
USE CASE

NUMBER
USE CASE

1 Pre Production Build AND user wants to

run version manager application

Step 1

Step 3

Expected Results

2

Pre Production Build but user wants to

SKIP version manager application by

including pertinent information (release

environment, region, etc..) in the

config.properties file of his/her project

Make sure the config.properties files looks like screenshot below. Depending on what the user wants the application will prompt if user wants to build

(release environment other parameters MUST be included in config.properties file) or version

For example, 2 command arguments would resemble (see below). Entire project (JAR and WAR files are built and updated), developer would use this pre-

production build as evidence the process works

Application prompts user to “direct build” and user inputs YES. Thus, control file path, build environment and other version manager prompts are

BYPASSED. Defaults that will determine version numbers are obtained prompts (Control File, Environment, Compare to nexus or control file etc...)

A pre production run we only expect to see the command line outputs (indivudual results for command lines are explained in Step 2)

Run the version manager (java application). See command line examples below . In the command line the number of arguments specified determines the

end result.

Step 2

For example 0 command arguments would resemble (see below). In addition a developer would not include any arguments in command to verify updating

of pom.xmls was completed correctly (only updating portion)

For example, 1 command arguments would resemble (see below). In addition, only the first portion of project is build (JAR files-SCTDesktop) which would

help develop understand in JARs were updated correctly and built correctly

Step 1

Step 3

Step 4

Step 6

Step 7

Expected Results

Notice "default" is equal to meaning developing wants to SKIP version manager application prompts and version according to his/her

configuraitons.property file (but note the developer DOES want to BUILD). Specify pertinent parameters in the config.properties file, for examples look at

screenshot below:

Run the version manager (java application). See command line examples below . In the command line the number of arguments specified determines the

end result.

For example, 1 command arguments would resemble (see below). In addition, only the first portion of project is build (JAR files-SCTDesktop) which would

help develop understand in JARs were updated correctly and built correctly

For example, 2 command arguments would resemble (see below). Entire project (JAR and WAR files are built and updated), developer would use this pre-

production build as evidence the process works

A pre production run we only expect to see the command line outputs based on a USER modified configuration.properties file

Updated version number will show in the newly generated pom.xml.test files but the original pom.xml will stay as not modified. A pre production run we only

expect to see the command line outputs (indivudual results for command lines are explained in Step 2)

Application reads current project source path from the config.properties file shown above. In this example, the path is:

In config.properties file, since "major.releases" and "minor.releases" have no values specified, the update type is "default release", which increments the

patch version number only. In the above example, IF there's difference, version manager will update the version to 1.0.7 if "NEXUS" is chosen in Step 5

OR 1.0.5 if "CONTROL" is chosen in Step 5.

For example 0 command arguments would resemble (see below). In addition a developer would not include any arguments in command to verify updating

of pom.xmls was completed correctly (only updating portion)

Step 2

Application reads from the config.properties file shown above whether user to directly build the project (yes) or update versioning (no), in this example the

answer is: NO. Then read the control file path from the file.

Step 5

Application reads from the config.properties file shown above whether user wants to use Nexus's latest release or the control file as the baseline to update

the pom file. (Different answer specified in the following steps)

For example, if the latest version in Nexus for desktop module is 1.0.6 AND the input control file version for desktop module is 1.0.4. .

If indicate NEXUS, then the application will compare the desktop module with the nexus latest release and update the version number based on 1.0.6.

If indicate CONTROL, then the application will compare the desktop module with the nexus latest release and update the version number based on 1.0.4.

3

Pre production build and user wants to run

version manager application. In addition,

user wants to version according to patch

release

Step 1

Step 3

Step 4

Step 6

Application prompts user for the current project source path, for example, user can input:

C:\perforce\nbkgged_scd\EMEA_Credit\tactical\projects\SCD\Core\SCD\

Application prompts user to directly build the project (yes) or update versioning (no), user input: NO. Then the application prompts user for the control file

path (the released version to be compared with), for example: C:\perforce\nbkgged_scd\EMEA_Credit\tactical\projects\SCD\Core\2.136\ER1\

Make sure the config.properties files looks like screenshot below.

