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Abstract 

 The purpose of this Major Qualifying Project is to create a device that identifies bird calls 

in the wild. The aim of this project is to create a handheld device that will be able to interpret 

bird calls using a high quality microphone and various signal processing techniques and display 

the top matches on an LCD screen to the user. The main objective of this project is to be able to 

identify the songs of several bird species in central Massachusetts on a lab development board 

while additional work would include downloadable software that would add the bird songs of 

more bird species and the conversion of from a lab development board to a handheld device.  
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Chapter 1: Introduction 

 Various species of birds have unique bird calls. These bird calls are distinct based on 

inflection, length, and context, meaning the same bird may have more than one call. A device 

that would analyze the signal and identify the bird based on the bird call could be of tremendous 

help to an ornithologist. This project proposed the development of this device using signal 

processing and embedded design. The first task was to find or create a database of high-quality 

bird calls to use for identification. Using this database, the team compared various features of the 

bird calls of a certain species and ascertained the features which distinguish that species from 

other species. Using these features, a recorded bird call was identifiable as a species of bird. 

 This project is an important effort because ornithology is not always an exact science in 

the field; it is based on the interpretation of the scientist hearing the bird’s song. A device that 

could quantitatively match signal waveforms would make the science more exact. Furthermore, 

bird watching is a hobby that many people enjoy. The ability to identify birds could increase the 

enjoyment of bird watching enthusiasts everywhere. 

 Before discussing the project further, it is important to delve into the prior art related to 

the project to gain an understanding of how current products work and what needs improvement. 

Several products which identify bird songs already exist, but none of them currently in 

production do exactly what was attempted in this project. There is a wealth of information on the 

internet as well as some handheld devices that require the user to match the bird calls. A 

discontinued product exists that does digital signal processing of the bird call and displays likely 

species, and the team intends to produce something in that vein with some improvements.  

In order to create a bird call identification device, the team needed to correctly utilize 

several signal processing techniques. Some of these techniques included filters, discrete Fourier 
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transforms, cross-correlation, wavelets, cepstral analysis, and audio spectrograms (Cai et al., 

2007; Lee et al., 2006). Filters were necessary to improve the quality of the bird songs and 

remove any unwanted noise. Bird songs cover a wide frequency range and discrete Fourier 

transforms allowed the team to analyze the different frequencies in each call. Cross-correlation 

allowed the team to compare recorded bird calls with the bird call database, both in time and 

frequency. Next, the group used discrete wavelet transforms. An advantage that discrete wavelet 

transforms (DWT) have over Fourier transforms is temporal resolution; a DWT captures both 

frequency and time information. Additionally, the team created audio spectrograms using both 

Fourier and discrete wavelet transforms to examine each bird’s song. Lastly, the group used mel-

frequency cepstral coefficients. To find these mel-frequency cepstral coefficients, the Fourier 

transform is taken and then the power of the spectrum is mapped onto the mel scale (Lee et al., 

2006). At that point, the discrete cosine transform (DCT) of the mel logarithms of the power 

spectrum is taken, and the resulting amplitudes are the mel-frequency cepstral coefficients. Each 

technique manipulated the bird call in a different way to help the group identify which species 

the call originated from. 

One challenge that was faced during the attempts to identify actual bird songs was 

recognizing all calls made by a particular species of bird. A bird’s song can contain a significant 

amount of information including the bird’s species, sex, individual identity, his territorial and 

reproductive status, and his probability of responding aggressively or sexually to a potential 

recipient (Emlen, 1972). There is so much information that call variation is inevitable among 

birds and any one bird can have four or more songs in its repertoire. This was one of the group’s 

greatest challenges because understanding how birds vary their songs was a significant roadblock 

to understanding how to differentiate species.  
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The previous attempts to create a device that could identify a bird’s species by its call 

have been expensive or don’t meet all the requirements of an ornithologist or bird watching 

enthusiast. This project attempted to improve upon previous devices’ shortcomings. The goal of 

this project was to use signal processing and embedded systems to identify bird species by their 

calls and lay the foundation for a hand-held bird call identification device. 
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Chapter 2: Background 

 This chapter is intended to educate the reader about background information pertaining to bird 

vocalization and signal analysis in order to instill a greater understanding of the project. The prior art in 

the area of bird vocalization analysis is first discussed, followed by signal processing techniques, and 

concluded with bird call variations. 

2. 1 Prior Art 

 Before discussing details of the project, it is important to first explore the prior art that is 

related to the goal. Many products exist on the marketplace, but none that are currently in 

production are quite like the planned project. There are two main reasons for this. First of all, 

signal processing is a complicated process, often requiring an expensive processing chip. From a 

production standpoint, it would be less expensive to manufacture a product without a signal 

processing chip. A popular way of doing this is recording the signal and having the user do the 

signal processing, comparing the known bird call with the unknown bird call and determining 

whether or not they match. This will be discussed in detail later on. 

 One product on the market is an Apple application called iBird Explorer (“Compare 

Birding Apps”), for use with an iPod Touch or an iPhone. This application is essentially a field 

guide for birds complete with bird calls. It shows pictures and matches them with bird calls, and 

also allows the user to search for birds based on a number of factors including color, shape, 

habitat, and location. 

 Other products on the market are standalone devices that do not have the same wealth of 

information, but still match a species of bird with a pre-recorded bird call from that bird. One 

such product is the IdentiFlyer, which is a handheld device that allows for headphone use. There 

are ten buttons up the sides with pictures next to them that allows the user to hear the bird call of 
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that particular bird. The device is expandable, allowing for more than ten bird species with 

additional purchases (“Identiflyer”). 

 Another relevant source of information is eNature.com. This website contains a field 

guide for birds that includes species pictures, field descriptions, range maps, and bird calls. Bird 

searches are based on shape, color, size, region, and habitats. Although the information is useful, 

internet access is needed to access the information, and that may not be available in the field 

(“eNature”). 

 The prior art that is most similar to the project is called the Song Sleuth. This device is 

made by Wildlife Acoustics and is a handheld device that implements a directional microphone 

to receive bird calls. The bird calls are then analyzed by a digital signal processing circuit board, 

and the top three most likely bird species from the database are listed in order. The database is 

taken from Cornell University’s Macaulay Library. It lists as a $300 device, but production has 

been discontinued (“Song Sleuth”). 

 Wildlife Acoustics also makes other products designed for bird song identification. The 

current model is called the Song Meter 2, or SM2. It is a weather resistant recording device that 

can record many hours of wildlife sound. Wildlife experts then take the memory to a computer 

and analyze the signals with proprietary software known as Song Scope. Song Scope 

automatically identifies various bird, frog, and other wildlife sounds while filtering out other 

noise or other wildlife sound that occurs simultaneously (“Song Meter 2”). 

 This project was most closely related to the work of Wildlife Acoustics’ work, although 

the implementation differed. This research into prior art has shown that similar projects have 

been done, but the one that is most like the team’s idea is no longer in production. The Song 
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Sleuth was discontinued because of the greater functionality of the Song Scope computer 

software, but future implementations of the team’s device may be able to implement various 

ideas into their software to make it more robust, such as narrowing down the possible database 

hits by requiring the user to input a region or coloration. Concepts like this allow the team to 

make a robust handheld platform for analyzing signals without needing the superior processing 

of a computer.  

2.2 Signal Processing 

 In order to create a bird call identification device, the team needed to correctly utilize 

several signal processing techniques. Some of these techniques included filters, discrete Fourier 

transforms and cross-correlation. Each technique manipulated the bird call in a different way to 

help identify which species the call originated from. The filters were used to filter the incoming 

bird call and remove the noise that would disturb the results. Discrete Fourier transforms 

transformed the signals into the frequency domain so the team was able to examine the different 

frequencies within each signal. Cross-correlation let the group compare the incoming bird call 

with their database of bird calls, both in the time and frequency domains, and match the signals 

with the highest correlations to determine the most likely matches. The majority of the signal 

processing was developed first using MATLAB then eventually implemented in C on a digital 

signal processing chip. 

 The first signal processing technique necessary to identify a bird call is filtering. Filtering 

is necessary because it is likely that the bird call will contain a certain amount of noise. Additive 

noise could adversely affect the results. There are several types of filters that the team could have 

used to filter noise. Some basic filters are low-pass filters, high-pass filters, band-pass filters and 

band-stop filters. Low-pass filters function by passing low-frequency signals and attenuating or 
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reducing the amplitude of high-frequency signals that are higher than the filters designed cutoff 

frequency. High-pass filters function the opposite way by passing high-frequency signals and 

attenuating frequencies lower than the cutoff frequency. Band-pass filters pass frequencies 

within a certain range and reject all frequencies outside that range. These filters can be created 

by combining a low-pass filter with a high-pass filter. The opposite of a band-pass filter is a 

band-stop filter. This filter blocks all frequencies within a certain range and passes all others 

(Proakis & Manolakis, 2005). Since bird calls are characterized by a wide range of frequencies, 

the team had to be very particular in their choice of filters in order to prevent any information 

loss and to ensure that the filters are only removing unwanted noise. 

 The second signal processing technique the team used was discrete Fourier transforms 

(DFTs). Since the team was sampling analog signals from a microphone, all of the bird calls 

were digital signals. This means that some signal processing was done digitally using discrete 

signals. A DFT transforms one function in the time domain into another function in the 

frequency domain, and is defined below in Equation 1. The sequence of N complex numbers x0, 

..., xN−1 is transformed into the sequence of N complex numbers X0, ..., XN−1 by the DFT 

according to the formula, where i is the imaginary unit and  is a primitive Nth root of unity.: 

Equation 1: Discrete Fourier Transform 

 

The transform is sometimes denoted by the symbol , as in  or 

 or . In order to increase efficiency the team used a similar technique called a fast Fourier 

transform (FFT). An FFT is an efficient algorithm used to compute the DFT of a function. Using 
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FFTs instead of DFTs help improve performance and save run-time because the complexity of a 

DFT algorithm is Θ(N2
) while the complexity of a FFT is Θ(N log N) (“Discrete Fourier 

Transform”). FFTs allowed the team to determine the frequencies contained within each bird 

call. This was beneficial because each bird call should have specific spectral characteristics that 

help differentiate it from other species. FFTs can also be easily performed in MATLAB. 

 Another signal processing technique the group utilized was cross-correlation. Cross-

correlation is a measure of similarity of two waveforms, also known as a sliding dot product or 

inner-product. Similarly, for discrete functions, the cross-correlation is defined as: 

Equation 2: Cross Correlation 

 

 Cross-correlation involves shifting one signal over another signal and looking for 

matches. It is similar to the convolution of two functions but instead of reversing a signal before 

multiplying and shifting it, correlation only involves multiplying and shifting (Cross-correlation). 

Cross-correlation allowed comparison of a given bird call with the database of bird calls. The 

bird calls with the highest correlation in the time and frequency domains are the most likely 

matches. 

2. 3 Mel-frequency Cepstrum 

The mel-frequency cepstrum represents the short-term power spectrum of a sound, which 

is based on a linear cosine transform of a log power spectrum on the nonlinear mel scale of 

frequency. The mel scale is a perceptual scale of pitches judged by listeners to be equal in 
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distance to one another. To convert hertz into mel, the popular formula shown below is used 

(“Mel Scale”). 

Equation 3: Conversion from Hertz into Mel 

 

Mel-frequency cepstral coefficients (MFCCs) collectively make up a mel-frequency cepstrum. 

These MFCCs are derived from an audio file by first taking the Fourier transform of the signal. 

Then, the powers of the spectrum obtained are mapped onto the mel scale using triangular 

overlapping windows. The logs of the powers at each of the mel frequencies are taken and then 

the discrete cosine transform is taken of the list of the mel log powers as if it were a signal. The 

resulting amplitudes of the spectrum are the MFCCs. MFCCs are commonly used in speech 

recognition technologies as well as voice recognition technologies (“Mel-frequency Cepstrum”). 

Because of these uses, it could be believed that these MFCCs are useful in identifying species of 

birds. However, the MFCCs are very sensitive to noise, so a noisy bird song may not be well-

identified. 

 Another consideration when using the MFCCs of a bird song or any other signal is that 

the first coefficient should be ignored. In some cases, the second coefficient should also have 

less consideration in the final result, as well. This is because the first coefficient represents the 

average power of the spectrum, while the second one represents the broad shape of the spectrum. 

The remaining coefficients represent the finer details of the spectrum and could be considered to 

be more useful features in identifying the spectra (Terasawa, 2005).  
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2.4 Bird Call Recognition 

 One challenge faced during attempts to identify actual bird songs is recognizing all songs 

made by a particular species of bird. A bird’s call can contain a significant amount of 

information including the bird’s species, sex, individual identity, his territorial and reproductive 

status, and his probability of responding aggressively or sexually to a potential recipient (Emlen, 

1972). Due to the changes a bird may make to its calls to signal these messages, pinpointing one 

species of bird per call may prove difficult, though not necessarily impossible. 

 Douglas A. Nelson attempted to find variations among different species of birds using 

audio spectrograms. He found that birds could generally be differentiated not by the comparison 

of the spectrograms themselves, but by the analysis of ten acoustic features, such as range of 

frequency or song duration, derived from their audio spectrograms (Nelson, 1989). This 

information could help the group greatly since it may not be necessary to correlate the 

spectrographs to ones in the team’s collections, but can instead analyze them and compare their 

attributes. This may be more successful because many species of birds have a few different songs 

they may use for different situations (Byers, 1995). The only drawback is determining what 

features would differ enough to identify a variety of birds independently. 

 Some scholars differentiate bird calls into two categories: undirected songs (UD) and 

female-directed songs (FD) (Sakata et al., 2008; Byers, 1995). In a study on Bengalese finches, 

Sakata et al. found some differences, such as song length and syllable repeatability, between UD 

and FD songs. The team should take this into account when determining their variables to 

identify species of birds, since when a bird is calling a mate, he may change his song. An 

example of this could be when a bird makes a territorial, long-distance call or a call to a nearby 

potential mate. The differential attenuation, reflection, and absorption of sound could cause the 
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bird to change his song when making a long or short-distance call (Konishi, 1970). However, 

Emlen believes that songs or repertoires of songs of a species of birds must have different 

qualities than those of other species in order to avoid species misidentification (Emlen, 1972). 

Another consideration the team should account for is that birds in different locations may 

have different calls. Research suggests that bird calls of same-species birds can differ from those 

only a few miles away (Byers, 1995). This could make it difficult for the team to test their 

system, particularly if the team uses pre-recorded signals from other regions. In order for the 

team to get accurate measurements for the signal analysis, the group may need to analyze 

multiple samples for many different regions and determine what variables do not change 

substantially.  

 With this project, the team hoped to overcome the major obstacle of varying bird calls 

from the same species. This has been a barrier in the field of ornithology for quite some time and 

was one of the largest challenges of the team’s project. After that challenge was faced, the goal 

of this project was to create a system for bird call identification that could be utilized without an 

expertise in signal processing. 
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Chapter 3: Methodology 

 The purpose of this section is to describe the methods that the group used to complete this 

project. This section contains a scope of the project, system block diagrams, algorithm creation 

and testing and design component choices. 

3.1 Scope 

The goal of this project is to be able to identify a bird species based on its call. The 

objectives that were necessary in this endeavor are as follows: 

 

 Resolve a way to identify one bird species despite a variation of calls from that species 

 Analyze and identify bird species using MATLAB 

 Analyze and identify bird species using the C language 

 Implement the C program on a digital signal processing chip 

 

The team began by resolving a way to identify one bird species despite a variation of 

calls from that species. To do this, the literature was researched to find a way to isolate that 

species from all other species based on certain characteristics of the bird call. The team elected to 

utilize the mel frequency cepstral coefficients as described in the background chapter. The 

specific details of this implementation will be discussed later. 

 Next, this processing stream was coded in MATLAB. Many of the necessary functions 

were available online, and credit for the mel bank code goes to Mike Brookes (Brooks, 2009) 

while credit for the MFCC function goes to Olutope Foluso Omogbenigun (Omogbenigun, 

2009). The team’s contribution to this code was correlating the resulting MFCCs from one bird 
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call with another and plotting the results. Results for this portion of the project can be found in 

the next chapter.  

