

Worcester Polytechnic Institute

RANKIT: Designing Interactive Tools for Personalized
Ranking Analysis

An Interactive Qualifying Project
Submitted to the Faculty of WORCESTER POLYTECHNIC INSTITUTE

in partial fulfilment of the requirements
for the Degree of Bachelor of Science

 3 March 2018

By

 Goutham Deva, Diana Doherty
Malika Nurbekova and Zarni Phyo

Report Submitted to:
Professor Elke Rundensteiner

PhD Student Mentor:
Caitlin Kuhlman

1

Acknowledgements

We would like to thank the following individuals and organizations for their support and
assistance throughout our project:

• Professor Elke Rundensteiner, our advisor from WPI for giving us the opportunity to work
on this project as well as guiding us through every phase of the project.

• Caitlin Kuhlman, WPI, for her guidance and support in familiarizing us with resources and
tools to help support the development of the ranking tool.

• MaryAnn VanValkenburg, WPI, for her assistance in the research component, assets
recommendations, and analysis of the ranking tool code as well as providing useful feedback on
the project.

• Collaborative Research Experiences for Undergraduates (CREU), for assisting us with
funding opportunities and research guidance for us to complete this project.

• Worcester Polytechnic Institute, for providing us the education and opportunities needed for
us to complete this project.

• CREU, for funding the research required for creating a user friendly and fair ranking system.

© 2017-2018 ALL RIGHTS RESERVED

2

Table of Contents

Executive Summary 7

1. Introduction 8

2. Background 11
2.1 Problems in Ranking 11
2.2 Related Work 12

3. Methodology 16
3.1 Overview 16

3.1.1 Deciding an Application Type 16
3.1.2 Programming Language Choice 18

3.2 Early Prototypes 19
3.3 Design and Implementation 23

3.3.1 The Server 23
3.3.2 The Client 27

3.4 Team Structure 35

4. User Study Overview 36
4.1 Goals 36
4.2 Overview 37
4.3 Onsite Interview 37
4.4 Online Survey 38

5. Evaluation 40
5.1 Onsite Interview 40

5.1.1 First Study Group: Expert Feedback 40
5.1.2 Second Study Group: Usability 41

5.2 Online Survey 45
5.2.1 Evaluating the Intuitiveness of Comparison Methods 45
5.2.2 Estimating the Amount of Information from Users 47
5.2.3 Assessing Usability of RANKIT 49

6. Conclusion 51
6.1 Summary 51
6.2 Future Work 51
6.3 Team Experience 52

7. References 53

© 2017-2018 ALL RIGHTS RESERVED

3

Appendix 56
Part 1: Familiarizing with the Build Tool Components 56
Part 2: Exploring a Specific Build Tool Component 60
Online Survey 63

© 2017-2018 ALL RIGHTS RESERVED

4

Table of Figures

Figure 1. MATTERS Interface 12
Figure 2. MATTERS Heat Map Visualization 13
Figure 3 LineUp Interface 14
Figure 4 Podium Interface 14
Figure 5. Advantages and Disadvantages of Mobile Application. 16
Figure 6. Advantages and Disadvantages of Desktop Applications. 17
Figure 7. Advantages and Disadvantages of Web Applications. 18
Figure 8. A Prototype of Landing Page. 20
Figure 9. List Comparison Prototype of Build Component. 21
Figure 10. Categorical Comparison Prototype of Build Component. 22
Figure 11. Pairwise Comparison Prototype of Build Component. 22
Figure 12. A Prototype of Dataset Selection Page. 23
Figure 13. JSON file for Communicating Dataset Objects from the Server to the Web View. 25
Figure 14. JSON file for Communicating User Intent from the Web View to the Build Tool. 25
Figure 15. Script Checks and Reflects Success Through Color Transition. 28
Figure 16. Main Landing Page. 29
Figure 17. Iteration Differences for Dataset Selection Interface. 30
Figure 18. Pop Up Menu. 31
Figure 19. Build Tool Querying Options: Search, Sort, and Shuffle. 32
Figure 20. Pairwise Method Interface. 33
Figure 21. Explore Table View. 34
Figure 22. Weight of Each Attribute. 34
Figure 23. Most Widely Used Comparison Method 42
Figure 24. Intuitiveness of Comparison Methods 42
Figure 25. Total Amount of Ranked Objects 44
Figure 26. The Clarity of RANKIT’s Purpose 45
Figure 27. Drag and Drop Results 45
Figure 28. Intuitiveness of Comparison Methods 47
Figure 29. Amount of Objects Users Input into the Ranking Tool 47
Figure 30. People Who would Use RANKIT in the Future 48
Figure 31. Actual Input and Willing to Input: List Comparison 48
Figure 32. Actual Input and Willing to Input: Categorical Comparison 49
Figure 33. Actual Input and Willing to Input: Pairwise Comparison 49
Figure 34. Responses for Search Feature in the Build Tool 50
Figure 35. Responses for Drag and Drop Behavior in the Build Tool 51

© 2017-2018 ALL RIGHTS RESERVED

5

Abstract

Rankings are commonly used to evaluate everyday decisions. However, constructing rankings
can be difficult because building a ranking requires extensive knowledge about the observed
dataset. To overcome this problem, we present RANKIT, an online ranking application that
provides solutions for analyzing and exploring rankings. The system uses machine learning to
automatically construct rankings based on partial input from users. Users can then inspect the
weights and attributes of their overall ranking. Intuitive interfaces allow for the effective building
and exploring of rankings. The system was evaluated with a comprehensive two part user study
consisting of online surveys and in-person interviews. Results reveal that RANKIT succeeds at
both informing users and sparking their interest about personalized rankings. Future
improvements have also been identified to make RANKIT even better.

© 2017-2018 ALL RIGHTS RESERVED

6

Executive Summary

Ranking and Existing Tools
Nowadays, rankings released from institutions and media are not always useful to individual
users, partly due to over-generalization of interests, as well as the complex nature of ranking
data itself. Yet to find relevant data and rank them according to the user’s preference has become
a crucial part of everyday life.

This project focuses on building a framework that assists users in ranking of data. It evaluates
and compares existing ranking tools, such as MATTERS, Lineup, and Podium, and discusses
how these technologies have informed your design and development of the RANKIT tool.

The goals of the research are to understand how users rank data, then to design and evaluate an
intuitive way of building partial rankings, and to learn about the amount of partial information
users are willing to give in establishing a personalized ranking.

Design and Implementation of RANKIT Technology
An intuitive visual design is a vital part of this research. RANKIT went throughout numerous
iterations of the development process to address user problems with the original usability of the
tool. The team built RANKIT, a web application with a Python backend. Users provide a
particular form of partial rankings, and the system then learns the complete ranking using
machine learning techniques.

Evaluation using a User Study and Results
The user study was divided into two parts: in-person interviews and an online survey. The
in-person interviews were conducted on two study groups, including college students and
human-computer interaction experts. The online survey was conducted on people of different
social groups.

According to results of the two parts of the study, over 60 percents of the users rated RANKIT
intuitive. This was measured based on collected average of intuitiveness of the separate features
and web pages.

The in-person portion of the study showed that people used the List Comparison method the
most when asked to choose among three methods that they were already familiar with. However,
when asked about the intuitiveness of each method, the majority of the in-person participants
rated the Categorical Comparison method to be the most intuitive while the online survey

© 2017-2018 ALL RIGHTS RESERVED

7

respondents rated List Comparison method to be the most intuitive. Over 80 percents of the users
interact with 2 to 8 objects, but were willing to rank up to 16 objects to get better results.

However, we found that when datasets contain hundreds of objects each, 16 partial rankings is
not sufficient enough to produce a confident ranking. Therefore, future work needs to be
conducted improving usability to increase the number of partial rankings the user is willing to
provide. The method that suffers the most in accuracy from small partial ranking numbers is
Pairwise Comparison because users need to manually insert all combinations of rankings that
Categorical and List Comparisons take care of automatically. The main criticism of RANKIT
was its non-intuitive interface on mobile applications. However, the application was designed to
be used on a laptop or a desktop, and the mobile interface was never taken into account. Future
work can expand into making RANKIT a mobile friendly application.

© 2017-2018 ALL RIGHTS RESERVED

8

1. Introduction

Motivation
Modern advancements in processing and storage of information have inspired research into
different strategies to consume versatile data and synthesize it into simple models. The
evaluation of such models can be found in services that help industries mitigate risk, make smart
decisions, and gain better insight into different choices. One such model, ranking, allows
individuals to weigh and observe in clearer detail the choices they are faced with, guiding them
to optimal decisions.

Rankings are employed in everyday life and decision making. Be it a problem of selecting the
ideal college, deciding which restaurant to have dinner at, or what movie to watch, the concept of
ranking one item over the other is a common tool for decision making. Sometimes, however, the
result of a ranking algorithm on decisions are not as evident. In search engines, for example, a
webpage being served in the top results is a matter of being visited or not, and a matter of having
influenced one’s opinions or play a part in confirmation bias. Banks rely on credit scores to
determine whether a loan for a car, a house or college tuition is likely to be paid, thereby
rejecting or approving a loan.

