
1

SMJ-A09B

Bird Call Identifier
Identifying Songs of Bird Species through Digital Signal

Processing Techniques

A Major Qualifying Project submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the degree of Bachelor of Science

Submitted by:

Tyler Carroll

Rose Colangelo

Tom Strott

Submitted to:

Project Advisor:

Professor Susan Jarvis

29 Apr 2010

This report represents work of WPI undergraduate students submitted to the faculty as evidence of a degree

requirement. WPI routinely publishes these reports on its web site without editorial or peer review. For more

information about the projects program at WPI, see http://www.wpi.edu/Academics/Projects.

2

Abstract

 The purpose of this Major Qualifying Project is to create a device that identifies bird calls

in the wild. The aim of this project is to create a handheld device that will be able to interpret

bird calls using a high quality microphone and various signal processing techniques and display

the top matches on an LCD screen to the user. The main objective of this project is to be able to

identify the songs of several bird species in central Massachusetts on a lab development board

while additional work would include downloadable software that would add the bird songs of

more bird species and the conversion of from a lab development board to a handheld device.

3

Authorship

 The three team members contributed equally to the work on this project and to the report.

4

Acknowledgements

 The team would like to thanks the following people for their contributions to the project:

 Susan Jarvis, Adjunct Instructor, WPI

 Mike Webster, Director of the Macaulay Library

 Michael Young, Sound Technician, Macaulay Library

 Christine Drew, Manager, Instruction & Outreach, Gordon Library

5

Table of Contents
Abstract... 2

Authorship .. 3

Acknowledgements ... 4

Table of Figures ... 7

Table of Tables .. 8

Table of Equations ... 8

Chapter 1: Introduction ... 9

Chapter 2: Background .. 12

2. 1 Prior Art .. 12

2.2 Signal Processing ... 14

2. 3 Mel-frequency Cepstrum .. 16

2.4 Bird Call Recognition .. 18

Chapter 3: Methodology.. 20

3.1 Scope ... 20

3.2 System Block Diagram .. 21

3.3 Creation of an Algorithm .. 23

3.4 Obtaining Samples ... 24

3.5 Modular Design Choices... 26

3.5.1 Netbook Processor .. 27

3.5.2 Front End Filter ... 28

3.6.3 Digital Signal Processing Chip .. 28

3.6.4 LCD Screen .. 29

3.6.5 Microphone .. 30

3.7 Algorithm Implementation ... 30

3.7.1 Filtering and Frame Generation ... 31

3.7.2 Windowing Concepts .. 32

3.7.3 Mel-Scale Filtering... 33

3.7.4 Correlation and Database Implementation .. 36

Chapter 4: Results ... 38

4.1 MATLAB Testing Results ... 38

4.2 Testing the Algorithm in C .. 43

6

4.2.1 Fast Fourier Transform Test... 43

4.2.2 Discrete Cosine Transform Test ... 45

4.2.3 Correlation Function ... 47

4.2.4 Hamming Window Function .. 50

4.2.5 Testing the MFCC Algorithm .. 52

4.3 Obstacles ... 54

4.3.1 Record and Playback Function ... 54

4.3.2 Front End Filtering ... 55

4.3.3 Complex Numbers ... 56

4.3.4 Fast Fourier Transform .. 57

4.3.5 Memory Problems... 57

4.3.6 Noise... 59

Chapter 5: Conclusions .. 61

5.1 Discussion of MATLAB Results .. 61

5.2 Discussion of C Results ... 61

5.3 Future Work Recommendations .. 62

5.3.1 MATLAB Future Work .. 62

5.3.2 C Implementation Future Work ... 62

5.3.3 Hardware Design Future Work .. 63

Appendices.. 65

Appendix A: MATLAB Test Results ... 65

Appendix B: MATLAB Source Code ... 85

Bird Finder with Database .. 85

MFCC Comparison Code... 85

Appendix C: DSP Source Code .. 87

source.c ... 87

kannumfcc1.2.c ... 98

fft.c .. 102

corr.c ... 102

mfcc_bank.c .. 105

References .. 115

7

Table of Figures
