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Abstract 
 

This project developed an autonomous radiosonde glider that actively steers itself from the apex 

of its flight to safe recovery locations on the ground.  This enables easy and reliable recovery, 

reducing costs and offering new capabilities to atmospheric researchers.  The glider integrates 

the essential weather sensors used on current radiosondes with those needed for autonomous 

flight in a durable, easy to manufacture airframe capable of multiple data gathering flights with 

minimal repairs between each flight. 
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1. Introduction 
 

Every year, the U.S. National Weather Service (NWS) launches over 70,000 weather 

balloons to study the atmosphere. These balloons provide the most cost effective way of 

recording important atmospheric data up to the very edge of Earth’s atmosphere. Each balloon 

carries an instrumentation package called a radiosonde.  

Radiosondes weigh between 250 and 500 grams and transmit data such as GPS location 

(for winds aloft), temperature, humidity, and pressure back to a ground station for the duration of 

the flight. Radiosondes used by the National Weather Service are the most common models; they 

ascend by balloon at a rate of 1000 feet per minute and transmit the data they collect using 300 

milliwatt or less transmitters on the 400 MHz meteorological band. Once the balloon bursts, the 

radiosonde falls back to earth with a small parachute designed to prevent it from hitting the 

ground hard enough to harm people or property. [1] 

Unfortunately, of the 70,000+ weather balloon launches per year, less than 20% of the 

radiosondes are recovered.  There is no reason the radiosondes cannot be reused mechanically or 

electrically, the issue lies in the lack of a cohesive recovery effort.  The only means for 

radiosonde recovery is to be found by a passer-by who sends it back to the NWS using the mailer 

included with every unit.  At a cost of roughly $290 per unit, the annual cost of lost radiosondes 

is over $16.2 million. 

This project aims to solve this problem by incorporating the radiosonde into a small UAV 

capable of autonomously selecting and flying to a safe location after disconnecting from the 

balloon at apogee.  This will greatly increase the recovery rate of radiosondes and will reduce the 

pollution that results from their use. 

Radiosondes collect data for computer-based weather prediction models, forecasting, 

weather and climate research, air pollution models, and verifying satellite data. [1] A radiosonde-

glider capable of flying a preprogrammed path with substantial cross range capability will open 

up new research opportunities in areas such as extreme weather. A reusable non-powered flying 

radiosonde that can be launched a safe distance from hazardous weather would be an invaluable 

tool for scientists wishing to study those phenomena without risking expensive equipment or 

lives. [2] 

The radiosonde we intend to develop is a technical challenge in every aspect that will 

draw on all of our experiences at WPI. It will involve the design, implementation, and testing of 

both mechanical and electrical systems, as well as the writing and debugging of a substantial 

amount of software. 
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2. Background 
 

2.1. Introduction 

Radiosondes have been used for years as an effective, inexpensive and simple tool to 

obtain accurate data about conditions in the lower to upper atmosphere. The technology and 

process for using these radiosondes has changed very little since the very first units, except for 

the recent addition of lightweight GPS modules.  Thus, the radiosonde industry presents a market 

ready for changes and improvements.  

 

2.2. Current Radiosonde Technology and Operations 

There are currently two types of radiosondes in use by the National Weather Service 

(NWS): The LMS-6 by Lockheed Martin and the RS92-NGP by Vaisala. [3] There is another 

class of sensor, known as the dropsonde, which is not lifted by balloons, but is instead dropped 

from aircraft in order to study large weather phenomena like hurricanes. Most radiosondes have 

a mass between 250g and 450g and are used to measure temperature, air pressure, relative 

humidity, wind speed, and direction. 

Each flight can last over 2 hours, reach a maximum height of 35,000 meters, and cover 

more than 320 km. The balloons are inflated with helium or hydrogen to about 1.5 meters in 

diameter at launch and climb at nearly 5 meters per second, growing up to 8 meters in diameter 

before bursting. 

Each radiosonde model is capable of three distinct functions. 1) They can be tracked 

either by radar or GPS in order to establish wind speed and altitude. 2) They can transmit data 

from their sensors until balloon burst. 3) They will not cause damage to people or property; 

meaning they will land at a safe velocity and are made of materials that can be consumed by a jet 

engine in the rare event an aircraft strikes the radiosonde. 

Radiosondes are lifted by a weather balloon filled with either helium or hydrogen. The 

radiosonde is suspended about five meters below the balloon and remains attached until the 

balloon expands to about four times its initial diameter and bursts. [3] At burst the radiosonde is 

considered destroyed and tracking data is collected during descent until contact is lost. [4] [5] As 

the radiosonde falls back to Earth, a small parachute and what remains of the balloon slow its 

descent. The descent of the radiosonde is completely uncontrolled and no concerted effort is 

made to recover it.  The only chance for recovery is being found by a passerby. From there the 

radiosonde is either returned to the National Weather Service via mail or thrown away at the 

finder’s discretion. [6] 

 

2.3. Sounding Data 

The data returned from a radiosonde flight is generally formatted into what is known as a 

Skew-T diagram:  



12 

 

 
Figure 1: Example Skew-T Diagram [7] 

 

These graphs use radiosonde data to show the temperature, dewpoint, and wind speed and 

direction at a range of pressures starting from ground level.  The horizontal black lines are called 

Isobars, and represent lines of equal pressure.  Spacing between Isobars increases vertically due 

to the logarithmic representation.  The straight red lines which slope from the lower left to upper 

right are called Isotherms, and they represent lines of equal temperature.   

The slightly curved blue lines which slope from the upper left to lower right are Dry 

Adiabats.  These lines indicate the rate of temperature change in a dry air parcel rising or 

descending adiabatically.  The slightly curved, orange lines sloping from upper left to lower right 
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are Saturated Adiabats, and indicate the rate of temperature change in a saturated air parcel as it 

rises pseudo-adiabatically.   

The dashed black lines sloping from lower left to upper right are known as Saturation 

Mixing Ratio Lines, and represent lines of equal mixing ratios of saturated air.  The bold red 

curve is known as the Temperature Curve, and is a plot of the temperature measurements.  The 

bold blue curve is the Dew point Curve, and is a plot of the dew point measurements taken by the 

radiosonde.  On the right of the diagram is a section showing the wind speed and direction 

measurements, represented with Wind barbs. 

The information presented in these diagrams tells much about the atmosphere in a given 

location.  A quick look at the slopes of the temperature and dew point curves can give one a 

sense of the stability of the atmosphere at various altitudes. This data can be used for anything 

from aiding weather predictions to showing glider pilots when and where to fly. [8] 

 

2.4. Current Recovery Efforts 

Current radiosonde recovery efforts do not employ any active system. Every radiosonde 

is launched with a prepaid mailer that can be used to mail it for free in the US back to the NWS 

for reconditioning. Whether a member of the public stumbles upon the radiosondes and then 

returns it is left up to pure chance.  

In an interview of a professional in the radiosonde industry, the team was told of a NASA 

project that was supposed to be researching the possibility of having radiosondes land directly at 

post offices; however later research to find said project did not return any results. [4] The 

concept did, however, provide a starting point for defining the “safe landing zones” that the 

project’s radiosonde would be aiming for. 

 

2.5. Acquisition of Background Information 

To gain a better understanding of what requirements and constraints will be relevant to 

this project; stakeholders such as the NWS and Intermet (A manufacturer of radiosondes) were 

contacted to learn more information about these programs. 

Bill Jones of Intermet Systems was interviewed on November 10th, 2015 about the 

radiosondes that Intermet Systems makes and some of the engineering challenges associated with 

radiosondes. 

 

2.6. The Atmosphere 

The purpose of any radiosonde is to collect up-to-date information on the conditions 

present in the atmosphere. This data is fed into forecast and climate models, as well as standard 

models of the atmosphere; such as the 1976 U.S. Standard Atmosphere. The U.S. Standard 

Atmosphere ranges from -5000 meters to 100000 meters relative to sea level. It contains data on 

temperature, pressure, air density, viscosity of the air, and other altitude-related properties that 

are not directly connected to the air itself. The atmosphere is also divided into layers known as 

the: Troposphere, from ground level up to 11,000 meters above sea level; Stratosphere, 11,000 
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meters to 51,000 meters;  Mesosphere, 51,000 meters to 71,000 meters; and Thermosphere, 

71,000 meters and up. [9] 

Nearly all water vapor and weather phenomena is found in the troposphere. The 

troposphere is the most turbulent and is greatly affected by oceans and terrain. The stratosphere 

has stronger winds and contains the jetstream. It is much drier, less dense, and colder than the 

troposphere and unaffected by oceans and terrain. Radiosondes probe these two regions the most 

because the balloons that carry them burst around 35,000 meters, or about halfway through the 

stratosphere. 

 

2.7. Conditions to Expect 

Flight conditions change with altitude. Aircraft flying in the lower troposphere are 

susceptible to terrain hazards, weather, bird strikes, thermals, and other phenomena. It is 

however easier to fly at slower speeds at these lower altitudes due to the thicker air. Aircraft do 

not have to be insulated or pressurized since conditions are fairly close to what is encountered on 

the ground. This changes around 5,100 meters, when the air becomes too thin for humans to 

breathe without special equipment. 

As an aircraft climbs higher into the atmosphere, the temperature and pressure both drop. 

Between the upper troposphere and lower stratosphere, icing on aircraft can become a serious 

problem. Aircraft that fly in this region must be fitted with anti-icing equipment such as heaters, 

airbags, or special chemical coatings. The lower stratosphere is where most commercial air travel 

flies. Here the atmosphere is more uniform and much less chaotic than the troposphere. High 

altitude winds are dominant here, reaching speeds as high as 110m/s. [3] 

The conditions that a radiosonde is expected to travel through and take data from are 

diverse and challenging. For a project at the scale of an MQP, every condition cannot be 

designed and tested for with the resources available. In order to narrow the scope of the project, 

specific criteria were selected that would result in a recoverable radiosonde that could perform 

all of the basic functions of current radiosondes. 
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3. Project Goals and Requirements 
 

3.1. Goals for Project Success 

The following criteria were set for measuring the success of this project: 

 Develop a control board for vehicle navigation with similar data recording capabilities to 

current radiosondes  

 Develop software capable of choosing a safe landing location from a pre-programmed list 

while avoiding hazards 

 Develop an unpowered aircraft which can cover at least 7000 meters aerial range for 

every 1000 meter of vertical drop 

 Must land in a condition such that it can be returned to flight without unscheduled repairs 

or maintenance. 

 Use materials safe for consumption by a jet engine 

 Test the full scale glider in small scale drop from a height of at least 1000 feet 

 Unit cost under 200% of the cost of current, semi-recoverable radiosondes 

 Cost per launch should be no more than the cost for current radiosondes 

 Develop a CONOPS of how our radiosonde can be used 

 

3.2. Develop Flight Controller with Radiosonde Abilities 

 For this project, a custom Flight Controller PCB must be designed to incorporate the 

tools necessary for autonomous flight control with those necessary for radiosonde functionality.  

Commercially available flight control boards (such as the Pixhawk) could be used, but these 

would lack the weather sensors and radios required, meaning additional hardware would still be 

necessary.  In order to make the lightest, most capable, and most application-specific device, a 

custom Flight Controller must be created. 

 

3.3. Develop Software Capable of Selecting Landing Site 

Software written for this project must enable the radiosonde-glider to record and transmit 

data during ascent.  It must also be capable of computing a flight path to the most reachable 

landing site from a pre-loaded list.  Each landing site entry will contain information about the 

location and altitude of the landing site.  Additionally, it will contain information about the 

heading that the craft should follow during the landing.  Criteria for choosing the best landing 

site must include the wind data recorded during ascent.  The software must make the best effort 

to be as redundant as possible in case of multiple system failures, as there is no human fallback 

option.   

 

3.4. Develop Unpowered Aircraft Capable of 7:1 Glide Ratio 

The airframe needs to rugged, inexpensive, and simple to manufacture.  The airframe 

must be able to survive a wide range of temperatures, pressures, and flight regimes. 
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3.5. Able to Land and Return to Flight with Little Maintenance 

 A major goal for this project is to create a radiosonde-glider which is able to be readily 

reused.  For this to happen, it must be able to land in such a way that it does do significant 

damage to itself.  Though a small amount of regular maintenance would be acceptable to ensure 

it is still in flying order, any damage upon landing which prevents it from flying again would be 

unacceptable. 

 

3.6. Use Materials Safe for Jet Engine Consumption 

 In the interest of safety, one of our requirements for this project is for all materials of the 

radiosonde and balloon to be able to safely pass through a jet engine without harming the 

aircraft.  Materials such as foam, fiberglass, and small electronics are all safe in this regard, 

while those such as large pieces of metal would need to be avoided. 

 

3.7. Test Glider from 1000 Feet 

 In order to sufficiently test all systems of the radiosonde-glider, a goal was created to 

perform a 300 meter tethered balloon flight.  This test would involve setting up the radiosonde-

glider on a balloon just as if a full-scale flight, and having it release from the balloon at an 

altitude of 300 meters and land with 3 meters of a chosen approach vector. This test is meant to 

prove all features of deployment, data collection and transmission, and flight parameters. 

  

3.8. Unit Cost Under 200% of Current Radiosondes 

 In order to ensure the radiosonde-glider would be able to be marketed in the real world, 

an objective was set to keep the total cost of the radiosonde (excluding balloons and helium) 

under 200% of the cost of current radiosondes, or $580.  This number was chosen because this 

glider ought to be able to perform at least two flights without failure. 

 

3.9. Cost per Launch Equivalent to Current Radiosondes 

 The cost of launching our radiosonde-glider should be no more than the cost of launching 

current radiosondes.  To achieve this, the radiosonde-glider should be able launch on the same 

type of weather balloons used by modern radiosondes, using approximately the same amount of 

helium/hydrogen per launch. 

 

3.10. CONOPS 

 A concept of operations (CONONPS) is a document which describes a number of 

important characteristics of the system, what it can and can’t do, the stakeholders, its cost, and 

how it works.  It is meant to give an overview of the system from the point of view of a user, and 

to communicate concisely the system characteristic to all stakeholders. 
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4. Flight Controller Implementation 
 

4.1. Introduction 

Creating a custom Flight Controller for this radiosonde-glider was vital to the success of 

this project.  This section covers the selection of major components and the PCB design process 

of the Flight Controller and modules.  This section also covers the testing and debugging of 

hardware as well as the coding and testing of software. 

 

4.2. Flight Controller Requirements 

 For the Flight Controller to meet all criteria set by this project, it must be able to: 

 Operate as a radiosonde during ascent 

 Control the airframe during descent 

 Transmit GPS location from landing site 

Behaving as a radiosonde will enable this project to be a useful tool for collecting 

weather data.  Meeting this goal will require a number of sensors and a method of transmitting 

data from those sensors to the ground.  Most radiosondes include the following: a temperature 

sensor, a humidity sensor, a barometric pressure sensor, and a Global Positioning System (GPS) 

sensor for measuring winds aloft.  These will all need to be incorporated into the Flight 

Controller to enable proper weather data acquisition.  Transmitting this data to the ground will 

involve the use of a radio able to transmit a signal powerful enough to be received several 

hundred miles away.  A MicroSD card reader may also be added to this Flight Controller, as this 

would enable the device to record weather data during ascent, which may then be used for 

calculating flight paths during descent. 

The ability for this Flight Controller to control our airframe during descent is vital. 

Implementing this will require a number of sensors and several servos outputs.  Included in these 

sensors should be an accelerometer, gyroscope, magnetometer, and GPS.  These sensors will 

give the airframe full knowledge of its orientation, rates, and location.  In addition, the MicroSD 

card mentioned above can also be used for storing the locations of landing sites for the Flight 

Controller to select from. 

Knowing the landing location of this radiosonde-glider is essential to the operator’s 

ability to recover it.  This will be accomplished by transmitting a message from the ground with 

the devices GPS location.  Such a radio will likely need to transmit to either a satellite or cellular 

network to ensure reliable delivery of the message, as failure to receive the location of the 

radiosonde-glider could easily result in the loss of the device. 

4.3. Overall Design Considerations 

Several decisions in the overall design of the Flight Controller were made at the start of 

the project.  First, the decision was made to split the code between two microcontrollers.  One 

microcontroller (referred to as the Navigation Computer) would collect and transmit weather 

data during ascent, and perform navigation calculations during descent.  The other (referred to as 

the Autopilot Computer) would have the sole responsibility of performing real-time flight control 
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during descent.  This system of two microcontrollers eliminates the potential for catastrophic 

latency in the flight control loop caused by GPS data acquisition and long calculations necessary 

for navigation.  Such latency would cause the aircraft’s control surfaces to essentially lock-up 

whenever the microcontroller computes a new flight path.  Ideally, this latency would be no 

more than 20ms, as the servo PWM signal runs at a speed of 50Hz.  The inclusion of a GPS was 

the main reason for this decision, as they require large amounts of processor time for reading and 

parsing data sent by the GPS. 

Second, the decision was made to use Arduino-compatible Atmel microcontrollers.  This 

decision would allow the use of Arduino’s user-friendly take on embedded C/C++ to program 

the Flight Controller.  The Arduino project includes a library called Wiring, which provides 

many common I/O procedures, greatly simplifying the embedded coding process.  It also allows 

for the same piece of code to be run on a multitude of microcontrollers, and is backed by an 

enormous, helpful community of developers.  Using this would save valuable time and effort in 

the programming process. 

Third, it was decided that the flight controller should use 3.3V logic wherever possible.  

This decision was made based on the fact the most modern-day digital sensors operate on 3.3V.  

This design choice would eliminate the need for multiple voltage regulators and a multitude of 

logic level converters. 

Fourth, the decision was made to use components with very low operating temperatures.  

Given that this Flight Controller is meant to operate at up to 30,000 meters, the ambient 

temperatures experienced will go as low as -57°C. [10]  Research has shown the vast majority of 

electronic components are given operating temperatures no lower than -40°C, so this was chosen 

as the minimum operating temperature for all components (with the exception of those only 

meant to operate at lower altitudes, such as those on the GSM module).  This was deemed 

acceptable given the thinness of the atmosphere at altitude and the insulating nature of the 

airframe. 

Finally, it was decided that the PCB would be ordered from OSH Park.  OSH Park is a 

U.S.-based, community PCB manufacturer with a quick turn-around time and small minimum 

order of 3 PCBs. This would require the PCB to be designed to their specifications, which simply 

limit the minimum trace widths and drill sizes. [11] 

 

4.4. Selecting PCB Design Software 

At the start of this project, the decision was made to design the PCB for the Flight 

Controller in Fritzing.  Fritzing is a free, open source, user-friendly tool for virtual bread-

boarding and PCB design. [12]  After experimenting with the software and attempting the first 

design, it was found that Fritzing, while great for small DIY projects, is too slow and limiting for 

the purposes of this project. 

Research was then put into finding more suitable software for PCB design.  DipTrace 

was tried at first. [13]  This software was quickly decided against due to its lack of a user-

friendly interface, difficult-to-use part editor, and sharp learning curve.  EAGLE CAD was then 
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tested.  This software was found to have an intuitive interface, good part editor, and acceptable 

auto-routing, so it was chosen for chosen for this project.  It was also chosen for SparkFun’s vast 

library of EAGLE designs available to the public, and for OSH Park’s support of EAGLE files. 

[14] [11]  The light (free) version of this software is limited to board areas of 100 x 80 mm and 

two signal layers, though these were determined to not be an issue given the size limitations set 

by the airframe. [15]  

 

4.5. Selecting Major Components 

 4.5.1. Microcontrollers 

 The microcontroller selected for this project was initially the ATmega328P.  This was 

chosen for a number of reasons: It’s familiarity to the team members and its Arduino 

compatibility.  This is the same 8-bit microcontroller used on the Arduino Uno, which the team 

members had plenty of experience working with.  The ATmega328P was found to be perfectly 

acceptable as a microcontroller for the Autopilot Computer given the number of I/Os necessary.  

The Navigation Computer was quickly changed from an ATmega328P when the need arose for 

multiple UART ports (necessary for GPS and GSM).  The ATmega2560V was chosen for this 

role.  This 8-bit microcontroller is the lower-voltage variant of the Arduino Mega’s 

microcontroller. 

 

Microcontroller ATmega328P ATmega2560V 

Number of I/Os 23 86 

Number of UARTs 1 4 

Flash Memory 32 KBytes 256 KBytes 
Table 1: Comparison of Microcontrollers [16] [17] 

 

 In order for these microcontrollers to communicate, Universal Asynchronous 

Receiver/Transmitter (UART) would be used.  This was chosen for its availability, speed, and 

reliability. 

 Initially, the microcontrollers selected were to be through-hole mounted for ease of 

soldering and replacement.  After deciding to use the ATmega2560V, which is an SMD-only 

chip, the SMD variant of the ATmega328P was chosen as well.  Though this would be more 

difficult to solder, it would also take up less space on the Flight Controller. 

 4.4.2. Inertial Measurement Unit (IMU) 

 An IMU is a device which measures and reports a body’s acceleration, angular rate, and 

(sometimes) magnetic heading.  This device is critical to an aircraft’s ability to fly 

autonomously, as it allows the aircraft to know its orientation and rates.  Initially, the IMU was 

to be split amongst three separate sensor packages; one each for the accelerometer, gyroscope, 

and magnetometer, allowing them to be separately researched and specified. 

Accelerometers that were researched include the ADXL345 and LIS331.  The ADXL345 

was rejected for its significant 0g offset due to temperature in the Z-axis (would be 

approximately -0.2925g at -40°C). [18]  The LIS331 was a reasonable alternative, as it lacks this 
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extreme 0g offset. [19]  The gyroscope initially researched was the mostly-temperature-stable 

ITG-3200. [20]  The magnetometer researched was the MAG3110, which was found to have an 

unacceptable amount of zero-flux offset due to temperature change. [21] 

Further research into sensors led to the discovery of the LSM9DS1, a 9 degree-of-

freedom IMU.  This sensor includes a 3-axis accelerometer, 3-axis gyroscope, 3-axis 

magnetometer, and temperature sensor.  What is so intriguing about this sensor is the 

magnetometer’s “set / reset pulse” system.  This automatic operation performed before each data 

acquisition degausses the sensor and ensures alignment of the magnetic dipoles, effectively 

creating a magnetometer with a zero-gauss level independent of temperature.  Unfortunately, the 

datasheet for the LSM9DS1 is lacking in information on the temperature sensitivity of 

accelerometer and gyro. [22] 

 
Figure 2: Adafruit LSM9DS0 Breakout Board [23] 

Luckily, the datasheet for the LSM9DS0 contains all information necessary to make a 

decision.  It contains the same temperature stable magnetometer as the LSM9DS1.  In addition, 

the accelerometer and gyroscope show very little offset due to temperature, and what little there 

is can easily be compensated for using the built-in temperature sensor.  The sensor works down 

to -40°C, can measure acceleration up to +/- 16g, and can measure rotational velocity up to +/- 

2000dps. [24]  The only downside found is the difficulty in soldering such a small device.  

