

NODEWISE CONNECTRIX

or

A METHOD FOR IMPLEMENTING A WEB-BASED INTERFACE TO

HEIERARCHICAL TREE SYSTEMS FOR NON-PROGRAMMERS

An Interactive Qualifying Project Report

submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

by

_____________________________ _____________________________

Peter Goodspeed Ryan Munro

4 Mar, 2004

Professor Michael Ciaraldi, Advisor

Goodspeed, Peter
Munro, Ryan

ii Nodewise Connectrix

Abstract

The Nodewise Connectrix IQP consisted of the design and implementation of a simple

interface. With this interface, users may expedite the production of complex tree structures

stored in a database with a web interface.

This interface is designed expressly for non-technical people, and can be easily used to

create family trees, business hierarchies, and other useful models for people unused to

programming or the internal workings of computers.

Acknowledgements

The Gentoo Project (gentoo.org) -- For putting together Gentoo Linux and its excellent

Emerge utility

The Apache Foundation (apache.org) -- For making the most reliable web server in common

use, and giving it away for free

The MySQL Project (mysql.com) -- For making a free database management system which

interoperates with the above

The PHP Project (php.net) -- For making a language designed for the web, instead of one

that simply supports it

Sun Microsystems (sun.com) -- For building commercial quality GUI tools into the most

portable language to date

WPI Professor of Practice Michael Ciaraldi -- For advising this IQP, and pointing it in the right

direction when it certainly needed it

Goodspeed, Peter
Munro, Ryan

iii Nodewise Connectrix

TABLE OF CONTENTS

Abstract
Acknowledgements
TABLE OF CONTENTS
1. INTRODUCTION

1.1 Prologue
1.2 Summary of Project

2. DESCRIPTION OF PROJECT
2.1 Completed Version

2.1.2 Development Tool
2.1.3 Language
2.1.4 Web Interface

2.2 Initial Specifications
2.2.2 Initial Concept
2.2.3 Revision 1
2.2.4 Revision 2
2.2.5 Morph into Final Version

2.3 Differences between Initial Concept and Final Version
2.3.1 Scope
2.3.2 Added Functionality
2.3.3 Removed Functionality
2.3.4 Postponed Functionality

3. REVIEW OF PROGRESS
3.1 Distribution of Work
3.2 Progress vs. Time
3.3 Lessons Learned

4. CLOSING
4.1 Project Overview
4.2 Conclusions

Appendix A1: Development Tool Specifications
Appendix A2: FunctionCode Specification
Appendix A3: Glossary
Appendix A4: Language Definition
References

Goodspeed, Peter
Munro, Ryan

1 Nodewise Connectrix

1. INTRODUCTION

1.1 Prologue

1.1.1 Nodewise Connectrix started almost a year ago, when Peter's mother suggested

that someone should really write a good piece of software to make

communication between family members easier. This led to the design of a

simple database system with a web interface to handle that, but in the end, even

after several hours of work, the system was not nearly well enough implemented

to be called complete. This, in turn, led to the realization that nobody had ever

written a generic setup program to set up databases with web interfaces; the only

people who had the necessary skills to set up such a database were

programmers, and it still took nontrivial amounts of time. Further contemplation

revealed that putting such generic setup program together, and making it simple

enough that even a non-programmer could use it well, would be an interesting

IQP.

1.2 Summary of Project

1.2.1 Nodewise Connectrix is designed as a simple setup utility for design and

implementation of any generally hierarchical tree or graph as a database

structure, with a web interface. It currently assumes the existence of Apache,

PHP, and MySQL on the server already; however, later releases will be smart

enough to detect the absence of any of these ingredients and initiate the install

process for them automatically.

1.2.2 The project was designed with an average computer user with little to no

programming experience in mind. There are useful help files containing

definitions and walkthroughs for every implemented part of the project, and the

user interface was specifically designed to help someone unfamiliar with

programming terms and concepts design a workable database.

Goodspeed, Peter
Munro, Ryan

2 Nodewise Connectrix

1.2.3 There is a complete, simple language included with this project. Although it is not

Turing-complete, it is designed to be an easy to understand mechanism with

which users can define custom, automatically updating relational queries.

Goodspeed, Peter
Munro, Ryan

3 Nodewise Connectrix

2. DESCRIPTION OF PROJECT

2.1 Completed Version

2.1.1 Nodewise Connectrix is divided into three main subsystems: The Development

Tool, the Language Parser, and the Web Interface. The first two systems are

only used once, at setup time, by an administrator. The last of these is produced

by the first two, and is the only part the end-user will ever see.

2.1.2 Development Tool

2.1.2.1 The Development Tool is a graphical user interface which steps the user

through the process of configuring their database and PHP scripts, without

requiring any knowledge of databases or PHP. It is written in Java for

portability. User documentation for the Development Tool can be found in

Appendix A1.

2.1.2.2 The best way to learn what the Development Tool is and does is to download

and run it yourself. Source files may be found in the source CD in the

/devtool directory.