Challenges
There are limitations to ranking. For a ranking to be accurate in expectations, it is important to
find valuable information in incomplete data. The data analyzed derived from real world events
is never perfect. A collection of data might be missing or an outlier may appear to majorly affect
a basic observation. Data must be cleaned before it can be synthesized. Despite the
preprocessing, the data could still be computationally impossible to analyze in reasonable
amount of time, too partial to derive any practical assumptions on, or misleading in secluded
context.

Shuffling through the disorganized and incomplete data might be impossible for individuals
looking for a useful ranking as it either requires extensive knowledge in the field or the usage of
software tools that are not readily accessible. As a resolution, companies simplify the process of
ranking and publicize the end result - the ranking. However, when interpreting multi-attribute
datasets, a slight change of weight between attributes can heavily impact ranking results. Most
publicly available rankings do not expose the attributes used to compose the ranking. This lack
of disclosure results in possible exploitation of data because rankings can imply a conclusion that
is not necessarily true.

© 2017-2018 ALL RIGHTS RESERVED

9

It is important to be wary of rankings without disclosure of weights and their attributes. To
deflect this problem, it is vital to encourage individuals to formulate their own rankings. A tool
that would allow users to come to their own ranking can be extremely valuable as it resolves the
problem of making sense of big data and allows users to rank by their personal preferences,
instead of someone else’s (Gratzl-Streit et al., 2013; Wall-Endert et al., 2013).

Manually ranking, or assigning each attribute a specific weight, can be a difficult task for the
individual who is unfamiliar with the whole dataset or is unsure about the importance of each
attribute. Coming up with the weights requires prior knowledge, which is not friendly to
beginners. Often rankings are created with no knowledge of the relative importance of attributes.
Therefore, it is important to construct rankings that allow users to apply their intuition about the
order of certain items within a dataset to then automatically determine which attributes ought to
be considered more valuable than others. Sophisticated techniques employed through machine
learning have been developed for information retrieval (Liu, 2009) which allow for automatic
rankings of datasets. Though there are powerful machine learning techniques used in information
retrieval and recommender systems, most users do not have access to them. The need for
interactive, highly intuitive tools which give users the ability to leverage learning-to-rank
algorithms was the inspiration for RANKIT.

Proposed Solution
RANKIT is an online ranking application that provides solutions for analyzing and exploring
rankings. The system uses machine learning to automatically construct rankings based on partial
input from users. Intuitive interfaces allow for the effective building and exploring of rankings.
The key innovation of RANKIT is the Build tool, which provides three alternative interfaces for
users to input their knowledge about items to be ranked.

The Build tool collects this partial ranking information from users based on their domain of
knowledge or priorities and leverages Pairwise Comparisons to automatically derive rankings on
the backend using a leaning-to-rank algorithm. In a pairwise comparison method, the goal is to
minimize the number of inversions in a rank. In other words, minimize the cases where the pair
of results are in the wrong order relative to the ground truth (Liu, 2009). This approach allows
RANKIT to produce accurate rankings based on users’ needs without exhaustive input from the
user.

Once the ranking is built, users can pass the result to the Explore tool. The Explore tool, in turn,
visualizes the ranking and the underlying attributes used to create it. To encourage transparency
in ranking, Explore allows users to view attribute weights and their relative contribution to the
overall ranking.

© 2017-2018 ALL RIGHTS RESERVED

10

During the design process for RANKIT, unofficial questionnaires and interviews with user
interface experts were conducted to ensure that RANKIT satisfies consumer demand. And, to
incorporate this feedback into the project, RANKIT went through multiple iterations, each of
which strived to achieve improvements that would take RANKIT to the competing grounds of
previous state-of-the-art..

While the core computations of RANKIT are derived from pairwise comparisons, the evaluation
revealed that other methods were more intuitive. Therefore the Build tool was expanded to have
three different options for constructing a ranking. These options are referred to as comparison
methods, which are methods that allow ranking of one item over one or more other items.

The first method is List Comparison. In this method, users present their preferences by sorting
rankable items in an ordered list. The first item is considered to be ranked as number one, the
second item is ranked as number two, the third is three and so on. The second ranking method is
Categorical Comparison. In this method users to express their preference by sorting items into
three categories: high, medium, low. Items within each categories are not ranked, however, an
item in the high category is better than all items in both the medium and the low categories, and
an item in the medium category is better than all items in the low category. The last ranking
method is Pairwise Comparison, where users directly express their preferences as relations
between pairs of items All three methods are reduced to pairwise comparisons under the hood
and sent to the machine learning algorithm on the backend.

We hope that RANKIT will stimulate a greater interest in users because it delivers a better
understanding of rankings and informs how ranking results are produced in the real world.

© 2017-2018 ALL RIGHTS RESERVED

11

2. Background

2.1 Problems in Ranking

Limitations
A ranking is a way to simplify the process of deciding between objects. In any non-trivial
circumstance, objects have multiple attributes that add to or diminish their merit, and it is too
difficult for an individual to determine which object is best. For example, consider the task of
choosing a college to attend. Relevant attributes to consider include the cost to attend, the
student-to-teacher ratio, and median salary of students after graduation. It is unlikely that any one
college is the cheapest, has the lowest student-to-teacher ratio, and has the best-paid graduates,
so making a reasonable choice involves considering the relative usefulness of these attributes.
Ranking facilitates this by assigning weights to each attribute that control how much it affects
the choice. As a result, a small difference in a heavily-weighted attribute would contribute more
to a decision than a lightly-weighted attribute.

Ranking makes intuitive sense; the benefits of some attribute outweigh the costs of others.
Ranking, however, also has limitations. For one, it requires attributes to be encoded in a way that
can be plugged into a ranking function. For another, the resulting rank of the objects does not
provide information as to how much better one object is than another.

One limitation to ranking is that it has the potential to oversimplify attributes. Consider, for
example, the cost to attend. One could encode this attribute as a continuous variable, such as the
number of dollars to attend, or discretize it into categories, such as less than $40,000 and greater
than $40,000. The continuous encoding is problematic because quality of education might not be
linearly related to cost; is a $40,000 college better than a $20,000 college, just as much as a
$60,000 college is better than a $40,000 college? With domain knowledge, a user might be able
to transform a continuous attribute to better match the truth. In this instance, maybe cost of
attendance predicts good schools better when the cost is less than $50,000 but matters less for
more expensive schools. The second method is problematic because the categories might
arbitrarily separate objects; is a $39,000 college worse than a $41,000 college? Once again, a
user with domain knowledge might be able to make better categories.

Both of the aforementioned encodings require a heavy amount of user knowledge to be
informative. Often, however, there are not resources to acquire this knowledge, so the encoding
must be simplified.

© 2017-2018 ALL RIGHTS RESERVED

12

A second limitation to ranking is that the output does not provide qualitative information about
the ranked objects. Take for instance, the top 3 colleges ranked by some model. The first two
colleges might be almost identical and the third college drastically worse. A user would only see
the enumerated list, and would not be privy to the quality of the colleges. From their perspective,
College 1 is just as much better than College 2 as College 2 is of College 3.

Another limitation on ranking can be found in the “FA*IR: A Fair Top-k Ranking Algorithm”
paper that claims to solve the Top-k Ranking problem (Zehlike et al., 2017).

2.2 Related Work

Presented is the list of tools that inspired the development process of RANKIT.

MATTERS
Massachusetts Technology, Talent, and Economic Reporting System (MATTERS) is “an online
analytics dashboard empowered by a powerful dynamic data integration infrastructure”
(“Matters” [APA], n.d., para. 1). It extracts and collects data metrics related to talent and
economics from many public sources over time. And it allows users to explore, analyze and
visualize these collected data by comparing cost, talent, and economic indicators across states.

MATTERS aggregates data from a variety of datasets related to talent, tax, business, quality of
life into a single place. It then calculates the rankings of Talent, Tax, Cost of Doing Business,
and Quality of Life for each state. The snapshot of MATTERS interface is shown on the figure
below.

Figure 1. MATTERS Interface

© 2017-2018 ALL RIGHTS RESERVED

13

Users are able to choose among different datasets and among different states to analyze how
each state ranks among the rest. MATTERS provides four different visualization options: table
view, heat maps, line charts, and bar charts.

Figure 2. MATTERS Heat Map Visualization

Having a variety of datasets in a single place and visualizing the ranked data in different ways
inspired the team to include multiple built-in datasets. The tool also influenced the ability to
enable visualization of the data after constructing a ranking in the RANKIT system.

Lineup
LineUp is “an interactive technique designed to create, visualize and explore rankings of items
based on a set of heterogeneous attributes” (Gratzl-Streit et al., 2013, section 19(12)). It enables
users to control the complicated relationship between the attributes of a dataset. LineUp enables
users to interactively combine different attributes to rank items with multiple attributes. It also
enables users to change the weights of each attribute and visualise the impact of changes in the
rankings interactively.

LineUp uses simple bar charts to represent the weights of each attribute in the process of
ranking. Users can not only combine different attributes in the process of ranking, but also adjust
the weights of attributes. Changes in ranking by adjusting the attribute combinations, or the
weights of attributes are highlighted by integration of slope graphs.