Luckily, Adafruit sells a breakout board for this sensor, allowing it to easily be installed on the 

Flight Controller, so this IMU was selected for this project. [23] 

 4.5.3. GPS Unit 

 The GP-20U7 was initially chosen due to its low power consumption and very low cost 

(about $16).  This GPS was later decided against due to its altitude limitation of 18,000 meters. 

[25]  Research into this issue showed that all but a select few GPS units have this drawback.  

GPS units which take advantage of a uBlox chipset are an exception to this. 
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Figure 3: GP-735 GPS [26] 

The GP-735, found on SparkFun, uses a uBlox 7th generation chipset and is able to measure 

altitudes up to 50,000 meters.  Though more expensive than the GP-20U7, this unit is incredibly 

small and powerful, so it was chosen as the GPS for this project. [26] 

 4.5.4. Weather Sensors 

 Most radiosondes contain a barometer, temperature sensor, humidity sensor, and GPS.  

For the Flight Controller to behave as a fully-functional radiosonde, it would have to include 

these sensors.  The temperature sensor was found on SparkFun as the DS18B20.  This sensor is 

inexpensive and able to measure down to -55°C.  It uses a unique 1-wire interface, is able to 

operate at the required 3.3V, and is a contained in a though-hole package which can easily be 

setup for off-board mounting. [27]  The humidity sensor was also found on SparkFun.  The 

HTU21D is a low-cost humidity sensor which communicates via I2C.  A breakout board for this 

sensor was found on SparkFun, allowing it to easily be mounted off-board. [28]  The barometer 

took a significant amount of research to find.  Most barometers, such as the BMP180, are only 

able to measure pressure up to about 10,000 meters. [29]  Eventually, the MS5803-01BA was 

discovered.  It is able to measure up to altitudes of just over 30,000 meters, communicates via 

I2C, operates at 3.3V, and is easily SMD soldered to a PCB. [30] 

 4.5.5. Voltage Regulator 

 The voltage regulator for the flight controller had to meet several criteria.  First, it had to 

output 3.3V and at least 200mA (calculated from maximum current draw of microcontrollers, 

sensors, and other 3.3V components).  Second, it had to be highly efficient.  Dropping from 6V+ 

to 3.3V using a linear regulator would be inefficient and produce a significant amount of waste 

heat.  The solution is to use a step-down voltage regulator.  Third, the stepping regulator had to 

be low-noise.  Searching for regulators with these characteristics led to the discovery of the 

Traco Power TSR regulator series.  These regulators are an all-in-one SIP package with built in 

filtering and short-circuit protection.  The two regulators considered were the TSR 0.5-2433 

(outputs 3.3V at 500mA) and the TSR 1-2433 (outputs 3.3V at 1A).  The TSR 1-2433 was 

chosen because it has superior built-in filtering, weighs slightly less than the TSR 0.5-2433, and 

only costs a few dollars more. [31] [32]  This would also increase the amount of current available 

to be drawn by any devices added later in the project. 
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 4.5.6. Sensor/Servo Connectors 

 
Figure 4: Right-angle 3-pin JST Connectors [33] 

During flight operations, the Flight Controller may be subject to a rather significant 

amount of force.  Any such force has the potential to dislodge or unplug anything loose, so 

selecting a robust connector type for the Flight Controller’s external hardware was critical.  JST 

connectors were chosen for this purpose.  They use small plastic tabs to lock in place, requiring 

far more force to be unplugged than would be experienced during flight (and likely even during a 

crash).  The mating ends are easily crimped and assembled, and they can handle 2A continuous. 

[33]  

4.5.7. GSM Module: GSM Unit 

The Iridium Communications Network was originally considered as a means of 

transmitting data.  This network of satellites allows for global phone and data connectivity with 

essentially no dead-zones.  The Iridium module would transmit weather data during ascent and 

location data during and after descent.  The Iridium 9603 is the world’s smallest commercially 

available two-way satellite data transceiver, and it would have served this purpose well.  The 

reason it was not chosen for this project essentially came down to money.  The unit itself costs 

roughly $185 and data plans for the unit cost $1.25 per kilobyte.  Over the course of a single 

flight, this could easily add up to over $400 in data charges. [34]  Replacing this system with 

something less costly would require two systems to be created: a GSM Module for transmitting 

location data after landing, and a Radio Module for transmitting weather data. 

 
Figure 5: SM5100B GSM Unit [35] 

The GSM unit selected was the SM5100B.  This unit has a minimum storage temperature 

of -40°C (the operating temperature is less important since this will not be operating at high 

altitudes), and is able to transmit to the GSM850 band used in the United States.  
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Communication to the unit is done through a single UART port. [35]  SparkFun once sold a 

GSM Arduino Shield which took advantage of this unit.  EAGLE files for the shield are still 

available on their website and would help in designing the GSM Module PCB. 

 4.5.8. GSM Module: Voltage Regulator 

The GSM unit chosen required a voltage of 3.6V with a current of 2A.  Originally, 

research was done to find a step-down regulator with these specifications.  Traco Power does not 

offer one with this output voltage, and those found on Digikey would require significant external 

hardware to function.  Given that this module is only meant to run for a short time after landing, 

it was determined that the losses from using a linear regulator over a stepping regulator would be 

acceptable.  The LT1085IM-3.6, a linear regulator with an output of 3.6V at 5A, was determined 

to be suitable for powering the GSM Module. [36] 

 4.5.9. GSM Module: Cellular Network/SIM Card 

 The cellular network which the GSM Module operates on is vital to our ability to receive 

an SMS message sent by the aircraft after landing.  The cellular network had to meet two criteria: 

have a wide area of coverage across the United States (this would include major carriers such as 

Verizon, AT&T, T-Mobile, etc.), and offer an inexpensive, no-contract service plan.  T-Mobile 

offers a 6-month unlimited SIM card for about $80.  This was deemed too expensive for the 

purposes of this project.  AT&T (which has arguably better coverage than T-Mobile) offers 

contract-free service through their GoPhone plans.  This includes a plan which charges $2 per 

day on the days used for unlimited calls and text messages, an ideal plan for our project.  

Verizon’s no-contract plans all involve a monthly payment, so the decision was made to use 

AT&T’s GoPhone plan. 

 4.5.10. Radio Module: Transmitter 

 Significant research went into finding the best way to transmit data to the ground from up 

to 30,000 meters.  One idea was to make use of the radio from an expired (but unused) 

radiosonde.  This was quickly decided against given the proprietary nature of the radio and the 

requirement for a very expensive ground station to receive data.  Further research led to the 

possibility of sending data with a basic “Morse-code” transmitter by turning a transmitters output 

on and off.  This was decided against due to the extremely slow attainable data-rate and the 

requirement for a high-gain ground station. 

 
Figure 6: Radiometrix HX1 300mW 144.39MHz Transmitter [37] 
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Eventually, a project called the Trackuino was discovered.  This project is an open-source 

APRS tracker based on the Arduino platform, and is designed primarily to track high altitude 

balloons.  The most intriguing part of this project is how it transmits data to the ground.  Using a 

Radiometrix HX1 300mW 144.39MHz transmitter, it sends data to the Automatic Packet 

Retrieval System (APRS).  The APRS is comprised of thousands of amateur radio operators 

around the globe.  Data received by an APRS operator is found via the internet on aprs.fi.  Using 

this system removes the need for any sort of ground station other than a laptop with internet 

access. Given these features, APRS was chosen as the means for data retrieval. [38] 

 4.5.11. Radio Module: Voltage Regulator 

 The Radiometrix HX1transmitter requires a 5V input at 140mA and uses 5V logic.  To 

power this, a stepping regulator would be used.  Stepping regulators are more efficient than 

linear regulators, and can both decrease and increase voltage.  The TL2575-05I is a stepping 

regulator which outputs 5V at 1A from an input of 4.75V to 40V.  Though this regulator requires 

external filters, this was acceptable given its ability to operate with a low input voltage. [39] 

 4.5.12. Batteries 

The batteries for the Flight Controller had to meet several criteria.  They had to have a 

very low operating temperature, very high energy density, and a high output current.  The need 

for high energy density immediately spawned research into lithium batteries.  Rechargeable 

lithium batteries tend to have poor performance in the cold.  The lowest operating temperature 

found was with LiFePO4 batteries, which have a minimum operating temperature of -4°C.  This 

is far from the required minimum of -40°C.  Further research led to the Energizer Ultimate 

Lithium AA battery.  These use a lithium/iron disulfide chemistry and have a minimum 

operating temperature of -40°C.  Though they are not rechargeable, they are incredibly light 

weight for their energy capacity, able to store just over 3000mAh in a 15 gram package.  Four of 

these batteries would give a usable voltage of 6V. [40] 

To verify the ability of these batteries to power the Flight Controller for an entire flight, 

the following calculation was done to estimate the total power consumption.  This assumes a 4 

hour flight (3 hours ascent, 1 hour descent), and excludes GSM transmission, as it does not take 

into account power consumption after landing. 

Item Estimated Power Consumption 

ATmega2560V ~7mA for 4 hours  = 28mAh 

ATmega328P ~3mA for 4 hours  = 12mAh 

LEDs Assume they are on 25% of the time: ~3mA * 4 hours  = 12mAh 

9DOF IMU Up to 6.45mA * 4hours  =  25.8 mAh 

GPS 37mA * 4 hours  =  148mAh 

MicroSD 100mA for writes (5sec period for estimated 20ms) * 3 hours = 

1.2mAh 

Barometer 12.5uA * 4 hours  = 0.05mAh 

Temperature Sensor 1mA * 4 hours = 4mAh 

Humidity Sensor 0.5mA * 4 hours = 2mAh 

Airspeed Sensor 2mA * 4 hours = 8mAh 

Voltage Regulator ~88% efficient (from datasheet) and 241.05mAh (above)  = 32.9mAh 



25 

 

Servos Estimated 250mA each & 50% duty cycle: 250mA * 1hour = 250mAh 

Radio Module Tx 140mA at 20% duty cycle * 3 hours = 84mAh 

Radio Module VReg ~77% efficient (from datasheet) and 84mAh (above) = 25.1mAh 

GSM Module VReg 5mA * 4 hours = 20 mAh 

Total 653.05 mAh 
Table 2: Flight Controller Power Consumption 

With a total power consumption of 653.05 mAh, this would leave the majority of the 3000mAh 

capacity of the batteries available for periodic SMS messages after landing, and provides a good 

safety buffer if there are additional losses not accounted for. 

 

4.6. Designing the Flight Controller PCB 

 
Figure 7: EAGLE Board View of Flight Controller 

 4.6.1. Single Crystal for Two Microcontrollers 

 The first step in designing this PCB (after adding the microcontrollers) was to add an 

external crystal oscillator.  ATmega microcontrollers have an internal oscillator, but these are 

very inaccurate and vary in frequency based on a number of factors, including temperature.  An 

external ceramic or crystal oscillator is used to achieve a steady, reliable clock frequency.  For 

this project, ceramic oscillators would not work due to their sensitivity to colder temperatures, so 

a quartz crystal oscillator was selected. 

In order to save on components and ensure the two microcontroller clocks are 

synchronous, a way had to be found to link a single oscillator to two microcontrollers.  To solve 

this, the oscillator circuit was attached to XTAL1 and XTAL2 of the ATmega2560V, just as it 

normally would be.  The CLKO pin (PE7) of the ATmega2560V will output same clock 

frequency as is being received from the oscillator.  This pin was connected to the XTAL1 (clock 

input) pin of the ATmega328P.  Changing a simple fuse setting in the ATmega2560V would 

enable this clock output and allow both microcontrollers to run off the same oscillator. [16] 
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Figure 8: EAGLE Schematic View of Crystal Oscillator Circuit 

The circuit for the crystal oscillator is shown above.  An 8MHz oscillator was chosen 

because the microcontrollers are running at 3.3V.  This circuit was taken from the Arduino Mega 

EAGLE schematic and verified on page 41 of the ATmega2560 datasheet. [17] 

 4.6.2. ICSP Headers for Programming 

 
Figure 9: EAGLE Schematic View of ICSP Headers 

 In order to program the microcontrollers, headers were added for In-Circuit Serial 

Programming (ICSP).  These pins are used to upload a program via an AVR programmer.  The 

Atmel STK500 board is used as an AVR programmer for this project.  The ICSP header includes 

ports for VIN, GND, MISO, MOSI, SCK, and Reset. 

 4.6.3. Reset Circuit 

 
Figure 10: EAGLE Schematic View of Reset Circuit 

 A proper reset circuit is important to any PCB containing a microcontroller.  The 

ATmega2560V and ATmega328P will reset if they’re reset pin is pulled low, and will operate 

while it is pulled high.  The circuit above is connected to the reset pins of both microcontrollers, 

so that one button will reset both.  The pin is normally pulled high through a 10kΩ resistor, and 

is pulled to ground when the button is pressed.  A 22pF capacitor bridges the reset pin to ground 

to help filter any noise on the line. 
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 4.6.4. Voltage Regulator 

 
Figure 11: EAGLE Schematic View of Voltage Regulator Circuit 

 The TSR 1-2433 step-down regulator has three pins: IN, GND, and +3V3.  IN is 

connected to the positive lead of the battery, GND is connected to common ground, and +3V3 is 

connected to the voltage input of the +3.3V device(s).  While this regulator does not require any 

external components to function, two external capacitors were added for additional filtering.  As 

suggested in the listing for this regulator on Adafruit, a 10uF capacitor was added across the 

input (IN to GND) for additional stability.  A 100nF capacitor was added across the output for 

additional filtering. [31]  

 4.6.5. Indicator LEDs 

 
Figure 12: EAGLE Schematic View of LED Circuit 

 Light Emitting Diodes (LEDs) can be incredibly useful with microcontrollers for 

indicating software events.  Four yellow LEDs were added to the Flight Controller for this 

purpose (two for each microcontroller), and one green LED was added to indicate that the board 

is receiving power.  Sourcing the LEDs involved using Digikey’s search tool to find ones with a 

proper forward voltage and a low operating current.  The yellow LTST-C170YKT and green 

LTST-C170GKT were selecting using this method.  They each have a forward voltage drop of 

2.1V and a nominal operating current of 10mA.  In the interest of saving energy, a 510 ohm 

resistor was added in series with each LED, limiting the current each LED can draw to about 

2.35mA. [41] [42] 

 4.6.6. Inertial Measurement Unit  

 
Figure 13: EAGLE Schematic View of 9DOF IMU Headers 

 The pins of the LSM9DS0 breakout board needed for the Flight Controller are VIN 

(soldered to 3V3), GND, SCL, SDA, CSG, CSXM, SDOG, and SDXM.  A header for these pins 
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is shown in the image above.  VIN connects to VCC on the Flight Controller and GND connects 

to common ground.  CSG, CSXM, SDOG, and SDXM are all pulled high through 10kΩ pullup 

resistors.  This hard-sets I2C mode, sets the gyroscope’s I2C address to 0x6B, and sets the 

accelerometer’s and magnetometer’s I2C address to 0x1D.  SDA and SCL are also pulled high 

through 10kΩ pullup resistors.  These pins are connected the Autopilot Computer’s SDA pin 

(PC4) and SCL pin (PC5) to enable I2C communication. [23] 

 
Figure 14: Using Autodesk Inventor to Measure Hole Dimensions 

 In order to mount the IMU to the PCB, mounting holes were required.  Unfortunately, 

Adafruit supplies no information on the size and placement of mounting holes.  They do, 

however, supply the outer dimensions of the board.  Using this information, an image of the 

breakout board, and Autodesk Inventor, measurements of the holes were taken.  An image of this 

is shown above.  Mounting the IMU to the PCB would be done using nylon nuts and bolts, so as 

to avoid getting any ferrous metals too close to the magnetometer. 

 4.6.7. GPS and Weather Sensors 

 Connecting the GP-735 GPS requires four ports: GND, VCC, TXA, and RXA.  VCC 

takes an input of 3.1V to 5.5V to power the unit.  TXA is the serial data output and RXA is the 

serial data input.  At the time of designing the PCB, the exact GPS to be used was unknown, but 

it was known that it would need VCC, GND, TX, and RX, so these were the ports designated for 

the GPS.  This was done with the knowledge that, if any other ports were necessary for the GPS, 

the auxiliary I/O ports could be used.  TX was connected to RXD2 (PH0) and RX was connected 

to TXD2 (PH1) on the Navigation Computer. Once powered on, the GP-735 returns standard 

NMEA sentences at a frequency of 1Hz. [26] 
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Figure 15: EAGLE Schematic View of Temperature Sensor Port 

 The DS18B20 temperature sensor has three pins: VDD, GND, and DQ.  Power is received 

on VDD and GND, and data is sent from DQ.  Following a tutorial on Bildr, a 4.7kΩ pullup 

resistor was placed from DQ to VDD.  A 100nF capacitor was added from VDD to GND to filter 

the power line. [27] 

 The HTU21D breakout board has 4 ports: VCC, GND, SDA, and SCL.  SDA and SCL 

are connected to the SDA port (PD1) and SCL port (PD0) of the Navigation Computer for I2C 

communication.  Since this breakout board already includes a filter capacitor, no additional 

hardware was necessary. [28] 

 
Figure 16: EAGLE Schematic View of Barometer Circuit 

 The MS5803-01BA barometric pressure sensor runs on 3.3V and is able to be setup for 

either I2C or SPI communication.  To configure this sensor for I2C, SCLK was connected to SCL 

(PD0), SDI/SDA was connected to SDA (PD1), CSB was pulled low by jumping it to ground (in 

I2C mode, CSB represents the LSB of the I2C address, so pulling it low set the address to 0x77), 

and PS was pulled high by connecting it to VDD (hard-setting I2C mode).  No EAGLE part file 

for this sensor could be found online, so one was made using EAGLE’s part creator and the 

recommended pad layout on page 15 of the datasheet. [30] 
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 4.6.8. MicroSD Card 

 
Figure 17: EAGLE Schematic View of MicroSD Card Slot 

 MicroSD cards run on 3.3V and use SPI as one method for communication with their 

host, which in this case is the Navigation Computer.  To setup SPI communications, CS (chip 

select) is connected to PA0, DI (data input) is connected to MOSI (PB2), DO (data output) is 

connected to MISO (PB3), and SCK is connected to SCK (PB1).  CD, a mechanical card detect 

feature, is connected to PA1, and the metal shield of the card reader is connected to GND.  The 

EAGLE part file for this microSD card slot was taken from the SparkFun MicroSD breakout 

board. [43] 

 4.6.9. Communication between Microcontrollers via UART 

Setting up communication between the Navigation Computer and the Autopilot 

Computer was simple.  TXD1 (PD3) of the Navigation Computer was connected to RXD (PD0) 

of the Autopilot Computer, and RXD1 (PD2) of the Navigation Computer was connected to 

TXD (PD1) of the Autopilot Computer.  These connections allow the two microcontrollers to 

communicate via UART. 

 4.6.10. Servos with Logic Level Converters and MOSFETs for Power Control 

 
Figure 18: EAGLE Schematic View of Servo Port and Circuit 
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 In order to fly the airframe, the Autopilot Computer must control several servos: two 

servos for the control surfaces (left and right), and one servo for the release mechanism.  The 

servos are powered by battery voltage (6V) and controlled with a 50Hz PWM signal.  The left 

servo takes a signal from PD3, the right servo from PD5, and the release servo from PD6. 

 In the interest of protecting the Flight Controller from any foreseeable problems, diodes 

were added across the VCC and GND lines of each servo.  These would protect the board from 

any back EMF the servos may produce. 

 Due to concerns that a 6V servo may not operate with 3.3V logic, a logic level shifter 

circuit was added to each servo’s signal line.  Using the circuit shown above, a small N-channel 

MOSFET takes in a signal from the 3.3V output of the microcontroller and outputs a signal at 

battery level voltage.  This circuit was taken from the EAGLE file for SparkFun’s Bi-directional 

Logic Level Converter. [44] 

 In order to save power, MOSFETs were added to the power line of the servos.  This 

allows the Autopilot Computer to cut power to the servos when they are not needed.  While the 

power drawn by servos in idle may not be overly significant, it would certainly add up over the 

course of a several hour flight.  One MOSFET was added for controlling power to the left and 

right servo, and another was added for the release servo, which only needs power for a short 

period of time.  At the time of designing the PCB, the exact MOSFETs to be used were 

unknown; it was only known that plenty were available on-hand and that they used a TO220BV 

package.  When the input from the Flight Controller is low, the MOSFET does not allow current 

to flow from the GND pin to common ground.  When the input is high, current is able to flow 

freely.  This circuit effectively behaves as a solid-state switch. 

 4.6.11. GSM Module Ports 

 
Figure 19: EAGLE Schematic View of GSM Module Headers and Circuit 

 The GSM Module is used after landing to send periodic SMS messages with location 

information from the GPS.  Six ports were left open for the GSM Module: VIN, GND, RST, 

PWR_ON, TX3, and RX3.  VIN and GND supply power to the module directly from the 

batteries.  RST is a reset signal port that will allow the module to be reset at the same time as the 

microcontrollers.  PWR_ON is used to send a power on or power off command to the module.  

TX3 (connected to TXD3, or PJ1) and RX3 (connected to RXD3, or PJ0) are used for 

communicating between the GSM Module and the Navigation Computer.  Similar to the servos, 

a MOSFET was placed on the power line to the GSM Module in order to cut power to the 

module’s linear regulator. 
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 4.6.12. Radio Module Ports 

 At the time of designing this PCB, it was unclear how the Radio Module would operate.  

What was known was that it would require power directly from the batteries, and a port for data 

to be sent over.  The ports left open for the Radio Module were VIN and GND for battery power 

and TX0 (connected to TXD0, or PE1) for data.  This was done with the knowledge that if the 

Radio Module required more or different I/O ports, the auxiliary I/O ports could be used. 

 4.6.13. Auxiliary I/O and Analog Ports 

 
Figure 20: EAGLE Schematic View of Auxiliary I/O Headers 

 In order to ensure the Flight Controller would be able to use any additional hardware, a 

number of auxiliary ports were left open on the PCB.  The Navigation Computer was given eight 

auxiliary I/O ports: SCL, SDA, PB4, PB5, PB6, PB7, PL1, and PL2.  SCL and SDA allow for 

additional I2C devices to be added.  PB4, PB5, PB6, and PB7 are PWM and interrupt capable 

ports.  PL1 is a general I/O which also can be used as an In Capture Pin, and PL2 is a general I/O 

which can be used as a timer output. 

 Four ADC ports from the Navigation Computer were added to the PCB.  ADC0 (PF0) 

through ADC3 (PF3) made available along with ports for VCC and GND.  These allow analog 

sensors and hardware to be read by the 10-bit ADCs of the ATmega2560V. [17] 

 The Autopilot Computer was given six auxiliary I/O ports: SDA, SCL, PB2, PD7, 

XTAL1, and XTAL2.  SDA and SCL were added to allow for additional I2C devices.  PB2 is a 

general I/O which is PWM capable, and PD7 is simply a general I/O.  XTAL1 and XTAL 2 are 

used for attaching an external oscillator to the microcontroller.  These were added in case the 

Navigation Computer were for some reason unable to send a clock signal to the Autopilot 

Computer. 