2.1.3 Language

2.1.3.1 The Language is a custom-designed relational language called

FunctionCode, which as of this writing is unique to this project. It is designed

to be simple and easy to learn, yet provide an expressive way to design

complex queries without having to know any SQL. Although all the user sees

of the parser is in the 'Parser' tab, it is actually a complete package which

can be imported into any Java application which wants to use this

functionality.

2.1.3.2 User documentation for the Language can be found in Appendix A2. Source

files can be found in the source CD in the /devtool/parser directory

2.1.4 Web Interface

Goodspeed, Peter
Munro, Ryan

4 Nodewise Connectrix

2.1.4.1 The Web Interface is a user-friendly way for the end user to view and modify

the contents of their database. It is composed of several PHP pages, all of

which are either generated by the Development Tool or come with Nodewise

Connectrix without needing any modification. An example can be found at

http://amalcon.res.wpi.net/actual/ . Authentication: test/test .

2.1.4.2 Due to the constraints of life, it is impossible to guarantee the operation of

this website except during the work week (Monday – Friday) before 1 April

2004. After that point, in order to see the web forms in action, it will be

necessary to set up a server of your own, with MySQL and PHP support. At

that point, you should be able to drop these files in, tweak only a few

settings, and see them work. Alternately, after setting up the server, you may

as well create your own database by running the Development Tool.

2.2 Initial Specifications

2.2.1 This project went through several design incarnations before we finally

implemented it. Here's a review of some of the changes it went through.

2.2.2 Initial Concept

2.2.2.1 Initially, the project was to be a complete package, with a cross-platform

installer which checked for the necessary prerequisites (Apache, PHP,

MySQL) and installed and configured any which weren't already present. It

would take the user from point of download (a single file) to completion of

setup (a web address where they could begin entering information into their

database) in one seamless process.

2.2.2.2 The languages to be used initially included PHP for the web interface,

MySQL for the database implementation, Prolog for the user-function

language, and Java for the development tool and as an interface to allow the

PHP to communicate with the Prolog.

Goodspeed, Peter
Munro, Ryan

5 Nodewise Connectrix

2.2.3 Revision 1

2.2.3.1 In the interests of time, we decided to leave the design and implementation

of the installation package and the advanced security settings for a later

release. This left us with three components to work on: the SQL

Development Tool, the Parser, and the Web Interface.

2.2.3.2 Additionally, we decided that, as MySQL didn't support subqueries, we would

use PostgreSQL instead.

2.2.4 Revision 2

2.2.4.1 Due to various configuration problems, we couldn't make PostgreSQL work

with PHP at all, so we decided to revert to MySQL and avoid the use of

subqueries through the use of PHP functions.

2.2.4.2 Additionally, as we couldn't make Prolog work in a reliable or consistent

manner, we decided to scrap the notion of using it, and instead write our own

function-based language. Writing our own language has the added

advantage of allowing us to build in SQL generation directly, instead of

having to write a converter. This had the side effect of removing the Java

translation layer from between the PHP and the Prolog; instead, we

generated relevant PHP in the Development Tool.

2.2.5 Morph into Final Version

2.2.5.1 The final version of the project is essentially identical to Revision 2. However,

the design of the web forms changed slightly, as did some implementation

details in the Development Tool.

2.3 Differences between Initial Concept and Final Version

2.3.1 Scope

2.3.1.1 The biggest difference between the initial concept and the final version is

here, in the whole scope of the project. Implementation aside, designing the

Goodspeed, Peter
Munro, Ryan

6 Nodewise Connectrix

complete package could have easily consumed the seven weeks we had

available. Therefore, we had to pare down the project to the most significant

portion, and assume that the uninteresting bits happen in later releases. The

majority of the postponed and dropped functionality is purely technical and

thus not as relevant to the focus of this project.

2.3.2 Added Functionality

2.3.2.1 The project did grow in certain ways from the initial specification. The most

noteworthy of these ways was the design and implementation of our own

language for the user to write functions in. The original idea was to use a

combination of public domain software packages to generate SQL queries on

the fly, by having PHP use its Java library functions to run a java program

which interpreted Prolog, to run a package (written in prolog) which

converted prolog statements into SQL queries.

2.3.2.2 Though it is probably possible to configure such a system properly, we

decided that it would be easiest to implement our own SQL generation

language, and generate PHP code at development time which would be run

later.

2.3.3 Removed Functionality

2.3.3.1 Originally, there was to be a concept of a 'group,' which was to be a cluster of

nodes which could be acted upon as one. This was to make communication

easier. Thus, one could group all nuclear families, and compose an email to

an entire family, instead of looking up the email address of each member of

the family. This functionality was removed because it simply didn't fit the

nature of the project. It would have required a great deal of additional

configuration for only a little bit of added functionality. This conflicted with the

design goal of making configuration as simple as possible, to achieve a

minimum of required proficiency in the end user.