© 2017-2018 ALL RIGHTS RESERVED

14

Figure 3. LineUp Interface

LineUp’s ability to adjust the weights of each attribute in datasets inspired RANKIT to make
customized rankings based on users’ preferences. However, instead of requiring users to set the
weights manually, users give a partial ranking by listing items (List Comparison), categorizing
items (Categorical Comparison), or listing pairs of items (Pairwise Comparison), and RANKIT
calculates the weights of each attribute based on users’ preferences.

Podium
Podium is a tool that allows users to rank a subset of data and determine the weight for each
attribute and the overall ranking of the data. The prototype system allows users to drag and drop
rows in tables to rank order of data based on the users perception of the data value (Wall-Endert
et al., 2013, pp. 288-297).

The key feature of this tool consists of an interface that allows users to visualize rankings
through data tables and generate attribute weights from user interactions.

Figure 4. Podium Interface

© 2017-2018 ALL RIGHTS RESERVED

15

Users who used Podium usually spent a short time using the tool resulting in small amounts of
training data. As a result, the training data is not enough to produce accurate rankings as the
complexity and number of objects increases. Learning from the flaws of Podium, RANKIT gives
users the opportunity for a much more flexible approach by allowing them to construct their own
rankings, using one of the three available comparison methods, while Podium uses just one
comparison method.

© 2017-2018 ALL RIGHTS RESERVED

16

3. Methodology

3.1 Overview

This section will describe different aspects of this project that were taken into consideration
when choosing the development tools and a platform type. Additionally, it will cover how each
of those options were evaluated.

3.1.1 Deciding an Application Type

Three application types were reviewed: Mobile, Desktop and Web. The advantages and
disadvantages of each of them will be discussed in the following sections.

Mobile Application
As shown in Figure 5, the main advantages of mobile applications are their availability and ease
of use for out of office users (“Chapter 20”, 2009). However they have a limitation for input,
navigation and screen display. Taking this limitation into account, the mobile type of application
is not suitable for RANKIT’s needs of interactivity and ability to collect the input from users.

Application type Benefits Considerations

Mobile
applications

● Support for handheld devices.
● Availability and ease of use for out of

office users.
● Support for offline and

occasionally-connected scenarios.

● Input and navigation
limitations.

● Limited screen
display area.

Figure 5. Advantages and Disadvantages of Mobile Applications

Desktop Application
Desktop applications offer some important benefits for the developer and the user. They remove
the reliability on Internet connection, allowing users to keep using the application offline. They
ensure a more secure storage of user data and allow for faster performance than web-based
applications because they do not have browser overhead. Additionally, desktop applications
require a minimal hosting cost for developers (Gnatyk, 2017).

© 2017-2018 ALL RIGHTS RESERVED

17

One disadvantage of desktop applications is their lack of portability because users can only
access them on a personal computer or laptop. It also requires an installation on each computer
independently and a manual update on every single computer that uses the application. These
aspects can make the experience more tedious for the user. Another disadvantage is an extra
storage needed on the computer in order to store the application (Gnatyk, 2017).

Application type Benefits Considerations

Desktop
applications

● No reliance on the internet
● Privacy for user
● Fast
● Low Hosting Cost

● Lack of portability
● Installation required for user
● Deployment
● Extra storage needed for user

Figure 6. Advantages and Disadvantages of Desktop Applications

Web Application
The advantage of web applications is their ease of use as they do not require an installation or
regular upgrades. Additionally, they provide a platform independence due to their ability to run
on any device with a browser. The web applications are adaptable to workload increase, since the
developer can handle a greater workload with addition of the new servers to the system (Gnatyk,
2017).

The main drawback of web applications is that internet dependency slows down the performance
of the application. It happens due to the data transmission in the Internet through HTTP requests
and responses, therefore if the large amount data is sent and connection is not fast enough, the
performance of the application will decrease (Gnatyk, 2017).

© 2017-2018 ALL RIGHTS RESERVED

18

Application type Benefits Considerations

Web applications ● No need to install
● No upgrades needed
● Platform independence
● Adaptable to workload

increase
● Interactivity

● Internet dependency
● Slower performance
● Browser reliance

Figure 7. Advantages and Disadvantages of Web Applications

Final Choice of Application Type
A web-based application type was chosen as the platform for this project. Out of the three types
under consideration, the web application is the most suitable for the needs of the current project;
to create an application that is both accessible for everyone and easy to interact with. As for the
disadvantages of a web application, the slow performance is a very important issue. However
given the size of the data utilized in this project, it is not enough to cause a drastic speed drop. In
fact, currently the largest dataset takes on average from three to six seconds delay while loading
in the Explore tool. Various algorithms were applied to make the computation rate faster and will
be discussed in the “Implementation and Design” section of this paper.

3.1.2 Programming Language Choice

Nodejs
Node.js is a cross-platform framework for executing JavaScript code on the server side.
One of the biggest advantages of Node.js lies in its non-blocking IO system that provides an
ability to process many requests concurrently. This allows the applications that are built with
Node.js to achieve high scalability levels, hence performing faster (Why to Use Node.js, 2017).

On the other hand, Node.js does not support multithreading and does not perform long-running
calculations due to the fact that the heavy computations block the incoming requests. This can
lead to decrease of performance. In case of RANKIT, the server is responsible for executing
machine learning scripts that require some heavy computations, which makes Node.js unsuitable
for RANKIT’s needs (Why to Use Node.js, 2017).

Python

© 2017-2018 ALL RIGHTS RESERVED

19

Python is an interactive, object-oriented, high-level programming language. It provides effective
tools for data analysis and has libraries for machine learning. These two aspects are very
important in RANKIT, since the tool employs machine learning. Additionally, it gives an
opportunity to make heavy computations on the server side with a low impact on the
application’s performance.

However, one disadvantage is that Python has a low latency and slow performance in
communication (Krill, 2015).

Hybrid Model of Python and JavaScript
The hybrid model represents Python as the server-side language and JavaScript as the client-side
environment. This approach allows developers to use web frameworks and environments to be
more productive and efficient in Python. Additionally, this approach provides the external
libraries to set up the communication between the JavaScript client and the Python server.
Nevertheless, Python’s slow communication with the frontend is one of the main problems when
loading larger-sized data.

While developing RANKIT, Flask was used as a web framework on the backend, utilizing Jinja2
templates for transferring the JSON-formatted data from the Python server to the JavaScript
client. This method gives an extreme flexibility and ease in URL routing, as well as allowing for
rapid deployment and development. Since RANKIT requires intensive machine learning
calculations to build a personalized ranking, Python is important to use because it supports both
the machine learning built-in libraries and heavy computations.

3.2 Early Prototypes
One of the main goals of this project is to create a tool for individuals both knowledgeable and
not when ranking a subject of interest. The application went through series of design and
development iterations, focusing on making the user’s interaction with the tool maximally
intuitive and effective.

The first prototype of the landing page was designed to be informative, yet clean and compelling
for the user. The prototype is shown in Figure 8.

© 2017-2018 ALL RIGHTS RESERVED

20

Figure 8. A Prototype of Landing Page

© 2017-2018 ALL RIGHTS RESERVED

21

During the first iteration, an informal user study was conducted to investigate humans’ natural
thought process and perception of rankings. The names of US colleges were printed on small
cards and were placed in a shuffled manner on the table. The subjects (n=5) were randomly
picked and asked to choose some colleges from the pool of cards on the table, and rank them
according to their own preferences and domains of knowledge. It is important to note that the
way the subjects could have organized their ranking was intentionally not specified.

The results of this informal study showed that there were three main methods that people
intuitively use when asked to rank data. Two out of five participants used a “List Comparison”
method where they organize their colleges in a sorted list with the most preferred objects on top
and the least preferred objects on the bottom. One participant used the “Categorical Comparison”
method where they classified all of their chosen colleges into three categories: high preference,
medium preference and low preference. One subject used a combination of “List Comparison”
and “Categorical Comparison” methods by sorting the objects in each category of his preference.
Finally, one of five participants used a “Pairwise Comparison” method where they organized
colleges in pairs, giving a better rating to one of the colleges in each pair.

Based on the results of this informal onsite survey, three main comparison methods of ranking
were revealed and used to design the “Build” component of RANKIT. Figure 9, Figure 10 and
Figure 11 demonstrate the early prototypes of each of the comparison methods of “Build”
component.

Figure 9. List Comparison Prototype of Build Component

© 2017-2018 ALL RIGHTS RESERVED

22

Figure 10. Categorical Comparison Prototype of Build Component

Figure 11. Pairwise Comparison Prototype of Build Component

Additionally, one of the objectives of the current tool is to have valuable datasets that can offer
more options and flexibility to the user. The prototype for a separate page containing all the
available datasets was designed and is shown on Figure 12.

© 2017-2018 ALL RIGHTS RESERVED

23

Figure 12. A Prototype of Dataset Selection Page

3.3 Design and Implementation

3.3.1 The Server
Directory Structure
Reducing a large project into a smaller and reusable application allows for easier addition of new
features that are more maintainable and easier to identify errors with. Flask provides a method,
called Blueprints, to separate distinct sections of the high level website structure and the code’s
function.

There are three important parts of a Python project: template files, static files and view files.
Template files are the raw HTML files. Static files contain images, CSS styles, javascript
functions, and videos. The view files are responsible for routing information, by identifying an
endpoint and choosing the appropriate template file to load.