After that, the group implemented the same processing stream using the C language. This 

code was written mostly from scratch although some of the functions were adapted from the TI 

DSP library. The platform selected for algorithm implementation was a Texas Instruments 

C6713 DSP development board (or DSK) because this hardware was readily available to the 

group and the group had previous experience with it. 

After the C code was complete, a significant amount of time was spent debugging it. 

Although the code compiled, there were fundamental errors in the processing that needed to be 

resolved. A detailed account of these errors can be found in the obstacles section of the next 

chapter. 

3.2 System Block Diagram 

 

Figure 1: System Block Diagrams 
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 The above block diagram describes the intended processing stream for both languages of 

the project. Although the team was unable to implement an LCD display, the team did manage to 

fully implement an MFCC based bird song identification algorithm in C. Currently, the output of 

the algorithm is displayed on the console window of the DSK’s development environment. For 

now, this prevents the device from being easily used in the field.  

 The analog input the system receives from the microphone is converted through an 

AIC23 codec on the DSK and then is put through a lowpass filter. The lowpass filter has a 

passband up to 10 kHz and a stopband that begins at 11 kHz. Some birds’ songs do go above this 

range, but it is rare for them to as the average bird song frequency is 4 kHz (Brand, 1938). 

Testing the bird song signals of interest confirmed that a 10 kHz passband was sufficient for the 

purpose of the team’s samples. There was no highpass filter because a highpass filter would 

remove the low frequency envelope information, which is part of the information represented by 

the MFCCs. 

Next, the MFCCs were found to identify the species of bird. To find the MFCCs, the 

Fourier transform is first taken of a portion of the signal. Then, the power of the spectrum 

obtained is mapped onto the mel scale and take the logs of the powers at each of the mel 

frequencies. Finally, the discrete cosine transform of the list of mel log powers is taken and the 

amplitudes of the resulting spectrum are the MFCCs. A more detailed description of this process 

is discussed later. 

 By comparing these MFCCs to MFCCs calculated from training data collected for each 

bird species, the algorithm can identify the bird species. For this project, these trained MFCC 

collections were generated using at least three bird calls from four different bird species and use 
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the same MFCC method described above. These MFCC replicas formed the four specie 

database. 

 From there, the system outputs the closest three matches to the console, complete with 

how well the database MFCCs correlated with the MFCCs of the incoming signal. If the 

correlation is below 0.50, the particular database signal is not considered a match. This prevents 

a signal that does not correlate well with any signal in the database from being incorrectly 

identified. 

3.3 Creation of an Algorithm 
 

In order to ascertain whether or not the final product would work as intended, some 

research and testing had to be done. To test the algorithm before beginning the final product, 

MATLAB was used. The team created a test algorithm in MATLAB to find out what would and 

wouldn’t work when identifying bird calls with the MFCCs. The test algorithm had to take in 

two waveforms, the number of MFCCs needed, and the frequency at which the waveforms 

would be sampled. The two waveforms would be compared based on the separate MFCCs 

created for each signal. For the MATLAB implementation, the team was lucky enough to find a 

piece of code written by Olutope Foluso Omogbenigun (Omogbenigun, 2009) which was 

available for public use. The group also used part of the MATLAB Signal Processing Toolbox, 

VOICEBOX, for the project (Brookes, 2009). 

The MFCC algorithm assumed that the signal vectors were the same size. To get the 

signals to the same size, the signals were checked for size and then padded if necessary. Then, 

for the signals to be compared easily, the most common features had to occur at the same time 

for a correlation function to work. In order to get two bird songs to occur simultaneously in both 
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signals, the time domain signals are cross-correlated, and the signals are zero-padded accordingly 

to align them in time. 

The MFCCs are calculated using the method described in the Mel-frequency Cepstrum 

section of this report. These MFCCs are then cross-correlated and the higher the resultant 

correlation values, the more likely the two signals will be considered a match. 

3.4 Obtaining Samples 
  

In order to test the algorithm, the team needed to obtain samples. The largest library of 

high quality bird sounds is found within the Macaulay Library, Cornell’s Lab of Ornithology. As 

a short term solution, the team was able to obtain the Macaulay Library’s commercial CD of bird 

songs titled, “An Evening in Sapsucker Woods”, through the Gordon Library at WPI. This 

library contains thirty samples of bird songs from different species. However, to successfully test 

the algorithm the team needed multiple calls from the same species. After contacting Macaulay 

Library Director Mike Webster, the team was able to obtain many samples from the northeast. 

Since the song of the same species can vary greatly from region to region and the team obtained 

samples from all over the north east, the team was able to effectively test the algorithm with 

these samples. 

After sixty bird song samples were obtained from Macaulay Library at Cornell 

University, the database could be created. The team specified that they needed ten bird calls from 

six species of birds – the Cape May Warbler, Magnolia Warbler, Mourning Warbler, Carolina 

Wren, House Wren, and Sedge Wren. The team wanted to compare birds within the same 

families, but also within the same genus. It could be thought that birds within the same genus or 

even family could have similar bird calls and may be confused with each other. To test this, the 

team chose the three warblers of the Parulidae family and three wrens of the Troglodytidae 
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family. Within these groupings, the team chose to have two birds of the same genus and a third 

bird of a different genus for the warbler group and three different genera for the wren group. In 

the warbler group, the two birds of the same genus are the Magnolia Warbler and the Cape May 

Warbler. 

In order to further identify each bird type, the group listened to all ten songs of each bird 

species and categorized them aurally. Some songs were difficult to categorize. In the end, most 

bird species had three to four distinct categories for their songs and one or two outliers. After 

categorizing the songs aurally, the group used the algorithm to test their hearing. Songs that 

sounded the same did, in fact, correlate into the same groups as expected, with a correlation of at 

least 75%. Songs in different types for the same bird species correlated anywhere from 40% to 

80%. Interestingly, some of the outliers seemed to be mixtures of songs from other categories. 

For example, a bird could begin a song with half of a certain song type and end it with half of a 

song of another type. Furthermore, the samples that the team received were not devoid of noise. 

In fact, many of the samples had other birds singing in the background. One important note is 

that the bird song identification algorithm identifies the loudest bird song in the recording. The 

figure below depicts a signal with noise being correctly identified by the algorithm. Results from 

this MATLAB testing can be found in the results chapter and the Appendix A. 
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Figure 2: Cape May Warbler Song Comparison With Background Noise in Signal 1 

3.5 Modular Design Choices 

 The following sections describe each specific design choice. Each component was chosen 

for many reasons and specifically fits the application. The components described are a netbook 

processor, front end filters, digital signal processing chip, LCD screen and microphone. The 

team looked at netbooks initially considering that a simple system realization could run the 

algorithm in MATLAB on a netbook and if time permitted the MATLAB code could be 
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converted to the C language and at that point MATLAB would no longer be required to run the 

project.  

3.5.1 Netbook Processor 

 The team examined netbooks with two criteria in mind, performance requirements and 

cost. The chosen netbook, the Asus Eee PC netbook with Intel Atom Processor, was as 

inexpensive as possible while still fitting the team’s performance requirements. This netbook 

only costs $279.99 and can still run MATLAB with ease. Table 1 below shows the system 

requirements to run the 32-bit version of MATLAB. 

Table 1: System Requirements for 32-Bit MATLAB 

Operating Systems Processors Disk Space RAM 

Windows XP  

Service Pack 2 or 3 

Intel Pentium 4 

and above 

680 MB 

(MATLAB only)  

512 MB 

(Recommend 1024 MB) 

Windows Server 2003 

Service Pack 2 or R2 

Intel Celeron   

Windows Vista 

Service Pack 1 or 2 

Intel Xeon   

Windows Server 2008 Intel Core   

Windows 7 Intel Atom   

 AMD Athlon 64   

 AMD Opteron   

 AMD Sempron   

 The chosen netbook comes standard with Windows XP Service Pack 3 and runs on an 

Intel Atom processor. It contains a 160 GB hard drive and 1 GB of DDR2 memory. All of these 

system requirements meet or exceed the requirements necessary to run MATLAB. This netbook 

also contains an integrated sound card, which is required to record the bird songs. Even with all 

these requirements, this netbook is cheap, which is why it was chosen for the initial system’s 

development (“System Requirements – Release 2010a”). 
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3.5.2 Front End Filter 

 In order to reduce the noise associated with input bird songs, the team needed to 

implement some filtering after they acquired their samples. The MATLAB Filter Design and 

Analysis Tool was used to create an FIR Direct-Form I Equiripple Filter. The magnitude 

response of the filter is seen in Figure 4 below. It is a stable filter of order thirty. 

 

Figure 3: Magnitude Response of Lowpass Filter 

 In order to implement this filter in C, the coefficients were exported as single precision 

floats into a C header file. These coefficients were used to implement this filter on the DSP chip. 

Floating point math was used instead of fixed point math in the C filter to increase stability and 

ease of implementation. As each sample was recorded, it was filtered in real time to avoid 

additional signal storage problems. 

3.6.3 Digital Signal Processing Chip 

 The digital signal processing chip that was chosen for this application is the Texas 

Instruments TMS320C6713. It was chosen for many reasons, first being ease of access and use. 

This chip and its development environment are used in WPI labs for other courses and are 
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readily available to the team. The second reason it was chosen was because all team members 

have previous experience programming this chip. This chip is a floating point DSP, which makes 

it easier to code than a fixed point DSP chip. The C6713 also has an AIC23 stereo codec, which 

is ideal for audio applications. It can sample at multiple rates between 8-96 kHz, which fall 

within the frequency ranges for bird songs. The chip also has line in and out as well as a 

microphone in and headphone out, which is necessary for this application. Lastly this board has a 

USB interface to a PC, which will make it easier to program. Figure 2 below shows the block 

diagram of the C6713 DSK (Chassaing, Rulph, 2005). 

 

Figure 4: Block Diagram of C6713 DSK 

3.6.4 LCD Screen 

The LCD screen that best fits the application is the LCM-X12232GXX from the Epson 

SED1520 Series of LCD drivers. This LCD screen is from a family of dot matrix LCD drivers 

that are designed for displaying characters and graphics. The application requires the team to be 
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able to display the names of birds that are potential matches and this LCD will allow the team to 

do that with ease. The team also has considerable experience with both character and graphics 

display for this LCD from prior course work. The LCD is also readily available because it is used 

for other courses. Note that the team did not implement this LCD screen due to time constraints, 

but given additional time the group could have. 

3.6.5 Microphone 

 When this project is implemented as a handheld device, the team decided that it should be 

up to the user to decide the quality of microphone that they want to use based on their 

application. Microphones can range in cost from $20 to over $500 depending on the quality and 

range the user wants. Since the team is testing on high quality recordings of bird sounds, the 

group decided to use an inexpensive microphone. The microphone that bests fit the project 

budget is the Audio-Technica Unidirectional Microphone. The team chose a unidirectional 

microphone because it records sounds coming from one direction, rather than using an omni-

directional microphone which would record potentially many sounds coming from all directions. 

The MFCC algorithm functions best when there is the least amount of undesired noise, and a 

unidirectional microphone would help minimize the noise. Lastly, this microphone was chosen 

because it is the least expensive microphone found that would not hinder the performance of the 

device. 

3.7 Algorithm Implementation 
 

This section explains the team’s design choices and why each decision was made. It is 

true that much of the team’s methodology came from the literature, but there is a reason behind 

each suggestion that came from the literature. Although the team used the processing stream 

from the MATLAB code as a template, the bulk of the C implementation was written from 
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scratch with the exception of Texas Instruments’ speed-optimized FFT functions 

(“TMS320C6713 DSP Starter”). 

3.7.1 Filtering and Frame Generation 

 

 First of all, the MFCC algorithm takes a five second signal in the time domain sampled at 

44.1 kHz and separates it into 861 overlapping frames containing 512 samples. This means that 

the step size is 256 samples, exactly half of the frame size. This was chosen in order to prevent 

more than two frames from having duplicate data, which in turn keeps the same data from 

correlating across many frames. The overall algorithm works by recording a large buffer of 

220500 samples and pulling a 512 sample frame out of the buffer. Each frame then moves 

through the processing stream and when one frame is complete, the next frame moves through 

the processing stream. A flow chart of the complete process is shown below in Figure 5. 
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Figure 5: Algorithm Flow Chart 

 

The team implemented a lowpass filter as the first step of the processing stream to 

remove excess noise and prevent aliasing. As previously mentioned, the filtering is performed in 

real-time to reduce storage requirements. Although the overall algorithm does not run in real 

time, a short computation time is still desired as the user may not wish to wait until the bird flies 

away before discovering the identity of the bird. 

3.7.2 Windowing Concepts 

 

 From there, each frame was multiplied by a 512 point Hamming window. This causes 

smearing in the frequency domain although it smoothly tapers the signal towards a zero-value at 
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point 0 and N-1. There were many window functions to choose from such as a Bartlett window, 

a Hanning window, a Hamming window, and a Blackman window, but a Hamming window was 

chosen because it maintained an adequately wide main lobe without having too great of a side 

lobe amplitude. The equation for a Hamming window is depicted below: 

 

where n is the particular point being calculated on the Hamming window and N corresponds with 

512, the length of the Hamming window. 

3.7.3 Mel-Scale Filtering 

 

 At this point an FFT is taken of each 512 sample frame. The result is then mel-scale 

filtered. This means that the signal is filtered in the frequency domain with a mel frequency 

bank. 

This bank is an independently generated matrix full of coefficients and it depends upon 

sampling rate, desired number of mel frequency cepstral coefficients, and the number of points in 

the FFT. The mel frequency bank was separately implemented as a matrix (or array of arrays) of 

constants generated in MATLAB. As mentioned above, the only variables necessary for the 

creation of this matrix are to remain constant regardless of the input signal. Therefore, declaring 

a constant matrix as opposed to calculating this matrix each time the program runs saves 

processing time. The implementation creates a sparse matrix with eight columns (corresponding 

with the desired number of MFCCs) and 257 rows (corresponding with half of the samples in the 

frame) of coefficients that are multiplied by the complex-valued FFT output. 

 The FFT output frames are then multiplied by corresponding points in the mel frequency 

bank and then summed together. For example, the first FFT output frame has 512 samples. Due 
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to the even symmetry of the FFT, the algorithm only needs to consider half of the FFT output. 

The algorithm multiplies the first 257 samples within the frame by the 257 corresponding 

coefficients in the first row of the mel frequency bank. It then sums each of these products 

together into one data point. This data point represents one frequency-filtered frame for the first 

coefficient. The process is repeated eight times for each of the eight MFCCs in the mel 

frequency bank. At this point, the process repeats itself with the next frame. The result is a 

matrix of eight columns representing the eight MFCCs and 861 rows representing each frame 

that originated from the buffer. This method was chosen in order to compress the data while still 

retaining a sufficient pool of results. A flow chart of the above frequency domain filtering 

process is shown below in Figure 6. 
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Figure 6: Frequency Domain Filtering Flow Chart 

 

MATLAB results returned 24 MFCCs, but it was determined through testing that eight 

coefficients displayed an adequate set of features and the remaining 16 MFCCs were ignored. 

Therefore, only eight MFCCs are utilized in the C implementation to increase the speed of the 

algorithm. 

 Before the final matrix is assembled, however, the logarithm base ten is taken of the data 

points. This returns the data to a linear frequency scale. The discrete cosine transform is then 

taken of each column of mel logarithmic powers. The results are eight time domain signals, one 

for each MFCC. These signals correlate well with other similarly processed signals of the same 

species. 
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3.7.4 Correlation and Database Implementation 

 

 To quantitatively measure the similarity of two of these resulting matrices, the data was 

correlated from two different bird call signals. One resides in a database within the program, and 

the other is the recent input signal that has been processed. The first MFCC from one signal is 

correlated with the first MFCC from the other, and this process is repeated for each of the eight 

MFCCs. Through testing the team determined not to take the first MFCC into account because it 

measures the power of the signal, which frequently correlates with many other bird call signals 

as the signal power can be similar from species to species. Additionally, it may poorly correlate 

with a bird of the same species that happens to be further away from the microphone. Without 

taking this first coefficient into account, the average of the remaining seven coefficient 

correlations often made it possible to determine the bird’s species. 