Goodspeed, Peter
Munro, Ryan

7 Nodewise Connectrix

2.3.3.2 Additionally, there was originally going to be an email page in the web form,

which could be used to compose an email to any recipient or group thereof.

This was removed because there is no guarantee that the user will need or

include email addresses in his database. It was replaced by a configuration

option: if the user specifies that a certain field (or fields) in his database

contains email addresses, those fields get displayed as mailto: links.

2.3.4 Postponed Functionality

2.3.4.1 Nodewise Connectrix could currently be best described as alpha-version

software. The interesting parts work, but it's still got a long way to go before

it's ready for public release.

2.3.4.2 The entire installation package has been postponed to a later release.

Functionally speaking, this means that it will be up to whichever team

decides to continue this project to design and implement a good installation

package. This functionality was postponed because writing the proper

installer is at once highly time-consuming (it needs to exhibit complex

behavior to configure a web server from a dry start), and tangential to the

goals of this project. However, in order to properly let an inexperienced user

set up their web database, it will have to be written eventually.

2.3.4.3 Similarly, there are many complex behaviors which could be written to make

the web interface much more secure than it currently is. They will need to be

incorporated into the code before it can be considered ready for release, but

at this point, it is sufficient to include just enough security to discourage

random web trolls from attempting to break into the design and test machine.

2.3.4.4 Finally, though it would be useful to be able to load and save the state of the

Development Tool (to create 'snapshots' of various useful configurations),

and work was put into developing this functionality, it turned out to be overly

complex to actually make it work. Thus, it is postponed until further

Goodspeed, Peter
Munro, Ryan

8 Nodewise Connectrix

developers become available to refine this project. Though there is no

indication that these functions have even begun to be supported in the UI

that the user sees, documented functions do exist in the code which should

give a useful starting point for further developers to work from.

Goodspeed, Peter
Munro, Ryan

9 Nodewise Connectrix

3. REVIEW OF PROGRESS

3.1 Distribution of Work

3.1.1 Work was divided fairly evenly through the duration of the project. The design

work happened collaboratively, and during initial installation and package testing

both team members participated basically equally. Implementation was more

divided, but still fairly even: Peter implemented the majority of the Development

Tool, while Ryan designed and implemented the language and parser. Though

Ryan wrote more of the web forms, Peter wrote more of the documentation.

3.2 Progress vs. Time

3.2.1 This project was run, from start to finish, in a single, seven-week term. This put

everything on a very short schedule.

3.2.2 Approximately the first third of the project time was spent in design and

configuration. This included setting up Ryan's computer as a Linux box with all

the requisite software, and a good number of packages which ended up getting

discarded from the final design. However, by week 3, the design had progressed

to Revision 2 and we began to implement the final product.

3.2.3 The vast majority of the code was complete by week 6, though there were still a

few tweaks to the web interface and Development Tool still to be implemented at

that point. However, that was the point at which the focus shifted from developing

new code to documentation and testing.

3.3 Lessons Learned

3.3.1 The lessons we learned were threefold: Designing a good user interface is a

surprisingly complex task; it is good to plan ahead ambitiously, but check for

feasibility while doing so; and simplifying a complex task such that it is

performable by someone unqualified to do so, is itself a complex task.

Goodspeed, Peter
Munro, Ryan

10 Nodewise Connectrix

3.3.2 While we spent a good amount of time designing the user interface for the

Design Tool, it was clear that users with a little bit of competence might want to

design the web interface themselves. Everybody has different tastes in terms of

website design. Therefore, though we provide a default web interface, it is simple

for the user to customize it however they like.

3.3.3 In terms of the Development Tool, the biggest challenge for the user interface

was to make everything clear, simple, and helpful. Functionally, what this means

is that we spend quite a bit of time designing good error messages and useful

results when those errors were generated.

3.3.4 As you can see from the Revision History, we designed the project fairly

ambitiously, and then subsequently had to pare down extraneous work, and

change the implementation plan repeatedly based on what features were

supported. Though we ended up able to implement all the key features of the

project, it would have been good to discover earlier which components and

packages just work together, as opposed to requiring hours of configuration time.

On the other side of the coin, if it had turned out that the Prolog interface had just

worked with only minor configuration, there is a good chance that we would have

been able to implement more of the original design.

3.3.5 Finally, the main focus of the project was always to simplify a complex task, and

make it possible for the inexperienced user. However, along the way, we ran into

many challenges and hurdles that we simply hadn't anticipated. We spent many

hours in the first few weeks trying to configure incomprehensible packages which

advertised themselves as performing in a certain way, but only did so after much

configuration. This gave us a powerful object lesson in what the user shouldn't

have to deal with. There were a few packages, however, that just worked without

any configuration at all. That became one of our goals for this project: to make a

system that, in the end, just works.