There are two ways to structure directories: functional and divisional. For a functional structure,
each part of the project is grouped together. Templates, static files and views are separated into
directories, with a subset in each per Blueprint.

rankit/

© 2017-2018 ALL RIGHTS RESERVED

24

 static/
 templates/
 home/
 build/
 explore/
 views/
 home.py
 build.py
 explore.py

The divisional structure establishes greater separation between the blueprints. The parts of the
project correspond to the Blueprint they belong to, such that all templates, static files and views
are found under the specific Blueprint.

rankit/
 home/
 views.py
 templates/
 static/
 build/
 views.py
 templates/
 static/
 explore/
 __init__.py
 views.py
 templates/
 static/

For projects with tighter coupling in between Blueprints, the functional structure is ideal as it
allows components to interact and share general layouts. For projects with looser coupling,
divisional structure is beneficial. RANKIT uses divisional structure because the tool consists of
two independent projects (Build, and Explore), which, can and are encouraged to work together,
do not depend on one another and can be used separately. Furthermore, the expansion of
RANKIT would be simplified if new tools can be added and old ones removed independently
from one another.

Communication between the Client and Server

© 2017-2018 ALL RIGHTS RESERVED

25

Three JSON description files are used: one for loading data to the Build Tool, another for
sending user preferences from the web client to the Build Tool, and finally one for sending
ranked objects to the Explore tool after the machine learning script ranks from a user’s partial
ranking.

Figure 13. JSON file for Communicating Dataset Objects from the Server to the Web View

It is important not to expose more information than is necessary for analysis. In the context of
ranking by object, it is assumed that the user has some previous knowledge or intuition about the
object as a whole, not attributes that come to define them. As shown in Figure 13, the file that is
sent from the server to the web page consists only of object identifications.

Figure 14. JSON file for Communicating User Intent from the Web View to the Build Tool

© 2017-2018 ALL RIGHTS RESERVED

26

However, when looking at data gathered from the user, it is important to know three things: the
two objects being compared, and the preferences of one over the other. This is done so by
referring that an object under the “high” key is prefered over the object under the “low” key. In
the instance of Figure 14, the user prefers “Big Hero 6” over “Minions”. However, “Minions”
are prefered over “Deadpool”.

The last JSON consists of the whole dataset and the final ranking. Along with the rankings, the
attributes and their weights are also sent to the frontend to ensure that the application is
transparent in constructing its ranking.

Retrieving Partial Rankings
Originally, the backend of the Explore tool was only accessible through a POST request. This led
to a major problem where, upon refreshing a page, users lost their desired ranking. Ultimately,
users should be able to re-access their computed scores even after some time. Therefore, the
backend was refactored to manipulate the url to access the rankings using a GET request. Such
that, by accessing the specific URL the user can go back to their previous ranking in the Explore
tool at anytime.

The Explore tool URL is in the form of “<number_of_pair> = <high_pair> > <low_pair> &”

An example URL is /explore/states/0=Arizona>Colorado&1=Florida>Arizona&

In such an example, Arizona was ranked higher than Colorado, with another pair where Florida
is greater than Arizona. Parsing the url is a regular expression:

d = [∖w∖s :!∖.,)] ∖]{1}[∖w∖s :!∖.,)])&∖ + (′ − (* [> ′ − (*

The regular expression matches and extracts pairs within a “number= … &” formulation.
Because of such a parsing, an item name within a dataset cannot have the following symbols: =
& >. However symbols such as - : ! . , () are allowed.

Machine Learning Script
There are multiple approaches to learning to rank: pointwise, pairwise, and listwise. The ranking
problem in a pointwise approach is reduced to a classification, regression, or ordinal
classification problem, where the label of an object is predicted given that object (Li, 2011). In a
pairwise approach, the ranking problem is reduced to a pairwise classification or a pairwise
regression. Instead of reading in points and learning their order, the difference between pairs of
objects is measured and that difference becomes a vector that will be projected in a new space.
Then, a classifier against the new points is learned and labels are assigned to them. The decision
boundary is set, and the difference between points and the decision boundary becomes the

© 2017-2018 ALL RIGHTS RESERVED

27

ranking. The listwise approach takes in the group structure of ranking for both learning and
predictions (Li, 2011).

There exist multiple algorithms to learn ranking functions. RankNet uses a neural network and
gradient descent methods to model a ranking function (Burges et al., 2005). A semi-supervised
learning to rank algorithm, SSLambdaRank, optimizes accuracy by grouping similar items to
have similar preferences to each one another (Szummer & Yilmaz, 2011). Ordinal regression,
establishes an equivalence relationship on pairs of objects (Herbrich, Graepel, & Obermayer,
1999). RANKIT builds on the MyRanker paradigm, but with a visual interface, and uses the
pairwise approach where pairs of data are evaluated, thereby translating the learn to rank to
simple classifications (Kuhlman & Rundensteiner, 2017). Regularized-least squares algorithm is
employed as the classification algorithm. The input to the algorithm is a list of pairs and a label
indicating which object in a pair is preferred over the other. The pairs, containing partial ranking
information, are provided by the use. Those pairs become a training data that formulates a model,
which is a prediction over the entire dataset. The machine learning script in RANKIT utilizes the
RankRLS library, which uses a variation of the regularized-least squares algorithm called
RankRLS (“Learning to rank”, 2016). This machine learning algorithm learns the relationships
between objects by analyzing pairwise comparisons to build a full ranking. RankRLS minimizes
the error function of the general least-squares approximation algorithm (Pahikkala et al., 2007).

3.3.2 The Client
Throughout the project, providing an intuitive design of the user interface was an important
factor. The goal was to ensure that users understand the purpose and functionality of the web
application as soon as they enter the landing page. To accomplish this, the team did some
research on common practices of website design and structure while concurrently developing on
a working prototype.

Intuitiveness of the User Interface
Originally, the main design prototype of the landing page had plenty of information on what the
project was about, potential use cases, instructions, dataset selections, and much more. This was
quickly changed to improve navigation efficiency. Without efficient and user-friendly
navigation, the user is likely to get confused and lose interest in using a website (Gehrke &
Turban , 1999). In the prototypes case, many users could not comprehend all of the landing page
due to its large amount of textual information. Therefore, it was important to keep in mind users’
involvement because a user who does not understand the purpose within the common human
attention span time is less likely to continue using the application (Stone-Minocha et al., 2005).

© 2017-2018 ALL RIGHTS RESERVED

28

In order to solve this issue, the team used an approach to filter out content that would not be
necessary for a new user when first familiarizing themselves with the web application and
relocated it to other areas of the tool. For example, the project’s history and team information has
been relocated to a separate about page where users can learn more about the history of the
project’s development. Specific instructions on how to use the Build and Explore tools were
relocated from the landing page to a help button located in the upper right corner in both of the
respective tool’s pages.

The styling for the application was pulled from Twitter Bootstrap Cascading Style Sheets files as
well as javascript functions made from scratch to indicate valid submissions. Using Bootstrap
allowed the website to be both responsive and consistent in style throughout the entire tool.
Originally, all buttons in RANKIT were animated with different transitions and colors that were
pleasing to the eye but detracted from the goal of project consistency and design philosophies.
Therefore, to avoid obtrusive buttons, each button was redesigned to be consistent in sizing and
color scheme.

The “Rank” button located in the Build tool is the exception. This is because javascript functions
validate ranked arguments. In other words, the script disables the rank button preventing the user
from ranking if no items were entered into the desired ranking method. Each ranking method has
its own rule by which the button is enabled. In List Comparison, the “Rank” button is active
when at least two items have been ranked. In Categorical Comparison, the “Rank” button is
active when there exists at least one item in at least two different categories. In Pairwise
Comparison, the “Rank” button is active only when all pairs are complete. Color is used to
indicate the status of the ranking methods. A grey button is disabled, and it transitions to red
when the case arguments are met, as shown in Figure 15.

Figure 15. Script Checks for Valid Arguments and Reflects Success Through Color Transition.

To help guide the user to use the drag and drop feature in the dataset item selection section, the
team added a white outline and a cursor change when hovering over each item. For the landing
page, the animated color hue transitions were achieved through an array of hex color codes that
animate linear gradients. This grabs the attention of the user and introduces them to the website’s
color scheme (Stone-Minocha et al., 2005).

Landing Page

© 2017-2018 ALL RIGHTS RESERVED

29

The team made several design iterations throughout the project’s development cycle using
feedback on the previous versions. The landing page was designed to provide enough
information for new users to get started as well as allowing experienced users to quickly skip
over the introductory steps. The first screen seen when a user enters the landing page is an
animated title of the web application named “RANKIT” (shown in Figure 16) with a short
description below the title explaining what the tool accomplishes.

On the top right of the screen are two options, one called “About” for the about page and another
called “Start Ranking”. The former link takes the user to the Dataset Selection page without any
instructions, targeting users who have used the tool before. The design choice of placing a “Start
Ranking” link addresses the previous issue where returning users had to follow through the
tutorial section before being able to access the tool. The “Learn More” button scrolls the
webpage down to the instructions section below, forcing non-experienced users to first
understand how to use the tool. To recap, the “Start Ranking” button and the “Learn More”
button both serve the purpose of bringing the user to the Dataset Selection page but differ in flow
of scrolling movement.