When determining whether two signals are from the same species, one can only say with 

a certain level of confidence whether or not the signals match. The higher the correlation, the 

more likely the two birds are of the same species. Either one is confident that two signals match 

or one is unconfident that two signals match. It was determined that an appropriate correlation 

cutoff is 0.50. This is realistic because of the nature of the implementation. It searches through a 

database of different bird songs, so if none of them can come up with a 0.50 average correlation 

across the MFCCs then it is determined that the signal is from an unknown source. It is possible 

that a given signal matches just over 0.50 with the database, which is not a strong correlation, but 

the system is designed so that the signal eventually finds a better match within the database. 

 The database is implemented as a lookup table. If one database entry correlates well and 

becomes the new top match, the prior second place match overwrites the third place match, the 

prior first place match overwrites the prior second place match, and the new first place match 
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overwrites the prior first place match. This allows the output data to contain both strings and 

floating point numbers in order to give the user meaningful information. 
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Chapter 4: Results 

 This section will outline the results of the project including MATLAB testing results, C 

testing results, obstacles encountered along the way, and other general data pertaining to the 

project. 

4.1 MATLAB Testing Results 

It was necessary to test the MFCC algorithm to be sure that it would function in the 

intended manner. To do this, a variety of bird songs were sampled and compared with the 

algorithm. To start out simply, two signals compared were from a single Carolina Wren. As seen 

in the figure below, the MFCCs of each bird call had many similarities. The correlation match-up 

for these bird calls was around 85%. 
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Figure 7: Comparison of Two Calls from the Same Carolina Wren 

 

It was necessary to test this algorithm with signals that are vastly different from bird 

songs. Therefore, the algorithm was also tested with two human whistle trills. The correlation of 

these signals had an average correlation of MFCCs around 88%. The comparison of these two 

whistle trills is shown below. 
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Figure 8: Comparison of Two Human Whistle Trills 

 

After identifying that the algorithm was reasonably reliable at identifying bird songs, the 

MATLAB algorithm was automated for further testing. One song was taken from each bird song 

type of each bird species and added to the database in order to decrease the processing time of 

the identification algorithm. The automated algorithm took in only one bird song as well as the 

number of MFCCs needed and the sampling frequency. The algorithm then compared the 

unknown bird song with all of the songs in the database. 

The algorithm was then tested with bird songs that were not in the database to see how 

accurate the algorithm was with signals unknown to the system. 
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Figure 9: Magnolia Warbler Comparison with One "Unknown" Song 
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Figure 10: Carolina Wren Comparison with One "Unknown" Song 

 

 The available songs from the Macaulay Library that were not part of the database were 

tested to find the accuracy of the algorithm for a small sample set. For this sample set, the 

algorithm was 93.75% accurate in identifying bird songs. However, although the algorithm 

correctly identified the birds most of the time, some bird calls would not correlate well with the 

same species. For example, the House Wren’s “song” is for the most part just a series of tweets. 

When creating the algorithm, it was not a consideration that the term “bird song” may mean 

something very different from one species to the next. The results of the MATLAB experiments 

are shown below. 
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Table 2: Bird song average correlations and percentages choosing the correct bird 

Bird Type 
Cape May 

Warbler 
Magnolia 

Warbler 
Mourning 

Warbler 
Carolina 

Wren Overall 

Sample 1 0.8655 0.5989 0.7042 0.7115 
 Sample 2 0.8326 0.7324 0.9782 0.5139 
 Sample 3 0.7941 0.7158 0* 0.6178 
 Sample 4 0.787 0.9387 0.7031 0.5455 
 Sample 5 0.9382 0.9415 

 
0.6178 

 Average Correlation 0.84348 0.78546 0.795166667 0.6013 0.756351667 

Percentage Correct 100 100 75 100 93.75 

       *A zero on this table indicates that an incorrect bird species was chosen by the algorithm. 

 

4.2 Testing the Algorithm in C 

 This section outlines how the group tested each part of the algorithm in C to prove that it 

worked correctly. The parts of the algorithm listed in this section are Fast Fourier Transform 

(FFT), the Discrete Cosine Transform (DCT), the correlation function, Hamming window 

function, and MFCC algorithm. 

4.2.1 Fast Fourier Transform Test 

 The team tested the FFT by using a 2 kHz input signal and performing an FFT on this 

data. The plot of the input data can be seen below, as it was recorded by the development board 

using a frame buffering function and interrupts. 
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Figure 11: 2 kHz Sine Wave 

 

The group performed an FFT on this data to prove that it functions appropriately and the results 

are shown in the graph below. 
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Figure 12: Fast Fourier Transform of 2 kHz Sine Wave 

 

As shown, there are two clear spikes at the appropriate frequencies. Because the DSP chip was 

sampling at 16 kHz, the Nyquist frequency was 8 kHz, causing the FFT to wrap around and 

making another spike appear at 6 kHz, which is expected. The team eventually increased the 

sampling frequency, but this module was proven to work beforehand so it was not retested. 

4.2.2 Discrete Cosine Transform Test 

 The discrete cosine transform was tested using a small array of predefined values. The 

output was compared to the output of the DCT function in MATLAB to prove that both 

functioned in the same manner. The input samples were an array of eleven values from 0 to 1, 

incrementing by 0.1 each time. The graph of the DCT of this data is shown below. 
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Figure 13: DCT of Input Samples in C 

 

The same input samples were used in MATLAB. The resulting graph of MATLAB’s DCT is 

identical to DCT calculated in C, and can be seen below. 
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Figure 14: DCT of Input Samples in MATLAB 

 

Both of these graphs are clearly the same, proving that the team’s DCT implementation in C 

functions exactly the same as the DCT in MATLAB. 

4.2.3 Correlation Function 

 The next function that the group tested was the correlation function. The team used a 

wrap around cross correlation function, which should produce a 100% correlation with two 

different signals, even if they are shifted in time, while a rectangular windowed cross correlation 

function would not produce a 100% match with two signals shifted in time. The wrap around 

cross correlation function was compared to a non wrap around function using two identical time 

shifted signals. The two signals that were used in the correlation can be seen below. 
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Figure 15: Original Input Signal 

 

The next signal is the time shifted version of the signal shown above. 

 

Figure 16: Time Shifted Input Signal 
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The rectangular windowed correlation function returned a match of 81%, a graph of the cross 

correlations at each point in the time shift can be seen below and the highest correlation is visible 

as the highest spike in the graph. 

 

Figure 17: Rectangular Windowed Cross Correlation of Input Signals 

 

The next graph shows the wrap around cross correlation function used in this project. It is clear 

that this function achieves the 100% match as expected. 
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Figure 18: Wrap Around Cross Correlation of Input Signals 

 

Unlike the previous graph, the team’s function successfully achieves a full match, proving that 

the wrap around cross correlation function successfully returns a 100% match on time shifted 

signals, while the windowed cross correlation function does not. 

4.2.4 Hamming Window Function 

 The last function in the algorithm that the team tested was the Hamming window 

function. They tested to make sure that the hamming window of any input size would produce 

the correct result. This was shown by testing against the hamming function in MATLAB that the 

team used in their MATLAB algorithm. To test the function, the group used a Hamming window 

of size one hundred and compared the graphs from the MATLAB and C functions. The first 

graph below is the hamming window function in C. 
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Figure 19: Hamming Window Function in C 

 

This graph shows a smooth Hamming window curve of one hundred, exactly similar to the 

MATLAB curve shown in the graph below. 
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Figure 20: Hamming Window Function in MATLAB 

 

This verifies that the team’s hamming window function in C operates exactly the same as the 

hamming window function in MATLAB that is used in the MATLAB version of the algorithm. 

The values range from just under 0.1 to 1 in each case with a smooth curve from 0 to 100.  

4.2.5 Testing the MFCC Algorithm 

 To test the final algorithm, the group played bird signals through a computer’s sound 

card, and recorded them onto the development board via the line in audio input. There is a four 

song database in the C code, and each recording is compared against the four birds and the one 

with the highest match is returned along with the correlation percentage. The average correlation 

between the bird songs and the library was 73.379%, which is about ten percent lower than the 

average correlations for MATLAB, but that is expected because of the amount of noise in the 

signal in the C program. The correlations for each bird can be seen in the four tables below. Each 
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bird song was played five times and the correlations with each song in the library are displayed. 

Correct matches are shown in green while incorrect matches are shown in red. 

Table 3: Cape May Correlations 

Cape May Warbler Correlations 

  1 2 3 4 5 

Cape May 0.791672 0.769434 0.776941 0.82797 0.764354 

Carolina 0.775264 0.677315 0.748241 0.699389 0.708077 

Magnolia 0.702732 0.685081 0.654663 0.690685 0.725959 

Mourning 0.700666 0.725249 0.642847 0.77486 0.75083 

 

Table 4: Carolina Wren Correlations 

Carolina Wren Correlations 

  1 2 3 4 5 

Cape May 0.778909 0.706168 0.754237 0.772692 0.769016 

Carolina 0.723266 0.77087 0.709941 0.779205 0.778964 

Magnolia 0.645363 0.702268 0.683869 0.6588 0.767653 

Mourning 0.717673 0.717515 0.690208 0.675831 0.755142 

 

Table 5: Magnolia Warbler Correlations 

Magnolia Warbler Correlations 

  1 2 3 4 5 

Cape May 0.750675 0.766816 0.676857 0.766021 0.678284 

Carolina 0.7297 0.683459 0.733553 0.76459 0.688087 

Magnolia 0.676445 0.79717 0.772399 0.63541 0.730769 

Mourning 0.755648 0.748219 0.730483 0.657862 0.708104 

 

Table 6: Mourning Warbler Correlations 

Mourning Warbler Correlations 

  1 2 3 4 5 

Cape May 0.704017 0.745095 0.776211 0.674686 0.776768 

Carolina 0.745325 0.675282 0.730211 0.713834 0.75301 

Magnolia 0.787587 0.781311 0.81613 0.77414 0.737939 

Mourning 0.796035 0.749148 0.792085 0.787375 0.78637 
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The algorithm picked the correct bird fourteen times out of twenty attempts for an overall 

percentage of 70%, although the percentage ranged from 60% to 100% depending on the species 

of bird. The MATLAB algorithm was over 90% accurate, however we stated that due to noise, 

our algorithm would be less accurate than the MATLAB version. However the group believes an 

accuracy of 70% is still acceptable for a proof of concept project and considers this algorithm to 

be successful. 

4.3 Obstacles 

 The purpose of this section is to outline many of the obstacles that the team encountered 

when implementing the bird call identifier on a hand-held device. A brief list of major problems 

that were solved is the record and playback function, the front end filtering, imaginary numbers, 

the Fast Fourier Transform, memory mapping, and noise. 

4.3.1 Record and Playback Function 

 The first problem that the group encountered was implementing a record and playback 

function that never had to be reset. This function would allow the user to press a button to start 

recording a sound, then allow the user to play back the sound with another button press. The first 

attempt that the team made was through the use of interrupts. The decision was made to write an 

interrupt service routine to collect samples at the designated sampling frequency of 16 kHz. 

Interrupts were only enabled when the record button was pressed, and then disabled when the 

device was finished recording its preset time of five seconds. However this did not prove to work 

because the interrupts were never successfully enabled therefore no samples were ever recorded. 
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 In order to fix this problem, the team took a different approach. The decision was made to 

move away from interrupt service routines and use polling to take the samples. With this method, 

the sampling frequency was set to 16 kHz and a loop was used to poll five seconds of samples 

into a buffer after the button was pressed. The program then moved into a playback stage where 

it would await user input via a different button to playback the recording. This method seemed to 

prove successful and the group was able to successfully record samples, store them in a buffer, 

and play them back to the user. Note that the group later implemented a 44.1 kHz sampling 

frequency in order to obtain a better quality input signal. 

4.3.2 Front End Filtering 

 The second problem that the team encountered was adding front end filtering to the 

samples before performing any calculations on them. Typical bird calls lie in the range of 2 kHz 

to 8 kHz. The group decided to implement a bandpass filter to pass frequencies within this range 

in order to avoid any aliasing. The first problem encountered was that the team was unable to set 

any filter parameters beyond 8 kHz because the sampling frequency was 16 kHz. This means that 

the high frequency cutoff for the filter cannot start at 8 kHz and end by 9 kHz, it must end at 8 

kHz, which means the cutoff must start lower than 8 kHz. In order to avoid filtering out any data 

from the sample, the group decided to make a higher order, very steep filter. However, a 

bandpass filter with these parameters created an unexpectedly high order filter. When the team 

implemented this filter into the code, the filtering took a very long time because of the high 

order. To solve this problem, the team decided to implement separate lowpass and highpass 

filters instead of a single bandpass filter. The lowpass filter stops frequencies around 7.8 kHz and 

the highpass filter stops frequencies below 2 kHz. This allowed both filters to be lower order and 
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actually improved the overall filtering speed. The team later changed the sampling frequency to 

44.1 kHz in order to obtain a higher quality input signal. 

4.3.3 Complex Numbers 

 The next problem the group found was consistency with imaginary numbers. When 

MATLAB performs the required algorithms, it automatically handles complex numbers. 

However, in C code, the floating point data type does not account for complex numbers, and the 

programmer needs to create its own complex number structure to keep track of imaginary parts. 

The team realized that there were imaginary numbers while coding the Fast Fourier Transform 

function in C. An FFT always outputs both real and imaginary numbers, so the team needed to 

implement complex number structures. After stepping through the MATLAB algorithms one at a 

time, the group learned which functions dealt with complex numbers and which sections used 

only real numbers. 

 After realizing that certain sections of code were now using complex arguments, the team 

had to double check to see if every function still worked correctly. The group was using the 

absolute value function from the C math library, but this function was not working because it 

was intended for double data types rather than complex numbers. In MATLAB, the absolute 

value function abs() accepts complex arguments, calculates the magnitude of the complex 

number and returns a real number. After figuring this out, the team wrote their own function to 

calculate the magnitude of complex numbers, which returned a floating point real number to 

emulate the MATLAB algorithm. 
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4.3.4 Fast Fourier Transform 

 The Fast Fourier Transform (FFT) takes samples in the time domain and transforms them 

into the frequency domain. The FFT is an integral part of the algorithm and it will not work 

without a fully functional and accurate FFT. After initial testing of Texas Instrument’s optimized 

radix-2 FFT, the team could not get a working result. The group was testing the algorithm using 

Code Composer Studio (CCS) and graphing the output buffer of the FFT. The first mistake that 

the team was making was with CCS’s graphing functions. The group was using the FFT 

Magnitude graphing function, which produces its own FFT on the data selected and graphs it for 

the user. This means that the group was graphing an FFT of an FFT, which clearly produces the 

wrong results. 

 After realizing how to properly test the FFT, the group continued to run into more 

problems. MATLAB’s FFT was performing a 400 point FFT on the frame, which is the entire 

frame size. An FFT is ideally performed on buffers that are only divisible by a power of two in 

length. Some FFTs take longer to perform the calculation when the number of points is not a 

power of two, and some do not work at all. MATLAB’s FFT was able to make this calculation, 

however it takes much more time to calculate a 400 point FFT than a 512 point FFT. After more 

debugging, the team discovered that TI’s optimized radix-2 FFT only works when the number of 

points is a power of two. The team solved this problem by changing the step size and frame 

window size so that each frame is 512 points long. The FFT now performs a 512 point FFT, 

solving the problem. 

4.3.5 Memory Problems 

 TI’s TMS320C6713DSK has a limited amount of onboard memory. Ideally, the team 

would implement all of the code and variables to be contained in the fast RAM (the IRAM), 
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however the amount of space is limited, only 512kB. The DSK also contains a large amount of 

slower RAM (the SDRAM), about 16MB, but running code or variables from this memory will 

greatly increase the amount of time necessary to run the algorithm. Lastly the chip contains 

FLASH memory, however it is very difficult to program and it was recommended that the group 

avoided using the FLASH memory at all costs. 

 While writing the software, the team encountered several memory problems. The search 

algorithm works by storing many large two dimensional arrays in memory, called f-matrices, and 

compares the incoming signal to these arrays. The group knew it was necessary to store these f-

matrices in the SDRAM, however the program would not compile while trying to store these 

large arrays into external memory. The group realized that chip writes constants into a buffer 

called “.cinit”, which is located in the fast memory, and this buffer was filling up if more than 

one f-matrix was written into slow memory. The team figured out how to edit the DSK’s 

command file which designates where each section of memory is located. This problem was 

solved by relocating the “.cinit” as well as the f-matrices buffer into the SDRAM. 