Goodspeed, Peter
Munro, Ryan

11 Nodewise Connectrix

4. CLOSING

4.1 Project Overview

4.1.1 Nodewise Connectrix was initially conceived as a setup utility, to enable non-

programmers to create and administer a web interface to a complex database

system. In that respect, we have succeeded; the interesting and useful parts are

complete. However, the project could still use quite a bit of polishing and finishing

before it gets released to the public. If this were a commercial product, I would

peg it as being in a mid alpha stage right now.

4.1.2 Particularly, the installer/configurer for the software on which this project depends

(Apache, PHP, MySQL) is vital to the success of the original intent of the project.

However, it would require enough extra work that there simply wasn't enough

time to do it.

4.2 Conclusions

4.2.1 Nodewise Connectrix is sufficiently developed and functional that it certainly

expedites the process of creating and administering a database with a web

interface. However, to do a clean install still requires manual configuration of the

server, and will probably involve the user rewriting the output web pages just to

make them look prettier. This implies a required level of competence far higher

than that of the intended end-user. Fixing these problems, and polishing and

adding to the feature set, would perhaps make a good MQP.

4.2.2 Despite this incompleteness, this project accomplished the goals initially set for it.

Setbacks were overcome and documented, and everything was accomplished

according to schedule. The project is complete enough that both of us feel

comfortable leaving it at this stage.

4.2.3 Developing this project was an adventure. It was the first time either of us had

attempted a project this big with such an aggressive timeline. However,

Goodspeed, Peter
Munro, Ryan

12 Nodewise Connectrix

everything seems to have come together satisfactorily. We're both proud to have

worked on this project.

Peter Goodspeed

Ryan Munro

4 March 2004

Goodspeed, Peter
Munro, Ryan

13 Nodewise Connectrix

Appendix A1: Development Tool Specifications

From http://amalcon.res.wpi.net/docs/devtool.html:

Configuring your Database with the Development
Tool

We will assume that everything has been properly installed and configured such
that the Devtool now runs properly. If that has not yet happened, this is not the
right help file for you.

The Development Tool is a configuration utility which is used to design the basic
structure of your data.

As you know, Nodewise Connectrix represents Hierarchical Tree Structures as
large, interconnected graphs of nodes, connected to each other with links. The
Development Tool helps you design the structure of these Nodes and Links.

1. The first two panels of the Development Tool are designated 'Nodes' and
'Links'. These each have the same format. In each of these, you designate
the fields which will appear in every Node and Link, respectively.

There are several rules which field names must follow:

o Field names are case-insensitive. This means that capitalization
does not matter at all; the names will be converted to uppercase
later.

o Field names must be composed of word characters. This means
that they must be in the set [a-zA-Z_0-9]. Any other characters are
disallowed

o Field names may not begin with the string 'user_'. This is reserved
for language functions.

o Field names may not be any of the following reserved keywords:
 and
 or
 not
 bidirectional
 id
 type
 reverse

2. The third panel is entitled 'Types' and comes in two sections, Nodes and
Links. This is where you define what types nodes and links may be. This is

http://amalcon.res.wpi.net/docs/devtool.html
http://amalcon.res.wpi.net/docs/glossary.html#devtool
http://amalcon.res.wpi.net/docs/glossary.html#tree
http://amalcon.res.wpi.net/docs/glossary.html#node
http://amalcon.res.wpi.net/docs/glossary.html#link
http://amalcon.res.wpi.net/docs/glossary.html#field

Goodspeed, Peter
Munro, Ryan

14 Nodewise Connectrix

the most basic level at which you can define what your database is about.

For example, if you are designing a family tree, each node will be of type
'person', and you can have links of type 'parentof' and 'marriage'.

Alternately, if you are designing a business organization chart, you will
probably want to support nodes of types 'employee', 'department',
'division', 'group', and 'company'. You will also want links of type
'manager', 'controlling_authority', 'project_partner', etc.

3.

The final panel, 'User Code', is the most complex panel and the most
useful. This is where you define the functions that specify how things are
related to each other in implied ways. For example, on a family tree, it will
e useful to define a function 'sibling', which is anyone who has the same
parents as you, but isn't you. In the same way, you can define 'uncle'
which is anyone who is male, and is a sibling of your parent, 'aunt'
similarly, and 'cousin' as any decendent of any uncle or aunt.

The User Code section supports recursion, which means that a function
can reference itself. For example, you could define the function 'ancestor',
which means 'your parents, or any ancestor of your parents'.

You should always create as many relations as possible as implied
relations defined by this User Code, instead of defining more Link Types
and putting them in manually. This is because the more things that are
generated automatically, the less maintenance you have to do by hand to
keep the database up to date.

For more information about how to use the User Code section, read the
User Code Tutorial.

http://amalcon.res.wpi.net/docs/glossary.html#recursion
http://amalcon.res.wpi.net/docs/usercode.html

Goodspeed, Peter
Munro, Ryan

15 Nodewise Connectrix

Appendix A2: FunctionCode Specification

From http://amalcon.res.wpi.net/docs/usercode.html:

Nodewise Connectrix FunctionCode Specification
Introduction
What Is FunctionCode?

