USE CASE
NUMBER

USE CASE

1 Pre Production Build AND user wants to
run version manager application

Make sure the config.properties files looks like screenshot below. Depending on what the user wants the application will prompt if user wants to build
(release environment other parameters MUST be included in config.properties file) or version
1 default = false
2 nexus.url = http://gbvmapscendOl.emea.win.ml.com: 83085/ nexus/content/repositories/releases/con/bofasscp/
3
4 current.path = C:yperforesinbkgged scdi\EMEL CredititacticallprojectsiScDy2.137VERLY
5 build = yes
Step 1 6 control.path = C:\perforce’nbkgged scd\EMEAL Credit)tacticaliprojects\SCDYCoret2.1361ER1Y
7 dry.run = no
& update.from = nexus
9 !Please delimit lists of major and minor releases by semicolons-";"
10 major.releases = SCDDesktop
11 minor.releases = tradeviewer
iz
13 release.env=prod
Run the version manager (java application). See command line examples below . In the command line the number of arguments specified determines the
end result.
For example 0 command arguments would resemble (see below). In addition a developer would not include any arguments in command to verify updating
of pom.xmls was completed correctly (only updating portion)
C:\ws\scd\SCPBatches\SCDBuilder\src\Uersioning>java Build_
Step 2 For example, 1 command arguments would resemble (see below). In addition, only the first portion of project is build (JAR files-SCTDesktop) which would
help develop understand in JARs were updated correctly and built correctly
C:\uws\scd\SCPBatches\SCDBuilder\src\Uersioning>java Build "mun clean package ins
tall'
For example, 2 command arguments would resemble (see below). Entire project (JAR and WAR files are built and updated), developer would use this pre-
production build as evidence the process works
C:\ws\scd\SCPBatches\SCDBuilder\src\Uersioning>java Build "“mun clean package ins
tall'” “mun clean »
Sten 3 Application prompts user to “direct build” and user inputs YES. Thus, control file path, build environment and other version manager prompts are
P BYPASSED. Defaults that will determine version numbers are obtained prompts (Control File, Environment, Compare to nexus or control file etc...)
Expected Results |A pre production run we only expect to see the command line outputs (indivudual results for command lines are explained in Step 2)

Pre Production Build but user wants to
SKIP version manager application by
2 including pertinent information (release
environment, region, etc..) in the
config.properties file of his/her project

Notice "default” is equal to meaning developing wants to SKIP version manager application prompts and version according to his/her
configuraitons.property file (but note the developer DOES want to BUILD). Specify pertinent parameters in the config.properties file, for examples look at
screenshot below:

1 default = true

nexus.url = http://ghviapscend0l. emes. win. ml. com: 8085/ nexus/content/repositories/releases/ con/botas scp/

2
3

4 current.path = C:hperforce)nbkgged scd\EMEA CredithtacticaliprojectsiSCDYz.1374%ERLY
5 build = yes
5
7
=

Step 1
P control.path = Ciiperforceinblkgyed sScdiEMER CredithtacticaliprojectsiSCDYCore42.136%ERLY
dry.run = no
update.from = nexus
b= !Flease delimit lists of wajor and minor releases by semicolons-";:"
10 major.releases = SCDDeskcop
11 minor.releases = tradeviewer
1z
13 release.env=prod
Run the version manager (java application). See command line examples below . In the command line the number of arguments specified determines the
end result.
For example 0 command arguments would resemble (see below). In addition a developer would not include any arguments in command to verify updating
of pom.xmls was completed correctly (only updating portion)
C:\ws\scd\SCPBatches\SCDBuilder\src\Uersioning>java Build_
For example, 1 command arguments would resemble (see below). In addition, only the first portion of project is build (JAR files-SCTDesktop) which would
Step 2 help develop understand in JARs were updated correctly and built correctly
C:\ws\scd\SCPBatches\SCDBuilder\src\Uersioning>java Build "mun clean package ins
tall'
For example, 2 command arguments would resemble (see below). Entire project (JAR and WAR files are built and updated), developer would use this pre-
production build as evidence the process works
C:\ws\scd\SCPBatches\SCDBuilder\src\Uersioning>java Build "“mun clean package ins
tall'" “mun clean e"’
Application reads current project source path from the config.properties file shown above. In this example, the path is:
StEp 3 4 current.path = 3:iperf:rcelzbkgged_acdii _Zred;:“:ac:;ca;ip:::ec:SZSCDiz.15'2332
Application reads from the config.properties file shown above whether user to directly build the project (yes) or update versioning (no), in this example the
answer is: NO. Then read the control file path from the file.
Step 4 5 puild =
6 co 1.path = C:\perforce\nbkgged scd\EN redit\tactical\projects\5CD\Core’\2.136\ER1
Application reads from the config.properties file shown above whether user wants to use Nexus's latest release or the control file as the baseline to update
the pom file. (Different answer specified in the following steps)
For example, if the latest version in Nexus for desktop module is 1.0.6 AND the input control file version for desktop module is 1.0.4. .
Step5 If indicate NEXUS, then the application will compare the desktop module with the nexus latest release and update the version number based on 1.0.6.
update. from = nexus
If indicate CONTROL, then the application will compare the desktop module with the nexus latest release and update the version number based on 1.0.4.
spdate. from —
In config.properties file, since "major.releases” and "minor.releases” have no values specified, the update type is "default release”, which increments the
Step 6 patch version number only. In the above example, IF there's difference, version manager will update the version to 1.0.7 if "NEXUS" is chosen in Step 5
OR 1.0.5if "CONTROL" is chosen in Step 5.
Step 7 Updated version number will show in the newly generated pom.xml.test files but the original pom.xml will stay as not modified. A pre production run we only

expect to see the command line outputs (indivudual results for command lines are explained in Step 2)

Expected Results

A pre production run we only expect to see the command line outputs based on a USER modified configuration.properties file

Pre production build and user wants to run
version manager application. In addition,
user wants to version according to patch
release

Make sure the config.properties files looks like screenshot below.

