
Mathematical Principles for Deconstructing Deep
Learning: Theory and Application to Electromagnetic

Signals
by

Evan Witz

A Dissertation

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Doctor of Philosophy

in

Mathematical Sciences

August 4, 2022

APPROVED:

Professor Randy C. Paffenroth
Worcester Polytechnic Institute
Advisor

Professor Oren Mangoubi
Worcester Polytechnic Institute
Committee Member

Professor Donald R. Brown
Worcester Polytechnic Institute
Committee Member

Professor Jian Zou
Worcester Polytechnic Institute
Committee Member

Patrick Bidigare
Synoptic Engineering
External Committee Member

Abstract

In the field of deep learning, there can often exist a divide between the theoreti-

cal and that of the applied. In this work, we attempt to bridge that gap by develop-

ing a theoretical framework for studying neural networks of a certain architecture,

which can then be applied in the construction of real networks, which we apply

to data coming from electromagnetic signal processing. These networks combine

the best performance properties of more standard architectures with a beautifully

rich algebraic structure. The theoretical portion of this work begins by studying

the properties of networks with polynomial activation. We prove here a theorem

demonstrating an algebraic decomposition of what we call Kronecker networks,

as well as a concrete path toward a Universal Approximation Theorem for poly-

nomial networks. In the applied portion, our focus is on the study of range local-

ization of over-water electromagnetic signals. We attempt to use a received signal

and deep learning to determine the distance from which the signal was sent. We

explore the various atmospheric phenomena that can influence the signal and give

a comparison to a statistical model, the maximum likelihood estimator. Finally, we

bridge the two portions of this work by demonstrating that a network architecture

inspired by our polynomial activation can achieve similar performance to a more

standard architecture while enjoying a rich algebraic structure.

2

Acknowledgements

First and foremost, I’d like to express my endless gratitude towards my advisor,

Randy Paffenroth of WPI. I came to Randy in late 2019 in the darkest part of my

PhD journey – lost, advisorless, and nearly out of the program entirely. Randy

took me into his group, and although I wish I could say it’s been smooth sailing

every step of the way since then, I can say that Randy has overflowed with support

at every turn. I would be neither the mathematician nor the person I am today

without Randy’s continued help and guidance.

I would also like to thank my committee advisors and research collaborators,

Rick Brown of WPI and Pat Bidigare of Synoptic Engineering. Not only have they

provided the data for the electromagnetics portion of this project, but they have

taken the time every week to discuss the research and offer guidance and ideas.

The time spent talking research with them has been one of the highlights of my

PhD career due to their continued kindness and insight.

I would like to thank my other two committee members, Frank Zou and Oren

Mangoubi, for graciously donating their time for the proposal and defense of this

dissertation. It was a pleasure to have their input and guidance in preparing this

work.

I must also acknowledge and thank Luca Capogna, whose kindness and gen-

erosity guided me through the early years of my PhD and my formal exams. Luca

helped me to become a mature mathematician and see the world of academic

mathematics, and I will always be grateful for everything he’s done for me.

I would like to thank everyone in the math program for their kindness, gen-

erosity, and friendship. Most of all, I must acknowledge Elisa Negrini, without

whose friendship and encouragement I would have left the PhD program, and Ri-

3

uji Sato, a wonderful collaborator and a dear friend. I must also expressly thank

Mia Barger for all her extraordinary work on our signal processing project; none

of this would have been achieved without her work over the last year and a half.

Last, but most of all, I’d like to thank my family – my parents, Craig and

Heidi, and my sisters, Veronica and Merina – for their continued love and sup-

port throughout this very long journey. I’d have never gotten here without them.

4

Papers Contributing to this Dissertation

Published First Author Papers

E. Witz, M. Barger, and R. Paffenroth, ”Deep Learning for Range Localization via

Over-Water Electromagnetic Signals,” 2021 20th IEEE International Conference on

Machine Learning and Applications (ICMLA), 2021, pp. 1537-1544.

Extended Abstracts Submitted

E. Witz, M. Barger, and R. Paffenroth, ”A Detailed Accounting of Noise in Neural

Networks for Electromagnetic Signal Processing,” Submitted to Asilomar Confer-

ence on Signals, Systems, and Computers, 2022

M. Barger, E. Witz, and R. Paffenroth, ”Neural Network Output as Kalman Filter

Input with Applications to Electromagnetics, Submitted to Asilomar Conference

on Signals, Systems, and Computers 2022

Working Papers

E. Witz and R. Paffenroth, ”Kronecker Networks and Piecewise Polynomial Acti-

vation,” For submission to Frontiers in Applied Mathematics and Statistics.

5

Funding Proposals Based Upon Results in this
Dissertation

DARPA - ”Messina: Statistical Modeling of AI Uncertainty with Applications to

Passive Overwater Emitter Localization,” submitted by Synoptic Engineering to

DARPA, June 2022

6

Funding and Technical Acknowledgements

Most of the results of this dissertation were obtained using a high-performance

computing system, the Turing Research Cluster, provided to WPI through the NSF

grant DMS-1337943.

The code which generates the predictions of the Maximum Likelihood Estima-

tor was generously provided by D. Richard Brown of WPI.

7

Executive Summary

Overview of Our Work

Figure 1: Overview of Our Main Work

Our focus in this work lies in the intersection of mathematics and data science,

with applications in the physical sciences. For our theoretical work, we formu-

late a never-before-seen network architecture that allows us to peer into the heart

of a neural network – we can see by our construction exactly how the network

arrives at prediction and even glean insights about the data set itself from the be-

havior of the network. For our applied work, we make advancements in the signal

processing space and develop a new framework for making predictions on signal

problems by taking advantage of complex atmospheric conditions.

In Section 2, we begin the construction of our novel architecture by consider-

ing polynomial activation functions, namely, the activation function σ(x) = x2.

We demonstrate that these functions have remarkable algebraic properties, and

8

Table 1: Error rate for two models trained and tested on the MNIST data set of
handwritten digits. Model 1 uses a standard LeakyReLU activation, while Model
2 uses the novel Piecewise Square activation.

Model Description Error Rate (%)

Model 1
An MLP with three hidden linear lay-
ers and LeakyReLU activation function,
trained with negative log likelihood loss.

2.28 ± 0.17%

Model 2
An MLP with three hidden linear layers
and Piecewise Square activation function,
trained with negative log likelihood loss.

2.21 ± 0.00%

through the algebraic deconstruction of the network we develop in this work, we

provide a path toward proving a Universal Approximation theorem for these func-

tions. In Section 3, we develop a piecewise polynomial version of this square acti-

vation function with improved performance and stability properties. We demon-

strate this by performing practical experiments on the MNIST data set.

Following this, we turn our attention toward applications in electromagnetics.

Our major investigation here is to determine the distance between a signal trans-

mitter and a receiver using only the received signal as input data. We conduct

a series of investigations to determine the correct choices of input data, network

architecture, and data transforms and preprocessing the optimize network perfor-

mance on this problem. Additionally, we are able to compare the performance

of this model against the optimal model in this domain, and Maximum Likelihood

Estimator, and find that our performance is comparable to even the optimal model.

Finally, in Section 6, we combine the two realms of this work and evaluate our

novel architecture of piecewise square activation on electromagnetic data. We find

that not only is its performance comparable to standard architectures and the MLE,

but it also opens a world of analysis inaccessible to other architectures.

9

Our Contributions

• We develop a theory for the construction of activation functions which pro-

vide us with both a rich algebraic theory as well as a deep level of inter-

pretability from a mathematical perspective of machine learning. We develop

a theoretical framework of polynomial activation functions that allow us to

algebraically decompose a neural network function into its constituent parts,

that is, to completely separate algebraically the network parameters from the

input data.

• Using this decomposition, we provide a method by which a Universal Ap-

proximation Theorem can be proven for neural network with a polynomial

activation function.

• We develop a novel activation function, the Piecewise Square Activation, and

show that it naturally leads us to deeply analyze a neural network to give

insight that other activations would not. We show that its algebraic structure

allows one to easily compute local gradients of the network and demonstrate

how this exposes the local geometry of the data set.

• We demonstrate how, through a discerning use of data selection and data

transformation, one can build a robust model for deep learning in the signal

processing domain. We show in a number of relevant cases that our models

are able to achieve performance comparable to the optimal estimator in this

setting, the Maximum Likelihood Estimator. We also demonstrate that these

methods are applicable in a variety of simulated atmospheric conditions.

10

Road Map

Figure 2: Research Road Map and Real-World Applications. This figure is a sum-
mary of our work over the last three years. In particular, the left-hand side details
our theoretical work – the blue boxes are general areas of research which have
inspired the present work, and the green boxes are our particular focus points.
The right-hand side details our work in data-driven, real-world problems in signal
processing and electromagnetics. Additionally, the four yellow boxes display our
publications related to this work. At this time, we have one published first-author
paper, one first-author paper in submission, one second-author paper in submis-
sion, and one first-author working paper. Finally, the orange box lists a funding
proposal partially based on results in this dissertation.

11

Contents

1 Introduction 14

1.1 Background and Overview . 14

1.2 Related Work . 17

2 Kronecker Networks and Square Activation 20

2.1 Neural Networks, an Introduction . 20

2.2 Square Activation Function . 23

2.3 The One-Dimensional Case . 28

2.4 Fittable Functions and the Solvable Set 33

2.5 Higher Degree Polynomials . 36

3 Piecewise Square Activation 38

3.1 Definition and Basic Properties . 38

3.2 Image Classification with Novel Activation 42

3.3 Model Comparison and Analysis . 46

3.4 Remarks on Activation Structure . 52

4 Electromagnetics 54

4.1 Deep Learning for Inverse Problems & Related Work 57

4.2 Generation and Preprocessing for Electric Field Data 58

4.3 Atmospheric and Experimental Parameters 62

4.4 Simulating Receiver Noise . 67

4.5 Training and Prediction . 68

4.6 Architecture and Training Scheme . 69

4.7 Testing . 70

12

4.8 Remarks . 71

4.9 Discussion . 75

4.10 Further Evaluation . 77

5 Short-Range Experiments 80

5.1 Data Ambiguity . 80

5.2 Experimental Results . 86

6 Real-World Application of Piecewise Polynomial Activation 94

6.1 Training and Testing on Electromagnetic Data 94

6.2 Polynomial Generation for Networks in Electromagnetics 98

6.3 Analysis of Network Structure Based on Polynomial Generation . . . 99

6.4 Remarks on Piecewise Square Activation 109

7 Conclusion 111

8 Future Work 112

A Appendix 114

A.1 Network Decomposition with Piecewise Square Activation 114

13

1. Introduction 14

1 Introduction

1.1 Background and Overview

While inhabiting the world of deep learning, one is very often split between two

worlds – that of the beautiful theory and that of the useful application. Practition-

ers can point to the remarkable success deep learning methods have had in the

fields of image recognition, language processing, the physical sciences, and many

other spaces. Mathematicians can look at the remarkable set of density theorems,

backed up by empirical evidence.

A long-held belief in the field of deep learning is that neural network methods

are black boxes [9, 12, 38], that is, they are powerful objects that one can use to

accomplish incredibly complex tasks, but studying them in a theoretical sense or

determining their properties is enormously difficult. One can use a neural network

to tell an image of a cat from an image of a dog, but it is often difficult or impossible

to tell how this is being done.

The approach to studying deep learning we take in this work is to ask, ”What

is the simplest object which could be called a neural network? Are there any in-

sights which could be gained from studying such objects?” Here, we offer answers

to these questions in the form of so-called Kronecker neural networks, that is, neu-

ral networks whose activation functions are quadratic polynomials. We use this

theoretical basis to develop a novel activation function and novel architectures.

In Section 2.2, we discuss the theoretical basis for our novel architecture, and

that is the squared activation function. We begin by examining this activation func-

tion from a theoretical perspective. We are able to show algebraically in Theorem

2.2 that a neural network with a squared activation admits a decomposition into a

1. Introduction 15

matrix product of a large matrix whose components are functions of the network

parameters and a vector whose components are functions of the input data. This

reformulation of the neural network object is remarkable since it takes a generally

intractable, black-box object in a neural network and reveals its precise algebraic

properties. In Section 2.3, we follow-up by considering the illuminative example

of the one-dimensional case. In this case, we are able to make very precise alge-

braic statements about which functions are approximable by the network. The key

in this section is that it reveals the structure of the accessible set of functions of the

network, that is, the network has access to a submanifold of positive co-dimension

of the set of polynomials. We find that, predictably, as the width of the network is

increased, the dimension of the submanifold of accessible function increases until

eventually all polynomials are accessible. The remarkable aspect of this construc-

tion is that it provides a path to proving a Universal Approximation Theorem for

polynomial networks.

We substantiate these algebraic results empirically by showing the precise be-

havior of a small polynomial network under a standard training scheme. Addi-

tionally, these experiments reveal that the network formulated in this way with

this activation function draws natural similarities to linear regression. The net-

work has access to polynomial functions just as linear regression does, and it at-

tempts to fit those functions to the input data in an optimal way. Since the optimal

way of fitting polynomials to data is given by linear regression, we demonstrate

that the network attempts to replicate this to the extent that it is able through the

process of training by gradient descent.

Next, in Section 3, we construct a new activation function based on these ideas.

With a pure polynomial activation network, one can run into issues of stability

1. Introduction 16

and performance when one applies the network to real data. We address this and

construct a new piecewise polynomial activation based on Rectified Linear Units

(ReLU) which addresses these aspects of the activation. We demonstrate that this

activation can be deconstructed in a similar way to the polynomial activation, lead-

ing to analyzable algebraic properties. Additionally, in Section 3.2, we give empir-

ical evidence of the usefulness of such an approach to neural network formulation

by testing the novel architecture on real data. We test this new construction on

the MNIST data set and demonstrate that not only does it perform comparably to

more standard activation functions, but we are also able to explicitly write down

the function discovered by the network during the training process.

Beginning in Section 4, we discuss the major applied portion of the work. Our

focus here is in the area of electromagnetics, particularly in range localization for

over-water electromagnetic signals. For a signal transmitted over the ocean, we

wish to determine the distance to the transmitter source using only the received

signal along with a neural network model. We develop a particular data prepro-

cessing scheme which is particularly effective for transforming the data into a form

which is most efficiently learnable by the neural network methods.

In this over-water setting, atmospheric effects play a key role in the propaga-

tion of an electromagnetic signal. We demonstrate that despite the outsized effect

evaporation ducts have on the received signal, a neural network with access to

information about the evaporation duct as well as the electromagnetic signal is

outperformed by a network which is given the electromagnetic signal alone. Ad-

ditionally, we demonstrate that the reason for this is the low quality of atmospheric

data available in practice.

We are also able in Section 5 to compare the results of our neural network mod-

1. Introduction 17

els to a benchmark model, the Maximum Likelihood Estimator. Crucially, this

model is the optimal solution for this problem, so it is important for the network

to be able to perform well against it. We show that in many relevant cases, the

network models are able to achieve comparable performance to the MLE model.

Additionally, the network outperforms in MLE in terms of evaluation time in the

case of complex atmospheric conditions.

Finally, in Section 6, we demonstrate that the theoretical framework developed

in Sections 2 and 3 is useful for even the very complex data we encounter in the sig-

nal processing portion of the work. We demonstrate that as in the case of MNIST,

this new activation is able to achieve results that are comparable to activation func-

tions that are staples of the field such as LeakyReLU. Using the tools provided to

us by the piecewise square activation function, we are also able to determine the

precise structure of the function the network finds during the training process. We

find that we are able to go in-depth into the precise way in which the network in-

teracts with its input data in a way that data scientists typically cannot; in fact, we

are able to exactly determine the way in which the network locally distinguishes

nearby points. This comes from the fact that local partial derivatives and local gra-

dients becomes very easy to compute when one uses an activation function that

leads to a piecewise polynomial structure in the resulting function.

1.2 Related Work

The study of activation functions is as old as the formulation of neural networks

themselves; the theoretical work goes back to the 1980s. The first major work in

this domain is the original Universal Approximation Theorem by Cybenko [11],

showing that networks constructed as sums of linear transforms with sigmoidal

1. Introduction 18

activations applied are universal approximators. Universal approximation theo-

rems tend to be very important in the deep learning space [10, 24, 27, 51, 57], since

they give a ”minimum viability” to a particular network construction. An inter-

esting note is that in Cybenko’s work, a very broad class of functions satisfy the

sigmoidal property; however, polynomials are specifically excluded from this the-

orem. Regardless, part of this work serves to specifically study polynomial activa-

tion functions and demonstrate properties that make progress toward a universal

approximation theorem for polynomial networks.

The most influential development in the realm of activation functions for the

purpose of this work is the formulation of the Rectified Linear Unit (ReLU) ac-

tivation [25, 36]. There are many ReLU-type activations, a few of which we list

here. Softplus [18] is a C∞ exponential approximation of ReLU. LeakyReLU [34]

augments ReLU through the use of a gradient that does not vanish for negative

inputs. Gaussian Error Linear Unit (GELU) [20], introduced in 2016, is a C∞ ver-

sion of ReLU that makes use of the CDF of a standard normal distribution. There

is also the Scaled Exponential Linear Unit (SELU) [29], which allows the network

to self-normalize leading to improved prediction. There are many other activation

functions of ReLU-type and others, a survey of which is given in [3].

The way that activation functions are typically presented is to offer either a

performance increase or a smoothness property that allows for improved train-

ing. In this work, we rather emphasize an improved analyzability property for

networks that make use of our piecewise polynomial activation function. Poly-

nomial or piecewise polynomial activation functions are not a novel construction

[7, 28, 41, 52, 61], though very few are of ReLU-type. [28], for instance, offers a C1

piecewise polynomial activation that are constant when x < 0 and x > c for some

1. Introduction 19

c, leading to a function which is more sigmoidal in overall shape. Our activa-

tion, by contrast, is a piecewise polynomial which goes to ±∞ as |x| → ∞, giving

much more of a ReLU (or more specifically, LeakyReLU) flavor. We demonstrate in

this work that a function constructed in this way has nearly identical performance

properties to LeakyReLU, while retaining the analyzability properties of networks

with polynomial activations.

Analyzability or explainability is not a new concern in the realm of neural net-

works [31]. Being such complex objects performing potentially very important

tasks, practitioners and researchers often find themselves wanting to explain how

a neural network makes its predictions. [56] focuses on explainability through the

use of architecture constraints, while [23, 53, 58] focus on explaining the predic-

tions of graph neural networks. In the current work, we focus on explainability

by way of studying the structure of the function discovered by the network. We

analyze its local properties and relate this to the underlying data set. Surveys and

reviews of work in explainable machine learning are given in [2, 8, 14, 55].

2. Kronecker Networks and Square Activation 20

2 Kronecker Networks and Square Activation

2.1 Neural Networks, an Introduction

Neural networks are complex objects that come in all shapes, sizes, and varieties,

but they all have a few things in common. We give a basic construction and a

definition here.

The most important ingredient of a neural network is function composition.

The idea is that even if one starts with a very simple function f(x), by composing

many simple functions fd(fd−1(. . . f2(f1(x)))), one can express very complicated

functions of one’s input x. We refer to these functions as layers.