Figure 1: System Block Diagrams ... 21

Figure 2: Cape May Warbler Song Comparison With Background Noise in Signal 1 26

Figure 3: Magnitude Response of Lowpass Filter.. 28

Figure 4: Block Diagram of C6713 DSK ... 29

Figure 5: Algorithm Flow Chart .. 32

Figure 6: Frequency Domain Filtering Flow Chart ... 35

Figure 7: Comparison of Two Calls from the Same Carolina Wren .. 39

Figure 8: Comparison of Two Human Whistle Trills .. 40

Figure 9: Magnolia Warbler Comparison with One "Unknown" Song ... 41

Figure 10: Carolina Wren Comparison with One "Unknown" Song ... 42

Figure 11: 2 kHz Sine Wave .. 44

Figure 12: Fast Fourier Transform of 2 kHz Sine Wave ... 45

Figure 13: DCT of Input Samples in C ... 46

Figure 14: DCT of Input Samples in MATLAB .. 47

Figure 15: Original Input Signal .. 48

Figure 16: Time Shifted Input Signal... 48

Figure 17: Rectangular Windowed Cross Correlation of Input Signals ... 49

Figure 18: Wrap Around Cross Correlation of Input Signals .. 50

Figure 19: Hamming Window Function in C ... 51

Figure 20: Hamming Window Function in MATLAB .. 52

Figure 21: Cape May Warbler song comparison ... 66

Figure 22: Cape May Warbler song comparison ... 67

Figure 23: Cape May Warbler song comparison ... 68

Figure 24: Cape May Warbler song comparison ... 69

Figure 25: Cape May Warbler song comparison ... 70

Figure 26: Magnolia Warbler song comparison .. 71

Figure 27: Magnolia Warbler song comparison .. 72

Figure 28: Magnolia Warbler song comparison .. 73

Figure 29: Magnolia Warbler song comparison .. 74

Figure 30: Magnolia Warbler song comparison .. 75

Figure 31: Mourning Warbler song comparison ... 76

Figure 32: Mourning Warbler song comparison ... 77

Figure 33: Mourning Warbler song comparison ... 78

Figure 34: Mourning Warbler song comparison ... 79

Figure 35: Carolina Wren song comparison .. 80

Figure 36: Carolina Wren song comparison .. 81

Figure 37: Carolina Wren song comparison .. 82

Figure 38: Carolina Wren song comparison .. 83

Figure 39: Carolina Wren song comparison .. 84

8

Table of Tables
Table 1: System Requirements for 32-Bit MATLAB ... 27

Table 2: Bird song average correlations and percentages choosing the correct bird 43

Table 3: Cape May Correlations ... 53

Table 4: Carolina Wren Correlations .. 53

Table 5: Magnolia Warbler Correlations... 53

Table 6: Mourning Warbler Correlations .. 53

Table of Equations
Equation 1: Discrete Fourier Transform ... 15

Equation 2: Cross Correlation .. 16

Equation 3: Conversion from Hertz into Mel .. 17

9

Chapter 1: Introduction

 Various species of birds have unique bird calls. These bird calls are distinct based on

inflection, length, and context, meaning the same bird may have more than one call. A device

that would analyze the signal and identify the bird based on the bird call could be of tremendous

help to an ornithologist. This project proposed the development of this device using signal

processing and embedded design. The first task was to find or create a database of high-quality

bird calls to use for identification. Using this database, the team compared various features of the

bird calls of a certain species and ascertained the features which distinguish that species from

other species. Using these features, a recorded bird call was identifiable as a species of bird.

 This project is an important effort because ornithology is not always an exact science in

the field; it is based on the interpretation of the scientist hearing the bird’s song. A device that

could quantitatively match signal waveforms would make the science more exact. Furthermore,

bird watching is a hobby that many people enjoy. The ability to identify birds could increase the

enjoyment of bird watching enthusiasts everywhere.