Step 2

Run the version manager (java application). See command line examples below . In the command line the number of arguments specified determines the

end result.

For example 0 command arguments would resemble (see below). In addition a developer would not include any arguments in command to verify updating

of pom.xmls was completed correctly. The build uses conditions specified in the config.properties file. Since direct build is specified as "no", the pom.xml

files are updated. Since no command line argument is specified, neither SCTDesktop nor webstart project is built. In all, the application does nothing to the

SCD application.

For example 1 command arguments would resemble (see below).The build uses conditions specified in the config.properties file. Since direct build is

specified as "no", the pom.xml files will be updated. Since one command line argument is specified, the application builds the SCTDesktop project based

on the command line argument but not the webstart project. In all, the WAR file is not built.

For example 2 command arguments would resemble (see below). The build uses conditions specified in the config.properties file. Since direct build is

specified as "no", the pom.xml files will be updated. Two (or more) command line arguments are specified, SCTDesktop project is built based on the first

command line argument and webstart project is built based on the second command line argument. Finally the built WAR file is renamed to be

"SCTDesktop-env" where env is the value specified in the "release.env" field in config.properties file.

Step 5

Application prompts user to use Nexus's latest release or the control file as the baseline to update the pom file. (Different answer specified in the following

steps)

For example, if the latest version in Nexus for desktop module is 1.0.6 AND the input control file version for desktop module is 1.0.4. .

User input NEXUS, then the application will compare the desktop module with the nexus latest release and update the version number based on 1.0.6

User input CONTROL, then the application will compare the desktop module with the nexus latest release and update the version number based on 1.0.4.

In config.properties file, since "major.releases" and "minor.releases" have no values specified, the update type is "default release", which increments the

patch version number only. In the above example, IF there's difference, version manager will update the version to 1.0.7 if "NEXUS" is chosen in Step 5

OR 1.0.5 if "CONTROL" is chosen in Step 5.

NOTE: the version number looks like

 1 . 0 . 6

major-release-number.minor-release-number.patch-release-number

Step 7

Expected Results

4

Pre production build and user wants to

BYPASS version manager application

(user must specify pertinent information

such as environment). In addition, user

wants to version according to patch

release

Step 1

Step 3

Step 4

Updated version number will show in the newly generated pom.xml.test files but the original pom.xml will stay as not modified. A pre production run we only

expect to see the command line outputs (indivudual results for command lines are explained in Step 2)

Run the version manager (java application). See command line examples below . In the command line the number of arguments specified determines the

end result.

Application reads from the config.properties file shown above whether user wants to use Nexus's latest release or the control file as the baseline to update

the pom file. (Different answer specified in the following steps)

For example, if the latest version in Nexus for desktop module is 1.0.6 AND the input control file version for desktop module is 1.0.4. .

For example 0 command arguments would resemble (see below). In addition a developer would not include any arguments in command to verify updating

of pom.xmls was completed correctly. The build uses conditions specified in the config.properties file. Since direct build is specified as "no", the pom.xml

files are updated. Since no command line argument is specified, neither SCTDesktop nor webstart project is built. In all, the application does nothing to the

SCD application.

For example 1 command arguments would resemble (see below).The build uses conditions specified in the config.properties file. Since direct build is

specified as "no", the pom.xml files will be updated. Since one command line argument is specified, the application builds the SCTDesktop project based

on the command line argument but not the webstart project. In all, the WAR file is not built.

For example 2 command arguments would resemble (see below). The build uses conditions specified in the config.properties file. Since direct build is

specified as "no", the pom.xml files will be updated. Two (or more) command line arguments are specified, SCTDesktop project is built based on the first

command line argument and webstart project is built based on the second command line argument. Finally the built WAR file is renamed to be

"SCTDesktop-env" where env is the value specified in the "release.env" field in config.properties file.

Application reads current project source path from the config.properties file shown above. In this example, the path is:

Application prompts user if this is a dry-run or not (dry-run creates new pom.xml.test files instead of overwriting the original pom.xml file). User input: YES.

Make sure the config.properties files looks like screenshot below.