The simplest possible functions, and the ones that are very often used as the

building blocks of a neural network, are affine transformations. For an input vector

x ∈ Rn, these take the form

Wx+ b,

where W ∈ Rm×n and b ∈ Rm. Neural networks work by composing these affine

transformations using more Ws and bs:

Wd(. . .W2(W1x+ b1) + b2) + . . .) + bd.

However, this on its own is insufficient. A simple rearrangement by distribu-

tion shows that a composition of affine functions is still affine:

Wd(. . .W2(W1x+ b1) + b2 + . . .) + bd =

(1∏
i=d

Wi

)
x+

d∑
i=1

(i+1∏
j=d

Wj

)
bi,

where Π denotes a matrix product. Note that the order of the product matters as

2. Kronecker Networks and Square Activation 21

Figure 3: Sample activation functions ReLU, Sigmoid, and Hyperbolic Tangent
tanh. Each activation function has different properties, though choosing the ”cor-
rect” activation for a given problem can be difficult.

these are matrix products; the outermost layers appear first in the multiplication.

To remedy this and allow us to construct a full-fledged neural network, the fi-

nal ingredient is the activation function σ. The activation function is what provides

nonlinearity to each layer and allows the overall network to model nonlinear func-

tions. Activation functions are typically defined as functions of one variable, and

are applied componentwise to each layer of the network. There are many candi-

date activation functions one may use in a network, such as ReLU, Sigmoid [11],

or Hyperbolic Tangent, shown in Figure 3.

Finally, if we collect the Ws and bs into a single notational parameter θ, all these

ingredients are combined into a single neural network, which we will denote by f :

f(θ, x) = Wdσ(. . . σ(W2σ(W1x+ b1) + b2) + . . .) + bd. (1)

Functions of this form are remarkably powerful, and through a discerning training

process to select the parameters θ, they allow us to fit extremely complex functions

of the input data x. Neural networks are typically visualized in images such as the

one in Figure 4; in images such as this, the nodes represent elements of the vector

σ(Wx + b), while the arrows represent the action of each layer as it relates to the

elements of the next layer.

2. Kronecker Networks and Square Activation 22

Figure 4: Visualization of a neural network. Image sourced from
https://towardsdatascience.com/.

For problems in real applications, we typically start with a collection of data

{(xi, yi)}Ni=1, where N is the size of the data set, and we want to find a function

f(θ, x) which best approximates y from x by making smart choices of θ. To that

end, we define a Loss function to measure how poorly our network is fitting the

data. A typical loss function is L2 loss, also known as Mean Squared Error (MSE),

given by

MSE =
1

N

N∑
i=1

∥yi − f(θ, xi)∥22.

Finally, to train the network, we minimize the loss function by performing

a stochastic variation of gradient descent, the non-stochastic version of which is

given below:

θnew = θ − γ∇θLoss,

where γ is a chosen parameter known as the learning rate. In practice, this is a

simplification of what is generally a complex optimization process to find the best

possible Ws and bs; more details can be found in [1, 5] or other textbooks.

Here, we will begin our analysis with the relatively uncommon activation func-

2. Kronecker Networks and Square Activation 23

tion σ(x) = x2. The key insight here is that when using the squared activation func-

tion σ(x) = x2, we can use properties of Hadamard and Kronecker products to ex-

pand composed functions. Networks of this kind were considered by Berthiaume

Paffenroth [7], though we in this work go deeper into the algebraic deconstruction

and its implications.

2.2 Square Activation Function

Consider the network with square activation.

Assume we have Ŵ ∈ Rm×n, x̂ ∈ Rn×1, and b̂ ∈ Rm×1. Then, one can write the

affine transformation

ŷ = Ŵx̂+ b̂,

with ŷ ∈ Rm×1. For notational convenience, since we will be taking products of

sums in later steps, we wish to collect the Ŵ and b̂ into a single term. Thus, we

rewrite this expression as the following:

ŷ
1

 =

 Ŵ b

0 · · · 0 1


x̂
1

 .

So, defining

x =

x̂
1

 , y =

ŷ
1

 ,W =

 Ŵ b

0 · · · 0 1

 ,

we arrive at the simplified form

y = Wx

to express each layer of a neural network.

We want to be able to apply the squared activation function here, i.e., we would

2. Kronecker Networks and Square Activation 24

like to be able to write (Wx)2. However, we have to be careful about what we mean

when we write this, since Wx is a vector and cannot be squared directly. Keeping

in mind that we are applying an activation function, we note that we want to apply

the square component-wise. Since a square is equivalent to self-multiplication, we

may express this square as a component-wise product (known as the Hadamard

product) of Wx with itself. We express this with the notation

Wx⊙Wx.

Let us give a formal definition of a few matrix products here, since we will need

them going forward.

Definition 2.1. For two matrices A,B ∈ Rm×n, the Hadamard Product ⊙ [32] is

given by the component-wise product of A and B:

A⊙B =



a11b11 a12b12 · · · a1nb1n

a21b21
. . . a2nb2n

...

am1bm1 · · · amnbmn


,

Definition 2.2. For two matrices A,B ∈ Rm×n, the Kronecker Product ⊗[32] is

2. Kronecker Networks and Square Activation 25

given by the following product of A and B:

A⊗B =



a11b11 a11b12 · · · a11b1q · · · · · · a1nb11 a1nb12 · · · a1nb1q

a11b21 a11b22 · · · a11b2q · · · · · · a1nb21 a1nb22 · · · a1nb2q
...

...
...

...

a11bp1 a11bp2 · · · a11bpq · · · · · · a1nbp1 a1nbp2 · · · a1nbpq
...

...
...

...
...

...
...

...
...

...

am1b11 am1b12 · · · am1b1q · · · · · · amnb11 amnb12 · · · amnb1q

am1b21 am1b22 · · · am1b2q · · · · · · amnb21 amnb22 · · · amnb2q
...

...
...

...

am1bp1 am1bp2 · · · am1bpq · · · · · · amnbp1 amnbp2 · · · amnbpq



.,

To take the Kronecker product of a matrix A with itself n times, we adopt the

notation
1⊗

i=1

A.

Finally, we give one more definition, originally found in [26].

Definition 2.3. For two matrices A ∈ Rm×n1 ,B ∈ Rm×n2 , the Row-wise Khatri-

Rao Product • is given by the Kronecker product of the rows of A and B, that is, if

A and B are written as

A =



A1

A2

...

Am


,B =



B1

B2

...

Bm


,

where Ai, Bi denote the rows of the matrices A and B, then the Khatri-Rao product

A •B ∈ Rm×n1n2 is given by

2. Kronecker Networks and Square Activation 26

A •B =



A1 ⊗B1

A2 ⊗B2

...

Am ⊗Bm


.

We list a few important identities relating these matrix products:

Theorem 2.1. Properties of Kronecker, Hadamard, and Khatri-Rao Products[48]

Let A,B ∈ Rm×n, x, y ∈ Rn×1.

1. (Ax)⊙ (By) = (A •B)(x⊗ y)

2. (Ax)⊗ (By) = (A⊗B)(x⊗ y)

3. (A⊗B)⊗C = A⊗ (B⊗C)

Returning to the matter at hand, we apply the activation function σ(x) = x2

component-wise as usual to the vector Wx. Then y = (Wx)2 becomes the Hadamard

product y = Wx⊙Wx. We may apply Theorem 2.1 and see that this is equivalent

to y = (W •W)(x ⊗ x), where • is the row-wise Khatri-Rao product and ⊗ is the

Kronecker product.

We may iterate this mapping by adding more layers. Consider

y = W3(W2(W1x)
2)2,

which is a network of two hidden layers and squared activation. We may perform

the same algebraic analysis on this mapping:

2. Kronecker Networks and Square Activation 27

y = W3(W2(W1x)
2)2

= W3(W2((W1x)⊙ (W1x)))
2

= W3((W2((W1x)⊙ (W1x)))⊙ (W2((W1x)⊙ (W1x)))).

We have that (W1x) ⊙ (W1x)) is a vector, to which the matrix W2 is being

multiplied. Therefore, we may apply the mixed product identity once more:

y = W3(W2 •W2)(((W1x)⊙ (W1x))⊗ ((W1x)⊙ (W1x)))

= W3(W2 •W2)(((W1 •W1)(x⊗ x))⊗ ((W1 •W1)(x⊗ x)))

= W3(W2 •W2)(((W1 •W1)⊗ (W1 •W1))(x⊗ x⊗ x⊗ x).

We find that, finally,

y = W3(W2 •W2) ((W1 •W1)⊗ (W1 •W1)) (x⊗ x⊗ x⊗ x) (2)

By this construction, we have already proven the major theorem of the theoret-

ical portion of this work. The case of a deeper network follows identically, with

the primary difficulty being that of notation.

Theorem 2.2. A neural network f(θ, x) of depth d, where θ represents the set of net-

work parameters and x represents the input data, with the activation σ(x) = x2, admits a

decomposition into the form

f(θ, x) = P (θ)Φ(x).

Moreover, this decomposition is given by

f(θ, x) =

(
Wd

1∏
i=d−1

1⊗
j=d−2

(Wi •Wi)

)(1⊗
j=d−1

x

)

2. Kronecker Networks and Square Activation 28

Proof. See above.

A decomposition of this form calls to mind theorems such as the Fisher-Neyman

factorization theorem [17], which gives a characterization of a sufficient statistic

with the existence of a decomposition of a probability density function fθ(x) into

functions h(x)gθ(T (x)), where T is a statistic. The difference here is that the Fisher-

Neyman theorem tells us something about T , while the decomposition here tells

us something about the relationship between f and θ, namely, it gives us an exact

mapping from network parameters to polynomial coefficients.

2.3 The One-Dimensional Case

In reducing this network down to a matrix-vector operation, we have revealed

the beautiful structure obscured by the function-compositional formulation of the

network. Consider the final multiplicative term of this product, x⊗ x⊗ x⊗ x. Let

us assume that the network has one-dimensional input. Then the x vector has the

form

x =

[
x̂ 1

]T
as stated earlier in the section, where T denotes the vector transpose. Let us con-

sider Kronecker products of x with itself.

x⊗ x =

[
x̂2 x̂ x̂ 1

]T

x⊗ x⊗ x =

[
x̂3 x̂2 x̂2 x̂ x̂2 x̂ x̂ 1

]T
We see that as one takes Kronecker products of the x vector with itself up to n

2. Kronecker Networks and Square Activation 29

times, all terms of the nth-order polynomial of x̂ appear as the entries of the new

vector. Finally, let us consider the structure of this vector when the input to the

network is 2-dimensional. In this case,

x =

[
x1 x2 1

]T
,

x⊗ x =

[
x2
1 x1x2 x1 x1x2 x2

2 x2 x1 x2 1

]T
.

Likewise, in this case, the terms of the multivariate polynomial of variables x1, x2

appear as entries in the vector x⊗ x.

Now, recall the object of interest in this discussion – we are examining the struc-

ture of a neural network with square activation function. In the one-dimensional

case, we could simply expand the polynomial y = w3(w2(w1x + b1)
2 + b2)

2 + b3,

write the polynomial term by term, and see the structure of the resulting function.

However, deriving this structure using the matrices and Kronecker and Khatri-Rao

products of Equation 2 is illuminative as it establishes familiarity with the objects.

To that end, let us expand this formula piece by piece, starting with the Khatri-Rao

product W1 •W1:

W1 •W1 =

w1 b1

0 1

 •
w1 b1

0 1

 =

w2
1 w1b1 w1b1 b21

0 0 0 1



2. Kronecker Networks and Square Activation 30

Next, we see this Khatri-Rao product self-multiplied into a Kronecker product:

(W1 •W1)⊗ (W1 •W1)

=


w4

1 w3
1b1 w3

1b1 w2
1b

2
1 w3

1b1 w2
1b

2
1 w2

1b
2
1 w1b31 w3

1b1 w2
1b

2
1 w2

1b
2
1 w1b31 w2

1b
2
1 w1b31 w1b31 b41

0 0 0 w2
1 0 0 0 w1b1 0 0 0 w1b1 0 0 0 b21

0 0 0 0 0 0 0 0 0 0 0 0 w2
1 w1b1 w1b1 b21

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


We are ready to add the second layer, in the form of W2 •W2:

(W2 •W2)(W1 •W1)⊗ (W1 •W1) =

[
A B C D

]
,

where

A =

w4
1w

2
2 w3

1w
2
2b1 w3

1w
2
2b1 w2

1w
2
2b

2
1 + w2

1w2b2

0 0 0 0

 ,

B =

w3
1w

2
2b1 w2

1w
2
2b

2
1 w2

1w
2
2b

2
1 w1w

2
2b

3
1 + w1w2b1b2

0 0 0 0

 ,

C =

w3
1w

2
2b1 w2

1w
2
2b

2
1 w2

1w
2
2b

2
1 w1w

2
2b

3
1 + w1w2b1b2

0 0 0 0

 ,

D =

w2
1w

2
2b

2
1 + w2

1w2b2 w1w
2
2b

3
1 + w1w2b1b2 w1w

2
2b

3
1 + w1w2b1b2 w2

2b
4
1 + 2w2b

2
1b2 + b22

0 0 0 1

 .

After performing the final matrix multiplication with W3, multiplying by the

vector x ⊗ x ⊗ x ⊗ x, and combining like terms, we arrive at the final structure of

the polynomial network:

2. Kronecker Networks and Square Activation 31

y =


(w4

1w
2
2w3)x

4 + (4w3
1w

2
2w3b1)x

3 + (6w2
1w

2
2w3b

2
1 + 2w2

1w2w3b2)x
2

+(4w1w
2
2w3b

3
1 + 4w1w2w3b1b2)x+ (w2

2w3b
4
1 + 2w2w3b

2
1b2 + w3b

2
2 + b3)

1


Now consider the structure of each term of the output vector y. Each entry

of the y vector is exactly a fourth-order multivariate polynomial of the entries in

the x vector. In this way, this architecture draws us a very natural comparison to

the most basic prediction technique: linear regression. That is, the neural network

exactly has access to some set of polynomials of degree 4. Given a data set of inputs

and outputs of a function f , it is known that the optimal way to approximate f is

given by the methods of linear regression. We explore this relationship further in

the following sections.

2.3.1 What functions are in this family?

This section follows in principle part of the construction of spanning dimension

of Berthiaume and Paffenroth [7], though we expand on the work by giving an

explicit characterization of the function for which the gradient is computed as well

as a more explicit characterization of the manifold of accessible functions.

As a starting point, let us assume our data is one-dimensional in both input and

output. We may then write this in an explicit form in the following way. Note that

in this setting, each W has the explicit form

Wi =

wi bi

0 1



2. Kronecker Networks and Square Activation 32

where each wi, bi is a scalar.

Denote the neural network by fW(x) = W3(W2(W1x)
2)2. After performing the

matrix multiplications as before, we arrive at the formula

fW(x) = (w4
1w

2
2w3)x

4+

(4w3
1w

2
2w3b1)x

3+

(6w2
1w

2
2w3b

2
1 + 2w2

1w2w3b2)x
2+

(4w1w
2
2w3b

3
1 + 4w1w2w3b1b2)x+

(w2
2w3b

4
1 + 2w2w3b

2
1b2 + w3b

2
2 + b3)

(3)

We have discussed the derivation of this formula in detail; at this point we

would like to move on to the meaning of this formula. We see that as a function,

this neural network is a fourth order polynomial of its scalar input x. By noting

that we may choose the w’s and b’s, we can see that the network clearly has access

to some subset of the 5-dimensional set of polynomials of degree 4. What is not

clear, however, is exactly which polynomials are accessible by the network. We

would like to find out exactly which ones these are. To this end, we define the

solvable set.

Definition 2.4. Solvable Set The solvable set is the set of polynomials

p(x) = ax4 + bx3 + cx2 + dx+ e

for which there exist coefficients w1, w2, . . . , b3 such that fW(x) = p(x).

Theorem 2.3. The solvable set is the set of all p(x) = ax4 + bx3 + cx2 + dx+ e such that

one of the following is true:

1. All coefficients are 0.

2. Kronecker Networks and Square Activation 33

2. a ̸= 0, b ̸= 0, and d = 4abc−b3

8a2
.

Moreover, the choice of w1, w2, . . . , b3 has two degrees of freedom.

Proof. Denote our free parameters by s and t. Set

w1 =
b

4a
, w2 =

32a3s

b3
, w3 =

b2

4a

1

s2
,

b1 = t, b2 =

(
− 32a3t2

b3
+

c

b
− b

4a

)
s, b3 = e−

(
c

b
− b

4a

)
s.

Theorem 2.3 gives an exact characterization of which functions are explicitly ac-

cessible to the network, that is, for which polynomials with coefficients a, b, c, d, e

one can find a set of network parameters w1, w2, . . . , b3 such that the coefficients

of the resulting network are exactly equal to the coefficients of the original poly-

nomial. However, knowing which functions are exactly solvable by our system of

polynomials is insufficient when discussing neural networks, since we must also

consider any polynomial which can be approximated arbitrarily well by the neural

network. To that end, we are also interested in density results, not merely results

on exact solutions.

2.4 Fittable Functions and the Solvable Set

We now investigate which polynomials of the form

p(x) = âx4 + b̂x3 + ĉx2 + d̂x+ ê

2. Kronecker Networks and Square Activation 34

we can approximate using polynomials of the form

p(x) = ax4 + bx3 + cx2 +
4abc− b3

8a2
x+ e.

The set of polynomials of this form is exactly the solvable set that our neural net-

work has access to. This leads to our first density theorem.

Proposition 2.1. The solvable set is dense in the set of parabolas p(x) = ĉx2+ d̂x+ ê.

Proof. It is clear that since b3 can take on any value, any polynomial in the solv-

able set can take on any value in the constant term. Therefore, we consider only

parabolas ĉx2 + d̂x.

It suffices to show that there exist sequences an, bn, cn such that an → 0, bn →

0, cn → ĉ, with the constraint that

4anbncn − b3n
8a2n

= d̂.

Set cn = ĉ. The solution to the polynomial in two variables

4anbnĉ− b3n = 8a2nd̂

is given by

an =

√
b2n(ĉ

2 − 2d̂bn) + ĉbn

4d̂

= O(bn) as bn → 0.

Then an and bn may simultaneously go to 0, and so the solvable set is dense in

the set of parabolas.

2. Kronecker Networks and Square Activation 35

We now prove a similar proposition for quartic polynomials. In this case we are

not able to approximate every polynomial, only those with 0 third and first order

terms.

Proposition 2.2. The solvable set is dense in the set of even quartic polynomials

p(x) = âx4 + ĉx2 + ê.

Proof. As before, we may ignore the constant term. In this case, it suffices to show

that there exist sequences an, bn, cn such that an → â, bn → 0, and cn → ĉ with the

constraint that
4anbncn − b3n

8a2n
→ 0.

Set an = â and cn = ĉ. As bn → 0, 4âbnĉ−b3n
8â2

→ 0 as well.

We now prove a negative density result. The network is unable to approximate

any monomials of third degree.

