 0

explicitly by the method of separating variables. Note that with the differential form, we have

da(√
2a−

√
k
)(√

2a+
√
k
) =

1

2
√
k

(
1√

2a−
√
k
− 1√

2a+
√
k

)
da = dt.

It follows that

ln

(∣∣∣∣∣
√
2a−

√
k√

2a+
√
k

∣∣∣∣∣
)

= 2
√
2kt+ C1

for some constant C1 by taking integration on both sides. Thus by calculation, we obtain

a(t) =

√
k

2

1− C2e
2
√
2kt

1 + C2e2
√
2kt
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for some constant C2 to be determined. Since a(T ) = 0, it yields that C2 = e−2
√
2kT and thus

a(t) =

√
k

2

1− e−2
√
2k(T−t)

1 + e−2
√
2k(T−t)

.

It is easy to verify that a(·) is in C∞([0, T ]) and is bounded. With the given of a, the functions

(b, c, d) in the Riccati system (4.4.13)-(4.4.14) is a coupled linear system, and thus their existence,

uniqueness, and boundedness are given by Theorem 12.1 in [2].
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Chapter 5

On the graphon mean field game

equations: Individual agent affine

dynamics and mean field dependent

performance functions

5.1 Introduction

Mean Field Game (MFG) theory establishes Nash equilibirum conditions for large populations of

asymptotically negligible non-cooperating agents via an analysis of the infinite limit population

(Huang, Caines, and Malhame [40, 42, 45]; Lasry and Lions [55]). The resulting PDEs (Partial Dif-

ferential Equations) consist of a backward Hamilton-Jacobi-Bellman (HJB) equation and a forward

Fokker-Planck-Kolmogorov (FPK) equation for each generic agent. These equations are linked by

the state distribution of a generic agent which is called the mean field of the system.

In this Chapter, our objective is to establish the unique solvability of the GMFG equation

in an appropriate function space. The GMFG equations consist of a collection of parameterized

Hamilton-Jacobi- Bellman equations, HJB(α), α ∈ [0, 1], and a collection of parameterized Fokker-

Planck-Kolmogorov equations, FPK(α) with α ∈ [0, 1]. The solution of a set of GMFG equations is

a parameterized pair (v, µ), where v[α] = v(t, α, x) solves theHJB(α) equation and µ[α] = µ(t, α, x)

solves the FPK(α) equation. The coupling of the system PDEs in this chapter has the following

features (see [12] for a more general framework subject to different hypotheses):

• FPK(α) depends upon HJB(α) through its first order coefficient ∇v.

• HJB(α) depends upon FPK(α′) for all α′ ∈ [0, 1] through the graphon g acting on µ[α′];

this is the major difference from MFG.

The GMFG equations with a constant graphon reduce to the classical MFG system as a special

case, and the original methods to establish solvability of the classical MFG equations are helpful in

the present case. In [45] and [68], a Banach fixed point analysis is used depending on a contraction
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argument; this is based on assumptions on the Lipschitz continuity of the functions appearing in

the MFG equations and their derivatives, and yields uniquenss as well as existence. This approach

is used in the parallel study [12] of the solvability of the GMFG equations. On the other hand,

[13] and [72] carry out the existence analysis using the Schauder fixed point theorem based upon

regularity assumptions and then obtain uniqueness via a monotonicity assumption on the running

cost.

In this work, similar to the aforementioned analyses, we will establish the existence of solutions

via the application of a fixed point theorem. Our existence proof adopts Schauder’s argument on

the fixed point theorem and is more closely relevant to [36], [13], and [72] in this sense. Unlike

[36] on the solvability in Sobolev space, our solvability is to answer the existence in Hölder space

along the lines of [13] and [72]. Nevertheless, different from all aforementioned papers, our proof on

the continuity of the gradient of the value function with respect to the coefficient functions relies

on probabilistic estimates rather than the theory of viscosity solutions. The main advantage of

our approach is that we can conclude the local Lipschitz continuity of the solution map, which is

stronger than continuity and beneficial to the subsequent analysis of the GMFG.

Having said that, the major difficulty generalizing existence from the MFG case to the GMFG

case is to obtain the regularity of the solution with respect to the variable α, which is essential for

the existence result by the Schauder’s fixed point theorem. To be more illustrative, for instance,

to obtain a uniform first order estimate of |∇v(t, α, x) − ∇v(t, α′, x)| for the solution v of the

HJB equation, one has to compare the solutions from two different HJBs parameterized by α and

α′. This leads to a study of the sensitivity with respect to coefficient functions of corresponding

PDEs. Therefore, the local Lipschitz continuity of the HJB solution map becomes essential for this

procedure.

The chapter is organized as follows. Section 5.2 gives the problem set up. Section 5.3 presents

the regularity of parabolic PDE and applies this to the FPK. Section 5.4 presents the existence

result and Section 5.5 treats uniqueness. Section 5.6 presents a summary and extensions of the

main result. For better clarity, all notations used in this chapter have been collected and explained

in the Appendix Section 5.7.

5.2 Problem setup

Let Td be a d-torus. P1(Td) is the Wasserstein space of probability measures on Td satisfying∫
Td

|x|dµ(x) <∞

endowed with 1-Wasserstein metric W1(·, ·) defined by

W1(µ, ν) = inf
π∈Π(µ,ν)

∫
Td×Td

|x− y|dπ(x, y),

where Π(µ, ν) is the collection of all probability measures on Td × Td with its marginals agreeing

with µ and ν.
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We consider the following large system of multi-agent problems. A generic agent can be iden-

tified by its state pair (α, x) ∈ [0, 1] × Td, where α is the cluster index and x is a Td valued

state. The weights of connections between clusters are given by a symmetric measurable function

g : [0, 1]2 7→ R, which is commonly referred to a graphon [58]. The population density at the cluster

α at time t will be given by µ(t, α) ∈ P1(Td).

Example. Two examples of graphons are given in the following discussion, while the reader is

referred to [58] for the fundamental theory of this subject. A uniform graphon which corresponds

to the limit of a sequence of Erdös-Rényi graphs with parameter p, 0 ≤ p ≤ 1, is given by

g(α, α′) = p, ∀α, α′ ∈ [0, 1] (5.2.1)

and the uniform attachment graph limit has the graphon

g(α, α′) = 1−max{α, α′}, ∀α, α′ ∈ [0, 1]. (5.2.2)

A running cost incurred to the generic agent of (α, x) with a feedback control exertion a :

[0, T ]× [0, 1]× Td 7→ Rd at time t is given by

ℓ(µ, g,a, t, α, x) =
1

2
|a(t, α, x)|2 + ℓ1(µ, g, t, α, x) (5.2.3)

for some given function ℓ1(·, ·, ·, ·, ·). The following cost can be considered as an example for ℓ1

ℓ1(µ, g, t, α, x) =

∫ 1

0

∫
Td

ℓ2(x, y)µ(t, α
′, dy)g(α, α′) dα′ (5.2.4)

for some ℓ2 : Td × Td 7→ R.

Let b : [0, T ]× [0, 1]×Td 7→ R and m0 : [0, 1]×Td 7→ R+ be two given smooth enough functions.

By ∇b, we denote the gradient of b on the domain Td, which is mapping [0, T ]× [0, 1]× Td 7→ Rd.

Finding a solution of the GMFG equations consists of solving for the unknown triples (v,a∗, µ):

• the value function v : [0, T ]× [0, 1]× Td 7→ R,

• optimal control a∗ : [0, T ]× [0, 1]× Td 7→ Rd,

• and the density µ : [0, T ]× [0, 1]× Td 7→ R+,

113



satisfying the α parameterized family

∂tv + (∇b+ a∗) · ∇v + 1

2
∆v + ℓ(µ, g,a∗) = 0

a∗(t, α, x) = arg min
a∈Rd

{
a · ∇v(t, α, x) + 1

2
|a|2
}

∂tµ = −divx((∇b+ a∗)µ) +
1

2
∆µ

v(T, α, x) = 0, µ(0, α, x) = m0(α, x).

(5.2.5)

In the first and third equation of (5.2.5), each term is a function of (t, α, x) without further speci-

fication. In particular, the ℓ(µ, g,a∗) shall be understood as a mapping

(t, α, x) 7→ ℓ(µ, g,a∗)(t, α, x) := ℓ(µ, g,a∗, t, α, x).