1 default = false

//gbvmapscendol. emea.w:

C:\perforce\nbkogged scd\

Step 1
:L release.env=prod

Run the version manager (java application). See command line examples below . In the command line the number of arguments specified determines the
end result.
For example 0 command arguments would resemble (see below). In addition a developer would not include any arguments in command to verify updating
of pom.xmls was completed correctly. The build uses conditions specified in the config.properties file. Since direct build is specified as "no", the pom.xml
files are updated. Since no command line argument is specified, neither SCTDesktop nor webstart project is built. In all, the application does nothing to the
SCD application.
C:\ws\scd\SCPBatches\SCDBuilder\src\Uersioning>java Build_
For example 1 command arguments would resemble (see below).The build uses conditions specified in the config.properties file. Since direct build is

Step 2 specified as "no", the pom.xml files will be updated. Since one command line argument is specified, the application builds the SCTDesktop project based

P on the command line argument but not the webstart project. In all, the WAR file is not built.

C:\ws\scd\SCPBatches\SCDBuilder\src\Uersioning>java Build "mun clean package ins
tall'
For example 2 command arguments would resemble (see below). The build uses conditions specified in the config.properties file. Since direct build is
specified as "no", the pom.xml files will be updated. Two (or more) command line arguments are specified, SCTDesktop project is built based on the first
command line argument and webstart project is built based on the second command line argument. Finally the built WAR file is renamed to be
"SCTDesktop-env" where env is the value specified in the "release.env" field in config.properties file.
C:\ws\scd\SCPBatches\SCDBuilder\src\Uersioning>java Build "mun clean package ins|
tall'” “mun clean e"’

Sten 3 Application prompts user for the current project source path, for example, user can input:

ep C:\perforce\nbkgged_scd\EMEA_Credit\tactical\projects\SCD\Core\SCD\

Application prompts user to directly build the project (yes) or update versioning (no), user input: NO. Then the application prompts user for the control file

Step 4 path (the released version to be compared with), for example: C:\perforce\nbkgged_scd\EMEA_Credit\tactical\projects\SCD\Core\2.136\ER1\
Application prompts user to use Nexus's latest release or the control file as the baseline to update the pom file. (Different answer specified in the following
steps)
For example, if the latest version in Nexus for desktop module is 1.0.6 AND the input control file version for desktop module is 1.0.4. .

Step 5 User input NEXUS, then the application will compare the desktop module with the nexus latest release and update the version number based on 1.0.6
User input CONTROL, then the application will compare the desktop module with the nexus latest release and update the version number based on 1.0.4.
In config.properties file, since "major.releases" and "minor.releases" have no values specified, the update type is "default release", which increments the
patch version number only. In the above example, IF there's difference, version manager will update the version to 1.0.7 if "NEXUS" is chosen in Step 5
OR 1.0.5if "CONTROL" is chosen in Step 5.

Step 6

NOTE: the version number looks like
1 . 0 . 6
major-release-number.minor-release-number.patch-release-number

Pre production build and user wants to
BYPASS version manager application
(user must specify pertinent information
such as environment). In addition, user
wants to version according to patch
release

Step 7

Application prompts user if this is a dry-run or not (dry-run creates new pom.xml.test files instead of overwriting the original pom.xml file). User input: YES.

Expected Results

Updated version number will show in the newly generated pom.xml.test files but the original pom.xml will stay as not modified. A pre production run we only
expect to see the command line outputs (indivudual results for command lines are explained in Step 2)

Make sure the config.properties files looks like screenshot below.

://gbvmapscenddl.emea.win.ml. /nexus/content/repositories/releases/com/bofa/scp/

:\perforcel\nbkgged scd\ redititacticaliprojectsis

:\perforcel\nbkgged scd\ redititacticaliprojectsis

Step 1
of major and minor releases by semicolons-";"
:_ release.env=prod
Run the version manager (java application). See command line examples below . In the command line the number of arguments specified determines the
end result.
For example 0 command arguments would resemble (see below). In addition a developer would not include any arguments in command to verify updating
of pom.xmls was completed correctly. The build uses conditions specified in the config.properties file. Since direct build is specified as "no", the pom.xml
files are updated. Since no command line argument is specified, neither SCTDesktop nor webstart project is built. In all, the application does nothing to the
SCD application.
C:\ws\scd\SCPBatches\SCDBuilder\src\Uersioning>java Build_
For example 1 command arguments would resemble (see below).The build uses conditions specified in the config.properties file. Since direct build is
specified as "no", the pom.xml files will be updated. Since one command line argument is specified, the application builds the SCTDesktop project based
Step 2 on the command line argument but not the webstart project. In all, the WAR file is not built.
C:\ws\scd\SCPBatches\SCDBuilder\src\Uersioning>java Build "mun clean package ins
tall"
For example 2 command arguments would resemble (see below). The build uses conditions specified in the config.properties file. Since direct build is
specified as "no", the pom.xml files will be updated. Two (or more) command line arguments are specified, SCTDesktop project is built based on the first
command line argument and webstart project is built based on the second command line argument. Finally the built WAR file is renamed to be
"SCTDesktop-env" where env is the value specified in the "release.env" field in config.properties file.
C:\ws\scd\SCPBatches\SCDBuilder\src\Uersioning>java Build "mun clean package ins
tall'” “mun clean e’
Application reads current project source path from the config.properties file shown above. In this example, the path is:
Step 3 4 current.path = C:\perforce\nbkgged scd\EMER Credit\tacticalprojects\SCD\2.13
Application reads from the config.properties file shown above whether user to directly build the project (yes) or update versioning (no), in this example the
answer is: NO. Then read the control file path from the file.
Step 4 S il - -

Corel2,136VER1Y

ol.path = C:\perforce\nbkgged scd\ Credititactical'\projects)

Application reads from the config.properties file shown above whether user wants to use Nexus's latest release or the control file as the baseline to update
the pom file. (Different answer specified in the following steps)
For example, if the latest version in Nexus for desktop module is 1.0.6 AND the input control file version for desktop module is 1.0.4. .

