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Abstract

Intelligent vehicle technologies are growing rapidly that can enhance road safety,

improve transport e�ciency, and aid driver operations through sensors and intelli-

gence. Advanced driver assistance system (ADAS) is a common platform of intelligent

vehicle technologies. Many sensors like LiDAR, radar, cameras have been deployed on

intelligent vehicles. Among these sensors, optical cameras are most widely used due

to their low costs and easy installation. However, most computer vision algorithms

are complicated and computationally slow, making them di�cult to be deployed on

power constraint systems. This dissertation investigates several mainstream ADAS

applications, and proposes corresponding e�cient digital circuits implementations for

these applications. This dissertation presents three ways of software / hardware algo-

rithm division for three ADAS applications: lane detection, tra�c sign classi�cation,

and tra�c light detection. Using FPGA to o�oad critical parts of the algorithm,

the entire computer vision system is able to run in real time while maintaining a

low power consumption and a high detection rate. Catching up with the advent

of deep learning in the �eld of computer vision, we also present two deep learning

based hardware implementations on application speci�c integrated circuits (ASIC) to

achieve even lower power consumption and higher accuracy.

The real time lane detection system is implemented on Xilinx Zynq platform,

which has a dual core ARM processor and FPGA fabric. The Xilinx Zynq platform

integrates the software programmability of an ARM processor with the hardware

programmability of an FPGA. For the lane detection task, the FPGA handles the

majority of the task: region-of-interest extraction, edge detection, image binarization,

and hough transform. After then, the ARM processor takes in hough transform results
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and highlights lanes using the hough peaks algorithm. The entire system is able to

process 1080P video stream at a constant speed of 69.4 frames per second, realizing

real time capability.

An e�cient system-on-chip (SOC) design which classi�es up to 48 tra�c signs

in real time is presented in this dissertation. The traditional histogram of oriented

gradients (HoG) and support vector machine (SVM) are proven to be very e�ective

on tra�c sign classi�cation with an average accuracy rate of 93.77%. For tra�c

sign classi�cation, the biggest challenge comes from the low execution e�ciency of

the HoG on embedded processors. By dividing the HoG algorithm into three fully

pipelined stages, as well as leveraging extra on-chip memory to store intermediate

results, we successfully achieved a throughput of 115.7 frames per second at 1080P

resolution. The proposed generic HoG hardware implementation could also be used

as an individual IP core by other computer vision systems.

A real time tra�c signal detection system is implemented to present an e�cient

hardware implementation of the traditional grass-�re blob detection. The traditional

grass-�re blob detection method iterates the input image multiple times to calculate

connected blobs. In digital circuits, �ve extra on-chip block memories are utilized

to save intermediate results. By using additional memories, all connected blob infor-

mation could be obtained through one-pass image traverse. The proposed hardware

friendly blob detection can run at 72.4 frames per second with 1080P video input.

Applying HoG + SVM as feature extractor and classi�er, 92.11% recall rate and

99.29% precision rate are obtained on red lights, and 94.44% recall rate and 98.27%

precision rate on green lights.

Nowadays, convolutional neural network (CNN) is revolutionizing computer vi-

sion due to learnable layer by layer feature extraction. However, when coming into
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inference, CNNs are usually slow to train and slow to execute. In this disserta-

tion, we studied the implementation of principal component analysis based network

(PCANet), which strikes a balance between algorithm robustness and computational

complexity. Compared to a regular CNN, the PCANet only needs one iteration train-

ing, and typically at most has a few tens convolutions on a single layer. Compared

to hand-crafted features extraction methods, the PCANet algorithm well re�ects the

variance in the training dataset and can better adapt to di�cult conditions. The

PCANet algorithm achieves accuracy rates of 96.8% and 93.1% on road marking

detection and tra�c light detection, respectively. Implementing in Synopsys 32nm

process technology, the proposed chip can classify 724,743 32-by-32 image candidates

in one second, with only 0.5 watt power consumption.

In this dissertation, binary neural network (BNN) is adopted as a potential detec-

tor for intelligent vehicles. The BNN constrains all activations and weights to be +1

or -1. Compared to a CNN with the same network con�guration, the BNN achieves

50 times better resource usage with only 1% - 2% accuracy loss. Taking car detection

and pedestrian detection as examples, the BNN achieves an average accuracy rate of

over 95%. Furthermore, a BNN accelerator implemented in Synopsys 32nm process

technology is presented in our work. The elastic architecture of the BNN accelerator

makes it able to process any number of convolutional layers with high throughput.

The BNN accelerator only consumes 0.6 watt and doesn't rely on external memory

for storage.
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Chapter 1

Introduction

In this chapter, we �rst introduce the background and discuss the motivations of

our work in Section 1.1. The major contributions of the thesis are summarized in

Section 1.2. Finally, the organization of this dissertation is presented in Section 1.3.

1.1 Motivations

Nearly 1.3 million people die in road crashes each year, on average 3,287 deaths a day.

An additional 20-50 million are injured or disabled. Road safety issue has been raised

as a major threat to us human beings. This stimulates lots of research on advanced

driver assistance systems (ADAS). The major issue we try to address in this thesis is

to provide reliable, feasible, real time ADAS for a lower accident rate.

In recent years, many industrial and academic research e�orts have been focused

on designing intelligent vehicles. Intelligent vehicles usually need a sophisticated fu-

sion of sensors such as LiDAR, radar, and cameras. Among these sensors, optical

cameras are most widely used because of their low costs and easy installation. More-
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over, cameras perceive scenes in a similar way to human eyes. Hence, vision based

solutions are usually more reliable especially on recognizing man made patterns like

tra�c signs. Also, due to the rapid development of deep learning in computer vi-

sion, vision based algorithms have become more accurate and more robust in various

driving environments [1]. Current trends in ADAS design is to adopt deep learning

methods into the system.

Deep learning is gradually replacing traditional computer vision algorithms. Clas-

sical computer vision algorithms such as Viola-Jones face detector [2], scale-invariant

feature transform (SIFT) [3], speeded up robust features (SURF) [4], histogram of

oriented gradients (HoG) [5] have been outperformed by deep learning algorithms.

Deep learning algorithms, especially deep convolutional neural networks (CNN) are

very suitable for object detection and object recognition. For example, in the Ima-

geNet large scale visual recognition challenge (ILSVRC) [6], deep CNN models such

as AlexNet [7], VGGNet [8], GoogleNet [9], and ResNet [10] are achieving higher

accuracy year by year.

With the popularity of deep learning, a lot of vision based solutions for intelligent

vehicles have been proposed, such as tra�c light recognition [11], tra�c sign recog-

nition [12], vehicle detection [13], and pedestrian detection [14]. However, most of

these solutions fail to work in real time. Typically, 30fps (frames per second) speed is

considered to be real time for an autonomous car [15]. A processing speed less than

30fps cannot guarantee enough response time for driver assistance.

In this thesis, we are motivated to design real time, low power, vision based

solutions for intelligent vehicles. We investigated the realization of embedded vision

systems for ADAS applications like tra�c sign classi�cation and tra�c light detection.

Building a real world ADAS system is challenging: designers need to consider multiple
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factors like robustness, system response time, reliability, power consumption [16].

Executing state-of-the-art algorithms on a moving vehicle demands strong parallel

computing capability. In real world ADAS applications, software and hardware co-

design is often needed in that software is suitable for high level processing and control,

while hardware is suitable for low level processing and parallel computing. In this

thesis, we are motivated to design scalable system-on-chip (SOC) architectures of

complete computer vision systems for ADAS. Furthermore, we are also motivated to

design e�cient architecture of deep learning models on very large scale integrated

circuits (VLSI), which provides lower power consumption and higher throughput.

1.2 Summary of Contributions

We design and implement e�cient digital circuits for ADAS applications. Our con-

tributions are summarized as follows:

• Propose a real time lane detection system on SOC FPGA.

As an early step in the ADAS system, lane detection has been studied for

decades. Two common approaches to the lane detection problem are perspec-

tive transform and hough transform. In this dissertation, we propose an e�cient

implementation of the hough transform algorithm in FPGA fabric. By leverag-

ing the property of sine and cosine operations, 50% of multipliers are saved in

digital circuits. Implementing on the Xilinx Zynq platform, the system reaches

a maximum operating frequency of 143.85MHz. Our proposed hough transform

realization is generic and could be used as an individual IP core in other com-

puter vision systems as well.

We emphasize our contributions on the algorithm and system design in the
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following aspects:

� We propose hough transform for the lane detection problem.

� We design a resource saving hardware architecture for hough transform,

which saves 50% of multiplier resources on FPGA.

• Propose an e�cient SOC architecture for tra�c sign classi�cation.

As a classical feature extraction method, the HOG algorithm has an outstanding

performance in applications like pedestrian detection [17]. Usually, the HOG

algorithm is paired with SVM. SVM is a classical machine learning technique

which can map data onto higher dimensional feature space and quickly �nd a

separating boundary. Tra�c sign classi�cation is an important task in ADAS.

In this dissertation, we experimented the HOG + SVM algorithms on tra�c

sign classi�cation and obtained high classi�cation rate. Furthermore, we accel-

erated the HOG and SVM algorithms in FPGA fabric, achieving a maximum

operating frequency of 241.7MHz. The proposed system is capable of process-

ing 115.7 frames per second at 1080P resolution. Compared to hundreds of

millisecond execution latency in a general CPU, the SOC realization of tra�c

sign classi�cation generates a much lower latency - 6.5us.

We emphasize our contributions on the algorithm and system design in the

following aspects:

� Noticing that tra�c sign has man made shapes, we pick the HOG algorithm

as the feature extractor and achieve good performance.

� Through experiments, we �nd that the linear SVM has comparable perfor-

mance with nonlinear SVMs. Hence, we select the linear form of SVM as
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the classi�er, and design an optimized architecture of a linear multi-way

SVM.

� We propose an e�cient implementation of the HOG algorithm in digital

circuits, and the proposed realization is parameterized and hence could be

used in other computer vision systems too.

• Propose an end-to-end SOC architecture for tra�c light recognition.

The tra�c light recognition problem has long been studied, and a timely warn-

ing of red lights is life saving in many circumstances. In this dissertation, we

aim to recognize green lights and red lights in real time. Through our experi-

ments, the HOG + SVM algorithms work well for tra�c light recognition. The

traditional region proposal method - sliding window brings in many false pos-

itives. Hence, color information is leveraged to propose region-of-interest. In

this work, image preprocessing is composed of color based �ltering connecting

with the BLOB detection method, which proposes potential candidates. Then,

the HOG plus SVM algorithms detect and recognize a real tra�c light. By

accelerating the BLOB detection method in FPGA fabric, the entire system

can work in real time. The highest frequency of the system is 150.1MHz, and

the maximum throughput is 72.4 frames per second at 1080P video streaming

input.

We emphasize our contributions in the following aspects:

� We propose a software and hardware co-design methodology for tra�c light

recognition, realizing real time performance on Xilinx Zynq platform.

� We design an end-to-end SOC architecture for tra�c light recognition, and

this architecture on Xilinx Zynq platform could serve as a go-to solution
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for ADAS.

• Design an elastic architecture for the PCANet algorithm in VLSI.

Due to various driving conditions on the road, when designing a computer vision

system for ADAS, designers face the challenge to trade o� between algorithm

robustness and real time capability. Traditional feature extraction algorithms

fail to work robustly due to their �xed steps on performing feature extrac-

tion. While convolutional neural network (CNN) adapts to various tasks better

through iterative training. A major issue with CNN is that CNN can hardly

meet the real time requirement of a computer vision system, making it less ap-

pealing to an embedded system. In this dissertation, the PCA based network

is proposed as a robust feature detector for intelligent vehicles, while keeping a

simpler structure than regular CNNs. Compared to HOG, the PCANet achieves

averagely 4% improvement in precision rate and recall rate on tra�c light clas-

si�cation. The PCANet achieves comparable performance with a regular CNN.

Implementing in Synopsys 32nm process technology, the proposed PCANet ac-

celerator only consumes 0.5 watt, and is capable of classifying over 742K image

candidates in one second.

We emphasize our contributions in the following aspects:

� We propose the PCANet algorithm as the baseline detector for vision based

ADAS applications. The PCANet needs much less time on both training

and inference.

� We design an e�cient architecture for the PCANet algorithm in VLSI,

realizing ultra high throughput while maintaining low power consumption.

� We prove the PCANet's performance on road marking detection and tra�c
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light recognition, indicating the potential of the PCANet on other object

detection tasks.

• Propose an elastic architecture for binary neural network in VLSI.

A regular CNN model typically contains hundreds of megabytes weights, which

need to be stored into external memory. In 2015, research led by Matthieu

Courbariaux and Yoshua Bengio shows that it is feasible to create a neural

network, in which each weight is in binary format [18]. The major merit of

the BNN is that it retains comparable performance with a CNN of the same

con�guration. In this way, memory usage and computational resources are

reduced by 32 times. Our work proves that the BNN works well on tasks like

pedestrian detection and car detection. Implementing the BNN in Synopsys

32nm process technology, a maximum operating frequency 350MHz is achieved

with only 0.6 watt power consumption.