 After solving the “.cinit” memory problem, the team quickly ran into another. Now that 

the f-matrices could be successfully written into external memory, the group could write their 

search algorithm to correlate the incoming signal’s f-matrix with the stored library of f-matrices. 

After finishing this algorithm, the team ran out of code space in the IRAM. The first attempt at 

fixing this problem was to move all code memory to SDRAM. This allowed the code to compile 

correctly, however the program now took around ten minutes to perform all the MFCC 

calculations and correlations on a single recorded sample. It is realistic that the device does not 

have to operate in real time; however a delay time of ten minutes is very unreasonable. 
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The team noticed earlier in the project that the chip does not allow the user to access all 

of the slow and fast memory. After some research, the group realized that many sections of the 

chip are reserved for certain functions and others are simply set to “Protected.” CCS allows the 

user to change the memory mapping of the chip, as long as the user does not overwrite any of the 

reserved sections. The group realized that they could expand the upper address of the IRAM 

from 0x0002FFFF to 0x00080000, more than doubling the amount of usable space, without 

overwriting any reserved sections. This allowed the team to keep the code memory in the IRAM 

and successfully expand the code without running into any more memory problems. 

4.3.6 Noise 

 A major problem with MFCCs is noise. The MATLAB algorithm works with high 

quality bird samples from the Macaulay Library that contain minimal noise. However, when the 

DSK implementation recorded samples to create f-matrix libraries, as well as when recording 

incoming samples, there is a significant amount of noise present. The lowpass filter catches the 

majority of the noise outside the passband; however a significant amount of noise is still present. 

The group has made many attempts at solving this problem. The first attempt was to use 

MATLAB’s f-matrices that contain limited noise. The problem that occurs is the MATLAB 

algorithm uses a different frame size and step size, so that the correlation between the two is 

mediocre. In order to solve this problem, the team would have to change the MATLAB 

algorithm and recalculate each bird sample.  

The next attempt was to use recorded bird songs played from the computer into the DSK. 

This produces a high level of machine noise and produces mediocre calculations as well, with 

correlation percentiles around 50 to 60 percent. Also, expected high correlations are not much 

higher than expected bad correlations and sometimes it is difficult to distinguish them from each 
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other. In order to clean up the f-matrices, the group tried to implement a cutoff value with each f-

matrix coefficient. This essentially minimized the value of insignificant parts of the MFCC in an 

attempt to isolate the actual information in the MFCC. This produced significantly higher 

correlations, around 90%, however every correlation was then around this level and it was still 

very difficult to distinguish which correlations are supposed to match and which are not. The last 

method the team looked into is to compare which songs have higher matching coefficients 

instead of taking simple averages of the coefficients. For example Bird A may be the correct 

match; however one of its coefficients had a very low correlation rate, which is dragging down 

its overall correlation. Bird A may have higher correlations in almost every coefficient; however 

because of the single poor correlation its average may be lower than that of Bird B, the incorrect 

match. The original algorithm would return Bird B, however this algorithm would realize that 

Bird A was higher in every coefficient but one, therefore it is the better match. Testing proved 

that this method was ineffective. This noise issue could be solved in any future work that would 

be attempted after this project. 
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Chapter 5: Conclusions 

 This chapter will summarize the group’s project and draw conclusions based on the 

results. It will also recommend future work that the team has suggested in order to create the 

intended final product. 

5.1 Discussion of MATLAB Results 

 The MATLAB results were excellent for their purpose. It was possible to determine a 

bird’s species with a high degree of confidence given the small sample set. Further testing is 

necessary to determine how well the algorithm is able to handle very large databases containing 

more than six species, but the team believes the MATLAB results can be used as a valid proof of 

concept. 

5.2 Discussion of C Results 

 The C results were sufficient. For some species it is not possible to claim with confidence 

which species the bird call originated from. Further research is necessary to alter this MFCC 

algorithm to become more robust in the presence of noise. 

 However, the C results highlighted that the algorithm is sensitive to noise. As the team 

tested each module within the algorithm, the results were comparable with the MATLAB results. 

Only when the final MFCCs are generated and then correlated together is there a discrepancy. 

Furthermore, when the final blocks are tested with constant, known vectors, they correlate 

appropriately. This evidence suggests that the MFCC algorithm may not be robust in the 

presence of noise. 
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5.3 Future Work Recommendations 

 This section will explain the team’s suggestions for device improvement. This includes a 

broader scope for each facet of the project. 

5.3.1 MATLAB Future Work 

 As described above, the database that began in MATLAB needs to be significantly larger. 

It is possible that the MATLAB results change as more birds are added to the database. The 

algorithm may struggle identifying two similar species that are not currently present within the 

database. Furthermore, it is likely that as the bird songs within the database increases, the 

probability for multiple songs to match the input signal increases. Results that prove the 

algorithm is still valid for a database with a larger number of  bird songs would confirm that the 

MFCCs are indeed identifying the unique differences between signals and classifying them 

accordingly. 

5.3.2 C Implementation Future Work 

 The C implementation needs work in two major areas. First of all, the algorithm needs to 

modify its implementation such that it is not as strongly affected by noise. This may entail 

creating additional algorithms. For instance, another algorithm might have better classification 

features for a given signal, such as linear discriminate analysis (LDA). 

Additionally, the C implementation will need to be optimized for speed. As the algorithm 

grows in complexity, the processing time will increase. There are many ways to do this. One 

could implement an algorithm that analyzes the signal and determines which of the potentially 

many classification algorithms to pass an input signal to. One could also implement a way to 

input a general geographical region to prevent comparison against irrelevant database samples. 
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These suggestions are possible solutions in addition to general C optimization techniques and 

practices such as hand-optimized assembly and automatic CCS optimization settings, and there 

may be a tradeoff against memory consumption, which is another obstacle. 

5.3.3 Hardware Design Future Work 

 The hardware design part of this project was largely abandoned due to time constraints, 

but there is a considerable amount of work to be done. First of all, the output of the system needs 

to be changed to a more portable solution. The cheapest and easiest way to do this would be to 

implement an LCD screen. More functions are required in the C implementation to support more 

than a simple stdout printf call. The dot matrix LCD screen discussed earlier in the component 

choices section would be the team’s choice, however LCD driver circuitry would be necessary in 

addition to the LCD screen. 

 The hardware also needs to be reworked. The TI C6713 is relatively inexpensive, 

however the DSK development kit is not. If the group’s product were ever to go to market, the 

relevant portions of the DSK need to be reverse engineered, including the microphone line in, the 

audio codec, and the five volt power supply. 

 Additionally, the five volt power supply needs to be converted to portable power, 

preferably a rechargeable battery. There are various different technologies for rechargeable 

batteries that the team has not been able to explore. Future work on this subject would entail 

making a design choice and then implementing it. 

 Finally, the final product needs a reasonable production cost. The prototype will 

determine whether or not it is feasible to produce a functional product within the price range of 
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its consumer demand. From there a decision can be made whether or not this design is ultimately 

viable or not. 

In conclusion, the team’s project was very successful. The concept of using MFCCs to 

identify certain bird species based on their bird song has been proven. If completed, this product 

could increase the enjoyment of bird watching and even become an attachment for binoculars for 

more precise aim with the unidirectional microphone. The team believes that the success of this 

project could potentially lead to a marketable product. 
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Appendices 

 The following sections are appendices containing the full MATLAB results, MATLAB 

code, and C code.  

Appendix A: MATLAB Test Results 

 This section documents the full MATLAB results and includes the code used to obtain 

such results. Each figure shows five different data graphs. The first signal is the time-domain 

signal of an “unknown” bird being passed into the system. The second signal is the time-domain 

signal of a bird from the database. The third signal shows eight MFCCs from the unknown bird, 

with each color corresponding with a different MFCC. The fourth signal shows the same eight 

MFCCs from the known bird from the database. Finally, the fifth graph correlates the MFCCs 

from the unknown bird with the MFCCs from the known bird. 

 
>> mfcc_auto('CapeMayWarbler (10).wav',8,16000) 
 
third_fit = 
     0 
 
second_fit = 
CapeMayWarbler (1).wav   
 
max = 
    0.8655 
 
x = 
       NaN    0.9099    0.9208    0.9134    0.8876    0.9184    0.5902    0.9180 
 
ans = 
CapeMayWarbler (2).wav 
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Figure 21: Cape May Warbler song comparison 

>> mfcc_auto('CapeMayWarbler (3).wav',8,16000) 
 
third_fit = 
     0 
 
second_fit = 
     0 
 
max = 
    0.8326 
 
x = 
       NaN    0.8405    0.8768    0.8388    0.8429    0.8363    0.7646    0.8286 
 
ans = 
CapeMayWarbler (1).wav 
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Figure 22: Cape May Warbler song comparison 
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>> mfcc_auto('CapeMayWarbler (4).wav',8,16000) 
 
third_fit = 
     0 
 
second_fit = 
     0 
 
max = 
    0.7941 
 
x = 
       NaN    0.7935    0.8451    0.8017    0.8087    0.7880    0.7180    0.8035 
 
ans = 
CapeMayWarbler (1).wav 

 

Figure 23: Cape May Warbler song comparison 
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>> mfcc_auto('CapeMayWarbler (5).wav',8,16000) 
 
third_fit = 
     0 
 
second_fit = 
CapeMayWarbler (1).wav   
 
max = 
    0.7870 
 
x = 
       NaN    0.8793    0.8733    0.8851    0.7663    0.8806    0.3855    0.8386 
 
ans = 
CapeMayWarbler (2).wav 

 

Figure 24: Cape May Warbler song comparison 
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>> mfcc_auto('CapeMayWarbler (9).wav',8,16000) 
 
third_fit = 
CapeMayWarbler (1).wav   
 
second_fit = 
CapeMayWarbler (2).wav   
 
max = 
    0.9382 
 
x = 
       NaN    0.9355    0.9542    0.9410    0.9634    0.9523    0.8544    0.9663 
 
ans = 
CapeMayWarbler (8).wav 

 

Figure 25: Cape May Warbler song comparison 
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>> mfcc_auto('MagnoliaWarbler (2).wav',8,16000) 
 
third_fit = 
     0 
 
second_fit = 
CapeMayWarbler (1).wav   
 
max = 
    0.5989 
 
x = 
       NaN    0.6562    0.6981    0.6502    0.6470    0.6484    0.4107    0.4815 
 
ans = 
MagnoliaWarbler (1).wav 

 

Figure 26: Magnolia Warbler song comparison 
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>> mfcc_auto('MagnoliaWarbler (4).wav',8,16000) 
 
third_fit = 
MagnoliaWarbler (1).wav  
 
second_fit = 
MagnoliaWarbler (3).wav  
 
max = 
    0.7324 
 
x = 
       NaN    0.7448    0.8344    0.7612    0.8221    0.7389    0.6369    0.5885 
 
ans = 
MagnoliaWarbler (6).wav 

 

Figure 27: Magnolia Warbler song comparison 

 
  

0 0.5 1 1.5 2 2.5 3

x 10
5

-1

0

1
Song of "unknown" bird

0 0.5 1 1.5 2 2.5

x 10
5

-1

0

1
Song of matched bird from database

0 500 1000 1500 2000 2500 3000 3500
-5000

0

5000

10000
Correlation of bird song MFCCs

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-20

0

20
MFCCs of "unknown" bird

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-20

0

20
MFCCs of matched bird from database



73 
 

>> mfcc_auto('MagnoliaWarbler (5).wav',8,16000) 
 
third_fit = 
CapeMayWarbler (6).wav   
 
second_fit = 
MagnoliaWarbler (1).wav  
 
max = 
    0.7158 
 
x = 
       NaN    0.7255    0.8297    0.7995    0.6772    0.7766    0.6047    0.5973 
 
ans = 
MagnoliaWarbler (3).wav 

 

Figure 28: Magnolia Warbler song comparison 
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>> mfcc_auto('MagnoliaWarbler (8).wav',8,16000) 
 
third_fit = 
MagnoliaWarbler (3).wav  
 
second_fit = 
MagnoliaWarbler (6).wav  
 
max = 
    0.9387 
 
x = 
       NaN    0.9585    0.9530    0.9549    0.9367    0.9428    0.9145    0.9103 
 
ans = 
MagnoliaWarbler (7).wav 

 

Figure 29: Magnolia Warbler song comparison 
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>> mfcc_auto('MagnoliaWarbler (9).wav',8,16000) 
 
third_fit = 
MagnoliaWarbler (3).wav  
 
second_fit = 
MagnoliaWarbler (6).wav  
 
max = 
    0.9415 
 
x = 
       NaN    0.9636    0.9484    0.9602    0.9335    0.9487    0.9167    0.9198 
 
ans = 
MagnoliaWarbler (7).wav 

 

Figure 30: Magnolia Warbler song comparison 
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>> mfcc_auto('MourningWarbler (9).wav',8,16000) 
 
third_fit = 
CapeMayWarbler (6).wav   
 
second_fit = 
MagnoliaWarbler (1).wav  
 
max = 
    0.7042 
 
x = 
       NaN    0.7193    0.8145    0.7226    0.7324    0.7363    0.5642    0.6403 
 
ans = 
MourningWarbler (1).wav 

 

Figure 31: Mourning Warbler song comparison 

 
  

0 0.5 1 1.5 2 2.5 3

x 10
5

-1

0

1
Song of "unknown" bird

0 0.5 1 1.5 2 2.5

x 10
5

-0.5

0

0.5
Song of matched bird from database

0 500 1000 1500 2000 2500 3000 3500
-5000

0

5000

10000
Correlation of bird song MFCCs

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-20

-10

0

10
MFCCs of "unknown" bird

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-20

0

20
MFCCs of matched bird from database



77 
 

>> mfcc_auto('MourningWarbler (2).wav',8,16000) 
 
third_fit = 
MagnoliaWarbler (1).wav  
 
second_fit = 
MagnoliaWarbler (3).wav  
 
max = 
    0.9782 
 
x = 
       NaN    0.9829    0.9839    0.9810    0.9798    0.9752    0.9728    0.9718 
 
ans = 
MourningWarbler (1).wav 

 

Figure 32: Mourning Warbler song comparison 
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>> mfcc_auto('MourningWarbler (8).wav',8,16000) 
 
third_fit = 
MagnoliaWarbler (1).wav  
 
second_fit = 
MagnoliaWarbler (7).wav  
 
max = 
    0.5905 
 
x = 
       NaN    0.7839    0.7393    0.7839    0.3272    0.6754    0.6094    0.2143 
 
ans = 
MagnoliaWarbler (10).wav 

 

Figure 33: Mourning Warbler song comparison 
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>> mfcc_auto('MourningWarbler (10).wav',8,16000) 
 
third_fit = 
MagnoliaWarbler (1).wav  
 
second_fit = 
MagnoliaWarbler (3).wav  
 
max = 
    0.7031 
 
x = 
       NaN    0.7728    0.8500    0.7863    0.6421    0.7602    0.5750    0.5349 
 
ans = 
MourningWarbler (1).wav 

 

Figure 34: Mourning Warbler song comparison 
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>> mfcc_auto('CarolinaWren (7).wav',8,16000) 
 
third_fit = 
MagnoliaWarbler (10).wav 
 
second_fit = 
MourningWarbler (5).wav  
 
max = 
    0.7115 
 
x = 
       NaN    0.7560    0.7839    0.7394    0.6852    0.7611    0.6225    0.6321 
 
ans = 
CarolinaWren (1).wav   

 

Figure 35: Carolina Wren song comparison 
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>> mfcc_auto('CarolinaWren (8).wav',8,16000) 
 
third_fit = 
MourningWarbler (5).wav  
 
second_fit = 
CarolinaWren (1).wav     
 
max = 
    0.5139 
 
x = 
       NaN    0.5698    0.4056    0.5554    0.5976    0.4777    0.4453    0.5454 
 
ans = 
CarolinaWren (5).wav   

 

Figure 36: Carolina Wren song comparison 
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>> mfcc_auto('CarolinaWren (9).wav',8,16000) 
 
third_fit = 
MourningWarbler (6).wav  
 
second_fit = 
CarolinaWren (1).wav     
 
max = 
    0.6178 
 
x = 
       NaN    0.6659    0.6026    0.6267    0.6405    0.6885    0.5950    0.5052 
 
ans = 
CarolinaWren (2).wav   

 