 Before discussing the project further, it is important to delve into the prior art related to

the project to gain an understanding of how current products work and what needs improvement.

Several products which identify bird songs already exist, but none of them currently in

production do exactly what was attempted in this project. There is a wealth of information on the

internet as well as some handheld devices that require the user to match the bird calls. A

discontinued product exists that does digital signal processing of the bird call and displays likely

species, and the team intends to produce something in that vein with some improvements.

In order to create a bird call identification device, the team needed to correctly utilize

several signal processing techniques. Some of these techniques included filters, discrete Fourier

10

transforms, cross-correlation, wavelets, cepstral analysis, and audio spectrograms (Cai et al.,

2007; Lee et al., 2006). Filters were necessary to improve the quality of the bird songs and

remove any unwanted noise. Bird songs cover a wide frequency range and discrete Fourier

transforms allowed the team to analyze the different frequencies in each call. Cross-correlation

allowed the team to compare recorded bird calls with the bird call database, both in time and

frequency. Next, the group used discrete wavelet transforms. An advantage that discrete wavelet

transforms (DWT) have over Fourier transforms is temporal resolution; a DWT captures both

frequency and time information. Additionally, the team created audio spectrograms using both

Fourier and discrete wavelet transforms to examine each bird’s song. Lastly, the group used mel-

frequency cepstral coefficients. To find these mel-frequency cepstral coefficients, the Fourier

transform is taken and then the power of the spectrum is mapped onto the mel scale (Lee et al.,

2006). At that point, the discrete cosine transform (DCT) of the mel logarithms of the power

spectrum is taken, and the resulting amplitudes are the mel-frequency cepstral coefficients. Each

technique manipulated the bird call in a different way to help the group identify which species

the call originated from.

One challenge that was faced during the attempts to identify actual bird songs was

recognizing all calls made by a particular species of bird. A bird’s song can contain a significant

amount of information including the bird’s species, sex, individual identity, his territorial and

reproductive status, and his probability of responding aggressively or sexually to a potential

recipient (Emlen, 1972). There is so much information that call variation is inevitable among

birds and any one bird can have four or more songs in its repertoire. This was one of the group’s

greatest challenges because understanding how birds vary their songs was a significant roadblock

to understanding how to differentiate species.

11

The previous attempts to create a device that could identify a bird’s species by its call

have been expensive or don’t meet all the requirements of an ornithologist or bird watching

enthusiast. This project attempted to improve upon previous devices’ shortcomings. The goal of

this project was to use signal processing and embedded systems to identify bird species by their

calls and lay the foundation for a hand-held bird call identification device.

12

Chapter 2: Background

 This chapter is intended to educate the reader about background information pertaining to bird

vocalization and signal analysis in order to instill a greater understanding of the project. The prior art in

the area of bird vocalization analysis is first discussed, followed by signal processing techniques, and

concluded with bird call variations.

2. 1 Prior Art

 Before discussing details of the project, it is important to first explore the prior art that is

related to the goal. Many products exist on the marketplace, but none that are currently in

production are quite like the planned project. There are two main reasons for this. First of all,

signal processing is a complicated process, often requiring an expensive processing chip. From a

production standpoint, it would be less expensive to manufacture a product without a signal

processing chip. A popular way of doing this is recording the signal and having the user do the

signal processing, comparing the known bird call with the unknown bird call and determining

whether or not they match. This will be discussed in detail later on.

 One product on the market is an Apple application called iBird Explorer (“Compare

Birding Apps”), for use with an iPod Touch or an iPhone. This application is essentially a field

guide for birds complete with bird calls. It shows pictures and matches them with bird calls, and

also allows the user to search for birds based on a number of factors including color, shape,

habitat, and location.