Proposition 2.3. The solvable set is not dense in the set of polynomials of the form

p(x) = b̂x3.

Proof. Let bn → b̂. Since bn → b̂, the only way for

4anbncn − b3n
8a2n

→ 0,

is for |an| → ∞. So either the fourth order term goes to infinity or the first order

term is bounded away from 0. In either case, polynomials in the solvable set are

not dense in the set of monomials of third order.

2. Kronecker Networks and Square Activation 36

2.5 Higher Degree Polynomials

This line of reasoning can be extended to higher degree polynomials. Let us con-

sider the case where the neural network has depth d and the ith layer has width mi.

Consider the mapping from neural network parameters to polynomial coefficients

provided naturally by our construction, namely the mapping from Rm1×n × · · · ×

R1×md → R2d−1 given by

(W1, . . . ,Wd) 7→Wd

1∏
i=d−1

1⊗
j=d−2

(Wi •Wi)

In the three-layer case, if additional width is added to the network, the solvable

set of polynomials accessible to the network extends to the entire 5-dimensional

space of fourth order polynomials. We conjecture that this behavior extends to

the case of higher degree polynomials as well, that is, if m1, m2, . . . , md are large

enough, the solvable set is always dense in the space of polynomials of degree 2d−1.

We expect this to be the case. It is clear that as m1,m2, . . . ,md, are increased,

the dimension of the manifold of accessible polynomials must always either stay

the same or increase, up to a maximum of 2d−1 + 1. Unless there is an unseen

mechanism by which the dimension stops increasing somewhere below this maxi-

mum dimension, the manifold of accessible polynomials would always eventually

become dense in the space of all polynomials of degree 2d−1.

If this were true, it would constitute a formal proof of an idea that lies in the

folklore of deep learning – that networks with polynomial activation functions are

universal approximators if one allows them arbitrary depth. Previous theorems,

such as Cybenko’s classical Universal Approximation Theorem[11], demonstrate

that polynomials do not serve as a universal approximator when one only consid-

2. Kronecker Networks and Square Activation 37

ers networks of a single layer.

3. Piecewise Square Activation 38

3 Piecewise Square Activation

3.1 Definition and Basic Properties

We can see that for a squared activation network, there is beautiful theory. We

can develop explicit formulae that beautifully tease apart the various aspects of

the network. So why is this type of activation not present in the neural network

literature? There are two principal reasons. The first is that theorems such as Cy-

benko’s Universal Approximation Theorem [11], the characterization of functions

that serve as universal approximators explicitly exclude polynomials. This is not

the primary reason, however, as this difficulty can most likely be removed by con-

sidering a network with polynomial activation of sufficient depth and width and

applying the Stone-Weierstrass Theorem [50]. In practice, the reason polynomial

activation functions are not used is that of stability. It is very difficult to train a net-

work with polynomial activation, and they tend to not perform well in practice.

We will see an example of this later on when showing a performance comparison

between several candidate activation functions in Section 3.2.

We would like to construct a new activation function which has the properties

of ReLU, while giving the interpretive and theoretic power of a squared activation

function. There are many similar functions to ReLU, each of which claims a partic-

ular advantage in terms of training or theoretical properties. For example, Leaky

ReLU is an invertible version of ReLU. Being invertible, it preserves information

in the information-theoretic sense and in practice avoids the issue of vanishing

gradient.

We would like an activation function that makes use of the structure we already

have while maintaining the high performance properties of ReLU-type activation

3. Piecewise Square Activation 39

Figure 5: Graphical representation of a Piecewise Square Activation compared to
the standard ReLU activation.

functions. To this end, we define a new activation function in the following way:

Piecewise Square Activation =


0.01x− .000025 x ≤ .005

x2 .005 ≤ x ≤ 1

2x− 1 1 ≤ x

(4)

This function is C1 and a piecewise polynomial, which gives us the algebraic

properties we want out of an activation as well as the performance one would

expect out of a ReLU-type activation function. We will see an example of the per-

formance of this activation function later on.

This activation claims a particular advantage over other ReLU-type activations

in the following way: we are able to explicitly enumerate the function discovered

by the network during the training process through the use of its piecewise poly-

nomial structure. Let us assume as before that we have an n-dimensional input

space to our neural network, whose elements are denoted by x ∈ Rn. Let us also

return to the standard notation of referring to the parameters of the neural network

3. Piecewise Square Activation 40

by Wi ∈ Rmi×mi−1 and bi ∈ Rmi , where mi is the size of the ith hidden layer.

We consider once more the action of the first layer onto the input vector x:

fN(θ, x) = W1x+ b1

=


w1,1,1 · · · w1,1,n

...

w1,m1,1 · · · w1,m1,n



x1

...

xn

+


b1,1

...

b1,m1


(5)

When the multiplication and addition are performed and an activation function

is applied, this may become, as an example,

fN(θ, x) = σ(W1x+ b1)

=



.01(W1,1 · x+ b1,1)− .000025

(W1,2 · x+ b1,2)
2

...

2(W1,m1 · x+ b1,m1)− 1


,

(6)

where W1,j denotes the jth row of the matrix W1.

As we have written it here, this layer is a function with n inputs and m1 outputs.

We wish to consider a slice of this function in a single direction, with all other

variables constant. So let us consider the slice of Rn given by (x1, a2, a3, . . . , an),

where a1, . . . , an are constant and x1 remains variable. We consider what each layer

looks like in this case:

3. Piecewise Square Activation 41

fN(θ, x) = W1x+ b1

=


w1,1,1 · · · w1,1,n

...

w1,m1,1 · · · w1,m1,n





x1

a2
...

an


+


b1,1

...

b1,m1


(7)

This expression is now a function of one-dimensional input and m1 outputs,

and with a piecewise square activation, we may explicitly write any particular

element of the output of this function as a polynomial of x1. We may also continue

this process of applying σ(Wix+ bi) with every layer until finally reaching the final

polynomial used to make predictions for a given point, which is what we do in the

following.

Since m1 may in theory be large, we may also do this using an algorithm. In

code, we express the vector containing the x’s and a’s as a coefficient matrix of a

first-order vector of polynomials denoted by P , i.e.,



x1

a2
...

a784


=



1x1 + 0

0x2 + a2
...

0x784 + a784


⇒



1 0

0 a2
...

...

0 a784


=

[
P1 P2

]
= P.

To generate the polynomial associated with a specific input index k and data

point a, we simply construct the coefficient matrix P corresponding to a variable

xk and pass this P through the network while keeping track of which piece of the

piecewise square activation function is being applied to every element. We add

columns to P as necessary, as the power of the polynomials grow due to squares

being applied.

3. Piecewise Square Activation 42

For the example listed above in Equation 6, after one layer, this would become

σ(W1P + b1)

= σ





W1,1 · P1 W1,1 · P2 + b1,1

W1,2 · P1 W1,2 · P2 + b1,2
...

...

W1,400 · P1 W1,400 · P2 + b1,400





=



0 .01w1,1,1 .01(W1,1 · P2 + b1,1)− .000025

w2
1,2,1 2w1,2,1(W1,2 · P2 + b1,2) (W1,2 · P2 + b1,2)

2

...
...

...

0 2w1,1,400 2(W1,400 · P2 + b1,400)− 1



(8)

Finally, we may generate polynomials associated with specific data points by

repeating this process for every layer in the network. The complete algorithm for

generating these polynomials is given in Algorithm 1.

3.2 Image Classification with Novel Activation

As an initial test of this activation function, we will focus in this portion on train-

ing and testing a model with the Piecewise Square activation function in the area

of image classification. We will use the benchmark data set MNIST[30] provided

by the PyTorch[42] Torchvision[35] library. We will demonstrate through these

experiments that while unconventional in its formulation, the Piecewise Square

activation performs comparably to more standard activation functions. We will

use the activation function LeakyReLU as the benchmark activation to which we

may compare our novel one.

We first devise a simple experiment in which we train two models, one with

3. Piecewise Square Activation 43

Algorithm 1 An algorithm for generating the predictive polynomials for a given
network and input data point. For convenience, rows and columns of W ’s, b’s,
and the data a have been transposed, since this is how these methods are typically
implemented in code.
Input: a ∈ R1×n, where a is a given input data point and n is its dimension
W1 ∈ Rm1×n, . . . ,Wd ∈ Rmd×md−1 , b1 ∈ Rm1×1, . . . , bd ∈ Rmd×nd , where mi is the size
of the ith layer and W1, . . . ,Wd, b1, . . . , bd are the parameters of a trained neural net.
k, where k is an integer between 0 and n − 1 representing the index for which to
compute the predictive polynomial.
Return: P , a matrix of polynomial coefficients representing slices of the function
generated by the neural network.

P ∈ R2d−1+1×n is a matrix of zeros.
P [0, k]← 1
P [1, :]← a
P [1, k]← 0
L← a ▷ L tracks the output of each layer
for i = 1 . . . d do

P ← PW T
1

P [0, :]← P [0, :] + b1
L← PiecewiseSquare(LW T

1 + b1)
for j = 1 . . .mi do

if L[i] < .000025 then
P [:, j]← .01 ∗ P [:, j]
P [0, j]← P [0, :]− .000025

end if
if .000025 ≤ L[i] ≤ 1 then

n← number of nonzero entries of P [:, j] ▷ # of coefficients currently
P [0 : 2n− 1, j]← np.convolve(P [0 : n, j], P [0 : n, j])

end if
if L[i] > 1 then

P [:, j]← 2 ∗ P [:, j]
P [0, j]← P [0, :]− 1

end if
end for

end for

3. Piecewise Square Activation 44

Figure 6: Select examples from the MNIST data set of handwritten digits. We will
use this data set as a preliminary test to evaluate our novel activation function on
a standard benchmark.

a LeakyReLU activation and one with a Piecewise Square activation, to classify

digits on the handwritten digit data set MNIST.1 Select examples of MNIST are

shown in Figure 6. We will show that this new activation performs comparably

to the standard one, while keeping in mind the additional algebraic structure pro-

vided by an activation of this type. These models are listed in more detail in Table

2.

For this experiment, Model 1 is a simple, fully connected MLP with three hid-

den layers. The LeakyReLU activation function is applied after the first three

layers, and LogSoftmax is applied before the final output. Model 2 is intention-

ally constructed identically, save for the crucial difference in activation function.

Model 2 uses the Piecewise Square activation after the first three layers instead of

the LeakyReLU activation. Both models are trained for 10 epochs using SGD op-

timization from the ”torch.optim” package, a batch size of 64, and learning rate

1Select code elements in this experiment sourced from https://nextjournal.com/gkoehler/pytorch-
mnist.

3. Piecewise Square Activation 45

Table 2: Error rate for two models trained and tested on the MNIST data set of
handwritten digits. Model 1 uses a standard LeakyReLU activation, while Model
2 uses the novel Piecewise Square activation. The model architecture is identical
otherwise.

Model Description Error Rate (%)

Model 1
An MLP with three hidden linear lay-
ers and LeakyReLU activation function,
trained with negative log likelihood loss.

2.33 ± 0.11%

Model 2
An MLP with three hidden linear layers
and Piecewise Square activation function,
trained with negative log likelihood loss.

2.08 ± 0.20%

γ = .01.

While this difference in activation may seem small, it changes the structure of

the function resulting from the neural network dramatically. As a continuous but

not C1 function with a corner, the function generated when using a LeakyReLU

activation is continuous piecewise planar. It fits functions by tiling its input space

with piecewise planes; this allows the function flexibility when it comes to fitting,

but leads to functions that are exceptionally hard to parse and understand. In some

sense, it could be considered a microcosm of deep learning as a whole. Piecewise

polynomial activation, on the other hand, fits data with piecewise polynomials

functions of its input. While these can still be difficult to write down and analyze

for high-dimensional input, the task is much more tractable as one can track coef-

ficients of the components of the input vector as they pass through the network as

shown in the previous section. This allows us to actually write down the resulting

function that the neural network finds through training using Algorithm 1.

After training models of the two types as specified earlier, we record the error

rate of their predictions as the proportion of incorrectly classified images in the test

3. Piecewise Square Activation 46

Figure 7: Comparison of the training losses of Model 1, which uses the LeakyReLU
activation function, and Model 2, which uses the Piecewise Polynomial activation,
when trained on the MNIST data set. Model 2 slightly outperforms Model 1 in
terms of loss while training, though the difference is marginal and varies based on
the choice of random seed – Models 1 and 2 can each outperform the other based
on initialization. We have also plotted the performance of the square activation
function; it fails due to instability after training for 20% of one epoch. For ease of
reading, we have plotted a rolling average of the training loss.

data set. As we can see in Table 2, Model 2 outperforms Model 1 in this particu-

lar example, though the difference is small and depends on the random seed one

chooses – either model can outperform the other depending on initialization. To

generate the plus or minus values, we trained each model 5 times and recorded

the max and min of the error rates of the 5 trials.

3.3 Model Comparison and Analysis

Figure 7 displays the training losses of the two networks as they train on MNIST.

We display a rolling average of the training losses in Figure 7 to more easily com-

pare the two loss curves. As we can see, Model 2 generally has the slightly lower

loss throughout the training process, though Model 1 has a slightly lower classifi-

cation error rate as shown in Table 2.

3. Piecewise Square Activation 47

Figure 8: MNIST Example for which we may apply the polynomial generation
algorithm, Algorithm 1. Pixel 352 is highlighted, which is the pixel we consider for
this example.

While the performance of the two networks is similar, we will begin to demon-

strate in this section the advantage of using an activation function like the Piece-

wise Square activation. By using Algorithm 1, we are able to determine the shape

of the function found by the neural network.

For this illustration, we take an example of an image in MNIST, then choose

a pixel (i.e., choose an element of the input vector x as in the previous section),

then apply Algorithm 1 to view the polynomials found in the network in an area

around that point. For this example, we choose the pixel highlighted in Figure 8,

which corresponds to x352 if we consider the image an input vector.

There are two things to note about the polynomials generated for this example.

First is that since we are making classification predictions with ten classes, each

image and vector component (i.e. pixel) will have ten associated polynomials,

since the output of the neural network is 10-dimensional. Second, note that in

the architecture of our network, a Log Softmax is applied to each component the

output of the final layer. For the purposes of polynomial generation, we display

the function before the Log Softmax is applied.

The output of Algorithm 1 applied to the image and pixel in Figure 8 is given in

3. Piecewise Square Activation 48

Table 3: Polynomials associated with each class prediction for the image and pixel
in Figure 8. Polynomial terms with coefficients less than .001 are not shown for
ease of reading.

Output Element Polynomial

Predicting 0: −2.193 + 0.09x

Predicting 1: −8.491 + 0.216x− 0.001x2

Predicting 2: −1.19 + 0.063x− 0.001x2

Predicting 3: 2.627− 0.082x

Predicting 4: 3.581− 0.03x

Predicting 5: 1.314− 0.234x+ 0.004x2

Predicting 6: −7.789 + 0.032x

Predicting 7: 1.103 + 0.234x− 0.001x2

Predicting 8: 2.314− 0.223x− 0.001x2

Predicting 9: 17.395− 0.093x+ 0.001x2

Table 3. We notice several things immediately. The first is that the polynomial asso-

ciated with the prediction ”9” has the largest constant term out of the ten options.

This is a consistent trend among the images we have tested with this method; the

network tends to put its predictions into the constant term in the polynomial rather

than using particular elements of x.

We may even measure this empirically. We select several pixels in the image

given in Figure 8 and compute the associated polynomials using Algorithm 1. We

then add up the magnitudes of the coefficients associated with each order of the

polynomials; these results are given in Figure 9. We see that the constant terms are

an order of magnitude larger than the first order terms, the first order terms are

order of magnitude larger than the second order terms, and so on.

Let us be clear about what exactly we are showing in Tables 3 and 4. If we

look at the local structure of the function associated with the neural network, the

3. Piecewise Square Activation 49

function is exactly a multivariate polynomial of its 784 inputs. The degree of the

polynomial depends on precisely how often the function x2 is applied as a data

point passes through the network, but as a rough sketch, the function takes the

form

f(x, θ) =
8∑

i0=0

8∑
i1=0

· · ·
8∑

i783=0

θi0i1...i783x
i0
0 x

i1
1 . . . xi783

783 , (9)

where θ is a polynomial coefficient consisting of elements of the ws and bs. What

we are showing in this table is a slice of that function with all variables except for

one held constant, that is, using our notation from Section 3.1,

f(x, θ) =
8∑

i352=0

(
θi0i1...i783

8∑
ij=0,j ̸=352

ai00 a
i1
1 . . . ai351351 a

i353
353 . . . a

i784
784

)
xi352
352 . (10)

For i352 = 0, there are a very large number of terms collected into the constant – in

fact, all terms that do not contain x352 are included in this term. Therefore, it is not

entirely surprising that much of the prediction is collected into the constant when

considering a particular slice of the function. What we show in the tables is the

behavior of the function at a certain point in a particular direction.

We may repeat this for as many images or pixels as we like; in Table 4 we see

the same polynomial generation algorithm applied to pixels 100 and 541.

We notice that in Table 4 as well as Table 3 that despite the activation function

being applied three times, the polynomials we generate tend to be of low order.

Additionally, with the polynomials we have seen, the constant terms are by far the

largest of the polynomials. The network has in some sense already accumulated

its prediction information into the constant term of the polynomial, since it is not

making much use of the actual pixel information with such small coefficients on

the x terms.

3. Piecewise Square Activation 50

Figure 9: For several pixels in the MNIST image in Figure 8, we add up the sizes
of the coefficients of the associated polynomials as listed in Table 3. We plot these
sums on a log scale to demonstrate that the polynomials have a steep decline in
order, by which we mean the magnitudes of the coefficients decease rapidly with
order.

Table 4: Polynomials associated with each class prediction for the same image as
Table 3, this time for pixels 100 and 541. For brevity, we only include the final 5
polynomials for each pixel. As before, polynomial coefficients less than .001 are
not shown.

Pixel Output Element Polynomial
Pixel 100 Predicting 5: 0.783− 0.105x+ 0.002x2

Pixel 100 Predicting 6: −7.651 + 0.163x− 0.002x2

Pixel 100 Predicting 7: 1.576− 0.063x+ 0.002x2

Pixel 100 Predicting 8: 1.798− 0.077x

Pixel 100 Predicting 9: 17.113− 0.202x+ 0.001x2

Pixel 541 Predicting 5: 0.787− 0.098x

Pixel 541 Predicting 6: −7.686 + 0.082x

Pixel 541 Predicting 7: 1.575− 0.065x+ 0.002x2

Pixel 541 Predicting 8: 1.853 + 0.053x− 0.001x2

Pixel 541 Predicting 9: 17.159− 0.094x

3. Piecewise Square Activation 51

Table 5: Error rate for two models trained and tested on the MNIST data set of
handwritten digits. Model 1 uses a standard LeakyReLU activation, while Model
2 uses the novel Piecewise Square activation. The model architecture is identical
otherwise.

Model Description Error Rate (%)

Model 1
An MLP with three hidden linear lay-
ers and LeakyReLU activation function,
trained with negative log likelihood loss.