Step 2

Step 5

Application reads from the config.properties file shown above whether user to directly build the project (yes) or update versioning (no), in this example the

answer is: NO. Then read the control file path from the file.

Step 6

Step 7

Expected Results

5

Pre production build in which the user runs

the version manager application. In

addition the user also specifies that

versioning must be done to either or major

and minor releases

Step 1

Step 3

Step 4

Application prompts user to directly build the project (yes) or update versioning (no), user input: NO. Then the application prompts user for the control file

path (the released version to be compared with), for example: C:\perforce\nbkgged_scd\EMEA_Credit\tactical\projects\SCD\Core\2.136\ER1\

Application prompts user for the current project source path, for example, user can input:

C:\perforce\nbkgged_scd\EMEA_Credit\tactical\projects\SCD\Core\SCD\

Make sure the config.properties files looks like screenshot below.

Step 2

Run the version manager (java application). See command line examples below . In the command line the number of arguments specified determines the

For example 0 command arguments would resemble (see below). In addition a developer would not include any arguments in command to verify updating

of pom.xmls was completed correctly. The build uses conditions specified in the config.properties file. Since direct build is specified as "no", the pom.xml

files are updated. Since no command line argument is specified, neither SCTDesktop nor webstart project is built. In all, the application does nothing to the

SCD application.

For example 1 command arguments would resemble (see below).The build uses conditions specified in the config.properties file. Since direct build is

specified as "no", the pom.xml files will be updated. Since one command line argument is specified, the application builds the SCTDesktop project based

on the command line argument but not the webstart project. In all, the WAR file is not built.

For example 2 command arguments would resemble (see below). The build uses conditions specified in the config.properties file. Since direct build is

specified as "no", the pom.xml files will be updated. Two (or more) command line arguments are specified, SCTDesktop project is built based on the first

command line argument and webstart project is built based on the second command line argument. Finally the built WAR file is renamed to be

"SCTDesktop-env" where env is the value specified in the "release.env" field in config.properties file.

If indicate NEXUS, then the application will compare the desktop module with the nexus latest release and update the version number based on 1.0.6.

If indicate CONTROL, then the application will compare the desktop module with the nexus latest release and update the version number based on 1.0.4.

In config.properties file, since "major.releases" and "minor.releases" have no values specified, the update type is "default release", which increments the

patch version number only. In the above example, IF there's difference, version manager will update the version to 1.0.7 if "NEXUS" is chosen in Step 5

OR 1.0.5 if "CONTROL" is chosen in Step 5.

Step 5

Updated version number will show in the newly generated pom.xml.test files but the original pom.xml will stay as not modified. A pre production run we only

expect to see the command line outputs (indivudual results for command lines are explained in Step 2)

Application prompts user if this is a dry-run or not (dry-run creates new pom.xml.test files instead of overwriting the original pom.xml file). User input: YES.

Step 7

Expected Results

6

Pre production build in which the user

BYPASS the version manager application

(and wants to version according to

parameters specified in the

config.properties file). In addition the user

also specifies that versioning must be done

to either or major and minor releases

7

User builds specifying an environment.

User also executes the version manager

application. In addition the user also

specifies that versioning must be done to

either or major and minor releases

Application prompts user if this is a dry-run or not (dry-run creates new pom.xml.test files instead of overwriting the original pom.xml file). User input: YES.

Updated version number will show in the newly generated pom.xml.test files but the original pom.xml will stay as not modified. A pre production run we only

expect to see the command line outputs (indivudual results for command lines are explained in Step 2)

Step 5

Application prompts user to use Nexus's latest release or the control file as the baseline to update the pom file. (Different answer specified in the following

steps)

For example, if the latest version in Nexus for desktop module is 1.1.6 AND the input control file version for desktop module is 1.2.4.

User input NEXUS, then the application will compare the desktop module with the nexus latest release and update the version number based on 1.1.6

User input CONTROL, then the application will compare the desktop module with the nexus latest release and update the version number based on 2.2.4.

See versioning matrix below for examples of incrementing major/minor and patch releases

Step 6

Step 1

Step 3

Step 4

Make sure the config.properties files looks like screenshot below.