 Other products on the market are standalone devices that do not have the same wealth of

information, but still match a species of bird with a pre-recorded bird call from that bird. One

such product is the IdentiFlyer, which is a handheld device that allows for headphone use. There

are ten buttons up the sides with pictures next to them that allows the user to hear the bird call of

13

that particular bird. The device is expandable, allowing for more than ten bird species with

additional purchases (“Identiflyer”).

 Another relevant source of information is eNature.com. This website contains a field

guide for birds that includes species pictures, field descriptions, range maps, and bird calls. Bird

searches are based on shape, color, size, region, and habitats. Although the information is useful,

internet access is needed to access the information, and that may not be available in the field

(“eNature”).

 The prior art that is most similar to the project is called the Song Sleuth. This device is

made by Wildlife Acoustics and is a handheld device that implements a directional microphone

to receive bird calls. The bird calls are then analyzed by a digital signal processing circuit board,

and the top three most likely bird species from the database are listed in order. The database is

taken from Cornell University’s Macaulay Library. It lists as a $300 device, but production has

been discontinued (“Song Sleuth”).

 Wildlife Acoustics also makes other products designed for bird song identification. The

current model is called the Song Meter 2, or SM2. It is a weather resistant recording device that

can record many hours of wildlife sound. Wildlife experts then take the memory to a computer

and analyze the signals with proprietary software known as Song Scope. Song Scope

automatically identifies various bird, frog, and other wildlife sounds while filtering out other

noise or other wildlife sound that occurs simultaneously (“Song Meter 2”).

 This project was most closely related to the work of Wildlife Acoustics’ work, although

the implementation differed. This research into prior art has shown that similar projects have

been done, but the one that is most like the team’s idea is no longer in production. The Song

14

Sleuth was discontinued because of the greater functionality of the Song Scope computer

software, but future implementations of the team’s device may be able to implement various

ideas into their software to make it more robust, such as narrowing down the possible database

hits by requiring the user to input a region or coloration. Concepts like this allow the team to

make a robust handheld platform for analyzing signals without needing the superior processing

of a computer.

2.2 Signal Processing

 In order to create a bird call identification device, the team needed to correctly utilize

several signal processing techniques. Some of these techniques included filters, discrete Fourier

transforms and cross-correlation. Each technique manipulated the bird call in a different way to

help identify which species the call originated from. The filters were used to filter the incoming

bird call and remove the noise that would disturb the results. Discrete Fourier transforms

transformed the signals into the frequency domain so the team was able to examine the different

frequencies within each signal. Cross-correlation let the group compare the incoming bird call

with their database of bird calls, both in the time and frequency domains, and match the signals

with the highest correlations to determine the most likely matches. The majority of the signal

processing was developed first using MATLAB then eventually implemented in C on a digital

signal processing chip.

 The first signal processing technique necessary to identify a bird call is filtering. Filtering

is necessary because it is likely that the bird call will contain a certain amount of noise. Additive

noise could adversely affect the results. There are several types of filters that the team could have

used to filter noise. Some basic filters are low-pass filters, high-pass filters, band-pass filters and

band-stop filters. Low-pass filters function by passing low-frequency signals and attenuating or

15

reducing the amplitude of high-frequency signals that are higher than the filters designed cutoff

frequency. High-pass filters function the opposite way by passing high-frequency signals and

attenuating frequencies lower than the cutoff frequency. Band-pass filters pass frequencies

within a certain range and reject all frequencies outside that range. These filters can be created

by combining a low-pass filter with a high-pass filter. The opposite of a band-pass filter is a

band-stop filter. This filter blocks all frequencies within a certain range and passes all others

(Proakis & Manolakis, 2005). Since bird calls are characterized by a wide range of frequencies,

the team had to be very particular in their choice of filters in order to prevent any information

loss and to ensure that the filters are only removing unwanted noise.