 Two ADC ports from the Autopilot Computer were also made available.  Ports for ADC0 

and ADC1 can be seen above along with ports for VCC and GND.  Just as with the Navigation 

Computer, these allow for analog sensors and hardware to be read by the 10-bit ADCs of the 

ATmega328P. [16] 

 In addition to all the auxiliary I/O discussed above, plenty of ports were made available 

for power.  Three ports were added for regulated 3.3V power and three were added for 

unregulated battery power. 
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 4.6.14. Mounting Holes 

 
Figure 21: EAGLE Board View of Flight Controller with PCB Dimensions 

 Mounting holes for this PCB needed to be added for two reasons: to allow the other 

modules to be attached and to securely attach the Flight Controller to the airframe.  The 

mounting holes are sized for M3 hardware and were placed at all four corners of the PCB.  An 

additional mounting hole for the GSM Module was place on the left side of the PCB near the 

GPS port, giving the GSM Module three points of contact with the Flight Controller. 

 4.6.15. Routing Traces 

 
Figure 22: EAGLE Board View of Flight Controller PCB without Ground-Fill 
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 Routing traces for this PCB was done within OSH Park’s constraints.  OSH Park PCBs 

use one ounce copper sides, and they’re 2 layer boards have minimum specifications of 6 mil 

traces with 6 mil spacing and 13 mil drills with 7 mil annular rings. [11]  In accordance with this, 

it was decided that all traces would be at least 8 mil wide and all vias would have a 13 mil drill.  

This would allow 377mA of current through the traces and the 1.837A through the vias. 

 For this PCB, not all traces were to be the same width, so auto-routing couldn’t be used 

for everything.  Doing some traces manually also allowed for noise-sensitive lines to be placed 

properly.  The first traces routed were for the crystal oscillator and the clock-output line.  These 

traces were made as short and direct as possible.  Next, 24 mil traces were added as the power 

lines to the servos and the two power ports, allowing them to draw up to 835mA of continuous 

current.  The traces for GSM power were added next.  The GSM Module is able to draw up to 

2A of current for short periods. For this purpose, 86 mil traces were used which can handle 

2.107A of continuous current.  These trace and via sizes were calculated using an online trace 

width calculator and via diameter calculator. [45]  The remainder of the traces were auto-routed 

and ground-fill was added to the PCB. 

 4.6.16. Silk Screen 

 
Figure 23: Front Side of OSH Park Render of Flight Controller 
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Figure 24: Back Side of OSH Park Render of Flight Controller 

 A proper silk screen can be incredibly helpful in assembling and using a PCB.  On the 

Flight Controller PCB’s top layer, the silk screen includes labels for every component, group of 

ports, and device connector.  The top layer also includes a label with the board name and version 

number, as well as an image of a flying wing glider.  The bottom layer has labels for every 

individual ports, along with project information.  This includes the project name, school, terms, 

group members, and advisors. 

 

4.7. Designing the GSM Module PCB 

 
Figure 25: EAGLE Board View of GSM Module 
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 4.7.1. GSM Ports 

 
Figure 26: EAGLE Schematic View of GSM Headers 

 The GSM Module has six ports as seen above.  Battery power is taken into VIN and is 

sent it directly to the linear regulator.  RST goes to the reset pin of the GSM unit (pin 34), TX0 

goes to TXD0 of the GSM unit (pin 19), RX0 goes to RXD0 (pin 20), and PWR_ON is 

connected to POWER_ON (pin 59).  Communication with the Flight Controller is done with 

TX0 and RX0 using UART.  The GSM Module can optionally be powered on and off using the 

PWR_ON input.  The EAGLE layout for the SM5100B GSM Unit was taken from a SparkFun 

GSM Shield made for Arduino, and this layout includes rectangular holes in the PCB for the 

GSM unit’s metal tabs. 

 4.7.2. SIM Card 

 
Figure 27: EAGLE Schematic View of SIM Card Holder 

 The SIM card on the GSM Module is what allows the cellular network to identify the 

device and enable operation.  The six ports of the SD card reader are connected to their 

appropriate matching port on the GSM unit.  The EAGLE part file for this SIM card holder was 

taken from SparkFun. [46] 

 4.7.3. Voltage Regulator 

 
Figure 28: EAGLE Schematic View of GSM Module Voltage Regulator 

 The LT1085IM-3.6 has three pins: VIN, VOUT, and GND.  VIN takes an input of 4.75V to 

15V, GND is connected to common ground, and VOUT outputs 3.6V.  Two additional capacitors 

are required to properly setup this linear regulator, as seen in the image above.  A 10uF capacitor 

bridges VIN to GND for noise reduction, and a 22uF tantalum capacitor bridges VOUT to GND for 

stability. [36] 
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 4.7.4. Mounting Holes 

 
Figure 29: EAGLE Board View of GSM Module with PCB Dimensions 

 In order to mount the GSM Module to the Flight Controller (or anywhere else it may be 

situated), four mounting holes were added to the PCB, one in each corner.  Just as with the Flight 

Controller, these holes were sized to fit M3 hardware. 

 4.7.5. Routing Traces 

 
Figure 30: EAGLE Board View of GSM Module without Ground-Fill 

 In the interest of saving space and reducing the cost of the PCB, the GSM unit was placed 

on the top of the PCB while all the other components were placed on the bottom.  Keeping the 

PCB small also allows it to be mounted without interfering with the MOSFETs on the Flight 

Controller.  The first traces added were for the linear regulator.  These traces were given a width 
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of 86 mil, allowing them to handle up to 2.107A of current.  The vias for this trace were given a 

width of 20 mil, allowing them to handle up to 2.563A of current.  The remaining traces were 

auto-routed with widths of 8 mil and via drill widths of 13 mil.  Just as with the Flight 

Controller, ground-fill was added to the remainder of the PCB. 

 4.7.6. Silk Screen 

 
Figure 31: Front Side of OSH Park Render of GSM Module 

  
Figure 32: Back Side of OSH Park Render of GSM Module 

 As with the Flight Controller, the silk screen for the GSM Module includes labels for all 

components and ports, as well as a label with the board name and version number. 
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4.8. Designing the Radio Module PCB 

 
Figure 33: EAGLE Board View of Radio Module 

 4.8.1. Radio Ports 

 
Figure 34: EAGLE Schematic View of Radio Module Headers 

 The Radio Module has six ports: VIN, GND, TXD, 3.3V, PWR_EN and TX_EN.  

Battery power is fed into VIN for the voltage regulator, TXD is the transmitter’s data input from 

the Flight Controller, 3.3V is used for logic level shifting, PWR_EN is the voltage regulator’s 

enable port, and TX_EN is the transmitter’s enable port. 

 4.8.2. Radio Transmitter and Logic Level Converter 

 
Figure 35: EAGLE Schematic View of HX1 Transmitter Circuit 
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 The Radiometrix HX1 transmitter is powered by the 5V regulator.  The signal to be 

transmitted is received on TXD.  Enabling the transmitter is done by pulling ENABLE high.  The 

EAGLE part file for this transmitter was taken from the Trackuino EAGLE file listed on their 

GitHub. [47]  RF_OUT and RF_GND were each given two ports for an antenna to be securely 

attached.  Since this transmitter takes in 5V logic, a logic level converter was added.  Just as with 

the servos, a small circuit with an N-Channel MOSFET takes in 3.3V logic and outputs 5V logic 

to the transmitter. 

 4.8.3. Voltage Regulator 

 
Figure 36: EAGLE Schematic View of Radio Module Voltage Regulator 

 The TL2575-05I switching voltage regulator has five pins:  VIN, VOUT, GND, 

FEEDBACK, and ON/OFF.  Battery voltage is received on VIN and the regulated voltage is 

accessed through VOUT.   FEEDBACK is the voltage feedback pin, and ON/OFF is the manual 

shutdown pin.  A significant amount of external hardware was needed to properly setup this 

regulator.  The circuit shown above was taken from page 13 of this regulator’s datasheet.  This 

circuit include multiple LC filters in order to filter as much noise as possible. [39] 

 4.8.4. Mounting Holes 

 
Figure 37: EAGLE Board View of Radio Module with PCB Dimensions 

 In order to mount the Radio Module to the Flight Controller or GSM Module (or 

wherever it best fits), two mounting holes were added to this PCB.  As with the other two boards, 

these mounting holes were designed to work with M3 hardware. 
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 4.8.5. Routing Traces 

 
Figure 38: Eagle Board View of Radio Module without Ground-Fill 

 In the interest of saving space and PCB cost, the HX1 transmitter was mounted on the 

opposite side from the other components.  The HX1 transmitter is the device with the highest 

current consumption.  It draws up to 140mA during transmission, meaning the standard 8 mil 

traces and 13 mil vias can handle everything on this PCB.  The traces were auto-routed and 

ground fill was added. 

 4.8.6. Silk Screen 

 
Figure 39: Front Side of OSH Park Render of Radio Module 

  
Figure 40: Back Side of OSH Park Render of Radio Module 
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 As with the other two PCBs, the silk screen for the Radio Module contains all of the 

component and port names, as well as the board’s name and version number. 

 

4.9. Sourcing Components 

 Sourcing components to create this Flight Controller was a challenge in its own right.  

Most of the more general components (such as capacitors, resistors, LEDs, etc.) were ordered 

from Digikey.  Digikey has an excellent tool for searching for components by specifications, 

which was incredibly helpful.  The majority of sensors and specialized components (such as the 

GSM unit) were ordered from SparkFun.  All other components were sourced separately out of 

necessity.  Other companies used include Mouser, Adafruit, Linear Technologies, Lemos 

International, and Amazon.  As previously stated, the PCBs themselves were ordered from and 

manufactured by OSH Park.  The cost of individual components is shown in the bill of materials 

in Appendix A. 

 

4.10. Weighing the Components and Soldering the PCBs 

 4.10.1. Weighing the Components 

 
Figure 41: Weighing the Flight Controller Components 

 In order to verify the mass of the components would not cause the glider to exceed its 

specified weight limit, they were weighed as shown above.  Placed on the scale, they came in at 

108 grams.  This excludes the weight of the servos and batteries. 

 4.10.2. Soldering the PCBs 

 Several methods of SMD soldering were researched prior to attempting to solder the 

boards.  One option was to use a solder reflow oven after squeegeeing solder paste onto the PCB 

with a template.  Using a reflow oven would have been ideal, but no such equipment exists on 

campus.  Another option was to apply solder paste to the copper pads of the PCBs.  Videos on 

the internet showed this making for a clean solder joint.  Experiments with this method, however, 

found the result to be messy, with a significant number of loose solder balls left on the pads.   

The final method examined is called drag soldering.  This method is used on SMD components 

with small, close pads (such as those on the ATmega2560V and ATmega328P).  It involves 

accumulating a small amount of solder on the tip of a soldering iron and dragging the solder 
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across all the pads on one side of the chip.  The solder wicks to the pads and generally requires 

little cleanup. 

 
Figure 42: A soldered Flight Controller 

 No one in this project group had any experience soldering SMD components, and it was 

certainly daunting to have to solder something so small when there are so few chances to get it 

right.  Luckily for us, a friend of ours is has experience SMD soldering.  Keshuai Xu, a fellow 

WPI student, graciously offered his assistance.  Using a knife-tip soldering iron, plenty of flux, 

some solder wick, and a microscope, he was able to solder our PCBs.  He used the drag solder 

method on the microcontroller chips and used the standard soldering method for the other SMD 

components. 

 

4.11. Low Level Coding and Debugging 

 4.11.1. Setting the Microcontroller Fuses 

 ATmega microcontrollers have what are called “Fuse Settings”.  These are chip settings 

that determine a number of factors about how it functions.  These settings include clock speed 

and source, brown-out detection level, enabling serial program downloading, enabling the clock 

output pin, and a number of others.  There are three fuse bytes: Low, High, and Extended.  Each 

byte controls different settings, each setting based on the hex value last written to the fuse.  Fuse 

settings can be changed using the Atmel STK500 AVR Programmer with Atmel Studio. [48] 
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Figure 43: Fuse Settings in Atmel Studio 

The fuse settings used for the ATmega328P are 0xFD for LOW, 0xD for HIGH, and 

0xFF for EXTENDED.  These fuse settings disable brown out detection, enable SPI 

programming, and set the clock to use an external source with a frequency between 3MHz and 

8MHz. 

The ATmega2560V fuse settings are 0xBD for LOW, 0x99 for HIGH, and 0xFD for 

EXTENDED.  This sets the brown out detection to 2.7V, enables SPI programming, turns on the 

clock output pin to the ATmega328P, and sets the clock to use an external oscillator with a 

frequency from 3MHz to 8MHz. 

 A problem was encountered on the first Flight Controller board when attempting to 

program fuses.  The ATmega2560V was not responding to the STK500.  It could not find a 

device signature or write fuses.  After a day of debugging, it was determined that the 

microcontroller’s fuses were set incorrectly from the factory.  The default factory fuses set SPI 

programming to be enabled, allowing the use of ICSP headers to program the device through 

SPI.  If this fuse setting were somehow left off after manufacturing, the chip would be rendered 

useless.  The second flight controller had no issues with fuse programming. 

 4.11.2. Custom Arduino Boards File 

 In order for the Flight Controller to be programmed with Arduino IDE, a custom 

boards.txt file was created.  The boards file contains information on all the Arduino devices it is 

able to program.  This includes device name, upload protocol, maximum program size, clock 

speed, fuse settings, etc.  Two board entries were added to this file: One for the Navigation 

Computer and one for the Autopilot Computer. 
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Figure 44: Boards.txt Entry for AURORA Autopilot Computer 

 
Figure 45: Boards.txt Entry of AURORA Navigation Computer 

This resulted in the two microcontrollers being added to Arduino IDE with the names 

“AURORA MQP Nav Computer” and “AURORA MQP Flight Computer” (Flight Computer 

was later renamed to Autopilot Computer for clarity). 

 4.11.3. Making the LEDs Blink 

 In order to make the LEDs work, a simple function was written for each microcontroller 

called setLED().  This function takes in an Arduino pin number (which were defined so that 

LED1 and LED2 could be used instead) and a boolean of HIGH or LOW to set the LED state.  In 

order to test the working order of the microcontrollers, a simple piece of code was written for 

each to have the LEDs blink back and forth once every second.  This code was first uploaded 

before the proper fuse settings were programmed, having the microcontrollers use their internal 

oscillators.  It was very clear that the microcontrollers were not operating on the same frequency 

(the internal oscillators are quite inaccurate).  With the proper fuse settings, the LEDs on each 

microcontroller blinked perfectly in sync with one another. 
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 4.11.4. Software Serial for Debugging 

 Proper debugging of the Flight Controller would require a serial output which can be read 

by a computer.  Since all UART lines of each microcontroller are in use, a library called 

Software Serial was used.  This library can take any two pins on an Arduino and make them 

behave as if they are UART pins.  In order to set this up, the library SoftwareSerial.h was 

included, and the following line of code was placed before the setup function: 

 
A 90-degree header pin was soldered on PB6 (Arduino Mega pin 12) and PB7 (Arduino Mega 

pin 13) of the Navigation Computer’s auxiliary I/O ports.  In order to use this software serial 

port, the output would have to be transferred to an Arduino, which would relay it to the host 

computer to be displayed.  A simple piece of code was written to do this, completing this setup 

and allowing for proper debugging. 

 4.11.5. Coding and Testing the GPS 

 The GP-735 GPS, when powered on, returns what are called NMEA output messages.  

These messages contain information on date, time, latitude, longitude, course, speed, number of 

satellites, etc.  The first step in testing the GPS was to attach it to an Arduino Mega and read the 

raw data output.  Being powered by 5V from the Arduino, the GPS had no issues turning on and 

transmitting proper position, date, and time information. 

A library called TinyGPS++ is used to make the task of parsing data extremely simple.  

During the main loop, a function called smartDelay() is called.  This function runs for a specified 

number of milliseconds, and in that time uses gps.encode() to capture data from the GPS serial 

stream. 

 
This gathers data for the TinyGPS++ library which then parses it.  The data is accessed through 

commands such as gps.location.lat().  A function updateGPSvalues() is then called which takes 

all these values and stores them in global variables.  No major issues were encountered setting up 

the GPS. [49] 

 4.11.6. Coding and Testing the Weather Sensors 

The first sensor tested was the DS18B20 temperature sensor.  This sensor was set up with 

the help of a Bildr tutorial linked to from the sensor’s SparkFun page.  The library OneWire.h is 

included to make uses of this sensor.  The value TEMP is defined as the temperature sensors pin, 

which is Arduino Mega pin 26.  The function getTemp() was then created to return a value in 

degrees Celsius from the sensor.  The code for this function was taken from the Bildr tutorial, 

and worked without any need for modification. [50] 

 The next sensor tested was the HTU21D humidity sensor.  A SparkFun library called 

SparkFunHTU21D.h is included to use this sensor.  A function called getHumidity() was written, 

and returns a floating point relative humidity value after compensating for temperature.  The 

humidity sensor worked perfectly and required no debugging. [51] 

 The MS580301BA01-00 barometer was tested next.  Just as with the humidity sensor, a 

SparkFun library exists for this sensor.  The library SparkFun_MS5803_I2C.h is included to 

make use of this sensor. [52]  A simple function called getBarPressure was written to return the 
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barometric pressure with a specified ADC accuracy of 4096.  The value returned was found to 

not be in mBar, but actually in tenths of mBar, so it is multiplied by 10. Aside from that, this 

sensor required no debugging.  A problem did occur, however, when one of the barometers was 

somehow damaged and started returning very odd values (on the order of 0.6 atmospheres at 

ground level).  The sensitive gel coating of the sensor is believed to have somehow been pierced.  

The damaged sensor was desoldered and replaced. 

 
Figure 46: Protective Cover for Barometer 

In order to ensure this wouldn’t happen again, a 3D printable protective cover was designed and 

printed.  The cover sits snuggly on top of the sensor and has a very small hole to let in air. 

 4.11.7. Coding and Testing the IMU 

 The IMU was first tested by attaching it to an Arduino Mega.  In order to use the 

LSM9DS0 IMU, a SparkFun library called SFE_LSM9DS0.h was included with the code for the 

Autopilot Computer. [53]  An object was made for the sensor which puts it into I2C mode and a 

function called startDOF() was written to setup the IMU.  A function was made to access data 

from each axis of each sensor.  An example of is shown below: 

 
This code worked without any issues at first, but a problem arose when powering off and 

on the board.  The IMU started returning data showing a constant +/-1.5g in all axes of the 

accelerometer.  A forum discussion on adafruit.com revealed that the problem had to do with 

parasitic capacitance left in the breakout board after shutdown. [54]  Any voltage being applied 

to the accelerometer would cause it to not reset properly and enter this state of error.  To fix this 

problem, a 10kΩ resistor was placed across 3.3V and GND in order to drain any capacitance left 

over after shutdown.  This solved the problem.  The IMU started working again and would not 

go into its state of error upon being reset.  However, it was found that power cycling the IMU 

very quickly would still cause it to enter this state.  No way was found to remedy this other than 

to be careful when plugging in the Flight Controller. 

 4.11.8. Coding and Testing the Servos 

 In order to make servos function in Arduino, a library called servo.h is included.  To 

control the servos, a simple function was written called setServo(), which takes in the servo name 

and desired position.  This code worked without issue, and the logic level converters worked 

flawlessly. 

 To set up the MOSFETs for controlling power flow, a function called setMOSFET() was 

written.  This takes in the MOSFET pin and desired state.  A problem arose when attempting to 
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use the MOSFETs available on-hand to control power flow to the servos.  The MOSFETs were 

IRF520s, which cannot operate with a gate-source voltage of 3.3V applied to them, as the data 

sheet shows they need at least 4V.  To fix this, the FQP30N06L is used instead of the IRF520.  

These have a minimum gate-source voltage of 2V, and are able to supply more than 10A when 

given 3.3V. 

 4.11.9. Debugging MicroSD 

 The MicroSD card reader on the Flight Controller uses an SPI interface.  The first test 

performed was with the Arduino SD example program called CardInfo.  This program returns 

information on the SD card including card type, formatting, size, and a list of all files on the 

card.  Initial tests with this code showed no response from the SD card.  With the card inserted 

and the proper Chip Select pin set, it would return an error saying “Initialization failed”.  Using a 

multimeter, continuity was verified to all the pins of the MicroSD card reader, so this was not the 

source of the problem.  Using an oscilloscope, the output from MOSI and SCK were verified to 

be clean, but nothing was being received from MISO.  The Chip Select pin was also verified to 

be operational. 

 In order to verify that the source of the problem was not the software, a MicroSD card 

reader breakout was connected to an Arduino Mega.  The same code ran with this setup without 

any issues.  The MicroSD card reader breakout was then connected to the Flight Controller via a 

logic level converter.  It did not work in this setup, so at this point the source of the issue seemed 

to be the microcontroller. 

 The first Flight Controller was then given a replacement ATmega2560V (as mentioned 

earlier, the first one came with bad fuse settings, rendering the chip useless).  The CardInfo 

program was loaded onto this Flight Controller and it worked perfectly.  In the interest of finding 

the source of the problem on the other board, the MicroSD card reader breakout was connected 

to the newly working Flight Controller.  The breakout did not work in this setup, invalidating the 

test that was done earlier on the first Flight Controller.  As such, the problem is believed to be 

the Micro SD card reader itself.   

 4.11.10. Coding and Testing the GSM Module 

 In order to avoid damage to the GSM unit, the linear regulator’s output was first probed 

before connecting the GSM unit.  The linear regulator showed a clean output of 3.57V, so the 

GSM unit was attached.  Testing was first done through an Arduino Mega via a logic level 

converter.  With the AT&T SIM card installed and the GSM Module powered on, serial data 

started to stream to the computer.  A series of string were received, ending with the string 

“+SIND: 8”, meaning the module has been rejected from the network.  Attempts to diagnose the 

problem were initially unsuccessful, as it was not responding to commands. 

 Attempts to communicate with the GSM Module were at first done with Arduino IDE 

serial and with Terminal Com Port Dev Tool, both of which resulted in no response.  Using 

PuTTY, however, resulted in a response.  Sending the generic “AT” command resulted in a 

return of “OK”.  The GSM Module was then given the command “AT+SBAND=7”, forcing the 

module to use the North American 850MHz cellular band.  Upon resetting, the board returned all 

the same strings, except “+SIND: 8” was replaced with “+SIND: 11”, meaning the module is 

registered on the cellular network.  To test the connection, it was given a command to call a cell 

phone, which worked without issue. [55] 

 The next step was to enable the ability to send text messages.  A library had to be 

included called SerialGSM.h and an object called cell was made for it.  This library, 

unfortunately, forces the use of Software Serial, though this didn’t seem to be an issue.  A 
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function called sendGSMdata() was then written to send SMS messages with information on the 

device’s location.  This worked without need for much debugging.  The GSM Module was able 

to send GPS latitude and longitude. 