User input NEXUS, then the application will compare the desktop module with the nexus latest release and update the version number based on 1.1.6

User input CONTROL, then the application will compare the desktop module with the nexus latest release and update the version number based on 2.2.4.

Run the version manager (java application). See command line examples below . In the command line the number of arguments specified determines the

end result.

For example 0 command arguments would resemble (see below). In addition a developer would not include any arguments in command to verify updating

of pom.xmls was completed correctly. The build uses conditions specified in the config.properties file. Since direct build is specified as "no", the pom.xml

files are updated. Since no command line argument is specified, neither SCTDesktop nor webstart project is built. In all, the application does nothing to the

SCD application.

For example 1 command arguments would resemble (see below).The build uses conditions specified in the config.properties file. Since direct build is

specified as "no", the pom.xml files will be updated. Since one command line argument is specified, the application builds the SCTDesktop project based

on the command line argument but not the webstart project. In all, the WAR file is not built.

For example 2 command arguments would resemble (see below). The build uses conditions specified in the config.properties file. Since direct build is

specified as "no", the pom.xml files will be updated. Two (or more) command line arguments are specified, SCTDesktop project is built based on the first

command line argument and webstart project is built based on the second command line argument. Finally the built WAR file is renamed to be

"SCTDesktop-env" where env is the value specified in the "release.env" field in config.properties file.

Application prompts user for the current project source path, for example, user can input:

C:\perforce\nbkgged_scd\EMEA_Credit\tactical\projects\SCD\Core\SCD\

Application prompts user to directly build the project (yes) or update versioning (no), user input: NO. Then the application prompts user for the control file

path (the released version to be compared with), for example: C:\perforce\nbkgged_scd\EMEA_Credit\tactical\projects\SCD\Core\2.136\ER1\

Step 2

Step 5

Step 6

See versioning matrix below for examples of incrementing major/minor and patch releases

Application prompts user to use Nexus's latest release or the control file as the baseline to update the pom file. (Different answer specified in the following

steps)

For example, if the latest version in Nexus for desktop module is 1.1.6 AND the input control file version for desktop module is 1.2.4.

Step 7

Expected Results

8

User builds specifying an environment.

BYPASS the version manager application

(and wants to version according to

parameters specified in the

config.properties file). In addition the user

also specifies that versioning must be done

to either or major and minor releases

Step 1

Step 2

Application prompts user if this is a dry-run or not (dry-run creates new pom.xml.test files instead of overwriting the original pom.xml file). User input: YES.

Updated version number will show in the newly generated pom.xml.test files but the original pom.xml will stay as not modified. A pre production run we only

Make sure the config.properties files looks like screenshot below.

Run the version manager (java application). See command line examples below . In the command line the number of arguments specified determines the

end result.

For example 0 command arguments would resemble (see below). In addition a developer would not include any arguments in command to verify updating

of pom.xmls was completed correctly. The build uses conditions specified in the config.properties file. Since direct build is specified as "no", the pom.xml

files are updated. Since no command line argument is specified, neither SCTDesktop nor webstart project is built. In all, the application does nothing to the

SCD application.

For example 1 command arguments would resemble (see below).The build uses conditions specified in the config.properties file. Since direct build is

specified as "no", the pom.xml files will be updated. Since one command line argument is specified, the application builds the SCTDesktop project based

on the command line argument but not the webstart project. In all, the WAR file is not built.

For example 2 command arguments would resemble (see below). The build uses conditions specified in the config.properties file. Since direct build is

specified as "no", the pom.xml files will be updated. Two (or more) command line arguments are specified, SCTDesktop project is built based on the first

command line argument and webstart project is built based on the second command line argument. Finally the built WAR file is renamed to be

"SCTDesktop-env" where env is the value specified in the "release.env" field in config.properties file.

Step 6

See versioning matrix below for examples of incrementing major/minor and patch releases

Step 3

Step 4

Step 7

Expected Results

9

User wants to execute version manager

appliccation and build with specified

environment (prod, QA, str, etc). User also

wants to version according to patch

release number

Step 6

Step 5

If indicate NEXUS, then the application will compare the desktop module with the nexus latest release and update the version number based on 1.0.6.