The information is organized into three columns explaining a step-by-step process: the options
for selecting a dataset and the tools to view the selected dataset. The about page is included for
users who are interested in learning more about the purpose of the project, the development
team, and contact information for feedback.

Figure 16. Main Landing Page

Dataset Selection Page
Selecting either of the “Start RANKIT” buttons will bring the user to the dataset selection page.
For the user study, a selection of six datasets were provided. These datasets include States

© 2017-2018 ALL RIGHTS RESERVED

30

(“States Dataset” [APA], n.d.), Colleges (“2018 Best Colleges” [APA], n.d.), Movies (“Movies
Datasets” [APA], n.d.), FIFA (“FIFA Datasets” [APA], n.d.), Board Games (“Board Games
Datasets” [APA], n.d.), and Video Games (“Video Games Datasets” [APA], n.d.). The selection
of these datasets were based on the meaningfulness of the attributes found in the datasets. To
make the selection process easier for users to distinguish, each datasets is represented with its
own background photo. Each dataset option is also set to a grid format allowing users to easily
navigate through the screen. Originally, the dataset section would allow users to select a dataset
and then have the options, Build and Explore, appear in an animated transition. However, in
order to mitigate the issue where touch screen devices did not displaying the transitions, this
styling was reworked.

Figure 17. Iteration Differences for Dataset Selection Interface. The top image represents the
original interface while the bottom image represents the final design changes.

Selecting a desired dataset and clicking on the Build tool triggers a popup on the user’s screen,
providing the option for selecting a ranking method. Hovering over each method with a cursor
reveals a description about the method type. Earlier versions of the project forced users to go
straight to the Build tool’s List Comparison method. However, this led to a bias favoring the
default method. This bias influenced the team to have the process redesigned such that the user

© 2017-2018 ALL RIGHTS RESERVED

31

could select the rank method of their choice first before being taken to the Build tool. It also
allowed the user to familiarize with each method before moving onto the next step of ranking.

Figure 18. Pop Up Menu. Allowing the user to get acquainted with the ranking methods before

they enter the Build Tool.

Build Tool Page
The Build tool page went through many different design iterations, focusing on the how users
rank items of a dataset. During the first iteration, the design contained two sections where a user
would drag individual items from their selected dataset, and drop into a rankable box. The
section of items was located in the top of the screen while the ranking method section was
located on the bottom of the screen. However, this process proved to be tedious for users. Users
had to scroll to the top to first select a desired item, to later scroll down to rank the item,
repeating the same process another time through. This process ended up disrupting the flow of
selecting items. For the final design, the sections were moved such that the database item
selection was placed on the left and the ranking methods section was placed on the right. User
feedback indicated that it was much easier to drag and drop an item from left to right because it
negates the need to scroll from top to bottom, and instead showed the entire Build tool on the
screen.

In the Build tool, users have the option to search for desired items, sort them by alphabetical
order, or shuffle them randomly, as shown in Figure 19. The shuffle feature was implemented
with intention to remove biased item selections that were made based on what the users’ first
viewed on the page. Based on user’s feedback, people tend to pick the first items they see on the
page, creating biased rankings formed from a biased item selection. Shuffle allows users to
randomize different items in the dataset section, providing a better method of sorting and
mitigating biased ranking selections. Users can also revert Shuffle by using Sort and thus bring
the item organization back to the default alphabetical order.

© 2017-2018 ALL RIGHTS RESERVED

32

Figure 19. Build Tool Querying Options: Search, Sort, and Shuffle

The build tool has three different methods for users to input partial rankings: List Comparison,
Categorical Comparison and Pairwise Comparison. Since the ranking script works only on a list
of pairwise data, to adhere to the format outputs from both List Comparison and Categorical
Comparison are converted to the output of Pairwise Comparison.

In List Comparison, users can input a linear list of items in the order of decreasing preference.
Suppose a user inputs a list of A, B, and C. In the Pairwise Comparison, it is equivalent to -

● User prefers A over B.
● User prefers A over C.
● User prefers B over C.

So generally, for [O1, O2, … , On] where Oi means ith item in the list and n > 0, there are (n2-n)/2
numbers of pairs generated. This method reduces the amount of data users would input in a
Pairwise Comparison method to an order of 2.

In Categorical Comparison, users have to input items in three discrete buckets: high, medium,
and low preference. One fundamental distinction between List Comparison and Categorical
Comparison is that in Categorical Comparison, the order of items within each group does not
imply preference. Suppose a user inputs A and B in high preference; P and Q in medium
preference; X and Y in low preference. In the pairwise level, it is equivalent to -

● User prefers A over P
● User prefers A over Q
● User prefers A over X
● User prefers A over Y
● User prefers B over P
● User prefers B over Q
● User prefers B over X
● User prefers B over Y
● User prefers P over X
● User prefers P over Y
● User prefers Q over X
● User prefers Q over Y

© 2017-2018 ALL RIGHTS RESERVED

33

So generally, users input partial ranking over a set of items {O1, O2, … , On} but not for every
(Oi, Oi+1) pair. Therefore, Categorical Comparison is a compromise between the succinctness of
List Comparison and the flexibility of Pairwise Comparison.

In Pairwise Comparison, users explicitly input a list of pair. This approach gives users full
control of comparing items in exchange for succinctness of the input.

Figure 20. Pairwise Method Interface

Explore Tool Page
Users can view and browse dataset information using the Explore component. The tool can be
used without first building a ranking, but only allows users to view weighted attributes after
ranking has been made. The initial draft iteration only had Tableview as a feature displaying the
subset impact of the rankings compared to the overall dataset (shown in Figure 21). However,
users were having difficulty understanding the meaning behind their ranking. To address the
issue, the team added a weighted attributes section that displays attributes and their relative
importance to the overall effect on the dataset’s ranking (shown in Figure 22).

© 2017-2018 ALL RIGHTS RESERVED

34

Figure 21. Explore Table View. Explore Tool displays of each attribute based on the user’s
ranking

Figure 22. Weight of Each Attribute. The Explore Tool displays weights based on the user’s

Ranking

© 2017-2018 ALL RIGHTS RESERVED

35

3.4 Team Structure

Team Structure
The team is composed of four undergraduate students, Goutham Deva, Diana Doherty
Malika Nurbekova and Zarni Phyo, working with two mentors: Professor Elke Rundensteiner
and a graduate student, Caitlin Kuhlman. MaryAnn VanValkenburg, an undergraduate student, is
working closely with Caitlin advising the team about ongoing research for the ranking tools.
During the development team meeting, the product manager, Diana, is responsible for creating
and assigning weekly tasks to everyone on the team, checking up on progress, taking note of any
blockers and re-allocating work if necessary. The team also has a note taker, Goutham, who
notes down key details discussed, sending a summary of weekly meetings to everyone. The team
is divided into backend and frontend specialists. While the beginning of the project focused on
both ends of the developing stack, and the division was more apparent in the earlier part of the
project, in the later half, the backend developers switched to work on the frontend as well.

Meeting Details
The full research team meets once a week for an hour. During these meetings, the team discusses
what they have accomplished, gets feedback from the mentors, and finalizes tasks for next week.
For a separate hour in the week, the team meets without the professor to inform the graduate
student mentor of any blockers, to ask questions, and to work together on any parts of the weekly
tasks. Meeting notes from these sessions are later discussed by the developing team and
actionable items are produced.

The development team meets three to four times a week for at least an hour per meeting outside
of the meetings with the mentors. During these meetings, the team either works together on the
weekly tasks, discusses goals, prepares for the meetings with the mentors, or communicates
encountered problems.

Originally, weekly tasks were organized and assigned on Trello. However, that proved to be
ineffective because the future assignments cluttered the board of unnecessary for the week tasks.
Therefore, the team switched to keeping track of everyone’s work on a powerpoint, referring to it
when discussing progress. To not forget long term tasks that could not fit in for the week, the
product manager kept a seperate list of tasks to accomplish in the later weeks.

© 2017-2018 ALL RIGHTS RESERVED

36

4. User Study Overview

4.1 Goals

With the problems of ranking in mind and a tool at hand, it became important to evaluate the
success of this tool in the context of problems in ranking. Since RANKIT is a web application
designed to help users customize and interpret rankings to meet their own end goals, the purpose
of the user study became to evaluate the usability and functionality of the application and to get
feedback for improvement. Thus the following goals were constructed:

● Evaluate which method of building a ranking is most favorable among the three
presented: List, Categorical, Pairwise.

● Estimate an amount of partial information the user is willing to input to achieve better
results.

● Determine the intuitiveness of the user interface.

While the core of the machine learning application functions on the essence of Pairwise
Comparisons, it is important to note the usefulness of abstracting the computation to the user.
More precisely, for the common user, it might be easier to rank by a method that is more
intuitive to them and, therefore, not feel alienated by the underlying mechanism. In feeling
comfortable with the tool and its flexibility, the user should feel as though the tool has a purpose
and can be applied to their lives. To draw this conclusion and determine whether the abstraction
is necessary, it is important to note whether there exists a ranking method that is prefered by the
majority and whether that method is Pairwise Comparison or not.

Typically users do not want to provide more work than necessary. A tool might be useful and
accurate, but if it takes an hour to start up, it is very unlikely to be used. However, with little
guidance, the tool cannot provide satisfactory results. It is thus important to find the equilibrium
of user work and accuracy of results. From then on, the tool can be evaluated at that threshold to
determine whether it is satisfactory to user needs.