Figure 37: Carolina Wren song comparison 
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>> mfcc_auto('CarolinaWren (10).wav',8,16000) 
 
third_fit = 
MourningWarbler (5).wav  
 
second_fit = 
MourningWarbler (6).wav  
 
max = 
    0.5455 
 
x = 
       NaN    0.6534    0.5236    0.6568    0.5851    0.4905    0.4355    0.4738 
 
ans = 
CarolinaWren (2).wav   

 

Figure 38: Carolina Wren song comparison 
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>> mfcc_auto('Carolina_Wren_Bird.wav',8,16000) 

 
third_fit = 
MourningWarbler (7).wav  
 
second_fit = 
CarolinaWren (1).wav     
 
max = 
    0.6178 
 
x = 
       NaN    0.7906    0.5959    0.7694    0.6810    0.2547    0.5677    0.6653 
 
ans = 
CarolinaWren (5).wav   

 

Figure 39: Carolina Wren song comparison 
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Appendix B: MATLAB Source Code 

Bird Finder with Database 
function best_fit = mfcc_auto( data1, num, fs ) 
%MFCC correlation calculation 
max = 0; 
second_fit = 0; 
third_fit = 0; 
best_fit = 0; 

  
%Create database of bird calls  
database_entry = strvcat('CapeMayWarbler (1).wav','CapeMayWarbler 

(2).wav','CapeMayWarbler (6).wav','CapeMayWarbler (8).wav','MagnoliaWarbler 

(1).wav','MagnoliaWarbler (3).wav','MagnoliaWarbler (6).wav','MagnoliaWarbler 

(7).wav','MagnoliaWarbler (10).wav','MourningWarbler 

(1).wav','MourningWarbler (3).wav','MourningWarbler (4).wav','MourningWarbler 

(5).wav','MourningWarbler (6).wav','MourningWarbler (7).wav','CarolinaWren 

(1).wav','CarolinaWren (2).wav','CarolinaWren (3).wav','CarolinaWren 

(5).wav','CarolinaWren (6).wav'); 

  
%Find the size of the database 
S = size(database_entry); 

  
%Compare the MFCC correlation vectors of each bird call 
% with the unknown bird call to find the best fit 
for i = 1:S(1) 
    x = mfcc_nooutput(data1,database_entry(i,:),num,fs); 
    compared(i) = mean(x(2:num)); 
    if compared(i) > max 
        max = compared(i); 
        third_fit = second_fit; 
        second_fit = best_fit; 
        best_fit = database_entry(i,:); 
    end 
end 

  
%Output the best fit 
third_fit 
second_fit 
max 
mfcc(data1,best_fit,num,fs); 

  
end 

 

MFCC Comparison Code 
function x = mfcc_nooutput( data1, data2, num, fs ) 
%MFCC correlation calculation 

  
%Read in the wave files 
y1 = wavread(data1); 
y2 = wavread(data2); 

  
%Calculate MFCCs 
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z1 = kannumfcc(num,y1,fs); 
z2 = kannumfcc(num,y2,fs); 

  
%Find the size of the MFCCs 
[s1,q] = size(z1); 
[s2,q] = size(z2); 

  
%Compare the sizes to fix any differences in size 
% between the two files 
if(s1 ~= s2) 
    if(s1 > s2) 
        z2 = padarray(z2,(s1-s2),0,'post'); 
    end 
    if(s1 < s2) 
        z1 = padarray(z1,(s2-s1),0,'post'); 
        s1 = s2; 
    end 
end 

  
%Go through each MFCC infividually and find their 
% cross correlation values 
s = size(z1); 
for i=2:num 
    [C,I] = max(xcorr(z1(:,i),z2(:,i))); 
    g(:,i) = xcorr(z1(:,i),z2(:,i)); 
    if(I < (s1)) 
        w1(1:(s+(s1-I)),i) = padarray(z1(:,i),((s1)-I),0,'pre'); 
        w2(1:(s+(s1-I)),i) = padarray(z2(:,i),((s1)-I),0,'post'); 
    end 
    if(I > (s1)) 
        w1(1:(s+(I-s1)),i) = padarray(z1(:,i),(I-(s1)),0,'post'); 
        w2(1:(s+(I-s1)),i) = padarray(z2(:,i),(I-(s1)),0,'pre'); 
    end 
    if(I == (s1)) 
        w1 = z1; 
        w2 = z2; 
    end 
end 

  
%Output the correlation vector for comparison 
for i=1:num 
    x(i) = corr(w1(:,i),w2(:,i)); 
end 

  

  

end 
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Appendix C: DSP Source Code 

source.c 

//MQP 
 
#define CHIP_6713 
#define DEBUG_MODE 0 

 
//include files 
#include <stdio.h> 
#include <c6x.h> 
#include <csl.h> 
#include <csl_mcbsp.h> 
#include <csl_irq.h> 
 

#include "dsk6713.h" 
#include "dsk6713_aic23.h" 
#include "fft.h" 
#include "kannumfcc1.2.h" 
#include "corr.h" 
 
//Uint32 fs=DSK6713_AIC23_FREQ_16KHZ; 

Uint32 fs=DSK6713_AIC23_FREQ_44KHZ; 
 
//#define REC_LEN 163840 //10 seconds of recording at 16384 Hz 
//#define REC_LEN 81920 //5 seconds of recording at 16384 Hz 
#define REC_LEN 220500 //5 seconds of recording at 44100 Hz 
 
int var; 

short inout; 
float buffer[REC_LEN]; 
#pragma DATA_SECTION(buffer,".EXT_RAM"); //write buffer to external memory 
 
//Filtering Prototypes and Variables 
 
//High Pass Filter 
const int BL_High = 11; 

const float B_High[11] = { 
   -0.03768008947, -0.05519120023, -0.08344765007,  -0.1095543131,  -0.1280400008, 
     0.8652742505,  -0.1280400008,  -0.1095543131, -0.08344765007, -0.05519120023, 
   -0.03768008947 
}; 
 
//Low Pass Filter 

const int BL_Low = 31; 
const float B_Low[31] = { 
   0.004959571641,  0.02198479138,-0.007192821242, -0.01577280462,0.0003676032065, 
    0.02300152369, 0.007212243043, -0.02984294109,  -0.0206382703,  0.03626932949, 
    0.04415991902, -0.04150832444,  -0.0936364457,  0.04492767528,    0.314013809, 
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     0.4538732469,    0.314013809,  0.04492767528,  -0.0936364457, -0.04150832444, 
    0.04415991902,  0.03626932949,  -0.0206382703, -0.02984294109, 0.007212243043, 
    0.02300152369,0.0003676032065, -0.01577280462,-0.007192821242,  0.02198479138, 
   0.004959571641 

}; 
 
//variables for filtering 
float samples_high[11]; 
float samples_low[31]; 
float result; 
 
//variables for MFCCs 

float fmatrix[numFrames][NUM_COEFFS]; 
float fmatrix2000[2000][NUM_COEFFS]; 
 
//kannumfcc 
float num = NUM_COEFFS; 
int i, j, k; 
//int a = 1; 

//float b[] = {1, -0.97};  //a and b are high pass filter coefficients 
float frame[N]; 
COMPLEX F[n]; //FFT needs to be a power of 2 to work 
float spectr1[fn]; 
float spectr[fn]; 
float c[fn]; 
float melf[24][257]; 

float Ce1 = 0, Ce2 = 0, Ce = 0; 
float coeffs[NUM_COEFFS]; 
float hamming[N]; 
COMPLEX *input; 
float noFrames; //maximum no of frames in speech sample 
float lifter[NUM_COEFFS]; 
int len = REC_LEN; 
float mean; 

float max = 0; 
float cutoff; 
 
#pragma DATA_ALIGN(F,sizeof(COMPLEX));    //align F for fft() 
 
//Variables for correlation 
float c1d[length]; 

float d1d[length]; 
float maxr = 0; 
float avgr = 0; 
float corrs[CORR_LEN]; 
float corrs2d[NUM_COEFFS]; 
float r; 
 

//Variables for search algorithm 
int bird = 0; 
float maxcorr = 0; 
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//Bird Call FMatrix Library Variables 
#pragma DATA_SECTION(capemay1,".EXT_RAM"); 
#pragma DATA_SECTION(carolina1, ".EXT_RAM"); 

#pragma DATA_SECTION(magnolia1, ".EXT_RAM"); 
#pragma DATA_SECTION(mourning1, ".EXT_RAM"); 
//#pragma DATA_SECTION(capemay2,".EXT_RAM"); 
//#pragma DATA_SECTION(capemay1cutoff, ".EXT_RAM"); 
//#pragma DATA_SECTION(carolina1cutoff, ".EXT_RAM"); 
void main(){ 
 
 //initialize Board 

 comm_poll(); 
 //initialize DIPs 
 DSK6713_DIP_init(); 
 //initialize LEDs 
 DSK6713_LED_init(); 
 
 if(DEBUG_MODE == 1){ 

  printf("\n\n*********PROGRAM STARTED IN DEBUG MODE*********\n\n"); 
 } else { 
  printf("\n\n*********PROGRAM STARTED*********\n\n"); 
 } 
 
 while(1){ 
 

  //initialize filtering arrays to zero 
  for(i = 0; i < BL_High; i++){ 
   samples_high[i] = 0; 
 
  } 
  for(i = 0; i < BL_Low; i++){ 
   samples_low[i] = 0; 
 

  } 
 
  while(1){ 
 
   if(DSK6713_DIP_get(3) == 0){ 
    //turn LED3 on to indicate recording in progress 
    printf("Recording in progress...\n"); 

 
    DSK6713_LED_on(3); 
    //filter samples as they come in 
    for(i = 0; i < REC_LEN; i++){ 
     
     inout = input_sample(); 
     buffer[i] = inout;      

  
    } 
    //turn LED3 off when buffer full 
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    DSK6713_LED_off(3); 
 
    printf("...finished\n"); 
 

    break; 
   } 
  }; 
  var = 0; 
 
  //Low Pass Filter - Stop 10kHz+ 
  if(DEBUG_MODE == 1){ 
   printf("Low pass filter in progress..."); 

  } 
  for(i = 0; i < REC_LEN; i++){ 
  
   result = 0; 
       
   //Update array samples 
   for(j = BL_Low-2; j >= 0; j--){ 

    //move all samples down one 
    samples_low[j+1] = samples_low[j]; 
   } 
 
   //add new sample 
   samples_low[0] = buffer[i]; 
 

   //Filter 
   for(j = 0; j < BL_Low; j++){ 
    result += (samples_low[j] * B_Low[j]);    
   } 
 
   buffer[i] = result; 
 
  } 

  if(DEBUG_MODE == 1){ 
   printf("...finished\n"); 
  } 
 
  //End Low Pass Filter 
   
  //*********End Filtering******** 

 
  //Insert MFCC Code here - LED on and off when complete 
  DSK6713_LED_on(1); 
  DSK6713_LED_on(2);   
 
  //allocate fmatrix to zero 
  for(i=0;i<numFrames;i++){ 

   for(j=0;j<NUM_COEFFS;j++){ 
    fmatrix[i][j]=0; 
   } 



91 
 

  } 
 
  //kannumfcc(buffer, REC_LEN, fmatrix); 
 

  //*****************kannumfcc.c************************** 
  noFrames = floor(len/FrameStep); //maximum no of frames in speech sample 
  //lifter vector index 
  for(i = 0; i < NUM_COEFFS; i++){ 
   lifter[i] = i+1; 
   lifter[i] = 1 + floor(num/2) * (sin(lifter[i]*PI/num)); 
  } //raised sine lifter version 
 

   
  //normalizes to compensate for mic vol differences 
  //not sure we have to do this 
  /* 
  for(i = 0; i < len; i++){ 
   mean += abs(buffer[i]); 
   if(max < buffer[i]){ 

    max = buffer[i]; 
   } 
  } 
  mean = mean / len; 
  if(mean > 0.01){ 
   for(i = 0; i < len; i++){ 
    buffer[i] = buffer[i]/max; 

   } 
  } 
  */ 
  //end normlization 
 
   
  //generate hamming window 
  create_hamming(hamming, N); 

 
  //create mel filter bank 
  create_mel_bank(melf); 
 
  printf("MFCC Calculations in progress...\n"); 
 
  for(i = 1; i <= noFrames-2; i++){ 

   if(DEBUG_MODE == 1){ 
 
    if(i == 50){ 
     printf("computing 50th frame\n"); 
    } 
    if(i == 250){ 
     printf("computing 250th frame\n"); 

    } 
   }  
   Ce1 = 0; 
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   Ce2 = 0; 
   Ce = 0; 
   for(j = 1; j <= N; j++){     
    frame[j-1] = buffer[(i-1)*FrameStep+(j-1)];  //holds 

individual frames  
    //frame energy 
    Ce1 += (frame[j-1] * frame[j-1]); 
    if(Ce1 < (2*pow(10, -22))){ 
     Ce2 = (2*pow(10, -22)); 
    } else { 
     Ce2 = Ce1; 
    }    

   } 
   Ce = log(Ce2); 
 
   if(DEBUG_MODE == 1){ 
    if(i == 1){ 
     printf("calculated frame energy\n"); 
    } 

   } 
    
   //multiply each frame with hamming window 
   for(j = 0; j < n; j++){       
    F[j].re = hamming[j] * frame[j]; 
    F[j].im = 0;    
   } 

 
   if(DEBUG_MODE == 1){ 
    if(i == 1){ 
     printf("multplied hamming window\n"); 
    } 
   } 
    
   //compute FFT 

   //our FFT does not take inputs, fft will be rewritten in F 
   //initialize complex FFT input array with known values 
   input = &F[0];   
    
   fft(input, n); 
 
   if(DEBUG_MODE == 1){ 

    if(i == 1){ 
     printf("performed FFT\n"); 
    } 
   }  
    
   //result is mel-scale filtered, up to halfn of F 
   for(k = 0; k < fn; k++){ 

    spectr1[k] = 0; 
    for(j = 1; j <= halfn; j++){    
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     spectr1[k] += melf[k][j-1]*(pow(imag_mag(F[j-1].re, F[j-
1].im),2)); 
    } 
    spectr1[k] = log10(spectr1[k]); 

    if(spectr1[k] < pow(10, -22)){ 
     spectr[k] = pow(10, -22); 
    } else { 
     spectr[k] = spectr1[k]; 
    } 
   } 
 
   if(DEBUG_MODE == 1){ 

    if(i == 1){ 
     printf("results are mel-scale filtered\n"); 
    } 
   } 
    
   //Compute DCT 
   dct(spectr, c, fn); 

 
   if(DEBUG_MODE == 1){ 
    if(i == 1){ 
     printf("performed dct\n"); 
    } 
   } 
    

   //obtains DCT, changes to cepstral domain 
   c[0] = Ce; 
    
   for(j = 0; j < NUM_COEFFS; j++){ 
    coeffs[j] = c[j]; 
    
    fmatrix[i][j] = coeffs[j] * lifter[j];     
   } 

 
   if(DEBUG_MODE == 1){ 
    if(i == 1){ 
     printf("wrote to fmatrix\n"); 
     printf("...first frame finished\n"); 
    } 
   } 

    
  } 
 
  //*************Correlation***************** 
   
  printf("Correlation started...\n"); 
   

 
  //CapeMay1 
  maxr = 0; 
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  avgr = 0; 
 
  for(i = 0; i < NUM_COEFFS; i++){ 
 

   //pad fmatrix array with zeros to length 2000 to match other fmatrices 
    
   for(j = 0; j < length; j++){ 
    /* 
    if(j < numFrames){ 
     fmatrix2000[j][i] = fmatrix[j][i]; 
    } else { 
     fmatrix2000[j][i] = 0.01; 

    } 
     
    if(capemay1[j][i] != 0){ 
     c1d[j] = fmatrix[j][i]; 
     d1d[j] = capemay1[j][i]; 
    } else { 
     c1d[j] = fmatrix[j][i]; 

     d1d[j] = 0.01; 
    } 
    */ 
    c1d[j] = fmatrix[j][i]; 
    d1d[j] = capemay1[j][i]; 
 