FunctionCode is not a programming language. It is a language for describing
how relationships can be built upon other relationships. For example, the
FunctionCode to say "Someone is my child if I am their parent" is:

(child me) = (reverse parent me)
That probably doesn't make much sense yet. Don't worry; it will soon.

Function Definitions

A function is the actual construct describing how a relationship is constructed
from other, established relationships. A function is defined in the example:

(child me) = (reverse parent me)
FunctionCode's sole purpose is to describe these functions; as such, each line in
FunctionCode is a function definition.

The function name above is child. A function name is what you will use to
identify the function later. It is what the web interface will display to the user when
your function is an option for a given field. It is also what you will use later on,
should another function use this function.

Function Names

A function name should be a sequence of capital or lowercase letters, numbers
between 0 and 9, and underscores (_). Thus, a function name like
number1_function would be OK, but a function name like #1_function would not.
Also, a function name may not be the same as a node property name or a link
type name, as defined in the first three pages of the devtool, nor may it be the
same as another function name.

Parameters

In the child function above, me is what's called a parameter. Every function in
FunctionCode has exactly one parameter, which is placed as shown in the
example. The parameter is a value to be filled in later. In other words, giving a
parameter is like saying "I want some value here, but I don't know what yet." It is
set to the current node when doing a relative search in the web interface. A

http://amalcon.res.wpi.net/docs/usercode.html
http://amalcon.res.wpi.net/docs/glossary.html#webinterface
http://amalcon.res.wpi.net/docs/glossary.html#webinterface

Goodspeed, Peter
Munro, Ryan

16 Nodewise Connectrix

function does not have to use its parameter; however, to describe most
meaningful relationships, it is necessary.

A parameter is also a sequence of capital or lowercase letters, numbers between
0 and 9, and underscores(_), just like function names. They do not, however,
face any further restrictions; your parameters may have the same names as
functions, node properties, link types, or even other parameters. It is, however,
suggested that you make them unique to avoid confusion later.

The remaining part of the function definition, (reverse parent me) is known as a
statement. Statements are described below.

To recap, a function definition looks like this:

(function_name parameter) = (statement)

Statements

For the following, we'll assume the following properties and link types are
defined. If you want to copy the functions and follow along, you probably want to
define them:

Link type= parent src=the child dest=the parent
Node property= gender type=text
Furthermore, wherever you see "parent" or "gender" in this section, you could
replace it with the name of any link type or node property, respectively.

Unlike in many programming languages, in FunctionCode, a statement cannot
exist on its own. It may only exist as part of a function definition. Statements in
FunctionCode may take several forms.

Note on reading statements: Statements are best read by starting from the
innermost parenthesis and working your way out. Try to do this with each of the
statements in this section, and try to figure out what each one is doing. This
practice will make writing them much easier.

Constants and Parameters

Though not strictly statements, there are four things which may be placed
anywhere a statement may go:

The current function's parameter, in plain text, unquoted. This will become
the value of the current node in the web interface, or the value of the given
parameter in a function call statement.
A string literal, in double-quotes, i.e. "male"

http://amalcon.res.wpi.net/docs/glossary.html#link
http://amalcon.res.wpi.net/docs/glossary.html#node
http://amalcon.res.wpi.net/docs/glossary.html#webinterface

Goodspeed, Peter
Munro, Ryan

17 Nodewise Connectrix

A numerical literal, in single-quotes, i.e. '2', '3.14', etc.
A date or time literal, in single-quotes. Dates must follow the YYYY-MM-
DD format, i.e. '2004-06-07'. Times must follow the HH:MM:SS format, i.e.
'12:30:00'.

Link Trace Statements

The first of these is the link trace, which looks like the underlined:
(parentfunc you) = (parent you)

This (not particularly useful) function retrieves all parents of its parameter. This is
not particularly useful because links appear in all the same places as functions in
the web interface. When combined with other statements, however, the link trace
statement becomes a powerful tool. For example, the following function will
retrieve all grandparents of the parameter:

(grandparent me) = (parent (parent me))

Reverse Link Trace Statements

Similar to the link trace statement is the reverse link trace statement. It looks like
this:

(child me) = (reverse parent me)
This function will retrieve all children of its parameter. This is not particularly
useful because links in fact appear in both directions whenever they appear in
the web interface. Again, it becomes more useful when we combine it with other
statements. For example, the following function will retrieve all of your siblings
plus yourself (we'll learn how to leave yourself out later):
(siblingorself me) = (reverse parent (parent me))

Node Property Statements

The third type of statement is the node property statement. This statement
retrieves the given property of the nodes it's passed. It looks like this:

(mygender me) = (gender me)

Note that this function actually results in an error when used in the web interface,
because the web interface wants to get node IDs, and this will give it names. This
statement is actually useless except when combined with the reverse node
property statement.