 The second signal processing technique the team used was discrete Fourier transforms

(DFTs). Since the team was sampling analog signals from a microphone, all of the bird calls

were digital signals. This means that some signal processing was done digitally using discrete

signals. A DFT transforms one function in the time domain into another function in the

frequency domain, and is defined below in Equation 1. The sequence of N complex numbers x0,

..., xN−1 is transformed into the sequence of N complex numbers X0, ..., XN−1 by the DFT

according to the formula, where i is the imaginary unit and is a primitive Nth root of unity.:

Equation 1: Discrete Fourier Transform

The transform is sometimes denoted by the symbol , as in or

 or . In order to increase efficiency the team used a similar technique called a fast Fourier

transform (FFT). An FFT is an efficient algorithm used to compute the DFT of a function. Using

16

FFTs instead of DFTs help improve performance and save run-time because the complexity of a

DFT algorithm is Θ(N2
) while the complexity of a FFT is Θ(N log N) (“Discrete Fourier

Transform”). FFTs allowed the team to determine the frequencies contained within each bird

call. This was beneficial because each bird call should have specific spectral characteristics that

help differentiate it from other species. FFTs can also be easily performed in MATLAB.

 Another signal processing technique the group utilized was cross-correlation. Cross-

correlation is a measure of similarity of two waveforms, also known as a sliding dot product or

inner-product. Similarly, for discrete functions, the cross-correlation is defined as:

Equation 2: Cross Correlation

 Cross-correlation involves shifting one signal over another signal and looking for

matches. It is similar to the convolution of two functions but instead of reversing a signal before

multiplying and shifting it, correlation only involves multiplying and shifting (Cross-correlation).

Cross-correlation allowed comparison of a given bird call with the database of bird calls. The

bird calls with the highest correlation in the time and frequency domains are the most likely

matches.

2. 3 Mel-frequency Cepstrum

The mel-frequency cepstrum represents the short-term power spectrum of a sound, which

is based on a linear cosine transform of a log power spectrum on the nonlinear mel scale of

frequency. The mel scale is a perceptual scale of pitches judged by listeners to be equal in

17

distance to one another. To convert hertz into mel, the popular formula shown below is used

(“Mel Scale”).

Equation 3: Conversion from Hertz into Mel

Mel-frequency cepstral coefficients (MFCCs) collectively make up a mel-frequency cepstrum.

These MFCCs are derived from an audio file by first taking the Fourier transform of the signal.

Then, the powers of the spectrum obtained are mapped onto the mel scale using triangular

overlapping windows. The logs of the powers at each of the mel frequencies are taken and then

the discrete cosine transform is taken of the list of the mel log powers as if it were a signal. The

resulting amplitudes of the spectrum are the MFCCs. MFCCs are commonly used in speech

recognition technologies as well as voice recognition technologies (“Mel-frequency Cepstrum”).

Because of these uses, it could be believed that these MFCCs are useful in identifying species of

birds. However, the MFCCs are very sensitive to noise, so a noisy bird song may not be well-

identified.

 Another consideration when using the MFCCs of a bird song or any other signal is that

the first coefficient should be ignored. In some cases, the second coefficient should also have

less consideration in the final result, as well. This is because the first coefficient represents the

average power of the spectrum, while the second one represents the broad shape of the spectrum.

The remaining coefficients represent the finer details of the spectrum and could be considered to

be more useful features in identifying the spectra (Terasawa, 2005).

18

2.4 Bird Call Recognition

 One challenge faced during attempts to identify actual bird songs is recognizing all songs

made by a particular species of bird. A bird’s call can contain a significant amount of

information including the bird’s species, sex, individual identity, his territorial and reproductive

status, and his probability of responding aggressively or sexually to a potential recipient (Emlen,

1972). Due to the changes a bird may make to its calls to signal these messages, pinpointing one

species of bird per call may prove difficult, though not necessarily impossible.