   } 

   
   r = cross_corr_wrap(c1d, d1d, corrs, NUM_COEFFS); 
   corrs2d[i] = r; 
   if(r > maxr){ 
    maxr = r; 
   } 
  } 
  //Do not count first correlation 

  for(i = 1; i < NUM_COEFFS; i++){ 
   avgr += corrs2d[i]; 
  } 
  avgr /= NUM_COEFFS-1; 
 
  maxcorr = avgr; //set avg correlation to current maximum 
  bird = 1;  //set current bird to cape may 1 

  if(DEBUG_MODE == 1){ 
   printf("Max corr capemay1: %f\n", maxr); 
  } 
  printf("Avg corr capemay1: %f\n", avgr); 
 
  if(DEBUG_MODE == 1){ 
   for(i = 0; i < NUM_COEFFS; i++){ 

    printf("%f\n", corrs2d[i]); 
   } 
  } 
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  //carolina1 
  maxr = 0; 
  avgr = 0; 

 
  for(i = 0; i < NUM_COEFFS; i++){ 
 
   //pad fmatrix array with zeros to length 2000 to match other fmatrices 
    
   for(j = 0; j < length; j++){ 
    
    c1d[j] = fmatrix[j][i]; 

    d1d[j] = carolina1[j][i]; 
   } 
   
   r = cross_corr_wrap(c1d, d1d, corrs, NUM_COEFFS); 
   corrs2d[i] = r; 
   if(r > maxr){ 
    maxr = r; 

   } 
  } 
  //Do not count first correlation 
  for(i = 1; i < NUM_COEFFS; i++){ 
   avgr += corrs2d[i]; 
  } 
  avgr /= NUM_COEFFS-1; 

 
  //if correlation is highest, set maxcorr and highest bird type 
  if(avgr > maxcorr){ 
   maxcorr = avgr; 
   bird = 2; 
  } 
 
  if(DEBUG_MODE == 1){ 

   printf("Max corr carolina1: %f\n", maxr); 
  } 
  printf("Avg corr carolina1: %f\n", avgr); 
 
  if(DEBUG_MODE == 1){ 
   for(i = 0; i < NUM_COEFFS; i++){ 
    printf("%f\n", corrs2d[i]); 

   } 
  } 
 
  //Magnolia1 
  maxr = 0; 
  avgr = 0; 
 

  for(i = 0; i < NUM_COEFFS; i++){ 
 
   for(j = 0; j < length; j++){ 
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    c1d[j] = fmatrix[j][i]; 
    d1d[j] = magnolia1[j][i]; 
   } 
   

   r = cross_corr_wrap(c1d, d1d, corrs, NUM_COEFFS); 
   corrs2d[i] = r; 
   if(r > maxr){ 
    maxr = r; 
   } 
  } 
  //Do not count first correlation 
  for(i = 1; i < NUM_COEFFS; i++){ 

   avgr += corrs2d[i]; 
  } 
  avgr /= NUM_COEFFS-1; 
 
  //if correlation is highest, set maxcorr and highest bird type 
  if(avgr > maxcorr){ 
   maxcorr = avgr; 

   bird = 3; 
  } 
 
  if(DEBUG_MODE == 1){ 
   printf("Max corr magnolia1: %f\n", maxr); 
  } 
  printf("Avg corr magnolia1: %f\n", avgr); 

 
  if(DEBUG_MODE == 1){ 
   for(i = 0; i < NUM_COEFFS; i++){ 
    printf("%f\n", corrs2d[i]); 
   } 
  } 
 
  //Mourning1 

  maxr = 0; 
  avgr = 0; 
 
  for(i = 0; i < NUM_COEFFS; i++){ 
 
   for(j = 0; j < length; j++){ 
    c1d[j] = fmatrix[j][i]; 

    d1d[j] = mourning1[j][i]; 
   } 
   
   r = cross_corr_wrap(c1d, d1d, corrs, NUM_COEFFS); 
   corrs2d[i] = r; 
   if(r > maxr){ 
    maxr = r; 

   } 
  } 
  //Do not count first correlation 
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  for(i = 1; i < NUM_COEFFS; i++){ 
   avgr += corrs2d[i]; 
  } 
  avgr /= NUM_COEFFS-1; 

 
  //if correlation is highest, set maxcorr and highest bird type 
  if(avgr > maxcorr){ 
   maxcorr = avgr; 
   bird = 4; 
  } 
   
  if(DEBUG_MODE == 1){ 

   printf("Max corr mourning1: %f\n", maxr); 
  } 
  printf("Avg corr mourning1: %f\n", avgr); 
 
  if(DEBUG_MODE == 1){ 
   for(i = 0; i < NUM_COEFFS; i++){ 
    printf("%f\n", corrs2d[i]); 

   } 
  } 
 
  //Print bird with highest correlation 
  //if highest correlation is under .50, change to no match 
  if(maxcorr < 0.50){ 
   bird = 0; 

   maxcorr = 0; 
  } 
 
  printf("Highest Correlation:\n"); 
  switch(bird){ 
   case 0: 
    printf("No Match\n"); 
    printf("Correlation: %f\n", maxcorr); 

    break; 
   case 1: 
    printf("Cape May Warbler1\n"); 
    printf("Correlation: %f\n", maxcorr); 
    break; 
   case 2: 
    printf("Carolina Wren1\n"); 

    printf("Correlation: %f\n", maxcorr); 
    break;    
   case 3: 
    printf("Magnolia Warbler1\n"); 
    printf("Correlation: %f\n", maxcorr); 
    break; 
   case 4: 

    printf("Mourning Warbler1\n"); 
    printf("Correlation: %f\n", maxcorr); 
    break; 
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   default: 
    printf("Default Case Reached\n"); 
    break; 
  } 

 
 
  //turn off LEDs to indicate signal processing complete 
  DSK6713_LED_off(1); 
  DSK6713_LED_off(2); 
 
  //************Play back section***************** 
  while(1){ 

   if((DSK6713_DIP_get(0) == 0) /*&& (var == 0)*/){ 
    //turn LED0 to indicate play back 
    DSK6713_LED_on(0); 
 
    printf("Playback in progress...\n"); 
 
    for(i = 0; i<REC_LEN; i++){     

     //play back 
     inout = buffer[i];     
     output_sample(inout*10); 
    } 
    //var = 1; 
    //turn LED0 off when play back is complete 
    DSK6713_LED_off(0); 

 
    printf("...finished\n"); 
 
    break; 
 
   } 
      
 

  }; 
 
 } 
 
 
} 

kannumfcc1.2.c 

//Kannumfcc1.2.c 

 
//The whole project..... 
#include "kannumfcc1.2.h" 
 
void kannumfcc(COMPLEX sample[], int len, float fmatrix[500][8]){ 
 float num = NUM_COEFFS; 
 int i, j, k; 
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 //int a = 1; 
 //float b[] = {1, -0.97};  //a and b are high pass filter coefficients 
 COMPLEX frame[N], F[N]; 
 float spectr1[fn]; 

 float spectr[fn]; 
 float c[fn]; 
 float melf[24][257]; 
 float Ce1 = 0, Ce2 = 0, Ce = 0; 
 float coeffs[NUM_COEFFS], ncoeffs[NUM_COEFFS]; 
 float hamming[N]; 
 COMPLEX *input; 
 

 float noFrames = floor(len/FrameStep); //maximum no of frames in speech sample 
 float lifter[NUM_COEFFS];      //lifter vector index 
 for(i = 0; i < NUM_COEFFS; i++){ 
  lifter[i] = i+1; 
  lifter[i] = 1 + floor(num/2) * (sin(lifter[i]*PI/num)); 
 } //raised sine lifter version 
 

 
 //normalizes to compensate for mic vol differences 
 //not sure we have to do this 
 /* 
 float mean; 
 float max = 0; 
 for(i = 0; i < len; i++){ 

  mean += abs(sample[i]); 
  if(max < sample[i]){ 
   max = sample[i]; 
  } 
 } 
 mean = mean / len; 
 if(mean > 0.01;){ 
  for(i = 0; i < len; i++){ 

   sample[i] = sample[i]/max; 
  } 
 } 
 */ 
 //end normlization 
  
 //segment the signal into overlapping frames and compute MFCC coefficients 

 
 for(i = 0; i < halfn; i++){ 
  spectr1[i] = 0; 
  spectr[i] = 0; 
 } 
 
 

 //generate hamming window 
 create_hamming(hamming, N); 
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 //create mel filter bank 
 create_mel_bank(melf); 
 
   

 for(i = 1; i <= noFrames-2; i++){ 
  for(j = 1; j <= N; j++){ 
   frame[j-1].re = sample[(i-1)*FrameStep+(j-1)].re;  //holds 
individual frames  
   //frame energy 
   //Ce1 += (frame[j-1].re * frame[j-1].re) + 2*(frame[j-1].re + frame[j-1].im) + 
(frame[j-1].im * frame[j-1].im); //sqaure imaginary number??? 
   //Imaginary numbers = 0 

   Ce1 += (frame[j-1].re * frame[j-1].re); 
   if(Ce1 < (2*pow(10, -22))){ 
    Ce2 = (2*pow(10, -22)); 
   } else { 
    Ce2 = Ce1; 
   }    
  } 

  Ce = log(Ce2); 
   
  //filter frame using a and b 
  //not sure we have to do this... 
   
  //multiply each frame with hamming window 
  for(j = 0; j < N; j++){ 

   F[j].re *= hamming[j]; 
  } 
   
  //compute FFT 
  //our FFT does not take inputs, fft will be rewritten in F 
  //initialize complex FFT input array with known values 
  input = &F[0];   
   

  fft(input, N);   
   
  //result is mel-scale filtered, up to halfn of F 
  for(k = 0; k < fn; k++){ 
   for(j = 1; j <= halfn; j++){    
    spectr1[k] += log10(melf[k][j-1]*(pow(imag_mag(F[j-1].re, F[j-
1].im),2)));     

   } 
   if(spectr1[k] < pow(10, -22)){ 
    spectr[k] = pow(10, -22); 
   } else { 
    spectr[k] = spectr1[k]; 
   } 
  } 

   
  //Compute DCT 
  dct(spectr, c, fn); 
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  //obtains DCT, changes to cepstral domain 
  c[0] = Ce; 
   

  for(j = 0; j < NUM_COEFFS; j++){ 
   coeffs[j] = c[j]; 
   ncoeffs[j] = coeffs[j] * lifter[j]; 
   fmatrix[i][j] = ncoeffs[j]; 
  } 
   
 } 
  

 return; 
} 
 
//creates a hamming window of length len 
void create_hamming(float hamming[], int len){ 
 int i; 
 for(i = 0; i < len; i++){ 

  hamming[i] = 0.54 - 0.46 * cos(2*PI * ((float)i/(len-1))); 
 } 
 return; 
} 
 
//finds the magnitude if an imaginary number 
float imag_mag(float real, float imag){ 

 float ans = sqrt( pow(real, 2) + pow(imag, 2) ); 
 return ans; 
} 
 
//performs a DCT-II 
void dct(float input[], float output[], int M){ 
 int k, m; 
 int K = M; 

 float temp = 0; 
 for(k = 1; k <= K; k++){ 
  
  for(m = 1; m <= M; m++){ 
   temp += input[m-1] * cos((PI*(2*m-1)*(k-1))/(2*M)); 
  } 
   

  if(k == 1){ 
   output[k-1] = (1/sqrt(M)) * temp; 
  } else { 
   output[k-1] = sqrt(2/(float)M) * temp; 
  } 
   
  temp = 0;   

 }  
 return;  
} 
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fft.c 

//fft.c 
 
//Performs TI's optimized FFT function 

 
#include "fft.h" 
 
// align data (nothing works if you omit these pragma!!!!!!!!!!) 
#pragma DATA_ALIGN(w,sizeof(COMPLEX))   //align w 
 
// global variables 

COMPLEX w[FFT_N/RADIX];      // array of complex twiddle factors 
float DELTA = 2.0*PI/FFT_N; 
short iw[FFT_N/2],ix[FFT_N];   // indices for bit reversal 
 
void fft(COMPLEX data[], int len) 
{  
 int i; 
 

 // compute first N/2 twiddle factors 
  for(i=0;i<len/RADIX;i++){ 
     w[i].re = cos(DELTA*i);       
     w[i].im = sin(DELTA*i);  // negative imag component 
  //iw[i] = 0; 
  //ix[i] = 0; 
  //ix[(len/RADIX)+i] = 0; 

   } 
 
  digitrev_index(iw,(float)len/RADIX,RADIX);//produces index for bitrev() W  
  bitrev(w,iw,(float)len/RADIX);      //bit reverse W  
  cfftr2_dit(data,w,len) ;       //TI floating-pt complex FFT  
  digitrev_index(ix, len, RADIX);     //produces index for bitrev() X  
  bitrev(data,ix,len);       //freq scrambled->bit-reverse X 
} 

corr.c 

//MQP 
//corr.c 
 
//This function cross correlates two arrays 
 
#include "corr.h" 
#include "kannumfcc1.2.h" 

 
float cross_corr(float x[], float y[], float corrs[], int nn){ 
 
 int i,j, k = 0; 
    float mx,my,sx,sy,sxy,denom,r, maxr = 0; 
 int delay; 
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 int maxdelay = MAXDELAY; 
    
 /* Calculate the mean of the two series x[], y[] */ 
 mx = 0; 

 my = 0;    
 for (i=0;i<nn;i++) { 
  mx += x[i]; 
  my += y[i]; 
 } 
 mx /= nn; 
 my /= nn; 
 

 /* Calculate the denominator */ 
 sx = 0; 
 sy = 0; 
 for (i=0;i<nn;i++) { 
  sx += (x[i] - mx) * (x[i] - mx); 
  sy += (y[i] - my) * (y[i] - my); 
 } 

 denom = sqrt(sx*sy); 
 
 /* Calculate the correlation series */ 
 for (delay=-maxdelay; delay<maxdelay; delay++) { 
  sxy = 0; 
  for (i=0;i<nn;i++) { 
   j = i + delay; 

   if (j < 0 || j >= nn) 
    continue; 
   else 
       sxy += (x[i] - mx) * (y[j] - my);   
  } 
  /* 
  if(denom == 0){ 
   r = 0; 

  } else { 
   r = sxy / denom; 
  } 
  */ 
  r = sxy / denom; 
  corrs[k] = r; 
  k++; 

  if(r > maxr){ 
   maxr = r; 
  } 
      
   /* r is the correlation coefficient at "delay" */ 
 } 
 return maxr; 

 
} 
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float cross_corr_wrap(float x[], float y[], float corrs[], int nn){ 
 
 int i,j, k = 0; 
    float mx,my,sx,sy,sxy,denom,r, maxr = 0; 

 int delay; 
 int maxdelay = MAXDELAY; 
 
 /* Calculate the mean of the two series x[], y[] */ 
 mx = 0; 
 my = 0;    
 for (i=0;i<nn;i++) { 
  mx += x[i]; 

  my += y[i]; 
 } 
 mx /= nn; 
 my /= nn; 
 
 /* Calculate the denominator */ 
 sx = 0; 

 sy = 0; 
 for (i=0;i<nn;i++) { 
  sx += (x[i] - mx) * (x[i] - mx); 
  sy += (y[i] - my) * (y[i] - my); 
 } 
 denom = sqrt(sx*sy); 
 

 /* Calculate the correlation series */ 
 for (delay=-maxdelay;delay<maxdelay;delay++) { 
  sxy = 0; 
  for (i=0;i<nn;i++) { 
   j = i + delay; 
   while (j < 0){ 
    j += nn; 
   } 

   j %= nn; 
   sxy += (x[i] - mx) * (y[j] - my); 
  } 
  r = sxy / denom; 
 
  corrs[k] = r; 
  k++; 

  if(r > maxr){ 
   maxr = r; 
  } 
 
  /* r is the correlation coefficient at "delay" */ 
 } 
 return maxr; 
} 
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mfcc_bank.c 

//mfcc_bank.c 
 
//This file creates a sparse matrix which contains the mel bank 

 
#include "mfcc_bank.h" 
 
void create_mel_bank(float bank[24][257]){ 
 //intialize values to zero 
 int i, j; 
 //i think it was 24 x 257? 