If indicate CONTROL, then the application will compare the desktop module with the nexus latest release and update the version number based on 1.0.4.

Application prompts user if this is a dry-run or not (dry-run creates new pom.xml.test files instead of overwriting the original pom.xml file). User input: YES.

See versioning matrix below for examples of incrementing major/minor and patch releases

Application reads current project source path from the config.properties file shown above. In this example, the path is:

Application reads from the config.properties file shown above whether user to directly build the project (yes) or update versioning (no), in this example the

answer is: NO. Then read the control file path from the file.

Application reads from the config.properties file shown above whether user wants to use Nexus's latest release or the control file as the baseline to update

the pom file. (Different answer specified in the following steps)

For example, if the latest version in Nexus for desktop module is 1.0.6 AND the input control file version for desktop module is 1.0.4. .

Updated version number will show in the newly generated pom.xml.test files but the original pom.xml will stay as not modified. A pre production run we only

expect to see the command line outputs (indivudual results for command lines are explained in Step 2)

Step 1

Step 3

Step 4

Step 6

Step 7

User input NEXUS, then the application will compare the desktop module with the nexus latest release and update the version number based on 1.0.6

Make sure the config.properties files looks like screenshot below.

Run the version manager (java application). See command line examples below . In the command line the number of arguments specified determines the

end result.

For example 0 command arguments would resemble (see below). In addition a developer would not include any arguments in command to verify updating

of pom.xmls was completed correctly. The build uses conditions specified in the config.properties file. Since direct build is specified as "no", the pom.xml

files are updated. Since no command line argument is specified, neither SCTDesktop nor webstart project is built. In all, the application does nothing to the

SCD application.

User input CONTROL, then the application will compare the desktop module with the nexus latest release and update the version number based on 1.0.4.

In config.properties file, since "major.releases" and "minor.releases" have no values specified, the update type is "default release", which increments the

patch version number only. In the above example, IF there's difference, version manager will update the version to 1.0.7 if "NEXUS" is chosen in Step 5

OR 1.0.5 if "CONTROL" is chosen in Step 5.

NOTE: the version number looks like

 1 . 0 . 6

major-release-number.minor-release-number.patch-release-number

Application prompts user if this is a dry-run or not (dry-run creates new pom.xml.test files instead of overwriting the original pom.xml file). User input: NO to

overwrite the original pom.xml files .

For example 1 command arguments would resemble (see below).The build uses conditions specified in the config.properties file. Since direct build is

specified as "no", the pom.xml files will be updated. Since one command line argument is specified, the application builds the SCTDesktop project based

on the command line argument but not the webstart project. In all, the WAR file is not built.

For example 2 command arguments would resemble (see below). The build uses conditions specified in the config.properties file. Since direct build is

specified as "no", the pom.xml files will be updated. Two (or more) command line arguments are specified, SCTDesktop project is built based on the first

command line argument and webstart project is built based on the second command line argument. Finally the built WAR file is renamed to be

"SCTDesktop-env" where env is the value specified in the "release.env" field in config.properties file.

Application prompts user for the current project source path, for example, user can input:

C:\perforce\nbkgged_scd\EMEA_Credit\tactical\projects\SCD\Core\SCD\

Application prompts user to directly build the project (yes) or update versioning (no), user input: NO. Then the application prompts user for the control file

path (the released version to be compared with), for example: C:\perforce\nbkgged_scd\EMEA_Credit\tactical\projects\SCD\Core\2.136\ER1\

Application prompts user to use Nexus's latest release or the control file as the baseline to update the pom file. (Different answer specified in the following

steps)

For example, if the latest version in Nexus for desktop module is 1.0.6 AND the input control file version for desktop module is 1.0.4. .

Step 2

Step 5

Expected Results

10

User wants to BYPASS version manager

appliccation and build with specified (in

config.properties file) environment (prod,

QA, str, etc). User also wants to version

according to patch release number

Step 1

Step 3

Step 4

Updated version number will show in the original pom.xml files (they are overwritten). An actual build run we only expect to see the command line outputs

(indivudual results for command lines are explained in Step 2)

Make sure the config.properties files looks like screenshot below.