Our goal in this chapter is to establish existence, uniqueness for the solution of (5.2.5) in

an appropriate solution space. We close this section with a brief illustration of the probabilistic

formulation on the GMFG for the motivational purpose. A generic player in GMFG is identified

by a pair (α, x) ∈ [0, 1]×Td, where α is geographical information and x is a state. The population

density at index α at time t is denoted by µ(t, α) ∈ P1(Td) and the relation between two generic

players in α and α′ is given by a graphon g(α, α′). Given a population density (t, α) 7→ µ(t, α) and

a graphon (α, α′) 7→ g(α, α′), a generic player exerts its optimal strategy of the following stochastic

control problem described below. State evolution of the generic player at α follows a controlled

stochastic differential equation:

Xα
t = Xα

0 +

∫ t

0
(∇b (s, α,Xα

s ) + a (s, α,Xα
s )) ds+Wα

t , (5.2.6)

where the drift is formed by a control process a and a conservative vector field∇b,Wα is a Brownian

motion in a filtered probability space independent toW β for any β ̸= α, andXα
0 is an initial random

variable with a given distribution m0(α). In the above, the left hand side is understood as the coset

of Zd that contains the right hand side by a mapping π(x) = x+ Zd. We use Xα[a] to denote the

process with the dependence on a. The objective of the generic player at α with a given population

density flow µ is to minimize the total cost incurred during [0, T ] of the form

Jα(a, µ) = E
[∫ T

0
ℓ (µ, g,a, t, α,Xα

t [a]) dt

]
over a reasonably rich enough control space of a. Note that the optimal strategy a∗ depends on µ.

Given an initial distribution m0, the goal of the GMFG is to find the Nash equilibrium µ∗ and the

corresponding a∗, i.e. the pair (µ∗,a∗) satisfies

Jα(a∗, µ∗) ≤ Jα(a, µ∗), ∀a and µ∗(t, α) ∼ Xα
t [a

∗], ∀(t, α).

Indeed, the above formulation poses a class of mean field game problems indexed by α ∈ [0, 1] and
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couplings between mean field games are imposed by the running cost ℓ via graphon g. For more

detailed discussion and various applications are referred to [10, 11, 12].

5.3 Some regularity results

We are going to present sensitivity results of the parabolic PDE and FPK equations with respect

to their coefficients separately, which eventually serve for the proof of fixed point theorem as key

elements. Throughout the chapter, we will use Ψ(·) in various places as a generic positive function

increasing with respect to its variables. Morevoer, all function spaces and relevant norms are sorted

out in Section 5.7.

5.3.1 Parabolic equations

Consider the equation ∂tu =
1

2
∆u− cu+ f, on (0, T )× Td

u(0, x) = 0, on x ∈ Td.
(5.3.1)

We will denote the solution map by u = u[c, f ] whenever it is necessary to emphasize its dependence

on the coefficient functions.

5.3.1.1 Preliminaries on solvability

If the coefficients c and f are Hölder in both variables (t, x), then there exists a unique classical

solution. Recall that Ψ(·) is a generic function mentioned in the first paragraph of Section 3.

Lemma 62. If c, f ∈ Cδ/2,δ([0, T ]×Td) holds for some δ ∈ (0, 1), then there exists unique solution

u ∈ C1+δ/2,2+δ([0, T ]× Td) of (5.3.1) satisfying

|u|1+δ/2,2+δ ≤ Ψ(|c|δ/2,δ, |f |δ/2,δ).

Moreover, v(t, x) := u(T − t, x) has a probabilistic representation v[c, f ] of the form

v(t, x) = v[c, f ](t, x) := E
[∫ T

t
exp

{
−
∫ s

t
c
(
r,Xt,x(r)

)
dr

}
f
(
s,Xt,x(s)

)
ds

]
, (5.3.2)

where

Xt,x(s) = x+W (s)−W (t) (5.3.3)

for some Brownian motion W .

Proof. The solvability and its Hölder estimate is from Theorem 8.7.2 and Theorem 8.7.3 of [53],

Theorem IV.5.1 of [54]. The probabilistic representation v[c, f ] is from Feynman-Kac formula, see

[31].
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In the above, we remark that, (5.3.3) reads by Xt,x(s) = π(x +W (s) −W (t)), where π is the

generic mapping Rd 7→ Rd/Zd. Later we also need to use the following definition of weak solution,

see [25].

Definition 63. A function u ∈ L2([0, T ], H1(Td)) is a weak solution of (5.3.1) if u satisfies
∫
Td

ϕ(−∂tu− cu+ f)dx =
1

2

∫
Td

∇ϕ · ∇udx, ∀ϕ ∈ H1(Td)

u(0, x) = 0, on x ∈ Td.

(5.3.4)

We have the following uniqueness with the same assumptions as in Lemma 62.

Lemma 64. If c, f ∈ Cδ/2,δ([0, T ] × Td) holds for some δ ∈ (0, 1), then there exists unique weak

solution of (5.3.1) in L2([0, T ], H1(Td)).

Proof. By Lemma 62, there exists a classical solution u. Together with the compactness of the

domain, it yields u ∈ L2([0, T ], H1(Td)). By Theorem 7.4 of [25], uniqueness in L2([0, T ], H1(Td))

holds if c ∈ L∞ and f ∈ L2, and this is valid, since all coefficients are continuous on the compact

domain.

5.3.1.2 First order regularity and sensitivity of the solution map

Although Lemma 62 has an estimation on |u|1,2, it is controlled by an upper bound relevant to the

Hölder norm of coefficients in the t variable, which is not desirable, see Section 5.4.5 for further

remarks. Next, we will develop an upper bound independent of t-Hölder norm of the coefficients.

To proceed, we define a linear operator

Lu = ∂tu− 1

2
∆u. (5.3.5)

The first result is on an estimate of |u|0 = sup[0,T ]×Td |u(t, x)|.

Lemma 65. If c, f ∈ Cδ/2,δ([0, T ]× Td), then u of (5.3.1) satisfies |u|0 ≤ e|c|0T |f |0T .

Proof. If c = 0, then with u1 = |f |0t,

Lu1 − f = |f |0 − f ≥ 0.

If c ̸= 0, then with u2 =
|f |0(e|c|0t−1)

|c|0 ,

(L+ c)u2 = |f |0e|c|0t
(
1 +

c

|c|0

)
− c

|c|0
|f |0

= |f |0(e|c|0t − 1)

(
1 +

c

|c|0

)
+ |f |0

≥ f.

116



Note that both u1 and u2 are no greater than e|c|0T |f |0T , and finally the comparison principle

yields the result.

Next we will have the first order estimate independent to the Hölder norm in t of the coefficients.

It also gives sensitivity of the solution map with respect to the coefficients.

Lemma 66. Let c, f be in Cδ,1([0, T ] × Td) for some δ ∈ (0, 1). Then the solution u of (5.3.1)

belongs to C1,2([0, T ]× Td) with

|u|0,1 ≤ Ψ(|c|0,1 + |f |0,1).

Furthermore, the solution map u = u[c, f ] satisfies

|u[c1, f1]− u[c2, f2]|0 ≤ Ψ(K)(|c1 − c2|0 + |f1 − f2|0)

for K := |c1|0 + |c2|0 + |f1|0 + |f2|0.

Proof. u of (5.3.1) can be written by u(t, x) = v[c, f ](T − t, x) with its probabilistic representation

of (5.3.2). By setting Xi := Xt,xi of (5.3.3), we have

X1
s −X2

s = x1 − x2, ∀s ≥ t.

If we define

Λi
s = e−

∫ s
t c(r,Xi(r))dr,

then

v[c, f ](t, xi) = E
[∫ T

t
Λi
sf(s,X

i(s))ds

]
.

We first note that, by mean value theorem,∣∣∣∣∫ s

t
c
(
r,X1(r)

)
dr −

∫ s

t
c
(
r,X2(r)

)
dr

∣∣∣∣ ≤ T |c|0,1|x1 − x2|.