Pre production build in which the user runs
the version manager application. In
addition the user also specifies that
versioning must be done to either or major
and minor releases

If indicate NEXUS, then the application will compare the desktop module with the nexus latest release and update the version number based on 1.0.6.

StEp 5 update.from = nexus

If indicate CONTROL, then the application will compare the desktop module with the nexus latest release and update the version number based on 1.0.4.

:[::-:la:e.f::r:. =

In config.properties file, since "major.releases" and "minor.releases" have no values specified, the update type is "default release", which increments the
Step 6 patch version number only. In the above example, IF there's difference, version manager will update the version to 1.0.7 if "NEXUS" is chosen in Step 5

OR 1.0.5if "CONTROL" is chosen in Step 5.

Application prompts user if this is a dry-run or not (dry-run creates new pom.xml.test files instead of overwriting the original pom.xml file). User input: YES.
Step 7 - _

Expected Results

Updated version number will show in the newly generated pom.xml.test files but the original pom.xml will stay as not modified. A pre production run we only
expect to see the command line outputs (indivudual results for command lines are explained in Step 2)

Make sure the config.properties files looks like screenshot below.

default = false
nexus.url = http://ghviapscenddl.emea. vin.ml.com: 8085/ nexus/content/repositories/releases/ com/bofa/ scp/

1
z

3

4 current.path = C:\perforce)nbkgged scdiEMEA Credit)tacticallprojects\SCDi2.137VER1L
5 build = yes
6
=
8

Step 1 control.path = C:%perforce’nbkgged scdiEMEA Credit)tacticallprojects\SCDYCorel2.13641ER1Y
dry.run = yes
update. from = nexus
9 'Please delimit lists of mwajor and minor releases by Semicolons-":"
10 major.releases = SCDDesktop
11 minor.releases = tradeviewsr
1z
13 release.env=prod
Run the version manager (java application). See command line examples below . In the command line the number of arguments specified determines the
For example 0 command arguments would resemble (see below). In addition a developer would not include any arguments in command to verify updating
of pom.xmls was completed correctly. The build uses conditions specified in the config.properties file. Since direct build is specified as "no", the pom.xml
files are updated. Since no command line argument is specified, neither SCTDesktop nor webstart project is built. In all, the application does nothing to the
SCD application.
C:\ws\scd\SCPBatches\SCDBuilder\src\Uersioning>java Build_
For example 1 command arguments would resemble (see below).The build uses conditions specified in the config.properties file. Since direct build is
specified as "no", the pom.xml files will be updated. Since one command line argument is specified, the application builds the SCTDesktop project based
Step 2 on the command line argument but not the webstart project. In all, the WAR file is not built.
C:\ws\scd\SCPBatches\SCDBuilder\src\Uersioning>java Build "“mun clean package ins
tall"
For example 2 command arguments would resemble (see below). The build uses conditions specified in the config.properties file. Since direct build is
specified as "no", the pom.xml files will be updated. Two (or more) command line arguments are specified, SCTDesktop project is built based on the first
command line argument and webstart project is built based on the second command line argument. Finally the built WAR file is renamed to be
"SCTDesktop-env" where env is the value specified in the "release.env" field in config.properties file.
C:\ws\scd\SCPBatches\SCDBuilder\src\Uersioning>java Build "mun clean package ins
tall' “mun clean e"’
Sten 3 Application prompts user for the current project source path, for example, user can input:
ep

C:\perforce\nbkgged_scd\EMEA_Credit\tactical\projects\SCD\Core\SCD\

Step 4

Application prompts user to directly build the project (yes) or update versioning (no), user input: NO. Then the application prompts user for the control file
path (the released version to be compared with), for example: C:\perforce\nbkgged_scd\EMEA_Credit\tactical\projects\SCD\Core\2.136\ER1\

Step 5

Application prompts user to use Nexus's latest release or the control file as the baseline to update the pom file. (Different answer specified in the following

steps)

For example, if the latest version in Nexus for desktop module is 1.1.6 AND the input control file version for desktop module is 1.2.4.

User input NEXUS, then the application will compare the desktop module with the nexus latest release and update the version number based on 1.1.6

User input CONTROL, then the application will compare the desktop module with the nexus latest release and update the version number based on 2.2.4.