We emphasize our contributions in the following aspects:

� We propose the BNN as a potential detector for vision based ADAS appli-

cations.

� We design an e�cient and fully pipelined architecture for the BNN, achiev-

ing high power e�ciency. The proposed BNN accelerator has an elastic

structure and can execute any number of convolutional layers.

� We proved BNN's performance on pedestrian detection and car detection,

indicating BNN's potential on other ADAS applications.
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1.3 Outline

This dissertation is organized as follows:

Chapter 2 presents the implementation a real time lane detection system. We

�rst introduce related literature on the lane detection problem. The hough transform

algorithm and necessary image processing methods are described. Then the overall

architecture and individual block design are explained in details. Finally, we show

the simulation performance and implementation results.

Chapter 3 presents the hardware architecture of the HOG and SVM algorithm.

The HOG and SVM is evaluated on tra�c sign classi�cation and tra�c light recog-

nition. Related work and the system composition is introduced �rstly. Then, the

hardware design of HOG and SVM is presented, with some critical blocks explained

in details. Further, the preprocessing part of the SOC system is introduced, which

is used for tra�c light recognition. An optimized implementation of the BLOB de-

tection is also presented in this chapter. Finally, the simulation results and FPGA

system performance are presented.

Chapter 4 presents the hardware architecture of the PCANet algorithm for ADAS

applications. Related work is introduced in this chapter, showing the advantage

of the PCANet over mainstream computer vision algorithms. Further, we present

the optimized hardware architecture of PCANet and its implementation details in

Synopsys 32nm process. Finally, the chip performance and evaluation results are

presented.

Chapter 5 presents an e�cient hardware implementation of the binary neural

network for intelligent vehicles. The BNN algorithm was proven to be e�ective on

dataset like Cifar-10, with near CNN performance. In this chapter, the performance of
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BNN on ADAS applications like pedestrian detection and car detection are evaluated.

Hardware architecture of BNN and the chip performance is presented too. Finally,

evaluation results on collected dataset are presented.

Finally, chapter 6 draws the conclusions, and presents potential future work to

this dissertation.
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Chapter 2

SOC Architecture for Lane Detection

In general, ADAS focuses on two categories of problems: road segmentation and

object detection. As an initial step of road segmentation, the lane detection problem

had been studied for decades [19]. In real world, lane detection faces challenges

arising from various driving conditions and limited power supply from a vehicle. In

this chapter, we will present our approach on resolving these di�culties by �ne tuning

both algorithm design and hardware implementation. In the end, we demonstrated

the our design on Xilinx Zynq FPGA platform.

In this chapter, the SOC architecture of a lane detection system on Xilinx Zynq

platform is presented, and the system is proven to be resource e�cient in embedded

environment. We studied several mainstream lane detection techniques, and picked

the most popular and robust algorithm - hough transform for this task. Through

software pro�ling, we identi�ed the bottleneck of the computer vision system to be

angle and distance calculation, which is a necessary step in hough transform. To

realize real time performance of the entire system, the hough transform is accelerated

in FPGA fabric with an e�cient architecture. By splitting the entire system onto
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the ARM processor and FPGA fabric, we successfully archived a constant processing

speed of 69.4 frames per second at 1080P resolution.

The outline of this chapter is as follows. Section 2.1 introduces the background of

the lane detection problem. Section 2.2 explains algorithms involved in lane detection,

and presents the entire vision system composition. The hardware architecture and

individual IP core design is presented in Section 2.3. Experimental results and FPGA

results are shown in Section 2.4 and Section 2.5. Finally, Section 2.6 concludes the

chapter.

2.1 Introduction

The lane detection problem has long been a critical part of advanced driver assistance

systems (ADAS). As an initial step for road segmentation, lane detection facilitates

the scene understanding ability of an intelligent vehicle [20]. For example, lane de-

tection is required by many automotive features, such as lane departure warning

(LDW) [21] [22] [23], adaptive cruise control [24], lane centering [25], lane change

assistance [26] and so on. In recent years, some good progress has been made on the

lane detection problem [19].

One major issue with existing lane detection solutions is the real time processing

capability. In real world, lane detection systems have to reach very low error rates in

order to be useful [19]. Besides, real time is highly needed since lane detection is often

used on highways [27], where short time possibly means a long braking distance for

vehicles. Designing a feasible lane detection system is challenging due to issues like

various driving conditions, changing lane and road appearance, image clarity issues,

and poor visibility conditions. To overcome these di�culties, researchers had studied
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various sensors and perception modalities for assistance. Typical techniques used

for lane detection are monocular vision, light detection and ranging (LIDAR), stereo

imaging, geographic information systems (GIS), global positioning system (GPS),

radar. Among these sensing techniques, monocular vision is most widely used due

to its low cost and easy installation [28]. Some lane detection researchers such as

Miao [29] design their system based on a single camera and still achieve satisfying

detection rates.

In our work, we not only aim for robustness to most of the driving conditions, but

also aim for real time performance. Hence, we choose the Xilinx Zynq SOC platform

for the lane detection task. The Xilinx Zynq platform contains an ARM processor

and FPGA fabric on a single chip. The FPGA fabric is good at processing low level

to middle level image processing algorithms in parallel, while the ARM processor

handles high level decisions very well [30]. As proved by Amol Borkar's work [31],

up to 90% of highway cases can be solved by a Hough transform-based approach

without additional tracking methods. In our work, by dividing the entire computer

vision system onto the ARM processor and FPGA fabric, we successfully deployed

the whole lane detection system on Xilinx Zynq platform, archiving a good timing

performance and low resource usage.

2.2 Algorithm Design

We designed our overall system as shown in Fig. 2.1. As indicated in Fig. 2.1, the

�rst step of lane detection is to extract region of interest (ROI), then edge detection

and binarization is used to binarize the pre-processed image. The hough transform

works on binary image and identi�es straight lines from the image. We notice that
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Figure 2.1: Lane detection algorithm �ow

Figure 2.2: ROI region on the source image is pre�xed

the upper part of the image does not contain much information of the lane, and is

thus discarded during ROI extraction. Fig 2.2 shows an example image collected from

highway I-90 in Worcester MA USA, and the extracted ROI region is highlighted by

the red bounding box.

The second step in lane detection is edge detection and image binarization. The

Sobel edge detector and the Canny edge detector are two most widely used edge

detectors. Through experiment on our collected dataset in Worcester MA USA, the

Sobel detector and Canny detector achieves similar results. Hence, the Sobel edge
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detector is used because it has a simpler architecture and executes faster on hardware

too. The Sobel operator is named after Irwin Sobel and Gary Feldman, and is mainly

used to create image emphasizing edges. The expressions of Sobel operation are:

Gx =


+1 0 −1

+2 0 −2

+1 0 −1

 ∗ A (2.1)

Gy =


+1 +2 +1

0 0 0

−1 −2 −1

 ∗ A (2.2)

In the expressions above, A is the source image, Gx and Gy are horizontal and

vertical derivative approximations respectively, and ∗ is the convolution operation.

The Sobel operator is essentially a discrete di�erentiation operator, which computes

an approximation of the gradient of the image intensity function. After convolving

with two 3-by-3 kernels, edges in the source image are identi�ed.

The purpose of image binarization is to binarize image before further processing.

After then, all pixels in the image will become either 255 or 0 (typically a pixel is

represented in 8 bits, 28 − 1 = 255 is the largest value in 8 bit data format).

2.2.1 Hough Transform

After image binarization, the hough transform is used to detect two lines of the host

lane. The hough transform algorithm is a popular feature extraction technique which

is widely used in image analysis, image processing, and computer vision. The hough

transform can be used to detect both analytic curves and non-analytic curves [32].
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According to a survey of hough transform [33], the hough transform algorithm has

long been recognized as a technique of almost unique promise for shape and motion

analysis in images containing noisy, missing and extraneous data. In other words,

the hough transform is an ideal algorithm for line detection. In our work, the hough

transform also achieves high detection rate.

To detect lines of a source image, we �rst need to know how lines are represented

uniquely by two parameters. In rectangular coordinates, a line is represented in the

following equation:

y = a · x+ b (2.3)

In polar coordinates, a line can be rewritten as:

r = x · cosθ + y · sinθ (2.4)

In equation 2.4, parameter θ is the angle of the line, and parameter r is the distance

from line to the coordinate origin. Equation 2.4 can be rewritten as equation 2.5 to

look like equation 2.3.

y = −cosθ
sinθ

· x+ r

sinθ
(2.5)

All lines can be represented by equation 2.5, where θ ∈ [0, 180) and r ∈ <. The

hough transform uses form in equation 2.4 or in equation 2.5, which are representa-

tions in polar coordinates. The hough space for lines has two dimensions: θ and r.

Hence, a line can be represented by a single point of (θ, r) in hough space.

In this way, a line in rectangular coordinate system can be mapped to a single
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Figure 2.3: A line in rectangular coordinate system is mapped to a point in Hough
space

point in hough space, as indicated in Fig. 2.3.

In the other way around, a point in rectangular coordinate system represents all

lines passing through that point. In this way, one point maps to all possible lines

passing through this point in hough space. As shown in Fig. 2.4, a point maps to a

sine-like line in the Hough space.

To detect straight lines of an image, each point in the source image votes to its

corresponding possible lines, which are pairs of (θ, r) in Hough space. After processing

every pixel in the input image, a histogram table is generated. The line with the

largest count denotes the line with the most pixels on it. The process of picking the

line with the most pixels is called HoughPeak. Usually, HoughPeak picks a few lines

instead of a single line.
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Figure 2.4: A point in Hough space maps to a line in rectangular coordinate system

2.3 Hardware Architecture

2.3.1 Image Pre-processing

The FPGA fabric is an ideal platform for low level image processing in terms of

throughput, resource usage and power consumption [34]. In our work, we implement

image pre-processing on FPGA. A general structure to perform kernel-based compu-

tation is shown in Fig. 2.5. The sobel �lter is basically implemented using a matrix of

multipliers and an array of accumulators. Noticing that Sobel �lter parameters merely

have three forms: +1, -1, 0. In our work, instead of using �oating point multipliers,

we use signed adders to realize multiplication, thus reducing resource utilization on

hardware.

Image binarization on hardware is very straightforward, a selector and an unsigned

comparator is used in our work as shown in Fig. 2.6.
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Figure 2.5: For Sobel �lter, multipliers are replaced with signed adders

Figure 2.6: An unsigned comparator and a selector is used for image binarization
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Figure 2.7: Two multipliers and one adder is used to compute distance

2.3.2 Hough Transform

In software, executing the hough transform algorithm on a 720P image takes around

1 second as pro�led on an i5 2.4GHz CPU, which can hardly meet the real time

requirement of a modern advanced driver assistance system (ADAS) [35]. In this

chapter, we accelerated the hough transform algorithm using FPGA fabric. For each

pixel in the input image, lines from all possible directions are counted. The line angle

range is [0, 180), and for each angle, its distance to the origin is calculated using

the structure in Fig. 2.7. Such a block shown in Fig. 2.7 can be regarded as the

basic processing element for hough transform. We make the degree resolution to be 1

degree between angles, hence 180 such processing elements are needed on FPGA for

180 degrees range. The result of each processing element is accumulated and stored

into memory, as shown in Fig. 2.8.

As we can see from Fig. 2.7 and Fig. 2.8, each processing element needs two
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Figure 2.8: 180 processing elements are needed for hough transform

multipliers, and a total of 180 such processing elements are used, resulting in 360

multipliers on FPGA. In our work, leveraging properties of sine and cosine functions,

we further optimize multiplier usage. Such properties are expressed in following

equations:

sin(θ) = sin(180o − θ) (2.6)

cos(θ) = −cos(180o − θ) (2.7)

Where θ1 + θ2 = 180o, sin(θ1) = sin(θ2), and cos(θ1) = −cos(θ2). In other words,

once sin(θ1) and cos(θ1) is calculated, sin(θ2) and cos(θ2) can be obtained through

simple add/minus operations. In this way, only 180 multipliers are used instead of

360, saving 50% of the total number of multipliers. Fig. 2.9 shows the proposed

structure. Signed subtractors are used for cosine functions, as highlighted in red box

in Fig. 2.9.
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Figure 2.9: 50% multipliers are saved through reusing sine and cosine blocks

2.3.3 SOC Architecture

After hough transform, the HoughPeak algorithm is performed to pick straight lines.

The HoughPeak algorithm is a grid search algorithm which picks the largest value

in a two dimensional matrix. Through software pro�ling, this algorithm is not time

consuming, so we implement it on the ARM processor. The overall SOC architecture

is shown in Fig. 2.10. The coming video streaming is split into two channels: one

channel goes through the hough transform and produces a two dimensional matrix,

and the other channel retains the original video information for further processing.