Once again by mean value theorem and the fact of | −
∫ s
t c(r,X

i(r))dr| ≤ T |c|0, we obtain

∣∣Λ1
s − Λ2

s

∣∣ ≤ eT |c|0
∣∣∣∣∫ s

t
c(r,X1(r))dr −

∫ s

t
c(r,X2(r))dr

∣∣∣∣
≤ Ψ(|c|0,1)|x1 − x2|

with probability one for Ψ = T |c|0,1eT |c|0 . Therefore, we have

|v[c, f ](t, x1)− v[c, f ](t, x2)| ≤ E
[∫ T

t

∣∣Λ1
sf
(
s,X1(s)

)
− Λ2

sf
(
s,X2(s)

)∣∣ ds]
≤ E

[∫ T

t

(
|Λ1|0

∣∣f (s,X1(s)
)
− f

(
s,X2(s)

)∣∣+ |f |0
∣∣Λ1

s − Λ2
s

∣∣) ds] ,
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which gives

|v[c, f ](t, x1)− v[c, f ](t, x2)|

≤ E
[∫ T

t
Ψ(|c|0)|∇f |0

∣∣X1(s)−X2(s)
∣∣ ds]+ E

[∫ T

t
|f |0

∣∣Λ1
s − Λ2

s

∣∣ ds]
≤ TΨ(|c|0)|∇f |0|x1 − x2|+ T |f |0|Ψ(|c|0,1)|x1 − x2|
≤ Ψ(|c|0,1 + |f |0,1)|x1 − x2|.

This implies that |∇v|0 ≤ Ψ(|c|0,1 + |f |0,1). Together with Lemma 65, we conclude that

|u|0,1 ≤ Ψ(|c|0,1 + |f |0,1). (5.3.6)

Next, we estimate |u[c, f1]− u[c, f2]|0. For any (t, x), we set Λs = e−
∫ s
t c(r,X(r))dr, and note that

|v[c, f1](t, x)− v[c, f2](t, x)| ≤ E
[∫ T

t
|Λsf1(s,Xs)− Λsf2(s,Xs)|ds

]
≤ |f1 − f2|0E

[∫ T

t
|Λs|ds

]
≤ TeT |c|0 |f1 − f2|0.

This concludes that

|u[c, f1]− u[c, f2]|0 ≤ Ψ(|c|0)|f1 − f2|0. (5.3.7)

In the following, we estimate |u[c1, f ]− u[c2, f ]|0. By setting Λi
s = e−

∫ s
t ci(r,X(r))dr, we have

|Λ1
s − Λ2

s| ≤ eT (|c1|0+|c2|0)
∫ s

t
|c1(r,Xr)− c2(r,Xr)|dr ≤ eT (|c1|0+|c2|0)|c1 − c2|0T

with probability one. Therefore,

|v[c1, f ](t, x)− v[c2, f ](t, x)| ≤ E
[∫ T

t

∣∣Λ1
sf(s,Xs)− Λ2

sf(s,Xs)
∣∣ ds]

≤ |f |0E
[∫ T

t

∣∣Λ1
s − Λ2

s

∣∣ ds]
≤ T 2eT (|c1|0+|c2|0)|f |0|c1 − c2|0.

This implies that

|u[c1, f ]− u[c2, f ]|0 ≤ Ψ(|c1|0 + |c2|0 + |f |0)|c1 − c2|0. (5.3.8)

The conclusion yields from (5.3.6), (5.3.7), (5.3.8).

5.3.1.3 Second order regularity and first order sensitivity

Next, we will see that under better regularity of c and f in x, we can improve regularity and

sensitivity. Formally, if u of (5.3.1) is smooth enough, one can take derivatives of the equation to
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conclude that ūj = ∂ju is the solution of the following equation depending on c, f and u of (5.3.1)∂tūj =
1

2
∆ūj − cūj − u∂jc+ ∂jf, on (0, T )× Td

ūj(0, x) = 0, on x ∈ Td.
(5.3.9)

However, (5.3.9) is valid only if u ∈ C1,3 is given a priori.

Lemma 67. If c, f ∈ Cδ,2([0, T ] × Td) for some δ ∈ (0, 1), then the solution u of (5.3.1) is in

C1,3([0, T ]× Td) and ūj = ∂ju is the unique solution of (5.3.9).

Proof. By Lemma 64, u satisfies, for any ϕ ∈ H2(Td),∫
Td

ϕ(−∂tu− cu+ f)dx =
1

2

∫
Td

∇ϕ · ∇udx.

Now, if we replace the test function ϕ by ∂iϕ in the above variational form, then we have∫
Td

∂iϕ(−∂tu− cu+ f)dx =
1

2

∫
Td

∇∂iϕ · ∇udx.

Using integration by parts, we can show that ūj solves the variational form of (5.3.9) for any

ϕ ∈ H2(Td). Since H2(Td) is a dense subset in H1(Td), ūj is indeed a unique weak solution of

(5.3.9).

Lastly, since the ∇c,∇f ∈ Cδ,1([0, T ] × Td), we conclude that ūj is indeed a classical solution

from Lemma 62. This also implies that u ∈ C1,3([0, T ]× Td).

Lemma 68. Let c, f ∈ Cδ,2([0, T ]×Td). Then the solution u of (5.3.1) belongs to C1,3([0, T ]×Td)

with

|u[c, f ]|0,2 ≤ Ψ(|c|0,2 + |f |0,2).

Furthermore, the solution map u = u[c, f ] of (5.3.1) satisfies

|u[c1, f1]− u[c2, f2]|0,1 ≤ Ψ(K)(|c1 − c2|0,1 + |f1 − f2|0,1)

for

K := |c1|0,1 + |c2|0,1 + |f1|0,1 + |f2|0,1.

Proof. By Lemma 67, ūj = ∂ju is the classical solution of (5.3.9), which satisfies

ūj = u[c, f̄ ],

where

f̄ = −u∂jc+ ∂jf.

Applying Lemma 66, we have |ūj |0,1 < Ψ(|c|0,1 + |f̄ |0,1). Note that, |f̄ |0,1 is controlled by |u|0,1 +
|∂jc|0,1+ |∂jf |0,1, which implies that |f̄ |0,1 ≤ Ψ(|c|0,2+ |f |0,2) due to Lemma 66. Hence, we conclude

that |u[c, f ]|0,2 ≤ Ψ(|c|0,2 + |f |0,2).
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At last, applying Lemma 66 on u[c, f̄ ] again, we have

|u[c1, f̄1]− u[c2, f̄2]|0 ≤ Ψ(K)(|c1 − c2|0 + |f̄1 − f̄2|0)

for K = |c1|0 + |f̄1|0 + |c2|0 + |f̄2|0, which similarly concludes the desired result.

5.3.1.4 Summary on regularity and sensitivity

Now we may summarize and generalize the results above to a PDE with non-zero initial conditions.

Consider equation ∂tu =
1

2
∆u− cu+ f, on (0, T )× Td

u(0, x) = ψ(x), on x ∈ Td.
(5.3.10)

To proceed, we recall the following notations:

• Cδ,n
0,n′ be the space of all functions f ∈ Cδ,n([0, T ] × Td) with the topology induced by the

norm | · |0,n′ .

• C1,3
0,1 ([0, T ]× Td) is the space of all u ∈ C1,3([0, T ]× Td) topologized by | · |0,1.

For more details, we refer it to Section 5.7.

Theorem 69. The solution map u : [c, f, ψ] 7→ u[c, f, ψ] given by (5.3.10) is a locally Lipschitz

continuous map

Cδ,2
0,1 × Cδ,2

0,1 × C4
3 7→ C1,3

0,1 .

Proof. It is enough to show that

|u[c1, f1, ψ1]− u[c2, f2, ψ2]|0,1 ≤ Ψ(K)(|c1 − c2|0,1 + |f1 − f2|0,1 + |ψ1 − ψ2|3)

for K = |c1|0,1 + |c2|0,1 + |f1|0,1 + |f2|0,1 + |ψ1|3 + |ψ2|3. Indeed, setting ũ(t, x) = u(t, x)−ψ(x), we

have

ũ = u

[
c, f +

1

2
∆ψ − cψ, 0

]
for the solution map u[·, ·, ·] defined via (5.3.10), and observe that the desired result is a consequence

of Lemma 68.

Note that the local Lipschitz continuity of Theorem 69 automatically yields its local bounded-

ness, i.e.,

|u[c, f, ψ]|0,1 ≤ Ψ(|c|0,1 + |f |0,1 + |ψ|3) (5.3.11)

for some positive increasing function Ψ. The following Harnack type inequality will be useful.