Step 6

See versioning matrix below for examples of incrementing major/minor and patch releases

default release
(specified in (specified in number? (resulted in
Nexus/Control type of release this column in the
Version Number file) file) resulted in other sheet) result
desktop module: 1.0.5 | (blank) (hlank) patch release Yes desktop module: 1.0.6
desktop module: 1.0.5 | desktop (blank) major release Mo desktop module: 2.0.0
desktop module: 1.0.3 | (blank) desktop minor release Mo desktop module: 1.0.7
major and minor
desktop module: 1.0.5 | desktop desktop release Mo desktop module: 2.1.0
desktop module: 1.0.5 desktop module: 1.0.6
BC module: 2.3.5 (blank) (blank) patch release VES BC module: 2.3.6
desktop module: 1.0.5 desktop module: 2.0.0
EC module: 2.3.5 desktop: BC (blank) major release no BC module: 3.0.0
desktop module: 1.0.5 desktop module: 1.1.0
EC module: 2.3.5 {blank) desktop: BC minor release no BC module: 2.4.0
desktop module: 1.0.3 major and minor desktop module: 2.1.0
BC module: 2.3.3 desktop: BC desktop: BC release no BC module: 3.1.0
desktop module: 1.0.3 major release for desktop module: 2.0.0
desktop; minor
BC module: 2.3.5 desktop EC release for BC no BC module: 2.4.0
desktop module: 1.0.3 major release for BC: desktop module: 1.1.0
minor release for
BC module: 2.3.5 BC desktop deskiop na BC module: 3.0.0

Step 7

Application prompts user if this is a dry-run or not (dry-run creates new pom.xml.test files instead of overwriting the original pom.xml file). User input: YES.

Expected Results

Updated version number will show in the newly generated pom.xml.test files but the original pom.xml will stay as not modified. A pre production run we only

expect to see the command line outputs (indivudual results for command lines are explained in Step 2)

Pre production build in which the user
BYPASS the version manager application
(and wants to version according to
parameters specified in the
config.properties file). In addition the user
also specifies that versioning must be done
to either or major and minor releases

User builds specifying an environment.
User also executes the version manager
application. In addition the user also
specifies that versioning must be done to
either or major and minor releases

Make sure the config.properties files looks like screenshot below.
1 default = false
nexus.url = http://gbvmapscendOl.ewea.vin.ml.com: 8085/ nexus/content/repositories/releases/ com/bofa/scp/

3
4 current.path = C:\perforceinbkoged sed)EMER Credithtactical}projects|ScDyz.137\ER1Y

5 build = nd

& control.path = C:\perforceinbkgged scd\EMER Credithtacticallprojects)ScDycored2.138YERLY
5

8

Step 1 dry.run = no
update.from = nexus
E] !Please deliwit lists of major and minor releases by semicolons-";"
10 mwajor.releases = SCTDesktop
11 minor.releases = tradeviewer
1z
13 release.env=prod
Run the version manager (java application). See command line examples below . In the command line the number of arguments specified determines the
end result.
For example 0 command arguments would resemble (see below). In addition a developer would not include any arguments in command to verify updating
of pom.xmls was completed correctly. The build uses conditions specified in the config.properties file. Since direct build is specified as "no", the pom.xml
files are updated. Since no command line argument is specified, neither SCTDesktop nor webstart project is built. In all, the application does nothing to the
SCD application.
C:\ws\scd\SCPBatches\SCDBuilder\src\Uersioning>java Build_
For example 1 command arguments would resemble (see below).The build uses conditions specified in the config.properties file. Since direct build is
Step 2 specified as "no", the pom.xml files will be updated. Since one command line argument is specified, the application builds the SCTDesktop project based
on the command line argument but not the webstart project. In all, the WAR file is not built.
C:\uws\scd\SCPBatches\SCDBuilder\src\Uersioning>java Build "mun clean package ins
tall”
For example 2 command arguments would resemble (see below). The build uses conditions specified in the config.properties file. Since direct build is
specified as "no", the pom.xml files will be updated. Two (or more) command line arguments are specified, SCTDesktop project is built based on the first
command line argument and webstart project is built based on the second command line argument. Finally the built WAR file is renamed to be
"SCTDesktop-env" where env is the value specified in the "release.env" field in config.properties file.
cd\SCPBatches\SCDBuilder\src\Uersioning>java Build "“"mun clean package i
“‘mun clean (2
Application prompts user for the current project source path, for example, user can input:
Step 3 C:\perforce\nbkgged_scd\EMEA _Credit\tactical\projects\SCD\Core\SCD\
Application prompts user to directly build the project (yes) or update versioning (no), user input: NO. Then the application prompts user for the control file
Step 4 path (the released version to be compared with), for example: C:\perforce\nbkgged_scd\EMEA_Credit\tactical\projects\SCD\Core\2.136\ER 1\
Application prompts user to use Nexus's latest release or the control file as the baseline to update the pom file. (Different answer specified in the following
steps)
For example, if the latest version in Nexus for desktop module is 1.1.6 AND the input control file version for desktop module is 1.2.4.
Step 5 User input NEXUS, then the application will compare the desktop module with the nexus latest release and update the version number based on 1.1.6

User input CONTROL, then the application will compare the desktop module with the nexus latest release and update the version number based on 2.2.4.

See versioning matrix below for examples of incrementing major/minor and patch releases

major.rel mingr.rel default release

(specified in (specified in number? (resulted in
Nexus/Control config.properties config.properties type of release this column in the
Version Number file} file} [Ited in other sheet) result
desktop module: 1.0.5 | (blank] (blank) patch release Yes desktop module: 1.0.6
desktop module: 1.0.5 | desktop (blank) major release MNa desktop module: 2.0.0
desktop module: 1.0.5 | iblank] desktop minor release Mo desktop module: 107

major and minor

desktop module: 1.0.5 | desktop desktop release MNa desktop module: 2.1.0

Step 6

desktop module: 1.0.5 desktop module: 1.0.6
BC module: 2.3.5 iblank) iblank) patch release yes BC module: 2.3.6
desktop module: 1.0.5 desktop module: 2.0.0
BC module: 2.3.5 desktop: BT iblank) major release no BC module: 3.0.0
desktop module: 1.0.5 desktop module: 1.1.0
BC module: 2.3.5 iblank) desktop: BT minor release no BC module: 2.4.0
desktop module: 1.0.5 major and minor desktop module: 2.1.0
BC module: 2.3.5 desktop: BT desktop: BT release no BC module: 3.1.0
desktop module: 1.0.5 major release for desktop module: 2.0.0
desktop: minor
BC module: 2.3.5 desktop BC release for BC no BC module: 240
desktop module: 1.0.5 major release for BC; desktop module: 1.1.0
minor release for
BC madule: 2.3.5 BC desktop deskiop no BC module: 3.0.0

Step 7

Application prompts user if this is a dry-run or not (dry-run creates new pom.xml.test files instead of overwriting the original pom.xml file). User input: YES.