The ARM processor scans the 2D array and decides which two lines make up the host

lane. Finally, depending on the line positions, the ARM processor highlights the host

lane in the input image and sends out the overlayed image.
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Figure 2.10: SOC Architecture of the lane detection system

2.4 Experimental Results

The lane detection system is evaluated on KITTY road dataset, where 289 training

images and 290 test images are used. The lane detection system achieves an accu-

racy of 70% on KITTY dataset. Noticing that KITTY dataset mostly contains non

highway images, and lane detection is mostly used in a highway scenario. Hence, we

collected additional test data on highway I-290 in Massachusetts. In a one-minute

video clip, the host lane can be detected on over 99% of video frames. Lines mismatch

only occurs at cornering, when no straight lines could be found in the image. In most

of the driving cases, our hough transform based implementation can achieve a stable

performance.
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Resources Used Available Utilization

Slice LUTs 35,426 218,600 16.66%

Slice Registers 32,300 437,200 7.38%

Block RAM 206 545 37.79%

DSP 168 900 18.66%

Table 2.1: FPGA Resource Usage on Xilinx Zynq706 platform

Processing Platform Throughput Performance

our work Xilinx Zynq ZC706 69.4 fps 99% on Worcester highway

Portable [36] ARM7+FPGA 25 fps 99.57% day / 98.88 night

Fast Marking [37] NVIDIA 7600 GPU 10 fps one of the �nalists in DARPA

Table 2.2: Comparison with other lane detection systems

2.5 FPGA Results

In our work, we demonstrated the proposed SOC architecture on Xilinx Zynq 706

SOC platform. The resource usage of the system is shown in Table 2.1. Due to

the e�cient implementation of the hough transform algorithm, only 168 DSP blocks

are used which means our design can possibly �t in low end FPGAs. The highest

frequency of the system is 143.85MHz. The maximum processing speed of the design

is 109

1920×1080× 1000
143.85

= 69.4 frames per second at 1080P resolution.

There are other real time lane detection systems as well. The mainstream pro-

cessing platforms are either GPU or FPGA. The comparison of our implementation

with other lane detection systems is shown in Table 2.2.

From the table, we can see that our implementation outperforms typical lane

detection systems on system throughput. One point worth mentioning in Table 2.2 is

that Lipski's work [37] is designed for urban driving where a moving speed of 15mph
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is restricted, while our implementation can catch up with a vehicle speed of 65mph

on highway.

2.6 Conclusion

Lane detection is a critical part of an ADAS, and has long been studied. In this

chapter, we present a real time, low power implementation of the lane detection

system. Through hardware and software co-design, we had successfully delivered a

go-to solution for the lane detection problem on Xilinx Zynq platform. With over

99% accuracy on local highway, our implementation can process video at a speed of

69.4 frames per second at 1080P resolution. Furthermore, our design can be deployed

onto lower end FPGAs according to the resource usage reported in Table 2.1. The

SOC architecture proposed in this chapter is general, and could be extended to other

computer vision tasks.
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Chapter 3

SOC Architecture for Histogram of

Oriented Gradients

The histogram of oriented gradients (HOG) [5] is very suitable for feature extrac-

tion and the support vector machine (SVM) [38] usually works as a classi�er. In

this chapter, we present the e�ectiveness of the HOG and SVM algorithm for ADAS

applications. Furthermore, we design e�cient SOC architecture for HOG to realize

real time performance. According to the research done by N. Dalal [17], the HOG

algorithm has an outstanding performance on pedestrian detection. In our work, we

found that the HOG algorithm works very well for ADAS applications too. Compared

to state-of-the-art convolutional neural networks, the HOG algorithm is less complex,

and hence requires less resource on hardware. The SVM algorithm is a classical ma-

chine learning method, which is very suitable for most classi�cation tasks [39]. In

this chapter, we investigate two popular ADAS applications: tra�c sign classi�cation

and tra�c light recognition. Evaluation results on standard dataset and our collected

dataset show that the HOG + SVM algorithm achieves superb performance on these
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two applications. Furthermore, we design fully pipelined, resource e�cient architec-

ture for HOG and SVM algorithm, realizing real time performance on Xilinx Zynq

platform.

For tra�c sign classi�cation, we evaluate the algorithm performance on the Bel-

giumTS dataset [40]. We target classifying 48 classes of tra�c signs in real time. By

accelerating HOG and SVM modules on FPGA fabric, we successfully achieved an

operating frequency of 241.7MHz, which is higher than the frequency needed by a

1080P video data streaming on FPGA. Besides, our implementation only generates

6.5us response time, which is neglectable for a modern ADAS system.

The tra�c light recognition task has long been an important task in ADAS ap-

plications. In this chapter, we investigate e�cient ways to realize a tra�c light

recognition system based on the HOG and SVM algorithm. We aim to propose an

end-to-end computer vision system for tra�c light recognition. An end-to-end com-

puter vision system often requires region proposal methods at �rst. In our work,

BLOB analysis based on color information is used to propose potential candidates of

tra�c lights. For tra�c light detection, the HOG + SVM algorithm is applied as the

detector and classi�er because HOG + SVM is proven to be e�ective on tra�c light

detection through our experiments on collected dataset in local Worcester, MA USA.

In this chapter, we recognize green lights and red lights at the same time. Yellow

lights recognition are not included due to lack of data. Since we are only recognizing

green lights and red lights, color information is leveraged to extract region of inter-

est and generate potential candidates for classication. Compared to the exhaustive

search method - sliding window, the BLOB analysis largely reduces the number of

false positives and thus improves the classication accuracy. In this chapter, a com-

plete computer vision system including pre-processing, region proposal, detection and
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classication are presented. For tra�c light recognition, we present a novel SOC ar-

chitecture which processes di�erent parts of the system on either FPGA or the ARM

processor. By balancing the workload on FPGA fabric and ARM processor, the en-

tire system can achieve a processing speed of 72.4 fps at 1080P resolution, with an

operating frequency of 150.1MHz.

The outline of this chapter is as follows. Section 3.1 introduces the background of

the tra�c sign classi�cation problem and the tra�c light recognition problem. Sec-

tion 3.2 presents the HOG and SVM algorithm. Necessary preprocessing algorithms

used for the tra�c light recognition system is presented in Section 3.3 The hardware

architecture and individual IP core design of HOG and SVM is presented in Section

3.4. Section 3.5 presents the hardware architecture of an e�cient BLOB detection al-

gorithm. Hardware and software evaluation results are shown in Section 3.6. Finally,

Section 3.7 concludes this chapter.

3.1 Introduction

A complete computer vision system typically has two parts: detection and classi�ca-

tion [41]. The classi�cation part is usually the throughput bottleneck of a computer

vision system. The HOG algorithm is widely used in the computer vision �eld, and

typical applications are motion detection, face recognition [42], as well as tra�c signs

classi�cation [43]. However, the HOG algorithm is relatively complex and slow to

execute. It takes seconds to execute the HOG + SVM algorithms on a general pur-

pose processor [44]. Some researchers had already accelerated the HOG algorithm on

FPGA such as [45] and [46].

The SVM algorithm is a supervised machine learning method. It constructs a
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set of high dimensional space which separates the training data points into multiple

classes. For tra�c sign classi�cation, an SVM with nonlinear kernel results in a

better performance while the linear SVM has lower complexity. Usually for FPGA

implementation, the linear SVM is used more [47, 48]. Most of the previous SVM

implementations implement two class SVM, which only gives out yes or no decision.

In this task, a total of 48 tra�c signs need to be classi�ed as shown in Fig. 3.15.

Hence, we also design a parallel architecture for a 48 one-vs-all SVM classi�er on

FPGA.

Tra�c sign classi�cation is an important task for driver assistance systems and

self driving cars [12]. Many accidents occurred because drivers failed to notice stop

signs at intersections. A lot of challenges are posed for the tra�c sign classi�cation

problem. Firstly, tra�c signs vary a lot by countries and by states. Secondly, various

backgrounds, illumination conditions, and occlusions cause di�culties for the task.

Lastly, real time performance is highly demanded but hard to achieve.

In this chapter, an FPGA accelerator for tra�c sign classi�cation is presented. We

implemented the HOG algorithm using minimum resources compared to existing work

[45]. We also realized a one-vs-all SVM e�ciently on FPGA fabric. Our proposed

architecture of the multi-class SVM proves to be fast and resource e�cient, and can

be further extended to others classi�cation problems.

Similar to tra�c sign classi�cation methods [49], vision based solutions are the

mainstream for tra�c light recognition. The key impacting factor of tra�c light

recognition is the execution time - 30 frames per second is considered to be feasible

for an ADAS system [50]. Algorithm robustness to various driving conditions is taken

into consideration as well [51, 52].

In this chapter, we also designed an end-to-end vision processing system on Xilinx
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Zynq platform. Color information is used to help extract region-of-interest. Then,

the blob detection method is used to identify positions of connected regions. The

HOG algorithm is used to extract shape related features, and the SVM algorithm

works as the �nal decision maker. Since FPGA is suitable for low level processing,

the preprocessing part is executed in FPGA fabric. Then we restrict the number

of candidates selected through BLOB analysis. In this way, the detection and clas-

si�cation part is implemented on ARM with a processing speed of 100 frames per

second, catching up with the FPGA processing speed. The approach demonstrates

our approach to balance the throughput of the ARM processor and the FPGA fabric.

The entire system is able to run at a speed of 72.4 frames per second, while attaining

over 90% detection rate.

3.2 Algorithms Design

In this chapter, input to the HOG algorithm is resized to be 32-by-32 image patch

for feature extraction. The HOG and SVM algorithm will be explained in detail in

this section.

3.2.1 HoG Algorithm

The HoG algorithm is a feature extraction method which extracts shape related fea-

tures from images. By repeatedly generating histograms of each pixel's gradient, the

HoG outputs a vector which is called the HoG feature descriptor. Fig. 3.1 shows

the general steps used in HoG calculation. Detailed computational steps are to be

presented as follows.

For tra�c sign classi�cation, all image candidates are resized to be 32-by-32. Each
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Figure 3.1: HOG calculation �ow contains three parts: gradient and bin calculation,
histogram generation, and normalization

input image candidate is divided into blocks and cells, with block size to be 16-by-16,

and cell size to be 8-by-8. The block �rst slides horizontally in the window with a

step size of 8 pixels, and then the block slides vertically with the same step size. One

horizontal line in the window contains (32 − 16 + 8)/8 = 3 blocks, and one vertical

line in the window contains (32−16+8)/8 = 3 blocks, resulting in a total of 3×3 = 9

blocks of one image candidate.

A single 16-by-16 block generates 36 HoG descriptors and then the current block

moves to its next position and repeats computation. As shown in Fig. 3.1, the

HoG calculation has three steps: weighted magnitude and bin class calculation, block

histogram generation, and normalization. Each part will be explained in details in

following subsections.

3.2.1.1 Weighted Magnitude and Bin Class Calculation

For each pixel from the source image candidate, gradients on two directions are to be

determined using following equations:

Gx(x, y) = |Mx(x+ 1, y)−Mx(x− 1, y)| (3.1)
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Gy(x, y) = |My(x, y + 1)−My(x, y − 1)| (3.2)

Then, the gradient magnitude and the gradient angle can be calculated:

G(x, y) =
√
Gx(x, y) +Gy(x, y) (3.3)

θ = arctan
Gy(x, y)

Gx(x, y)
(3.4)

Pixels on boundaries are padded with zeros, and zeros are padded as boundary

pixels' neighbors.

3.2.1.2 Block Histogram Generation

According to the value of the gradient angle, the current gradient is assigned to 9

di�erent bins. That is, from degree 0 to 179, each 20 degrees denote one bin. For

each 8-by-8 cell, a corresponding histogram is generated: based on current pixel's bin

value, the weighted magnitude is summed up for the corresponding bin. A total of

36 bin values from four cells' histograms are generated from each block.

3.2.1.3 Normalization

Normalization is a necessary step to provide robustness to illumination and contrast

changes. Normalization usually has the forms of L1 and L2. For easy implementation

on FPGA, the simpli�ed equation derived from L1-Sqrt-Norm is given:

bnorm =

√
b

sum(b)
(3.5)
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Through experiments, we found that L1 form's classi�cation accuracy is very close

to L2 form's.

For an entire window, all histograms from 9 blocks are concatenated together,

generating a HOG descriptors with 9 * 36 = 324 elements.

3.2.2 SVM Algorithm

The SVM algorithm can quickly separate hyperplanes between di�erent classes, and

e�ectively map inputs onto high dimensional feature space. In our work, linear SVM is

used because it requires fewer computational resources comparing to nonlinear SVMs.

In one sliding window, 324 HOG descriptors are multiplied with 48 pre-trained 324-

elements vector, then added up with 48 o�sets respectively. Equation is given as

below:

Y = αyT + γ (3.6)

In Equation 3.6,α is the support vector, y is the HOG feature, γ is the bias. Since

SVM in this work has 48 ways, α is a 324*48 matrix, γ is a 48-elements vector. Result

Y is a 48-elements vector, and the tra�c sign belongs to the class with the largest

value.

3.3 Preprocessing Algorithm Design

A complete end-to-end computer vision system contains three parts in general: ROI

extraction, detection and classi�cation as shown in Fig. 3.2. The �rst part of the

computer vision system is pre-�ltering, and the function of pre-�ltering is to suppress
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Figure 3.2: Overall algorithm design of the tra�c light recognition system

unwanted distortions to improve image quality. After pre-�ltering, the blob detection

is used to calculate the position of each blob. The pre-�ltering and blob detection

makes up the image preprocessing part. After preprocessing, all the potential green

blobs for green tra�c lights and red blobs for red tra�c lights are obtained including

false positives and false negatives. Classi�cation is then needed to distinguish tra�c

lights from false positives and false negatives.