Lastly, a great factor in tool usage is its usability. While the concept might be appealing to
individuals, if it cannot deliver its purpose in a clean and usable manner, it might not be usable
enough. It must thus be tested whether the tool is user friendly and intuitive for an average user
to dive into and explore.

© 2017-2018 ALL RIGHTS RESERVED

37

4.2 Overview

The target audience was people who have an interest in ranking data. Previous experience or
specific knowledge of ranking is not required. The user study tested whether the tool can be
accessible for those knowledgeable in the area of ranking and those new to the experience. The
user study focused on individuals between the ages of 18 to 50.

People in different professional fields and age categories were targeted:

● Undergraduate/Graduate students of different majors
● Faculty from computer science, business, economics and data science department
● Experts in human-computer interaction
● People off-campus

Subjects were divided into two groups. The first group partook in an online survey and the
second will be part of an in depth interview session conducted by one or more members of the
RANKIT team. Each of the evaluations will have practical tasks that will consist of hands on use
of the web tool as well as a written survey targeting the experience.

4.3 Onsite Interview

The onsite interview subjects were divided into two participant groups: experts in
human-computer interaction (n=3) and students (n=10). The goal for each of the onsite interview
groups was to evaluate the intuitiveness of the RANKIT application and the degree of users’
understanding of the purpose of the tool.

The questionnaires for both groups contained identical questions. The interviews were conducted
with one participant and two interviewers per session. Each subject was given a consent form to
sign and was provided with a device that had the RANKIT application up and running. The
interviewers navigated a participant to the landing page and started providing instructions to the
subject.

The whole interview process was divided into two tasks. For the first task, interviewer one gave
the exact instructions to the participant for each action under test including the dataset selection
and partial ranking input, while interviewer two watched the process and took notes about the
participant’s experience with the application.

The second task gave the freedom for the participant to choose his/her preferred dataset and
perform the partial input of any objects in any amount. Both interviewers observed the user’s
interaction and took notes about any comments or feedback the participant provided.

© 2017-2018 ALL RIGHTS RESERVED

38

Finally, the first interviewer asked the subject questions from the questionnaire and the second
interviewer recorded the answers. The onsite interview was considered complete once the subject
answered all the questions from the questionnaire.

The responses from the experts in human-computer interaction were expected to be qualitative,
more in depth and detail-oriented, and used for improvement in UI and UX. The responses from
the students group were expected to be more quantitative, and targeted on different features, their
functionality and the application’s entertaining aspects.

4.4 Online Survey

While the interviews involved a more in depth questionnaire, the same tactic did not apply for
the online survey. Upon its creation, the original questionnaire aimed to apply to both the
in-person interviews and the online surveys. The questionnaire consisted of twenty three
questions, taking approximately thirty to fifty minutes to complete, each of which contributed to
testing the goals. However, a testing of the questionnaire in a form of an online survey revealed
an underlying problem. While the interviews involved constant encouragement and guidance of
the interviewer, the online survey did not have that ability. The lack of reinforcement from the
interviewer resulted in users whose attention span did not last through the lengthy process of
ranking with one method, switching to another and repeating. It became apparent that there were
too many questions to ask in a survey and still retain interest. Since there were no direct benefits
to participate in this study, and the good will of contributing to the creation of an intuitive and
effective ranking application has different limits, different solutions were explored.

In wanting to give the interviewees incentive to complete the tasks and the accompanying
questionnaire, mechanical turk was considered as a surveying platform. Mechanical turk is a
crowdsourcing marketplace where workers perform tasks, such as questionnaires, and get paid at
a per task or question basis. Choosing mechanical turk would ensure a secure and fast way of
gathering participants for the survey. Before declaring mechanical turk as the final platform, cost
to conduct the survey needed to be calculated.

From researching the number of responses an online questionnaire should aim to have, it was
concluded that one hundred individuals was a good sample size. After reviewing the typical pay
rate per question, a payment of 15 cents per minute was concluded to be the expected value.
Since the total of twenty three questions, took approximately thirty to fifty minutes to complete
(making it about 2 minutes per question), the following calculations were made.

Cost per question: 30 cents

© 2017-2018 ALL RIGHTS RESERVED

39

Number of questions per survey: 23
Total interviewees: 100
The final calculations per cost: $690

Despite the advantage of mechanical turk, the survey was too long to gather important funding
for the required payment, and thus the questionnaire itself was reevaluated. In reducing the need
for interviewers to partake in conducting the study, the online survey gave way for faster
evaluation of the RANKIT tool. Therefore, the focus of the survey transitioned from being a
different way to test the same questions as the in-person interview to expanding the responses
and reducing the time it took to take the survey.

The outcome of restructuring the online survey to be a quick and easy resulted in three surveys.
Each survey differed only in the method of ranking. Since most of the interview questionnaire
involved exploration of the Build and Explore tools, and relied heavily on letting the user
discover and understand the meaning of the application, the online survey striped out the
uncertainty of the interviewee getting stuck and supplied all of the important information. To not
require the need for one specific interviewee to explore all Build methods (Goal 1), they will just
be given access to only one. Results on the overall application would then be reviewed
depending on which of the three methods interviewees were asked to rank by and whether that
affects the overall satisfaction of RANKIT.

The final design of the interviews consisted of a one-time session where the participants were
asked to perform six tasks using the ranking application, with ten questions total. After
performing each task by exploring the web application without guidance, they were asked to rate
their overall quality of the interaction using a questionnaire.

© 2017-2018 ALL RIGHTS RESERVED

40

5. Evaluation

5.1 Onsite Interview

The following section describes the results of the onsite interviews for both study groups: experts
in human-computer interaction (n=3) and students (n=10). It is important to note that the set of
onsite interviews was first conducted on the experts’ study group. Therefore some of the
feedback produced by the first group had been already addressed by the time the interview was
conducted on the second study group.

5.1.1 First Study Group: Expert Feedback

The results obtained while interviewing experts in human-computer interaction are qualitative,
describing overall feedback and changes proposed for each page view.

The problems pointed out by the experts for each view and the solutions applied for each
problem are described below:

● The scrolling within the Build tool makes it hard to drag the objects from the dataset pool
to the boxes.
Solution: As a solution for this problem, the placement of the dataset pool and boxes was
changed to eliminate the need for scrolling, such that their views are side-by-side.

● The title of the current dataset that the user has chosen should be displayed in each Build

and Explore view to provide better navigation through the website.
Solution: The name of the current dataset was added.

● Descriptions should be added for each comparison method in Build view to make the

purpose of each comparison method more clear.
Solution: The help button, containing the descriptions of each comparison method was
added.

● Use clicking movement to place objects into the boxes, instead of dragging.

Solution: The suggestion was not implemented due to its conflicting nature with the logic
used for Build tool. Even though the clicking action allows for fast object displacement, it
does not provide a possibility to order objects manually within the box for List
Comparison, etc.

© 2017-2018 ALL RIGHTS RESERVED

41

● Scroll bars should be made visible every time you have a scrollable object.

Solution: Scroll is visible at all times for all the scrollable boxes for Windows OS users
and visible when hovered over for Mac OS users.

● The landing page does not convey enough information about the purpose of RANKIT.

Solution: Landing page redesigned to show the instructions with icons on how to use the
tool, and the descriptions of RANKIT’s purpose.

● The results produced in Explore tool need to be explained to the user.

Solution: The help button including instructions is added to the Explore view, the
attribute weights are displayed as charts and shown in a separate tab.

● The user should have an ability to go back to Build tool to see how the rankings affected

Explore results.
Solution: The browser history is preserved, such that the user can come back to Build and
Explore with his/her input. The URL saves the user’s input.

● Non-numerical attributes should be included into the datasets to produce the results that

would make more sense to the user.
Solution: Categorical attributes are included into some datasets. The machine learning
algorithm uses numerical and non-numerical attributes to produce the results.

● Take into account people with color-blindness.

Solution: an extra box around buttons was added to make it less greyed out. The color
scheme is picked to accommodate color-blindness.

5.1.2 Second Study Group: Usability
The results obtained while interviewing the second study group are quantitative. The subjects in
this group consist of college students. The detailed results of the study can be found in the
Appendix section A.

According to results obtained and shown on Figure 22, people used List Comparison method the
most when first being exposed to all methods and later asked to choose the most prefered one
among them. One possible reason for this distribution could be due to the fact that during the
interview users are asked to test the List Comparison method first. This could have influenced
some users to choose the List Comparison method in Task 2 of the onsite interview. In order to

© 2017-2018 ALL RIGHTS RESERVED

42

address this possible bias, the online survey was designed to ask a user to evaluate only one
method at a time. The online survey participants are randomly divided into three groups. Each
group is given only one ranking method.

Figure 23. Most Widely Used Comparison Method

However, when asked about the intuitiveness of each method, the majority of the participants
rated the Categorical Comparison method to be the most intuitive among three as shown on
Figure 23. In fact, these results confirm the results obtained from initial informal user study
showing the list and categorical comparison methods to be more widely used among participants.