Corollary 70. If f ≡ 0, ψ = eb for some c, b ∈ Cδ,2([0, T ] × Td), then the solution u of (5.3.10)

satisfies the inequality

e−(|b|0+|c|0T ) < u(t, x) < e|b|0+|c|0T , ∀(t, x) ∈ [0, T ]× Td.
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Proof. The inequalities follow from the representation for v(t, x) = u(T − t, x) in the form of

v(t, x) = E
[
exp

{
−
∫ T

t
c
(
r,Xt,x(r)

)
dr

}
ψ
(
Xt,x(T )

)]
,

where X is given by (5.3.3).

5.3.2 The FPK equation

We study the weak solution of FPK equation on [0, T )× Td:∂tν(t, x) = −divx(b(t, x)ν(t, x)) +
1

2
∆ν(t, x)

ν(0, x) = m0(x).
(5.3.12)

We adopt the conventional notation of

⟨m,ψ⟩ :=
∫
Td

ψ(x)m(dx)

for any m ∈ P1(Td) and ψ : Td 7→ R whenever it is well defined.

Definition 71. ν is said to be a weak solution of FPK (5.3.12), if it satisfies, for any ϕ ∈
C∞
c ([0, T ]× Td)

⟨m0, ϕ(0, x)⟩+
∫ T

0
⟨νt, (∂t + L)ϕ⟩dt = 0,

where

L = b · ∇+
1

2
∆.

We denote the solution map of (5.3.12) by ν = ν[b,m0]. We recall that C([0, T ],P1(Td)) is the

space of all continuous mappings ν : [0, T ] 7→ P1(Td) with a metric given by

dist(ν1, ν2) = sup
t

W1(ν1(t), ν2(t)),

where W1 is 1-Wasserstein metric for P1.

Theorem 72. Let m0 ∈ P1(Td). Then the solution map b 7→ ν[b,m0] of (5.3.12) is a locally

Lipschitz continuous mapping from C([0, T ]×Td) to C([0, T ],P1(Td)). In particular, if |b1|0+|b2|0 <
K then

sup
t

W1(ν1(t), ν2(t)) ≤ Ψ(K)|b1 − b2|0.

Moreover, ν = ν[b,m0] satisfies,

W1(ν(t), ν(s)) ≤ (1 +
√
T |b|0)|t− s|1/2, (5.3.13)

sup
t

∫
Td

|x|ν(t, dx) ≤
∫
Td

|x|m0(dx) + |b|0T +
√
T . (5.3.14)
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Proof. If |b|0 <∞ and m0 ∈ P1, then

X(t) = X(0) +

∫ t

0
b(s,Xs)ds+W (t), X(0) ∼ m0

has a unique solution. An application of Itô’s formula and the definition of the weak solution

verifies that ν(t) = Law(X(t)) is the weak solution of (5.3.12), see [13]. (5.3.13) also follows from

[13].

Next, (5.3.14) follows from

sup
t

E [|X(t)|] ≤ E[|X(0)|] + |b|0T +
√
T .

Let’s assume |b1|0+ |b2|0 < K and ν1 and ν2 are corresponding solutions of (5.3.12). We denote

by X1 and X2 the solutions of the SDE above. Note that

E[|X1(t)−X2(t)|] ≤ E
[∫ t

0
|b1(s,X1(s))− b2(s,X2(s))|ds

]
≤ |b1 − b2|0T +K

∫ t

0
E[|X1(s)−X2(s)|]ds.

So, we can use the Gronwall’s inequality to have

E[|X1(t)−X2(t)|] ≤ |b1 − b2|0TeKT .

Therefore, we can have local Lipschitz of b 7→ ν[b,m0] from

W1(ν1(t), ν2(t)) ≤ E[|X1(t)−X2(t)|] ≤ |b1 − b2|0TeKT .

5.4 Existence

We now return to the GMFG scheme. First observe that, by using the cost of the form (5.2.3), the

triple (v,a∗, µ) is the solution of (5.2.5) if and only if the pair (ṽ := v− b, µ) is the solution of HJB

equation 
∂tṽ −

1

2
|∇ṽ|2 + 1

2
∆ṽ + ℓ̃1(µ, g) = 0

ṽ(T, α, x) = −b(T, α, x)
(5.4.1)

coupled with FPK equation 
∂tµ = divx(µ∇ṽ) +

1

2
∆µ

µ(0, α, x) = m0(α, x),

(5.4.2)
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where ℓ̃1 is

ℓ̃1(t, α, x) = ℓ1(t, α, x) +

(
∂tb+

1

2
|∇b|2 + 1

2
∆b

)
(t, α, x). (5.4.3)

Next, we outline our approach to the existence as follows. We define an operator

ν = Φ(µ) = Φ2 ◦ Φ1(µ),

where

1. ∇ṽ = Φ1(µ), where ṽ is the solution of (5.4.4) with a given µ:
∂tṽ −

1

2
|∇ṽ|2 + 1

2
∆ṽ + ℓ̃1(µ, g) = 0

ṽ(T, α, x) = −b(T, α, x)
(5.4.4)

2. ν = Φ2(v̄) be the function solving (5.4.5) with a given v̄:
∂tν = divx(v̄ν) +

1

2
∆ν

ν(0, α, x) = m0(α, x).

(5.4.5)

The existence of the solution for the GMFG can be accomplished by the Schauder’s fixed point

theorem in an appropriate space to be mentioned below.

To proceed, we recall that d1 is the Wasserstein metric on P1(Td). We define the space S1/2 as

the collection of µ : [0, T ]× [0, 1] 7→ P1(Td) such that

|µ|1/2 = |µ|0 + [µ]1/2 <∞,

where

|µ|0 = sup
t,α

∫
Td

|x|µ(t, α, dx)

and

[µ]1/2 = sup
t1 ̸=t2,α

d1(µ(t1, α), µ(t2, α))

|t1 − t2|1/2
.

Note that, S1/2 is metrizable by

ρ(µ1, µ2) = sup
t,α

W1(µ1(t, α), µ2(t, α)), (5.4.6)

and we denote the space S1/2 by (S1/2, ρ) whenever we need to emphasize its underlying metric.

Note that Br := {µ ∈ S1/2 : |µ|1/2 ≤ r} is a closed convex compact subset of (S1/2, ρ) by generalized

version of Arzelà–Ascoli theorem, see P232 of [52].
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It is often useful by the duality representation of Wasserstein metric to write

ρ(µ1, µ2) = sup
t,α,Lip(f)≤1

∫
Td

f(x)d(µ1(t, α)− µ2(t, α))(x) (5.4.7)

where Lip(f) is the Lipschitz constant of the function f . Similarly, if µ ∈ Br and f ∈ C1, then∫
Td

f(y)d(µ(t1, α)− µ(t2, α))(y) ≤ |∇f |0W1(µ(t1, α), µ(t2, α))

≤ r|∇f |0|t1 − t2|1/2.
(5.4.8)

5.4.1 Assumptions

To proceed, we define a space Cδ,0,m
0,0,m′ as the collection of all functions in Cδ,0,m([0, T ]× [0, 1]×Td,R)

equipped with a C0,0,m′
([0, T ]× [0, 1]×Td,R) norm. For instance, if f ∈ C0.5,0,2

0,0,2 , then we write its

norm as

|f |0.5,0,20,0,2 = |f |0,0,2 = |f |0 +
∑
i

|∂xif |0 +
∑
ij

|∂xixjf |0.

For more details, we refer to Section 5.7.

Assumption 73. b : [0, T ] × [0, 1] × Td 7→ Rd, g : [0, 1]2 7→ R, and m0 : [0, 1] × Td 7→ Rd are

infinitely smooth functions in all variables.

We pose the following assumptions for the cost function ℓ1. Throughout the chapter, since g

will be a priori given function, we will suppress g by writing

ℓ1(µ, g, t, α, x) = ℓ1(µ, t, α, x)

if this does not cause any confusion. For convenience, we will write

ℓ1[µ](t, α, x) = ℓ1(µ, t, α, x) = ℓ1(µ, g, t, α, x).

Assumption 74. The mapping µ 7→ ℓ1[µ] is a bounded and Lipschitz continuous mapping from

S1/2 to C0.5,0,2
0,0,1 , that is, for any µ ∈ S1/2, ℓ1[µ] belongs to C0.5,0,2 and

|ℓ1[µ]|0,0,1 < M, |ℓ1[µ1]− ℓ1[µ2]|0,0,1 ≤Mρ(µ1, µ2),

for some M > 0 independent to the choice of µ.