In the tra�c light recognition task, since a typical tra�c light's aspect ratio is

between 1/4 to 4, blobs with odd aspect ratios are discarded. After then, each

potential blob is resized to 32-by-32. Furthermore, the HOG algorithm extracts 324

features from each blob, and HOG features are then multiplied with the SVM vector.

The result of SVM tells whether current blob is a tra�c light or not. In this way, by

scanning through every blob from the input image, we are able to detect all red and

green tra�c lights.

For tra�c light recognition, another feature we have to realize is real time. A

proper software/hardware co-design approach is needed to implement computation-

ally heavy tasks on FPGA fabric, while maintaining high speed hardware/software

data exchange. Following are detailed explanations of each module as shown in Fig.

3.2. Since the HOG and SVM algorithms are already explained in Chapter 3, only

pre-�ltering and blob detection algorithms are to be explained in this chapter.
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3.3.1 Pre-�ltering

The purpose of pre-�ltering is to enhance image quality and �lter out unwanted

information. In the tra�c light recognition system, input pixel format to our system is

RGB, and each pixel is represented by 3 bytes. Due to changing luminance and varied

weather conditions on road, a pixel appearing green to human eyes doesn't always

indicate a large absolute value in the green channel. The major issue of RGB color

space is that it doesn't re�ect the correlation between color channels. Hence, the �rst

step of pre-�ltering is to convert image from RGB color space to human perspective

color domain like HSV color space. HSV is a cylindrical-coordinate representations

of colorful pixels, representing relationships between each color channel. HSV stands

for hue, saturation, and value. In HSV color domain, green and red colors can be

easily picked out by setting absolute thresholds on each channel.

Equations below show the formula translating RGB to HSV [53]:

H =


60× G−B

MAX−MIN
+ 0 (if MAX = R)

60× B−R
MAX−MIN

+ 120 (if MAX = G)

60× R−G
MAX−MIN

+ 240 (if MAX = B)

(3.7)

S =MAX −MIN (3.8)

V =MAX (3.9)

The color conversion is a nonlinear transformation. After color conversion, each

pixel is binarized for further processing: output 1 if current pixel is considered green,
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otherwise 0. The same operation on red pixels is performed in parallel on hardware.

3.3.2 One-Pass Blob Detection

Blob detection collects connected pixels after pre-�ltering. The primary idea is to

label di�erent groups of pixels on the input image. In the chapter, the 4-connectivity

methodology is used to determine whether neighboring pixels are connected or not.

The 4-connectivity means that, only the 4 pixels with one pixel distance from the

current pixel are considered to be current pixel's neighbors. In this work, to achieve

real time, one-pass labeling is utilized, which is to output all the potential blobs by

scanning through the entire image once.

3.4 Hardware Architecture of HOG + SVM

The HoG algorithm can hardly achieve real time performance when been implemented

on embedded processors or general purpose processors. A 48-way one-vs-all SVM

requires a lot of computations by doing comparisons between classes, and cannot run

in real time either. In this work, we accelerated both HoG and SVM algorithms on

FPGA. Fig. 3.3 shows each step in the HoG computation and SVM calculation. The

structure of each module is to be presented in details in following subsections.

Figure 3.3: Overall algorithm �ow of the tra�c sign classi�cation system
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3.4.1 Gradient Calculation

As shown in Fig 3.4, at each clock cycle, one pixel is taken in. Then, gradient of

current pixel is calculated using one shift register and two subtractors. The operating

frequency of the circuits is the same with the pixel rate.

Figure 3.4: Gradient calculation structure on FPGA

3.4.2 Magnitude and Bin Calculation

To calculate the gradient angle, �xed coe�cient multipliers are used in place of di-

viders to save FPGA computing resources. The structure is shown in Fig. 3.5: the

magnitude computation is implemented by two multipliers, one adder and one square

root unit. The bin class calculation uses four �xed coe�cient multipliers, which are

more resource e�cient than regular multipliers on FPGA. The classi�er in Fig. 3.5

is essentially a selector which decides the bin class of the current pixel.

3.4.3 Address Encoder

In the HoG algorithm, blocks have overlaps with each other. To reduce computation

e�ort, results of each cell are to be pre-stored in memories. In this way, when block

slides, some cells do not need to be calculated again. The address encoder block
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Figure 3.5: Magnitude and bin calculation structure on FPGA

simply converts data streaming into a memory, and results of each cell are stored into

speci�c locations of the block RAM. Fig. 3.6 shows the address encoder architecture.

This architecture is a good example demonstrating FPGA's computing power: FPGA

can utilize additional memories or computing resources to gain higher throughput of

a certain algorithm.

3.4.4 Cell Summation

The cell summation module computes the histogram of each group of 64 pixels in one

cell. This module reads out 64 pixels' magnitudes and bin class values, sends these

values to an adder tree, then stores computed histograms to another block RAM with

corresponding address. In this way, the nine bin values of each cell are stored in a
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Figure 3.6: Each 8-by-8 cell is pre-stored in the block RAM on FPGA

single memory slot of the target block RAM. Fig. 3.7 shows the architecture.

3.4.5 Normalization

The normalization module takes in histograms from a single block, and sums up all 36

bin values. After then, one divider is used to compute the inverse of the summation,

connected with 36 multipliers to get the normalized results before square rooting. Fig.

3.8 presents the architecture: 36 Bin values are read out at one clock cycle, and be

processed to get the normalized results. Then, every 36 normalized values are stored

to corresponding addresses of the target memory. These normalized results make up

the HOG features. Since there are nine memory slots in the block RAM, with each

slot storing 36 HOG features. Hence, 9*36 = 324 HOG features are extracted from a
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Figure 3.7: Each 8-by-8 cell's histogram is stored into one memory slot in the other
block RAM

32-by-32 image patch.

Figure 3.8: For each 16-by-16 block, normalized result is stored into one memory slot
of the block RAM

3.4.6 SVM Calculation

In our work, we use a 48-way SVM to classify 48 classes of tra�c signs, which means

a total of 48 ∗ 324 = 15, 552 support vectors are computed. Regarding such a long
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support vector, and considering many multiplication operations needed, we reuse mul-

tipliers and process support vectors in batches on FPGA. As shown in Fig. 3.9, a

ROM is created to store all these pre-trained support vectors. The SVM module con-

tinuously reads out HOG features and multiplies with corresponding support vectors.

In this design, we decide to use 36 multipliers which is proven to be a good tradeo�

between execution time and resource usage. After all 324 HOG features have been

read out, multiplied with corresponding support vectors, an accumulator is used to

give out the �nal result to the adder to add up with the bias. The result is then

fed into a comparator which always picks the bigger value. After 48 rounds of SVM

computations, the comparator is able to output the biggest value among all 48 classes.

Figure 3.9: An accumulator is used to reuse limited number of multipliers

3.5 Hardware Architecture for Preprocessing

Through software pro�ling, the HoG + SVM algorithms could be implemented on

ARM processor at a processing speed of 100fps as long as the number of potential

40



candidates is limited to no more than 256. Through experiments, 256 is an optimal

number which well balances between high detection accuracy and short execution

time. In this way, the pre-processing part becomes the throughput bottleneck of the

entire system. This section mainly explains the methodology used to accelerate the

blob detection on FPGA fabric, as well as the overall SOC architecture.

3.5.1 SOC Architecture

To implement the whole system on SOC FPGA, delicate partition of software and

hardware is needed. In this work, blob detection is computationally heavy in software,

and hence needs hardware acceleration. As shown in Fig. 3.10, the input image data

streaming is divided into two channels: one channel goes through blob detection,

and the other transmits the original image. The HOG and SVM algorithms are

implemented on the ARM processor, taking less than 10ms to process all selected

blobs of a single image.

Figure 3.10: Software/Hardware division on SOC
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3.5.2 Pipeline Structure for Preprocessing

As described in Section 3.3, image preprocessing consists of color conversion, binariza-

tion and blob detection. Fig. 3.11 shows the corresponding hardware architecture.

In our work, since two types of tra�c lights are to be recognized, two blob detec-

tion blocks are used in parallel. Also, a hardware friendly one-pass blob detection is

designed in order to achieve high processing speed.

Figure 3.11: Hardware architecture of preprocessing, red blobs are green blobs are
processed in parallel

To implement blob detection algorithm on FPGA, one must-have architecture is

the blob position table which records the position of each detected blob. As shown

in Fig. 3.12, a label counter is created to keep track of current label number: when

a new blob is detected, label counter accumulates its value by 1. The blob position

table is made up of four memory blocks, recording four vertices of every blob. For a

speci�c blob with label number n, its position information is stored at the nth slot in

each of these four memory blocks.

The main di�erence between one-pass blob detection and multi-pass detection is

that one-pass needs an additional connection table on hardware to avoid additional

traverse. The connection table checks whether two blobs with di�erent labels con-

42



Figure 3.12: A label counter is used as the address encoder to help store positions of
each label into the blob position table

nect to each other or not. After scanning through the whole image once, all label

connection information are stored into the connection table. An example in Fig. 3.13

illustrates the procedure: when the center pixel is labeled to 5, connection label logic

decides that blob 5 and blob 7 are neighboring blobs, hence in the connection table,

value 5 is written to the7th memory slot to record the information.

After scanning through the whole image, all information is stored into connection

table and blob position table. Position information of same blobs is used to merge

memory slots in the blob position table. As indicated in Fig. 3.14, by checking the

connection table, we know which labels should be merged, and then update position

information in the blob position table accordingly.
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Figure 3.13: The connection table keeps record of connecting labels

3.6 Experimental Results

In this chapter, we evaluated the HOG + SVM algorithm on two ADAS applications

and achieve satisfying performance.

3.6.1 Tra�c Sign classi�cation

For tra�c sign classi�cation, there are three major dataset: German Tra�c Sign

Recognition Benchmar (GTSRB) [54], Belgium Tra�c Sign Dataset [40], and LISA

Tra�c Sign Dataset [55]. The LISA dataset has less data samples than the other two.

Compared to GTSRB, the Belgium signs look closer to US tra�c signs. Hence, we

used the BelgiumTS dataset to train our computer vision system. Fig. 3.15 shows 48

classes of tra�c signs we will classify in our system. For tra�c sign classi�cation, we

select the most popular HOG + SVM approach. Through experiments, we showed

that HoG and SVM can obtain an overall good accuracy on this task, while retaining

reasonable algorithm complexity. In this chapter, the HOG algorithm and the SVM

algorithm are explained in details.
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Figure 3.14: Merge memory slots in the blob position table according to the connec-
tion table

The tra�c sign classi�cation system is evaluated on BelgiumTS dataset. The

system is evaluated on 2,181 test images from BelgiumTS dataset. Among all the

test images, 1,991 tra�c signs can be correctly classi�ed, resulting in an average

accuracy of 1991
2181

= 91.3% over these 48 classes tra�c signs.

Our hardware design is very e�cient in terms of resource usage and throughput.

The HoG computation unit and SVM computation unit can be used individually as

IP cores in other computer vision systems. Table 3.1 shows the entire FPGA resource

usage. These two tables show that our implementation only uses a small portion of the

entire FPGA, thus could be extended to lower end FPGA platforms. The maximum

frequency of our implementation is 241.7MHz, exceeding 148.5MHz, which is the

input clock frequency used in a 1080P video transmission system.

Analyzing the HoG block and SVM block separately, the HoG block generates 693
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Figure 3.15: A collection of 48 tra�c signs that can be classi�ed using our system

clock cycles delay, and the SVM block generates 864 clock cycles delay. Operating at

240MHz frequency, our implementation has a latency of (693+864)∗4.17ns = 6.5us,

which is neglectable to a real time ADAS system. Assuming the entire system runs

at 240MHz frequency, with input image size 1080P, the maximum frame rate of our

system is:

240 ∗ 106

1920 ∗ 1080
= 115.7fps

Along with our work, there are also other e�cient implementations for the tra�c

sign classi�cation problem. In Sheldon's work [56], the system is implemented on the

Xilinx Virtex-5 FPGA, with only 777 ms on processing a 40-by-40 image patch. A

SURF-based tra�c sign detection system [57] has also been implemented on Xilinx

KC705 FPGA, obtaining a processing speed of 60 fps at 800-by-600 resolution. The
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Resources Used Available Utilization

Slice LUTs 8,168 53,200 15.35%

Slice Registers 11,789 106,400 11.08%

Block RAM 17 140 12.14%

DSP 37 220 16.82%

Table 3.1: SVM Resource Usage

Processing Platform Throughput Accuracy

our work Xilinx Zynq ZC702 115.7 fps 91.3%

Color Shape [58] NVIDIA GeForce 560 25 fps 90%

Multi-Scale [59] NVIDIA K20 27.9 fps 91.7%

FPGA-based [56] Xilinx Virtex-5 8.8 fps 93.3%

Table 3.2: Comparison with typical tra�c sign detection systems

tra�c sign classi�cation system is implemented on GPU as well. Table 3.2 presents

the comparison of our implementation with other mainstream implementations.