© 2017-2018 ALL RIGHTS RESERVED

43

Figure 24. Intuitiveness of Comparison Methods

On average, the user ranks from 2 to 8 objects in general, and is willing to rank from 9 to 16
objects to get better results. Further analysis on the effectiveness of the overall ranking given a
partial ranking of 9 to 16 objects should be conducted. It is important to note that the results for
these two questions were directly affected by the level of participant’s interest in the chosen
dataset as shown on figure below.

© 2017-2018 ALL RIGHTS RESERVED

44

Figure 25. Total Amount of Ranked Objects

Hence, if a participant was not interested in the given dataset, he or she would be ranking and
willing to rank smaller amount of objects. Additionally, prior to conducting the study, the team
made an assumption that the results for this section will indirectly show which out of three Build
methods influences users the most to rank more objects. It was revealed that while the list and
categorical comparison methods exhibited approximately the same influence on the user, the
pairwise comparison method showed the least amount of influence on participant’s willingness
to rank more objects for better results out of three Build methods.

Most participants (70%) rated the purpose and function of RANKIT to be moderately clear,
while 20% of participants gave the rating of the purpose to be very clear.

© 2017-2018 ALL RIGHTS RESERVED

45

Figure 26. The Clarity of RANKIT’s Purpose

When asked the reason of purpose being moderately clear, the majority of interviewed noted that
it was due to the lack of attention they had when reviewing the landing page. However, after
returning to the landing page view and giving a second look, they confirmed the purpose to be
clear.

The features, such as search, scrolling within the dataset pool, and shuffle were reported to be
working well and rated as not challenging to understand. It is important to note that while 60% of
the individuals being interviewed found the understanding that drag and drop action should be
used to rank to be not difficult at all, 30% of participants considered it as slightly difficult and
10% being moderately difficult as shown on figure below.

Figure 27. Drag and Drop Results

© 2017-2018 ALL RIGHTS RESERVED

46

Based on these results, the conclusion can be drawn that for the user the drag and drop feature
succeeded in being an intuitive way to rank objects. Some of the participants mentioned that
clicking on the objects rather than dragging them could be used in order to decrease the amount
of time spent on dragging objects from one box to another. However, this issue was not
addressed as a future improvement since it contradicts the main purpose of users performing an
interactive rank. In addition, clicking action does not allow for sorting within the ranking box for
List Comparison method, as well as assigning objects to multiple boxes for Categorical
Comparison method.

The “Colleges” dataset was revealed to be the most popular dataset among participants. The final
question of the user study revealed that 10 out of 10 of participants would use the tool again.
Additionally, the participant commented that they would be interested to use RANKIT as a
personalized recommender system. Users had positive feedback on the tool’s flexibility because
they have an option of multiple datasets and method for ranking to choose from.

5.2 Online Survey
At the end of the online survey, we have collected data from a total of 73 students who
completed the online survey. The survey randomly assigned one third of the respondents to work
with the List Comparison method, another third to Categorical Comparison method, and the rest
to Pairwise Comparison method.

5.2.1 Evaluating the Intuitiveness of Comparison Methods

According to the results, over 60% of the respondents found the Build tool to be intuitive. When
looking at the data more closely, 70% of the respondents who said that the Build tool is
“extremely intuitive” were assigned the List Comparison method. When looking at the
individuals who responded that the Build tool was “very intuitive,” the majority used either the
List Comparison or the Categorical Comparison method. However, looking at the individuals
who said that the Build tool was “Not at all intuitive”, it was revealed that they used the Pairwise
Comparison method. Since the majority of individuals who mentioned that the tool was not
intuitive used the Pairwise Comparison, it can be concluded that this method of ranking is more
difficult for users to understand. This might lead them to not prefer to use this method of
ranking.

© 2017-2018 ALL RIGHTS RESERVED

47

Figure 28. Intuitiveness of Comparison Methods

When analyzing the amount of objects users input into the ranking tool, it can be seen that a
significantly large number of respondents who had to use the Pairwise Comparison method input
less than 8 items. These results confirm the assumption we made based on the results from
informal user study that the Pairwise Comparison method is not a common way people think of
ranking.

Figure 29. Amount of Objects Users Input into the Ranking Tool

These responses indicate that despite its complete control over comparing objects, Pairwise
Comparison method is the least effective method of ranking. This is because users do not believe
it is intuitive and do not wish to input more objects than they would for other comparison
methods even though it is a method that needs the most items to be compared.

© 2017-2018 ALL RIGHTS RESERVED

48

Figure 30. People Who would use RANKIT in the Future

Additionally, over 60% who used List Comparison responded they would use the tool again,
while only 40% who used Categorical and Pairwise Comparison methods responded they would
use the tool again. Therefore, the team concluded that people find the List Comparison method
the most intuitive and the Pairwise Comparison method is least prefered.

5.2.2 Estimating the Amount of Information from Users

To estimate the amount of information users are willing to give to the machine learning system,
the amount of objects users actually input is compared to the amount of objects users are willing
to give to get better results. For List Comparison, 85% of users compared fewer than 8 objects
while 75% of them are willing to input upto 16 objects in order to get better results.

© 2017-2018 ALL RIGHTS RESERVED

49

Figure 31. Actual Input and Willing to Input: List Comparison

For Categorical Comparison, 75% of users compared fewer than 8 objects while 80% of them are
willing to input up to 16 objects in order to get better results.

Figure 32. Actual Input and Willing to Input: Categorical Comparison

For Pairwise Comparison, 92% of users compared fewer than 8 objects while 90% of them are
willing to input up to 16 objects in order to get better results. Since the drag and drop feature is
more prominent in Pairwise Comparison and previous studies revealed the difficulties of drag
and drop, the drag and drop feature could be discouraging users from using Pairwise Comparison
and ranking more than like they would for either List Comparison or Categorical Comparison.

Figure 33. Actual Input and Willing to Input: Pairwise Comparison

© 2017-2018 ALL RIGHTS RESERVED

50

According to the results, there is not a significant difference in number of objects users input
across different comparison methods. In aggregate, 80% of the respondents inputs fewer than 8
items and 50% inputs fewer than 4 items. In order to get better results, 85% of the respondents
are willing to input fewer than 16 items across all three comparison methods.

Additionally, the responses show that the amount of data users are willing to input is just one
item number bracket higher than they initially inputted. Thus, it can be concluded that users are
not willing to input much more than they initially chose to. These results can also indicate the
flaws in the online survey, since the way these two questions are asked can create a bias in users,
causing a bias in the results. Even though 16 items might be enough to give accurate rankings for
small-to-medium-sized datasets, it is not enough to achieve decent rankings for large datasets
with hundreds of objects.

5.2.3 Assessing Usability of RANKIT

According to the results, over 90% of respondents are satisfied with search functionality. Despite
the clear positive response from people, only half of respondents figured out to use drag and drop
to compare items. The other half, especially mobile users, either did not figure out or did not find
the drag and drop intuitive. Additionally, only half of the respondents would use the shuffle
feature to inspire their choices over items while the other half find shuffle feature not useful.
Therefore, we concluded that majority of non mobile users finds the user interface of RANKIT
usable and intuitive. The reason why the responses from mobile users are not taken into account
is due to the fact that RANKIT was developed solely for use on laptops and computers. In
addition, in the online survey it was explicitly stated not to use RANKIT on mobile devices.

Figure 34. Responses for Search Feature in the Build Tool

© 2017-2018 ALL RIGHTS RESERVED

51

Figure 35. Responses for Drag and Drop Behavior in the Build Tool

Respondents also gave some feedback once they completed the online survey. Main criticisms
came with the usefulness of the shuffle button in the build component of RANKIT. Users were
mostly confused on why they would need to use the feature not knowing the team's intent for the
tool was to help removed bias data selection when viewing a small section of the data set. While
the functionality was fine and served its purpose, the need for shuffle came across as mostly
unnecessary for many users. Ideally, looking into improving the usefulness of the Shuffle feature
for audiences would be interesting to pursue in future work.

Another point users mentioned was the difficult nature of the website usability for mobile
devices in that some of the features are not responsively designed. For example, one user
claimed that using drag and drop on mobile devices was extremely cumbersome and
overwhelming at times when ranking data. While it specifically mentioned in the survey to not
use mobile devices when providing feedback (as the team was aware of the tool’s difficult
usability), users do bring up good points in that almost a large audience for many websites
consists of mobile phones and so building an interface that doesn't work in this way could
disenfranchise a majority of the studies target audience. Therefore, redesigning the web
application with responsive design to assist in sizing as well as alternative options to drag and
drop data would make for an important future works upon future releases with the tool.

© 2017-2018 ALL RIGHTS RESERVED

52

6. Conclusion

6.1 Summary

In the age of technology, the amount of data being exchanged amongst people are exploding
exponentially. As a result, people are overwhelmed by overloaded information and facing
difficulty finding signal among noises. To find the data and rank them according to the user’s
relevance becomes a crucial part of everyday life. Yet, rankings released from institutions and
media are not useful to individual users, partly due to over generalization of interests, and partly
due to the complex nature of ranking data itself.

Therefore, our researcher focuses on ranking tools which are transparent, personalized and
relevant to each individual user. Our goals for this research were to design and evaluate an
intuitive way of building partial rankings, as well as to estimate the amount of partial information
users are willing to give.