7 dry.run = no

Expected Results

Updated version number will show in the newly generated pom.xml.test files but the original pom.xml will stay as not modified. A pre production run we only

User builds specifying an environment.
BYPASS the version manager application
(and wants to version according to
parameters specified in the
config.properties file). In addition the user
also specifies that versioning must be done
to either or major and minor releases

Step 1

Make sure the config.properties files looks like screenshot below.

1 defaultc = true
nexus.url = heep://gbvmapscenddl.emea. win.ml. com: 8085/ nexus/content/repositories/releases/com/bofa/ scp/

3
4 current.path = C:}perforce)nbkgged scd\EMER Credit)tacticaliprojects|\SCDiZ.137\ER1Y

5 build = no

& control.path = C:\perforce)nbkgged scd\EMEA Credititacticallprojects)ScDiCorelz.136\ER1Y
7 dry.run = nd

& update.from = nexus

9 !'Please delimit lists of wajor and minor releases by semicolons-'":'

10 major.releases = 3CTDesktop

11 winor.releases = tradeviewer

13 release.env=prod

Step 2

Run the version manager (java application). See command line examples below . In the command line the number of arguments specified determines the
end result.

For example 0 command arguments would resemble (see below). In addition a developer would not include any arguments in command to verify updating
of pom.xmls was completed correctly. The build uses conditions specified in the config.properties file. Since direct build is specified as "no", the pom.xml
files are updated. Since no command line argument is specified, neither SCTDesktop nor webstart project is built. In all, the application does nothing to the
SCD application.

C:\ws\scd\SCPBatches\SCDBuilder\src\Uersioning>java Build_

For example 1 command arguments would resemble (see below).The build uses conditions specified in the config.properties file. Since direct build is
specified as "no", the pom.xml files will be updated. Since one command line argument is specified, the application builds the SCTDesktop project based
on the command line argument but not the webstart project. In all, the WAR file is not built.

C:\ws\scd\SCPBatches\SCDBuilder\src\Uersioning>java Build "mun clean package ins

tall"

For example 2 command arguments would resemble (see below). The build uses conditions specified in the config.properties file. Since direct build is
specified as "no", the pom.xml files will be updated. Two (or more) command line arguments are specified, SCTDesktop project is built based on the first
command line argument and webstart project is built based on the second command line argument. Finally the built WAR file is renamed to be
"SCTDesktop-env" where env is the value specified in the "release.env" field in config.properties file.

cd\SCPBatches\SCDBuilder\src\Uersion g>java Build vn clean package i
et

“mun clean

User wants to execute version manager
appliccation and build with specified
environment (prod, QA, str, etc). User also
wants to version according to patch
release number

Step 3

Application reads current project source path from the config.properties file shown above. In this example, the path is:

4 current.path = C:\perforce\nbkgged scd\ | edithtacticallprojects’
Application reads from the config.properties file shown above whether user to directly build the project (yes) or update versioning (no), in this example the
answer is: NO. Then read the control file path from the file.
Step 4 2 ke - - -
(3 i\perforce‘\nbkgged scd\EMEL Credit\tacticallprojects\3
Application reads from the config.properties file shown above whether user wants to use Nexus's latest release or the control file as the baseline to update
the pom file. (Different answer specified in the following steps)
For example, if the latest version in Nexus for desktop module is 1.0.6 AND the input control file version for desktop module is 1.0.4. .
If indicate NEXUS, then the application will compare the desktop module with the nexus latest release and update the version number based on 1.0.6.
Step 5) -
£ update.from = nexus
If indicate CONTROL, then the application will compare the desktop module with the nexus latest release and update the version number based on 1.0.4.
update.from = control
See versioning matrix below for examples of incrementing major/minor and patch releases
major.r miner.,r default release
(specified in (specified in number? (resulted in
Nexus/Control type of release this column in the
Version Number file) file) resulted in other sheet) result
desktop module 105 | (blank) (blank] patch releass Ves desktop module- 106
desktop module” 1.0.5 | desktop (blank) major release Mo desktop module 2 0.0
desktop module: 1.0.5 | (blank} desktop minorrelease MNo deskiop module: 1.0.7
major and minor
desktop module: 1.0.5 | desktop desktop release Mo desktop module: 2.1.0
desktop module: 1.0.5 desktop module: 1.0.6
Step 6 BC module 2 35 (blank) (blank) patch release yes BC module 2 3.6
desktop module: 1.0.5 desktop module: 2.0.0
BC module: 235 desktop: BC (blank) major release no BC module 3.0.0
desktop module: 1.0.5 desktop module: 1.1.0
BC module: 235 (blank) desktop: BC minor release no BC module 240
desktop module 1.0.5 major and minor desktop module 2 1.0
BC module: 2.3.5 desktop: BC desktop: BC release no BC module: 3.1.0
desktop module: 1.0.5 major release for desktop module: 2.0.0
desktop: minor
BC module: 2.3.5 desktop BC release for BC no BC module: 2.4.0
desktop module 105 major release for BC, desktop module 110
minor release for
BC module: 2.3.5 BEC desktop desktop no BC module: 3.0.0
Application prompts user if this is a dry-run or not (dry-run creates new pom.xml.test files instead of overwriting the original pom.xml file). User input: YES.
Step 7