2.33 ± 0.11%

Model 2
An MLP with three hidden linear layers
and Piecewise Square activation function,
trained with negative log likelihood loss.

2.08 ± 0.20%

Model 3
An MLP with two hidden linear layers
and Piecewise Square activation function,
trained with negative log likelihood loss.

2.11 ± 0.18%

We can actually make use of this fact to inform the architecture of the neural

network. We know that since the coefficients on the non-constant terms are rela-

tively small, the network no longer changes very much with respect to its input

data by the time the data gets to the final layer. Therefore, prediction information

has mostly already accumulated by the time the network gets to the last layer of

the network. We can take advantage of our knowledge of what the network is

doing by actually decreasing the depth of the network. We perform one final ex-

periment here, where we decrease the depth of the network and see whether the

network can still make good predictions on the MNIST data set. The results of this

experiment are given in Table 5.

We see in Table 5 that the network trained with fewer layers actually slightly

outperforms the larger networks, justifying our deductions about the behavior of

the architecture given the size of the constant term in the polynomial. By this

example, we have shown that useful architectural insight can be gained by using the

3. Piecewise Square Activation 52

Piecewise Square activation function.

In this section, we have seen confirmation that not only is the piecewise square

activation serviceable on real problems, but it is competitive with more standard

activation functions such as LeakyReLU and can offer additional insight into ar-

chitecture choices that other activation functions do not. We will explore the Piece-

wise Square activation function in greater detail when applying it to problems in

electromagnetics later on.

3.4 Remarks on Activation Structure

We will make one final note here. The activation structure appears to be made

more complicated than it needs to be to achieve the desired algebraic structure,

considering the several additive terms in the pieces of the function in the left and

right portions. With that in mind, we perform one brief experiment to show an

alternative activation formulation we could use.

To that end, we define the following:

Piecewise Square Activation, Simplified =


0.01x x ≤ 0

x2 0 ≤ x ≤ 1

2x− 1 1 ≤ x.

(11)

This formulation removes some of the complexity in defining the function and

putting it into code, though it gives up the C1 property of the activation that will

become important in later sections. We perform the same experiment on MNIST

as with the other two models with this third activation function; the results are

reported in Table 6.

While Model 3 reports a lower error rate than the other two models, we intend

3. Piecewise Square Activation 53

Table 6: Error rate for two models trained and tested on the MNIST data set of
handwritten digits. Model 1 uses a standard LeakyReLU activation, while Model
2 uses the novel Piecewise Square activation. The model architecture is identical
otherwise.

Model Description Error Rate (%)

Model 1
An MLP with three hidden linear lay-
ers and LeakyReLU activation function,
trained with negative log likelihood loss.

2.33 ± 0.11%

Model 2
An MLP with three hidden linear layers
and Piecewise Square activation function,
trained with negative log likelihood loss.

2.08 ± 0.20%

Model 3

An MLP with three hidden linear layers
and Piecewise Square, Simplified activa-
tion function, trained with negative log
likelihood loss.

2.13 ± 0.08%

to preserve the C1 structure of our activation function as it will be important in

later analysis in Section 6.

4. Electromagnetics 54

4 Electromagnetics

In the applied portion of the current work, also found in [54], our focus is on lo-

calizing an electromagnetic emitter sending a signal over water. While there has

been significant work on using neural networks to perform range localization via

acoustic signals in the underwater setting [15, 16, 33], as well as localization us-

ing electromagnetic signals in indoor environments [47], the authors are not aware

of any work which attempts localization in an over-water environment, which is

substantially more challenging. Herein we demonstrate how, in this setting, neu-

ral network performance can be substantially improved by a mixing of knowledge of

the physical properties of the system of interest with appropriate data selection and feature

engineering.

More specifically, we focus on the problem of localizing the source of an electro-

magnetic signal over water using only the resulting electromagnetic transmission,

and possibly ancillary meteorological data. While it is fairly easy to calculate the

angle at which a signal arrives at a receiver array (since one may simply rotate

the receiver until the signal is strongest), it is much more difficult to determine the

distance to the signal’s origin. Prima facie, the problem is actually ill-posed, since

one is unable to determine whether a signal comes from a powerful emitter that is

far away, or a weak emitter nearby. However, the problem becomes possible when

one makes use of the way the electric field scatters under certain meteorological

conditions. Based on previous work on radio wave propagation over water [60],

we believe it is possible to pinpoint the location of a radio transmitter under cer-

tain conditions within a few kilometers, using a specially trained regression neural

network.

The most important of these meteorological conditions, and one of the key el-

4. Electromagnetics 55

ements of electromagnetic propagation in this over-water domain, is the existence

of evaporation ducts [60]. As seawater evaporates, the water vapor forms a layer of

humid air just above the sea level. This layer of humidity has a major impact on

the propagation of electromagnetic waves. More precisely, it is the exact size of

this evaporation duct which causes changes in the behavior of an electromagnetic

signal. We can see an example of this in Fig. 10 - when the height of this evapora-

tion layer is 20 meters, the electric field is much less oscillatory than when the duct

height is 25 meters.

The other factor at play when analyzing signals and evaporation ducts in this

setting is that in practice, the size of an evaporation duct is extremely difficult

to measure [45, 62, 59]. This presents us with a coincidence of difficulties when

trying to use electric field patterns to determine range - the factor which has one

of the largest effects on the electric field is the exact factor which is the hardest

to measure. One of the key findings of this work is that while the existence of the

evaporation duct (or other similar atmospheric phenomena) is essential, the precise height

of an evaporation duct, while being crucial to the behavior of the electric field, is not needed

to make range predictions based on the electric field if a deep neural network is appropriately

trained.

This problem is strange when it comes to deep learning in several ways. For

one, unlike most problems in deep learning, we actually have access to the optimal

model for the solution to our problem, known as a maximum likelihood estima-

tor (MLE). This is already a remarkable departure from the usual setting in which

one does deep learning. The other strangeness we see in the data set is extreme

ambiguity in the data. What we mean by this is that there are input data points,

corresponding to entirely different outputs, that are so similar that even the opti-

4. Electromagnetics 56

Figure 10: Electric fields resulting from evaporation duct heights of 20m (top) and
25m (bottom). Notice that the duct height has a substantial effect on the resulting
electric field.

4. Electromagnetics 57

mal model to solve this problem cannot tell them apart. This leads to very unusual

errors in the output for both a deep learning model and the MLE.

4.1 Deep Learning for Inverse Problems & Related Work

To place this problem in context, what we are attempting to achieve can be thought

of as an inverse problem in partial differential equations, i.e., a problem in which

one knows the output of the equation (in this case the electric field), and one wishes

to find parameters of the equation which would lead to that output. There are

many parameters which influence the electric field resulting from an over-water

transmission – the height of the emitter, the power of the emitter, the size of an

ambient evaporation duct, the presence of higher atmospheric ducts, the range at

which one measures the electric field, and in practice, many more factors, which all

have enormous impacts on the detected signal. Implicitly, these are all parameters

in the partial differential equation that governs the behavior of the electric field.

Solving inverse problems in differential equations using neural networks is not

new [4, 6, 40, 44]. However, rarely is this done with the little amount of data

available to us in this setting. A typical example of an inverse problem in dif-

ferential equations incorporating machine learning would be to discretize a space,

give an algorithm examples of boundary conditions and solutions at all discretiza-

tion points, and have the algorithm construct an equation which generates that

solution. This task requires both large amounts of data and many points of mea-

surement in the domain to be accurate. Unfortunately, such voluminous training

data is not available to us for the current problem. In fact, the target application

will likely only have a few independent collections of measurements, since each

real-world experiment can take days to perform.

4. Electromagnetics 58

As we will see momentarily, our data set only has 80 sensors to capture an

electric field spanning hundreds or thousands of square miles of ocean. It would

be very difficult to invert the entire PDE with this in mind. Fortunately, we do not

have to invert the entire PDE, we only have to recover one unknown parameter –

the distance between the emitter and the sensor.

This problem of emitter localization is not new, in fact, work goes back to the

1940s [49]. This has remained an active area of research to the present. For a paper

discussing emitter localization via triangulation with multiple receivers, see [13]

or more recently, [46]. For an example of localization via a single sensor in an

urban environment, see [37]. For emitter localization using a single sensor which

moves, see [22]. The current work distinguishes itself by its explicit focus on the

single-sensor, over-water setting, which as discussed, has much more complicated

atmospheric conditions than other settings.

4.2 Generation and Preprocessing for Electric Field Data

The data we use for these experiments was generated using a MATLAB-based

parabolic equation software tool, known as PETOOL[39]. Using this tool, we gen-

erate an electric field such as the one shown in Fig. 10. Fig. 10 shows only the

horizontal polarization of the electric field, but the signal as generated by PETOOL

has both horizontally and vertically polarized components. The simulated signal

frequency is 5.8GHz.

4.2.1 Discretization and Sensor Simulation

In practice, the sensor that captures electromagnetic signals will have 40 receiver

elements, spaced vertically at 25cm intervals from 3 meters to 13 meters, where

4. Electromagnetics 59

Figure 11: A diagram of the signal receiver. This diagram courtesy of Synoptic
Engineering.

each sensor captures both horizontal and vertical polarization. A diagram of this

receiver array is given in Figure 11. We replicate this signal measurement scheme

in the simulated data by discretizing the electric field vertically at an interval of

25cm. The white lines in Fig. 10 represent the part of the electromagnetic field that

is detected in a single measurement by both the real and simulated sensor. The

horizontal spacing in the data discretization varies depending on the goal of the

particular experiment. For initial experiments, the discretization is 20m, sampled

from 10 to 110km.

For each measurement, the signal is received as 40 imaginary numbers for both

the horizontal and vertical polarizations, so each data point is comprised of 160 real

numbers. To construct a data point out of these measurements, we concatenate

the horizontal and vertical components into a single 160-dimensional vector. A

visualization of this process is given in Figure 12.

4. Electromagnetics 60

Figure 12: A visualization of our data organization process for each received signal.
Our simulated sensors record 40 complex measurements of both the horizontally
and vertically polarized portions of the signal. These 160 real numbers are con-
catenated into a single vector, which after additional transformations is used as
the input vector for our deep learning methods on this problem. The range associ-
ated with that particular signal serves as the target output for that data point.

4.2.2 Normalization and Electric Field Rotation

Recall that the problem we are solving is to determine the range of an emitter based

only on the resulting electric field. Now, importantly, if one is allowed to know the

strength of the emitter, this problem is far more trivial. The reason is that the signal

attenuates in a predictable way, therefore, one would only need to compute the

norm of the received signal to determine the emitter range. In order to remove

the emitter strength as a confounding variable for our network, we (separately)

normalize the horizontal and vertical components of the signal to have norm 1 for

every range.

There is another aspect that must be considered when it comes to electromag-

netic signals, and that is the signal’s phase. The signals in our data set are at the

frequency of 5.8 GHz, naturally, with a 20m discretization of the electric field, the

4. Electromagnetics 61

phase of the signal changes at every discretization point. As we can see from Fig.

13, this leads to large incoherence in the data – the signal at 60km is very different

from the signal at the very next discretization point at 60.02km. To solve this, we

perform a simple, but perhaps nonobvious to anyone not trained in electromag-

netic propagation, rotation of each imaginary data vector so that the first element

is both positive and real. Put another way, given a signal vector

x =

[
r1e

iθ1 r2e
iθ2 . . . r40e

iθ40

]
, (12)

we subtract θ1 from every angle, resulting in the vector

xrot =

[
r1 r2e

i(θ2−θ1) . . . r40e
i(θ40−θ1)

]
. (13)

This transformation is done separately for the horizontal and vertical polarizations

of the signal. A plot of several successive points after the rotation is given in Fig.

14. As we can see, successive data points are now reasonably coherent – a small

difference in the range leads to a small difference in the electromagnetic signal. We

will see later that this leads to substantial improvement in the performance of the

network. We refer to data to which this transformation has been applied as rotated

electric fields, and when this transformation is not applied, we refer to the electric

field as unrotated. One of our principle investigations is to determine whether this

rotational transformation is helpful when making range predictions. In theory, it

should not make a difference, since the information provided to the network is

unchanged. However, we will see later that a network trained on rotated data per-

forms substantially better than one trained on unrotated data. The electric fields

shown in Fig. 10 come from normalized and rotated data; without this, the signal

4. Electromagnetics 62

Figure 13: Four examples of received electromagnetic signals at specific ranges.
Notice that three successive signals starting at 60km appear to be very different as
a result of the phase.

would not appear to be a smooth surface.

4.3 Atmospheric and Experimental Parameters

4.3.1 Ducting Phenomena

In addition to the electromagnetic signal itself, we must also consider atmospheric

conditions. The most important phenomenology in this problem space is the ex-

istence of what are known as evaporation ducts. As seawater evaporates, the re-

sulting layer of humid air over the water can prevent electromagnetic waves from

escaping upwards – this directs the signal horizontally, resulting in a significant

improvement in the propagation of the electromagnetic wave [21]. Crucially, the

larger this layer becomes, the greater the effect on wave propagation. For our pur-

poses, we simulate 11 ducts, 20 and 25 meters high, with a spacing of .5m. Ducts

of this size can occur in areas of the Caribbean and the Gulf of Mexico [19], so they

4. Electromagnetics 63

Figure 14: Four examples of the field patterns at the same specific ranges as in
Fig. 13, rotated so that the first element of every field vector is positive real. Note
that phase has been rotated out, leading to coherence in the signal not previously
present.

are large enough to provide good wave propagation while still being physically re-

alistic. Our training set is then 11 electric fields, each generated by a signal passing

through a distinct evaporation duct.

The precise size and shape of the evaporation duct has an enormous impact

on the electromagnetic field itself. We can see in Fig. 10 that there is a substantial

difference in the two fields at duct heights of 20 and 25 meters. Additionally, evap-

oration ducts in practice are extremely difficult to estimate. The level of precision

at which one can measure an evaporation duct is at least an order of magnitude

larger than the level at which the size of the duct has a noticeable effect on the

electromagnetic signal. This presents us with two major questions, both of which

are essential to the current work:

1. Is information about the duct height, measured at the level of precision that is

possible in practice, sufficient to help with range prediction?

4. Electromagnetics 64

2. Even if the neural network had access to perfect duct height information, to

what degree (if at all) does this help with range prediction over having only

the electric field?

Remarkably, the answers to these questions are ”no” and ”very little.” We will see

later that regardless of the level of precision at which duct height information is

provided to a neural network, it is always better to provide the network with no

duct height information, allowing it to determine transmission range solely from

the electromagnetic signal itself.

In addition to evaporative ducting phenomena directly over the ocean, another

crucial part of the ducting phenomenology is higher layers of ducting known as

surface-based ducts. These are additional ducting layers that form at higher alti-

tudes of over 100m in some regions of the ocean. Qualitatively speaking, these

layers bend the part of the signal broadcast upward back down toward the ocean

surface, and therefore back down toward our real or simulated sensor. For practi-

tioners in this space, this additional signal leads to greatly increased transmission

range, as well as greatly increased detection range for incoming signals. For our

purposes, surface-based ducts result in far more complex signals. A visualization

of an electric field associated with a surface-based duct is given in Figure 15, along

with an electric field resulting from an evaporation duct for comparison.

In the second image in Figure 15, the first 35km or so where the signal appears

to be identical to the first image is known as the skip zone. This refers to the area

where the signal has not yet been reflected back down to the ocean’s surface, and

therefore this area is ”skipped” by the surface-based duct’s influence. After this,

the received signal changes dramatically from the case of the evaporation duct.

4. Electromagnetics 65

Figure 15: Top: an electric field associated with a 25m evaporation duct, like the
one shown in Figure 10. Bottom: an electric field associated with a surface-based
duct. Note the increased complexity of the electric field in this case.

4. Electromagnetics 66

Figure 16: Left: an electric field associated with an evaporation duct height of
25m and a transmitter height of 1m. Right: an electric field associated with an
evaporation duct height of 25m and a transmitter height of 10m.

4.3.2 Experimental Parameters

In addition to environmental conditions such as evaporation ducts, there are spe-

cific experimental parameters which have a noticeable impact on the received sig-

nal. Among these are the height of the receiver array and the height of the sig-

nal transmitter. A change in the receiver height is relatively easy to visualize in

images such as Figure 10 – one may simply imagine the white dots representing

sensors moving up or down within the image of the electric field. However, from

the perspective of the sensor, this would certainly change the received signal in a

very noticeable way. We will see examples of networks trained with both fixed and

variable receiver height in our experiments. Typical values of the ”receiver height”

parameter are between 2.4 and 2.6 meters for these experiments.

The final experimental parameter we consider is that of transmitter height. This

also changes the signal in a way which is noticeable to the sensor. In these exper-

iments, we will typically consider a fixed transmitter height for any given exper-

iment, typically either 2.5m or 5m. To show the extent to which this parameter

changes the signal, an image of two signals with evaporation duct heights of 25m

and transmitter heights of 1m and 10m are given in Figure 16.

4. Electromagnetics 67

4.4 Simulating Receiver Noise

There is one final consideration when it comes to the training data, and that is

noise. PETOOL generates a noiseless electric field, to which we artificially add

Gaussian noise representing the base level of noise in the sensor. In this signal

processing domain, the signal-to-noise ratio is often referred to in decibels. Thus,

instead of referring to the raw signal-to-noise ratio (SNR), we instead express it in

decibels by writing

SNR = 10 log10

(
ES
En

)
, (14)

where ES is the total energy of the signal vector and En is the total energy of the

noise. We refer to this as the SNRdb. En is a random variable, but following the law

of large numbers, it will be concentrated around a value of 2Nσ2, where N is the

size of the vector under consideration. Rearranging, we see that one may choose

σ2 according to the formula

σ2 =
Es
2N

10−SNR/10. (15)

All that remains is to choose one’s desired SNR and the range at which to sam-

ple a vector to measure its energy. As previously stated, we choose the vector at

60km, which is the middle of our training set, and a 25m duct height. The noise is

added before normalization and rotation to mimic real-world data collection and

processing.

In initial experiments, this Gaussian noise will have a standard deviation of

σ = 2.98 × 10−9. This level of noise is chosen so that at a range of 60km and a

duct height of 25m, the SNRdb is 40. 40db SNR is a mild level of noise, suitable

for evaluating model feasibility. In later experiments, we will decrease the SNRdb

4. Electromagnetics 68

(thereby increasing the noise) to 20, which corresponds to a standard deviation of

σ = 2.98× 10−8, ten times the noise of the earlier experiments.

4.5 Training and Prediction

4.5.1 The Unrotated Electric Field

As a baseline for comparison, we train four neural networks on different data sets

that are normalized but unrotated. The networks are trained on the following data

sets:

1. Training data consists of 160 columns of the noisy, unrotated radio signal and

one column of non-noised duct height.

2. Training data consists of 160 columns of the noisy, unrotated radio signal

and one column of noisy duct height. The noise added to duct height was

sampled from a Gaussian distribution with .1 standard deviation.

3. Training data consists of 160 columns of the noisy, unrotated radio signal

and one column of noisy duct height. The noise added to duct height was

sampled from a uniform distribution ranging from −2 to 2.