Table 3.2 shows that our performance is comparable to other mainstream imple-

mentations. Nowadays, one state-of-the-art computer vision algorithm for tra�c sign

detection is the integral channel feature (ICF) [60], which archieves over 95% classi-

�cation rate on the BelgiumTS dataset. There is no existing work which implements

the ICF algorithm on FPGA. Comparing to HOG, the ICF is less hardware compati-

ble in that the number of windows extracted from a single feature is not deterministic.

A potential furture work could be to implement the ICF algorithm on a larger FPGA

chip in order to obtain the state-of-the-art results.
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3.6.2 Tra�c Light Recognition

The tra�c light recognition system is demonstrated on Xilinx Zynq ZC702 board

too. Fig. 3.16 shows a sample image from our collected tra�c light dataset, and

detected green lights are highlighted in white bounding boxes. The highest operating

frequency of FPGA implementation can reach is 150.1MHz, indicating that larger

resolutions can possibly be supported. Overall FPGA utilization is shown in Table

3.3. Through system pro�ling on ARM processor, time to process all tra�c lights on

a single frame varies from 1.96ms to 9.66ms, which is always less than 10ms, meaning

that 100 fps performance can be achieved. The maximum processing speed of our

system is 109

1920×1080× 1000
150.1

= 72.4 frames per second at 1080P resolution.

Figure 3.16: The sample image shows that green tra�c lights detected

For tra�c light recognition, we tested our system on 10 video clips recorded in

di�erent road and weather conditions. The data is collected in local Worcester MA
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Resources Used Available Utilization

Slice LUTs 49,183 53,200 92.45%

Slice Registers 47,656 106,400 44.79%

Block RAM 24 140 17.14%

DSP 25 220 11.36%

Table 3.3: FPGA Resource Usage

Recall Rate Precision Rate

Red tra�c lights 92.11% 99.29%

Green tra�c lights 94.44% 98.27%

Table 3.4: Recall rate and precision rate on two tra�c lights

USA during both summer and winter. A sample image from the collected dataset is

shown in Fig. 3.16.

Table 3.4 shows that we achieved a high recall and precision rate. Equations are

given:

recall =
true positives

true positives+ false negatives
(3.10)

precision =
true positives

true positives+ false positives
(3.11)

There are other real time tra�c lights systems as well. Typical implementations

are based on GPU or CPU. Table 3.5 lists several typical implementations of tra�c

light detection systems.

Comparing to GPU or CPU, our FPGA based implementation achieves a higher

throughput and still retains comparable accuracy. Besides, FPGA consumes much

less power than a GPU does, and FPGA doesn't need to work with a CPU. Hence,
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Processing Platform Throughput Accuracy

our work Xilinx Zynq ZC702 72.4 fps 95.3%

Agent-based [61] NVIDIA GTX 470 26 fps 90%

Attention Model [62] i3 M330 CPU 7 fps 96%

Table 3.5: Comparison with typical tra�c sign recognition systems

our proposed system serves as a go-to solution for tra�c light detection.

3.7 Conclusion

In this chapter, we present e�cient acceleration for the HOG and SVM algorithm.

We show that the HOG + SVM algorithm is suitable for ADAS applications such as

tra�c sign classi�cation and tra�c light recognition.

For tra�c sign classi�cation, we demonstrated the entire system on Xilinx Zynq

702 platform. By dividing the HoG block into submodules and �ne tuning each sub-

module, we achieve a processing speed of 115.7 frames per second at 1080P resolution.

The way we design a 48-way SVM could be extended to any way SVMs, and the pro-

posed SVM architecture is elastic. Furthermore, our FPGA design only generates a

6.5us latency, much lower than other tra�c sign classi�cation systems to the best of

our knowledge. With such a low latency and low resource usage, our HoG unit and

SVM unit can be used individually in other computer vision systems.

For tra�c light recognition, an FPGA based design for real-time end-to-end system

is presented. Evaluating on collected data, we successfully achieved high precision

rate and recall rate on tra�c light recognition. Also, we successfully demonstrate the

entire system on Xilinx Zynq board in real time, with proper resource usage. The

maximum operating frequency of the system is 150.1 MHz, resulting in a processing
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speed of 72.4 frames per second at 1080P resolution. The hardware/software co-design

approach proposed in this chapter provides insights to design similar computer vision

systems
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Chapter 4

PCANet on VLSI

In recent years, intelligent vehicles have attracted lots of attentions and research inter-

est. Multiple sensors like LiDAR, radar, cameras are deployed on intelligent vehicles.

Among these sensors, cameras are cheap and robust. Hence, research on vision based

techniques for intelligent vehicles has become the mainstream. Due to various driv-

ing environments, traditional hand-crafted computer vision techniques fail to adapt

to changing driving environments. On the other hand, deep learning especially multi-

layer convolutional neural networks (CNN) are proven e�ective in di�cult situations.

The major drawback of CNN is that it is not power e�cient. To achieve robust

performance and high throughput at the same time, we investigated the principal

component analysis based network (PCANet) and its applications for intelligent ve-

hicles. A single chip PCANet detector is proposed to resolve the robustness and

e�ciency dilemma. In this chapter, performance evaluations on road marking detec-

tion and tra�c light recognition demonstrate that the PCANet is a robust algorithm

for object detection. The proposed PCANet chip design using Synopsys 32nm process

and achieves a processing speed of 274 frames per second at 1080P video input. To

52



minimize power consumption, an e�cient chip design is proposed which consumes

only 0.5 watt. The proposed single-chip PCANet detector strikes a good balance

between robustness, e�ciency and low power consumption.

The outline of this chapter is as follows. Section 4.1 introduces background of

the PCANet. Section 4.2 explains how PCANet is trained and why it is much faster

than CNN on training. The hardware architecture of the PCANet is presented in

Section 4.3, and VLSI implementation results are presented in Section 4.4. Section 4.5

discusses possible ADAS applications of the PCANet. Finally, Section 4.6 concludes

this chapter.

4.1 Introduction

Recently, many industrial and academic research e�orts have been focused on intel-

ligent vehicles. Intelligent vehicles usually require a sophisticated fusion of sensors

including LiDAR, radar, and cameras. Among these sensors, optical cameras are most

widely used because of their low costs and easy installation. Also, due to the rapid

development of deep learning in the �eld of computer vision, vision based algorithms

have become more accurate and more robust in various driving environments [1].

One typical deep learning application is advanced driver assistance systems (ADAS),

which is becoming very popular among the latest generation of vehicles.

In real world, there are many challenges to vision based ADAS solutions besides

the real time requirement. Traditional computer vision algorithms are usually not ro-

bust enough to handle the intra-class variability arose from varied lighting conditions,

misalignment, occlusion and corruptions, and non-rigid deformations [63]. Although

researchers tried to manually design low-level features to counter intra-class variabil-
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ity, those hand-crafted low-level features cannot be general enough to be e�ective in

unseen conditions [64] [65], while deep neural networks are able to discover multiple

layers of representations of a target object, countering intra-class variability. Because

higher level features are resistant to intra-class variability on an image [63], deep

neural networks are particularly suitable for tasks like object detection. The major

problem of deep neural networks is that e�ciency is hard to achieve due to their

model complexity [66].

When researchers design computer vision systems for intelligent vehicles, they

have to balance robustness, e�ciency and power consumption. On one hand, some

hand-designed features can achieve good e�ciency [67], but fail to counter intra-class

variability e�ectively. On the other hand, deep CNNs are robust enough [66], but

fail to achieve high e�ciency and low power consumption at the same time. In our

work, considering both robustness and e�ciency, we propose the PCANet as a robust

detector for vision based ADAS solutions.

The idea of PCANet arises from wavelet scattering networks (ScatNet) [68] [69],

in which the convolutional �lters are pre�xed, needing no training at all. Since

convolutional �lters in a ScatNet are pre�xed, the ScatNet does not generalize very

well for intra-class variability, illumination change and corruption [63], let alone vision

based ADAS tasks. Adopting the simple architecture of ScatNet and the robust

performance of multi-layer CNNs, PCANet is fast to train, and still invariant to

intra-class variability.

In this chapter, we design e�cient hardware architecture for PCANet in Synopsys

32nm process technology, speeding up the PCANet algorithm to 274fps at 1080P while

consuming only 0.5 watt power. In this way, we provide a PCANet based single-chip

solution for vision based ADAS applications.
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4.2 Algorithms Design

In this section, the PCANet's structure is described in detail. The general processing

steps of PCANet are shown in Fig. 4.1. Sequentially, an input image is processed

through several stages including patch-mean removal, PCA �lter with 2D convolution,

binary quantization, block-wise histogram, and SVM classi�cation. Note that this

work is focused on the implementation of the PCANet detector and the training

procedure is not implemented in hardware. Coe�cients of the PCA �lter and SVM

classi�er are pre-trained o�ine using datasets from the target applications.

Figure 4.1: General structure of the PCANet algorithm

4.2.1 Patch-Mean Removal

Similar to traditional image �ltering, the �rst step is to use a sliding window to

extract image blocks, also called image patches, e.g. 7-by-7 pixels. Prior to applying

the PCA �lters, all pixels in the patch need to have zero means. Hence, the process is

called �patch-mean removal�: calculating the mean of all pixels in the patch and then

subtract it from the pixel values. For each pixel in the image, a patch is generated
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with the pixel at the center position. For the pixels around the edges, the image is

padded with zeros. After removing its mean, each patch is stored separately and goes

through the PCA �lter [63].

4.2.2 2D Convolution as PCA Filter

As the core part of the PCANet, PCA �lters extract features from an input image

patch like convolutional �lters. A total of two layers of PCA �lters are used in our

design. At the �rst layer, kernel-based �lters are convolved with the input image,

and the size of the �lters is the same as the patch size, typically 3-by-3, 5-by-5 and

7-by-7. Multiplying with such �lters are needed to extract feature maps from a single

image. Coe�cients of these �lters are pre-trained in a feedforward manner by applying

the principle component analysis on training samples. For each kernel �lter, pixels

in a patch are multiplied with the corresponding �lter coe�cients to perform 2D

convolution. Subsequently, products from the same patch are summed up to obtain

the convolutional result. In order to extract more hidden features of an image, the

PCANet cascades a second layer of PCA �ltering process. In fact, this idea is similar

to the principle of convolution neural networks, in which multiple convolutional layers

are stacked together. Using eight PCA �lters as an example, the �rst layer produces

eight �ltered feature maps. After another round of patch-mean removal, each of these

images goes through the second layer of eight �lters, thus resulting in a total of 64

feature maps.

Prior to 2D convolution, coe�cients in PCA �lters need to be determined. Suppose

the input image size is m × n, all PCA �lter's size is a × b at both stages. Number

of �lters at each stage is N , and there are M training images in total. So there are a

total of m× n patches, for the ith patch (i = 1...mn), pixels are denoted as:
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Xi = [x1, x2, ..., xab] (4.1)

In image processing, porch is the additional paddings around the edges of a valid

image, and porch is mainly used to provide better boundary e�ects. The patch-mean

removal step is performed right after principal component analysis. Combining the

matrices from all the input images, we get the following equation:

X = [X1, X2, X3, ..., XM ] (4.2)

After patch-mean removal, PCA �lters are trained. PCA �lters are expected to

minimize the reconstruction error of a set of orthonormal �lters. The equation for

reconstruction error is expressed as:

E =‖ X − V V TX ‖2 (4.3)

In equation 4.3, V TV is the identical matrix of size N × N , and can also be

expressed as the �rst L principal eigenvectors of matrix XXT . Thus, the equation

for a single PCA �lter is given as:

Pi = mata,b(pi(XX
T )) i = 1, 2, ..., N (4.4)

In equation 4.4, matk(x) is the function which maps a vector v to a matrix, and

pi(x) extracts the ith principal eigenvector of matrix x. Consequently, the �rst prin-

cipal eigenvector represents the major variation in the patches, the second principal
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eigenvector represents the secondary major variation in the patches, so on and so

forth.

The second layer in PCANet can be trained in almost the same manner expect

for di�ered data bit width. Equation 4.5 shows the second PCANet layer:

Qi = mata,b(pi(Y Y
T )) i = 1, 2, ..., N (4.5)

As de�ned in our work:


Y = [Y1, Y2, Y3, ..., YN ]

Yi = [Y 1
i , Y

2
i , ..., Y

M
i ] (i = 1, 2, 3...N)

Y k
i = [yi,k,1,yi,k,2, ..., yi,k,mn]

(4.6)

where yi,k,l (l = 1, 2, ...mn) is the lth mean_removed patch in kth �lter output of

the �rst stage of the ith input image.

In this way, we can �nally acquire the output in equation 4.7.

Ok
i = {Iki ∗Qk}Nk=1 (4.7)

where Iki is the kth �lter's output from the �rst stage of the ith input image.

4.2.3 Binary Hashing

After two layers of patch-mean removal and PCA �lter convolutions, binary quanti-

zation and concatenation are then performed to obtain generalized features. Binary
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quantization is essentially a step function, which outputs 1 if the value is positive, and

0 otherwise. Binary hashing is employed for concatenation. Assume that each layer

has L feature maps, the data of di�erent feature maps are multiplied with weights

from 20 to 2L−1. Binary hashing is applied by summing up these L weighted feature

maps, which e�ectively merges them into one feature map.