7 dry.run = no

Expected Results

Updated version number will show in the newly generated pom.xml.test files but the original pom.xml will stay as not modified. A pre production run we only
expect to see the command line outputs (indivudual results for command lines are explained in Step 2)

Make sure the config.properties files looks like screenshot below.
1 default = false

2 nexus.

nttp://gbvmapscend0l.emea.win.ml.com: 8085/ nexus/content/ repositories/releases/con/bofa/ scp

4 C:\perforce\nbkgged scd\EX tactical\projects\5CD\Core\5CD
; :\perforce\nbkgged scd\EMEA Credit\tacticallprojects\SCD\Core\2.138\ER1
Step 1 7
by semicolons-":"
:_ release.env=prod
Run the version manager (java application). See command line examples below . In the command line the number of arguments specified determines the
end result.
For example 0 command arguments would resemble (see below). In addition a developer would not include any arguments in command to verify updating
of pom.xmls was completed correctly. The build uses conditions specified in the config.properties file. Since direct build is specified as "no", the pom.xml
files are updated. Since no command line argument is specified, neither SCTDesktop nor webstart project is built. In all, the application does nothing to the
SCD application.
C:\ws\scd\SCPBatches\SCDBuilder\src\Uersioning>java Build_
For example 1 command arguments would resemble (see below).The build uses conditions specified in the config.properties file. Since direct build is
specified as "no", the pom.xml files will be updated. Since one command line argument is specified, the application builds the SCTDesktop project based
Step 2 on the command line argument but not the webstart project. In all, the WAR file is not built.
C:\ws\scd\SCPBatches\SCDBuilder\src\Uersioning>java Build "mun clean package ins
tall"
For example 2 command arguments would resemble (see below). The build uses conditions specified in the config.properties file. Since direct build is
specified as "no", the pom.xml files will be updated. Two (or more) command line arguments are specified, SCTDesktop project is built based on the first
command line argument and webstart project is built based on the second command line argument. Finally the built WAR file is renamed to be
"SCTDesktop-env" where env is the value specified in the "release.env" field in config.properties file.
C:\ws\scd\SCPBatches\SCDBuilder\src\Uersioning>java Build "“"mun clean package ins
tall'” “mun clean e
Application prompts user for the current project source path, for example, user can input:
Step 3 C:\perforce\nbkgged_scd\EMEA _Credit\tactical\projects\SCD\Core\SCD\
Application prompts user to directly build the project (yes) or update versioning (no), user input: NO. Then the application prompts user for the control file
Step 4 path (the released version to be compared with), for example: C:\perforce\nbkgged_scd\EMEA_Credit\tactical\projects\SCD\Core\2.136\ER1\
Application prompts user to use Nexus's latest release or the control file as the baseline to update the pom file. (Different answer specified in the following
steps)
For example, if the latest version in Nexus for desktop module is 1.0.6 AND the input control file version for desktop module is 1.0.4. .
Step 5 User input NEXUS, then the application will compare the desktop module with the nexus latest release and update the version number based on 1.0.6
User input CONTROL, then the application will compare the desktop module with the nexus latest release and update the version number based on 1.0.4.
In config.properties file, since "major.releases" and "minor.releases" have no values specified, the update type is "default release", which increments the
patch version number only. In the above example, IF there's difference, version manager will update the version to 1.0.7 if "NEXUS" is chosen in Step 5
OR 1.0.5if "CONTROL" is chosen in Step 5.
Step 6
NOTE: the version number looks like
1 . 0 . 6
major-release-number.minor-release-number.patch-release-number
Step 7 Application prompts user if this is a dry-run or not (dry-run creates new pom.xml.test files instead of overwriting the original pom.xml file). User input: NO to

overwrite the original pom.xm files .

10

User wants to BYPASS version manager
appliccation and build with specified (in
config.properties file) environment (prod,
QA, str, etc). User also wants to version
according to patch release number

Expected Results

Updated version number will show in the original pom.xml files (they are overwritten). An actual build run we only expect to see the command line outputs
(indivudual results for command lines are explained in Step 2)

Make sure the config.properties files looks like screenshot below.
1 default = true

gbvmapscend0l.emea.win.ml.

4 C:\perforce‘\nbkgged scd\EMEA Credit\tacticall\projects\3CD\Core\SCD
% C:\perforce\nbkgged scd\EMEA Credit\tactical\projects\3CD\Core\2.136\ER1
Step 1 7
major and minor releases by
Zi relsase.env=prod
Run the version manager (java application). See command line examples below . In the command line the number of arguments specified determines the
end result.
For example 0 command arguments would resemble (see below). In addition a developer would not include any arguments in command to verify updating
of pom.xmls was completed correctly. The build uses conditions specified in the config.properties file. Since direct build is specified as "no", the pom.xml
files are updated. Since no command line argument is specified, neither SCTDesktop nor webstart project is built. In all, the application does nothing to the
SCD application.
C:\ws\scd\SCPBatches\SCDBuilder\src\Uersioning>java Build_
For example 1 command arguments would resemble (see below).The build uses conditions specified in the config.properties file. Since direct build is
specified as "no", the pom.xml files will be updated. Since one command line argument is specified, the application builds the SCTDesktop project based
Step 2 on the command line argument but not the webstart project. In all, the WAR file is not built.
C:\ws\scd\SCPBatches\SCDBuilder\src\Uersioning>java Build "muvn clean package ins
tall"
For example 2 command arguments would resemble (see below). The build uses conditions specified in the config.properties file. Since direct build is
specified as "no", the pom.xml files will be updated. Two (or more) command line arguments are specified, SCTDesktop project is built based on the first
command line argument and webstart project is built based on the second command line argument. Finally the built WAR file is renamed to be
"SCTDesktop-env" where env is the value specified in the "release.env" field in config.properties file.
C:\uws\scd\SCPBatches\SCDBuilder\src\Uersioning>java Build "mun clean package ins
tall"” “mun clean f
Application reads current project source path from the config.properties file shown above. In this example, the path is:
Step 3 4 current.path = C:\perforce\nbkgged_scd\EMEA Credit)\tactical\projects\3CD\Core\SCD
Application reads from the config.properties file shown above whether user to directly build the project (yes) or update versioning (no), in this example the
answer is: NO. Then read the control file path from the file.
Step 4 5 bus n - -