4. Training data consists of 160 columns of the noisy, unrotated radio signal and

one column of duct height with all values set to 0.

4. Electromagnetics 69

Table 7: Parameters for neural network setup and training.

Network Architecture & Training Parameters
Architecture Fully connected MLP

Hidden Layers 5
Layer Sizes 161→ 100→ 70→ 60→ 40

→ 20→ 1
Activation function Leaky ReLU

Epochs 10, 000
Dropout None

Batch Normalization None
Optimizer Adam

Learning Rate 1e−3
Weight Decay 1e−5

Pytorch Version 1.8.1+cu102

4.6 Architecture and Training Scheme

These networks have identical architectures and are trained for 10, 000 epochs us-

ing an L2 loss function, where

Loss =
∑
i

(yi − ŷi)
2. (16)

For all of our neural networks, we use a fully connected MLP architecture with five

hidden layers. For these initial experiments, we use LeakyReLU as our activation

as opposed to the Piecewise Square activation; we will see examples of electromag-

netic experiments using Piecewise Square activation in Section 6. The layer sizes

for the full network are 161 → 100 → 70 → 60 → 40 → 20 → 1. We use Adam

optimization from the PyTorch[42] optim library for our training. More details are

given in Table 7.

Since we are using simulated data in these experiments, we are able to generate

infinite training and testing data by taking the raw noiseless signal and adding new

4. Electromagnetics 70

instances of Gaussian noise whenever more data is required. To that end, we train

our neural networks by adding new noise to the base electric field at every batch

during training. This helps to prevent overfitting; since the network only ever

sees any particular data point one time, it is never given an opportunity to learn

any particular instance of noise. There are several robust techniques which can be

used to prevent overfitting as well, however, with our method of data generation,

overfitting was not enough of a concern in training to require their use.

4.7 Testing

”Training” and ”testing,” two of the most crucial aspects of constructing a good

machine learning or statistical algorithm, are slightly more complicated in this set-

ting than in most applications due to the ”infinite” data we have access to in our

data generation process. To reiterate our process, we generate one or more electric

fields, apply Gaussian noise, then finally rotate and normalize the data to simulate

real-world data collection and preprocessing. What makes training and testing

complicated in this context is the existence of both atmospheric and experimental

parameters as noted in Section 4.3, as well as the Gaussian noise we add to all data

at every epoch of the network training process.

In many settings, a new sample set of data with new Gaussian noise could

be considered a test data set, and indeed it is what we use for testing in some

cases. And yet, a new set of data with new Gaussian noise is what is given to

the network at every training epoch as detailed in Section 4.6. In that sense, a

new set of Gaussian noise for the data is not truly ”new,” since the networks are

trained to correctly fit arbitrary noise of a particular σ for any given electric field

measurement during the training process.

4. Electromagnetics 71

Another way of testing data in this setting is to train a network with one set

of atmospheric and experimental parameters, and then test on another set of con-

ditions. For example, an interesting experiment may be to see whether a network

trained on noisy electric fields with an evaporation duct height of 25m can ac-

curately make predictions on noisy electric field data with an evaporation duct

height of 24m. In some cases, this may more closely match a real-world training

and testing scenario; the atmospheric conditions may change from day to day, and

a network which is trained on data coming from an electric field under one day’s

weather conditions may be asked to make predictions on an electric field the next

day.

For testing each network, we generate 100 instances of noise for each range and

duct height pair in our discretization and perform a range prediction on each one

using our trained network. Then for each range, we have 1,100 error values, for

which we compute the RMSE.

The results of training these networks with no other preprocessing can be seen

in Fig. 17.

4.8 Remarks

As we can see from Fig. 17, all three networks perform well when given the true

duct height in testing. As one may expect, the network that was given the true

duct height in training (blue) performs the best, followed by the network given

the noisy version of the duct height (green), followed by the network which was

not given the duct height at all (red). However, as the noise increases, the perfor-

mance of the blue and green networks begins to degrade. In the second plot, the

red network keeps exactly the same performance (since it does not make use of the

4. Electromagnetics 72

Figure 17: RMSE comparison of the four networks with an unrotated electric field.
We see that the best networks in the (unrealistic) situation of having a perfect duct
height measurement are the networks that were given accurate measurements in
testing, but the network which generalizes the best to a realistic situation of very
little duct height information is the one which was never given the duct height
during training.

4. Electromagnetics 73

duct height), the green network maintains its superior performance over the red

network, and the error in the blue network shifts above the other two, while ex-

hibiting large spikes in its error at certain ranges. Most importantly, when all three

networks are given a level of noise that is likely to be seen in application, only the

network trained without duct height information has any hope of making accurate

range predictions.

This leads us to our first major observation in these results: For this problem,

training the network on higher quality data than one can expect to see in practice will

likely lead to disastrous prediction accuracy.

As an application of this idea, we may consider the network trained on the

duct height ±2 (the purple network). One may be tempted to use this network

on real data, since this is roughly the accuracy with which one can measure an

evaporation duct in practice. If, in a real-world situation, the quality of measured

duct height happens to be worse than what the network expects, the quality of the

range predictions will go down accordingly. Additionally, as we can see from Fig. 17

and Table 8, including such low-quality duct height information does not help the network

in the first place! The network finds much more accurate predictions when it relies

solely on the electric field.

4.8.1 The Rotated Electric Field

We next train on the same electric field, but we perform the rotation discussed in

Section 4.2. To simulate this in practice, we perform all normalization and rotation

after the noise is added to the data.

1. Training data consists of 160 columns of the noisy, rotated radio signal and

one column of non-noised duct height.

4. Electromagnetics 74

2. Training data consists of 160 columns of the noisy, rotated radio signal and

one column of noisy duct height. The noise added to duct height was sam-

pled from a Gaussian distribution with .1 standard deviation.

3. Training data consists of 160 columns of the noisy, rotated radio signal and

one column of noisy duct height. The noise added to duct height was sam-

pled from a uniform distribution ranging from −2 to 2.

4. Training data consists of 160 columns of the noisy, rotated radio signal and

one column of duct height with all values set to 0.

As before, the networks are trained for 10, 000 epochs using an L2 loss function,

with the same network architecture and Adam optimization as shown in the Table

7. Additionally, noise is added at every batch to prevent the network from learning

any particular instance of noise. To evaluate each network, 100 new instances of

noise for each of the 11 duct heights we train with are given to each network. We

then compute the RMSE of the 1,100 trials at each range and report this as the test

error for that range. The results of this testing are given in Fig. 18.

We see similar phenomenology in this case as in the unrotated case. When all

four networks are tested on data containing the true duct heights, by far the best

network is the one that was trained on the true duct heights as well. However, this

network does not generalize at all to a situation where it is not given accurate duct

height information. Since evaporation ducts are impossible to measure with the

perfect accuracy required to give the most accurate predictions, a network such

as this is unable to be used in practice. Thus, the network that has the best gen-

eralization is once again the network trained without any knowledge of the duct

height.

4. Electromagnetics 75

Crucially, however, we see in Table 8 that incorporating signal rotation into the

preprocessing step decreases the RMSE by 27.1% for the network trained with-

out duct height. The error reduction is remarkable, and perfectly exemplifies the

power of proper data transformation prior to training. This transformation is

remarkably simple, and yet it leads to a substantial decrease in test error. This

demonstrates the importance of incorporating knowledge of the physical system

into feature engineering. The physical property of the phase of the signal led to a

confounding of the network, so by removing the phase as a factor, not only is the

data cleaner, but prediction performance improves.

Table 8: RMSE (km) for every network when evaluated on 100 electric fields for
each of the 11 duct heights in the training set with different noise realizations. As
the amount of duct height noise in the test data increases, the network trained on
no duct height information retains its performance, while the performance of the
other networks degrades rapidly.

Unrotated
True DH Noisy DH ±2 DH No DH

True DH – Testing .914 .931 1.225 1.130
Noisy DH – Testing 1.238 .991 1.227 1.129
±2 DH – Testing 12.246 7.789 1.233 1.128

Rotated
True DH Noisy DH ±2 DH No DH

True DH – Testing .722 1.197 1.005 .824
Noisy DH – Testing 1.532 1.242 1.007 .822
±2 DH – Testing 17.046 10.496 1.006 .822

4.9 Discussion

Surprisingly, the network trained without duct height included at all had a roughly

equivalent test error to the other two networks. This confirms the hypothesis that

all the duct height information is included in the signal itself. Additionally, the

4. Electromagnetics 76

Figure 18: RMSE comparison of the four networks with a rotated electric field. Each
network is tested on 100 new noise realizations for every range and duct height,
and the RMSE of the 1100 trials at each range is displayed. Note that the network
trained without any information on duct height has the best generalization to the
situation where accurate duct height measurements are impossible.

4. Electromagnetics 77

network trained without any duct height information actually does better for most

ranges than the network that was given the correct duct height. The most likely

explanation is that when the network is given a duct height, it will spend network

parameters trying to make use of it, when those parameters could be spent more

productively interpreting the signal itself.

This becomes clear when one considers the other two plots in Fig. 18. When

tested on less duct height information than what it was trained on, the perfor-

mance of each network drastically decreases. This is most obvious when consider-

ing the loss plot when the networks are given low quality duct height information

– the ones trained to make use of the duct height completely fail. This proves that

they are using the duct height to make predictions when in reality, it is unneces-

sary.

It is also important to note here that in Fig. 18, the blue and green graphs have

access to the same electric field information than the red graph – in theory, they

could set the duct height variable to 0 in the first layer and find the exact same

network. However, given the enormous errors when duct height information is

removed, they clearly do not do this.

4.10 Further Evaluation

4.10.1 Benchmark Model Comparison

In order to find a more absolute way of determining the quality of the predictions,

we compare our best network, trained on no duct height information and rotated

data, to a maximum likelihood estimator (MLE) such as the one given in [43]. Cru-

cially, this model knows all the physics of electromagnetic propagation over water;

furthermore, this estimator is known to be optimal in a simulated situation such as

4. Electromagnetics 78

Figure 19: A model comparison between the neural network and the optimal MLE
estimator. It is important to note that the blue line has precise and full knowledge
of the physical system being measured. The fact that a relatively generic fully con-
nected network comes close to the optimal solution with full physics knowledge is
quite promising.

this, where the assumed physics of the model perfectly matches the physics that

generated the data. Thus, a neural network cannot outperform the MLE in the

simulation case, rather, the MLE error serves as a lower bound which the neural

network attempts to approach.

We see in Fig. 19 that the difference between the neural network and the

theoretically optimal MLE estimator is entirely reasonable. Especially for longer

ranges, the neural network is within a factor of three of the optimal prediction.

Additionally, there are no ranges for which the error is more than a few kilome-

ters. The difference is remarkably low when one considers that the MLE knows the

physics of this system perfectly, while the neural network, of course, knows none.

4. Electromagnetics 79

One might wonder, if the error of the MLE is lower than the neural network,

why one would attempt to use a neural network model at all. There are two rea-

sons for this. One, the MLE works by searching over all unknown parameters of

the system and determining, based on the electric field, which combination of pa-

rameters is the most likely. One then extracts the range as one of these parameters

for localization estimate. When the number of unknown parameters in the system

is high, as it would be in practice, the computation cost can be too prohibitively

high to use in a real-world scenario. Additionally, the estimator must be re-run

every time one wishes to do a localization estimate. The advantage of a neural net-

work here is that nearly all the computation cost comes at the front end when the

network is trained, while model evaluation in practice is extremely computation-

ally cheap. The other reason to prefer a neural network model for this problem is

that the MLE is extremely sensitive to model mismatch, that is, when the physics

of the real system do not match the assumed physics of the model. When the sig-

nal passes through a more complicated atmospheric system, for example, if there

is a higher ducting layer above the standard evaporation duct, the MLE must ei-

ther perform very badly or use enormous computation time to take into account

the more complicated physics. Conversely, the neural network simply needs more

data to account for more complicated physical situations.

5. Short-Range Experiments 80

5 Short-Range Experiments

5.1 Data Ambiguity

One of the most challenging aspects of this problem is the notion of data ambigu-

ity. Let us consider for a moment the overall scheme of this electromagnetic prob-

lem. A transmitter broadcasts an electromagnetic signal, the receiver detects and

measures the signal, and an algorithm attempts to determine the distance to the

receiver. The algorithm is able to even attempt this because as the signal passes

through the atmosphere, it is scattered in a particular way which allows the al-

gorithm to gain information from the shape of the received signal. Crucially, if

this entire process were happening in a vacuum, this would be impossible. A (nor-

malized) signal would look identical at every range, leading to no information

contained in the shape of the signal that an algorithm could use to determine the

distance to an emitter. While this is not the case we study, it is useful to keep this in

mind because even in the case in which we work, in which a signal passes through

over-water evaporation ducts, some of this ambiguity remains.

This ambiguity is best demonstrated in the behavior of the Maximum Likeli-

hood Estimator [43]. We see in Figure 20 a plot of likelihoods of each potential

range when the MLE is given an electromagnetic signal and asked to determine

the distance to the transmitter. The MLE works by considering a grid of ranges, in

this case a grid in which the grid points range from 10km to 110km and have 20m

spacing. For each grid point representing a distance to the transmitter, the MLE de-

termines the probability that the signal came from that distance. We see in Figure

20 that this probability plot does not have a single probability peak representing

the true distance. Rather, multiple peaks develop. The meaning of this plot is that

5. Short-Range Experiments 81

Figure 20: Given an electric field measurement coming from a distance of 50km, for
every range in the spatial discretization, we ask the Maximum Likelihood Estima-
tor to determine the likelihood that this signal came from that range and plot the
normalized probabilities. We see that while there exists a probability peak at 50km
representing the true answer, there are other peaks at 24, 76, and 100km which are
also very likely answers. Image courtesy of Rick Brown, WPI.

the phenomenology of this problem is such that the electric field somehow nearly

repeats itself, that is, data points 20km away from each other look so similar that

even the optimal range estimator in the MLE can easily confuse them.

What makes this a real challenge is the fact that noise is added to the data

prior to its evaluation by any of our models. We see in Figure 20 that the while

the peak at 50km is the highest, and therefore the most likely, the other candidate

ranges associated with the peaks at 24, 76, and 100km have very close to the same

probability of being the correct ranges. When noise is added to the signal, the

prediction may ”jump” to the next peak, leading to bi- or tri-modal predictions as

shown in Figure 21.

This tell us something fascinating about the manifold on which our electromag-

netic signal data lives in 160-dimensional space – in some sense, the manifold has

”folds,” where points which are far away in the parameter space, e.g. points which

have very different ranges associated with them, are very nearby in the data space.

5. Short-Range Experiments 82

Figure 21: Comparison histogram of the MLE and the neural network model when
both are tested on electric fields which are 70km away from the transmitter. As we
can see, even the optimal MLE makes ambiguity errors on data at this range and
this level of noise. The neural network makes ambiguity errors as well, but in a
qualitatively different way. The ”spreading out” of the predictions is due to the
fact that a neural network is a continuous function, while the MLE is not.

For this problem, data points which may be 50km apart in the parameter space

may be close enough in the measurement space that even with a reasonable level

of noise, the MLE and neural network both confuse them.

5.1.1 Prediction Ambiguity for Neural Networks

We clearly see the same phenomenology develop in the case of the neural network,

and we perform a new experiment to demonstrate this. We train a new neural

network, again on an evaporation duct height of 22m and on the ranges 10 to

110km. We train the network for 10,000 epochs using Adam optimization as before.

Crucially, we train the network to make predictions on data with a SNRdb of 40,

which is the lower level of noise. We want to see what happens when we test the

network on a larger level of Gaussian noise than it was trained on.

We examine the behavior of the network when it is trained on an electric field

5. Short-Range Experiments 83

Figure 22: Left: the predictions made by a neural network trained with artificial
Gaussian noise corresponding to 40db SNR, tested on data of the same level of
noise. Right: The predictions made by this same neural network, trained on noise
of 40db SNR, when the testing data has its noise level quadrupled. We can see that
prediction ambiguity, which was already present at the lower level of noise, causes
the network to make extreme errors when the noise is increased.

with Gaussian noise with an SNRdb of 40, tested on the same electric field with the

noise level quadrupled. One would expect the error in the predictions to increase,

and indeed that is what happens. What is unexpected is the precise way in which

the error increases. We see the result of this experiment in Figure 22.

What is shown in Figure 22 is a set of range predictions made by the neural

network on an electric field with new Gaussian noise, plotted against what the

true ranges are for those electric field measurements. If the network were making

perfect predictions, the true range and the predicted range would be exactly equal,

and the plot would be a straight line of blue dots which follows the red line.

The first plot shows the set of predictions when the size of the Gaussian noise

in the test data is exactly equal to the size of the Gaussian noise learned by the

network at training time. We see that even in this first case, for long-range pre-

dictions, the network begins to make ambiguity errors – the network occasionally

predicts up to 100km when the true range is 80km, and vice versa.

The second plot in Figure 22 shows the predictions made by the network when

5. Short-Range Experiments 84

the level of Gaussian noise in the testing data is four times the level of Gaussian

noise in the training data. Here, the number of ambiguity errors increases tremen-

dously. Additionally, the network begins making these errors at shorter ranges,

though they are especially common at ranges greater than 60km. The network

confuses electric field measurements associated with a range of 60km with electric

field measurements associated with 80km. At very long ranges of over 100km, the

network has a very hard time determining the true range. It occasionally predicts

around 60km, which is ”two peaks away” from the correct range prediction, to

borrow language from the behavior of the MLE.

5.1.2 Ambiguity Analysis

We explain this difficulty with the illustration in Figure 23. To use the example

in the previous experiment, imagine that the point (0, 0) corresponds to the elec-

tric field measurement at a range of 60km, and the point (2, 0) corresponds to an

electric field measurement at a range of 80km. The blue and orange clouds of

data points correspond to a noisy version of those measurements. In the left plot

in Figure 23 corresponding to smaller noise, the two groups of measurements are

distinguishable relatively easily – the network would have little issue mapping

blue points to 60km and orange points to 80km correctly. In the right plot, with the

noise increased, it is no longer possible to achieve the task of making predictions

on the two classes consistently. It is particularly interesting that in order to think

correctly about this range ambiguity in our regression problem, it is necessary for

us to invoke the language of classification methods.

There are multiple ways to address this ambiguity concern, though none are

simple. The first notable way is inspired by the shape of the prediction histogram

5. Short-Range Experiments 85

Figure 23: Left: a scatter plot of two sets of 100 samples of 2d Gaussian noise with
standard deviation 1

3
with mean (0, 0) and (2, 0). Right: the same Gaussian noise,

with the standard deviation multiplied by 3. We see the mixing that happens when
the level of noise is increased – this is analogous to mechanism by which ambiguity
errors are made by both the neural network and the Maximum Likelihood Estima-
tor.

in Figure 21. We notice that while there is a large ”spread” of predictions, in the

sense that the network predicts many different ranges from 70 to 90km, by far the

most frequently predicted value is clearly very near to the correct range of 70km.