Reverse Node Property Statements

http://amalcon.res.wpi.net/docs/glossary.html#webinterface
http://amalcon.res.wpi.net/docs/glossary.html#webinterface
http://amalcon.res.wpi.net/docs/glossary.html#webinterface
http://amalcon.res.wpi.net/docs/glossary.html#webinterface

Goodspeed, Peter
Munro, Ryan

18 Nodewise Connectrix

The reverse node property statement retrieves all nodes with the given property.
(potentialroommate me) = (reverse gender (gender me))
This retrieves all nodes with the gender name as the parameter. This works
because the inner node property statement (name me) gives the gender of its
parameter. The reverse node property statement then finds all the nodes with
that gender.

Special Statements

There are three types of special statement: the AND, OR, and NOT statement. It
doesn't matter if the AND, OR, or NOT in these statements is capitalized. The
NOT statement finds all values not in its parameter. Constants put into a not
statement will be interpreted as IDs. NOT statements look like this:
(notme me) = (not me)
This function will find all nodes OTHER than its parameter.

An AND statement finds all values in BOTH its parameters. AND and OR are
special cases in that they have two parameters. The AND statement looks like
this:

(father me) = (and (parent me) (reverse gender "male"))
This function will find all of its parameter's male parents. Also, as promised:
(sibling me) = (and (reverse parent (parent me)) (not me))
This function will find all of its parameter's parents' children who are not the
parameter; in other words, siblings.

The OR statement finds all values in EITHER parameter. It is syntactically
identical to the AND statement:

(parentchild me) = (or (reverse parent me) (parent me))
This function will find all nodes who are either parents or children of the
parameter.

Function Call Statements

The last type of statement is a function call, which looks like the underlined
(where child is the name of a function):
(something you) = (child you)

A function call invokes another function you have defined. In this case, the
function named something would do the same thing as child. This is not very
useful on its own, but again it can be combined with other statements to save a
lot of typing:

(cousin me) = (child(sibling(parent me)))

Goodspeed, Peter
Munro, Ryan

19 Nodewise Connectrix

A very powerful technique called recursion takes advantage of the function call
statement:

Recursion

Recursion is a technique used to automate overly repetitive tasks and reduce the
size of your code file by not forcing you to explicitly account for each repetition.
Essentially, one defines a function in terms of itself. Writing a recursive function
is like saying "Someone is my descendant if they are my child or a child of one of
my descendants." In fact, the code for that looks like this:
(descendant me) = (or (reverse parent me) (reverse parent (descendant me)))
Recursive statements in FuncionCode seem like they could potentially go on
forever. While normally they could, a given query is only allowed to go so many
function calls deep. This number is defined in metadata.php as
$meta_maxdepth. Its default is 250. The higher this number is, the more
exhaustive recursive searches will be. The lower this number is, the faster
recursive searches will be. In general, the more nodes you have in your
database, the larger this number needs to be. A good rule of thumb is that you
should set this number to twice the maximum expected number of nodes in the
database. Depending on what your recursive functions look like, it may need to
be higher, or it may benefit from being lower.

Conclusion

FunctionCode is a language with a lot of expressive power. With all this
expressive power, it could take some getting used to. It is suggested that you
take a look at the FunctionCode for the familytree application, and try to get
familiar with it. Happy FunctionCoding!

http://amalcon.res.wpi.net/docs/glossary.html#recursion

Goodspeed, Peter
Munro, Ryan

20 Nodewise Connectrix

Appendix A3: Glossary

From http://amalcon.res.wpi.net/docs/glossary.html:

Glossary

Apache
Apacheis a Web Server. This is a program that runs on a computer, and
allows other computers to connect to it and request web pages. Every web
page on the Internet is on one server or another.
This particular program is free.

Boolean
A boolean field contains one of only two possible values: true or false.

Data Type
There are many different types of data which can be used in your
database:
Boolean
Date
Integer
Real Number
String
Text
Time

Date
A date field contains a representation of a specific date. This must follow
the following format: YYYY-MM-DD This means that the years come first,
followed by the months, followed by the days. All of these are separated
by dashes. Moreover, all of these fields are numerical, and must be filled
in.
2004-02-25 is a valid Date.
02-25-2004, 2004-2-25, 25-02-2004 are all examples of invalid Dates.

Devtool; Development Tool
The Development Tool is a program that you run when you are setting up
Nodewise Connectrix. It generates many things for you, including the SQL
Table Definitions, and many of the PHP files which you see after setup is
complete.