We check that the assumptions are valid for a class of examples given in Lemma 75.

Lemma 75. Suppose ℓ2 ∈ C∞(Td × Td,R) and g are given smooth enough. Then, the cost ℓ1 of

(5.2.4) satisfies Assumption 74.

Proof. Let d = 1 for the simplicity. For µ ∈ S1/2, we have

|ℓ1[µ]|0 ≤ |ℓ2|0|g|0,
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|∂xℓ1[µ]|0 ≤ |∂xℓ2|0|g|0,

|∂xxℓ1[µ]|0 ≤ |∂xxℓ2|0|g|0,

and

|ℓ1(µ, t1, α, x)− ℓ1(µ, t2, α, x)| ≤
∫ 1

0

∫
Td

|ℓ2(x, y)(µ(t1, α′, dy)− µ(t2, α
′, dy))g(α, α′)|dα′

≤
∫ 1

0
|∂yℓ2|0d1(µ(t1, α′), µ(t2, α

′))g(α, α′)dα′

≤ |∂yℓ2|0|g|0|µ|1/2|t1 − t2|1/2.

This implies that ℓ1[µ] ∈ C1/2,0,2 with estimation

|ℓ1[µ]|1/2,0,2 ≤ |ℓ2|2,0|g|0(1 + |µ|1/2). (5.4.9)

Note that (5.4.9) does not give a uniform upper bound due to the µ-dependence on the right hand

side of the inequality. Nevertheless, we have a uniform upper bound for the weaker norm | · |0,0,1:

|ℓ1[µ]|0,0,1 ≤ |ℓ2|1,0|g|0, ∀µ ∈ S1/2.

For µ1, µ2 ∈ S1/2, we have

ℓ1(µ1, t, α, x)− ℓ1(µ2, t, α, x) =

∫ 1

0

∫
Td

ℓ2(x, y)(µ1(t, α
′, dy)− µ2(t, α

′, dy))g(α, α′)dα′

≤ |∂yℓ2|0d1(µ1(t, α), µ2(t, α))|g|0.

This implies that

|ℓ1[µ1]− ℓ1[µ2]|0 ≤ |∂yℓ2|0|g|0ρ(µ1, µ2).

Similarly, we obtain

|∂xℓ1[µ1]− ∂xℓ1[µ2]|0 ≤ |∂y∂xℓ2|0|g|0ρ(µ1, µ2).

Therefore, we have Lipschitz continuity

|ℓ1[µ1]− ℓ1[µ2]|0,0,1 ≤ |ℓ2|1,1|g|0ρ(µ1, µ2),

and this implies Assumption 74 with M = |ℓ2|1,1|g|0.

5.4.2 Operator Φ1

Recall that ∇ṽ = Φ1(µ), where ṽ is the solution of (5.4.4) with given µ. By Hopf-Cole transform

ṽ is the solution of (5.4.4) if and only if

w = exp{−ṽ} (5.4.10)
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is the solution of 
∂tw +

1

2
∆w − wℓ̃1[µ] = 0 on (0, T )× [0, 1]× Td

w(T, α, x) = eb(T,α,x) on [0, 1]× Td.

(5.4.11)

In addition, we have the following relation by chain rule:

∇ṽ = −∇w
w
, ∆ṽ =

−w∆w + |∇w|2

w2
.

Since w-term appears in the denominator, Harnack type inequality in Corollary 70 ensures that

∇ṽ and ∆ṽ are well defined.

5.4.2.1 Estimates of parameterized PDEs

We define

w = G(f) (5.4.12)

by the solution of 
∂tw +

1

2
∆w − wf = 0 on (0, T )× [0, 1]× Td

w(T, α, x) = eb(T,α,x) on [0, 1]× Td.

(5.4.13)

Note that w = G(ℓ̃1[µ]) is the solution of (5.4.11).

Lemma 76. The mapping G is a locally Lipschitz continuous mapping from C0.5,0,2
0,0,1 to C1,0,2

0,0,1 .

Proof. Let f ∈ C0.5,0,2 and w = G(f). By Theorem 69, we have w(α) ∈ C1,3. If α → α0,

then f(α) → f(α0) holds pointwisely. Together with Dominated Convergence Theorem on the

probabilistic representation of w, one can conclude w(t, α, x) → w(t, α0, x) whenever α → α0.

Therefore, w belongs to C1,0,3.

Given f1, f2 ∈ C0.5,0,2 and wi = G(fi) with

K(α) = |f1(α)|0,1 + |f2(α)|0,1 + |eb(T,α)|3,

we can use local Lipschitz continuity of Theorem 69 to obtain local Lipschitz of G,

|w1 − w2|0,0,1 = sup
α

|w1(α)− w2(α)|0,1

≤ sup
α

Ψ(K(α))|f1(α)− f2(α)|0,1

≤ Ψ(sup
α
K(α))|f1 − f2|0,0,1.

In the above, we used the monotonicity of Ψ(·) to switch Ψ and sup. Since supαK(α) ≤ Ψ(|f1|0,0,1+
|f2|0,0,1 + |b|3), we can rewrite the above estimations as

|w1 − w2|0,0,1 ≤ Ψ(|f1|0,0,1 + |f2|0,0,1 + |b|3)|f1 − f2|0,0,1.
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5.4.2.2 Φ1 estimate

Lemma 77. Φ1 is a uniformly bounded and Lipschitz continuous mapping from (S1/2, ρ) to C0([0, T ]×
[0, 1]× Td,Rd).

Proof. If µ ∈ S1/2, then ℓ1[µ] ∈ C0.5,0,2 with |ℓ1[µ]|0,0,1 < M by Assumption 74. We recall that

ℓ̃1 = ℓ1 +

(
∂tb+

1

2
|∇b|2 + 1

2
∆b

)
.

Due to the smoothness of b and compactness of its domain, we still have ℓ̃1[µ] ∈ C0.5,0,2 with

|ℓ̃1[µ]|0,0,1 < Ψ(M). Together with local Lipschitz continuity of G(·) in Lemma 76, it implies

uniform boundedness of w = G(ℓ̃1[µ]), i.e.

|w|0,0,1 < Ψ(M).

Moreover, Corollary 70 says that the reciprocal of w = G(ℓ̃1[µ]) is bounded in the sense |w−1|0 <
Ψ(|ℓ̃1[µ]|0). Therefore, we have

|w|0,0,1 + |w−1|0 < Ψ(M).

Next, we can prove that Φ1 is uniformly bounded in C0:

|Φ1(µ)|0 = |∇ṽ|0 = |w−1∇w|0 ≤ |w−1|0|∇w|0 ≤ |w−1|0|w|0,0,1 ≤ Ψ(M).

Finally, we can show the global Lipschitz for Φ1 by the following estimates:

|Φ1(µ1)− Φ1(µ2)|0 =
∣∣w−1

1 ∇w1 − w−1
2 ∇w2

∣∣
0

=

∣∣∣∣w2∇w1 − w1∇w2

w1w2

∣∣∣∣
0

≤ Ψ(M)(|w2|0|∇w1 −∇w2|0 + |∇w2|0|w1 − w2|0)
≤ Ψ(M)|w1 − w2|0,0,1

≤ Ψ(M)
∣∣∣ℓ̃1[µ1]− ℓ̃1[µ2]

∣∣∣
0,0,1

≤ Ψ(M)ρ(µ1, µ2).

In the last two steps, we used Lipschitz continuity obtained by Lemma 76 and Assumption 74.

5.4.3 Operator Φ2

Next, we will show the properties associated to Φ2 mapping from C0([0, T ]× [0, 1]×Td,Rd) to S1/2.

Lemma 78. Φ2 is a locally Lipschitz continuous mapping from C0([0, T ] × [0, 1] × Td,Rd) to

(S1/2, ρ). Moreover, |Φ2(v̄)|1/2 ≤ Ψ(|v̄|0) for all v̄ ∈ C0([0, T ]× [0, 1]× Td,Rd) for some monoton-

ically increasing positive function Ψ.
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Proof. Given v̄ ∈ C0([0, T ] × [0, 1] × Td,Rd) and ν = Φ2(v̄), applying (5.3.14) of Theorem 72, it

yields that

|ν|0 = sup
t,α

∫
Td

|x|ν(t, α, dx) = sup
α

sup
t

∫
Td

|x|ν(t, α, dx)

≤ sup
α

(∫
Td

|x|m0(α, dx) + |v̄(α)|0T +
√
T

)
≤ Ψ(|v̄|0).