One could imagine in a real-world scenario taking many measurements, generat-

ing a histogram of range predictions like the one in Figure 21, and using the most

common prediction from the neural network as the true range prediction. This

solution would require a series of predictions to happen relatively quickly, which

may or may not be possible depending on the use case in practice. One could

consider this the ”vertical slice in time” solution.

Another possible way to address the range ambiguity is to consider a series of

measurements over a period of time. Imagine in a real-world situation that a sig-

nal is received, and the neural net predicts the range of the signal to be 65km. A

minute later, another measurement is made, and the neural net predicts the signal

to be coming from a range of 65.5km. This continues with the network making

range predictions between 65 and 70km. Finally, another measurement is made a

short time later, and the network predicts the range to be 90km. One could imag-

5. Short-Range Experiments 86

ine ignoring this range prediction based on the physical principle that a transmitter

cannot teleport 20km in a short span of time. One could consider this the ”hori-

zontal slice in time” solution, since it relies on making predictions over a span of

time.

5.2 Experimental Results

We have shown in the previous section that our network’s generalizability is im-

proved when it is not made to rely on being given ambient weather data, but rather

relying strictly on the electric field data. However, an improvement from one set

of data to another is not a measure of absolute quality. Put another way, we want

to re-examine the model not from a perspective of how atmospheric data changes

the performance, but from the perspective of asking whether the predictions given

by the model are ”good” in an absolute sense.

In many settings of machine learning, this can be a difficult question to answer.

In this setting, a key tool that we have, which is not available in classical deep

learning problems, is the optimal method for range localization in the form of a

maximum likelihood estimator (MLE). We are able to actually compare the perfor-

mance of the MLE against our neural network method to see how well the network

is performing compared to what is theoretically optimal.

One may ask why, if an optimal method exists, one would want to use deep

learning in the first place. The reasons for this are twofold: one, the MLE requires

a very accurate model of the physics of the problem. While this is possible for data

generated via simulation, anyone who has ever worked with atmospheric data

knows that such a model is very difficult, if not impossible, to obtain in practice.

Second, the MLE works by having access to all possible electric field measurements

5. Short-Range Experiments 87

corresponding to all possible configurations of the atmosphere through which the

signal passes. It then compares a given signal to all possible signals, determines

which is most likely, and then makes a prediction based on this comparison. Doing

this in practice would require a prohibitively large amount of data and computa-

tion time, thus, a deep learning method may be the correct practical choice due to

its quicker evaluation time.

We have a number of experiments that demonstrate the accuracy we are able to

achieve on simulated electric field data. We start with the simplest case and work

our way up to larger experiments.

5.2.1 Experiment 1 – Single Duct Height

What we show here is a histogram of the errors of the MLE and neural network

methods when both are evaluated on 50,000 data points. These data points are

generated by taking a base measurement of an electric field, say, the field with an

evaporation duct height of 21m measured 27km away from the transmitter. We

add 50,000 realizations of Gaussian noise to this measurement, then evaluate each

method on these 50,000 measurements.

Our next experiment is to train a neural network on a single electric field gener-

ated by PETOOL associated with a single evaporation duct height; in this case the

duct height we train on is 22m. As we have demonstrated, performing the data

rotation as detailed in Section 4.2.2 significantly decreases the overall prediction

error, thus, we will be performing this transformation on all experiments moving

forward.

As before, our network architecture is that of a fully connected MLP with iden-

tical layer sizes as the earlier experiments. We train the network for 13,000 epochs

5. Short-Range Experiments 88

Table 9: Parameters for neural network setup and training – Experiment 1.

Network Architecture & Training Parameters
Architecture Fully connected MLP

Hidden Layers 5
Layer Sizes 161→ 100→ 70→ 60→ 40

→ 20→ 1
Activation function Leaky ReLU Activation

Epochs 13, 000
Dropout None

Batch Normalization None
Optimizer Adam

Learning Rate 1e−3
Weight Decay 1e−5

Pytorch Version 1.8.1+cu102

using Adam optimization as before.

5.2.2 Experiment 2 – Train on One Duct Height, Test on Many

In the setting of making predictions on data associated with atmospheric condi-

tions, it is generally not expected that any two experiments will have the exact

same set of atmospheric parameters. To use a familiar example, the evaporation

duct height will change from day to day. A realistic workflow in this setting would

be to gather electromagnetic data on one day, train a neural network model to

make range predictions based on this data, then use that trained network in the

field to make predictions on a later day. If the atmospheric conditions at time of

testing or actual field usage are different than those from which the training data

was gathered, the network will make prediction errors. In this section, we begin

answering some of these questions.

We devise an experiment to get a sense of the performance of the neural net-

work in this setting. We are able to use the same trained network as in Experiment

5. Short-Range Experiments 89

Figure 24: A histogram of 50, 000 prediction errors when a network is trained and
tested on a single evaporation duct of height 22m.

1. This network has been trained on signal data associated with an evaporation

duct height of 22m. For this experiment, we test this network on various duct

heights at various distances from the training duct height. The testing duct heights

will vary between 21.4 and 22.6m, spaced every 10cm and excluding the original

training duct height of 22m. We refer to the disparity between training and testing

duct height as model mismatch.

We would also like to compare the neural network output in this experiment

to the Maximum Likelihood Estimator as before. We must be careful about mak-

ing using ”training/testing” language in this comparison, since the MLE is not

”trained” as such. Rather, the MLE works by making use of a large table of po-

tential electric fields at various ranges and associated with various duct heights.

Given a candidate electric field measurement on which to make a range predic-

tion, the MLE searches over its table of electric fields, selects the measurement most

similar to the candidate, then reports the range associated with that measurement.

What ”model mismatch” means for the MLE is for the user to only allow the MLE

to search over electric fields associated with a particular duct height – in this case,

5. Short-Range Experiments 90

we only allow the MLE to consider electric fields associated with the duct height

of 22m.

The results of this comparison are given in Table 10, Figure 25, and Figure 26.

Table 10: Comparison of model performance between the Maximum Likelihood
Estimator and the neural network models when both models experience mismatch
between the training data set (22m) and the testing data set. As the mismatch
grows, both models experience degradation of the model performance. Interest-
ingly, the neural network experiences this degradation in a gentler way – it is less
sensitive to model mismatch, though the differences in mean predictions are gen-
erally small.

Test DH Network Mean MLE Mean Network Std Dev MLE Std Dev
21.4m 48.78 47.78 1.85 0.57
21.5m 48.84 48.10 1.56 0.53
21.6m 48.99 48.44 1.35 0.49
21.7m 49.19 48.80 1.18 0.46
21.8m 49.46 49.18 1.10 0.45
21.8m 49.76 49.58 0.98 0.43

22.1m 50.46 50.45 0.88 0.40
22.2m 50.85 50.93 0.87 0.40
22.3m 51.28 51.44 0.81 0.39
22.4m 51.72 51.99 0.80 0.39
22.5m 52.20 52.57 0.79 0.39
22.6m 52.71 53.19 0.75 0.39

5.2.3 Experiment 3 – Train on Many, Test on Many

Experiment 3 is the largest we have seen thus far. In this experiment, we will train

the neural network to fit data coming from 15 duct heights and 10 receiver heights.

We are asking the neural network here to fit data coming from 150 electric fields.

Instead of cleanly discretizing the data in the duct height variable as before, we

generate 15 random duct heights to include in our data set. As before, these ran-

domly sampled duct heights lie between 20 and 25m, while the randomly sampled

5. Short-Range Experiments 91

Figure 25: Prediction Error when a neural network is trained on electric field data
associated with an evaporation duct height of 22m, then tested on various duct
heights between 21.4 and 22.6m. Top: Prediction error for test data lower than
22m. Bottom: Prediction error for test data above 22m.

5. Short-Range Experiments 92

Figure 26: RMSE when the network trained on data associated with an evaporation
duct height of 22m is tested on data associated with duct heights 21 through 23. As
we can see, there is a gradual decrease in the quality of predictions as the network
moves away from its learned duct height.

receiver heights lie between 2.4 and 2.6m.

For this experiment, the ranges we consider are between 5km and 60km, and

our range discretization spacing is 20m. Therefore, each of the 150 electric fields

has 2751 measurements associated with it, each of 160 dimensions. Our archi-

tecture is identical to previous experiments, and we train this network for 12,000

epochs using Adam optimization.

To develop a robust test of this network, we discretize the parameter space of

receiver height and duct height and generate a new electric field for each pair.

The duct heights we choose for testing lie on a grid of 31 points between 20 and

25m, while the receiver heights are still generated randomly between 2.4 and 2.6m.

Thus, there are 155 electric fields considered in this test, each of 2751 range mea-

surements. On top of that, for each of the 155 noiseless electric fields and each

range, we generate 15 samples of Gaussian noise with an SNRdb of 20. The result

5. Short-Range Experiments 93

Figure 27: A plot of the RMSE of the neural network predictions for all ranges from
5 to 60km and duct heights from 20 to 25m. We note the regime changes at 30 and
60km where the error increases.

of this is that for each range and duct height pair, there are 75 samples of pos-

sible electric field measurements corresponding to different receiver heights and

different noise realizations.

We are interested in the error of the network for range and duct height pairs, so

for each of these pairs, we compute the RMSE of the 75 samples. The plot of this

RMSE surface is given in Figure 27.

6. Real-World Application of Piecewise Polynomial Activation 94

6 Real-World Application of Piecewise Polynomial Ac-

tivation

We have seen that networks with a standard LeakyReLU activation can perform

comparably to the MLE in many situations. To be precise, the deep learning meth-

ods with LeakyReLU activation have successfully found a set of functions which

map electric fields to transmission ranges in a way which approaches optimality

when compared to the maximum likelihood estimator. As has been our focus in

the theoretical portion of this work, we now ask the question: what function has

the network found? What are its properties? With the tools provided to us by

using a piecewise polynomial activation, we are ready to answer some of these

questions.

6.1 Training and Testing on Electromagnetic Data

We begin by replicating some of our smaller experiments with Leaky ReLU, and

comparing the results with the Piecewise Square architecture to the more standard

LeakyReLU architecture. As summary of the architecture is given in Table 11. The

architecture is identical except for the activation function to provide a direct com-

parison of the performance of Piecewise Square activation with LeakyReLU.

For this experiment, we replicate the conditions of the first experiment listed

in Section 5.2.1. That is, we train two networks on an electric field of duct height

22m, with a single receiver height for simplicity. We train both networks for 25,000

epochs using Adam optimization.

For testing, we use the same original noiseless electric field associated with the

evaporation duct height of 22 meters, then for each candidate range, we gener-

6. Real-World Application of Piecewise Polynomial Activation 95

Table 11: Parameters for neural network setup and training.

Network Architecture & Training Parameters
Architecture Fully connected MLP

Hidden Layers 5
Layer Sizes 161→ 100→ 70→ 60→ 40

→ 20→ 1
Activation function Piecewise Square Activation

Epochs 25, 000
Dropout None

Batch Normalization None
Optimizer Adam

Learning Rate 1e−3
Weight Decay 1e−5

Pytorch Version 1.8.1+cu102

ate 200 instances of Gaussian noise to create 200 candidate measurements for each

range. We have each network make predictions on each of the 200 noisy measure-

ments, then compute the RMSE of these 200 measurements and display the RMSE

for each range as our test error for that range.

The testing results of this experiment are given in Figures 28 and 29. Our results

here are consistent with the MNIST results in Section 3.2 – the Piecewise Square

activation achieves results comparable to the LeakyReLU activation on test data.

These test results are fascinating and display the power of this novel activation

scheme. Let us first examine the error plot of the the LeakyReLU network. We see,

as expected, that the error increases with range – this is expected given that the

norm of the received signal decreases with range, while the artificial noise added

to the signal stays constant. Thus, the relative size of the noise grows with range,

and we would expect the error to grow proportionally. What is unexpected is the

”spiky” behavior of the RMSE plot. Typically, when one sees error plots like this, it

is due to a specific instance of Gaussian noise being particularly bad for the model

6. Real-World Application of Piecewise Polynomial Activation 96

Figure 28: A comparison of the RMSE at every range between the network with
LeakyReLU activation and the Piecewise Square activation. The Piecewise Square
activation performs comparably, and even outperforms LeakyReLU in some re-
spects.

under evaluation, leading to a single particularly bad prediction and a correspond-

ingly high error. However, this cannot be the case here, since we have specifically

constructed this test so that each network makes 200 predictions on distinct noisy

measurements at every range, thus removing the influence of any particular in-

stance of noise. The plot of error in the predictions made by the LeakyReLU net-

work indicate that it is somehow inconsistent, that is, not sufficiently regularized.

The Piecewise Square network, on the other hand, does not experience these

spikes to nearly the same degree. While it has noticeably higher error at certain

particular ranges, it also does not experience the spikes that the LeakyReLU net-

work does. We may conjecture that the Piecewise Square network experiences

implicit regularization, likely due to its C1 structure.

In keeping with our process of network evaluation in previous sections, we

would also like to ”zoom in” on a specific range and examine the outputs of the

networks and compare both to the MLE at a range of 50km. These results are

shown in Figure 29. We see once again that the performance of this novel archi-

tecture is similar to both a standard LeakyReLU architecture and the Maximum

6. Real-World Application of Piecewise Polynomial Activation 97

Figure 29: Histogram of the performance comparison between the MLE, a net-
work with LeakyReLU activation, and a network with Piecewise Square activa-
tion. As we can see, the Piecewise Square activation performs comparably to the
LeakyReLU activation for this problem.

Likelihood Estimator.

6.1.1 Large Test with Piecewise Square Activation – Many Duct Heights

We are also able to replicate the large test we performed with LeakyReLU in this

setting. We train a neural network with the Piecewise Square activation on the

same set of 15 random duct heights that we used for the experiment in Section

5.2.3. We find that the activation function is able to handle this case just as well as

LeakyReLU – the RMSE for this experiment is plotted in Figure 30. The network is

trained on the same set of randomly selected duct heights and tested on the same

grid of duct height, receiver height, and range to give a complete categorization of

the RMSE across all parameters.

6. Real-World Application of Piecewise Polynomial Activation 98

Figure 30: RMSE when a network with Piecewise Square activation is trained on
15 randomly selected duct heights between 20 and 25m. We see that this plot is
nearly identical to the RMSE plot for the same experiment with the LeakyReLU
activation.

6.2 Polynomial Generation for Networks in Electromagnetics

As we did for the case of applying the piecewise square architecture on the MNIST

data set, we may also apply Algorithm 1 to the networks in this setting. We must

make note of the differences between applying the algorithm in this case compared

to the MNIST case. First, the output of the neural network in this case is one-

dimensional as opposed to 10, so for a given index of the input vector and a given

sample signal, there will exist a single associated polynomial. In order to show

multiple examples of generated polynomials, we will compute polynomials for

two given signal input vectors at 5 of the 160 possible input elements for each

vector. The precise indices for which the polynomials are computed are listed in

Table 12. Secondly, note that the network architecture is deeper in this network

compared to the network we used to predict MNIST earlier. Therefore, it is likely

that the polynomials will have a higher power here than in previous experiments.

The precise noisy measurements along with their associated noiseless electric

fields are shown in Figure 31. Both are generated with the same base electric field

measurement taken at 50km; noise is added to both signals, and both are normal-

6. Real-World Application of Piecewise Polynomial Activation 99

Figure 31: Two noisy signals for which we compute associated polynomials using
our polynomial generation algorithm, Algorithm 1. The indices marked with red
dots are the ones for which we will compute the associated polynomials.

ized separately in their horizontal and vertically polarized components. The poly-

nomials we will generate will be the ones associated with the indices indicated in

Figure 31, which are indices 0, 32, 64, 96, and 128.

The outputs of Algorithm 1 as applied to the signals given in Figure 31 are

given in Table 12.

As before, we may also plot the orders of magnitude of the coefficients of these

polynomials, as shown in Figure 32. We notice that unlike the MNIST example, the

coefficients of polynomials on this data set do not decrease log-linearly with order.

Rather, there is a particular pattern which develops in the higher order terms. We

will explore this behavior further in the following section.

6.3 Analysis of Network Structure Based on Polynomial Genera-

tion

This simple list of polynomials at certain indices given in Table 12 already raises

fascinating questions. For instance, examine the polynomial corresponding to sig-

nal 2, element 32. We see that the magnitude of the coefficients of this polynomial

are much larger than the magnitude of other polynomials. Is this a coincidence,

6. Real-World Application of Piecewise Polynomial Activation 100

Signal Signal Element Polynomial

Signal 1 Element 0 51.345− 5.094x0 − 1.538x2
0 − 0.329x3

0 + 0.825x4
0

−0.354x5
0 + 0.081x6

0 − 0.01x7
0 + 0.001x8

0

Signal 1 Element 32 49.512 + 9.108x32 + 5.5x2
32 + 2.442x3

32 + 6.673x4
32

+101.424x5
32 + 188.562x6

32 + 132.97x7
32

+33.256x8
32

Signal 1 Element 64 50.459 + 0.34x64 − 2.767x2
64 − 0.184x3

64 + 1.277x4
64

+0.92x5
64 + 0.268x6

64 + 0.039x7
64 + 0.002x8

64

Signal 1 Element 96 50.68− 1.808x96 + 0.89x2
96 + 1.555x3

96 + 1.774x4
96

+3.769x5
96 + 3.018x6

96 + 1.007x7
96 + 0.122x8

96

Signal 1 Element 128 50.456 + 0.066x128 − 0.393x2
128 + 0.131x3

128

+0.01x4
128 + 0.002x5

128 + 0.002x6
128 + 0.001x7

128

Signal 2 Element 0 50.843− 5.25x0 − 7.929x2
0 + 3.64x3

0 + 0.558x4
0

+0.339x5
0 + 0.654x6

0 − 0.732x7
0 − 0.069x8

0

+0.279x9
0 − 0.097x10

0 − 0.005x11
0 + 0.003x12

0

+0.001x13
0

Signal 2 Element 32 48.397 + 13.519x32 + 24.509x2
32 − 128.614x3

32

+111.335x4
32 + 39.883x5

32 − 323.16x6
32

+1509.053x7
32 + 5639.903x8

32 + 3802.485x9
32

−26573.414x10
32 − 74318.125x11

32 − 87330.609x12
32

−49702.676x13
32 − 19933.791x14

32 − 4348.181x15
32

−653.218x16
32

Signal 2 Element 64 49.559− 1.218x64 − 1.13x2
64 − 0.087x3

64 + 0.089x4
64

−0.35x5
64 − 0.323x6

64 + 0.109x7
64 + 0.144x8

64

+0.031x9
64 − 0.011x10

64 − 0.01x11
64 − 0.004x12

64

−0.001x13
64

Signal 2 Element 96 50.428− 8.823x96 + 0.766x2
96 + 19.896x3

96 + 8.752x4
96

+3.074x5
96 + 18.652x6

96 + 46.048x7
96 + 24.722x8

96

−75.657x9
96 − 156.685x10

96 − 144.101x11
96

−80.659x12
96 − 29.705x13

96 − 7.199x14
96 − 1.073x15

96

−0.078x16
96

Signal 2 Element 128 49.5− 1.133x128 − 1.96x2
128 + 0.301x3

128 + 0.445x4
128

+0.016x5
128 + 0.045x6

128 + 0.012x7
128 − 0.005x8

128

−0.005x9
128 − 0.003x10

128 − 0.001x11
128

Table 12: Select polynomials discovered by the Piecewise Polynomial network at
the data points given in Figure 31.