4.2.4 Block-Wise Histogram

After binary hashing, the range of feature values becomes [0, 2L − 1], resulting in a

total of 2L bins. To calculate block-wise histograms, the output feature map is divided

into blocks, whose size is exactly the same as PCA �lter size. Blocks are obtained

by shifting through the large feature map. For the data in each individual block, a

histogram with range [0, 2L − 1] is computed. All these block-wise histograms are

regarded as the PCANet features.

4.2.5 Linear Support Vector Machine

The aim of SVM is to quickly separate hyperplanes between di�erent categories and to

map those extracted features onto high-dimensional feature spaces. The advantage of

SVM is that it is quick to train. In this work, linear SVM is applied, since it has better

timing performance on hardware and is more e�cient on resource usage comparing

to kernel-based SVMs. Previous chapters show that linear SVM can achieve a good

recognition rate for image classi�cation,. For tra�c light recognition, the linear SVM

achieves a high classi�cation rate as will be presented in Section 4.5.
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4.3 Hardware Architecture

For the implementation of PCANet on hardware, we chose typical values for input

image size, the number of stages of PCANet, and the PCA �lter size to optimize

hardware implementation. All the input image patches are resized to be 28-by-28.

We set the convolutional �lter size to 7-by-7 and the number of �lters at each stage

to 8. Software simulation shows that these settings produce the most accurate classi-

�cation results [63]. The hardware architecture is slightly di�erent from the structure

illustrated in Fig. 4.1 due to modi�cations made to achieve better timing performance

on hardware.

The main di�erence between software execution and hardware implementation

comes from adding porch to the input image before patch-mean removal. The input

image is �rst padded with porch around the edges, thus patches in the original input

image can be smoothly extracted without slowing down the incoming data rate. In

addition, a patch generation module is introduced on the hardware design, so it

can output 49 pixel values during a single clock cycle. In following subsections,

detailed designs for each module will be presented. The overall computational steps

on hardware are shown in Fig. 4.2.

Figure 4.2: Overall hardware architecture of PCANet, it consists of porch adding,
two layers of convolutions, binary hashing, histogram and SVM.
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To add porch to input image on hardware, the input image is �rst padded with

porch as indicated in Fig. 4.2. In this way, patches around each pixel in the original

input image can be smoothly extracted in the same clock domain. In addition, patch

generation module on hardware is needed to output 7 × 7 = 49 pixel values at each

clock cycle. In following subsections, detailed explanations for each module are to be

explained.

4.3.1 Patch Generation

Since the mean value of each patch needs to be calculated during patch-mean removal,

the patch generation module is expected to output one 7-by-7 patch at each clock

cycle. A total of six line bu�ers plus several registers are used in the hardware design,

which can output 7× 7 = 49 pixel values of a patch within a single clock cycle. The

patch generation design is shown in Fig. 4.3. In Fig. 4.3, W is the length of one line,

which is 34 in our case. With data coming in continuously, after 6∗ (28+6)+7 = 211

clock cycles delay, the circuit outputs the corresponding 7-by-7 patch. Equation 4.8

gives the general formula to calculate clock cycles delay.

delay = porch× (linewidth+ porch) + filter width (4.8)

4.3.2 Patch-Mean Removal

The patch-mean removal module takes in 49 pixel values, followed by an adder tree

to compute the summation of these 49 data in 6 clock cycles. Then the sum needs to

be divided by 49 to obtain the mean value of current patch. However, division is very

resource and time consuming in digital circuits. A usual trick in digital circuit design
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Figure 4.3: Use a line bu�er structure to generate one 7-by-7 patch in a single clock
cycle

is to replace division with multiplication. In our design, instead of using a divider,

the sum is �rst multiplied by the approximated value of 210/49 ≈ 21, followed by

shifting the results to the right by 10 bits, which is equivalent to division by 210.

Subsequently, each pixel data in the same patch is subtracted by the mean of the

current patch at the same clock cycle.

4.3.3 2D Convolution

The operation of 2D convolution is to multiply data in a patch piece-wisely with

coe�cients from each of the 8 di�erent PCA �lters and then to obtain the sum of

the 49 products. An adder tree structure is designed for the operation. After 6 clock

cycles, the convolutional result is obtained. Since there are 8 feature maps extracted

at the �rst layer, we instantiate 8 such 2D convolution modules for the �rst layer of
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the PCANet on hardware.

4.3.4 Second Stage Computation

The �rst stage computation consists of one patch generation module, one patch-mean

removal module and eight 2D convolution modules. At the second stage, each feature

map from the �rst stage is again expanded by convolutions with 8 PCA �lters. In

this way, there are a total of 8 patch generation modules, 8 patch-mean removal

modules, and 64 2D convolution modules at the second stage. The computational

steps are almost identical to the �rst stage computations except for the enlarged bit

width of data being processed. We anticipate that a large number of multipliers

will be used due to many 2D convolution modules. At �rst stage, there are 8 such

modules. At second stage, there are 64 such modules. Each 2D convolution module

contains 49 multipliers, so the �rst two layers of PCANet consumes up (8+64)×49 =

3, 528 multipliers on chip. Implementing thousands of multipliers on hardware is very

resource consuming. Hence, we further optimize the second stage computation, which

will be explained in subsection 4.3.8.

4.3.5 Binary Hashing Module

After two layers of 2D convolutions, each of the 8 feature maps created by the second

stage need to be merged together. We take the sign of the input, then multiply

those signs with di�erent weights from [128, 64, 32, 16, 8, 4, 2, 1]. This process is called

binary hashing. In digital circuits, we create an 8-bit register, and then put the sign

of each data into di�erent slots of this 8-bit register. The resulting 8-bit register is the

sum of these 8 weighted values. Such a structure eliminates the need for multiplication
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operations, hence reducing power consumption.

4.3.6 Block-Wise Histogram

As the last step of the PCANet feature extraction, histogram is needed to generalize

the features. After binary hashing, there are 8 feature maps, each containing a 28-

by-28 array of 8-bit data. Each single feature map is then divided into 6-by-6 blocks,

with each block containing 7-by-7 pixels. The �rst block is taken from the up left

corner of the feature map, then the block slides to the right by 4 pixels to generate the

second block. The block keeps sliding to the right until it slides out of the 28-by-28

area, then it slides down by 4 pixels and starts from the leftmost pixel to obtain the

next block. A total of 6×6 = 36 blocks are generated in this way. For each block, one

histogram ranging from 0 to 255 is then generated. In this block, 256 comparators

and 256 6-bit counters are used, after 7× 7 = 49 clock cycles, data from one block is

sent to such a circuit, all 256 features are generated at the 50th clock cycle.

4.3.7 Large-vector SVM

Linear SVM makes the classi�cation decision based on the PCANet features. In

our work, the input to SVM consists of 8 feature maps, each feature map contains

36 blocks, and each block has 256 histogram values. Therefore, each image patch

contains a total of 8 × 36 × 256 = 73, 728 PCANet features. As indicated in Fig.

4.4, a total of 8 × 256 = 2048 multiplications are needed. In digital circuits, it is

impractical to create over 2,000 multipliers on chip. Hence, we divided these features

into small pieces and multiplied with coe�cients piece-wisely. To balance throughput

and power consumption, we decided to use a total of 128 multipliers in the hardware
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design, which means up to 128 multiplication operations can be performed within

each clock cycle. A state machine based module is deployed to control the �ow of the

multiplications. Once all multiplications are completed, it proceeds to adding with

the bias and then providing the �nal classi�cation results of the PCANet.

As indicated in Fig. 4.4, this data is �rstly stored into bu�ers, then 1
16
of these data

which is 8× 256/16 = 128 are to be taken for multiplication, after multiplication, an

adder tree is attached to compute the summation of these 128 data. SVM coe�cients

are taken from 32 separate ROMs, with each ROM size to be 64-by-1024 bits.

Figure 4.4: Architecture of the linear support vector machine, 32 separate ROMs are
created.

4.3.8 Optimized Architecture

As shown in the previous section, second stage implementation uses up to 8 patch

generation modules, 8 patch-mean removal modules, and 64 2D convolution modules

in total. A separate analysis on second stage circuit shows it uses 5.8mm2 of chip

space and more than 1 watt power consumption. So an optimal design approach is

to reuse these modules at the second stage, thus reducing on-chip resource usage and
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power consumption. To reuse computational units, additional bu�ers are inserted

between the �rst stage and the second stage, bu�ering 8 feature maps from the �rst

layer. In this way, only 1 patch generation module, 1 patch-mean removal module

and 8 2D convolution modules are needed. Correspondingly, features generated from

second stage need to be bu�ered too. Since there are too many features from sec-

ond PCA �lter convolution, bu�ers are inserted after the binary hashing module,

consuming much less memory. Although the new architecture sacri�ces the overall

throughput to some extent, it comes with a much smaller chip size and much lower

power consumption. Fig. 4.5 shows the detailed chip architecture of our low power

design.

Figure 4.5: Overall architecture of the optimal chip design with resource reuse
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4.4 VLSI Results

The circuit is implemented in Synopsys 32nm process technology, the chip power con-

sumption is 0.49watt, and chip size is 3.25mm2. The highest frequency is 454.5MHz.

Our chip can process up to 724,743 28-by-28 image patches in one second, which is

equivalent to 274fps at 1080P. Table 4.1 shows the comparison of PCANet chip with

mainstream CNN chip implementations.

Table 4.1: Comparison of PCANet and CNN chip implementations
PCANet NeuFlow [70] Origami [71] ConvEngine [72]

Chip Area/mm2 3.25 12.5 3.09 2.4
Power/W 0.49 0.6 1.24 0.76
Max Freq./MHz 454.5 400 350 204
VLSI Process/mm 32 45 65 45
Throughput/fps 274 45 88.5 30
Image Size 1080P 500×375 1080P 1080P
Precision �xed24 �xed16 �xed12 �xed10

Note in table 4.1, the PCANet chip acts like a classi�er, and input to the chip

is actually 28-by-28 image patch. The throughput reporting at 1080P resolution

is to measure how many pixels can be processed through our network. Throughput

comparison, the proposed PCANet accelerator beats mainstream CNN chips on power

consumption and throughput.

4.5 ADAS Applications

The PCANet has proved to be e�ective on many image processing problems [73]. In

our work, targeting ADAS applications, we evaluated the PCANet detector on road

marking detection and tra�c light recognition.
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4.5.1 Road Marking Detection

Road marking detection is a very important function for advanced driver assistance

systems. In our work, we evaluated the PCANet detector on road marking dataset

provided byWu and Ranganathan [74]. The BING algorithm [75] is used for detection.

The BING algorithm can run at a speed of 300fps on a single laptop CPU, while

achieving 96.2% object detection rate with 1,000 proposals [75]. The road marking

dataset [74] contains 1,443 street view images, each with a size of 800-by-600. There

are a total of 11 road markings in the dataset, only 9 classes are selected because

the other 2 classes do not provide su�cient samples for training. Some road marking

examples from the dataset are shown in Fig. 4.6. We randomly divided all images

into 60/40 with no overlapping. That is, 60% images are used for training, and 40%

images are used for testing.

On the road marking dataset, we achieved an overall accuracy of 96.8% on 9

classes. The PCANet classi�cation accuracy is more consistent and much better

than the original road marking detection work done by Wu and Ranganathan [74],

especially on �FORWARD� sign detection, where PCANet achieves an accuracy of

96.8%, far exceeding their achieved value of 23.13%.

4.5.2 Tra�c Light Recognition

Tra�c light recognition, especially red light recognition is very critical for drivers in

that ignoring a red light can be life-threatening. One of our conference papers [76]

presented a real time tra�c light detection system. In that work, we used color-

based pre-�ltering and blob detection for candidate proposal, and we used HoG plus

SVM for detection. By implementing pre-�ltering and blob detection algorithms onto
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Figure 4.6: Some samples from the road marking dataset

Recall Rate Precision Rate Total True Positives
HoG 80.3% 89.1% 3,586

PCANet 93.1% 93.2% 3,752

Table 4.2: Tra�c light detector accuracy comparisons between PCANet and HoG

digital circuits, we had successfully realized 60fps processing speed across the entire

system.

In our current work, we built up our own tra�c light dataset around the city of

Worcester, Massachusetts, USA. The tra�c light dataset contains video data collected

during summer and winter. On the dataset, we still choose color-based pre-�ltering

and blob detection as the candidate proposal method. We compared the performance

of HoG with PCANet as the detector. The result of HoG and PCANet performance

is shown in Table 4.2.

Table 4.2 shows that the PCANet outperforms traditional HoG algorithm on tra�c

light detection. Noticeably, there is an over 10% improvement on precision rate.
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4.6 Conclusion

In this chapter, we investigate the PCANet algorithm and its hardware architecture

as a single-chip object detector. The PCANet detector achieves satisfactory perfor-

mance on road marking detection and tra�c light detection, and is applicable to

many other ADAS applications. In Synopsys 32nm process, the ASIC implementa-

tion is able to process 724,743 image patches in one second, with only 0.5watt power

consumption. Compared to other mainstream CNN based chip implementations,

the PCANet implementation achieves better power e�ciency and higher throughput.