 for(i = 0; i < 24; i++){ 
  for(j = 0; j < 257; j++){ 
   bank[i][j] = 0; 
  } 
 } 
  
 bank [ 0 ] [ 1 ] = 1.6667 ; 
 bank [ 0 ] [ 2 ] = 0.84 ; 

 bank [ 1 ] [ 2 ] = 1.16 ; 
 bank [ 1 ] [ 3 ] = 1.4875 ; 
 bank [ 2 ] [ 3 ] = 0.5125 ; 
 bank [ 1 ] [ 4 ] = 0.2514 ; 
 bank [ 2 ] [ 4 ] = 1.7486 ; 
 bank [ 2 ] [ 5 ] = 1.1134 ; 
 bank [ 3 ] [ 5 ] = 0.8866 ; 

 bank [ 2 ] [ 6 ] = 0.0589 ; 
 bank [ 3 ] [ 6 ] = 1.9411 ; 
 bank [ 3 ] [ 7 ] = 1.0766 ; 
 bank [ 4 ] [ 7 ] = 0.9234 ; 
 bank [ 3 ] [ 8 ] = 0.1572 ; 
 bank [ 4 ] [ 8 ] = 1.8428 ; 
 bank [ 4 ] [ 9 ] = 1.2931 ; 

 bank [ 5 ] [ 9 ] = 0.7069 ; 
 bank [ 4 ] [ 10 ] = 0.4781 ; 
 bank [ 5 ] [ 10 ] = 1.5219 ; 
 bank [ 5 ] [ 11 ] = 1.7068 ; 
 bank [ 6 ] [ 11 ] = 0.2932 ; 
 bank [ 5 ] [ 12 ] = 0.9749 ; 
 bank [ 6 ] [ 12 ] = 1.0251 ; 
 bank [ 5 ] [ 13 ] = 0.2784 ; 

 bank [ 6 ] [ 13 ] = 1.7216 ; 
 bank [ 6 ] [ 14 ] = 1.6142 ; 
 bank [ 7 ] [ 14 ] = 0.3858 ; 
 bank [ 6 ] [ 15 ] = 0.9793 ; 
 bank [ 7 ] [ 15 ] = 1.0207 ; 
 bank [ 6 ] [ 16 ] = 0.3714 ; 
 bank [ 7 ] [ 16 ] = 1.6286 ; 

 bank [ 7 ] [ 17 ] = 1.7881 ; 
 bank [ 8 ] [ 17 ] = 0.2119 ; 
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 bank [ 7 ] [ 18 ] = 1.2275 ; 
 bank [ 8 ] [ 18 ] = 0.7725 ; 
 bank [ 7 ] [ 19 ] = 0.6881 ; 
 bank [ 8 ] [ 19 ] = 1.3119 ; 

 bank [ 7 ] [ 20 ] = 0.1681 ; 
 bank [ 8 ] [ 20 ] = 1.8319 ; 
 bank [ 8 ] [ 21 ] = 1.6664 ; 
 bank [ 9 ] [ 21 ] = 0.3336 ; 
 bank [ 8 ] [ 22 ] = 1.1815 ; 
 bank [ 9 ] [ 22 ] = 0.8185 ; 
 bank [ 8 ] [ 23 ] = 0.7125 ; 
 bank [ 9 ] [ 23 ] = 1.2875 ; 

 bank [ 8 ] [ 24 ] = 0.2584 ; 
 bank [ 9 ] [ 24 ] = 1.7416 ; 
 bank [ 9 ] [ 25 ] = 1.8181 ; 
 bank [ 10 ] [ 25 ] = 0.1819 ; 
 bank [ 9 ] [ 26 ] = 1.391 ; 
 bank [ 10 ] [ 26 ] = 0.609 ; 
 bank [ 9 ] [ 27 ] = 0.9762 ; 

 bank [ 10 ] [ 27 ] = 1.0238 ; 
 bank [ 9 ] [ 28 ] = 0.573 ; 
 bank [ 10 ] [ 28 ] = 1.427 ; 
 bank [ 9 ] [ 29 ] = 0.1808 ; 
 bank [ 10 ] [ 29 ] = 1.8192 ; 
 bank [ 10 ] [ 30 ] = 1.7991 ; 
 bank [ 11 ] [ 30 ] = 0.2009 ; 

 bank [ 10 ] [ 31 ] = 1.4273 ; 
 bank [ 11 ] [ 31 ] = 0.5727 ; 
 bank [ 10 ] [ 32 ] = 1.0648 ; 
 bank [ 11 ] [ 32 ] = 0.9352 ; 
 bank [ 10 ] [ 33 ] = 0.7113 ; 
 bank [ 11 ] [ 33 ] = 1.2887 ; 
 bank [ 10 ] [ 34 ] = 0.3662 ; 
 bank [ 11 ] [ 34 ] = 1.6338 ; 

 bank [ 10 ] [ 35 ] = 0.0292 ; 
 bank [ 11 ] [ 35 ] = 1.9708 ; 
 bank [ 11 ] [ 36 ] = 1.7 ; 
 bank [ 12 ] [ 36 ] = 0.3 ; 
 bank [ 11 ] [ 37 ] = 1.3782 ; 
 bank [ 12 ] [ 37 ] = 0.6218 ; 
 bank [ 11 ] [ 38 ] = 1.0634 ; 

 bank [ 12 ] [ 38 ] = 0.9366 ; 
 bank [ 11 ] [ 39 ] = 0.7553 ; 
 bank [ 12 ] [ 39 ] = 1.2447 ; 
 bank [ 11 ] [ 40 ] = 0.4537 ; 
 bank [ 12 ] [ 40 ] = 1.5463 ; 
 bank [ 11 ] [ 41 ] = 0.1584 ; 
 bank [ 12 ] [ 41 ] = 1.8416 ; 

 bank [ 12 ] [ 42 ] = 1.8689 ; 
 bank [ 13 ] [ 42 ] = 0.1311 ; 
 bank [ 12 ] [ 43 ] = 1.5852 ; 
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 bank [ 13 ] [ 43 ] = 0.4148 ; 
 bank [ 12 ] [ 44 ] = 1.307 ; 
 bank [ 13 ] [ 44 ] = 0.693 ; 
 bank [ 12 ] [ 45 ] = 1.0341 ; 

 bank [ 13 ] [ 45 ] = 0.9659 ; 
 bank [ 12 ] [ 46 ] = 0.7663 ; 
 bank [ 13 ] [ 46 ] = 1.2337 ; 
 bank [ 12 ] [ 47 ] = 0.5033 ; 
 bank [ 13 ] [ 47 ] = 1.4967 ; 
 bank [ 12 ] [ 48 ] = 0.2451 ; 
 bank [ 13 ] [ 48 ] = 1.7549 ; 
 bank [ 13 ] [ 49 ] = 1.9915 ; 

 bank [ 14 ] [ 49 ] = 0.0085 ; 
 bank [ 13 ] [ 50 ] = 1.7423 ; 
 bank [ 14 ] [ 50 ] = 0.2577 ; 
 bank [ 13 ] [ 51 ] = 1.4973 ; 
 bank [ 14 ] [ 51 ] = 0.5027 ; 
 bank [ 13 ] [ 52 ] = 1.2564 ; 
 bank [ 14 ] [ 52 ] = 0.7436 ; 

 bank [ 13 ] [ 53 ] = 1.0195 ; 
 bank [ 14 ] [ 53 ] = 0.9805 ; 
 bank [ 13 ] [ 54 ] = 0.7864 ; 
 bank [ 14 ] [ 54 ] = 1.2136 ; 
 bank [ 13 ] [ 55 ] = 0.5571 ; 
 bank [ 14 ] [ 55 ] = 1.4429 ; 
 bank [ 13 ] [ 56 ] = 0.3313 ; 

 bank [ 14 ] [ 56 ] = 1.6687 ; 
 bank [ 13 ] [ 57 ] = 0.1091 ; 
 bank [ 14 ] [ 57 ] = 1.8909 ; 
 bank [ 14 ] [ 58 ] = 1.8902 ; 
 bank [ 15 ] [ 58 ] = 0.1098 ; 
 bank [ 14 ] [ 59 ] = 1.6747 ; 
 bank [ 15 ] [ 59 ] = 0.3253 ; 
 bank [ 14 ] [ 60 ] = 1.4623 ; 

 bank [ 15 ] [ 60 ] = 0.5377 ; 
 bank [ 14 ] [ 61 ] = 1.253 ; 
 bank [ 15 ] [ 61 ] = 0.747 ; 
 bank [ 14 ] [ 62 ] = 1.0467 ; 
 bank [ 15 ] [ 62 ] = 0.9533 ; 
 bank [ 14 ] [ 63 ] = 0.8433 ; 
 bank [ 15 ] [ 63 ] = 1.1567 ; 

 bank [ 14 ] [ 64 ] = 0.6428 ; 
 bank [ 15 ] [ 64 ] = 1.3572 ; 
 bank [ 14 ] [ 65 ] = 0.445 ; 
 bank [ 15 ] [ 65 ] = 1.555 ; 
 bank [ 14 ] [ 66 ] = 0.25 ; 
 bank [ 15 ] [ 66 ] = 1.75 ; 
 bank [ 14 ] [ 67 ] = 0.0575 ; 

 bank [ 15 ] [ 67 ] = 1.9425 ; 
 bank [ 15 ] [ 68 ] = 1.8676 ; 
 bank [ 16 ] [ 68 ] = 0.1324 ; 
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 bank [ 15 ] [ 69 ] = 1.6801 ; 
 bank [ 16 ] [ 69 ] = 0.3199 ; 
 bank [ 15 ] [ 70 ] = 1.4951 ; 
 bank [ 16 ] [ 70 ] = 0.5049 ; 

 bank [ 15 ] [ 71 ] = 1.3125 ; 
 bank [ 16 ] [ 71 ] = 0.6875 ; 
 bank [ 15 ] [ 72 ] = 1.1321 ; 
 bank [ 16 ] [ 72 ] = 0.8679 ; 
 bank [ 15 ] [ 73 ] = 0.9539 ; 
 bank [ 16 ] [ 73 ] = 1.0461 ; 
 bank [ 15 ] [ 74 ] = 0.778 ; 
 bank [ 16 ] [ 74 ] = 1.222 ; 

 bank [ 15 ] [ 75 ] = 0.6041 ; 
 bank [ 16 ] [ 75 ] = 1.3959 ; 
 bank [ 15 ] [ 76 ] = 0.4324 ; 
 bank [ 16 ] [ 76 ] = 1.5676 ; 
 bank [ 15 ] [ 77 ] = 0.2627 ; 
 bank [ 16 ] [ 77 ] = 1.7373 ; 
 bank [ 15 ] [ 78 ] = 0.0949 ; 

 bank [ 16 ] [ 78 ] = 1.9051 ; 
 bank [ 16 ] [ 79 ] = 1.9291 ; 
 bank [ 17 ] [ 79 ] = 0.0709 ; 
 bank [ 16 ] [ 80 ] = 1.7652 ; 
 bank [ 17 ] [ 80 ] = 0.2348 ; 
 bank [ 16 ] [ 81 ] = 1.6032 ; 
 bank [ 17 ] [ 81 ] = 0.3968 ; 

 bank [ 16 ] [ 82 ] = 1.4429 ; 
 bank [ 17 ] [ 82 ] = 0.5571 ; 
 bank [ 16 ] [ 83 ] = 1.2844 ; 
 bank [ 17 ] [ 83 ] = 0.7156 ; 
 bank [ 16 ] [ 84 ] = 1.1277 ; 
 bank [ 17 ] [ 84 ] = 0.8723 ; 
 bank [ 16 ] [ 85 ] = 0.9726 ; 
 bank [ 17 ] [ 85 ] = 1.0274 ; 

 bank [ 16 ] [ 86 ] = 0.8192 ; 
 bank [ 17 ] [ 86 ] = 1.1808 ; 
 bank [ 16 ] [ 87 ] = 0.6674 ; 
 bank [ 17 ] [ 87 ] = 1.3326 ; 
 bank [ 16 ] [ 88 ] = 0.5172 ; 
 bank [ 17 ] [ 88 ] = 1.4828 ; 
 bank [ 16 ] [ 89 ] = 0.3686 ; 

 bank [ 17 ] [ 89 ] = 1.6314 ; 
 bank [ 16 ] [ 90 ] = 0.2215 ; 
 bank [ 17 ] [ 90 ] = 1.7785 ; 
 bank [ 16 ] [ 91 ] = 0.0759 ; 
 bank [ 17 ] [ 91 ] = 1.9241 ; 
 bank [ 17 ] [ 92 ] = 1.9317 ; 
 bank [ 18 ] [ 92 ] = 0.0683 ; 

 bank [ 17 ] [ 93 ] = 1.789 ; 
 bank [ 18 ] [ 93 ] = 0.211 ; 
 bank [ 17 ] [ 94 ] = 1.6476 ; 
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 bank [ 18 ] [ 94 ] = 0.3524 ; 
 bank [ 17 ] [ 95 ] = 1.5077 ; 
 bank [ 18 ] [ 95 ] = 0.4923 ; 
 bank [ 17 ] [ 96 ] = 1.3691 ; 

 bank [ 18 ] [ 96 ] = 0.6309 ; 
 bank [ 17 ] [ 97 ] = 1.2318 ; 
 bank [ 18 ] [ 97 ] = 0.7682 ; 
 bank [ 17 ] [ 98 ] = 1.0958 ; 
 bank [ 18 ] [ 98 ] = 0.9042 ; 
 bank [ 17 ] [ 99 ] = 0.9611 ; 
 bank [ 18 ] [ 99 ] = 1.0389 ; 
 bank [ 17 ] [ 100 ] = 0.8277 ; 

 bank [ 18 ] [ 100 ] = 1.1723 ; 
 bank [ 17 ] [ 101 ] = 0.6954 ; 
 bank [ 18 ] [ 101 ] = 1.3046 ; 
 bank [ 17 ] [ 102 ] = 0.5644 ; 
 bank [ 18 ] [ 102 ] = 1.4356 ; 
 bank [ 17 ] [ 103 ] = 0.4346 ; 
 bank [ 18 ] [ 103 ] = 1.5654 ; 

 bank [ 17 ] [ 104 ] = 0.3059 ; 
 bank [ 18 ] [ 104 ] = 1.6941 ; 
 bank [ 17 ] [ 105 ] = 0.1784 ; 
 bank [ 18 ] [ 105 ] = 1.8216 ; 
 bank [ 17 ] [ 106 ] = 0.052 ; 
 bank [ 18 ] [ 106 ] = 1.948 ; 
 bank [ 18 ] [ 107 ] = 1.9267 ; 

 bank [ 19 ] [ 107 ] = 0.0733 ; 
 bank [ 18 ] [ 108 ] = 1.8025 ; 
 bank [ 19 ] [ 108 ] = 0.1975 ; 
 bank [ 18 ] [ 109 ] = 1.6793 ; 
 bank [ 19 ] [ 109 ] = 0.3207 ; 
 bank [ 18 ] [ 110 ] = 1.5572 ; 
 bank [ 19 ] [ 110 ] = 0.4428 ; 
 bank [ 18 ] [ 111 ] = 1.4362 ; 

 bank [ 19 ] [ 111 ] = 0.5638 ; 
 bank [ 18 ] [ 112 ] = 1.3161 ; 
 bank [ 19 ] [ 112 ] = 0.6839 ; 
 bank [ 18 ] [ 113 ] = 1.197 ; 
 bank [ 19 ] [ 113 ] = 0.803 ; 
 bank [ 18 ] [ 114 ] = 1.0789 ; 
 bank [ 19 ] [ 114 ] = 0.9211 ; 

 bank [ 18 ] [ 115 ] = 0.9618 ; 
 bank [ 19 ] [ 115 ] = 1.0382 ; 
 bank [ 18 ] [ 116 ] = 0.8456 ; 
 bank [ 19 ] [ 116 ] = 1.1544 ; 
 bank [ 18 ] [ 117 ] = 0.7304 ; 
 bank [ 19 ] [ 117 ] = 1.2696 ; 
 bank [ 18 ] [ 118 ] = 0.6161 ; 