.path = C:\perforce\nbkgged scd

Application reads from the config.properties file shown above whether user wants to use Nexus's latest release or the control file as the baseline to update
the pom file. (Different answer specified in the following steps)
For example, if the latest version in Nexus for desktop module is 1.0.6 AND the input control file version for desktop module is 1.0.4. .

If indicate NEXUS, then the application will compare the desktop module with the nexus latest release and update the version number based on 1.0.6.

Steps 5 lupasce. £zom = nexss

If indicate CONTROL, then the application will compare the desktop module with the nexus latest release and update the version number based on 1.0.4.

8 :pélav:e.fr:r: = control

In config.properties file, since "major.releases" and "minor.releases" have no values specified, the update type is "default release", which increments the
Step 6 patch version number only. In the above example, IF there's difference, version manager will update the version to 1.0.7 if "NEXUS" is chosen in Step 5

OR 1.0.5 if "CONTROL" is chosen in Step 5.

Application prompts user if this is a dry-run or not (dry-run creates new pom.xml.test files instead of overwriting the original pom.xml file). User input: NO to
Step 7 overwrite the original pom.xml files .

dry.run = no

Expected Results

Updated version number will show in the original pom.xml files (they are overwritten). An actual build run we only expect to see the command line outputs

Versioning Matrix

Note

default release

major.releases minor.releases number? (resulted in
Nexus/Control Version |(specified in (specified in type of release resulted |this column in the other
Number config.properties file) |config.properties file) [in sheet) result
desktop module: 1.0.5 (blank) (blank) patch release Yes desktop module: 1.0.6
desktop module: 1.0.5 desktop (blank) major release No desktop module: 2.0.0
desktop module: 1.0.5 (blank) desktop minor release No desktop module: 1.0.7
desktop module: 1.0.5 desktop desktop major and minor release |No desktop module: 2.1.0
desktop module: 1.0.5 desktop module: 1.0.6
BC module: 2.3.5 (blank) (blank) patch release yes BC module: 2.3.6
desktop module: 1.0.5 desktop module: 2.0.0
BC module: 2.3.5 desktop; BC (blank) major release no BC module: 3.0.0
desktop module: 1.0.5 desktop module: 1.1.0
BC module: 2.3.5 (blank) desktop; BC minor release no BC module: 2.4.0
desktop module: 1.0.5 desktop module: 2.1.0
BC module: 2.3.5 desktop; BC desktop; BC major and minor release no BC module: 3.1.0
desktop module: 1.0.5 major release for desktop module: 2.0.0
BC module: 2.3.5 desktop BC desktop; minor release no BC module: 2.4.0
desktop module: 1.0.5 major release for BC; desktop module: 1.1.0
BC module: 2.3.5 BC desktop minor release for desktop no BC module: 3.0.0

For multiple modules that are specified in the major.release or minor.release key field in config.properties file, separate them by ";"

Modules can be specified
in the major.release and
minor.release fields:

desktop

Ivol

BaseCorrelation
BasketManager
reporting framework
reportviewer

RFL

SCK

tradeviewer
SCTDesktop
ConfigurationsUat
ConfigurationsProd
ConfigurationsUatDualServer
ConfigurationsStr

File

Compare increase version number based on the requirement shown in "Version Matrix" tag

If two directories contain the same files, then do not update the module's version number in the module's pom file. Otherwise,

Use Case Directory Update
4 Use Case Description Directory 1 Content | Directory 2 Content | Compare | version Comment
Result number?
abc.doc abc.doc
def.txt def.txt
S.ame amount of files in both config.properties config.properties File order does not
1 directory and file names and help.java help.java Same No matter
content are the same file.jsp file.jsp '
picture.pic picture.pic
graph.jpg graph.jpg
abc.doc (content
different from abc.doc
Same amount of files in both abc.doc in directory 1
directory and file names are the [def.txt def.txt .
. . - - - . File order does not
2 same but content is difference. |config.properties config.properties Different Yes matter
Difference exists in non-picture |help.java help.java '
type files. file.jsp file.jsp
picture.pic picture.pic
graph.jpg graph.jpg
abc.doc abc.doc
def.txt def.txt
Same amount of files in both conﬂg.propertles conﬁg.propernes Currently the file
. ! help.java help.java
directory and file names are the file.jsp file.jsp comparator cannot
3 same but content is difference. - — — Same No detect the difference
Difference exists in picture type picture.pic (picture in pic, jpg, gif (picture
: content is different e
files. . o types) files.
from picture.pic in
picture.pic directory 1)
graph.jpg graph.jpg
abcdef.doc (content
same as abc.doc in
abc.doc directory 1)
Same amount of files in both def.txt def.txt File order does not
4 direcotry. Two files have different |config.properties config.properties Different Yes matter
names but the same content. help.java help.java '