 4.11.11. Coding and Testing GSM Module Power Sequence 

 Once attached to the Flight Controller, an issue with the power MOSFET arose.  The 

batteries running the Flight Controller at the time had a total voltage of about 5.3V.  The linear 

regulator on the GSM Module requires a minimum of 4.75V to operate.  With a 0.7V drop across 

the power MOSFET, this dropped the GSM Module’s voltage input to 4.6V.  The result was the 

GSM Module would power on and begin returning strings, but would reset itself whenever it 

attempted to draw power for communicating with the cellular network.  To fix this, the MOSFET 

was removed and a jumper was left in its place.  The GSM Module has a pin for powering on 

and off the GSM unit itself manually.  This would mean the linear regulator is always powered 

on, but the losses would be minimal if almost no current is being drawn.  With the GSM unit 

powered off, the GSM Module draws about 5mA of current.  This loss is an acceptable trade off 

to significantly reduce the risk of the GSM Module not operating at the end of a flight. 

 Two functions were written to power on and off the GSM Module: GSMstartup() and 

GSMshutdown().  GSMstartup() begins with a command to write high to the power-on pin, 

activating the GSM unit.  Normally it would be fine to wait a set amount of time and then 

continue with transmitting SMS messages.  However, it was found that when powering on, the 

GSM Module would occasionally return “+SIND: 7”, meaning it entered an emergency-call-only 

mode. [55]  It would also occasionally fail to find the network several times before connecting.  

Due to these issues, it would be foolish to simply set a delay and hope it connected properly.  In 

order to solve this, the serial streams coming from the GSM Module are analyzed until the 

proper strings have all been received.  If it enters emergency-call-only mode, the module is 

power cycled. 

 The GSMshutdown() function writes low to the power-on line for three seconds, writes 

high to it for two seconds, and then writes low to it.  On a cell phone, this power-on signal would 

be attached to the power button on the side of the phone.  This function essentially presses and 

holds the “power button” until the “phone” turns off. 

 4.11.12. Coding and Testing the Radio Module 

 To begin coding the Radio Module, the source code for the Trackuino firmware was 

downloaded and examined.  This source code contains a large number of files and includes many 

features which are not needed for this project.  In order to modify this code for our purposes, all 

features were removed from it except for what is essential to transmit APRS data.  What 

remained were the following files:  
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File(s) Purpose 

afsk.cpp, afsk_avr.cpp, & 

afsk_avr.h 

Creates an AFSK signal from AX.25 input data and outputs it 

on a PWM capable pin to the radio. 

aprs.cpp & aprs.h Reads in sensor data and formats it for APRS transmission.  

Sends formatted data to AX.25 modem code. 

ax25.cpp & ax25.h AX.25 is a data link layer protocol designed for use by amateur 

radio operators. This code modifies the input APRS data for 

transmission and sends it to the AFSK code. 

config.h Contains various settings including call sign, APRS comment, 

modem configuration, and debugging. 

pin_avr.cpp & pin.h Contains code for pin_write() function to replace digitalWrite().  

Necessary since digitalWrite() interrupts timer2, which is used 

for transmission. 

radio.cpp,  radio.h, 

radio_hx1.cpp, & radio_hx1.h 

Contains code for powering on and off the HX1 transmitter. 

Table 3: Descriptions of Files used for APRS Transmissions 

As explained above, APRS data is sent via the following process: Data is read from the GPS and 

other sensors.  This data is formatted into an APRS packet such as the one shown below: 

 

KC1BQU-11>APRS,WIDE2-1:/021709zh3822.20N/07254.38EO073/014/A=015370/T=-

2107/H=-1667/P=6730/V=218/S=34 AURORA 

 

Item Description 

KC1BQU User’s callsign 

-11 Signal source = balloon 

>APRS Destination callsign 

WIDE2-1 Digipeating path 

021709z Zulu date/time (17:09 on the 2nd day of the month) 

h3822.20N Latitude 

07254.38E Longitude 

O Device is a balloon 

073/014 Course: 073 degrees, Speed: 014 knots 

A=015370 Altitude: 15,370 feet 

T=-2107 … S=34 Various sensor readings 

AURORA APRS comment string 
Table 4: Breakdown of APRS Packet Components 

This formatted data is sent to the AX.25 modem code where it is further formatted and added 

into FIFOs for transmission.  This information is then given to the AFSK code where it is sent to 

the HX1 transmitter via a PWM capable pin. 

 Before testing could be started, an antenna had to be made for the Radio Module.  

Following instructions on page 6 of the HX1 transmitter’s datasheet, a quarter-wave whip 

antenna was created with a length of about 493mm. [56]  About 5mm of this was trimmed off to 

account for the length of the trace leading to the antenna holes on the PCB.  The antenna itself is 
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made of solid-core copper wire, and was attached securely by passing the wire though both 

antenna output holes. 

 Testing was first done on an Arduino Uno, as the Trackuino is designed to use this type 

of microcontroller board.  The Radio Module was powered by an external battery pack for this 

test.  TXD was connected to pin 3 and TX_EN was connected to pin 4.  The APRS code itself 

was then modified to only output callsign information and a lengthy APRS comment.  Using an 

amateur radio, the signal was made audible.  What was heard sounded similar to a dial-up 

modem and lasted about half a second.  This confirmed the Radio Module was in working order. 

Since the Radio Module is required to work with an ATmega2560V (as opposed to the 

ATmega328P used by the Arduino Uno), the module was connected to an Arduino Mega.  The 

PWM pin was changed from 3 to 10 and the TX_EN pin was changed from 4 to 11.  Pin 10 was 

chosen to allow the use of the OC2B timer.  The Trackuino firmware is already set up to support 

this timer with pin 11 on the Arduino Uno, so making this work simply involved redefining the 

pin numbers [47].  Once again, an amateur radio was used to verify that the Radio Module was 

working. 

 Sending actual data involved the creation of a number of functions.  A function was 

written to format APRS data for each of the following: Date/time, latitude, longitude, course, 

speed, altitude, temperature, humidity, pressure, battery voltage, and seconds (APRS date/time 

format excludes this).  A function called transmitRadioData() was then written which takes all 

formatted APRS data and sends it to a modified aprs_send() function.  To avoid interrupting 

Timer2, all instances of digitalWrite() were replaced with pin_write().  The Radio Module was 

then attached to the Flight Controller with TXD attached to PB4 (pin 10 on Arduino Mega) and 

TX_EN attached to PB5 (pin 11 on Arduino Mega).  The output of this setup was tested and 

verified via serial. The APRS radio data transmission takes about 1 second. 

 4.11.13. Adding an Airspeed Sensor 

 
Figure 47: Airspeed Sensor on Perfboard 

 During glider testing, pitch control was found to not be sufficient for flying the aircraft.  

An airspeed reading was needed, and the sensor chosen for this task was the 

SSCDRRN025MDAA3 differential pressure sensor.  This sensor was chosen for its exceptional 

temperature stability and wide range of measurement (about 4.5 to 90 m/s with a pitot tube).  

This is an analog 3.3V sensor with the following pins: VIN, VOUT, and GND.  In order to use 

this sensor, a header was placed on the ADC0 port for the Autopilot Computer.  VIN is given 

3.3V, GND is connected to common ground, and VOUT is connected to ADC0. [57]  Since the 
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sensor couldn’t be mounted directly to the Flight Controller, it was soldered to a piece of 

perfboard which had mounting holes drilled in it. 

 4.11.14. Fixing the Power Connection 

 
Figure 48: JST Connector Attached to Power Terminals 

 It was found that simply soldering the wires of the power connector directly to the PCB 

was not mechanically sound.  They would break off after being moved back and forth for a short 

period of time.  To solve this, a spare JST connector was soldered as shown in the image above. 

 4.11.15. Reset Button Replacement 

 An interesting problem arose when testing the glider.  Upon hitting the ground, it 

appeared that the Flight Controller was resetting itself.  The immediate suspicion was that the 

force of the impact was somehow causing the reset button to actuate itself.  In order to ensure 

this wasn’t the case, the button was removed and a jumper was put in its place.  With this in 

place, a reset could only happen if a piece of metal bridged the two pins of the jumper, 

eliminating the button as a potential source for this problem. 

 

4.12. Assembling the Modules and Attaching to Airframe 

 4.12.1. Assembling the Modules 

 
Figure 49: Fully Assembled Flight Controller with Modules 

 In order to properly assemble the Flight Controller and modules, several spacers were 

required.  The spacers were designed for 3D printing using Autodesk Inventor.  Originally, it was 

thought that the Radio Module would be mounted on top of the GSM Module.  This was changed 

in accordance with the shape of the airframe.  With the Radio Module mounted in front of the 

GSM Module, the spacers included arms to reach the mounting holes of the Radio Module.  The 

IMU was mounted with #2 nylon nuts and bolts.  Six nuts were used as spacers on each screw, 

with two lock-nutted on the underside of the board. 
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 4.12.2. Attaching the Flight Controller to the Airframe 

 Attaching the Flight Controller to the airframe required several more 3D printed parts to 

be made.  Small spacers were created to lift the Flight Controller about 5mm from the surface of 

the airframe, leaving plenty of room for the pins and nylon nuts on the underside of the board.  

Large washers were then made for the underside of the mounting surface.  Zip ties were used to 

attach the board so that that it would not be damaged in the event of a crash, as the zip ties would 

simply shear before damaging the PCB (as they did on several occasions during testing).  The 

airspeed sensor board was attached in a similar manner. 

 

4.13. Breadboard Flight Controller for Initial Test Flights 

 
Figure 50: Breadboard Flight Controller Installed in Airframe 

 For the initial flight tests, a breadboard Flight Controller was used instead of the actual 

PCB Flight Controller.  Many crashes were expected in the early stages of flight testing, so this 

setup was used to avoid damaging the Flight Controller.  The breadboard contained the same 

IMU used in the actual Flight Controller, an Arduino Nano (which uses an ATmega328P), the 

airspeed sensor, and servo outputs. 

 

4.14. Changing ATmega328P to Cortex-M4 

  A point came during software testing where the team realized the ATmega328P was 

simply not up to the task of running the ever-expanding autopilot code.  The code had become so 

large, it had reached the limit of what the microcontroller could store.  To remedy this issue, a 

Teensy was incorporated externally into the Flight Controller.  The Teensy is a USB-based 

microcontroller development system which makes use of the Cortex-M4 microcontroller.  It runs 

at a 72MHz, far faster than the ATmega328Ps 8MHz.  Additionally, it has 262Kbytes of flash 

memory as opposed to the ATmega328P’s 32Kbytes. [58] 

 A perfboard was setup to allow the Teensy to act as a drop-in replacement for the 

ATmega328P.  This was done by making use of the Flight Controller’s auxiliary I/O ports, and 

by setting up the Teensy to use the same ports for servos and sensors as the ATmega328P. 

 The addition of this hardware caused several changes to how the Flight Controller 

attaches to the airframe.  The perfboard is attached to the Flight Controller using two nylon 
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screw and nuts.  Those boards together are then attached to the airframe with 8 zip ties, using 

two large spacers in front and two small spacers in rear. 

 

4.15. Results 

 As demonstrated in the testing described earlier, the Flight Controller was able to meet all 

requirements set for it.  Using the Radio Module, weather sensors, and GPS, it is able to transmit 

weather data to the APRS network for easy retrieval, allowing the device to behave as a 

radiosonde.  It is also able to control an aircraft using data from its 9DOF IMU and airspeed 

sensor.  This data is used in controlling three separate servo outputs.  Finally, it is able to 

transmit the device’s GPS landing location via SMS using the GSM Module. 

In addition to these three objectives, the Flight Controller was also kept well within the 

price range specified in section 3.1.  As can be seen in the Bill of Materials (Appendix A), a 

fully-functional Flight Controller costs $405.98, and a full AURORA radiosonde-glider costs 

$425.81.  These numbers are well under the specified $580 limit, and would be further reduced 

with revisions to the Flight Controller and with mass production. 

 

4.16. Future Design Considerations 

 As with any printed circuit board, the first design was not perfect.  Though everything 

worked in the end, design changes would certainly be made in version 2.0.  The very first change 

would be the replacement of both microcontrollers with Cortex-M4s.  These microcontrollers are 

far faster and more powerful than those originally chosen for this project.  A proper power 

connector would also be added.  One such as a two-wire JST would be much more resilient than 

wires simply soldered to the PCB.  The connection between modules would also be changed.  

Instead of simply solder solid-core wire to interconnect them, actual connectors would be used. 

 The IMU would also see a few changes.  The orientation of the IMU pins would be 

changed to allow easier setup, and the orientation of the IMU itself would change (it was 

accidentally set to be mounted backwards).  The MOSFETs for controller power to the servos 

and GSM Module would be better sized for the amount of current actually required to pass 

through them.  This would save on weight and component cost.  The linear regulator for the 

GSM Module would also be changed.  One with a far lower dropout voltage would allow it to 

operate with a lower battery voltage.  Finally, the mounting holes on the Radio Module would be 

repositioned to the opposite side of the board, eliminating the need for the spacers to have arms 

extending out to the holes. 
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5. Airframe Development 
 

5.1. Introduction 

 The airframe is the physical package that will give the radiosonde the ability to fly while 

providing protection to the electronics inside. This section lays out how the airframe was 

developed over the course of the project from initial concepts to the fully realized glider.  

 

5.2. Overall Design Considerations 

The airframe had several simple design considerations that are difficult to bring together. 

First, it had to be lightweight to fit within the limits of balloons already in use by the National 

Weather Service; approximately 450 grams. Second, it had to be cheap enough to offset the cost 

of the control board and stay within the same price range of current radiosondes. Third, the 

airframe had to be able to glide far enough to reach a safe landing location. For this a glide ratio 

of 7:1 was chosen after looking at the glide ratios of several unpowered aircraft, as well as the 

average distance a weather balloon drifts in a typical flight.. Fourth, the airframe had to survive 

landings without needing excessive, unscheduled maintenance to keep the airframe reusable. 

Finally, the airframe had to be made of materials that were typical of radiosondes and that could 

be consumed by a jet engine without damaging the engine in the rare event that the glider were to 

encounter another aircraft. 

 

5.3. Preliminary Concepts 

 When the project began, the concept of a rigid airframe based off the Me-163 ‘Komet’ 

was already being considered. This design was first considered for the project because it is a high 

speed glider shape that was thought to be easy to produce. As the project commenced, other 

unpowered airframes were considered as well. The four major design types that were considered 

are detailed below. 
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 5.3.1. The Rogallo Wing  

 
Figure 51: A Rogallo Glider in Flight [59] 

 The rogallo wing was the leading contender for a non-rigid airframe design. It is common 

in ultralight aircraft and has been investigated as an alternative to parachutes by NASA. Rogallo 

wings are a type of flexible airfoil that consists of two self-inflating, partial-conic sections whose 

application varies from kites, parachutes, gliders, and powered aircraft. 

 The shape of the conical sections, specifically the ratio of the conical sections’ heights 

and bases, determines the optimal flight regime of a rogallo wing. Wide, shallow cones are best 

for low-speed flight while long, narrow wings are faster, even able to reach supersonic speeds of 

Mach 2 or 3. [60] Because the wings are built to allow flexing and bending, they have springy 

dynamics and are less susceptible to turbulence than rigid wings, resulting in a gentler flight. The 

un-stiffened tailing edge also allows the wings to twist and provide directional stability without a 

tail. 

 NASA experimented with using rogallo gliders in the Gemini and Apollo instead of 

parachutes. The testing went as far as full-sized test articles in the Gemini project. Parachutes 

were ultimately used because they were simpler and were easier to implement with the space 

program’s schedule. [61] 

One of the biggest advantages of the rogallo for the project is that it can be folded up and 

spring loaded to deploy upon release from the balloon. The materials are also extremely 

lightweight; test gliders used for this project were made from plastic sheeting only a few 

thousandths of an inch thick. 

 The biggest drawback of the rogallo wing is that in a nose-down orientation, the wing 

does not generate lift. This can be combatted by adding some reflex curve to the tailing edge to 

induce an up-pitching moment at the cost of stability. This was one of the main reasons it was 

not ultimately chosen for the glider; the wing would ideally be starting out in a nose-down 

configuration from the weather balloon. There was also concern that in the near vacuum of 
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30,000 meters, there would not be enough air to inflate the wing upon release, which would have 

resulted in an uncontrolled descent. 

  

5.3.2. The Square Parachute 

 
Figure 52: A Navy Paratrooper Demonstrating a Square Parachute [62] 

The square parachute, a type of ram-air parachute, was another glider design that was 

brought to the attention of the project group by an advisor. These steerable parachutes are 

commonly used by skydivers and paratroopers and use a lightweight, inflatable airfoil to provide 

lift. Some ultralight aircraft use this type of wing to provide lift as well. These parachutes are 

steered by guide cables attached to the corners that increase drag on one side when pulled to 

induce a turn. Stability is provided by suspending the payload well underneath the parachute to 

provide a pendulum effect. 
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The biggest advantage of the parachute is its weight; made up of thin sheets or fabric and 

string, the parachute would weigh only a few grams at the scale of the project’s glider.  The 

design of the parachute would also allow for the use of the same packaging that radiosondes 

already use; it would only have to be enlarged slightly to accommodate the extra sensors, servos, 

and batteries. Overall, a square parachute radiosonde would look very similar to current systems. 

The biggest disadvantage to the parachute is the same as the rogallo wing: at 30,000 

meters it cannot be ensured that the parachute will catch enough air to inflate. The problem is 

compounded in the parachute design by the fact that it does not contain a rigid framework to at 

least hold it open to catch thicker air as it falls into the atmosphere like the rogallo wing can. 

There were also concerns that the parachute strings could become tangled in the remains of the 

weather balloon after it burst, preventing any opening of the parachute. 

Current radiosondes do use simple, non-steerable parachutes that slow their descent, but 

descent information of radiosondes is limited to rates, making estimates of when a parachute 

may begin to provide useful steering difficult to make. These parachutes are also low-speed 

wings with a glide ratio around 4:1. Even if the desired glide ratio for the project could be 

achieved, the forward speed of parachutes is relatively low and could be easily counteracted by 

winds aloft. [63]  

 

 5.3.3. Ember 2 RC Plane 

 
Figure 53: The Ember 2 RC Plane 

 Looking into rigid airframes, one particular concept examined was the Ember 2 RC 

plane. This plane weighs less than 30 grams and is very agile with an impressive glide ratio. The 

Ember 2 also uses two control surfaces and a high dihedral wing to maneuver. Prior flight 

experience with this plane before the project led the group to agree that it is a fun and 

surprisingly capable airframe. [64] 

 The biggest advantage of the Ember 2 is its simplicity. With only a rudder and elevator, 

controlling this airframe would be easy. The Ember 2 is also great at recovering from dives at 
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any speed, eliminating concerns of gaining control after the balloon bursts. This plane also 

exhibits an ability to stay in control after its battery power dropped too low to run the propeller. 

 The Ember 2’s greatest drawback is its flight speed. It is meant to be an indoor glider 

and, even when under power, cannot move forward in any significant wind. Like the parachute, 

this would make returning to a reasonable landing site all but impossible with a headwind. While 

the Ember 2 is well within the weight limitations of the project, it is simply too lightweight and 

fragile. Control surface will wear out and tear in the wind, and the battery is far too small to last 

for the hours it would need to in a full flight. Scaling it up to accommodate the needs of the 

project was an option, however it was decided that this would require more materials than the 

other rigid option, the flying wing. 

 

 5.3.4. Flying Wing/ Tailless Delta 

 
Figure 54: Schematic of h0 229 WWII Flying Wing [65] 

 The flying wing design, initially taken from the Me-163 concept the project began with, 

later evolved to look at aircraft such as the Ho 229 and lippisch delta wings. Flying wings are 

challenging aircraft which often share characteristics of tailless delta winged aircraft. 

A tailless delta wing cannot handle high wing loading and requires a larger area to lift the 

same weight as equivalent swept wings. Efficient airfoils are also unstable on tailless delta 

wings; so less efficient, yet stable airfoils such as symmetrical airfoils or airfoils with reflex 

camber are used. Another option is to lightly twist the outer leading edges down, which reduces 

the incidence of the wingtip and improves characteristics of the wing in a stall as well as at 

supersonic cruise. 

 The advantages of a flying wing for the project are the speeds the wing can accommodate  

and the lift is can produce. Like the rogallo wing, it can fly in any flight regime but would not 

have the inflation issue the rogallo would encounter. Having discrete control surfaces instead of 

flexing the wing was another advantage over the rogallo and parachute that would make 

controlling the glider easier from a programming standpoint. A computer simulation also showed 
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that a flying wing design provides all the speed and maneuverability that would be required from 

the glider. 

 The disadvantages of the flying wing are mostly stability related. As mentioned before, 

they cannot handle high wing loading and need larger areas to not break apart. There is also little 

inherent yaw stability in a flying wing. Larger aircraft like the B-2 Spirit solve this by using split 

control surfaces that can deflect both up and down at the same time. The issue was solved on the 

project glider by using a design with proportionally large winglets that act as vertical stabilizers. 

Flying wings also have a tendency to ‘porpoise’, or dive when stalled, pick up speed, then lift 

their nose until they stall again and repeat the process. It was decided to move forward with this 

design and rely on the flight computer to compensate for porpoising. 

 

5.4. Initial Tests 

 5.4.1. Virtual Testing 

 The program RealFlight 7.5 was used to test different airframes and get a feel for their 

performance, as well as get solid numbers on the expected performance of any particular 

airframe. RealFlight simulates RC aircraft with realistic physics and controls and is used to train 

RC pilots on their aircraft before going out to fly the real plane. While it could simulate most 

rigid airframes, options for flexible airframes like the rogallo wing or parachute could not be 

found. Use of this simulator was continued because it was the cheapest available to the project 

group, needing only a $60 upgrade from version 4.5 already installed on one of the computers. 

 In these tests, the 'Slinger' flying wing, a 24-inch (.6 meters) wingspan powered aircraft 

that was the closest to the Me-163 and Ho 229 flying wings, was found to have the desired 

characteristics for the project’s glider. The file’s characteristics were modified to reduce its size 

by 1/2 (12-inch, .3 meters wingspan), remove its motor, and determine that the weight was 

correct for the project: under 250 g. While flying the model manually in the simulator, it was 

determined that it could reach speeds as high as 115 mph in a dive and glide ratios approaching 

20:1. The simulator’s file revealed that it was using a Sipkill 1.7-10B airfoil and was made of 

foam.  

  

 5.4.2. Other Initial Tests 

 Since the rogallo wing could not be simulated in RealFlight, a model was made out of 

spare parts to test in the real world. Using old welding rod and polypropylene liner, several 

models were constructed that were used to gauge the feasibility of the rogallo wing. 
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Figure 55: Initial Testing of Rogallo Glider 

 The first model worked well and achieved a 9 meter flight when thrown from 1.8 meter 

(5:1 glide ratio). The construction was uneven and it had a tendency to fly to one side. Solder had 

been used to attach welding rod frame pieces, which did not work, and the plastic liner was 

unevenly cut. In efforts to fix these problems the model was destroyed. 