Run the version manager (java application). See command line examples below . In the command line the number of arguments specified determines the

end result.

For example 0 command arguments would resemble (see below). In addition a developer would not include any arguments in command to verify updating

of pom.xmls was completed correctly. The build uses conditions specified in the config.properties file. Since direct build is specified as "no", the pom.xml

files are updated. Since no command line argument is specified, neither SCTDesktop nor webstart project is built. In all, the application does nothing to the

SCD application.

For example 1 command arguments would resemble (see below).The build uses conditions specified in the config.properties file. Since direct build is

specified as "no", the pom.xml files will be updated. Since one command line argument is specified, the application builds the SCTDesktop project based

on the command line argument but not the webstart project. In all, the WAR file is not built.

For example 2 command arguments would resemble (see below). The build uses conditions specified in the config.properties file. Since direct build is

specified as "no", the pom.xml files will be updated. Two (or more) command line arguments are specified, SCTDesktop project is built based on the first

command line argument and webstart project is built based on the second command line argument. Finally the built WAR file is renamed to be

"SCTDesktop-env" where env is the value specified in the "release.env" field in config.properties file.

Application reads current project source path from the config.properties file shown above. In this example, the path is:

Application reads from the config.properties file shown above whether user to directly build the project (yes) or update versioning (no), in this example the

answer is: NO. Then read the control file path from the file.

Application reads from the config.properties file shown above whether user wants to use Nexus's latest release or the control file as the baseline to update

the pom file. (Different answer specified in the following steps)

For example, if the latest version in Nexus for desktop module is 1.0.6 AND the input control file version for desktop module is 1.0.4. .

Step 2

Step 5

Step 6

Step 7

Expected Results

If indicate NEXUS, then the application will compare the desktop module with the nexus latest release and update the version number based on 1.0.6.

If indicate CONTROL, then the application will compare the desktop module with the nexus latest release and update the version number based on 1.0.4.

In config.properties file, since "major.releases" and "minor.releases" have no values specified, the update type is "default release", which increments the

patch version number only. In the above example, IF there's difference, version manager will update the version to 1.0.7 if "NEXUS" is chosen in Step 5

OR 1.0.5 if "CONTROL" is chosen in Step 5.

Application prompts user if this is a dry-run or not (dry-run creates new pom.xml.test files instead of overwriting the original pom.xml file). User input: NO to

overwrite the original pom.xml files .

Updated version number will show in the original pom.xml files (they are overwritten). An actual build run we only expect to see the command line outputs

Step 5

Versioning Matrix

Nexus/Control Version

Number

major.releases

(specified in

config.properties file)

minor.releases

(specified in

config.properties file)

type of release resulted

in

default release

number? (resulted in

this column in the other

sheet) result

desktop module: 1.0.5 (blank) (blank) patch release Yes desktop module: 1.0.6

desktop module: 1.0.5 desktop (blank) major release No desktop module: 2.0.0

desktop module: 1.0.5 (blank) desktop minor release No desktop module: 1.0.7

desktop module: 1.0.5 desktop desktop major and minor release No desktop module: 2.1.0

desktop module: 1.0.5 desktop module: 1.0.6

BC module: 2.3.5 BC module: 2.3.6

desktop module: 1.0.5 desktop module: 2.0.0

BC module: 2.3.5 BC module: 3.0.0

desktop module: 1.0.5 desktop module: 1.1.0

BC module: 2.3.5 BC module: 2.4.0

desktop module: 1.0.5 desktop module: 2.1.0

BC module: 2.3.5 BC module: 3.1.0

desktop module: 1.0.5 desktop module: 2.0.0

BC module: 2.3.5 BC module: 2.4.0

desktop module: 1.0.5 desktop module: 1.1.0

BC module: 2.3.5 BC module: 3.0.0

Note For multiple modules that are specified in the major.release or minor.release key field in config.properties file, separate them by ";"

desktop

Ivol

BaseCorrelation

BasketManager

reporting framework

reportviewer

RFL

SCK

tradeviewer

SCTDesktop

ConfigurationsUat

ConfigurationsProd

ConfigurationsUatDualServer

ConfigurationsStr

(blank) (blank) patch release yes

desktop; BC (blank) major release no

(blank) desktop; BC minor release no

desktop; BC desktop; BC major and minor release no

Modules can be specified

in the major.release and

minor.release fields:

desktop BC

major release for

desktop; minor release no

BC desktop

major release for BC;

minor release for desktop no

File

Compare

Use Case

#
Use Case Description Directory 1 Content Directory 2 Content

Directory

Compare

Result

Update

version

number?