To conduct this research, the team built RANKIT, a web application with python backend. Users
provide a particular form of partial rankings and the system extrapolates the complete ranking
using machine learning.

After the prototype, we asked UI/UX experts to critique RANKIT. After evaluating the feedback,
we conducted onsite interviews with 10 users and an online survey with 74 respondents. The
majority of online survey respondents found List Comparison to be the most intuitive ranking
method, and the Categorical Comparison method the next most intuitive. Pairwise Comparison
was not received as favorably, and users did not find it intuitie or easy to use. Both user studies
show that majority of people ranked fewer than 8 data entries and are willing to rank up to 16
data entries. Even though 16 data entries is a small amount of data to train on for the machine
learning system, perhaps future work can design improvements to allow the tool to request more
data and train the model over time to achieve better results.

6.2 Future Work

In this section, the team address the areas where future researchers can research and improve
RANKIT in terms of efficiency, usability and features.

Visualization of Explore

© 2017-2018 ALL RIGHTS RESERVED

53

RANKIT currently displays the results of rankings as a simple data table. Weights of each
attribute as a bar chart. The user experience would be greatly increased if the explore view is
integrated with more interactive tools such as LineUp, where users can interactively change the
weights of each attributes and reflect the result immediately.

Machine Learning Script
Future research on improving the speed and accuracy of ranking script can be carried out to
further user adoption. As the user study revealed, individuals prefer to give the minimal amount
of training data, but still expect a great level of personalization and accuracy. Therefore,
techniques for determining the same level of accuracy for less amount of rankable data should be
researched.

While the machine learning method utilized Pairwise Comparisons on objects as a whole, a
different method of learning can be implemented. For starters, some individuals might not be
familiar enough with whole objects or they might want to avoid biases they would have for those
specific objects. To resolve such a problem, ranking by an attribute and ranking by multiple
attributes can be explored. In ranking by an attribute, users will see the values of an attribute for
all objects, ranking those values or assigning the same ranking for similar values. In ranking by
multiple attributes the users will be able to rank objects that have the values of two or more
attributes exposed.

Datasets
RANKIT currently has 6 datasets with different backgrounds, specifically Board Games, College
in United State of America, FIFA Soccer Players, Movies, States in US, and Video Games. In
the future, more datasets from reliable sources could be added to meet a variety of users’
interests.

In order for RANKIT to be more open and flexible, uploading users’ own data either from the
storage (such as hard drive or cloud) or from a particular open data sites such as Kaggle could be
implemented (“Datasets” [APA], n.d.). In this way, users have control not only over how data
entries are being ranked, but also over which data entries are being ranked.

6.3 Team Experience
The team consists of four undergraduate students (Goutham Deva, Diana Doherty
Malika Nurbekova and Zarni Phyo), two mentors (Professor Elke Rundensteiner and Caitlin
Kuhlman) and an advisor (MaryAnn VanValkenburg).

© 2017-2018 ALL RIGHTS RESERVED

54

Since all of the team members have technical background related to computer science, the team
did not have any serious problem building a relatively complex system as RANKIT. Without
knowledgeable observations from our two mentors, insightful guidelines from our advisor,
coordinated team management from Diana and diligent input from each of the teammates, the
team would not have been able to complete this research project. This project provided research
in understanding human activity by measuring user’s willingness to rank and concluding that
actively, users are not willing to provide much information even if it means they will get better
results.

© 2017-2018 ALL RIGHTS RESERVED

55

7. References

Board Games Dataset. (n.d.). Retrieved from

https://www.kaggle.com/mrpantherson/board-game-data

Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., & Hullender, G.
(2005, August). Learning to rank using gradient descent. In Proceedings of the 22nd
international conference on Machine learning (pp. 89-96). ACM.

Chapter 20: Choosing an Application Type. (2009). Retrieved from

https://msdn.microsoft.com/en-us/library/ee658104.aspx

Datasets | Kaggle. (n.d.). Retrieved from https://www.kaggle.com/datasets

FIFA Dataset. (n.d.). Retrieved from

https://www.kaggle.com/artimous/complete-fifa-2017-player-dataset-global

Gehrke, D., Turban, E. (1999). Determinants of successful website design: relative importance

and recommendations for effectiveness. Systems Sciences. HICSS-32. Proceedings of the
32nd Annual Hawaii International Conference.

Gnatyk, R. (2017). Desktop or web application | Exoft Software Development Company.

Retrieved from http://exoft.net/desktop-or-web-application-what-to-develop

Gratzl, S., Lex, A., Gehlenborg, N., Pfister, H., Streit, M. (2013). LineUp: Visual Analysis of

Multi-Attribute Rankings. IEEE transactions on visualization and computer graphics,
19(12).

Herbrich, R., Graepel, T., & Obermayer, K. (1999). Support vector learning for ordinal
regression.

Krill, P. (2015). A Developer’s Guide to the Pros and Cons of Python. Retrieved from

https://www.infoworld.com/article/2887974/application-development/a-developer-s-guid
e-to-the-pro-s-and-con-s-of-python.html

Kuhlman, C., Rundensteiner, E., Neamtu, R., Ahsan, R., Stokes, J., Hoxha, A., ... & Rangan, R.

(2017). Towards an Interactive Learn-to-Rank System for Economic Competitiveness
Understanding.

© 2017-2018 ALL RIGHTS RESERVED

https://www.kaggle.com/mrpantherson/board-game-data
https://msdn.microsoft.com/en-us/library/ee658104.aspx
https://www.kaggle.com/datasets
https://www.kaggle.com/artimous/complete-fifa-2017-player-dataset-global

56

Learning to rank - RLScore 0.7 documentation. (2016). Retrieved from

staff.cs.utu.fi/~aatapa/software/RLScore/tutorial_ranking.html#learning-to-rank

Li, H. (2011). A short introduction to learning to rank. IEICE Trans. Inf. Syst., 94, 1854–1862.

Liu, T.-Y. (2009). Learning to Rank for Information Retrieval, Foundations and Trends

Information Retrieval, 3(3), 225-331.

MATTERS. (n.d.). Retrieved from http://matters.mhtc.org/

Movies Dataset. (n.d.). Retrieved from https://www.kaggle.com/rounakbanik/the-movies-dataset

Pahikkala, T., Tsivtsivadze, E., Airola, A., Boberg, J., & Salakoski, T. (2007). Learning to rank

with pairwise regularized least-squares. In SIGIR 2007 workshop on learning to rank for
information retrieval (Vol. 80, pp. 27-33).

States Dataset. (n.d.). Retrieved from

http://davis.wpi.edu/dsrg/PROJECTS/MATTERS/index.html#

Stone, D., Jarrett, C., Woodroffe, M., Minocha, S. (2005). User Interface Design and Evaluation,
1st edition.

Szummer, M., & Yilmaz, E. (2011, October). Semi-supervised learning to rank with preference
regularization. In Proceedings of the 20th ACM international conference on Information
and knowledge management (pp. 269-278). ACM.

Video Games Dataset. (n.d.). Retrieved from

https://www.kaggle.com/rush4ratio/video-game-sales-with-ratings

Wall, E., Das, S., Chawla, R., Kalidindi, B., Brown, E.T., Endert, A. (2013). Podium: Ranking
data using mixed-initiative visual analytics. IEEE transactions on visualization and
computer graphics, 24(1), 288-297.

Why to Use Node.js: Pros and Cons of Choosing Node.js for Back-end Development. (2017).

Retrieved from https://www.netguru.co/blog/pros-cons-use-node.js-backend

Zehlike, M., Bonchi, F., Castillo, C., Hajian, S., Megahed, M., & Baeza-Yates, R. (2017,

November). Fa* ir: A fair top-k ranking algorithm. In Proceedings of the 2017 ACM on
Conference on Information and Knowledge Management (pp. 1569-1578). ACM.

© 2017-2018 ALL RIGHTS RESERVED

http://matters.mhtc.org/
https://www.kaggle.com/rounakbanik/the-movies-dataset
http://davis.wpi.edu/dsrg/PROJECTS/MATTERS/index.html#
https://www.kaggle.com/rush4ratio/video-game-sales-with-ratings
https://www.netguru.co/blog/pros-cons-use-node.js-backend

57

Appendix

Part 1: Familiarizing with the Build Tool Components

© 2017-2018 ALL RIGHTS RESERVED

58

© 2017-2018 ALL RIGHTS RESERVED

59

© 2017-2018 ALL RIGHTS RESERVED

60

© 2017-2018 ALL RIGHTS RESERVED

61

Part 2: Exploring a Specific Build Tool Component

© 2017-2018 ALL RIGHTS RESERVED

62

© 2017-2018 ALL RIGHTS RESERVED

63

© 2017-2018 ALL RIGHTS RESERVED

64

Online Survey

© 2017-2018 ALL RIGHTS RESERVED

65

© 2017-2018 ALL RIGHTS RESERVED

66

© 2017-2018 ALL RIGHTS RESERVED

67

© 2017-2018 ALL RIGHTS RESERVED

68

© 2017-2018 ALL RIGHTS RESERVED

69

© 2017-2018 ALL RIGHTS RESERVED

70

© 2017-2018 ALL RIGHTS RESERVED

71

© 2017-2018 ALL RIGHTS RESERVED

72

© 2017-2018 ALL RIGHTS RESERVED