 The next model was better constructed and more symmetrical. Notches were used in the 

frame with hot glue to hold it together. While it did fly straighter than the first model, after flying 

about 3-6 meters, it would nose dive out of control. To improve the angle of attack, a deadweight 

was attached underneath the wing since the resources to make an active steering system were not 

yet available to the project. This weight worked to improve the angle of attack, but made 

launching the wing more difficult and unstable. The concept was soon abandoned after testing of 

the physical flying wing design began. 
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5.5. Designing the First Rigid Airframe (Pink Foam) 

 
Figure 56: CAD Model of Pink Foam Prototype Glider 

 5.5.1. Selecting Materials 

To validate the simulation, the decided was made to use a foam model like the 'Slinger' 

aircraft. Pink foam insulation was selected as the material for its light weight, rigidity, and ability 

to be shaped by different manufacturing techniques. It was also decided that CNC machining 

would be the fastest and most repeatable way to achieve the complex airfoils needed. Solid 

models were created of the wings as well as a fuselage big enough to hold RC electronics for 

testing. 

 5.5.2. Manufacturing Difficulties 

Initial plans called for the pink foam to be cut using a CNC mill for accuracy and 

repeatability. Those in charge of the CNC mills advised against the plan on account of the 

glider’s size and a new method was researched.  

After observing the foam cutting techniques of other aerospace MQPs, templates were 

produced of the airfoils that could be laser cut from plywood and used to guide a hot wire cutter 

through the foam. Despite the best efforts of the team, the foam proved very difficult to cut at the 

project’s scale. The heated wire could not be kept taut and moving both ends of the wire at 

different speeds through the foam was impossible to do by hand. The resulting parts were too 

thin, too flimsy, and often had uneven surfaces from where the hot wire melted them too far. 

The differences between these results and the more successful results of the other MQP 

teams were scale and shape. The other MQPs were larger, having wingspans three to four times 

larger than this glider’s. Their wings also did not taper like the glider’s and had the same chord 

length at the root and tip of the wing, allowing them to move both ends of the hot wire at the 

same speed through the foam. 
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5.6. Designing the Second Rigid Airframe (Small Foam Board) 

 
Figure 57: Small Foam Board Glider with RC Equipment 

 5.6.1. Selecting Design and Materials 

With the complete failure of the pink-foam design, the project was left with little time 

before a deadline to have a flying model before the end of B-term. Various other materials and 

manufacturing methods were brainstormed that could be used within the span of a couple days. It 

was clear that the project would have to stick to foam; it was the only material light and strong 

enough that the project had access to. The manufacturing options were narrowed down to two: 

Injection molding and laser cutting.  

Injection molding of expanding foam is how most foam RC aircraft are manufactured. It 

would allow the retention of the same design yet allow the addition of supportive wing spars. 

The main drawback of this method is the time required, as a negative mold would have to be 

manufactured using materials the project could not access in time, such as aluminum. The idea of 

using laser cut plywood segments stacked up to create the mold was toyed with, but it was 

determined that generating that many profiles would be difficult and would require even more 

finishing work to sand them smooth. 

The final option was to use foam board (polystyrene sandwiched between two layers of 

craft paper) in a laser cutter to create a flat version of the glider. RealFlight was brought up again 

and the 'Slinger' model’s airfoil was changed from the Sipkill 1.7-10B to a 4% flat plate with 

bullnose edges. To the surprise of the group, an even greater glide ratio than the first version was 

seen in the new simulation. It was determined that the tradeoff was in the stall characteristics, 

which were less controlled than the Sipkill airfoil’s stall. This was the solution the project 

continued with. 
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 5.6.2. Manufacturing 

 
Figure 58: CAD Drawing For First Laser Cut Glider 

 

Creating the drawings for laser cutting proved far easier than generating the airfoil in any 

CAD program. This model was referred to as the ‘half-scale’ model because it has half the 

wingspan of the original 'Slinger' model. Laser cutting the foam board was a quick process, and 

the actual operation only took a minute or two to create a full set of parts for this airframe. Since 

the laser cutter can vary its output, control surfaces can be cut directly into the wing without 

cutting all the way through the board, and mounts for servo motors could be included as well. 

 Laser cutting does have one major drawback with the foam board: it melts the foam back 

from the cut edge of the paper. This gives a concave edge that is not suitable for the leading or 

trailing edges of a wing. Since the simulation used bullnose edges, bamboo skewers were 

mounted to the leading edges with hot glue to provide the desired leading edge and increase 

stiffness. 

 5.6.3. Testing. 

To test this airframe, traditional RC controls were used to manually pilot the glider, since 

none of the autonomous controls were ready. The first rounds of testing were done in Alden Hall, 

where glide ratios of about 2:1 were seen. The center of mass was moved around to find the 

optimum position, however batteries were used that were far heavier than were expected to be 

using later on, throwing off these estimates. Throwing tests were also conducted from the hill 

behind Morgan Hall overlooking the football field, as well as inside Harrington Auditorium. 

 5.6.4. Results 

The glide ratio never reached the targeted 7:1. Many control issues were seen which were 

later determined to be caused by the airspeed: the model could not get above its stall speed. It 

was also found that with hard landings, the nose of the glider was being destroyed. Adding a 

pink foam skid helped, but only if the glider managed to land belly first, which it could not do 

with the weight balance it had. Finally, in one test the glider collided with a chair in Alden hall. 

The collision broke the bamboo leading edge and damaged the wing behind it.  

 

 

 

 

 

 



65 

 

5.7. Designing the Third Rigid Airframe (Large Foam Board) 

 
Figure 59: Large Foam Board Glider Under Construction 

 5.7.1. Selecting Design and Materials 

For the next design overhaul, the wingspan was doubled to see if less wing loading would 

give a better glide ratio while still staying under the project’s ultimate weight limit of 450g. This 

design is referred to as the full-sized model because it is the same scale as the 'Slinger' model 

with a span just over 1.2 meters. Due to the size limits of the Washburn laser cutter, the full-

sized model had to be broken into three parts: two wings with a bulkhead in between them that 

would carry the electronics. Two fuselage walls were made that had an arbitrary aerodynamic 

shape to keep the fuselage streamlined and reduce drag from the electronics. The wings and 

bulkhead slot into the fuselage walls, and bamboo skewers were pushed into the foam as wing 

spars. To cover the fuselage, transparency sheets were found that were flexible and easy to cut. 

 5.7.2. Manufacturing 

 Several manufacturing processes were changed for this larger model. Since there were 

not enough bamboo skewers to both cover the leading edges and act as wing spars, a method of 

ironing over the paper edges was used to produce a bullnose edge. This worked brilliantly, 

stiffening not only the leading edge but any other aerodynamic edge that was needed without 

adding weight with glue or bamboo. Ironing the edges also added strength to the foam board and 

was easily scaled to any edge on the glider.  

 Pressing the bamboo skewers into the foam provided a strong friction fit that still allowed 

the wings to be pulled off for transportation and servicing. Four skewers were used along the 

length of the glider to provide support. 

 To cover the fuselage, transparencies were used that could easily be bent around the 

curve of the fuselage walls. The transparency covers had tabs on both sides so they fit over the 

walls and scotch tape was used to hold them down. It was discovered that scotch tape loses 

adhesiveness in the cold and the covers often had to be re-taped after every flight. 
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 5.7.3. Testing 

By this point in the project, the weather was not favorable for repeated testing outdoors, 

so many of the tests were conducted in Harrington Auditorium, and a few on the hill behind 

Morgan Hall when the weather permitted. These tests were the same as before, throwing the 

glider to see how well it controlled and how far it could fly. Drop tests were also conducted to 

show that it could recover from a nose-down orientation with RC control. Once the first set of 

autonomous code was ready for test, it was tested with this model. 

 5.7.4. Results 

This glider performed much better than the half scale glider. Glide ratios of around 4-5:1 

were seen when RC receiver issues did not prevent it from working. Since these tests were still 

operating at or around the stall speed of the airframe, it had a tendency to crash. Crashes would 

damage the nose of the fuselage but usually left the wings unharmed; however they would 

separate if a crash was particularly hard. On occasion, the glider ran out of space in Harrington to 

fly, and would hit the back wall. 

One phenomenon that became apparent in these tests was a flapping of the wings when 

the glider maneuvered in any way. These oscillations induced drag and reduced the glide ratio, 

and eventually led to the destruction of this airframe. In one test with the autonomous controller 

(an Arduino Mega hooked up to a breadboard that contained the necessary sensors), the glider 

was thrown off of the hill behind Morgan Hall. The oscillations grew so severe that the bamboo 

skewers snapped and the wings folded in flight. 
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5.8. Developing the Fourth Airframe 

 
Figure 60: The Fourth Airframe 

 5.8.1. Revising Design 

Considering Alternative Designs 

After the wings folded in the test flight, the team began reviewing the possible causes for 

the failure. Slow-motion video was recorded during the test; together with the remains of the 

glider, the joint between the wings and body of the glider was identified as a stress concentration 

point and steps were taken to reduce the stresses there. Reducing the size of the wings to about a 

1 meter span to reduce the moment around the joint, or even going back to a .6 meter span to 

remove the joint entirely were considered as well. Ultimately, these designs were decided against 

because they would not give the 7:1 glide ratio goal set for this project. 

Changes Made to Existing Design 

Another step was to change the length of the wings’ inserts. In the old model, these tabs 

were only 5 mm, the same as the thickness of the foam board used in the fuselage walls. This 

made the moment of the wings flexing centered on the same axis as the joint between the 

fuselage walls and bulkhead. To solve this, the tabs’ lengths were increased to 20 mm so that 

they extended into the bulkhead. 

The fuselage cover was also changed. The transparencies were abandoned and replaced 

by foam board after it was found that bending some scrap material left over from the laser 

cutting process would suffice. Hot gluing the excess foam board to the fuselage wall proved 
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difficult, but resulted in a stronger fuselage body and provided more of a crumple zone for 

protecting the electronics from crashes. 

While the final control board was being assembled, a switch away from the Arduino Uno 

test board was made because it was discovered its setup was too heavy for the glider (the overall 

system weighed in at over 500g) The old Arduino was replaced by a spare Arduino Nano. To 

further reduce weight, the alkaline batteries used in testing were replaced with lighter lithium 

batteries. 

Center of Mass Revision 

 Closer attention was given to the dynamics of the glider itself after some particularly bad 

crashes which lacked any control. Equations were found for calculating the aerodynamic center 

(neutral point) of flying wings [66]. Since the center of gravity (CG) was supposed to be ahead 

of this point, it was assumed that the first calculated neutral point made sense given that the 

current CG was already a few centimeters ahead of it.  

More crashes followed and an even closer look was taken at the CG, going as far as to 

look at the original RealFlight file to figure out why the glider was not working. The group found 

that the CG for the model was much farther back than that of the real world glider. It was then 

calculated that the CG should be further back, 6 inches (15 cm) from the leading edge of the 

wing at the root. Since this was behind the calculated neutral point, another look was taken of 

that calculation, and it was discovered that it was only accounting for half of the overall 

wingspan. Fixing the error brought the neutral point behind the CG as it should be. 

After fixing these errors, a new problem arose getting the actual CG to line up with the 

desired CG. Since the batteries were the heaviest components, they were moved from the nose to 

behind the desired CG position. Ideally, the project group wanted to place them under the 

bulkhead and wings to give the glider more stability, but this would require making the fuselage 

walls bigger to accommodate them. Instead, the battery pack was switched from a square 

arrangement to a flat one and placed behind the second wing tab. Flight testing saw immediate, 

significant improvement with the balanced CG. 

Finally, the connection between the fuselage walls, bulkhead, and wings was simplified 

by combining the four slots in the fuselage wall into one long slot. This gave the bulkhead more 

area to connect to the fuselage walls to and allowed the wing spars to be moved to be easily 

moved to more optimum points along the wings. 

 5.8.2. Revising Selected Materials 

 As more replacement parts and airframes were being cut, it became clear that the $6 

Elmer’s foam boards that were being used would be too expensive. Foam boards were then 

purchased from the dollar store for $1 as a brand called “Readi-board”. The only difference 

between the two brands is the type of paper the polystyrene foam is sandwiched between. The 

craft paper on the Readi-board turned out to be lighter than the paper used on the Elmer’s boards 

and saved a significant amount of weight at the cost of rigidity. 

After more crashes and being unable to remove the flapping behavior with code, the 

decision was made to stiffen the airframe further by removing the bamboo spars and replacing 

them with carbon fiber. The carbon fiber had ten times the stiffness as the bamboo and had the 

desired effect; however further testing showed that as the airframe became more damaged, 

particularly the bulkhead, the flapping behavior could return at high speeds. 
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Figure 61: The Pitot Tube Mounted to the Airframe 

 An airspeed sensor was added that required a pitot tube be mounted to the outside of the 

glider. To receive accurate airspeed data, the pitot tube must be placed facing forward ahead of 

every other part of the airframe so that airflow around the body does not affect the sensor. 3D 

printed mounts were designed and printed out of PLA and were hot glued to the starboard 

fuselage wall above the wing. Holes for the sensor’s tubes were punched into the wall manually. 

 5.8.3. Revising Manufacturing Process 

As more airframes were rebuilt and assembled, the manufacturing process became more 

streamlined. The amount of hot glue used to attach the fuselage cover was reduced to allow the 

cover to bend open more and give better access to the electronics. Ironing the joint between the 

wings and winglets was also stopped because ironing the joint seemed to make it weaker; this 

decision also saved time.  Lengths of carbon fiber were cut from 4 foot, 3/32” round stock (1.2 

meter, 2.3 mm).  

Until this point, the bamboo wing spars had simply been pushed into the foam with brute 

force. The bamboo skewers were pointed on one end and another point was cut into the other end 

to make the spars easier to push in. Since the bamboo wasn’t always straight, it could curve 

towards the front or rear of the wing, or even towards the top or bottom and tear the paper. The 

carbon fiber did not have pointed ends, and cutting them would have been extremely difficult 

with the tools available; therefore a new method was developed. 

A hot air gun was used to heat up one end of a steel welding rod with a diameter slightly 

smaller than the carbon fiber rod. The hot end of the welding rod was then pushed into the foam 

and used to melt it. This method required less effort and time than pushing the spars into the 

wing and usually created straighter paths for the spars to follow. Carbon fiber can then be 

inserted into the wings carefully, although pushing a bamboo skewer in first can expand the hole 

if the steel rod did not melt enough and prevent the carbon fiber from tearing at the foam. 
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To mount the control board, zip ties were used along with 3D printed PLA washers and 

spacers to spread the force more evenly over the bulkhead. The zip ties were used to facilitate 

quick removal and attachment to new bulkheads as the old ones were damaged in crashes. 

 5.8.4. The Release Mechanism 

 
Figure 62: 3-Ring Release Mechanism used in Skydiving [67] 

Development of the release mechanism took about a week. From research done into 

parachutes, a 3-ring release mechanism used by parachutists was found that was thought to be a 

reliable release mechanism for the glider. A set of 3D printed rings were made and sewn into a 

spare scrap of fabric to test the mechanism at the scale of the glider (most 3 ring releases operate 

at the weight of a full grown human). While the mechanism worked on occasion, it could not 

release consistently and had a tendency to catch on itself. 

 
Figure 63: Final Release Mechanism 

Further research was done looking at RC glider release mechanisms and it was found that 

a common solution was to glue tubes to the side of a servo with a short control rod passing 

through. A glider’s tether was tied to the control rod and when the servo was actuated, the tether 

slid off and released. It was thought that putting the entire weight of our glider on one servo in 

the rear would be a bad idea, so instead of tubes glued to the servo body a PLA mount was 
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designed and 3D printed to be glued to the bulkhead next to the release servo. Testing showed 

this setup released successfully and reliably. 

 5.8.5. Testing 

At the previous test sites, there was not enough altitude to gain airspeed and properly test 

the capabilities of our glider. At the suggestion of the project advisors, the Gateway parking 

garage was chosen as a new test site, given its height of just over 18 meters. For these tests, the 

glider was thrown either towards the field to the southwest or into the parking lot to the north. To 

avoid hitting cars or people in the parking lot, testing was typically conducted at night or after 

business hours, although some exceptions to these times were possible with favorable winds. 

At this point the final control board was assembled and allowed for SD card logging of 

flights, giving us more data to analyze after each flight. These results are covered in section 6. 

 5.8.6. Results 

The iterative tests off the Gateway garage provided much insight into the ruggedness of 

the design in an urban environment and during worst case scenario landings. In the first two tests 

off the 18 meter structure, there was no control and the glider impacted nose first onto pavement. 

While disheartening, these tests did prove that the airframe could survive at least one impact of 

this nature and still fly again, and even after the second crash it proved that it could protect the 

electronics inside from major damage. The exceptions were the then still nose-mounted batteries, 

which suffered the brunt of the impact and had to be replaced. Moving the batteries to the rear 

fixed the control problem and made impacts less traumatic to the airframe. 

After the CG and aerodynamic center problem was fixed, the best glide ratio yet was 

achieved of 8.8:1, meeting the target of 7:1. There was still significant ‘porpoising’ in this 

particular flight, so an even better glide ratio is still feasible. Later testing focused more on the 

navigation qualities of the glider and no attempts were specifically made to demonstrate the 7:1 

glide ratio. 

More flight tests that ended in diving crashes from software bugs revealed that the new 

fuselage design with the single slot was more easily deformed or broken than the older version 

with multiple slots. After using up all of the single slot versions of the glider, it was switched 

back to the multiple slot configuration. 

 

5.9. Final Test Revisions 

The final airframe underwent a few minor revisions and testing before the final drop test. 

The biggest revision was the method of cutting the wings, winglets, and ultimately fuselage 

walls. Due to an accident in the Washburn laser cutter that was handled poorly, the foam board 

was banned from being cut with the laser. Therefore a plywood template was cut on the 

Washburn laser cutter to facilitate hand cutting of the wings. When time ran out to use the laser 

cutter between the first and second attempted balloon drop tests, the last cut fuselage wall was 

used as a template to hand cut more from the remaining foam board. 

At about the same time, it was decided that the servo motors should be moved closer to 

the control surfaces. This was done in order to shorten the control rods, making them stiffer and 

prevent them from bending when excess force was applied to the control surfaces. 

The first balloon test flight ended in disaster when the glider was buffeted against the 

balloon’s tether by the wind. As a result, the left wing was torn off and the fuselage cover came 

open. While the wing was recovered, the 24 cm length of carbon fiber was lost, along with an 

Xbee module being used to gather real time data. After the test, several small adjustments were 

made to the design to ensure the next test would work. The wing tabs were cut slightly wider and 
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the fuselage holes were cut slightly smaller for a tighter friction fit. The wings were then glued in 

place to ensure they would not come apart. A ¼ inch zip tie was inserted through the fuselage to 

anchor it closed, instead of relying on electrical tape as previous versions had. Larger 3D printed 

washers were made to be used with the larger zip tie. 

Finally, as cosmetic changes, the left wing tip was colored orange and the right wing 

colored blue. Traditional red and green navigation colors would have been used but those colors 

were not available. 

 

5.10. Final Airframe Results and Analysis 

 
Figure 64: Final Glider Ready for Balloon Testing 

The glider developed in this project underwent several major and countless minor 

revisions before the final test flight. At the end of the project, the glider proved it could meet or 

exceed all but one of the initial criteria. The final dimensions and results are outlined below. 

Further details and equations used can be found in the appendix. 
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Wing Root Chord 34.1cm 

Wing Tip Chord 9.7cm 

Wingspan (root to tip) 56cm 

Wingspan (tip to tip) 1.2m 

Wing Sweep 28.4º 

Wing Dihedral 0º 

Winglet Root Chord 9.7cm 

Winglet Tip Chord 3cm 

Winglet Span 9.7cm 

Winglet Sweep 50.7º 

Winglet Dihedral 90º 

Fuselage Width 7.5cm 

Fuselage Height 6.7cm 

Fuselage Length 41.5cm 

Center of Pressure Location (Distance From 
Leading Edge Of Wing Root) 

21.4cm 

Center of Gravity Location (Distance From Leading 
Edge of Wing Root) 

15cm 

Ideal Terminal Velocity 98.875 m/s 

Mass 367g (450g max configuration) 

Glide Ratio 8.8:1 
Table 5: Airframe Characteristics 

  

 
 

 
Figure 65: Schematic View of the Final Glider 
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 5.10.2. Mass  

The total final mass of the glider came to 367g with an all Readi-board frame, and was at 

the limit of 450g when the wings had to be switched back to Elmer’s foam board due to time 

constraints. This mass includes the extra electronics that were added later in the project for data 

gathering as well as ballast applied to the nose in the final glider to offset the heavier wings. 

 5.10.3. Airframe Properties 

The fuselage‘s shape is an arbitrary shape that streamlines the electronics compartment. 

In future development of the project this shape can be better optimized to reduce drag and 

accommodate more or less space. It may even be switched out for a known airfoil shape whose 

lift and drag coefficients have already been determined.  

Using the best estimates for overall drag on the glider, the ideal terminal velocity of the 

glider at sea level in a dive is 98.875 m/s (221.177 mph). This number takes into account drag 

induced by lift, the shape of the glider, and friction with the air. It is called ideal because the 

glider will begin to flutter at speeds in excess of 22 m/s (50mph). The intended flight velocity for 

testing was set to 8.9 m/s (20 mph), which was just above the 6 m/s (14 mph) stall speed 

predicted by the RealFlight 7.5 simulations.  

With the carbon fiber spars, the glider can be expected to handle bending forces of up to 

235 N, assuming all of the force is transferred from the wings to the spars. This would be 

equivalent of suspending the glider by its wings and applying 24 kg of mass to the center. This is 

also a 10-fold increase from bamboo, which could only handle 28N, or an equivalent mass of 2.9 

kg, despite using more spars. 

 5.10.4. Control Surface Modeling 

The control surfaces were modelled as flat plates in a fluid jet to calculate the forces that 

should be expected on them. The servo motors being used are also good up to approximately 

40m/s (90 mph), where they begin to stall out at high deflections.  At ideal terminal velocity, the 

servos will only be able to deflect a maximum of 8.145º. With the forces and moments 

calculated, as well as the moments of inertia and some relatively obscure coefficients of lift and 

drag, the roll rate could also be determined. The constant was found to be approximately .05839 

1/m, which can be multiplied by the deflection of the control surfaces in degrees and velocity of 

the glider in m/s to find the roll rate in deg/s. 

 5.10.5. Cost 

The cost of the final glider comes in at around $20. This cost is broken down in the next 

section, but includes the frame materials and control servos. The use of foam board for most of 

the airframe is what makes the glider so cheap and easy to produce. Carbon fiber spars are the 

most expensive component, more so than all the other frame materials combined. The carbon 

fiber is also one of the most reusable components along with the servos, so the cost is justified 

when the spars can be reused after the rest of the glider is destroyed. 