6. Real-World Application of Piecewise Polynomial Activation 101

Figure 32: Plot of the log of the sums of the coefficients of the 160 polynomials
associated with the left-hand signal in Figure 31. The network makes far more use
of high-order terms than the network associated with MNIST.

or is there something more at work? In this section, we give an example of the

type of analysis that can be done with this construction; this is not an exhaustive

examination of the concepts, but the exploration of what can be done with easily

computed gradients specifically is an interesting route to travel down.

We can begin to answer this question by considering what it means for a piece-

wise polynomial function to have large polynomial coefficients at a certain data

point. As we’ve seen in previous examples and again in this one, the network

tends to put its current prediction in the constant term of its current polynomial.

Recall from Section 3.3 that the constant term in the polynomials we show is actu-

ally the sum of all the terms that do not contain the current vector element, which

is very many terms. The primary effect of large coefficients in the other terms

is to increase the partial derivative of the function discovered by the network in

the local neighborhood of the data point under consideration. In some sense, the

constant term of the polynomial is how the network makes its current prediction,

while the higher order terms tell us what it uses to distinguish successive points

6. Real-World Application of Piecewise Polynomial Activation 102

from one another.

In this example, what this means is that the network has discovered that ele-

ment 32 is useful to distinguish measurements at a range of 50km from measure-

ments at a range of, say, 50.1km. We can demonstrate this empirically using local

partial derivatives with respect to each element of the input data. By using the

polynomials associated with each element of the input data vector and the elemen-

tary Power Rule, we are able to compute the local partial derivatives of the overall

predictive function given by the neural network. By concatenating the 160 partial

derivatives into a single vector, we are able to form the partial derivatives into a

full gradient of the function. We can use this gradient to determine which elements

of the input data are useful in making local distinctions in range predictions.

We must make a note on the use of the word ”gradient” here. Note that in the

realm of deep learning, usually what one means by this word is the derivative of

the Loss function with respect to the network parameters – that is not what we

mean here. In this context, where we already have a function f(θ, x) represented

by a trained network with parameters θ and data x, what we mean by gradient is

the gradient of the function with respect to the data. To put it another way, we do

not mean

∇θLoss = ∇θ

∑
(yi − f(θ, xi))

2,

but rather

∇xf(θ, x).

With that said, after computing all 160 partial derivatives with respect to x of

f(θ, x) using the polynomials such as the ones found in Table 12, we form them

into a full gradient as shown in Figure 33. We see that the large coefficients found

in polynomial 32 of sample 2 are not a coincidence, but in fact, it is precisely this

6. Real-World Application of Piecewise Polynomial Activation 103

portion of the input vector that the neural network uses for local information when

making range predictions. Recall that the first 40 elements of the input vector

correspond to the real part of the horizontal polarization of the signal; we can see

in Figure 33 that this is this portion of the signal that the network uses for local

information for signals at 50km.

Figure 33: Left: The same two sample signals at 50km. Right: the partial deriva-
tives of f(θ, x) at those two respective points. At a range of 50km, the real part of
the horizontal polarization is the most useful part of the signal for distinguishing
successive measurements, since that is the part of the signal with the highest par-
tial derivative.

This raises yet another question: is this always the case? Does the network

always use the real part of the horizontal polarization to make local distinctions in

the range?

Using our novel activation and the polynomials generated by Algorithm 1,

these questions are easy to answer. We may simply compute the partial deriva-

tives for data points corresponding to other ranges and see which parts of the sig-

nal vector the network is using. In Figure 34, we perform the same computation,

6. Real-World Application of Piecewise Polynomial Activation 104

Figure 34: Left: another sample signal at a range of 30km. Right: the partial deriva-
tives of f(θ, x) at this measurement. At a range of 30km, the imaginary part of the
horizontal polarization is the most useful part of the signal for distinguishing suc-
cessive measurements. This shows how local information moves to different parts
of the vector as the range changes.

but with a signal corresponding to a range of 30km.

We see in Figure 34 different behavior than we saw in previous cases – the

network no longer uses the first 40 elements of the input vector, corresponding

to the real part of the horizontally polarized signal, to make local distinctions in

range. Rather, it uses the next 40 elements, corresponding to the imaginary part

of the horizontal polarization. In this way, we have discovered something about

the flow of local information through the input vector – in some regions, local

predictive information is in the real part of the horizontal polarization of the input,

and in other areas, local information is in the imaginary part of the horizontal

polarization.

We may carry this analysis even further: is this a general trend, or are these two

unique cases where the sizes of the different pieces of the gradient are particularly

useful? We perform one last piece of analysis, and that is to plot the norms of the

different pieces of the gradient as the range of the prediction changes. We want

to see which pieces of the data the network uses for local information at different

ranges.

To determine this, we compute the gradient as before, but instead of consider-

6. Real-World Application of Piecewise Polynomial Activation 105

Figure 35: Left: the vector norms of the parts of the gradient of the function f(θ, x)
corresponding to the real and imaginary parts of the horizontally polarized parts
of the signal. Right: the vector norms of the part of the gradient corresponding to
the real and imaginary parts of the vertical polarization. In the first image, we see
that the network alternates between the real and imaginary parts in determining
local prediction information. In the second image, the network uses the real part
of the signal more throughout almost all ranges.

ing one specific range, we compute the gradient every 400m across our entire range

space from 10 to 70km. We compute the norms of the four pieces of the gradient

separately: the real and imaginary parts of the horizontal polarization and the real

and imaginary parts of the vertical polarization. In the vectors of partial deriva-

tives in Figures 33 and 34, these pieces correspond to elements 0 to 39, 40 to 79, 80

to 119, and 120 to 159. We plot the four curves with their corresponding ranges in

Figure 35 – for ease of viewing, we plot the rolling average of the gradient norms

to make the trends clear.

The results in Figure 35 are striking, especially the first image displaying the

norms of the parts of the gradient corresponding to the horizontal polarization. We

see that, apart from two moments of gradient blow-up at 15km and 65km, there

develops a distinct pattern of alternation between norms of the real and imaginary

parts. Every 8 or so kilometers, the real and imaginary parts switch places, with

the network choosing to use the real part for local predictions at some intervals

and the imaginary part in the following interval. We see that the two samples

6. Real-World Application of Piecewise Polynomial Activation 106

we examined earlier at 30 and 50km are part of this overall trend – at 30km, the

imaginary part has the larger gradient norm, while at 50km, the real part has the

larger gradient norm.

These results are simultaneously exactly what we would have predicted to find,

and wildly remarkable in their implications. Let us think back to what the data

looks like in images such as Figure 10. We see that the data is oscillatory – imag-

ining a horizontal slice of the data, one could easily imagine that the underlying

function which would generate the data is sinusoidal. Based on Figure 35, it seems

that the neural network is exactly replicating this sinusoidal structure. We did

not tell the neural network to do this, and yet we see clearly that that’s what the

network is doing. Additionally, imagine we didn’t have an image of the data to

reference – finding that it has a sinusoidal structure would be remarkably insight-

ful. Amazingly, simply writing down polynomials associated with input elements

led us down a path that gave us insights about the data itself. Developing insight

about the data manifold by the behavior of the neural network using it as input

could be a powerful idea that merits further investigation.

6.3.1 Data Ambiguity with Polynomial Information

The analysis here seems likely to be linked to the notion of data ambiguity as de-

scribed in Section 5.1. We have seen in previous analysis and experiments that both

the neural network and Maximum Likelihood Estimator can confuse data points

that are precisely 16km apart – this happens to correspond to one ”cycle” of the

gradient norms as shown in Figure 35. It could very well be the case that this cycli-

cal structure in the network gradient corresponds to a similar cyclical structure in

the underlying data manifold. We give here an example of what these points look

6. Real-World Application of Piecewise Polynomial Activation 107

Noise Level True Range (km) Prediction (km)
1.0x 50.0 49.0
1.3x 50.0 54.9
2.0x 50.0 67.8
1.0x 67.8 64.9

Table 13: Predictions for the network at various noise levels. We see that, as in
Section 5.1, the network makes ambiguity errors of roughly 16km when the noise
is increased by 2x. In between 1x and 2x noise, we see the transitional period as
the network switches between its correct and incorrect prediction.

like, and how the network behaves when it confuses specific points.

We perform one final experiment to see how the network behaves in this case

of data ambiguity. We may essentially repeat the examples from Section 5.1 – we

take an example signal, and increase the noise until the network confuses the given

signal with another range. To that end, we start with the example signal we are fa-

miliar with at this point, associated with a range of 50km. We increase the noise on

the signal, starting with the level of noise we originally trained on, and increasing

until the level of noise is doubled. We see in Table 13 the predictions for the various

noise levels.

We may analyze the behavior of the network more deeply in Figure 36. The first

example is identical to Signal 2 in Figure 33, where local predictive information is

contained in the real part of the horizontal polarization of the signal. Most inter-

esting is the similarity between the signals at 50km and 2x noise, which is the third

signal, and 67km at standard noise, the fourth signal. It becomes almost obvious

how the network can confuse the two signals – the horizontal polarization, the left

half of the signal, looks nearly identical, while the vertical polarization appears to

have a similarly large level of noise.

The only other aspect to point out is the second set of images in Figure 36. Here,

the noise is large enough that the network no longer associates the signal with a

6. Real-World Application of Piecewise Polynomial Activation 108

Figure 36: Rows 1 to 3: a signal at 50km with original noise level, 1.3 times the
original noise level, and double the original noise level. For row 3, the network
predicts the signal to be at a range of 67.8km. Row 4: the signal associated with
67.8km, with original noise level. Note the scale on the gradient plots – the gradi-
ent in the ”transitional” row of 1.3 times original noise has an enormous gradient
as the network shifts its prediction rapidly from 50 to 67.

6. Real-World Application of Piecewise Polynomial Activation 109

range of 50km, but not so large that the network will associate the signal with

67km. Since a signal of this form is unlike all the signals the network saw in train-

ing, it does not use the region of 160-dimensional space that this signal lives in for

predictions, rather, it uses this region as a transition between 50km and 67km pre-

dictions. We may confirm that this is the case when considering the gradient at this

signal. As we can see in row 2 of Figure 36, the gradient at this point is enormous

compared to the other points. The corresponds to the rapid transition between

two similar signals associated with very different ranges – since the network is

C1, it must make a continuous transition between different predictions. When the

ranges are separated by 17km and the signals differ only by a small change in the

noise, it is simply necessary to have a large gradient in that region.

6.4 Remarks on Piecewise Square Activation

We’ve seen in this section the power of the piecewise square activation function.

Not only is it comparable in performance to standard activation functions, but

we’ve seen in a very in-depth fashion that it allows for robust analysis of the struc-

ture of the function found by the network during the training process. In some

sense, it allows us to dig deep into the precise way in which the network interacts

with the data. The analysis here all stems from the piecewise polynomial structure

of this activation function – being able to explicitly write down the local structure

of the function found by the network is remarkably powerful, and allows one to

generate insight that would have been very difficult to find with other network ar-

chitectures. By simply writing down a list of polynomials corresponding to input

indices, numerous questions were generated that allow us to determine the local

structure of the neural network function.

6. Real-World Application of Piecewise Polynomial Activation 110

Let us consider a final time what we’ve discovered through this analysis in the

context of what we already know about our data. We know upon first inspection

of the data in images such as Figure 10 that the normalized data is in some sense

cyclical – if we imagine trying to fit a function to a horizontal slice in the image

of the data, we would probably guess that we should try to fit it with some sort

of sine or cosine. If we were to fit a sine or cosine function to the data and then

plot that function’s derivative, we would again be left with another sinusoidal

function. In some way, it makes perfect sense that after performing this sort of

analysis, we would find that the network is fitting a cyclical gradient to a cyclical

function. Additionally, it is likely that the bare fact of a neural network correctly

finding a function which fits the underlying structure of the data would be true

regardless of the activation function we use.

The remarkable thing here, then, is not what the neural network is finding as it

fits a function to the data. The remarkable thing is that the piecewise square activation

naturally provides us a framework by which to ask what the network is doing in the first

place. We started this whole process simply by writing down polynomials, and this

led us to determine the entire local structure of the network’s underlying function.

The advantage that using an analyzable activation function such as the piecewise

square polynomial brings is precisely this insight into the resulting function, and

this is part of what we should consider when determining the effectiveness of a

particular activation.

7. Conclusion 111

7 Conclusion

In this work, we have developed a theoretical framework by which to analyze

neural networks with polynomial and piecewise polynomial activation functions.

Networks of polynomial activations have shown to be deconstructable into prod-

ucts of the form f(θ, x) = P (θ)Φ(x), providing a framework by which to prove a

Universal Approximation Theorem for such networks. Additionally, we propose

a new Piecewise Square activation which takes advantage of the relatively simple

structure of polynomials to construct networks which are more analyzable than

most other networks with other activation functions.

Using this and other activation functions, we have developed an extensive set

of methodologies and results for performing range estimation in signal processing,

including the correct choices of data inclusion, preprocessing, and network archi-

tectures. By combining all these, we are able to construct and train networks that

perform comparably to the optimal model for range prediction on simulated data,

which is the Maximum Likelihood Estimator.

Additionally, through the analysis brought on by our specific choice of novel

activation function, we have discovered that one can uncover information about

the underlying structure of the data manifold. One could imagine extending this

work to any number of cases of less regular data. Using the gradient of a neural

network function to uncover local information about the underlying data set is a

powerful idea, and one that could be used in further explorations of this work.

8. Future Work 112

8 Future Work

The further development of these items could be considered as extensions of the

present work:

• Further development of a proof of a Universal Approximation Theorem for

polynomial networks. A proof that for any given depth d, there exist m1,

. . . , md large enough that the mapping given in Section 2.5 is dense in R2d−1

would be sufficient as a proof, since one could combine this result with the

Stone-Weierstrauss Theorem to show that networks of this form are universal

approximators.

• The models for making range predictions on electric field measurements

could be improved by extending them to account for the cases of the stacked

ducts as described in Section 4.3. Our current models allow two parameters

to vary, namely, the evaporation duct height and the receiver height. Stacked

ducts themselves require three parameters to describe, so the manifold of

input data goes from 2 parameters to 5, greatly increasing the manifold com-

plexity.

• Developing a time-variant algorithm to resolve data ambiguity as described

in Section 5.1. A robust way of removing false predictions and making use

of true ones would greatly increase both the effective range and reliability of

the prediction algorithms.

• It would be interesting to see further examples of piecewise square activa-

tion applied to other problems. As we’ve seen in Section 6.3, this activation

provides a way to analyze a neural network and its underlying function, es-

pecially to determine how the network uses its input locally. We would like

8. Future Work 113

to see this analysis extended to a problem domain where the input data is

less regular. Given the deep connections between gradients of functions on a

manifold and a local parameterization of a manifold, it would be interesting

to see what information can be gained about a data manifold by considering

the gradient of a function applied on it.

A. Appendix 114

A Appendix

A.1 Network Decomposition with Piecewise Square Activation

We would like to decompose a network with Piecewise Square activation in a sim-

ilar manner to the network of square activation as in Theorem 2.2. Recall that the

Piecewise Square activation is given by

Piecewise Square Activation =


0.01x− .000025 x ≤ .005

x2 .005 ≤ x ≤ 1

2x− 1 1 ≤ x.

(17)

Rather than layering piecewise functions over and over, we refer to the ele-

ments of σ(Wix) corresponding to the left, middle, and right side of the activation

as 1li , 1mi
, and 1li . We borrow the notation of indicator functions for these 1 vec-

tors, since they are binary vectors with a 1 in the jth position if σ(Wix) < .000025,

.000025 < σ(Wix) < 1, or 1 < σ(Wix), respectively, and a 0 otherwise. Thus, when

we take a Hadamard product of one of these vectors with σ(Wix), we exactly select

the elements correspond to the associated part of the activation function.

We begin by analyzing σ(W1x); we denote .000025 by a in the following.

σ(W1x) = (.01W1x− a)⊙ 1l1 + (W1x)⊙ (W1x)⊙ 1m1 + (2W1x− 1)⊙ 1r1

= (.01W1x− a)⊙ 1l1 + (W1 •W1)(x⊗ x)⊙ 1m1 + (2W1x− 1)⊙ 1r1

We compose this first layer with the second:

A. Appendix 115

σ(W2σ(W1x)) = (.01W2σ(W1x)− a)⊙ 1l2

+ ((W2σ(W1x))⊙ (W2σ(W1x)))⊙ 1m2

+ (2W2σ(W1x)− 1)⊙ 1r2

= (.01W2((.01W1x− a)⊙ 1l1)− a)⊙ 1l2

+ (.01W2((W1 •W1)(x⊗ x)⊙ 1m1)− a)⊙ 1l2

+ (.01W2((2W1x− 1)⊙ 1r1)− a)⊙ 1l2

+ ((W2σ(W1x))⊙ (W2σ(W1x)))⊙ 1m2

+ (2W2((.01W1x− a)⊙ 1l1)− 1)⊙ 1l2

+ (2W2((W1 •W1)(x⊗ x)⊙ 1m1)− 1)⊙ 1l2

+ (2W2((2W1x− 1)⊙ 1r1)− 1)⊙ 1l2

= .012W2(W1x⊙ 1l1)⊙ 1l2 − .01a(W21l1)⊙ 1l2 − a1l2

+ .01W2(W1 •W1)(x⊗ x)⊙ 1m1 ⊙ 1l2 − a1l2

+ .01 · 2W2(W1x⊙ 1r1)⊙ 1l2 − .01(W21r1)⊙ 1l2 − a1l2

+ ((W2σ(W1x))⊙ (W2σ(W1x)))⊙ 1m2

+ .01 · 2W2(W1x⊙ 1l1)− a(W21l1)⊙ 1r2 − 1l2

+ 2W2(W1 •W1)(x⊗ x)⊙ 1m1 ⊙ 1r2 − 1r2

+ 22W2(W1x⊙ 1r1)⊙ 1r2 − 2(W21r1)⊙ 1r2 − 1r2

(18)

A. Appendix 116

We handle the central product term, ((W2σ(W1x))⊙(W2σ(W1x)))⊙1m2 , separately:

((W2σ(W1x))⊙ (W2σ(W1x)))⊙ 1m2

= ((W2((.01W1x− a)⊙ 1l1 + (W1 •W1)(x⊗ x)⊙ 1m1 + (2W1x− 1)⊙ 1r1))

⊙(W2((.01W1x− a)⊙ 1l1 + (W1 •W1)(x⊗ x)⊙ 1m1 + (2W1x− 1)⊙ 1r1)))⊙ 1m2

= W2(A+B + C)⊙W2(A+B + C)⊙ 1m2

= (W2 •W2)((A+B + C)⊗ (A+B + C))⊙ 1m2

= (W2 •W2)((A⊗ A) + (A⊗B) + (A⊗ C) + (B ⊗ A)+

+(B ⊗B) + (B ⊗ C) + (C ⊗ A) + (C ⊗B) + (C ⊗ C))⊙ 1m2

A,C have the form (bW1x − c) ⊙ 1; when one takes a Kronecker product with

these two matrices as terms, the product takes the following form. Note that we

use the notation of 1 without a subscript as the identity element of the Hadamard

product (i.e., a vector of all 1’s) in order to decompose every term as a a Hadamard

product of Kronecker products.