Field
A named representation of a single simple piece of data. A field has a data
type which defines what kind of information is put into it. You specify what
fields exist, and what data types each has, in the Development Tool.

http://amalcon.res.wpi.net/docs/glossary.html
http://httpd.apache.org/
http://amalcon.res.wpi.net/docs/glossary.html#field
http://amalcon.res.wpi.net/docs/glossary.html#boolean
http://amalcon.res.wpi.net/docs/glossary.html#date
http://amalcon.res.wpi.net/docs/glossary.html#integer
http://amalcon.res.wpi.net/docs/glossary.html#real
http://amalcon.res.wpi.net/docs/glossary.html#string
http://amalcon.res.wpi.net/docs/glossary.html#text
http://amalcon.res.wpi.net/docs/glossary.html#time
http://amalcon.res.wpi.net/docs/glossary.html#field
http://amalcon.res.wpi.net/docs/glossary.html#SQL
http://amalcon.res.wpi.net/docs/glossary.html#php
http://amalcon.res.wpi.net/docs/glossary.html#datatype
http://amalcon.res.wpi.net/docs/glossary.html#datatype
http://amalcon.res.wpi.net/docs/glossary.html#datatype
http://amalcon.res.wpi.net/docs/glossary.html#devtool

Goodspeed, Peter
Munro, Ryan

21 Nodewise Connectrix

Additionally, you may decide to require certain fields. Think carefully
before doing this. Though there are some benefits to requiring fields, you
may want to add an entry into your database later, and be stuck, because
you don't have access to a field that you required here.

HTML
HTML stands for HyperText Markup Language. It is a very simple
language which browsers understand. All Web pages are written in HTML.
The browser reads the HTML, and renders the page according to the
instructions given in the HTML so that it looks nice to you, the user.
To see an example of HTML, go to the 'View' menu of your browser, and
choose the 'View Source' or 'Page Source' option. This will show you the
HTML used to create this page.

Integer
An Integer is a whole number. An Integer field can accept whole numbers
from -2147483648 to 2147483647. However, it cannot ever accept
decimal or fractional numbers.

Link
A Link is a pathway between two nodes. It indicates a relationship
between the two of them. A Link may contain one or more fields,
depending on how you set things up in the Development Tool.
A Link always has a type. The type of a link indicates what the exact
relationship between the two nodes is. You can define what types a link
can be in the Development Tool.

Node
A Node is a collection of fields. Each field in a node has a particular value;
this is where the majority of your data will be.
A Node always has a type. The type of a node indicates what that node
represents. You can define what types a node can be in the Development
Tool.

PHP
PHP is a recursive acronym for 'PHP: Hypertext Processor'. PHP is a
programming language used to generate the HTML pages your browser
uses to show your data to you. Don't worry about your users not having it!
Like SQL, PHP runs on the server, and returns plain HTML that any
browser can use.

Real Number
A Real number is any fractional or integer number. Allowable values are -
1.7976931348623157E+308 to -2.2250738585072014E-308, 0, and
2.2250738585072014E-308 to 1.7976931348623157E+308. NOTE:
Although Real numbers seem more versatile than Integers, they have a
serious flaw: All Integers are always perfectly precise. Real numbers, on

http://amalcon.res.wpi.net/docs/glossary.html#field
http://amalcon.res.wpi.net/docs/glossary.html#node
http://amalcon.res.wpi.net/docs/glossary.html#field
http://amalcon.res.wpi.net/docs/glossary.html#devtool
http://amalcon.res.wpi.net/docs/glossary.html#type
http://amalcon.res.wpi.net/docs/glossary.html#field
http://amalcon.res.wpi.net/docs/glossary.html#type
http://amalcon.res.wpi.net/docs/glossary.html#devtool
http://amalcon.res.wpi.net/docs/glossary.html#devtool
http://amalcon.res.wpi.net/docs/glossary.html#devtool
http://www.php.net/
http://amalcon.res.wpi.net/docs/glossary.html#html
http://amalcon.res.wpi.net/docs/glossary.html#SQL
http://amalcon.res.wpi.net/docs/glossary.html#server
http://amalcon.res.wpi.net/docs/integer

Goodspeed, Peter
Munro, Ryan

22 Nodewise Connectrix

the other hand, have an inherent rounding error which over the course of
many calculations can add up and cause incorrect results.
However, unless you are going to be performing repeated calculations on
your data without periodic recalibration, you can feel safe using Real
Numbers.

Recursion
Recursion is a programming technique used to automate repetitive tasks.
A recursive function calls itself on a subset of the input stream, until there
is only a single unit of information left. Then, it operates on that single unit
of information, and returns the result to itself, and it continues to add to the
result set returned by itself until it has arrived at a complete solution.
An example of a recursive function is one which returns a person's
ancestors, in a family tree: An ancestor is a person's parents, plus all the
ancestors of a person's parents.

Server
The Server is the computer on which you installed Nodewise Connectrix.
As part of the installation process for Nodewise Connectrix, you also
installed Apache, PHP, and MySQL. All of these are free software
packages which run on the Server, and combine to allow Nodewise
Connectrix to run.

SQL
SQL stands for Structured Query Language. It is a standard protocol for
the storage of large amounts of data. Nodewise Connectrix uses MySQL,
a free implementation of SQL, to store your data.

String
A String is a type of field which contains a short amount of text. A String
may contain up to 255 characters. A String is good for, as an example,
holding somebody's name.

Text
A Text field contains an effectively unlimited amount of text. It can hold
just under 4 GB of characters, which works out to over 500 very long
novels. A Text Field is good for holding anything too large to fit into a
String.