Next, we show the following equicontinuity property again by (5.3.13) of Theorem 72:

sup
t1 ̸=t2,α

W1(ν(t1, α), ν(t2, α)) ≤ sup
α

(
1 +

√
T |v̄(α)|0

)
|t1 − t2|1/2

≤ Ψ(|v̄|0)|t1 − t2|1/2.

This proves ν ∈ S1/2 with

|ν|1/2 ≤ Ψ(|v̄|0).

For the continuity of Φ2, given v̄1, v̄2 ∈ C0([0, T ]× [0, 1]×Td,Rd), we set νi = Φ2(v̄i) for i = 1, 2.

Then, we use the local Lipschitz continuity in Theorem 72 to obtain local Lipschitz continuity of

Φ2 as follows:
ρ(ν1, ν2) = sup

t,α
W1(ν1(t, α), ν2(t, α))

= sup
α

sup
t

W1(ν1(t, α), ν2(t, α))

= sup
α

Ψ(|v̄1(α)|0 + |v̄2(α)|0)|v̄1(α)− v̄2(α)|0

≤ Ψ(|v̄1|0 + |v̄2|0)|v̄1 − v̄2|0.

5.4.4 Existence by the Schauder’s fixed point theorem

Theorem 79. Suppose Assumptions 73 - 74 are valid. Then there exists a solution of (5.2.5) in

the space C1,0,2([0, T ]× [0, 1]× Td,R)× C([0, T ]× [0, 1],P1(Td)).

Proof. It is enough to show that Φ2 ◦ Φ1 has a fixed point in S1/2. Recall that Br is a convex

closed and compact subset of S1/2. For simplicity, we denote by B̂r the closed ball of radius r in

C0([0, T ]× [0, 1]× Td,Rd).

1. By Lemma 77, there exists some positive increasing function Ψ1 independent to r, such that

the mapping

Φ1 : Br 7→ B̂Ψ1(M)

is continuous.
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2. By Lemma 78, there exists some positive increasing function Ψ2 such that the mapping

Φ2 : B̂Ψ1(M) 7→ BΨ2◦Ψ1(M)

is continuous.

Now we take

r = Ψ2(Ψ1(M))

and we have

Φ2 ◦ Φ1 : Br 7→ Br

is a continuous mapping and this yields the existence of a fixed point for Φ by the Schauder’s fixed

point theorem.

In the above, we have indeed proved the existence in the space C1,0,2([0, T ]×[0, 1]×Td,R)×S1/2.

5.4.5 Further remarks on the fixed point theorem

In connection with GMFG, we explain why Theorem 69 establishes locally Lipschitz continuity of

the solution map u : [c, f, ψ] 7→ u[c, f, ψ] of (5.3.10) in the sense of

Cδ,2
0,1 × Cδ,2

0,1 × C4
3 7→ C1,3

0,1 (5.4.14)

instead of

Cδ,2 × Cδ,2 × C4 7→ C1,3. (5.4.15)

For the illustration purpose, if we freeze c, ψ of the solution map u, then local Lipschitz conti-

nuity in the sense of (5.4.14) implies local boundedness

|u|0,1 ≤ Ψ(|f |0,1),

while local Lipschitz continuity in the sense of (5.4.15) implies local boundedness

|u|0,1 ≤ |u|1,3 ≤ Ψ(|f |δ,2).

The main difference of these two local boundedness properties is that, the first one controls u by

f with 0-norm in t-variable while the second one does by f with δ-norm in t-variable, which is not

desirable. The main reason is that the running cost |ℓ1[µ]|1/2,0,1 ≤ Ψ(|µ|1/2) of (5.4.9) does not

have uniform bound in µ, while |ℓ1[µ]|0,0,1 does. For this reason, we included the regularity results

for parabolic PDE solutions by dropping t-regularity while increasing x-regularity as a tradeoff.

Recall that, we have established the existence of a fixed point of a mapping Φ = Φ2 ◦ Φ1 for

Φ1 : µ 7→ ∇ṽ and Φ2 : ∇ṽ 7→ ν. Our approach is along the the Schuader’s fixed point theorem with

estimates

Φ1 : Br 7→ B̂Ψ1(M), Φ2 : B̂Ψ1(M) 7→ BΨ2◦Ψ1(M).
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In the above, it is crucial that the Φ1 is upper bounded by Ψ1(M) independent to r, and this can

be inferred from local boundedness of (5.4.14) together with uniform boundedness of |ℓ1[µ]|0,0,1.
In contrast, if we use local boundedness in the sense of (5.4.15), then we have estimations in

the form of

Φ1 : Br 7→ B̂Ψ1(r), Φ2 : B̂Ψ1(r) 7→ BΨ2◦Ψ1(r).

Since the norm of the running cost |ℓ1[µ]|1,0,3 depends on µ, Φ1 can not be uniformly bounded. As

a result, the choice of r = Ψ1(r) is infeasible.

5.5 Uniqueness of GMFG

Assumption 80. There exists some α ∈ [0, 1] satisfying∫
Td

(ℓ1(µ1, g, t, α, x)− ℓ1(µ2, g, t, α, x))(µ1 − µ2)(t, α, dx) > 0,

for all µ1 ̸= µ2 ∈ C([0, T ]× [0, 1],P1(Td)) and t ∈ [0, T ].

Theorem 81. ([13], [72]) Suppose Assumptions 73 - 74 and 80 are valid. Then, there exists a

unique solution of (5.2.5) in the space C1,0,2([0, T ]× [0, 1]× Td,R)× C([0, T ]× [0, 1],P1(Td)).

Proof. For i = 1, 2, let (vi, µi) be two different solution pairs, and set

v̄ = v1 − v2, µ̄ = µ1 − µ2.

Note that v̄(T, α, x) = µ̄(0, α, x) = 0 for all (α, x) by their given initial-terminal data. We also

write ℓ1[µi] = ℓ1[µi, g] for short. Then v̄ satisfies

∂tv̄ +∇b · ∇v̄ + 1

2
∆v̄ − 1

2
|∇v1|2 +

1

2
|∇v2|2 + ℓ1[µ1]− ℓ1[µ2] = 0

and µ̄ satisfies

−∂tµ̄− div(∇bµ̄) + 1

2
∆µ̄+ div(∇v1µ1)− div(∇v2µ2) = 0.

The above two equations can be rewritten as

⟨∂tv̄ +∇b · ∇v̄ + 1

2
∆v̄, µ̄⟩+ ⟨−1

2
|∇v1|2 +

1

2
|∇v2|2 + ℓ1[µ1]− ℓ1[µ2], µ̄⟩ = 0

and

⟨∂tv̄ +∇b · ∇v̄ + 1

2
∆v̄, µ̄⟩+ ⟨v̄,div(∇v1µ1)− div(∇v2µ2)⟩ = 0.

By subtracting above two equations, and utilizing the identities

⟨div(∇v1µ1), v̄⟩ = −⟨|∇v1|2, µ1⟩+ ⟨∇v1 · ∇v2, µ1⟩

and

⟨div(∇v2µ2), v̄⟩ = ⟨|∇v2|2, µ2⟩ − ⟨∇v1 · ∇v2, µ2⟩,
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we obtain

⟨1
2
(µ1 + µ2), |∇v̄|2⟩+ ⟨ℓ1[µ1]− ℓ1[µ2], µ̄⟩ = 0.

The first term is non-negative and the second term is strictly positive for some α ∈ [0, 1] by (A3),

which implies a contradiction.

5.6 Concluding remarks

Our main result of Theorem 81 provides existence and uniqueness of the GMFG equation under

some assumptions. One limitation of the current setting is that the running cost in the current

setup allows to use Hopf-Cole transformation, which is essential to the subsequent analysis on

regularities. To deal with the full generalization of the running cost, one must adopt different

approaches and it will be in our future research direction. It is also desirable to generalize the

result to the whole domain Rd instead of compact domain Td. Another limitation is that, the

current setting requires the continuity of the graphon. Note that some graphons are not necessarily

continuous. Nevertheless, the continuity condition of the graphon can be relaxed in the following

sense by similar arguments with additional complexity of notations, which is sketched below briefly.

To proceed, we define Ĉ0 as the collection of bounded measurable functions f : [0, T ]× [0, 1]×
Td 7→ R, and we denote its norm as

|f |0 = sup
[0,T ]×[0,1]×Td

|f(t, α, x)|.