 5.10.6. Glide Ratio 

The glide ratio of 7:1 was achieved in a test flight that happened at night when significant 

porpoising was involved at the end. Early calculations based on integrals of the airspeed showed 

this test was only 6.666:1, however reviewing the video later on and using trigonometry, the 

actual glide ratio was determined to be as high as 8.8:1. It is reasonable to assume that other test 

flights achieved similar or better glide ratios as well; however the positioning of the camera in 

those tests as well as the quality of nighttime filming means they cannot be verified. 



75 

 

 5.10.7. Survivability 

The survivability of the airframe was thoroughly tested. It can survive a dive from 18 

meters with some damage, yet can be made ready to fly again with only a hot glue gun and extra 

zip ties to replace any that may have sheared. Repeated impacts will of course require the 

airframe to be replaced eventually, but the low cost and guarantee that it will fly again if 

recovered is one of the most important and impressive features of the glider. 

 5.10.8. Materials 

Finally, the materials used are similar to those used on current radiosonde devices. Foams 

and light-duty plastics are the most common frame material on current devices, so it made 

complete sense to construct the glider out of similar materials. Ultimately, whether the glider can 

be consumed by a jet engine without damaging the engine could not be tested within the scope of 

the project.  
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6. Software Development 
 

6.1. Introduction 

The software for the AURORA project can be divided into three main parts, radiosonde 

code, navigation code, and autopilot code.  The radiosonde code is responsible for recording, 

transmitting, and logging weather data.  The navigation code performs the calculations required 

to determine a landing site and the flight path to it.  The autopilot code is responsible for the 

direct control of the aircraft.  The radiosonde and navigation code both run on the navigation 

computer, while the autopilot code runs on the autopilot computer.  Both the radiosonde code 

and navigation code were fairly straightforward to code, even though they were complex and 

required significant research to develop.  The testing of the radiosonde and navigation code 

revealed the need for only minor changes and corrections.  This was not the case with the 

autopilot.  The autopilot code changed completely between early versions and the final version.  

Even up into the latest versions of the code the foundational elements would need significant 

alterations to provide the desired effects. 

6.2. Flight Mode State Machine 

Both the navigation computer and the autopilot computer are governed at the highest 

level by a state machine.  This state machine handles the requirement for each microcontroller to 

have multiple modes of operation to correspond with different stages of flight.  Some stages of 

flight require completely different processes to be running, and a state machine makes this 

process relatively easy.  The following is a table of the various modes in roughly chronological 

order along with a short description of what the navigation and autopilot computers do during 

that mode. 

Mode Name  Navigation Computer 
Jobs 

 Autopilot Computer Jobs 

Preflight  Acquire satellites 

 Test sensors 

 Calibrate gyros  

 Test sensors and servos 

End Preflight  Nothing  Shutdown servos 

Ascent  Acquire weather data 

 Log & transmit 
weather data 

 Check for release conditions (freefall 
and high airspeed) 

Release  Transmit release 
message 

 Begin landing site 
evaluations 

 Activate servos 

 Disconnect from balloon 

Flight Heading  Transmit occasional 
updates 

 Update nav. info 

regularly 

 Send nav. Info to 
autopilot 

 Fly safely 

 Follow heading given by navigation 

computer 
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Flight Spiral  Transmit occasional 
updates 

 Update nav. info 
regularly 

 Send nav. Info to 
autopilot 

 Fly in gentle spiral 

Flight Land  Transmit APRS & 
GSM updates in case 

of crash 

 Update nav. info 
regularly 

 Send nav. Info to 

autopilot 

 Fly slowly along heading given by 
navigation computer 

Postflight  Send regular homing 

signals and messages 

 Maximum power conservation 

(servos off) 

Flight Level*  Recover from issue  Fly wings level at a safe airspeed 

 Recover 

*this mode is available for emergencies where heading following cannot be trusted for whatever 

reason 
Table 6: Software Operationl Modes 

6.3. Radiosonde Code 

 The primary goal of the radiosonde code is to record and transmit the weather 

data obtained from the sensors.  The functions required to accomplish this goal are listed below: 

 Read and interpret data from the onboard weather sensors (Temperature, 

pressure, humidity) 

 Read and decode NMEA sentences from the GPS module 

 Transmit data via the APRS module 

 Record weather data onto the SD card 

The radiosonde code is fairly simple and uses a number of canned functions to read and 

transmit the data.  The code is set up to transmit data every 5 seconds to avoid saturating the 

APRS network with packets.  For convenience the data is written to the SD card at the same 

time.  In the time between the transmissions, the controller is waiting for GPS strings to be 

received via UART.  As soon as that data arrives, it is pulled into the Arduino TinyGPS+ library 

so that it can be parsed.  This library handles the complex task of parsing out the numerical data 

from a long a complex string as well as providing that data in various units for use by the rest of 

the code.  The TinyGPS+ library is well tested and proven.  TinyGPS+ stores decoded data in 

variables that can be accessed by external code.  These variables are automatically updated as 

fresh data is received. 

6.4. Navigation Code 

The primary goal of the navigation code is to perform the data, memory, and math 

intensive functions involved in the return segment of the flight.  These functions are listed below: 

 Read and decode NMEA sentences from the GPS module 
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 Perform Great Circle Navigation calculations to determine range and 

course to the landing site 

 Determine best landing site based on range and weather data acquired 

during ascent 

 Determine which flight mode the autopilot to use based on the range to the 

landing site 

 Send frequent updates to the Autopilot on the current GPS heading, the 

bearing to the landing site, and the current GPS ground speed 

Based on the fact that the GPS module operates at 1Hz, and all of these calculations 

utilize GPS data, the update rate is also set to 1Hz.  This provides the optimal balance between 

update rate and reading GPS NMEA sentences from UART.  The NMEA sentences are decoded 

with the Arduino TinyGPS+ library.   

The navigation code uses GPS and preloaded data exclusively to perform the calculations 

necessary to find the course to the landing site.  These calculations are all categorized as Great 

Circle Navigation calculations.  Great Circle Navigation relies on Great Circles, which are a 

means of finding the shortest path between any two points on the surface of a sphere.  A Great 

Circle is defined as the circular “slice” of a sphere intersected by a plane and defined by two 

points on the surface of the sphere and the center of the sphere.  The shorter arc segment along 

the circle between the two points is the shortest path. 

Great Circles also provide a method of calculating the heading between two points.  This 

calculation; however, is somewhat more complex.  Because the path between the points is an arc, 

it does not follow a single heading along the entire path.  The calculation used here is for the 

initial heading, which if followed will get from point A to point B, but not in the shortest path.  

The software overcomes this because the starting point is always the current location of the 

vehicle.  By repeatedly performing the initial heading calculation during the flight, the software 

is able to keep up with the continuously changing heading associated with following a Great 

Circle arc.  The two calculations for Great Circle Distance and Heading, provide nearly all of the 

information needed to navigate to the selected destination.  In addition to providing the 

information used during navigation to the landing site, these calculations are also used to 

determine the best landing site. 

Prior to the start of the flight, all of the landing sites are loaded onto the SD card in a 

specified format which includes the latitude and longitude in decimal degrees, the heading for 

the landing site, and the ground altitude of the landing site.  This data is loaded into memory at 

the start of the flight.  It is not until the balloon reached apogee that the landing data is next used. 

Immediately after release from the balloon the navigation code begins the process of 

determining the best landing site.  The best landing site is determined based on two parameters.  

The first, and most important, is the distance between the current location and the possible 

destination; and the second is the wind direction and speed recorded during ascent.  The distance 

aspect to this calculation is basic logic: the closer a particular landing site is to the current 

location, the better the landing site.  The wind based calculations are complex and operate on a 
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case-by-case basis.  The decision tree below details the process for how weather data is used to 

determine the best landing site. 

 
Figure 66: Decision tree for determining quality of landing site based on weather 

Once the navigation code has selected a landing site it communicates the information to 

the autopilot.  The information is composed of operational mode information and GPS data.   

Operational Mode: For the most part, it is the navigation computer that decides and sets which 

operational mode the autopilot is in.  This communication is handled efficiently through the 

UART connection between the microcontrollers, allowing the autopilot computer to respond 

quickly to changing flight path requirements.  The updates are sent every time there is a change 

to the mode as well as every few seconds during the flight as a failsafe in case the autopilot 

computer undergoes an unexpected reset during flight. 

GPS data: GPS data is sent to the autopilot computer once every second.   The one 

second interval is the optimal delivery interval given the 1 Hz update rate.  Each update includes 

the current heading obtained directly from the GPS, the current heading to the landing site, and 

the current GPS ground speed.  All of this information is used by the autopilot code to accurately 

determine its attitude and flight path to the landing site. 

 

6.5. Autopilot Code 

The development, testing and recoding of the autopilot code was the most intensive of the 

three code parts.  The general functions of the autopilot are: 

 Drive actuation of control surfaces from sensor data 

 Use of IMU and GPS data to fly vehicle while following a given heading 

The implementation level of these two functions, including the strict requirements for 

speed, RAM, and code space would require replacement of the original processor, an 8MHz 
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ATmega 328p.  By replacing the original processor with a 72MHz, 32-bit Cortex-M4, the 

autopilot code was able to perform the functions and run at an acceptable speed. 

 6.5.1. Autopilot Functional Bounding Considerations 

The autopilot should update its calculations as frequently as possible, but it is 

unnecessary to update faster than 50Hz This consideration is important given the “real-time” 

operation required to fly an aircraft.  Faster updates mean faster responses, this leads to better 

damping of external forces on the vehicle and better prevention of undesirable flight conditions 

such as stalls or spins.  This also leads to much smoother flight which in turn results in less 

loading on the airframe and a more efficient flight.  Overall the craft behaves more reliably and 

safely if the updates are performed at a faster rate.  The increasing advantage of the faster 

calculations continues to improve almost indefinitely in theory, but the design of the servos 

almost completely halt any improvements from update speed at frequencies faster than 50Hz.  

Almost all stock RC vehicle servos use a 50Hz PWM frequency as the control signal.  A diagram 

of the signal is shown below. 

 
Figure 67: Diagram showing timing of servo PWM [68] 

Designing new servos capable of faster operation was well beyond the scope of this 

project; and as such, this was a hardware limitation that had to be worked with.  All of these 

factors played into the consideration that faster is better, with the caveat that 50Hz would be the 

upper limit on useful frequency of updates. 
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The software should not cause or maintain any oscillating motions.  Any externally 

induced oscillations should be damped by the software.  This is important for a number of 

reasons.  

1) Amplified oscillation:  any situation where an oscillating motion is amplified by the 

control software is extremely dangerous.  This can rapidly progress to the point where the flight 

is no longer controllable, eventually leading to the overstress and destruction of the airframe.  

This case is easily preventable by using a PID controller with an initially conservative P value 

that is then fine tuned based on data from flights.  “Reasonable” values are easily determined 

with calculations based on basic understanding of the system being controlled.  For this project 

“reasonable” values involved finding the proportional relationship between a reasonable range of 

control surface deflection (+- 10 degrees) and the expected range of the input (for example, 

airspeed of +-5 mph).  This example suggests a P coefficient of two since the desired output 

range is twice the size of the input range.    

2) Sustained oscillations:  Though not as immediately harmful as amplifying oscillations, 

sustained oscillations can, over a longer period of time, cause the exact same problems if they are 

not corrected.  Sustained oscillations can be more difficult to detect with just visual observation 

of a flight, but shows up well on a collected flight data graph.  It is much easier to see this data 

on a graph 

 
Figure 68: Graph showing sustained pitch oscillations 

This graph shows an example of a sustained oscillation on one particular AURORA test 

flight.  There is a strong oscillation on the pitch axis.  Additional tuning of the PID gains as well 

as adding a separate damping PID controller (discussed in detail later) ultimately fixed this 

problem.   

3) Externally induced oscillations:  The glider systems must be able to compensate in the 

event that some external force is able to overcome the stability of the control software.  Long 

term oscillations are a serious problem for any aircraft, causing major stress fatigue on the 

airframe, and forcing the control software to work overtime, sometimes to no avail.  Ensuring 
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that any oscillations that do start are quickly damped is crucial to ensuring a successful flight.  

The best solution to preventing oscillations is to have a means to “break-up” any oscillations as 

soon as they start.  One common implementation of this is to use a second control algorithm that 

works against and out of phase with the primary control algorithm.  This causes a non-periodic 

shift in the output signal preventing any oscillations from forming.   

The software should do everything possible to maintain a stable flight condition and act 

to avoid potentially unrecoverable flight conditions.  This is especially true for flying wings. 

There are many flight conditions, steep spirals, stalls, spins, etc, that are remarkably complex and 

even skilled human pilots can struggle to recover from these situations.  This issue is further 

compounded by the fact that a flying wing is inherently more difficult to manage in these 

situations and can be far more difficult to recover.  Although it would be convenient to have 

autopilot code that works with every possible situation and can recover from all of these, this is 

far beyond the scope of this project.  Instead, this autopilot is designed to be very stable and 

leave wide margins around the flight regimes that can lead to unrecoverable situations.  This 

prevents any accidental entry into unrecoverable flight conditions.  Of course, it is possible that 

environmental factors, such as strong wind gusts could force the craft into one of these 

conditions; but with proper tuning and decent update frequency, the craft should be able to react 

in time to avoid the vast majority of these sorts of situations. 

 6.5.2. Autopilot Code Development Process 

The first iterations of the autopilot code were lightweight, only implementing the basic 

functionality required for straight and level flight.  As development progressed the bare flight 

code would be complemented by the additional code needed to integrate the autopilot code with 

the other AURORA systems. 

The first few attempts at controlled autonomous flight were mostly hampered by a lack of 

rigidity in the wing spars.  These flights did little to validate the efficacy of the autopilot code as 

the airframe nearly shook itself apart in the process.  Once the flutter issue was resolved, code 

testing began.  

 6.5.3. A Note about IMU Orientation 

Based on the extensive research into autopilot control algorithms, there an overall 

consensus about which axis should be in which direction; however, the space and mounting 

constraints in the AURORA design dictated that the axes had to be aligned differently from that 

convention.  The orientation used is: 

 Positive X axis points “left” 

 Positive Y axis points “backward” 

 Positive Z axis points “down” 

 Positive Pitch rotation (about X-Axis) is nose down 

 Positive Roll rotation (about Y-Axis) is left wing down 

 Positive Yaw rotation (about Z-axis) is top-down counter-clockwise 

All examples given below will use this setup unless otherwise stated. 
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 6.5.4. Basic Control Algorithms: Servo Mixing 

Conventional, “tailed” aircraft have separate control surfaces for pitch and roll: the 

elevators and ailerons, respectively.  This separation of functions makes for a simple realization 

of control algorithms that determine control values for pitch and roll separately.  With a flying 

wing this is not possible because the functions of ailerons and elevators are combined into a 

surface called “elevons”.   Fortunately, the process for combining these two separate controls is 

simple; they are added together.  For example, consider a conventional aircraft where the 

elevator is deflected 10 degrees up, the right aileron 5 degrees down, and the left aileron 5 

degrees up.  If this same control surface configuration were applied to a craft with elevons, the 

right elevon would be deflected 5 degrees up (10-5=5) and the left elevon would be deflected 15 

degrees up (10+5=15).   

Limitations of elevons:  The only problem with elevons comes when the control surfaces 

are near their maximum deflection.  Because the two virtual control surfaces are summed 

together, there is a possibility for a much greater total deflection than the system was designed 

for.  In the example above, assume that the all control surfaces (on both crafts) are limited to +-

12 degrees of deflection.  On the conventional aircraft, this is no problem, both control surfaces 

are within the limits.  However, on the craft with elevons, there is a problem because the left 

elevon is requested to go to 15 degrees of deflection.   

In practice, this is less of a problem and more of a point of consideration.  Solutions to 

this problem are simple and straightforward.  For AURORA the chosen solution was to limit the 

final outputs to avoid the worst case scenario of a servo crashing, but the primary defense against 

going too far is being conscientious of the expected output ranges from the various control loops.  

This section of code persisted with minimal modifications from the initial tests until the final 

design. 

The final axis of control is yaw. AURORA has only passive yaw control, thus yaw is 

only discussed as a property of the vehicle, and not a direct axis of control.  In this paper, 

references to “yaw” refer to the relative movement about the vertical axis, while “heading” refers 

to the absolute position and movement about the vertical axis.  For instance, if the vehicle yaws 

to the left, the heading value will decrease. 

An important note on the servo mixing topic:  On the physical glider the roles of the 

ailerons and the elevator are combined onto a single set of control surfaces called elevons.  

However, in this paper the ailerons and elevator are discussed separately with the implicit 

understanding that they are combined together on the physical aircraft.  This is done to clarify 

the discussion about pitch and roll control. 

 6.5.5. The First Autopilot: Accelerometers Only 

This first version of the code was simple, using accelerometer data exclusively to 

calculate the pitch and roll values of the vehicle.  An accelerometer measures acceleration. The 

accelerometer used in AURORA has three separate accelerometers, each measuring acceleration 

for a single axis.  These sensors are mounted orthogonally so that together they provide the 

acceleration data for all three spatial axes.  When the accelerometers are at rest on Earth, they 

can measure the acceleration due to Earth's gravity.  Because Earth's gravity is always straight 
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down, it can be used as a reference for determining the orientation of the craft.  In the simplest 

form this involves taking the arctangent of the acceleration axis in the plane of rotation divided 

by the vector sum of the other two acceleration axes.  This is the most fundamental method of 

using accelerometers to determine orientation.  All methods for determining orientation from 

accelerometers utilize this equation in some form. 

The pitch and roll values calculated from this data were then fed into PID controllers.  

The PID controllers for this project used Brett Beauregard’s PID library [69].  This was chosen 

because of its proven reliability, excellent design, and easy implementation.  Most importantly, it 

made implementing numerous PID controllers as easy as implementing the first one.  For this 

first autopilot only two PID controllers were needed.  The first controlled the elevator position 

based on pitch, and the second controlled the aileron position based on roll. 

The pitch PID loop took in the pitch value calculated by the method described above, and 

was given a fixed set point, something negative, usually around -10 degrees, and output an 

elevator deflection based on the deviation from the set point.  The roll PID performed the same 

function, only with roll as the input, the set point set to zero, and aileron deflection as the output.  

This setup was never intended to be the final configuration due to sensor noise issues that will be 

discussed later, but would be the fastest way to test autonomous flight.  The first few flights were 

erratic and disappointing.  It was impossible to determine if the autopilot worked due to the 

intense oscillations caused by the flexible bamboo wing spars.  Continued tests were attempted, 

but to no avail.  Eventually the oscillations became so intense that one of the wings tore off in 

flight.  This stopped all future flight testing until a more rigid spar could be built or purchased. 

Despite this, static testing of the software revealed spasmodic control surfaces were a serious 

concern.  Even the slightest accelerations and vibrations would cause the control surfaces to 

jump around wildly.  This was most clearly demonstrated when the glider was allowed to settle 

down perfectly still on a table, and then gently touched.  Even the slightest tap would cause 

violent actuations of the control surfaces.  This led to the development of the next major revision 

of the autopilot. 

 6.5.6. Autopilot Version 2: Accelerometers, Gyros, and Kalman Filters 

The two main sensor types used for determining the attitude of small UAVs such as 

AURORA are accelerometers and gyros.  Prior experience with these sensors and their behavior 

was demonstrated clearly in the initial autopilot.  From the beginning, there was an 

understanding that the pure accelerometer code would not work well due to the nature of the 

sensors themselves.  Leaving the accelerometer data out is not realistic either because it is 

absolute.  Without absolute data it would be impossible to use only gyros and account for drift, 

making any flight more than a few minutes long impossible.  Moreover, the lack of an absolute 

value for attitude would require the craft to be oriented exactly the same at every startup or have 

the orientation input manually.  These factors make leaving out the accelerometer altogether a 

prohibitively difficult task.  It is possible that the accelerometer could be used alone by using 

some sort or rolling average or weighted rolling average, but this will reduce response time and 

is it far from the best solution, especially because it does not take advantage of the gyros at all. 

The table below shows the practical differences, advantages, and disadvantages for gyros and 



85 

 

accelerometers.  For rows with a yes or no response, the yes response is an advantage, no is a 

disadvantage. 

 

A Comparison between Accelerometers and Gyros 

Parameter Accelerometers Gyros 

Data Provided Acceleration Rate of Rotation 

Conversion to Roll/Pitch Arctangent of orthogonal axes Integration of each axis 

Is absolute? Yes No 

Short term stable? No Yes 

Long term stable/Has Drift? Yes No 

Unaffected by outside forces? No Yes 

Table 7: A Comparison between Accelerometers and Gyros 

There are many different ways of using this information to improve the autopilot.   Based 

on the data in the table above it easy to see that this is an excellent opportunity for sensor fusion; 

the advantages of the accelerometer perfectly compliment the disadvantages of the gyros and 

vice versa.  Research on how to combine the data from these two sensors resulted in two viable 

methods.  The first and simpler method, is to use a complementary filter, which requires that the 

angular measurement for both sensors be calculated and fed into a weighted average between the 

two values. 

The second and more complex option is to use a Kalman Filter.  A Kalman Filter has 

elements of many different filters such as the weighted rolling average, weighted average on the 

current values and many more.   An Arduino library was found that uses a Kalman filter to 

synthesize gyro and accelerometer data to get an accurate and steady pitch and roll angle [70].  

This was quickly implemented in the autopilot code. Static test results proved the Kalman Filter 

worked extremely well keeping stable roll and pitch values that did not accumulate drift.  

Unfortunately, the flight tests did not seem to show significant improvement as was expected.  

The roll certainly seemed improved, but the glide ratio was still atrocious, and the glider fell 

more than it flew. 

 6.5.7. Airspeed based Control and SD Data Logging 

The use of an airspeed sensor (using a pitot tube and differential pressure sensor) was 

discussed, but had been avoided due to the high cost of differential pressure sensors as well as 

the difficulty in sourcing one that could meet all of the specifications for this project.  However, 

with every single flight test up this point attaining an atrocious glide ratio of only 2-3:1 and with 

no way to know the speed of the craft up to this point; there was a growing concern on the team 

that the craft was never attaining flight speed, and could never do so due to the control algorithm 
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locking the aircraft to a specific pitch.  Therefore the decision was made to purchase a 

differential pressure sensor and a pitot tube.  Code was prepared so that the sensor could be 

tested and installed immediately on arrival.   

 
Figure 69: Labeled picture of Pitot Tube 

The design of the Pitot tube includes both static ports and a pitot port.  The pitot port is at 

the front and exposes the sensor to the stagnation pressure of the air, that is, the pressure applied 

by moving air as it is brought to a stop against the diaphragm in the sensor.  The other side of the 

sensor is attached to the static ports on the Pitot tube.  These are holes along the side of the Pitot 

tube designed to measure the static pressure of the air, which is the atmospheric pressure.  The 

difference in these two pressures, known as the dynamic pressure, can be used in Bernoulli’s 

formula to find the speed of the air going into the Pitot tube.  This airspeed can then be used as 

the only means for elevator control on the aircraft.  To implement this new means for control, the 

PID controller that originally used pitch as the input and an angle as the set point now used 

airspeed as the input and a specific airspeed as the set point.  In the code the airspeed is always in 

miles per hour (mph) because the project team can most easily relate to mph as a unit.  Any raw 

data and graphs in this paper will have the airspeed in mph, but for continuity with the rest of the 

paper text speed references will be in m/s. 