file.jsp file.jsp
picture.pic picture.pic
graph.jpg graph.jpg
abcdef.doc (content
different from abc.doc
abc.doc in directory 1)
def.txt def.txt .
. . - - . File order does not
config.properties config.properties Different Yes
= = matter.
help.java help.java
file.jsp file.jsp
picture.pic picture.pic
graph.jpg graph.jpg
abc.doc abc.jar
Same amount of files in both [gef.txt def.txt
directory and file names and [config.properties config.properties
content both different
Different Yes File order does not
matter.
help.java help.java
file.jsp file.jsp
picture.pic picture.pic
graph.jpg graph.jpg
abc.doc abc.doc (content
abcdef.txt (content
same as def.txt in
Same amount of files in both def.txt directory 1) .
. ' - - - - . File order does not
directory and file names and config.properties config.properties Different Yes
. > > matter.
content both different help.java help.java
file.jsp file.jsp
picture.pic picture.pic
graph.jpg graph.jpg
abc.doc abc.doc
Different amount of files in both def.;.xt . def.ft.xt .
directory and file names and con |g.proper 1e3 con |g.proper 1e3
Arnntant ara tha carma MirartAan: help'Java help'Java

CUIILTIIL AIT uIT oSallic \I.IIIC\.:LUI_y
1 has more files) fll_e.Jsp - fll_e.Jsp -
picture.pic picture.pic
graph.jpg
abc.doc abc.doc File order does not
Different Yes matter. File type does
not matter.
Different amount of files in both |def.txt def.txt
directory and file names and config.properties config.properties
content are the same (Directory |help.java help.java
2 has more files) file.jsp file.jsp
picture.pic picture.pic
graph.jpg graph.jpg
test.xsl
abc.doc (content
Different amount of files in both different from abc.doc
. i abc.doc in directory 1)
directory and file names are the
o def.txt def.txt
same but content is difference. f. . a -
Difference exists in non-picture contlg properties contlg properties
. . help.java help.java
type files. (Directory 1 has more file.jsp file.jsp
files) — - — -
picture.pic picture.pic
graph jpg File order does not
abc.doc (content Different Yes matte:l.ol?:s atzz;e does
different from abc.doc '
Different amount of files in both abe.doc in directory 1)
. i def.txt def.txt
directory and file names and : . . .
. config.properties config.properties
content are the same (Directory ; ;
, help.java help.java
2 has more files) . o
file.jsp file.jsp
picture.pic picture.pic
graph.jpg graph.jpg
test.xsl
abc.doc abc.doc
def.txt def.txt
Different amount of files in both conﬂg.properﬂes config.properties
help.java

directory and file names are the

camn hiit ~rantant ic Aiffaran~n

file.jsp

file.jsp

DAIIIT JUL LUILILTIIL 1D UllITICTlIVC.
Difference exists in picture type
files. (Directory 1 has more files)

picture.pic (picture
content is different
from picture.pic in

picture.pic directory 1)
graph.jpg File order does not
9 abc.doc abc.doc Different Yes matter. File type does
def.txt def.txt not matter.
config.properties config.properties
Different amount of files in both help.Java help.Java
. i file.jsp file.jsp
directory and file names and - —
. picture.pic (picture
content are the same (Directory .
, content is different
2 has more files) . -
from picture.pic in
picture.pic directory 1)
graph.jpg graph.jpg
test.xsl
abcdef.doc (content
same as abc.doc in
Different amount of files in both abc.doc directory 1)
. ' . def.txt def.txt
direcotry. Two files have different . . - -
config.properties config.properties
names but the same content. = =
. . help.java help.java
(Directory 1 has more files) — —
file.jsp file.jsp
picture.pic picture.pic
graph.jpg File order does not
10 abcdef.doc (content Different Yes matter. File type does
same as abc.doc in not matter.
abc.doc directory 1)
Different amount of files in both |def.txt def.txt
directory and file names and config.properties config.properties
content are the same (Directory [help.java help.java
2 has more files) file.jsp file.jsp
picture.pic picture.pic
graph.jpg graph.jpg
test.xsl
abcdef.doc (content
different from abc.doc
Different amount of files in both abe.doc in directory 1)
def.txt def.txt

Adirartnns and fila namac and

UIITULLULY ATV THT TTATTTTO Aaliv

content both different. (Directory

config.properties

config.properties

1 has more files) help.Java help.Java
file.jsp file.jsp
picture.pic picture.pic
graph.jpg
abcdef.doc (content
different from abc.doc
abc.doc in directory 1)
Different amount of files in both |def.txt def.txt
directory and file names and config.properties config.properties
content are the same. (Directory |help.java help.java
2 has more files) flligjusr;?a . miiijjrz . File order does not
11 pr H P b H £ Different Yes matter. File type does
grapn.jpg grapn.jpg not matter.
test.xsl
abc.doc abc.jar
Different amount of files in both def.;.xt . def.;.xt -
directory and file names and Egln |ga£;oper 1es f\gln |ga.\p/>€rioper 1es
content both different. (Directory = = P
, file.jsp file.jsp
1 has more files) - - - -
picture.pic picture.pic
graph.jpg
abc.doc abc.jar
def.txt def.txt
Different amount of files in both |config.properties config.properties
directory and file names and help.java help.java
content are the same. (Directory |[file.jsp file.jsp
2 has more files) picture.pic picture.pic
graph.jpg graph.jpg
test.xsl
abc.doc (content
different from abc.doc
abc.doc in directory 1)
Different amount of files in both abedef.txt (contgnt
directory and file names and same as def.ixt in
y def.txt directory 1)

content both different

config.properties

config.properties

help.java

help.java

file.jsp file.jsp File order does not
12 picture.pic picture.pic Different Yes matter. File type does
graph.jpg not matter.
abc.doc (content
different from abc.doc
Different amount of files in both |abc.doc in directory 1)
directory and file names and abcdef.txt (content
content are the same same as def.txt in
def.txt directory 1)
config.properties config.properties
help.java help.java