 bank [ 19 ] [ 118 ] = 1.3839 ; 
 bank [ 18 ] [ 119 ] = 0.5026 ; 
 bank [ 19 ] [ 119 ] = 1.4974 ; 
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 bank [ 18 ] [ 120 ] = 0.3901 ; 
 bank [ 19 ] [ 120 ] = 1.6099 ; 
 bank [ 18 ] [ 121 ] = 0.2784 ; 
 bank [ 19 ] [ 121 ] = 1.7216 ; 

 bank [ 18 ] [ 122 ] = 0.1676 ; 
 bank [ 19 ] [ 122 ] = 1.8324 ; 
 bank [ 18 ] [ 123 ] = 0.0577 ; 
 bank [ 19 ] [ 123 ] = 1.9423 ; 
 bank [ 19 ] [ 124 ] = 1.9486 ; 
 bank [ 20 ] [ 124 ] = 0.0514 ; 
 bank [ 19 ] [ 125 ] = 1.8403 ; 
 bank [ 20 ] [ 125 ] = 0.1597 ; 

 bank [ 19 ] [ 126 ] = 1.7328 ; 
 bank [ 20 ] [ 126 ] = 0.2672 ; 
 bank [ 19 ] [ 127 ] = 1.6261 ; 
 bank [ 20 ] [ 127 ] = 0.3739 ; 
 bank [ 19 ] [ 128 ] = 1.5202 ; 
 bank [ 20 ] [ 128 ] = 0.4798 ; 
 bank [ 19 ] [ 129 ] = 1.4151 ; 

 bank [ 20 ] [ 129 ] = 0.5849 ; 
 bank [ 19 ] [ 130 ] = 1.3107 ; 
 bank [ 20 ] [ 130 ] = 0.6893 ; 
 bank [ 19 ] [ 131 ] = 1.2071 ; 
 bank [ 20 ] [ 131 ] = 0.7929 ; 
 bank [ 19 ] [ 132 ] = 1.1042 ; 
 bank [ 20 ] [ 132 ] = 0.8958 ; 

 bank [ 19 ] [ 133 ] = 1.0021 ; 
 bank [ 20 ] [ 133 ] = 0.9979 ; 
 bank [ 19 ] [ 134 ] = 0.9007 ; 
 bank [ 20 ] [ 134 ] = 1.0993 ; 
 bank [ 19 ] [ 135 ] = 0.8 ; 
 bank [ 20 ] [ 135 ] = 1.2 ; 
 bank [ 19 ] [ 136 ] = 0.7 ; 
 bank [ 20 ] [ 136 ] = 1.3 ; 

 bank [ 19 ] [ 137 ] = 0.6007 ; 
 bank [ 20 ] [ 137 ] = 1.3993 ; 
 bank [ 19 ] [ 138 ] = 0.5021 ; 
 bank [ 20 ] [ 138 ] = 1.4979 ; 
 bank [ 19 ] [ 139 ] = 0.4041 ; 
 bank [ 20 ] [ 139 ] = 1.5959 ; 
 bank [ 19 ] [ 140 ] = 0.3068 ; 

 bank [ 20 ] [ 140 ] = 1.6932 ; 
 bank [ 19 ] [ 141 ] = 0.2102 ; 
 bank [ 20 ] [ 141 ] = 1.7898 ; 
 bank [ 19 ] [ 142 ] = 0.1142 ; 
 bank [ 20 ] [ 142 ] = 1.8858 ; 
 bank [ 19 ] [ 143 ] = 0.0188 ; 
 bank [ 20 ] [ 143 ] = 1.9812 ; 

 bank [ 20 ] [ 144 ] = 1.9241 ; 
 bank [ 21 ] [ 144 ] = 0.0759 ; 
 bank [ 20 ] [ 145 ] = 1.83 ; 
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 bank [ 21 ] [ 145 ] = 0.17 ; 
 bank [ 20 ] [ 146 ] = 1.7365 ; 
 bank [ 21 ] [ 146 ] = 0.2635 ; 
 bank [ 20 ] [ 147 ] = 1.6436 ; 

 bank [ 21 ] [ 147 ] = 0.3564 ; 
 bank [ 20 ] [ 148 ] = 1.5513 ; 
 bank [ 21 ] [ 148 ] = 0.4487 ; 
 bank [ 20 ] [ 149 ] = 1.4596 ; 
 bank [ 21 ] [ 149 ] = 0.5404 ; 
 bank [ 20 ] [ 150 ] = 1.3685 ; 
 bank [ 21 ] [ 150 ] = 0.6315 ; 
 bank [ 20 ] [ 151 ] = 1.278 ; 

 bank [ 21 ] [ 151 ] = 0.722 ; 
 bank [ 20 ] [ 152 ] = 1.188 ; 
 bank [ 21 ] [ 152 ] = 0.812 ; 
 bank [ 20 ] [ 153 ] = 1.0986 ; 
 bank [ 21 ] [ 153 ] = 0.9014 ; 
 bank [ 20 ] [ 154 ] = 1.0097 ; 
 bank [ 21 ] [ 154 ] = 0.9903 ; 

 bank [ 20 ] [ 155 ] = 0.9214 ; 
 bank [ 21 ] [ 155 ] = 1.0786 ; 
 bank [ 20 ] [ 156 ] = 0.8336 ; 
 bank [ 21 ] [ 156 ] = 1.1664 ; 
 bank [ 20 ] [ 157 ] = 0.7464 ; 
 bank [ 21 ] [ 157 ] = 1.2536 ; 
 bank [ 20 ] [ 158 ] = 0.6597 ; 

 bank [ 21 ] [ 158 ] = 1.3403 ; 
 bank [ 20 ] [ 159 ] = 0.5735 ; 
 bank [ 21 ] [ 159 ] = 1.4265 ; 
 bank [ 20 ] [ 160 ] = 0.4878 ; 
 bank [ 21 ] [ 160 ] = 1.5122 ; 
 bank [ 20 ] [ 161 ] = 0.4026 ; 
 bank [ 21 ] [ 161 ] = 1.5974 ; 
 bank [ 20 ] [ 162 ] = 0.3179 ; 

 bank [ 21 ] [ 162 ] = 1.6821 ; 
 bank [ 20 ] [ 163 ] = 0.2338 ; 
 bank [ 21 ] [ 163 ] = 1.7662 ; 
 bank [ 20 ] [ 164 ] = 0.1501 ; 
 bank [ 21 ] [ 164 ] = 1.8499 ; 
 bank [ 20 ] [ 165 ] = 0.0669 ; 
 bank [ 21 ] [ 165 ] = 1.9331 ; 

 bank [ 21 ] [ 166 ] = 1.9841 ; 
 bank [ 22 ] [ 166 ] = 0.0159 ; 
 bank [ 21 ] [ 167 ] = 1.9019 ; 
 bank [ 22 ] [ 167 ] = 0.0981 ; 
 bank [ 21 ] [ 168 ] = 1.8201 ; 
 bank [ 22 ] [ 168 ] = 0.1799 ; 
 bank [ 21 ] [ 169 ] = 1.7388 ; 

 bank [ 22 ] [ 169 ] = 0.2612 ; 
 bank [ 21 ] [ 170 ] = 1.6579 ; 
 bank [ 22 ] [ 170 ] = 0.3421 ; 
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 bank [ 21 ] [ 171 ] = 1.5775 ; 
 bank [ 22 ] [ 171 ] = 0.4225 ; 
 bank [ 21 ] [ 172 ] = 1.4976 ; 
 bank [ 22 ] [ 172 ] = 0.5024 ; 

 bank [ 21 ] [ 173 ] = 1.4181 ; 
 bank [ 22 ] [ 173 ] = 0.5819 ; 
 bank [ 21 ] [ 174 ] = 1.339 ; 
 bank [ 22 ] [ 174 ] = 0.661 ; 
 bank [ 21 ] [ 175 ] = 1.2603 ; 
 bank [ 22 ] [ 175 ] = 0.7397 ; 
 bank [ 21 ] [ 176 ] = 1.1821 ; 
 bank [ 22 ] [ 176 ] = 0.8179 ; 

 bank [ 21 ] [ 177 ] = 1.1043 ; 
 bank [ 22 ] [ 177 ] = 0.8957 ; 
 bank [ 21 ] [ 178 ] = 1.027 ; 
 bank [ 22 ] [ 178 ] = 0.973 ; 
 bank [ 21 ] [ 179 ] = 0.95 ; 
 bank [ 22 ] [ 179 ] = 1.05 ; 
 bank [ 21 ] [ 180 ] = 0.8734 ; 

 bank [ 22 ] [ 180 ] = 1.1266 ; 
 bank [ 21 ] [ 181 ] = 0.7973 ; 
 bank [ 22 ] [ 181 ] = 1.2027 ; 
 bank [ 21 ] [ 182 ] = 0.7216 ; 
 bank [ 22 ] [ 182 ] = 1.2784 ; 
 bank [ 21 ] [ 183 ] = 0.6462 ; 
 bank [ 22 ] [ 183 ] = 1.3538 ; 

 bank [ 21 ] [ 184 ] = 0.5713 ; 
 bank [ 22 ] [ 184 ] = 1.4287 ; 
 bank [ 21 ] [ 185 ] = 0.4967 ; 
 bank [ 22 ] [ 185 ] = 1.5033 ; 
 bank [ 21 ] [ 186 ] = 0.4225 ; 
 bank [ 22 ] [ 186 ] = 1.5775 ; 
 bank [ 21 ] [ 187 ] = 0.3487 ; 
 bank [ 22 ] [ 187 ] = 1.6513 ; 

 bank [ 21 ] [ 188 ] = 0.2753 ; 
 bank [ 22 ] [ 188 ] = 1.7247 ; 
 bank [ 21 ] [ 189 ] = 0.2023 ; 
 bank [ 22 ] [ 189 ] = 1.7977 ; 
 bank [ 21 ] [ 190 ] = 0.1296 ; 
 bank [ 22 ] [ 190 ] = 1.8704 ; 
 bank [ 21 ] [ 191 ] = 0.0573 ; 

 bank [ 22 ] [ 191 ] = 1.9427 ; 
 bank [ 22 ] [ 192 ] = 1.9853 ; 
 bank [ 23 ] [ 192 ] = 0.0147 ; 
 bank [ 22 ] [ 193 ] = 1.9137 ; 
 bank [ 23 ] [ 193 ] = 0.0863 ; 
 bank [ 22 ] [ 194 ] = 1.8425 ; 
 bank [ 23 ] [ 194 ] = 0.1575 ; 

 bank [ 22 ] [ 195 ] = 1.7716 ; 
 bank [ 23 ] [ 195 ] = 0.2284 ; 
 bank [ 22 ] [ 196 ] = 1.7011 ; 
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 bank [ 23 ] [ 196 ] = 0.2989 ; 
 bank [ 22 ] [ 197 ] = 1.6309 ; 
 bank [ 23 ] [ 197 ] = 0.3691 ; 
 bank [ 22 ] [ 198 ] = 1.5611 ; 

 bank [ 23 ] [ 198 ] = 0.4389 ; 
 bank [ 22 ] [ 199 ] = 1.4915 ; 
 bank [ 23 ] [ 199 ] = 0.5085 ; 
 bank [ 22 ] [ 200 ] = 1.4224 ; 
 bank [ 23 ] [ 200 ] = 0.5776 ; 
 bank [ 22 ] [ 201 ] = 1.3535 ; 
 bank [ 23 ] [ 201 ] = 0.6465 ; 
 bank [ 22 ] [ 202 ] = 1.285 ; 

 bank [ 23 ] [ 202 ] = 0.715 ; 
 bank [ 22 ] [ 203 ] = 1.2168 ; 
 bank [ 23 ] [ 203 ] = 0.7832 ; 
 bank [ 22 ] [ 204 ] = 1.1489 ; 
 bank [ 23 ] [ 204 ] = 0.8511 ; 
 bank [ 22 ] [ 205 ] = 1.0814 ; 
 bank [ 23 ] [ 205 ] = 0.9186 ; 

 bank [ 22 ] [ 206 ] = 1.0142 ; 
 bank [ 23 ] [ 206 ] = 0.9858 ; 
 bank [ 22 ] [ 207 ] = 0.9472 ; 
 bank [ 23 ] [ 207 ] = 1.0528 ; 
 bank [ 22 ] [ 208 ] = 0.8806 ; 
 bank [ 23 ] [ 208 ] = 1.1194 ; 
 bank [ 22 ] [ 209 ] = 0.8143 ; 

 bank [ 23 ] [ 209 ] = 1.1857 ; 
 bank [ 22 ] [ 210 ] = 0.7483 ; 
 bank [ 23 ] [ 210 ] = 1.2517 ; 
 bank [ 22 ] [ 211 ] = 0.6826 ; 
 bank [ 23 ] [ 211 ] = 1.3174 ; 
 bank [ 22 ] [ 212 ] = 0.6172 ; 
 bank [ 23 ] [ 212 ] = 1.3828 ; 
 bank [ 22 ] [ 213 ] = 0.5521 ; 

 bank [ 23 ] [ 213 ] = 1.4479 ; 
 bank [ 22 ] [ 214 ] = 0.4873 ; 
 bank [ 23 ] [ 214 ] = 1.5127 ; 
 bank [ 22 ] [ 215 ] = 0.4228 ; 
 bank [ 23 ] [ 215 ] = 1.5772 ; 
 bank [ 22 ] [ 216 ] = 0.3586 ; 
 bank [ 23 ] [ 216 ] = 1.6414 ; 

 bank [ 22 ] [ 217 ] = 0.2947 ; 
 bank [ 23 ] [ 217 ] = 1.7053 ; 
 bank [ 22 ] [ 218 ] = 0.231 ; 
 bank [ 23 ] [ 218 ] = 1.769 ; 
 bank [ 22 ] [ 219 ] = 0.1676 ; 
 bank [ 23 ] [ 219 ] = 1.8324 ; 
 bank [ 22 ] [ 220 ] = 0.1045 ; 

 bank [ 23 ] [ 220 ] = 1.8955 ; 
 bank [ 22 ] [ 221 ] = 0.0417 ; 
 bank [ 23 ] [ 221 ] = 1.9583 ; 
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 bank [ 23 ] [ 222 ] = 1.9792 ; 
 bank [ 23 ] [ 223 ] = 1.9169 ; 
 bank [ 23 ] [ 224 ] = 1.8549 ; 
 bank [ 23 ] [ 225 ] = 1.7931 ; 

 bank [ 23 ] [ 226 ] = 1.7317 ; 
 bank [ 23 ] [ 227 ] = 1.6704 ; 
 bank [ 23 ] [ 228 ] = 1.6095 ; 
 bank [ 23 ] [ 229 ] = 1.5488 ; 
 bank [ 23 ] [ 230 ] = 1.4883 ; 
 bank [ 23 ] [ 231 ] = 1.4282 ; 
 bank [ 23 ] [ 232 ] = 1.3682 ; 
 bank [ 23 ] [ 233 ] = 1.3085 ; 

 bank [ 23 ] [ 234 ] = 1.2491 ; 
 bank [ 23 ] [ 235 ] = 1.1899 ; 
 bank [ 23 ] [ 236 ] = 1.1309 ; 
 bank [ 23 ] [ 237 ] = 1.0722 ; 
 bank [ 23 ] [ 238 ] = 1.0138 ; 
 bank [ 23 ] [ 239 ] = 0.9555 ; 
 bank [ 23 ] [ 240 ] = 0.8975 ; 

 bank [ 23 ] [ 241 ] = 0.8397 ; 
 bank [ 23 ] [ 242 ] = 0.7822 ; 
 bank [ 23 ] [ 243 ] = 0.7249 ; 
 bank [ 23 ] [ 244 ] = 0.6678 ; 
 bank [ 23 ] [ 245 ] = 0.611 ; 
 bank [ 23 ] [ 246 ] = 0.5543 ; 
 bank [ 23 ] [ 247 ] = 0.4979 ; 

 bank [ 23 ] [ 248 ] = 0.4417 ; 
 bank [ 23 ] [ 249 ] = 0.3858 ; 
 bank [ 23 ] [ 250 ] = 0.33 ; 
 bank [ 23 ] [ 251 ] = 0.2745 ; 
 bank [ 23 ] [ 252 ] = 0.2192 ; 
 bank [ 23 ] [ 253 ] = 0.1641 ; 
 bank [ 23 ] [ 254 ] = 0.1092 ; 
          

 
} 
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