Based on the early tests in RealFlight G7.5 the best glide speed was determined to be 

around 8 m/s and the stall speed is around 6.7 m/s.  For the early tests where the capabilities of 

the airspeed control were unknown the threshold of only 1.3 m/s above stall speed was deemed 

too small.  To give a better margin of 3.3 m/s, a speed of 10 m/s was chosen for the set point. 

Another upgrade was made prior to continuing test flights.  This was the addition of an 

SD card slot for data logging.  The SD card slot on the board is connected to the navigation 

computer, leaving the autopilot with no built in logging option.  With all of the problems being 

encountered with the autopilot, it was realized that the ability to log data from the autopilot 

would be very valuable for testing purposes.  The setup of the SD card proved very time 

consuming due to a number of small faults that were very difficult to debug.  The Arduino SD 

card library also caused trouble.  The SD library is so large and used so much RAM that it could 

not be used on the 328p alongside the autopilot code.  Research turned up an alternative library 

that could only access FAT16 SD cards, 3GB or smaller, which was no problem other than that 

obtaining an SD card that small was actually a bit of a challenge at first.  The code to log data to 

the SD card was rewritten to use the smaller library, and this solved the space and RAM usage 

problems.  The SD card would prove troublesome time and again throughout the project, but the 

data it provided was extremely valuable.  Almost every single improvement to AURORA that 
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occurred after this point in development relied on data logged to the SD card.  Future changes to 

the SD setup were not done for performance enhancement, but merely to ensure continued 

functionality, and as such they are documented in the paper separately.  The SD card did undergo 

significant changes when the switch to the flight controller board was made and when the Teensy 

was installed.  The specific values logged changed frequently as the importance of certain 

parameters became more or less relevant to the current flight testing.  Once the flight testing was 

completed, the SD card would no longer be needed for the autopilot computer, and it would be 

disabled with a #define and then the physical card and holder could be removed. 

 6.5.8. Continued Glide Ratio Problems 

Despite all of the software changes to try and keep the glider from plummeting to the 

ground after every launch, problems persisted that prevented any flights from making any 

reasonable progress.  Even after changing the PID coefficients numerous times, it seemed as 

though there was no way to get and decent glide ratio out of the glider.  With no explanation for 

the current failures, much less a solution for them, the RealFlight simulator was consulted.  The 

goal of this was to determine what, if any, differences existed between the real craft and the 

simulated one.  The simulated model had demonstrated excellent flight performance which was 

not at all close to the performance being seen of the actual model.  A couple of key differences 

between the models were noted: First, the CG was much farther back on the simulation model; 

second, the control surface deflection in the simulator was far less than on the real model.  The 

CG discrepancy is discussed in great detail in the Airframe development section, but in short, the 

CG was determined to be completely wrong on the actual craft.  The vastly smaller control 

surface deflection on the simulator model opened up the question of how the deflection amount 

will affect glide ratio.  The simulator made it easy to perform a series of tests at different 

deflections to see how that affected glide ratio.  The simulator model was set up using a yaw 

stabilizer to ensure a straight flight path, and winds were turned off.  The elevator deflection was 

controlled using the trim tab so that the deflection would remain perfectly constant.  Data was 

gathered in 31 tests at differing elevator deflections.  The deflections ranged from 2.4 to 27.9 

degrees of upward deflection.  The graphs below show the results of those tests. 
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Figure 70: Graph of Airspeed vs. Elevator Position from RealFlight 

 

 
Figure 71: Graph of Glide Ratio vs. Elevator Position from Realflight 

This data clearly showed that deflections greater than roughly 10 degrees cause an 

increasing drop in glide ratio.  AURORA was configured so that it could easily deflect the 

elevators and ailerons to their full mechanical deflection of nearly 60 degrees.  Deflections in the 

range of 30-40 degrees were normal occurrences.  This data demonstrated that the high 

deflections being used in the autopilot were too extreme and needed to be severely toned down.  

This led to a concern that if the controls were tuned down significantly, the craft could not 

respond quickly enough in a very steep dive and recover.  To alleviate this concern multiple 

control laws were implemented.  When the craft is flying normally, the controls are very light, 

but if the pitch value drops below 30 degrees, the control authority escalates and increases the 
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range of the controls.  If the pitch value drops beyond 60 degrees, a third control law is activated 

which provides the maximum amount of control range. 

 6.5.9. Obtaining Clean, Fast Airspeed Acceleration with Min-Max Filtering 

The original, and most important, purpose of the airspeed acceleration data is to provide a 

means to get the aircraft out of a steep dive as quickly as possible, and to do this without relying 

on pitch data. The second role the airspeed acceleration data plays is too damp out any 

porpoising that develops as a result of the delay in the airspeed PID controller. Unfortunately the 

long-time-interval derivative combined with multiple averaging steps results in a time delay that 

causes the airspeed damping PID to amplify porpoising instead of attenuating it.  This effect 

appears exaggerated when serving as the means to recover from a dive because the averaging 

suppresses the sudden increase in acceleration for some time, reducing the magnitude and speed 

of the control response.  Based on the flight data obtained from the last few tests, the graphs 

showed that for a slope direction change of the airspeed (up → down or down → up), the current 

filters required at worst between .25 and .3 seconds before the calculated airspeed acceleration 

would show a sign change(+ → - or - → +), and since this is a gradual change it takes still longer 

before there is enough of an output to have any effect on the control surface position.  It was also 

possible to come up with a rough idea of what the maximum transient response time should be 

for seeing a sign change in the acceleration after the slope direction change of the airspeed.  

Based on visual analysis of how the airspeed responds to control inputs and how the porpoising 

develops, it was determined that the maximum transient response time should be less than .1 

seconds. 

 
Figure 72: Graph of Raw Airspeed Acceleration without Filtering 
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The original filtering method for the airspeed acceleration using multiple stages of 

averaging produced a clean data stream which contained reasonably accurate acceleration data, 

but that averaging introduced significant time delays in the response loop.  A new filtering 

solution is needed that can take in very noisy data, filter it, and do so without compromising the 

transient response time.  The development of the new filter was completed using the data from 

test flights using airspeed acceleration, Excel, and MATLAB.  This way the new filters can be 

compared to the old both in terms of filter quality and transient response time.  The development 

of the new filter began where the old left off: with averages.  The old averaging method used 

limited rolling averages.  The new averages were also rolling averages, but they were not time 

limited.  The averages did not store past values, each time a new value became available; it was 

averaged with the old average.  A single rolling average made a substantial improvement over 

the raw data, but it alone was not enough. The single rolling average was useful for finding out 

how averaging at different stages of a calculation affects the output.  Testing the average at 

different stages of the calculation showed minimal effect on the output.  The averaging can be 

performed at any point, and it will produce a nearly identical result.  From here, the simple 

rolling average was modified to allow for weighting.  Weighted rolling averages look almost 

identical to simple rolling averages, but when a new average is taken, each component is given a 

fractional weight such that all the weights add up to one.  This technique was found to allow for 

better control of the output filtering, but once again, no matter how the weights were tuned, 

getting out clean data with a good time response proved mutually exclusive.  The next attempt 

combined multiple averages together in various ways to filter the most while performing the least 

amount of averaging.  After hundreds of fruitless attempts to find a workable combination, the 

conclusion was made that the fundamental characteristics of an averaging filter make them 

unsuitable for this application.  For an averaging filter to be able to filter this data effectively, the 

new data point must be so significantly diluted that it cannot provide a large enough pull to move 

the entire average when a transient change occurs.  This means that once the averaging was 

sufficient enough to produce a useable signal, the transient response time was .25 seconds, 2.5 

times what had been determined as acceptable. 

To gain a wider knowledge of the filter options available, significant research was done 

on the types of filters available that can perform the filtering needed for AURORA.  Nothing 

groundbreaking was discovered, and so it was decided that the best option may be to look at the 

Kalman filter.  The Kalman filter was used to great success on this project for the purpose of 

combining gyro and accelerometer data to completely attenuate jitteriness in the control surfaces 

very early on in the project.  Additionally, research showed that the Kalman filter was highly 

praised by many for its ability to clean up terribly messy data with ease.  Unfortunately, the 

Kalman filter library used for the accelerometers and gyros was written very specifically for that 

purpose, and could not be used as is.  Searches for generic Arduino Kalman filter examples 

turned up no useful results, leaving a custom Kalman filter as the only remaining option.  At the 

time, none of the members of the project team felt comfortable enough with Kalman filters to 

write the software for one.  Several internet tutorials on the workings of Kalman filters were 
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found and worked through until at least a minimum working knowledge of Kalman filters could 

be obtained.  One tutorial by Greg Czerniak [71] in particular had some Python sample code for 

a one dimensional Kalman filter.  Elements of this code were used as a model for the autopilot 

code written in Arduino and the testing code written in MATLAB.  As a result of this study 

valuable information about the function and use of Kalman filters was garnered.  Particularly 

prudent to the problem on hand was the information that a Kalman filter is, at its core, a 

weighted rolling average.  This was a definite concern given the prior experience using averages.  

Despite this, the Kalman filter’s ability to dynamically adjust the weighting of the average based 

on the estimate of the current state could make a huge difference in the output quality.  Testing 

the Kalman filter required tuning the various coefficients until the graphs were showing that they 

had been fully optimized.  Having no experience with this tuning process on Kalman filters 

meant that for quite a while there was no significant progress made because the coefficient 

assignments were made based on guesses.  Eventually decent starting point numbers were found 

and the tuning process began.  A substantial amount of time went into tuning, including a couple 

of attempts to find entirely different values that would give a better result.  The results showed 

that the Kalman filter could perform a better filtering job than the averages, but it could not give 

a much better transient time response.  At very best, the Kalman filter was giving a transient time 

response in the area of .17 seconds. 

The testing up to this point had ruled out the two most common methods for filtering.  To 

try and resolve this issue, the decision was made to put serious analytical thought into how the 

average filter behaves, and how to isolate the desirable behaviors.  The average filter was chosen 

because trying to do this for the Kalman filter would be far more difficult considering the 

mathematical complexity of the Kalman filter.  After deep analysis and considerable scratch 

work, a concept for how to perform initial data filtering was developed, using a system which 

should have a much better transient response than the averaging filter.  This concept was given 

the name Progressive Min-Max filter.  The logic of this filter is as follows.  The reason for the 

high amount of dilution of the average filter is a result of the input data swinging aggressively 

from positive to negative values.  However, there is some regularity to this swinging because the 

Kalman filter works reasonably well even with this swinging.  This means that the process noise 

must be at least close to Gaussian in nature and therefore by looking at the true value + 

maximum noise or the true value + minimum noise will yield a line identical to, but offset from 

the true value.  By finding a recent maximum for each point of data, it should be possible to see 

this effect. 

This is accomplished by using the maximum values from a rolling list of the last ten 

values.  This data is less noisy because the maximum calculation is in a sense averaging on the 

data by only keeping the maximum value out of the last ten.  This will be far more responsive 

than the normal averaging filter in circumstances when the airspeed goes from decelerating to 

accelerating.  As soon as the airspeed begins to increase, the maximum value will always be the 

newest value.  This can also be applied to the minimums as well, but the response will be 

immediate when the slope of the airspeed switches to a negative slope.  The process noise being 
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Gaussian means that the amount of error above the actual value should be similar to the error 

below.  By finding the median between these two values, an approximation of the actual value is 

obtained.  This value ought to be more stable because the noise is effectively filtered out by 

using the maximum and minimum values of the noise and cancelling them out.  Thus any noise 

that occurs between the maximum and the minimum will have no effect on the value 

In working on this method of filtering, another realization was had.  It would be possible 

by slightly modifying the current algorithm to get a value proportional to the time based 

derivative, without using time.  Because the max value line follows the highest values, and the 

min line follows the lowest, the difference between those lines can be used to find a value that is 

proportional to the time based derivative.  This is the result when the slope is negative, the 

minimum value will tend to follow the value at the very front of the value range, while the 

maximum will follow the last value.  The opposite is true of a positive slope.  As the slope 

increases, the difference between the values at the front and the back of the range will get larger, 

corresponding to the higher rate of change.  Instead of taking the derivative, the difference 

between the rolling maximum and rolling minimum can be taken to determine a value 

proportional to the acceleration, and the value returned is a well filtered value for airspeed 

acceleration.  The only issue with this method is that the difference between the max and the min 

will always be positive, so there must be a calculation to determine the correct sign of the 

airspeed acceleration.  This is done by combining the first method with the second.  Because the 

Progressive Min-Max filter is now applied to the airspeed directly, the median value will be a 

filtered value for airspeed.  The sign for the acceleration is found by getting the sign of the 

change in airspeed over each time interval.  The sign of this change is applied to the difference 

between the max and min, and this value is used for the airspeed acceleration.  The filtering is 

not quite as good as with the original averaging filter, but it is still much better than the raw data 

shown above in Figure 72, and furthermore in test this degree of filtering has worked 

exceedingly well.  A comparison between the raw time derivative airspeed acceleration and the 

Progressive Min-Max filtered value is shown below.  
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Figure 73: Graph of Original Averaged Airspeed Acceleration 

 

 
Figure 74: Graph of Progressive Min-Max Filtering of Airspeed Acceleration 

Although this work took nearly three full days of trial and error math along with deep 

analysis of the flight data to complete, the rewards were well worth it.  Testing showed that the 
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glider could easily and quickly recover from steep dives, and the porpoising that had plagued 

flights from the very start was eliminated. 

 6.5.10. Issues with Inter-Microcontroller Communications 

Very early on in the project it was decided to use UART for the communication between 

the Navigation Computer and the Autopilot Computer.  UART was chosen because it is 

relatively high speed, easy to use, full duplex, bidirectional, and does not slave one device to the 

other. Minimal effort was initially placed in researching alternatives because it was felt that this 

option was by far the best. This assumption was quickly proven to be false as numerous 

problems arose leading to tens of hours of unexpected debugging. Many of the problems and 

their solutions were bizarre and have yet to be explained even after consulting both peers and 

professors. The problems included: character transmission issues, initialization issues, receive 

buffer overflow issues, and broken receive buffers. Given the initial high expectations for the 

easy implementation of UART; the numerous hours spent debugging the countless issues made 

UART communications one of the most frustrating parts of the software development process.  

One of the most important lessons learned during the process was the need to read from the 

buffer frequently.  Despite the buffer being able to hold 64 characters, it seemed that if the buffer 

was not read out multiple times a second to a software buffer, the data would get corrupted, and 

sometimes blocked that UART port from receiving any more data.  Specifically, most uses of the 

standard Arduino method “delay(long msec)” would cause a failure of the UART port.  

Eventually the UART code was refined to work correctly, and after it functioned near flawlessly 

and met all of the requirements for data transmission, reliability, and not interrupting or blocking 

the flow of the rest of the program. 

 6.5.11. Update to Directional Cosine Matrix 

The prior flight tests were mostly complete failures.  It appeared that the failure mode had 

shifted again, indicating that the problem addressed by the prior fixes was well taken, but 

unfortunately another new failure mode had developed.  This time, the failures were able to slip 

past the airspeed, airspeed acceleration, pitch, pitch damping, roll, roll damping, and heading 

control algorithms.  As with the vast majority of the previous flight failures, this one resulted 

from an undefined flight condition.  The aircraft entered into a very steep spiral and the flight 

data completely misrepresented the actual condition of the craft, leading the autopilot to believe 

the craft was flying poorly, but still within reason.  The entry into the steep spiral was made 

possible because the craft began a turn after launch, as well as entering into a dive.  The autopilot 

commanded dive was compounded by the rolling because any airplane will have a tendency to 

nose down when roll is increased.  This compounding created a very rapid pitching down.  The 

rapid pitching down resulted in a situation where the roll and pitch values quickly became 

unreliable due to the increasing downward acceleration.  In addition, strong winds on the nights 

of these tests likely helped throw the craft into the steep angle of roll.  Once the roll angle 

approached 90 degrees, the chance for pitch and roll recovery was completely lost and the 

system was left to rely on the airspeed controls to step in as the craft rapidly accelerated and 

eventually reached unsafe speeds.  This was not able to happen due to the steep spiral.  The steep 

spiral resulted in heavy accelerations and induced drag, slowing the dive to the ground.  This 
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prevented the forward acceleration needed to trigger the airspeed emergency overrides; the 

descent was at a nearly constant speed of roughly 20 mph.  And although this lack of downward 

acceleration should have caused the accelerometers to provide more accurate pitch information, 

the high G turn produced other accelerations that, when used to calculate pitch angle, resulted in 

registering a gentle dive.   

Given that this sort of problem had happened multiple times before, and had almost 

always required the development of a complex solution to address only that particular unique 

condition, the decision was made to not come up with yet another “band-aid” solution, but to try 

and find either a mechanical alteration to improve stability, or a programmatic way to completely 

fix the problem.  The first step to finding a solution was to better understand the flight dynamics 

at work that resulted in such an aggressive flipping action.  To try and understand some of the 

flight dynamics at work, a recent graduate of WPI with excellent understanding of Aerospace 

Engineering was consulted.  After less than a hour of conversation, a simple conclusion was 

reached: If the craft could not be made to accurately measure pitch and roll, there would be no 

guarantee that the craft could avoid leaving stable flight. 

This would require a complete change of the way that the craft calculates pitch and roll.  

The current pitch and roll calculations were based off of the Kalman filters which were initially 

added in one of the very early versions of the autopilot, back when the issue of calculating pitch 

and roll was first investigated.  Most of the results of various internet searches reference Kalman 

filters, and complementary filters.  For many of these results, especially those referencing 

complementary filters, the applications in discussion were ground based robots or quadrotors that 

would never have to deal with many of the situations AURORA has to deal with on a regular 

basis.  The only piece of open source software, known by the project team, to deal with fixed 

wing UAVs was the Ardupilot project.  The source code for the Ardupilot had already been 

obtained for the purpose of study some time ago, but the code was so difficult to comprehend, 

the endeavor had been dropped.  While attempted numerous searches with different queries in 

the hopes of turning up something slightly different, the most important software discovery of 

the entire project was made. 

In one search a project called the “ArduIMU” was uncovered.  The ArduIMU was 

developed by the team at DIYDrones, the same who developed the Ardupilot.  The ArduIMU is 

not in itself an autopilot, but it does perform much of the math on an ATmega 328p to get values 

such as pitch and roll.  Although it appears that the project had died in 2014, all of their source 

code still existed and was easily available online. Fortunately, the source code for the ArduIMU 

is far shorter and less complicated than the source code for Ardupilot. It was immediately 

obvious that they were using a completely novel method for calculating pitch and roll. A brief 

search through the Google code site for the ArduIMU turned up a “Theory” Wiki page which 

linked to a number of papers that describe the exact method they were using to calculate the 

attitude of the aircraft [72].  This method is called the “Directional Cosine Matrix”. It is likely 

this method was not discovered earlier due to the fact that it is somewhat new and not used 

nearly as often as other methods. As with the Kalman filter discussed earlier the Directional 
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Cosine Matrix is a very complicated mathematical work and will not be discussed in 

mathematical detail in this paper.  Instead a brief discussion of why it works and how it improves 

upon the Kalman filter for navigational functions will be discussed here.  The Directional Cosine 

Matrix improves immensely on the Kalman filter by being far less indiscriminate with how it 

uses data from the sensors.  While the Kalman filter can be slightly tuned to prefer one sensor 

over another, the Directional Cosine Matrix is capable of specifically picking out the best 

features of each sensor and avoiding their pitfalls.  The Directional Cosine Matrix starts with the 

gyro data, which it uses as the primary source of directional information.  As was discussed 

earlier, the gyros need to be corrected by something else to ensure they do not drift too much.  

To correct the gyros, the Directional Cosine Matrix uses the accelerometer data.  However, to 

avoid correcting the gyros with false accelerometer data, the accelerometers are corrected as well 

using GPS and airspeed to eliminate a few external sources of accelerations.  The gyros are not 

corrected directly by the accelerometer; however, the acceleration data and gyro data is fed into a 

PI controller which is then used to correct the gyro values.  In this way, the I value in the PI 

controller is able to “learn” the drift bias of the gyro over time, making the system increasingly 

accurate during the flight [72].  The effects of this more careful use of sensor data are 

remarkable.  The glider behaved completely differently, and all of its former bad behaviors were 

seen to completely disappear.  The Directional Cosine Matrix method of determining the attitude 

of the aircraft finally solved a problem that had been plaguing AURORA from almost the very 

beginning. 

 

6.6. Final Software Design and Results 

Though the radiosonde and navigation code did not require much development, they did 

receive a large amount of testing.  All of the functionality of that software was verified to work 

long before the autopilot code was ready.  Although the autopilot took much longer to be fully 

developed, it was fully tested, and is ready for more full scale testing.  Every aspect of the 

software has been verified to work, and the modes are able to switch between one another 

correctly. 

 6.6.1. Final Autopilot Design Overview 

The final design for the autopilot was by far the best and most reliable design up to that 

point.  It was the first one that had serious potential to not suffer any flight control errors.  This 

was primarily due to the addition of the Directional Cosine Matrix.  The controls for each of the 

three axes are described below. 

 Roll: Roll control is derived from two PID controllers. The first one is used to 

determine the aileron position based on a desired value coming from the heading 

control PID.  The second PID uses the roll gyro to damp the motion in roll.  The 

value for the actual amount of roll comes from the Directional Cosine Matrix 

using the gyros and accelerometer. 

 Pitch: Pitch control is derived from two PID controllers. The first one is used to 

control the pitch from the set airspeed.  The second PID controller uses the 
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airspeed acceleration data to damp change in airspeed by adjusting pitch.  The 

airspeed acceleration data is derived from the airspeed data after being fed 

through the Progressive Min-Max Derivative filter.  Additionally, the pitch 

control is adjusted by the roll of the aircraft to ensure the nose doesn’t drop too 

much when turning. 

 Yaw/Heading: This craft does not have active yaw control, therefore the Heading 

PID is used to direct the roll controls so that a heading can be turned to and 

followed.  The heading data is derived from the gyros and GPS heading after 

those are fed through the Directional Cosine Matrix. 

6.6.2 Final Navigation Code Design Overview 

The navigation code was in a fully tested and complete state for over a month before it 

had its first real flight test.  The hours spent simulating the code, and then running mock data to 

it had certainly paid off because it worked on the very first attempt.  The navigation code 

demonstrated that it was able to read in a list of landing sites, parse GPS data, and the use that 

data and the landing site info to select the closest landing site.  It then uses that information to 

calculate a heading to the landing site and transmits that information along with the GPS heading 

and speed to the autopilot.  The navigation code was also able to effectively switch between 

modes.  Though never tested in flight, ground tests with fake GPS data showed the navigation 

code switching into spiral descent mode, then landing mode, and even back out again if the 

situation arose.  The navigation code was able to meet all of the requirements set for it and 

passed tests that verified that functionality. 