(b1W1x− c1)⊙ 11 ⊗ (b2W1x− c2)⊙ 12

= (b1W1x⊙ 11 − c111)⊗ (b2W1x⊙ 12 − c212)

= b1W1x⊙ 11 ⊗ b2W1x⊙ 12 − b1W1x⊙ 11 ⊗ c212 − c111 ⊗ b2W1x⊙ 12

+c111 ⊗ c212

= b1b2(W1x⊗W1x)⊙ (11 ⊗ 12)− b1c2(W1x⊗ 1)⊙ (11 ⊗ 12)

−b2c1(1⊗W1x)⊙ (12 ⊗ 11) + c2c2(11 ⊗ 12)

= b1b2(W1 ⊗W1)(x⊗ x)⊙ (11 ⊗ 12)− b1c2(W1x⊗ 1)⊙ (11 ⊗ 12)

−b2c1(1⊗W1x)⊙ (12 ⊗ 11) + c2c2(11 ⊗ 12)

A. Appendix 117

Products of the form B ⊗ C or B ⊗ A take the form

(W1 •W1)(x⊗ x)⊙ 1m1 ⊗ (b2W1x− c2)⊙ 12

= (W1 •W1)(x⊗ x)⊙ 1m1 ⊗ b2W1x⊙ 12

−(W1 •W1)(x⊗ x)⊙ 1m1 ⊗ c212

= b2(((W1 •W1)(x⊗ x))⊗W1x)⊙ (1m1 ⊗ 12)

−c2((W1 •W1)(x⊗ x)⊗ 1)⊙ (1m1 ⊗ 12)

= b2(((W1 •W1)⊗W1)(x⊗ x⊗ x))⊙ (1m1 ⊗ 12)

−c2((W1 •W1)(x⊗ x)⊗ 1)⊙ (1m1 ⊗ 12)

Likewise, the reverse takes the form

= b1((W1 ⊗ (W1 •W1))(x⊗ x⊗ x))⊙ (11 ⊗ 1m1)

−c1(1⊗ (W1 •W1)(x⊗ x))⊙ (11 ⊗ 1m1)

Finally, B ⊗B is the product most familiar to us from Section 2.2; it takes the form

(W1 •W1)(x⊗ x)⊙ 1m1 ⊗ (W1 •W1)(x⊗ x)⊙ 1m1

= ((W1 •W1)(x⊗ x)⊗ (W1 •W1)(x⊗ x))⊙ (1m1 ⊗ 1m2)

= ((W1 •W1)⊗ (W1 •W1))(x⊗ x⊗ x⊗ x)⊙ (1m1 ⊗ 1m1)

A. Appendix 118

Therefore, we are left with the final expression

((W2 •W2)

(A⊗ A) (.012(W1 ⊗W1)(x⊗ x)⊙ (1l1 ⊗ 1l1)− .01a(W1x⊗ 1)⊙ (1l1 ⊗ 1l1)

−.01a(1⊗W1x)⊙ (1l1 ⊗ 1l1) + a2(1l1 ⊗ 1l1))

(A⊗B) +.01((W1 ⊗ (W1 •W1))(x⊗ x⊗ x))⊙ (1l1 ⊗ 1m1)

−a(1⊗ (W1 •W1)(x⊗ x))⊙ (1l1 ⊗ 1m1)

(A⊗ C) +.01 · 2(W1 ⊗W1)(x⊗ x)⊙ (1l1 ⊗ 1r1)− .01 · 2(W1x⊗ 1)⊙ (1l1 ⊗ 1r1)

−2(1⊗W1x)⊙ (1r1 ⊗ 1l1) + (1l1 ⊗ 1r1)

(B ⊗ A) +.01((W1 ⊗ (W1 •W1))(x⊗ x⊗ x))⊙ (1l1 ⊗ 1m1)

−(1⊗ (W1 •W1)(x⊗ x))⊙ (1l1 ⊗ 1m1)

(B ⊗B) +((W1 •W1)⊗ (W1 •W1))(x⊗ x⊗ x⊗ x)⊙ (1m1 ⊗ 1m1)

(B ⊗ C) +2(((W1 •W1)⊗W1)(x⊗ x⊗ x))⊙ (1m1 ⊗ 1r1)

−((W1 •W1)(x⊗ x)⊗ 1)⊙ (1m1 ⊗ 1r1)

(C ⊗ A) +2 · .01(W1 ⊗W1)(x⊗ x)⊙ (1r1 ⊗ 1l1)− 2a(W1x⊗ 1)⊙ (1r1 ⊗ 1l1)

−.01(1⊗W1x)⊙ (1l1 ⊗ 1r1) + a2(1r1 ⊗ 1l1)

(C ⊗B) +2((W1 ⊗ (W1 •W1))(x⊗ x⊗ x))⊙ (1r1 ⊗ 1m1)

−(1⊗ (W1 •W1)(x⊗ x))⊙ (1r1 ⊗ 1m1)

(C ⊗ C) 2 · 2(W1 ⊗W1)(x⊗ x)⊙ (1r1 ⊗ 1r1)− 2(W1x⊗ 1)⊙ (1r1 ⊗ 1r1)

−2(1⊗W1x)⊙ (1r1 ⊗ 1r1) + (1r1 ⊗ 1r1)⊙ 1m2)

For the final decomposition, we combine this expression with Equation 18 to de-

compose the Piecewise Square network.

REFERENCES 119

References

[1] ALPAYDIN, E. Introduction to machine learning. MIT press, 2020.

[2] ANGELOV, P. P., SOARES, E. A., JIANG, R., ARNOLD, N. I., AND ATKINSON,
P. M. Explainable artificial intelligence: an analytical review. Wiley Interdisci-
plinary Reviews: Data Mining and Knowledge Discovery 11, 5 (2021), e1424.

[3] APICELLA, A., DONNARUMMA, F., ISGRÒ, F., AND PREVETE, R. A survey on
modern trainable activation functions. Neural Networks 138 (2021), 14–32.

[4] BAI, Y., CHEN, W., CHEN, J., AND GUO, W. Deep learning methods for
solving linear inverse problems: Research directions and paradigms. Signal
Processing 177 (2020), 107729.

[5] BENGIO, Y., GOODFELLOW, I., AND COURVILLE, A. Deep learning, vol. 1. MIT
press Cambridge, MA, USA, 2017.

[6] BERG, J., AND NYSTRÖM, K. Neural network augmented inverse problems
for pdes. arXiv preprint arXiv:1712.09685 (2017).

[7] BERTHIAUME, D., PAFFENROTH, R., AND GUO, L. Understanding deep
learning: Expected spanning dimension and controlling the flexibility of neu-
ral networks. Frontiers in Applied Mathematics and Statistics (2020), 52.

[8] BURKART, N., AND HUBER, M. F. A survey on the explainability of super-
vised machine learning. Journal of Artificial Intelligence Research 70 (2021), 245–
317.

[9] CASTELVECCHI, D. Can we open the black box of ai? Nature News 538, 7623
(2016), 20.

[10] CASTRO, J. L., MANTAS, C. J., AND BENITEZ, J. Neural networks with a con-
tinuous squashing function in the output are universal approximators. Neural
Networks 13, 6 (2000), 561–563.

[11] CYBENKO, G. Approximation by superpositions of a sigmoidal function.
Mathematics of control, signals and systems 2, 4 (1989), 303–314.

[12] DAYHOFF, J. E., AND DELEO, J. M. Artificial neural networks: opening the
black box. Cancer: Interdisciplinary International Journal of the American Cancer
Society 91, S8 (2001), 1615–1635.

[13] DOĞANÇAY, K. Passive emitter localization using weighted instrumental
variables. Signal processing 84, 3 (2004), 487–497.

REFERENCES 120

[14] DOŠILOVIĆ, F. K., BRČIĆ, M., AND HLUPIĆ, N. Explainable artificial in-
telligence: A survey. In 2018 41st International convention on information and
communication technology, electronics and microelectronics (MIPRO) (2018), IEEE,
pp. 0210–0215.

[15] FERGUSON, E. L., RAMAKRISHNAN, R., WILLIAMS, S. B., AND JIN, C. T.
Convolutional neural networks for passive monitoring of a shallow water
environment using a single sensor. In 2017 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP) (2017), IEEE, pp. 2657–2661.

[16] FERGUSON, E. L., WILLIAMS, S. B., AND JIN, C. T. Sound source localiza-
tion in a multipath environment using convolutional neural networks. In
2018 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP) (2018), IEEE, pp. 2386–2390.

[17] FISHER, R. A. On the mathematical foundations of theoretical statistics. Philo-
sophical transactions of the Royal Society of London. Series A, containing papers of a
mathematical or physical character 222, 594-604 (1922), 309–368.

[18] GLOROT, X., BORDES, A., AND BENGIO, Y. Deep sparse rectifier neural net-
works. In Proceedings of the fourteenth international conference on artificial in-
telligence and statistics (2011), JMLR Workshop and Conference Proceedings,
pp. 315–323.

[19] HAMPTON, J. R. The impact of evaporative ducting on covert communica-
tions. In MILCOM 2007-IEEE Military Communications Conference (2007), IEEE,
pp. 1–7.

[20] HENDRYCKS, D., AND GIMPEL, K. Gaussian error linear units (gelus). arXiv
preprint arXiv:1606.08415 (2016).

[21] HITNEY, H. V., RICHTER, J. H., PAPPERT, R. A., ANDERSON, K. D., AND
BAUMGARTNER, G. B. Tropospheric radio propagation assessment. Proceed-
ings of the IEEE 73, 2 (1985), 265–283.

[22] HOFFMANN, F., SCHILY, H., CHARLISH, A., RITCHIE, M., AND GRIFFITHS,
H. A rollout based path planner for emitter localization. In 2019 22th Interna-
tional Conference on Information Fusion (FUSION) (2019), IEEE, pp. 1–8.

[23] HOLZINGER, A., MALLE, B., SARANTI, A., AND PFEIFER, B. Towards multi-
modal causability with graph neural networks enabling information fusion
for explainable ai. Information Fusion 71 (2021), 28–37.

[24] HORNIK, K., STINCHCOMBE, M., AND WHITE, H. Multilayer feedforward
networks are universal approximators. Neural networks 2, 5 (1989), 359–366.

REFERENCES 121

[25] JARRETT, K., KAVUKCUOGLU, K., RANZATO, M., AND LECUN, Y. What is
the best multi-stage architecture for object recognition? In 2009 IEEE 12th
international conference on computer vision (2009), IEEE, pp. 2146–2153.

[26] KHATRI, C., AND RAO, C. R. Solutions to some functional equations and
their applications to characterization of probability distributions. Sankhyā:
The Indian Journal of Statistics, Series A (1968), 167–180.

[27] KIDGER, P., AND LYONS, T. Universal approximation with deep narrow net-
works. In Conference on learning theory (2020), PMLR, pp. 2306–2327.

[28] KISEL’ÁK, J., LU, Y., ŠVIHRA, J., SZÉPE, P., AND STEHLÍK, M. “spocu”: scaled
polynomial constant unit activation function. Neural computing and applica-
tions 33, 8 (2021), 3385–3401.

[29] KLAMBAUER, G., UNTERTHINER, T., MAYR, A., AND HOCHREITER, S. Self-
normalizing neural networks. Advances in neural information processing systems
30 (2017).

[30] LECUN, Y., CORTES, C., AND BURGES, C. The mnist dataset of handwritten
digits (images). NYU: New York, NY, USA (1999).

[31] LIPTON, Z. C. The mythos of model interpretability: In machine learning, the
concept of interpretability is both important and slippery. Queue 16, 3 (2018),
31–57.

[32] LIU, S., TRENKLER, G., ET AL. Hadamard, khatri-rao, kronecker and other
matrix products. Int. J. Inf. Syst. Sci 4, 1 (2008), 160–177.

[33] LIU, W., YANG, Y., XU, M., LÜ, L., LIU, Z., AND SHI, Y. Source localization
in the deep ocean using a convolutional neural network. The Journal of the
Acoustical Society of America 147, 4 (2020), EL314–EL319.

[34] MAAS, A. L., HANNUN, A. Y., NG, A. Y., ET AL. Rectifier nonlinearities
improve neural network acoustic models. In Proc. icml (2013), vol. 30, Citeseer,
p. 3.

[35] MARCEL, S., AND RODRIGUEZ, Y. Torchvision the machine-vision package
of torch. In Proceedings of the 18th ACM international conference on Multimedia
(2010), pp. 1485–1488.

[36] NAIR, V., AND HINTON, G. E. Rectified linear units improve restricted boltz-
mann machines. In Icml (2010).

[37] O’CONNOR, A., SETLUR, P., AND DEVROYE, N. Single-sensor rf emitter lo-
calization based on multipath exploitation. IEEE Transactions on Aerospace and
Electronic Systems 51, 3 (2015), 1635–1651.

REFERENCES 122

[38] OUARTI, N., AND CARMONA, D. Out of the black box: Properties of deep
neural networks and their applications. arXiv preprint arXiv:1808.04433 (2018).

[39] OZGUN, O., APAYDIN, G., KUZUOGLU, M., AND SEVGI, L. Petool: Matlab-
based one-way and two-way split-step parabolic equation tool for radiowave
propagation over variable terrain. Computer Physics Communications 182, 12
(2011), 2638–2654.

[40] PAKRAVAN, S., MISTANI, P. A., ARAGON-CALVO, M. A., AND GIBOU, F.
Solving inverse-pde problems with physics-aware neural networks. Journal of
Computational Physics 440 (2021), 110414.

[41] PARK, J., KIM, M. J., JUNG, W., AND AHN, J. H. Aespa: Accuracy preserving
low-degree polynomial activation for fast private inference. arXiv preprint
arXiv:2201.06699 (2022).

[42] PASZKE, A., GROSS, S., CHINTALA, S., CHANAN, G., YANG, E., DEVITO, Z.,
LIN, Z., DESMAISON, A., ANTIGA, L., AND LERER, A. Automatic differenti-
ation in pytorch.

[43] POOR, H. V. An introduction to signal detection and estimation. Springer Science
& Business Media, 2013.

[44] RAISSI, M., PERDIKARIS, P., AND KARNIADAKIS, G. E. Physics-informed
neural networks: A deep learning framework for solving forward and in-
verse problems involving nonlinear partial differential equations. Journal of
Computational physics 378 (2019), 686–707.

[45] ROGERS, L. T., HATTAN, C. P., AND STAPLETON, J. K. Estimating evapora-
tion duct heights from radar sea echo. Radio Science 35, 4 (2000), 955–966.

[46] SCHMITZ, J., MATHAR, R., AND DORSCH, D. Compressed time difference of
arrival based emitter localization. In 2015 3rd International Workshop on Com-
pressed Sensing Theory and its Applications to Radar, Sonar and Remote Sensing
(CoSeRa) (2015), IEEE, pp. 263–267.

[47] SHAREEF, A., ZHU, Y., AND MUSAVI, M. Localization using neural networks
in wireless sensor networks. In Proceedings of the 1st international conference
on MOBILe Wireless MiddleWARE, Operating Systems, and Applications (2008),
pp. 1–7.

[48] SLYUSAR, V. New operations of matrix products for application of radars. In
IEEE MTT/ED/AP West Ukraine Chapter DIPED-97. Direct and Inverse Problems
of Electromagnetic and Acoustic Theory (IEEE Cat. No. 97TH8343) (1997), IEEE,
pp. 73–74.

REFERENCES 123

[49] STANSFIELD, R. Statistical theory of df fixing. Journal of the Institution of Elec-
trical Engineers-Part IIIA: Radiocommunication 94, 15 (1947), 762–770.

[50] STONE, M. H. Applications of the theory of boolean rings to general topology.
Transactions of the American Mathematical Society 41, 3 (1937), 375–481.

[51] TIKK, D., KÓCZY, L. T., AND GEDEON, T. D. A survey on universal approx-
imation and its limits in soft computing techniques. International Journal of
Approximate Reasoning 33, 2 (2003), 185–202.

[52] WANG, J., CHEN, L., AND NG, C. W. W. A new class of polynomial activation
functions of deep learning for precipitation forecasting. In Proceedings of the
Fifteenth ACM International Conference on Web Search and Data Mining (2022),
pp. 1025–1035.

[53] WANG, X., WU, Y., ZHANG, A., HE, X., AND CHUA, T.-S. Towards multi-
grained explainability for graph neural networks. Advances in Neural Informa-
tion Processing Systems 34 (2021), 18446–18458.

[54] WITZ, E., BARGER, M., AND PAFFENROTH, R. Deep learning for range lo-
calization via over-water electromagnetic signals. In 2021 20th IEEE Interna-
tional Conference on Machine Learning and Applications (ICMLA) (2021), IEEE,
pp. 1537–1544.

[55] XU, F., USZKOREIT, H., DU, Y., FAN, W., ZHAO, D., AND ZHU, J. Explain-
able ai: A brief survey on history, research areas, approaches and challenges.
In CCF international conference on natural language processing and Chinese com-
puting (2019), Springer, pp. 563–574.

[56] YANG, Z., ZHANG, A., AND SUDJIANTO, A. Enhancing explainability of
neural networks through architecture constraints. IEEE Transactions on Neural
Networks and Learning Systems 32, 6 (2020), 2610–2621.

[57] YAROTSKY, D. Universal approximations of invariant maps by neural net-
works. Constructive Approximation 55, 1 (2022), 407–474.

[58] YUAN, H., YU, H., WANG, J., LI, K., AND JI, S. On explainability of graph
neural networks via subgraph explorations. In International Conference on Ma-
chine Learning (2021), PMLR, pp. 12241–12252.

[59] ZHAO, W., ZHAO, J., LI, J., ZHAO, D., HUANG, L., ZHU, J., LU, J., AND
WANG, X. An evaporation duct height prediction model based on a long
short-term memory neural network. IEEE Transactions on Antennas and Propa-
gation 69, 11 (2021), 7795–7804.

REFERENCES 124

[60] ZHAO, X., YARDIM, C., WANG, D., AND HOWE, B. M. Estimating range-
dependent evaporation duct height. Journal of Atmospheric and Oceanic Tech-
nology 34, 5 (2017), 1113–1123.

[61] ZHOU, J., QIAN, H., LU, X., DUAN, Z., HUANG, H., AND SHAO, Z. Poly-
nomial activation neural networks: Modeling, stability analysis and coverage
bp-training. Neurocomputing 359 (2019), 227–240.

[62] ZHU, X., LI, J., ZHU, M., JIANG, Z., AND LI, Y. An evaporation duct height
prediction method based on deep learning. IEEE Geoscience and Remote Sensing
Letters 15, 9 (2018), 1307–1311.