Comment

abc.doc abc.doc

def.txt def.txt

config.properties config.properties

help.java help.java

file.jsp file.jsp

picture.pic picture.pic

graph.jpg graph.jpg

abc.doc

abc.doc (content

different from abc.doc

in directory 1

def.txt def.txt

config.properties config.properties

help.java help.java

file.jsp file.jsp

picture.pic picture.pic

graph.jpg graph.jpg

abc.doc abc.doc

def.txt def.txt

config.properties config.properties

help.java help.java

file.jsp file.jsp

picture.pic

picture.pic (picture

content is different

from picture.pic in

directory 1)

graph.jpg graph.jpg

abc.doc

abcdef.doc (content

same as abc.doc in

directory 1)

def.txt def.txt

config.properties config.properties

help.java help.java

Yes
File order does not

matter.

1

2

Same amount of files in both

directory and file names are the

same but content is difference.

Difference exists in non-picture

type files.

Different Yes
File order does not

matter.

Same amount of files in both

directory and file names and

content are the same

Same No
File order does not

matter.

3

Same amount of files in both

directory and file names are the

same but content is difference.

Difference exists in picture type

files.

Same No

Currently the file

comparator cannot

detect the difference

in pic, jpg, gif (picture

types) files.

4

Same amount of files in both

direcotry. Two files have different

names but the same content.

Different

If two directories contain the same files, then do not update the module's version number in the module's pom file. Otherwise,

increase version number based on the requirement shown in "Version Matrix" tag

file.jsp file.jsp

picture.pic picture.pic

graph.jpg graph.jpg

abc.doc

abcdef.doc (content

different from abc.doc

in directory 1)

def.txt def.txt

config.properties config.properties

help.java help.java

file.jsp file.jsp

picture.pic picture.pic

graph.jpg graph.jpg

abc.doc abc.jar

def.txt def.txt

config.properties config.properties

help.java help.java

file.jsp file.jsp

picture.pic picture.pic

graph.jpg graph.jpg

abc.doc abc.doc (content

def.txt

abcdef.txt (content

same as def.txt in

directory 1)

config.properties config.properties

help.java help.java

file.jsp file.jsp

picture.pic picture.pic

graph.jpg graph.jpg

abc.doc abc.doc

def.txt def.txt

config.properties config.properties

help.java help.java

Different Yes
File order does not

matter.

Yes
File order does not

matter.
4

Same amount of files in both

direcotry. Two files have different

names but the same content.

Different

6

Same amount of files in both

directory and file names and

content both different

7

File order does not

matter.

Different amount of files in both

directory and file names and

content are the same (Directory

1 has more files)

Different

Different Yes

Yes

File order does not

matter. File type does

not matter.

Different Yes
File order does not

matter.

Same amount of files in both

directory and file names and

content both different

5

file.jsp file.jsp

picture.pic picture.pic

graph.jpg

abc.doc abc.doc

def.txt def.txt

config.properties config.properties

help.java help.java

file.jsp file.jsp

picture.pic picture.pic

graph.jpg graph.jpg

test.xsl

abc.doc

abc.doc (content

different from abc.doc

in directory 1)

def.txt def.txt

config.properties config.properties

help.java help.java

file.jsp file.jsp

picture.pic picture.pic

graph.jpg

abc.doc

abc.doc (content

different from abc.doc

in directory 1)

def.txt def.txt

config.properties config.properties

help.java help.java

file.jsp file.jsp

picture.pic picture.pic

graph.jpg graph.jpg

test.xsl

abc.doc abc.doc

def.txt def.txt

config.properties config.properties

help.java

file.jsp file.jsp

8

7

Different amount of files in both

directory and file names and

content are the same (Directory

1 has more files)

Different

Different amount of files in both

directory and file names are the

same but content is difference.