With Ĉδ,0,2, we denote the set of functions f ∈ Ĉ0 with finite norm

|f |δ,0,2 = |f |0 + sup
t1<t2,α,x

|f(t1, α, x)− f(t2, α, x)|
|t1 − t2|δ

+
∑
i

|∂if |0 +
∑
ij

|∂ijf |0.

By the above definition Ĉδ,0,2 allows the discontinuity in α.

Assumption 82. 1. b and m0 are infinitely smooth in their domains.

2. The graphon g is bounded measurable on [0, 1]2 with

|g|0 = sup
[0,1]2

|g(α, α′)| <∞.

We recall that Br is defined in S1/2. We use Ĉδ,0,2
0,0,2 to denote the same set Ĉδ,0,2 with the norm

| · |0,0,2, i.e.
|f |0,0,2 = |f |0 +

∑
i

|∂if |0 +
∑
ij

|∂ijf |0.

Assumption 83. The mapping µ 7→ ℓ1[µ] is a bounded and Lipschitz continuous mapping from

S1/2 to Ĉ0.5,0,2
0,0,1 , that is, for any µ ∈ S1/2, ℓ1[µ] belongs to Ĉ0.5,0,2 and

|ℓ1[µ]|0,0,1 < M, |ℓ1[µ1]− ℓ1[µ2]|0,0,1 ≤Mρ(µ1, µ2),
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for some M > 0 independent to the choice of µ.

We also define Ĉm,0,n as the collection of f ∈ Ĉ0 with continuous bounded m-th derivatives in

t and n-th derivatives x. For instance, for f ∈ Ĉ1,0,2, we have finite norm

|f |1,0,2 = |f |0 + |∂tf |0 +
∑
i

|∂if |0 +
∑
ij

|∂ijf |0.

Now we present a result in parallel to Theorem 81. The proof is similar and so omitted.

Corollary 84. Suppose Assumptions 82 - 83 and 80 are valid. Then there exists a unique solution

of (5.2.5) in the space Ĉ1,0,2([0, T ]× [0, 1]× Td,R)× Ĉ([0, T ]× [0, 1],P1(Td)).

5.7 Appendix

In this appendix, we will summarize the notations of Hölder space used in this chapter. For this

purpose, we will define the following functionals for a function u from a product normed space

S = X × Y to Rd whenever it is well defined.

• |u|0 = supS |u(x, y)|.

• For nonnegative integers l,m, define

|u|l,m =
l∑

i=0

∑
|α|=i

|Dα
xu|0 +

m∑
i=0

∑
|α|=i

|Dα
y u|0.

In the above, α is a multi-index for differential operators. For instance, |α| =
∑d1

i=1 |αi| for a
multi-index α = (αi : i = 1, 2, . . . , d1).

• For positive numbers l′,m′ ∈ (0, 1), define

[u]l′,m′ = [u]l′,0 + [u]0,m′ ,

where

[u]l′,0 = sup
x1 ̸=x2,y

|u(x1, y)− u(x2, y)|
|x1 − x2|l′

,

and

[u]0,m′ = sup
x,y1 ̸=y2

|u(x, y1)− u(x, y2)|
|y1 − y2|m′ .

• For nonnegative integers l,m and positive number l′ ∈ (0, 1), define

|u|l+l′,m = |u|l,m +
∑
|α|=l

[Dα
xu]l′,0.
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• For nonnegative integers l,m and positive numbers l′,m′ ∈ (0, 1), define

|u|l+l′,m+m′ = |u|l,m +
∑
|α|=l

[Dα
xu]l′,m′ +

∑
|α|=m

[Dα
y u]l′,m′ .

One can check that the following spaces are Banach spaces:

• C l,m(X × Y ;Rd) := {u : |u|l,m <∞},

• C l+l′,m(X × Y ;Rd) := {u : |u|l+l′,m <∞},

• C l+l′,m+m′
(X × Y ;Rd) := {u : |u|l+l′,m+m′ <∞}.

In this chapter, we also involve the space C l′,0,m of functions with a domain S = X×Y ×Z, whose
norm is defined as

|u|l′,0,m = |u|0,0,m + [Dm
z u]l′,0,0,

where

|u|0,0,m =

m∑
i=0

∑
|α|=i

|Dα
z u|0, and [u]l′,0,0 = sup

x1 ̸=x2,y,z

|u(x1, y, z)− u(x2, y, z)|
|x1 − x2|l′

.

In this chapter, our functions involve state domain taking values in d-torus Td = Rd/Zd. For

x ∈ Rd, let π(x) be the coset of Zd that contains x, i.e.

π(x) = x+ Zd.

A canonical metric on Td can be induced from the Euclidean metric by

|π(x)− π(y)|Td = inf{|x− y − z| : z ∈ Zd}.

For the illustration purpose, we provide a list of representative Hölder spaces used throughout the

chapter:

• Cδ/2,δ([0, T ]× Td) is a space of functions u(t, x) with a norm defined by

|u|δ/2,δ = |u|0 + [u]δ/2,δ,

where [u]δ/2,δ is a seminorm defined by

[u]δ/2,δ = sup
t1 ̸=t2,x

|u(t1, x)− u(t2, x)|
|t1 − t2|δ/2

+ sup
t,x1 ̸=x2

|u(t, x1)− u(t, x2)|
|x1 − x2|δ

.

This definition may be slightly different from different resources. For instance, the definition

given by [53] for the seminorm is

[u]′δ/2,δ = sup
(t1,x1 )̸=(t2,x2)∈[0,T ]×Td

|u(t1, x1)− u(t2, x2)|
(|t1 − t2|1/2 + |x1 − x2|)δ

.
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Indeed, two norms induced by [u]δ/2,δ and [u]′δ/2,δ are equivalent, which can be seen from

below:

[u]δ/2,δ = [u]δ/2,0 + [u]0,δ ≤ 2[u]′δ/2,δ,

and

[u]′δ/2,δ ≤ sup
(t1,x1) ̸=(t2,x2)

|u(t1, x1)− u(t2, x1)|+ |u(t2, x1)− u(t2, x2)|
(|t1 − t2|1/2 + |x1 − x2|)δ

≤ sup
t1 ̸=t2

|u(t1, x1)− u(t2, x1)|
|t1 − t2|δ/2

+ sup
x1 ̸=x2

|u(t2, x1)− u(t2, x2)|
|x1 − x2|δ

≤ [u]δ/2,0 + [u]0,δ = [u]δ/2,δ.

• C0,1([0, T ]× Td) is a space of functions u(t, x) with a norm

|u|0,1 = |u|0 +
∑

i=1...d

|∂xiu|0,

and Cδ,1([0, T ]× Td) is a space of functions u(t, x) with a norm

|u|δ,1 = |u|0,1 +
∑

i=1...d

[∂xiu]δ,0.

• C1,2([0, T ]× Td) is a space of functions u(t, x) with a norm

|u|1,2 = |u|0 + |∂tu|0 +
∑

i=1...d

|∂xiu|0 +
∑

i,j=1...d

|∂xixju|0.

• C1+δ/2,2+δ([0, T ]× Td) is a space with a norm

|u|1+δ/2,2+δ = |u|1,2 + [∂tu]δ/2,δ +
∑

i,j=1...d

[∂xixju]δ/2,δ.

• C0,2([0, T ]× Td) is a space with a norm

|u|0,2 = |u|0 +
∑

i=1...d

|∂xiu|0 +
∑

i,j=1...d

|∂xixju|0.

Cδ,2([0, T ]× Td) is a space with a norm

|u|δ,2 = |u|0,2 +
∑

i,j=1...d

[∂xixju]δ,0.

We use Cδ,2
0,2([0, T ] × Td) to denote the space of all functions in Cδ,2([0, T ] × Td) topologized

by the norm | · |0,2. Such a space Cδ,2
0,2([0, T ]×Td) is not complete. However, every | · |δ,2-norm

bounded ball in Cδ,2
0,2([0, T ]×Td) is precompact since Cδ,2([0, T ]×Td) is compactly embedded

into C0,2([0, T ]× Td).
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• C1,3
0,1 ([0, T ]× Td) is the space of all u ∈ C1,3([0, T ]× Td) topologized by | · |0,1, i.e.

|u|0,1 = |u|0 +
∑

i=1...d

|∂xiu|0.