6.6.3 Final Radiosonde Code Design Overview 

The radiosonde code was by far the shortest and simplest code of the three, but it is still 

crucial, because it is the core reason for the rest of the project to exist.  This code was tested and 

verified very early on in the project to send weather data via the APRS network.  This test 

confirmed the efficacy of the radiosonde code.  Other tests using the SD card confirmed that it 

can be written to and read from. 

6.6.4 Software Conclusions 

The section of code which required the most effort, the autopilot, was initially thought to 

be fairly straightforward, and that it would be the navigation code that would be the most 

difficult.  Obviously this was not the case, and it was the autopilot that would require up until the 

last possible moment to debug and recode.  A tremendous amount of research and analysis went 

into creating the final editions of the AURORA software, and it paid off because in the end, all 

of the code did work. 
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7. Conclusion 
The goal of this project was to develop a radiosonde-glider capable of autonomously 

navigating to a safe recovery location for reuse. Over the course of three short academic terms, 

the project went from concept to reality, challenging the team’s skills at every step along the 

way. 

Almost every criteria that determine the success of the project were met or exceeded in a 

design that is competitive with modern solutions. The Flight Controller was developed and is 

more capable than any radiosonde already on the market. It was designed from the ground up to 

operate in the conditions expected at the edge of space.  It has proven time and again that it can 

fly AURORA.   

The software written to run on the Flight Controller has demonstrated time and again that 

it can both fly AURORA as well as select a landing site from a preloaded list and initiate the 

process of navigating to it.   

An airframe was developed which was proven to be able to land in a condition not 

requiring extensive repairs or maintenance.  Although the glider never had a flight which 

covered the full distance of 304.8 x 2133.6 meters, the glider did demonstrate that it could 

sustain a glide ratio of 8.8:1 for greater than 10 seconds at a time.  This clearly surpasses the 

glide ratio for a 304.8 x 2133.6 meters flight which is only 7:1.  The glider was made of 

materials very similar to those found on current radiosondes and, at 367 grams, remained under 

the set mass limit of 500 grams.  This configuration will be easily consumed by a jet engine 

should such a collision occur. The glider demonstrated the ability to reliably separate from the 

balloon and was tested thoroughly for ruggedness and for the ability to fly smoothly. 

The entire unit cost of $425.81 is well under the limit of $580, making this device a 

viable contender with other non-recoverable systems.  Additionally the need for only one balloon 

for a launch and no special equipment means that the launch cost will be the same as current 

radiosondes.  Project AURORA was also characterized in a brief in a CONOPS developed at the 

start. 

The project did fall short of the more ambitious test that were laid out at the beginning, a 

drop test from at least 1000ft. This test could not be completed due to time constraints and a lack 

of adequate space and resources. In the end, there was nothing the 1000ft test would prove that 

was not proven in the final 200ft tests that were conducted. Moving forward, the glider should be 

tested at higher altitudes and eventually be put through the full 100,000ft flight. 

The project has great potential to change the way weather data is collected in the future. 

A unique and often overlooked problem is addressed by an elegant and affordable solution. 

Higher recover and reuse rates will save millions of dollars every year and allow for more data to 

be collected with more specialized sensors. This radiosonde-glider is a proof of concept which 

only needs a little more development to become a fully realized tool in the Earth science 

community.  
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Appendix A: Bill of Materials 
The following is a bill of materials of all components necessary to build an AURORA 

radiosonde-glide: 

Device Value Package Part # Quantity 
Unit 
Price 

Total 
Price 

AURORA Flight Controller: 
      Capacitor 100nF C0805 

 

6 0.036 0.216 

Capacitor 10uF C0805 
 

1 0.2 0.2 

Capacitor 22pF C0805 
 

3 0.048 0.144 

Resistor 10k R0805 
 

5 0.0152 0.076 

Resistor 1M R0805 
 

1 0.021 0.021 

Resistor 4.7k R0805 
 

1 0.021 0.021 

Resistor 510R R0805 
 

1 0.021 0.021 

Resistor Array 10k CAT16 
 

4 0.068 0.272 

Resistor Array 510R CAT16 
 

1 0.036 0.036 

Diode 
 

D1206 
 

3 0.394 1.182 

LED Green 
 

CHIP-
LED0805 

 

1 0.29 0.29 

LED Yellow 
 

CHIP-
LED0805 

 

4 0.253 1.012 

Header Pins 
   

17 0.00783 0.133 

N MOSFET (logic shift) 
50V 
200mA SOT23-3 BSS138 3 0.277 0.831 

N Power MOSFET 
 

TO220BV FQP30N06L 2 0.95 1.9 

Crystal 8MHz QS 
 

1 0.7 0.7 

ATMEGA2560V-8AU 
 

TQFP100 
 

1 16.55 16.55 

ATMEGA328P-TQFP 
 

TQFP32-08 
 

1 3.58 3.58 

9DOF IMU Breakout 
 

LSM9DS0 1 24.95 24.95 

GPS 
 

JST4 GP-735 1 39.95 39.95 

Temp Sensor 
 

JST 3 DS18B20 1 4.25 4.25 

Humidity Sensor Breakout JST 4 HTU21D 1 14.95 14.95 

Barometer 
  

MS5803-01BA 1 18.98 18.98 

microSD Socket 
 

MICROSD_1:
1 

 

1 3.95 3.95 

Step down regulator 3.3V 1A TSR-1 TSR1-2433 1 9.56 9.56 

JST 3 Header 
 

right angle 
 

5 0.169 0.845 

JST 3 Housing 
   

5 0.08 0.4 

JST 4 Header 
 

right angle 
 

2 0.22 0.44 

JST 4 Housing 
   

2 0.1 0.2 

JST Crimps 
   

23 0.0376 0.8648 

JST 6 Combo 
 

right angle 
 

1 1.5 1.5 

Servo 
   

3 1.0995 3.2985 

4AA flat holder 
   

1 3.09 3.09 
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PCB 
   

1 13 13 

Energizer Ultimate Lithium 
AA  

   

4 1.59 6.36 

Airspeed Sensor 
   

1 54.21 54.21 

Pitot Tube    1 12.38 12.38 

Teensy (Cortex M4)    1 19.95 19.95 

       

AURORA GSM module: 
      GSM module 
  

SM5100B 1 39.95 39.95 

GSM module connector 
   

1 3.74 3.74 

GSM module antenna 
   

1 7.95 7.95 

Linear VREG 3.6V D2PACK/A LT1085IM-3.6 1 5.5 5.5 

SIM Holder 
   

1 0.95 0.95 

Capacitor 10uF 25V C1206 
 

1 0.24 0.24 

Capacitor Tantalum 22uF Tant C1206 
 

1 0.77 0.77 

Resistor 10k R0805 
 

1 0.0152 0.0152 

SIM Card 
  

AT&T 6006A 1 5.56 5.56 

PCB 
   

1 5.67 5.67 

SIM Card Plan 
   

1 10.63 10.63 

       AURORA Radio module 
      HX1-144.390-3 
   

1 47.95 47.95 

Buck Converter 5V 1A TO-263-5 
TL2575-
05IKTTR 1 2.28 2.28 

Diode 
  

1N5819HW 1 0.44 0.44 

Capacitor Tantalum 
100uF 
10V C1210 

 

2 1.62 3.24 

Capacitor Tantalum 
330uF 
10V C2917 

 

1 1.84 1.84 

Inductor 20uH 
  

1 1.15 1.15 

Inductor 330H 
  

1 0.72 0.72 

PCB 
   

1 4.1 4.1 

       Flight Controller Assembly       

Nylon Nuts    38 0.0563 2.1394 

Nylon Bolts    6 0.0527 0.3162 

Small Zip ties    8 0.0428 0.3424 

3D Printed Spacers Short    2 0.01 0.02 

3D Printed Spacers Tall    2 0.01 0.02 

3D Printed Washers    4 0.01375 0.055 

3D Printed Barometer Cover    1 0.01 0.01 

3D Printer GSM Spacer    1 0.01 0.01 

3D Printer Spacer w/ Arms    2 0.03 0.06 
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Original Flight Controller 
Total 

    

 386.03 

Flight Controller + Teensy 
Total      405.98 

       

Airframe       

Foam Board (Readi-Board)    2 1 2 

SG90 Servo    3 1.8 5.4 

Nylon Control Horn    2 0.545 1.09 

Control Rod    1 1.09 1.09 

Carbon Fiber Rod    1 10.25 10.25 

       

AURORA Radiosonde-Glider 
Total      425.81 

Table 8: Bill of Materials 
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Appendix B: PCB Schematics 

 
Figure 75: Flight Controller PCB Schematic 
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Figure 76: GSM Module PCB Schematic 

 

 
Figure 77: Radio Module PCB Schematic 
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Appendix C: Procedure for Building the Airframe 
 

Introduction 

This section provides the step-by-tep procedure developed to build the airframe from 

scratch. With experience and the recommended tools, total assembly time is approximately two 

hours. If starting from scratch without tools like a laser cutter, the assembly time is closer to six 

hours, which is still plenty of time to prepare the entire glider between the launch times of 

National Weather Service balloons, every twelve hours. 

 

Materials/cost 
 

Item Cost per 

Unit 

Quantity Total 

Cost 

Readi-Board Polystyrene Foam Presentation Board 

.508m x .762m (20” x 30”) 

$1.00 2 $2.00 

SG90 Servo motors $1.80 3 $5.40 

Nylon Control horns (set of 2) $1.09 1 $1.09 

Control rods $1.09 1 $1.09 

2.38mm(3/32 in) carbon fiber rod (1.2m) $10.25 1 $10.25 

Total 
  

$19.83 

Table 9: Airframe Materials and Cost 

Tools 
The tools needed to build the glider are listed below. Required tools are necessary to build the 

glider in its most rough form, whereas optional tools allow manufacture to be finer and assembly 

to proceed faster. 

 

Required Tools 

 Utility knife 

 Hot glue gun with hot glue 

 Straight edge/1 meter ruler 

 Iron 

 Electrical tape 

 Pen/pencil 

 

Optional Tools 

 Hobby knife 

 Laser Cutter 

 Heat gun 
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 Vice 

 Dremel with cutoff wheel 

 1/16 in steel welding rods 

 ⅛ in drill bit 

 Flat-head screwdriver 

 Isopropyl alcohol 

  

6.4 Steps 

 

1. Acquire materials 

The materials and tools needed to build the glider are detailed in the proceeding 

sections, most can be found at a local dollar or hobby store. Servo motors and carbon 

fiber rods can be found in hobby stores but are usually available from online retailers for 

cheaper. 

2. Cut foam board to fit laser cutter 

 An optional step, one 20” x 30” board can accommodate either two wings, two 

copies of every other part together, or one wing with a copy of one fuselage and winglet. 

The laser cutter available to the project in Washburn shops could only hold materials that 

are 24” x 20”, meaning that the boards had to be trimmed down with a straightedge and 

utility knife to fit. The excess material should not be discarded as it can be cut into the 

covers for the fuselage later on.  

3. Cut parts from foam board 

 Use either the CAD files with a laser cutter or plywood templates to lay out the 

patterns of the parts onto the board with a pen. Laser cutter settings should account for 

the hinge of the control surfaces in the wings. All parts except the wings have symmetry 

and can be cut in any orientation. The wings control surface hinge cut will be facing 

down in the final airframe, so wings should be flipped with each cut to ensure that there 

are equal number of left and right wings. 

4. Finish wings 

 After all parts are cut, begin heating the iron. As it heats up, the control surfaces 

of the wings should be bent back to ensure all the foam has been cut. With the control 

surface folded back, the utility knife is used to cut an angled edge along the control 

surface so that it can deflect in both directions. Care should be taken that the knife does 

not cut the paper hinge. If the paper is accidently cut, a thin layer of hot glue on the top 

side of the hinge can be applied to reinforce it. 

 Use the iron once it is heated to round the leading and trailing edges of the wings 

and winglets into a bullnose shape. Slowly sliding the iron at an angle along the edges of 

the wing while applying light pressure is the best method to ensure even heating and 

avoid uneven edges. The edges of the winglets can be applied all at once to the iron. 

 The servos should now be mounted into the slots already cut into the wings. They 

are hot glued in place. The control horns are placed with screws that are pushed through 

guide holes included on the template. These control horns are then tightened in place with 

the optional screwdriver or any tool that can tighten flat head screws. Connecting the 

servos to the control horns with the control rods completes the wings. 

 One optional but highly recommended step to do now is to attach the fuselage 

walls to the bulkhead and tack them in place with some hot glue on the underside. This 
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will make attaching the wings easier later on if the fuselage walls are not free to move 

around while the spars are being inserted. 

5. Cut carbon fiber spars to length 

 The carbon fiber rods are the most reusable part of the glider and only need to be 

cut if none are already available to use. Three spars are needed at lengths of 24 cm, 30.5 

cm, and 61cm. Mark the lengths and use a non-toothed blade to cut the rods. Ideally a 

diamond cutoff wheel should be used, but if none are available the utility knife will 

suffice. 

 If a heat gun and welding rod are not available, both ends of the carbon fiber rod 

should be cut to a point so that they can be pressed into the wings with as little tearing of 

the foam as possible. 

6. Insert spars into wings 

 If a heat gun and welding rod are available, begin heating one end of the rod. 

While it is heating, mark the locations that the spars will go into on the wings and 

bulkhead. These locations are the center of both tabs on the wing and the center of the 

aft-most tab of the bulkhead. Make sure all marks line up between the wings and 

bulkhead before boring out the foam. 

 When the rod is heated (usually some bluing can be observed on the rod), insert it 

into the foam perpendicular to the edge at the marks that were just made. The rod should 

slide in easily, melting the foam back as it goes. If it does not, it needs to be heated more. 

Press the rod as far as the carbon fiber rod will need to be pressed in, marks can be made 

on the surface of the wing or rod to help with this step. Pull the rod out quickly to prevent 

excess melting at the end of the hole. Reheating the rod between boring into the foam 

makes the task easier and helps clean melted foam off the end of the rod. 

 After all the holes have been bored out, insert the carbon fiber rods through the 

bulkhead. After they are lined up, apply the fuselage walls if they have not been tacked 

on already followed by one wing. The wing should have the hinge cut facing down and 

care should be taken to avoid bending the wing, tearing the foam, or pushing the carbon 

fiber through the wing’s surface. After the first wing is properly inserted, the second wing 

can be put on the other side, again with care taken to avoid damage. 

7. Cut and bend fuselage covers 

 The easiest way to make the fuselage cover is to take the excess foam board cut 

before cutting the actual glider parts. These scrap sections are usually 50.8 cm x 15.25 

cm, and an accurate cut will give two equally-sized covers. Each cover must be 75mm 

wide, and can easily be cut with the utility knife and straightedge.  

 After the covers are cut, take one cover and begin curving one end of it by hand. 

Test fitting the curve against the fuselage walls is recommended. The curve should follow 

the nose around the top to the bottom, ending about 6-7 mm from the tip of the nose. 

Optionally, go to step 8 at this point and install the electronics. The covers are 

designed to allow easy access for maintenance however installation of the electronics is 

usually easier before the covers have been installed. 

Once the curve is formed, it should be glued down to the edges of the fuselage 

walls from the bottom end to approximately the same position back from the nose at the 

top edge. The cover should be held in place until the glue hardens to ensure it is secure. 

At this point the back edge can be cut to size so that the top cover now bends around the 

nose and cover the entire top of the fuselage to the tailing edge. The top cover should 



112 

 

now be cut again about at the point that is above the halfway point of the battery pack. 

This ~15 cm section is where the access port for the release mechanism is cut. It should 

be cut so that it overlays the release servo when attached to the fuselage. A simple square 

port will suffice, like the control surfaces on the wings one side should be a hinge cut that 

allows the port cover to open outwards. This hinge can be reinforced with electrical tape 

applied while it is open. Once the port is cut, the cover section can then be glued to the 

top rear of the fuselage along its entire length. 

After the top cover is complete, the bottom cover can be sized by placing it 

against the front edge of the top cover and trimming it at the tailing edge. Using a pen or 

hobby knife, the location of the release servo should be marked out on the bottom cover 

and then cut out; this will allow the servo to fit into the bottom cover. A hinge should 

then be cut about 1.3cm forward of the servo motor’s hole that allows the majority of the 

cover to open outwards and give access to the underside of the bulkhead. With the cover 

closed, the rear section should be glued in place. 

8. Install electrical components 

 The electronics are installed with zip ties. eight ⅛ in zip ties are used, four for 

each corner of the board and four used to tie the other ends of the other four. 3D printed 

PLA washers are used on the underside to spread the load on the zip tie’s heads and 

prevent them from pulling through the foam bulkhead.  PLA spacers are used between 

the bulkhead and the electronics board itself, and then the extra zip tie heads are applied 

and tightened. 

 The servo wires are threaded under the bottom cover and between the bulkhead 

and wing slots. They are connected into their respective ports on the electronics board. 

The battery pack is installed using two Velcro straps that thread through the aft-most 

wing slot and slots cut into the bulkhead. The batteries should be perpendicular to the 

fuselage to prevent them from shifting as the glider decelerates in landing and causing a 

power loss and reset. 

 The release servo is inserted into the slot already cut out for it in the bulkhead and 

glued into place. This servo will have to bear the entire weight of the glider in ascent, and 

it is recommended that it be glued on all sides on the top and bottom of the bulkhead if 

possible. The PLA release mechanism is glued down next to the servo. The mechanism 

uses excess control rod from the control surfaces to hold the string since it is strong and 

rigid. 

 The GPS receiver is hot glued over the center (30.5cm) wing spar between the 

board and battery pack. The hot glue should be applied to the bulkhead and allowed to 

cool slightly before installing the receiver to prevent any heat damage to the component. 

 Using the optional drill bit, two holes should be punched through the fuselage 

wall for the pitot tube’s air tubes. These holes should be large enough that they do not 

constrict the tubes but small enough to hold them in place at the airspeed sensor’s ports. 

Finally, a slot should be cut in the underside of a fuselage wall that the reset button can 

be inserted through. Like the servo motors’ wires, the button’s wires should be threaded 

between the bulkhead and wing slots. The button is then hot glued into place. 

9. Final Gluing and Fastening 

After the electronics and covers are installed, the final gluing can be done. The winglets 

can be glued to the wings at any time in after they are both ironed, however now is the 
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best time to glue them in place since the glider is no longer being flipped and turned 

repeatedly.  

 Tabs can be cut from scrap foam board that can be glued to the bottom of each 

cover that will help them stay down when closed. These tabs should extend 6-12 mm 

from under the edge of the covers. Applying lengths of electrical tape to each latch allows 

for easy opening and closing before launch. Two lengths are recommended; one across 

the stationary part of the cover and one hanging over the tab on the opening part of the 

cover. This prevents the electrical tape from tearing the paper off the foam board when 

the cover is opened. 

The wings can either be left as is or glued along the root to secure them in place. 

In testing it was found that leaving the wings unglued expended energy in a crash as they 

separated without damage. In tethered situations, this ended up hampering the glider in 

the wind and allowed the wings to be torn off before flight. Gluing the wings before 

flight is recommended.  

Right before flight, one large (¼ in) zip tie should be inserted through the top 

cover, bulkhead, and bottom cover with two large PLA washers on either end before 

being tied off with the head of a second large zip tie. This zip tie will keep the covers 

closed tightly during flight. 

10. Balancing 

After assembly, the CG may be too far back depending on the electronics’ 

configuration. The CG should be approximately 15 cm back from the leading edge of the 

wing at the root. A deviation of 2 cm forward or aft of this point is acceptable but ill 

advised. If ballast must be applied, it should be applied to the underside of the nose to use 

the least amount of weight and prevent the ballast from colliding with the control board if 

it ever comes loose. AAA batteries work very well for this application. 
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Appendix D: Preparing the Weather Balloon 
 

Materials 
  -800g weather balloon 

-Payload lines 

  -Zip ties 

  -Electrical tape 

  -PVC pipe (approx. 2 inch length, diameter varies) 

  -Flush cutters 

  

Procedure 
 Taking a length of payload line, tie off both ends with figure-8 climbing knots so that 

each end had 5-8 cm loop. Find the center of the line and tie off another figure-8 knot on that 

end. The final length should be at least 61 cm long with two loops on one end and one loop on 

the other. 

 Pull the neck of the balloon out of the plastic packaging while avoiding touching the thin 

part of the balloon. Depending on the neck of the balloon, which varies by manufacturer and size 

of the balloon, a 5 cm PVC insert is made from pipe and inserted into the neck about 7.5-10 cm. 

If cut from a pipe the edges should be smoothed to prevent damage to the balloon. 

 A zip tie is threaded through one loop of the payload line, around the balloon neck at the 

insert, and through the second loop before coming around to be zipped off tight. After it is 

secure, three more zip ties are added for redundancy. The excess ties are trimmed down and then 

wrapped in electrical tape to prevent sharp edges from puncturing the balloon. The balloon is 

now ready to be filled. [73] 

 

 At the launch site; the tank holding the lifting gas, usually helium or hydrogen, is secured 

to prevent it from moving and damaging the regulator. Safety lines are tied between the tank and 

the two loops already zip tied to the balloon. A tarp or blanket is laid out over the ground or table 

(depending on launch location) to prevent debris from damaging the balloon. 

 The balloon is removed from the packaging and laid out over the tarp so that any wind at 

the launch site is moving from the bottom to the top of the balloon. The hose from the regulator 

is inserted through the PVC insert and a zip tie is tightened around the neck under the PVS insert 

so that helium does not escape during filling. 

 When it is time to start filling the balloon, it must be filled slowly at first to allow the 

latex to unwind without knotting or tearing. After the balloon is opened up, the filling speed can 

be increased. As the balloon begins to rise, it should be held up by the neck to keep it off the 

ground and collide with anything sharp. [74] 

 A spring scale can be used to measure the lift of the balloon. The scale can be tied in line 

with one of the safety lines. Neutral lift is the point at which the lift of the balloon equals the 

weight of the payload. It is recommended that the balloon be filled to have at least 1.5x the 

payload weight before being released to ensure a safe launch. Having too little lift will result in a 

longer ascent time and the balloon will not burst for a long time, allowing it to drift much farther 

than intended. 

 To estimate the required amount of helium, it can be estimated that 1 cubic foot (28.3 L) 

of helium equals about 1 ounce (.278 N) of lift. The required helium should be able to lift the 

payload as well as the weight of the balloon and lines. [75] 
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 For the Aurora glider, the glider is attached by threading the payload line into the release 

mechanism while the glider is in preflight mode. The servo should latch into place and secure the 

balloon to the glider once the glider enters ascent mode. To launch the balloon, remove the safety 

line and walk the balloon up by the payload line until holding the payload itself. From there 

simply walk with the wind and let go of the balloon away from any trees or tall buildings. 
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Appendix E: Airframe Component Schematics 
 

 
Figure 78: Airframe Bulkhead 
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Figure 79: Airframe Fuselage Covers

 
Figure 80: Airframe Fuselage Wall 
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Figure 81: Schematic View of the Final Glider 
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Figure 82: Airframe Wing 
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Figure 83: Airframe Winglet 

 
 