Difference exists in non-picture

type files. (Directory 1 has more

files)

Different amount of files in both

directory and file names are the

same but content is difference.

Difference exists in picture type

files. (Directory 1 has more files)

Different amount of files in both

directory and file names and

content are the same (Directory

2 has more files)

Different amount of files in both

directory and file names and

content are the same (Directory

2 has more files)

Yes

File order does not

matter. File type does

not matter.

Different Yes

File order does not

matter. File type does

not matter.

Different Yes

File order does not

matter. File type does

not matter.

9

picture.pic

picture.pic (picture

content is different

from picture.pic in

directory 1)

graph.jpg

abc.doc abc.doc

def.txt def.txt

config.properties config.properties

help.java help.java

file.jsp file.jsp

picture.pic

picture.pic (picture

content is different

from picture.pic in

directory 1)

graph.jpg graph.jpg

test.xsl

abc.doc

abcdef.doc (content

same as abc.doc in

directory 1)

def.txt def.txt

config.properties config.properties

help.java help.java

file.jsp file.jsp

picture.pic picture.pic

graph.jpg

abc.doc

abcdef.doc (content

same as abc.doc in

directory 1)

def.txt def.txt

config.properties config.properties

help.java help.java

file.jsp file.jsp

picture.pic picture.pic

graph.jpg graph.jpg

test.xsl

abc.doc

abcdef.doc (content

different from abc.doc

in directory 1)

def.txt def.txt

Different amount of files in both

direcotry. Two files have different

names but the same content.

(Directory 1 has more files)

Different amount of files in both

directory and file names and

content both different. (Directory

1 has more files)

Different amount of files in both

directory and file names are the

same but content is difference.

Difference exists in picture type

files. (Directory 1 has more files)

Different Yes

File order does not

matter. File type does

not matter.

Different amount of files in both

directory and file names and

content are the same (Directory

2 has more files)

11

Different amount of files in both

directory and file names and

content are the same (Directory

2 has more files)

Different Yes

Different Yes

File order does not

matter. File type does

not matter.

File order does not

matter. File type does

not matter.

10

9

config.properties config.properties

help.java help.java

file.jsp file.jsp

picture.pic picture.pic

graph.jpg

abc.doc

abcdef.doc (content

different from abc.doc

in directory 1)

def.txt def.txt

config.properties config.properties

help.java help.java

file.jsp file.jsp

picture.pic picture.pic

graph.jpg graph.jpg

test.xsl

abc.doc abc.jar

def.txt def.txt

config.properties config.properties

help.java help.java

file.jsp file.jsp

picture.pic picture.pic

graph.jpg

abc.doc abc.jar

def.txt def.txt

config.properties config.properties

help.java help.java

file.jsp file.jsp

picture.pic picture.pic

graph.jpg graph.jpg

test.xsl

abc.doc

abc.doc (content

different from abc.doc

in directory 1)

def.txt

abcdef.txt (content

same as def.txt in

directory 1)

config.properties config.properties

help.java help.java

Different amount of files in both

directory and file names and

content are the same. (Directory

2 has more files)

Different amount of files in both

directory and file names and

content both different

Different amount of files in both

directory and file names and

content both different. (Directory

1 has more files)

Different

Different Yes

File order does not

matter. File type does

not matter.

12

Different amount of files in both

directory and file names and

content both different. (Directory

1 has more files)

Different amount of files in both

directory and file names and

content are the same. (Directory

2 has more files)

11

Yes

File order does not

matter. File type does

not matter.

file.jsp file.jsp

picture.pic picture.pic

graph.jpg

abc.doc

abc.doc (content

different from abc.doc

in directory 1)

def.txt

abcdef.txt (content

same as def.txt in

directory 1)

config.properties config.properties

help.java help.java

Different amount of files in both

directory and file names and

content both different

Different

Different amount of files in both

directory and file names and

content are the same

12 Yes

File order does not

matter. File type does

not matter.