Moreover, the PCANet only needs 6.9K Bytes of weights, which is much lesser than

that of a CNN. Consequently, all weights can be stored on chip for fast data access.

The proposed PCANet detector is a high-throughput and power-e�cient solution for

real-time vision applications for intelligent vehicles.
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Chapter 5

Binarized Neural Network on VLSI

Advanced driver assistance systems (ADAS) have long been studied in order to aid

drivers with vehicle operation. For ADAS, power consumption has always been the

bottleneck of the system design. Hence, low power VLSI technique [77] is becoming

the mainstream ADAS solution. In this chapter, we propose a novel homogeneous

binary neural network based chip architecture to perform pedestrian detection and

car detection at the same time, with comparable performance to the state-of-the-art

solutions.

Our work uses binarized neural networks, which is a modi�cation of convolutional

neural network. Binarized neural network constrains all activations and weights to

be +1 or -1 while still retaining a high accuracy rate [78], making it very attractive

to digital implementations especially for ADAS. In our work, we trained a binarized

neural network with samples from INRIA, and Cifar-10 datasets. After training, our

binary neural network only uses 22KB weights, which is much lesser than most of the

e�cient neural networks such as SqueezeNet [79], which still needs 0.5MB weights.

Our design can still achieve an overall accuracy of over 95% on recognizing cars and
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pedestrians.

The rest of this chapter is organized as follows. Section 5.1 presents background

of the Binary Neural Network. Section 5.2 shows the method of training our Binary

Neural Network, explaining the trick of binarizing activations and weights. Section

5.3 presents hardware architecture and implementation details of our ADAS chip.

Section 5.4 shows the evaluation results of our design. Section 5.5 presents the VLSI

design of our proposed architecture in Synopsys 32nm process technology. Finally,

Section 5.6 concludes the paper.

5.1 Introduction

Advanced driver assistance system (ADAS) has become a key technology in modern

vehicles that can improve driver safety and reduce road accidents. It is also an im-

portant step towards fully autonomous vehicles in the future. Vision-based driver

assistance systems have been studied previously with typical applications such as

forward collision warning [80] [81], pedestrian detection [14] [82], tra�c signal recog-

nition [83] [84], and tra�c sign recognition [40] [85].

In recent years, the commercial success of MobileEye ADAS chips [86] stimulated

more and more research designing multi-core SoC chips for advanced driver assistance

system (ADAS). One typical VLSI implementation is Texas Instrument's TDA series

ADAS chips [77] [87]. Other SoC architectures have also been studied [88] [89] [90]

for ADAS. All these ADAS chips have heterogeneous architectures with di�erent

applications running on di�erent vision acceleration engines, achieving an overall high

accuracy, low response time, and low power consumption. However, due to design

considerations and chip resource constraint, these ADAS chips still use traditional
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computer vision and machine learning methods, failing to achieve state-of-the-art

accuracy.

In recent years, deep CNN models such as AlexNet [7], VGGNet [8], GoogleNet [9],

ResNet [10] are achieving higher accuracy on the ImageNet dataset [6], outperforming

traditional computer vision and machine learning techniques. However, when it comes

to embedded applications, those state-of-the-art models are often too complex and

power-hungry for an embedded system.

In order to close the gap between deep learning models and embedded platform

execution, two main approaches have been studied. One approach is deep compression

technology [91], it has been shown that AlexNet can be shrunk by 35 times, and VGG-

16 can be shrunk by 49 times without losing any accuracy. With deep compression,

the deep learning model needs typically 50MB of weights, which still exceeds on-chip

memory available on state-of-the-art FPGA like virtex-7. The other approach is to

leverage this repetitive property of CNN. So by creating parallel processing elements

from digital circuits [92], complex CNNs can be implemented on GPU [93], FPGA

fabric [94] and VLSI [95]. A good example is Eyeriss project [96], in which the

AlexNet has been successfully implemented on a single chip. The side e�ect of the

second approach is that data exchange with external memory still consumes lots of

power and also increases latency.

In reality, we require CNN with outstanding performance, implemented on a single

chip, which can be then easily interfaced with ADAS controllers. In this chapter, we

aim to provide a one-chip solution with moderate resource usage and minimum power

consumption for mainstream ADAS applications. We are targeting the most needed

functions like pedestrian detection, and car detection on highway [97]. One problem

of recognizing these two classes of objects in one neural network comes from di�ered
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aspect ratios. Typically, cars' aspect ratio is 1:1, while people's aspect ratio is 2:1.

To tackle this problem, we trained the network using only top half of pedestrians.

Through experiments with Histogram of Oriented Gradients (HOG) [5], we found

that we could still obtain near state-of-the-art performance and reduce computation

by 50% while using the top half of the image. Coming to algorithm selection, to

make ADAS systems implementable on mobile applications, we required small to

moderate size neural network, whose memory requirement is the least and accuracy

is expected to be comparable to state-of-the-art algorithms. In our work, we picked

the Binary Neural Network (BNN) [98] as our algorithm framework, then modi�ed

the neural network and optimized some parts of it to be hardware-compatible. We

have successfully implemented our algorithm on integrated circuits in Synopsys 32nm

process technology. With an overall high accuracy of 95% on classes of cars and

pedestrians, our design achieved consumes only 0.6watt due to the merit of binary

operations.

5.2 Algorithm Design

In this section, the binarized neural network algorithm is to be explained in detail.

The overall architecture of binarized neural network is shown in Fig. 5.1. Our im-

plementation takes in a 32-by-32 image patch, and gives out the decision which is

the class of the image patch. This section mainly explains the method of training a

binarized neural network [78].
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Figure 5.1: Overall Architecture of Binarized Neural Network

5.2.1 Convolutional Neural Network

Neural networks are made up of layers of neurons. Each neuron receives some input,

performs a dot product between input and its weight, adds the bias and applies the

non-linearity. When input is in image form, convolutional kernel could be applied

to extract feature maps in a sliding window fashion. Unlike regular neural networks,

convolutional neural networks don't need a connection for each pixel in input image,

thus greatly reducing connections compared to fully connected networks.

The convolutional layer is the core building block of CNN, and also consumes

most of the computational resources [78]. The typical expression of three dimensional

convolution is shown in equation 5.1:

Y [n, i, j] =
D−1∑
d=0

K−1∑
y=0

K−1∑
x=0

W [n, d, 2− x, 2− y] ∗X[d, i+ x, j + y] (5.1)

In the above expression, input feature map is of size D × W × H and output

feature map is of size N ×W ×H, where N is number of feature maps. K×K is the

convolutional kernel size. Above expression gives(i, j) value of nth feature map.
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5.2.2 Backpropagation

Backpropagation is a common method of training neural network with an optimiza-

tion function such as gradient descent. Backpropagation was �rst introduced by Yann

LeCun [99]. In his paper, backpropagation was applied to train a neural network for

hand written digit recognition. Backpropagation typically has three phases: forward

propagation, backward propagation, and weight update. Forward propagation gener-

ates the network's output values given a training input. The backward propagation

is used to generate the deltas (the di�erence between the targeted and actual output

values) of all output and hidden neurons. As the �nal step, weights at each layer of

the network are updated by the amount of the deltas. By repeating the above steps

over the entire training dataset a number of times, the neural network can be trained.

As previously illustrated, each neuron has a non-linearity function. A typical

choice of such non-linearity function is sigmoid function, which has forms like equation

5.2 or equation 5.3:

St =
1

1 + e−t
(5.2)

St =
et − e−t

et + e−t
(5.3)

5.2.3 Deterministic vs Stochastic Binarization

In a binarized neural network, weights and activations are constrained to be either

+1 or -1 [78]. In order to convert �oating point values to these two values, there are
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two ways to binarize. One way is deterministic binarization as shown in equation 5.4:

xb = sign(x) =


+1 x ≥ 0

−1 otherwise

(5.4)

where xbis the binarized approximation of real valued variable x. The other way

is stochastic binarization as shown in Equation 5.5:

xb =


+1 with probability p = σ(x)

−1 with probability 1− p
(5.5)

where σ is the �hard sigmoid� function as shown in Fig. 5.2.

σ(x) = clip(
x+ 1

2
, 0, 1) = max(0,min(1,

x+ 1

2
)) (5.6)

Figure 5.2: Backpropagation through hard tanh function

The stochastic binarization is more appealing than the deterministic binarization

due to its better performance. However, deterministic binarization requires less com-
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putation and hence is simpler to implement on hardware. In our work, we choose

the deterministic binarization to reduce resource usage. Furthermore, together with

deterministic binarization, we can optimize hardware implementation of the batch

normalization layer, which will be explained in subsection 5.3.2.

5.2.4 Backpropagating Through Binarized Neuron

One problem with the above sign function is that the derivative of the sign function

is zero almost everywhere. This problem remains even if stochastic binarization is

used [78]. Such a property of binarization makes the gradient to be zero, nullifying

backpropagation.

To tackle this problem, the straight-through estimator [100] is introduced. For

instance, consider a deterministic binarization function as equation 5.7:

q = sign(r) (5.7)

gq =
∂C

∂q
(5.8)

In equation 5.8, gq is the estimator of gradient ∂C
∂q
. Hence, the straight-through

estimator is:

gr =
∂C

∂r
=
∂C

∂q
× ∂q

∂r
= gq1‖r‖≤1 (5.9)

In equation 5.9, the derivative 1‖r‖≤1 can be regarded as propagating the gradient

through the hard tanh function. The hard tanh function is shown in equation 5.10:
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htanh(x) = clip(x,−1, 1) = max(−1,min(1, x)) (5.10)

When r becomes too large, the performance of the network su�ers, therefore

the gradient should be canceled [78]. As illustrated in Fig. 5.2, the binarized neural

network uses sign function as the non-linear function. When backpropagating through

the neural network, since sign function's gradient is zero almost everywhere, clipped

hard tanh function is used to approximate the actual gradient as shown in Fig. 5.2.

5.2.5 Batch Normalization Layer

Batch normalization is meant to accelerate deep neural network training by reducing

internal covariate shift [101]. One big problem with training deep neural network is

that the distribution of each layer's inputs change during training due to the change of

weights. This e�ect slows down the training, and makes the model hard to train using

saturating non-linearities. Such a phenomenon is called internal covariate shift, and

one way to counter it is to normalize each layer's inputs. Batch normalization allows a

higher training rate and takes care of bad initialization. Besides, through experiments

on our binarized neural network, without batch normalization layer, training becomes

very slow to converge, and the �nal result is not as good as the model with batch

normalization. In our work, batch normalization is inserted after each convolutional

layer and fully connected layer, before applying non-linearities. We used the following

expression for batch normalization:

y =
x− µ√
σ2 + ε

γ + β (5.11)

In equation 5.11, x is the input data , y is output data. During training, µ and
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σ2 are mean and variance of current input mini batch x, and during testing they

are replaced by average statistic over the entire training data. Batch normalization

layer forces activations through the network to take a unit Gaussian distribution,

accelerates the training and also reduces the overall impact of weights' scale.

5.3 Hardware Architecture of Binarized Neural Net-

work

This section presents the hardware architecture of the binarized neural network. We

have a total of two convolutional layers and two fully connected layers. In our work,

we propose an all-in-one chip solution in which all weights are stored in on-chip

memory. The primary reason under the hood is that most of the power consumption

comes from the data exchange between the chip and the external memory [91]. Since

low power is more desired than low area for embedded system [102]. In our work, we

primarily focus on reducing chip power consumption.

Figure 5.3: First Convolutional Layer Structure
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5.3.1 First Convolutional Layer

In our binarized neural network, input image size is constantly 32-by-32, with RGB

image format. After convolution, a total of N feature maps are generated as illustrated

in Fig. 5.3. In the �rst convolutional layer, input image pixel value is not binarized,

which still remains eight bit per pixel. Since one input feature channel generates N

feature maps after convolution, we need one set of line bu�ers for each input channel.

Extra bu�ers are inserted to avoid a large fanout in ASIC. Since weights in the �rst

convolutional layer are all binarized, we further optimize this operation by splitting

the operation into eight multiplexers, with binarized weight being the selection bit.

After then, we shift each bit and add them up to get the result.

5.3.2 Optimized Batch Normalization Layer

Batch normalization has a non-linear equation as shown in equation 5.11. It is re-

source consuming to implement non-linear and �oating point operations on VLSI. To

implement equation 5.11, we need at least one high precision multiplier. One feature

we noticed in the network is that right after each batch normalization layer, there is

a non-linear layer. In our binarized neural network, the non-linear layer is the sign

function, which quantizes output of batch normalization layer to +1 or -1. Since

only the sign of the value is retained after passing through the non-linear layer, we

found that the actual value of the batch normalization result does not need to be

computed. Hence, for each batch normalization output y, we can perform the scaling

using equation 5.12:

y

√
σ2 + ε

γ
= x− µ+ β

√
σ2 + ε

γ
(5.12)

81



Since γ and
√
σ2 + ε are always positive, multiplying with

√
σ2+ε
γ

doesn't change

the sign of the output. In this chapter, we treat
√
σ2+ε
γ
− µ as a single coe�cient,

thus only one low precision adder is needed, largely reducing resource usage and

computation e�orts.