Time
A Time field contains a representation of an interval of time, stored in
HHH:MM:SS format. TIME values may range from '-838:59:59' to
'838:59:59'. The reason the hours part may be so large is that the TIME
type may be used not only to represent a time of day (which must be less
than 24 hours), but also elapsed time or a time interval between two
events (which may be much greater than 24 hours, or even negative).

http://amalcon.res.wpi.net/docs/glossary.html#apache
http://amalcon.res.wpi.net/docs/glossary.html#php
http://amalcon.res.wpi.net/docs/glossary.html#SQL
http://www.mysql.com/
http://amalcon.res.wpi.net/docs/glossary.html#field
http://amalcon.res.wpi.net/docs/glossary.html#field
http://amalcon.res.wpi.net/docs/glossary.html#field

Goodspeed, Peter
Munro, Ryan

23 Nodewise Connectrix

You may specify a Time value in three formats: As a number in HHMMSS
format, provided that it makes sense as a time. For example, 101112 is
understood as '10:11:12'. Alternately, you can use one of the following
formats: 'HHH:MM:SS', or 'D HH:MM:SS'. Here, 'D' refers to the number of
days, and is a number between 0-33.

Tree; Tree Structure
A way of arranging data. In a Tree Structure, data is gathered into
clusters, called nodes. Nodes are connected to each other with links. Any
node may have any number of links connecting it to other nodes.
The reason this is called a tree structure is that the links are directional ;
that is, they have a forward and a backward direction. This makes sense
in most contexts, like parent-child relationships: the two are not
interchangeable.
However, there are other contexts in which a link should be bidirectional,
such as in the case of marriage. Luckily, Nodewise Connectrix doesn't
force you to use bidirectional links; every link individually knows whether it
should be bidirectional. You can set whether links default to be
bidirectional in the Development Tool.

Type
Both nodes and links are required to have at least one Type. A type
determines what each Node or Link represents. For example, a node
might have type 'person', and a link might have types 'parentof', or
'marriedto'. Any particular node or link will have only one type, but there
can be any number of possible types that nodes and links can be. You set
up which types nodes and links can be in the Development Tool.

Web Interface
The Web Interface to Nodewise Connectrix is the web page, hosted by
your Apache server, powered by PHP. It can be found by using your web
browser to go to the point in your document root where you put your .php
files.

http://amalcon.res.wpi.net/docs/glossary.html#node
http://amalcon.res.wpi.net/docs/glossary.html#link
http://amalcon.res.wpi.net/docs/glossary.html#devtool
http://amalcon.res.wpi.net/docs/glossary.html#node
http://amalcon.res.wpi.net/docs/glossary.html#link
http://amalcon.res.wpi.net/docs/glossary.html#devtool
http://amalcon.res.wpi.net/docs/glossary.html#apache
http://amalcon.res.wpi.net/docs/glossary.html#apache

Goodspeed, Peter
Munro, Ryan

24 Nodewise Connectrix

Appendix A4: Language Definition

From http://amalcon.res.wpi.net/docs/language-def.txt:

<function> ::= (<func-id> <param-id>) = <statement>

<func-id> ::= [Any string of word characters as defined by Perl regex's
 not otherwise used]

<param-id> ::= [Like a func-id]

<statement> ::= (<func-id> <param>)
 // For evaluating a function
 ::= (<link> <param>)
 // For finding all those who are a single link of this
 // type from the given set of people, in the forward
 // direction
 ::= (<property> <param>)
 // For finding a property value of a given set of people
 ::= (and <statement> <statement>)
 // For finding people satisfying both of two conditions
 ::= (or <statement> <statement>)
 // For finding people satisfying at least one of two
 // conditions
 ::= (not <statement>)
 // For finding all people not fitting some criteria,
 // or all values of a property other than those given
 ::= (reverse <link> <param>)
 // For following a link backwards
 ::= (reverse <property> <param>)
 // For finding all people with a given property value
 ::= (with <property> <param>)
 // Synonym for (reverse <property> <param>

<link> ::= Name of a link
<property> ::= Name of a property

<param> ::= [Value that can be contained in a property OR an id.
 Strings double-quoted, everything else in MySQL format
 single-quoted]
 ::= <param-id> //of the function currently being defined
 ::= <statement> //to be evaluated

http://amalcon.res.wpi.net/docs/language-def.txt

Goodspeed, Peter
Munro, Ryan

25 Nodewise Connectrix

References

All research for this project was conducted on the Internet. Though there were far too many
pages consulted to list individually, the following document roots are good places to find similar
information to that which we had:

http://www.apache.org
http://www.gentoo.org
http://www.mysql.com
http://www.php.net
http://java.sun.com/j2se/1.4.2/docs/api/
http://www.google.com

http://www.apache.org/
http://www.gentoo.org/
http://www.mysql.com/
http://www.php.net/
http://java.sun.com/j2se/1.4.2/docs/api/
http://www.google.com/