• C0,0,2([0, T ]× [0, 1]× Td) is the space of all u(t, α, x) having finite norm of

|u|0,0,2 = |u|0 +
∑

i=1...d

|∂xiu|0 +
∑

i,j=1...d

|∂xixju|0.

• Cδ,0,2([0, T ]× [0, 1]× Td) is the space of all u(t, α, x) having finite norm of

|u|δ,0,2 = |u|0,0,2 +
∑

i,j=1...d

[∂xixju]δ,0,0.

• Cδ,0,2
0,0,2([0, T ]× [0, 1]× Td) is the space of all u(t, α, x) having finite norm of |u|δ,0,2, but topol-

ogized by | · |0,0,2.
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Chapter 6

Conclusion and future work

6.1 Conclusion

In this thesis, our focus centers on the convergence analysis of stochastic nonlinear systems and

we explore the examination of their asymptotic behavior, a critical area for understanding the

prolonged dynamics of these systems and those with substantial populations. This thesis emphasizes

two key aspects: firstly, the examination of the turnpike property within the context of stochastic

control problems, and secondly, the investigation of the convergence of N -player games towards

their corresponding mean field games.

Firstly, our investigation delves into the asymptotic behavior of systems exhibiting long-term

dynamics, focusing on convergence concerning the time horizon. In Chapter 2, we scrutinize the

limiting behavior of a specific category of linear quadratic stochastic optimal control problems and

their associated value functions as the time horizon extends to infinity. We provide a distinct

approach to show the turnpike properties in stochastic control theory by using the cell problem

within the realm of weak KAM theory in PDE and contributions can be summarized as follows.

(1) Our first contribution lies in the formulation of a verification theorem connecting the cell

problem to a specific class of infinite time horizon control problems, referred to as the proba-

bilistic cell problem, see Lemma 5. Unlike the typical cell problem explored in the literature

(e.g., [77]), the underlying cell problem in our context lacks uniqueness due to the non-

compactness of the domain. The above verification theorem establishes a connection between

the cell problem and the static optimization problem.

(2) Our second contribution provides the connection between the cell problem (2.1.6) and the

ergodic cost problem. This involves determining the constant

−c∗ := lim
T→∞

1

T
VT (x) = lim

T→∞

1

T
JT (x;u

∗
T ).

This connection identifies not only the aforementioned turnpike property of (2.1.5) with

respect to the control process and state process, but also unveils a new turnpike property in
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terms of the cost function:

lim
T→∞

1

T
JT (x;u

∗) = −c∗,

where u∗ is a control process obtained from the probabilistic cell problem independent to the

length of the terminal time T , see Theorem 9.

Next, we examine the system complexity and consider the convergence behavior of stochastic

nonlinear systems with large populations. More precisely, we concentrate on the fundamental

question arising in MFG and delves into the examination of convergence rate from the N -player

games to the associated MFG within different settings.

In Chapter 3, we investigate the convergence rate of theN -player game, governed by a continuous-

time Markov chain as the common noise, towards its asymptotic MFG under LQG structure. The

main results and contributions are summarized as follows.

(1) Firstly, we introduce a Markovian structure using two auxiliary processes for the first and

second moments of the MFG equilibrium and employ the fixed point condition in MFG. By

doing so, we characterize the equilibrium measure in MFG with a finite-dimensional Riccati

system of ODEs. Consequently, we obtain the equilibrium path, equilibrium control, and the

value function in MFG.

(2) Subsequently, we address the N -player game under the LQG structure, and we characterize

its equilibrium path, equilibrium control, and the value function through a Riccati system

of ODEs with a dimension of O(N3). Leveraging the N -invariant algebraic structure of this

system of ODEs, we establish a dimension reduction result, facilitating a comparison between

the equilibrium path in the N -player game and the equilibrium path in the MFG.

(3) To demonstrate the convergence between the two equilibrium paths, we embed the equilibrium

path in the N -player game to the probability space of the equilibrium path in the MFG using a

distribution copy, leading to the achievement of the convergence result and the computation of

the convergence rate. We obtain the convergence rate O(N−1/2) with respect to 2-Wasserstein

distance.

(4) Lastly, some numerical examples are presented to demonstrate the convergence result.

In Chapter 3, the number of states of the common noise is finite, thus next we consider the case

when the number of states of the common noise is infinity. We investigate the convergence rate of

the N -player game with Brownian motion as its common noise in the following chapter.

We focus on a class of one-dimensional LQG mean field games with Brownian motion as the

common noise in Chapter 4. It is worth noting that the equilibrium path, equilibrium control, and

the value function in MFG and the N -player game can be obtained by a similar methodology as

Chapter 3. Our main contribution is the establishment of three different convergence rates from

the N -player games to the corresponding mean field games:

• Firstly, we establish that the convergence rate of the p-Wasserstein metric for the distribution

of the representative player in the N -player game to the distribution of the generic player in

MFG is O(N−1/2) for p ∈ [1, 2];
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• Secondly, it demonstrates that the convergence rate of the p-Wasserstein metric for the em-

pirical measure of the equilibrium path in the N -player game to the equilibrium measure in

MFG under the Lp sense is O(N−1/(2p)) for p ∈ [1, 2];

• Lastly, we show that the convergence rate of the uniform p-Wasserstein metric for the em-

pirical measure of the equilibrium path in the N -player game to the equilibrium measure in

MFG under the Lp sense is O(N−1/(2p)) for p ∈ (1, 2], and O(N−1/2 ln(N)) for p = 1.

To achieve the above convergence rates, the methodology relies on a specific decomposition of

the equilibrium path in the N -player game and the associated MFG framework. We establish

the convergence results for the empirical measure of a non-i.i.d. sequence of random variables

and generalize the result to triangular arrays, which provides a desired structure to complete the

establishment of the convergence rates.

In Chapter 5, we investigate the large population games with asymmetric graph connections.

We consider the solvability of a type of graphon mean field games. A new type of mean field games

PDE system associated with the graphon mean field games system, see (5.2.5), is proposed in

this project. The graphon mean field games system consists of a collection of parameterized HJB

equations and a collection of parameterized Fokker-Planck-Kolmogorov equations. We establish

the existence of solutions via the application of Schauder’s fixed point theorem and obtain the

uniqueness via the Lasry-Lions monotonicity assumption on the running cost. The main difficulty

is to obtain the regularity of the solution and the sensitivity of the corresponding HJB equations

and Fokker-Planck-Kolmogorov equations.

6.2 Future work

There are multiple short and long-term research directions that we would like to explore in the

future based on the results in this thesis.

In Chapter 2, the diffusion term is a constant in our model setting and it is independent of

the control term. We could try to involve the control in the diffusion term and reexamine the

corresponding turnpike properties. Next, we only investigate the model under the LQG structure.

The general model will be considered in the future. For example, we could formulate the problem

within a general setting and give some regularity conditions to drift term, diffusion term and

the running cost in the cost functional. Moreover, with the resurgent of interests of mean field

games and mean field models, we could also consider the ergodic property of the mean field control

problems.

For the convergence of the N -player game to the associated MFG investigated in Chapter 3

and Chapter 4, we propose the following future ideas. Firstly, we could consider the mean field

game under more general settings about the dynamic processes, such as with time delays, Poisson

jumps, etc. Next, except for considering the LQG structure, we could examine the convergence of

mean field games with common noise under more general structures. It is important to note that

the assumptions made in the aforementioned papers usually account for linear growth in the state

and control elements for the running cost, or they only focus on the linear quadratic structure.
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The convergence of mean field games with common noise under a more general setting should

obtain more attention. Furthermore, in our two previous works, we require positive values for all

sensitivity parameters in the cost functional. We find that there is no global solution for MFG

when the coefficient of the cost functional is negative, while there is a global solution when the

coefficient is positive. So, it is also an interesting problem to investigate the explosion when some

sensitivities take negative value.

One limitation of the current setting in Chapter 5 is that the running cost in the current setup

allows to use Hopf-Cole transformation, which is essential to the subsequent analysis of regularities.

To deal with the full generalization of the running cost, one must adopt different approaches and

it will be in our future research direction. It is also desirable to generalize the result to the whole

domain Rd instead of the compact domain Td. In addition, the convergence of graphon mean

field game is not addressed in our work. The establishment of the convergence rate from the N -

subpopulation game to the corresponding graphon mean field game will be considered in our future

works.
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