5.3.3 Binarized Convolutional Operation

Except for the �rst convolutional layer, which takes in image patches, all other con-

volutional layers take in binarized activations from previous layers. In the previous

section, we binarize all the activations and weights to be +1 or -1. In hardware imple-

mentation, we constrain those values to be either 1 or 0, making them representable

in one bit. With binary inputs, the XNOR gate is used to perform convolution in

place of a multiplier. In our design, we use a 3-by-3 �lter which is inspired by VG-

GNet [8]. Such a convolutional kernel is very e�cient on digital implementation.

In our implementation, we have a total number of 128-by-128 convolutional opera-

tions on a single layer. To make our design fully pipelined, we need to implement

128×128×3×3 = 147, 456 XNOR operations in one clock cycle. In this way, we push

our chip to its highest throughput to keep up with the exhaustive searching method.

However, not every computer vision system uses exhaustive search. Implementing

128 × 128 × 3 × 3 XNOR operations all at the same time seems unnecessary and

wasteful considering resource usage and power consumption at times. Therefore, we

propose an optimized implementation, which executes 128× 3× 3 XNOR operations

within one clock cycle, and utilizes dual port SRAM to store intermediate results.

The proposed architecture is shown in Fig. 5.4.
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Figure 5.4: Low power architecture reuses XNOR-and-add units

5.3.4 ROM-Based Dense Layer

Unlike convolutional layers, in which a convolutional kernel is needed to process the

entire input feature map, dense layers need one parameter for each input from previous

feature maps. That means each parameter in a dense layer is only used once. In this

way, we can save all parameters in ROM, and at each clock cycle one parameter is

read out and multiplied with its corresponding feature value. The structure of dense

layer is shown in Fig. 5.5.
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Figure 5.5: Fully connected layer stores weights in on-chip ROM

5.3.5 AMBA Bus Support

ARM microprocessors are dominant in the embedded computing world because of

their low power. Our chip is meant for mobile applications, hence we designed ARM

AMBA (Advanced Microcontroller Bus Architecture) bus interface for the chip. Our

chip supports both AMBA AXI4 Lite and AXI4 Stream bus interfaces, supporting

register access mode and burst mode respectively.

5.4 Performance on ADAS Applications

In our work, we target two most common ADAS applications: car detection and

pedestrian detection. Fig. 5.6 shows an example of our training data. Among all
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these applications, car detection is the most challenging task due to occlusions, variate

views of angles, varying lighting conditions, and intra-class variations [13]. To tackle

this, we need to collect more car samples to cover as many variations as possible. In

this work, we collected our car samples from Cifar-10 dataset.

Figure 5.6: Our training samples from Cifar-10 and INRIA dataset

For pedestrian detection, since histogram of oriented gradients has �rst been used

for people detection [17], more and more e�cient detection framework had been pro-

posed [103]. Hardware implementation of pedestrian detection has been proposed as

well [104]. Overall, pedestrian detection task has been well solved [105].

Cars have 1:1 aspect ratio, while pedestrians have 2:1 aspect ratio normally. In

order to put these two applications into one framework, we need to make them to

be the same aspect ratio. The trick here is to only use the top half of a pedestrian

sample.

In this work, we proposed a novel framework design of an ADAS chip. Firstly,

we evaluated the performance of traditional computer vision algorithms. We used

the classical Histogram of Gradient Orientation (HOG) plus Support Vector Machine

(SVM) for car detection and pedestrian detection. The overall performance of HOG

and SVM is shown in Table 5.1. Then, we trained various binarized neural net-

85



works for these two classes of objects. The BNN performance is shown in Table 5.2.

Compared to the HOG algorithm, our binarized neural network generally has 6%

improvement on precision and recall rates. Further, we also trained a regular con-

volutional neural network with the same con�guration, the result is shown in Table

5.3. Comparing Table 5.2 against Table 5.3, we can see that our binarized neural

network's performance is very close to a regular convolutional neural network's per-

formance, while gaining 32 times memory saving. The Equations 5.13 and 5.14 are

used to calculate precision and recall rates.

precision =
true positives

true positives+ false positives
(5.13)

recall =
true positives

true positives+ false negatives
(5.14)

Table 5.1: HOG+SVM Classi�cation Accuracy
precision rate recall rate positive samples

Car 85.37% 84.00% 500
Pedestrian 92.11% 88.38% 190
Negative Samples 95.25% 94.82% 2000

Table 5.2: BNN Classi�cation Accuracy
precision rate recall rate positive samples

Car 94.47% 92.20% 500
Pedestrian 92.35% 95.26% 190
Negative Samples 97.61% 97.90% 2000
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Table 5.3: CNN Classi�cation Accuracy
precision rate recall rate positive samples

Car 94.68% 92.60% 500
Pedestrian 92.82% 95.26% 190
Negative Samples 97.71% 98.00% 2000

5.5 VLSI Results

The BNN accelerator is implemented using Synopsys 32nm process technology. The

maximum frequency of the chip is 350MHz, and the chip area is 5.05mm2. The BNN

chip consumes 0.6W in total, which is suitable for most of the mobile applications.

The throughput calculation is given as:

throughput =
1

C × T
(5.15)

where C is total cycles needed to process a 32-by-32 image candidate, T is the

period of one clock cycle. The processing unit generates additional 10 clock cycles

delay from its adder tree. Hence, the 2-layer BNN's throughput given as:

350× 106

128 + 128 + 10 + 128 + 10 + 3 + 10
= 839, 328 (5.16)

Distinct number of convolutional layers are also tested on the chip. Table 5.4 lists

the throughput executing di�erent number of convolutional layers.

According to the throughput table, our chip can be used with most of the main-

stream candidate proposal methods, such as selective search [106] and edgeboxes [107].

The reported 0.6W power consumption makes our implementation deployable for most
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Table 5.4: Di�erent layers' throughput comparison
Conv. Layer Num. throughput / candidates per second

2 839,328
3 431,565
4 324,976
5 188,679
6 155,624

of embedded platforms.

Besides binarization, other techniques are also applied to compress existing CNN

models. Low-rank factorization is an e�ective method to estimate informative pa-

rameters by using matrix/tensor decomposition [108]. Moreover, special structural

convolutional �lters could be trained to save parameters. The e�cient inference en-

gine (EIE) is one e�cient implementation of compressed deep neural network [109],

and it is capable of processing 1.88× 104 frames/sec FC layers of AlexNet. Another

state-of-the-art implementation is the YodaNN, which is an ultra-low power CNN ac-

celerator based on binary weights [110]. Since the bottleneck of processing a CNN is

usually the memory bandwidth, a massively parallel in-memory processing architec-

ture is proposed and claims to archieve high power e�ciency [111]. Table 5.5 presents

the comparison of our BNN accelerator with other compressed CNN accelerators.

Table 5.5: Comparison of our BNN accelerator with other compressed CNN acceler-
ators

Our work EIE [109] YodaNN [110] BRein [111]

Chip Area/mm2 5.05 40.8 2.16 3.9
Power/W 0.6 0.59 0.15 0.6
Max Freq./MHz 350 800 400 400
VLSI Process/mm 32 45 65 65
Throughput 5.7TOPS 102GOPS 1510GOPS 2.3TOPS
Power E�ciency 9.5TOPS/W 172GOPS/W 10.07TOPS/W 3.83TOPS/W

Throught comparison, we can see that our BNN accelerator achieves close to

YodaNN power e�ciency due to the merit of binarization. One major limitation
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of BNN is that the performance is signi�cantly lowered when dealing with large

CNNs [108]. Hence, 4-bit or 8-bit �xed quantization are more commonly seen in

larger convolutional neural networks.

5.6 Conclusion

In this chapter, the BNN is proposed as a potential feature extractor and classi�er

for intelligent vehicles. Two popular object detection tasks are selected to demon-

strate the BNN's performance. For benchmarks of car and pedestrian classi�cation,

the BNN achieves an accuracy of over 95%, outperforming the traditional HOG al-

gorithm. Compared to a CNN with the same con�guration, BNN has less than 1%

accuracy loss while gaining a few ten times resource advantages. Furthermore, an

elastic architecture is designed for BNN using Synopsys 32nm process technology,

realizing high throughput and low power consumption at the same time. Our work

shows that the BNN has enormous potential to be the baseline classi�er for intelligent

vehicle object detection applications.
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Chapter 6

Conclusions

6.1 Summery of Results

This dissertation is devoted to accelerating computer vision and machine learning al-

gorithms for vision based intelligent vehicles solutions. We design optimized hardware

architecture on either FPGA or ASIC for vision based ADAS applications.

• Firstly, we propose a real time lane detection system on FPGA. We adopt the

hough transform algorithm for lane detection, and propose an e�cient imple-

mentation of the hough transform algorithm on FPGA fabric. Compared to the

standard hough transform implementation, we successfully reduce 50% multi-

plier usage in digital circuits. Implementing on the Xilinx Zynq platform, the

proposed system reaches a maximum operating frequency of 143.85MHz and a

processing speed of 69.4 frames per second at 1080P video input.

• Secondly, we propose an e�cient SOC architecture for tra�c sign classi�ca-

tion. Since tra�c signs are made to have human made shapes and colors, the

traditional HOG algorithm is very suitable for feature extraction. Consider-
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ing resource usage on hardware, we use linear SVM as the classi�er for decision

making. We proved that the HoG + SVM algorithm achieves good performance

on BelgiumTS dataset. Furthermore, we accelerated the HOG and SVM algo-

rithms in FPGA fabric, achieving a maximum operating frequency of 241.7MHz.

The proposed system is capable of processing 116 frames per second at 1080P

resolution. Compared to typically hundreds of millisecond latency on a gen-

eral CPU, the SOC realization of tra�c sign classi�cation generates only 6.5us

latency, which is neglectable for embedded systems.

• Thirdly, we propose an end-to-end SOC architecture for tra�c light recognition.

Regarding the task, we collect our own dataset in local Worcester, MA. For

tra�c light recognition, we still adopt the HOG + SVM algorithms. In this

task, we leverage color information to extract region-of-interest. After binarizing

input images, we apply BLOB analysis to propose potential candidates of tra�c

lights. Then, we use the SVM algorithms to decide whether current candidate is

a tra�c light no not. By accelerating BLOB detection method in FPGA fabric,

the entire system can run in real time. The highest frequency of the system is

150.1MHz, and the maximum throughput is 72.4 frames per second with 1080P

video streaming input.

• Fourthly, we design an e�cient digital circuit architecture for the PCANet.

ADAS designers often face the dilemma to balance between algorithm robust-

ness and real time processing capability. The PCANet algorithm has trainable

�lters, which certainly outperforms traditional hand-crafted computer vision

algorithms in various conditions. Also, the PCANet achieves similar accuracy

with state-of-the-art CNNs while retaining a much simpler structure. Hence,
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the PCA based network is proposed to be a baseline feature detector for ADAS.

Furthermore, we accelerate the PCANet using Synopsys 32nm process technol-

ogy. The proposed architecture only consumes 0.5 watt, and is still capable of

classifying over 742K image candidates in one second.

• Finally, we propose a highly e�cient architecture of binary neural network for

ADAS. Compared to a regular CNN, the BNN binarizes internal activations

and weights, reducing memory usage and computation at the same time. More-

over, the BNN retains comparable accuracy with the CNN. In this dissertation,

we show that the BNN works well on tasks like pedestrian detection and car

detection. By implementing the BNN in Synopsys 32nm process technology, a

maximum operating frequency 350MHz is achieved with only 0.6 watt power

consumption. The proposed BNN architecture is general and could be extended

to other computer vision applications as well.

6.2 Recommendations for Future Work

In this dissertation, we mainly investigated the digital circuit implementations of vi-

sion based solutions for intelligent vehicles. In recent years, we notice that LiDAR

is becoming cheaper and lighter for intelligent vehicles. LiDAR measures distance

to a target by illuminating that target with a pulsed laser light and measuring the

re�ected pulses with a sensor. Hence, LiDAR is a useful complementary sensor for

CMOS sensors. One potential work could be studied further is LiDAR data pro-

cessing on digital circuits, thus creating a dense point cloud of the road, and better

understanding the driving environments. Moreover, to build a complete sensing kit

for a modern intelligent vehicle, sensors like stereo cameras, Radar, ultrasonic sensor
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are used as well. In this way, sensor fusion is needed to fuse sensing information

together and provide a robust prediction results to drivers.

In this dissertation, we mainly studied the object detection methods and their

hardware acceleration. In ADAS applications, besides object detection, road segmen-

tation is also an important and necessary task. The road segmentation serves as the

initial step of a completed ADAS by providing drivable areas for further processing

like path planning. Unlike object detection, road segmentation requires each pixel

in the input image to be labeled, and hence needs lots of computation as well. The

hardware acceleration of road segmentation methods is worth investigating and to-

gether with hardware accelerated object detection method, can serve as a complete

solution for ADAS.
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