 Douglas A. Nelson attempted to find variations among different species of birds using

audio spectrograms. He found that birds could generally be differentiated not by the comparison

of the spectrograms themselves, but by the analysis of ten acoustic features, such as range of

frequency or song duration, derived from their audio spectrograms (Nelson, 1989). This

information could help the group greatly since it may not be necessary to correlate the

spectrographs to ones in the team’s collections, but can instead analyze them and compare their

attributes. This may be more successful because many species of birds have a few different songs

they may use for different situations (Byers, 1995). The only drawback is determining what

features would differ enough to identify a variety of birds independently.

 Some scholars differentiate bird calls into two categories: undirected songs (UD) and

female-directed songs (FD) (Sakata et al., 2008; Byers, 1995). In a study on Bengalese finches,

Sakata et al. found some differences, such as song length and syllable repeatability, between UD

and FD songs. The team should take this into account when determining their variables to

identify species of birds, since when a bird is calling a mate, he may change his song. An

example of this could be when a bird makes a territorial, long-distance call or a call to a nearby

potential mate. The differential attenuation, reflection, and absorption of sound could cause the

19

bird to change his song when making a long or short-distance call (Konishi, 1970). However,

Emlen believes that songs or repertoires of songs of a species of birds must have different

qualities than those of other species in order to avoid species misidentification (Emlen, 1972).

Another consideration the team should account for is that birds in different locations may

have different calls. Research suggests that bird calls of same-species birds can differ from those

only a few miles away (Byers, 1995). This could make it difficult for the team to test their

system, particularly if the team uses pre-recorded signals from other regions. In order for the

team to get accurate measurements for the signal analysis, the group may need to analyze

multiple samples for many different regions and determine what variables do not change

substantially.

 With this project, the team hoped to overcome the major obstacle of varying bird calls

from the same species. This has been a barrier in the field of ornithology for quite some time and

was one of the largest challenges of the team’s project. After that challenge was faced, the goal

of this project was to create a system for bird call identification that could be utilized without an

expertise in signal processing.

20

Chapter 3: Methodology

 The purpose of this section is to describe the methods that the group used to complete this

project. This section contains a scope of the project, system block diagrams, algorithm creation

and testing and design component choices.

3.1 Scope

The goal of this project is to be able to identify a bird species based on its call. The

objectives that were necessary in this endeavor are as follows:

 Resolve a way to identify one bird species despite a variation of calls from that species

 Analyze and identify bird species using MATLAB

 Analyze and identify bird species using the C language

 Implement the C program on a digital signal processing chip

The team began by resolving a way to identify one bird species despite a variation of

calls from that species. To do this, the literature was researched to find a way to isolate that

species from all other species based on certain characteristics of the bird call. The team elected to

utilize the mel frequency cepstral coefficients as described in the background chapter. The

specific details of this implementation will be discussed later.

 Next, this processing stream was coded in MATLAB. Many of the necessary functions

were available online, and credit for the mel bank code goes to Mike Brookes (Brooks, 2009)

while credit for the MFCC function goes to Olutope Foluso Omogbenigun (Omogbenigun,

2009). The team’s contribution to this code was correlating the resulting MFCCs from one bird

21

call with another and plotting the results. Results for this portion of the project can be found in

the next chapter.

After that, the group implemented the same processing stream using the C language. This

code was written mostly from scratch although some of the functions were adapted from the TI

DSP library. The platform selected for algorithm implementation was a Texas Instruments

C6713 DSP development board (or DSK) because this hardware was readily available to the

group and the group had previous experience with it.

After the C code was complete, a significant amount of time was spent debugging it.

Although the code compiled, there were fundamental errors in the processing that needed to be

resolved. A detailed account of these errors can be found in the obstacles section of the next

chapter.

3.2 System Block Diagram

Figure 1: System Block Diagrams

22

 The above block diagram describes the intended processing stream for both languages of

the project. Although the team was unable to implement an LCD display, the team did manage to

fully implement an MFCC based bird song identification algorithm in C. Currently, the output of

the algorithm is displayed on the console window of the DSK’s development environment. For

now, this prevents the device from being easily used in the field.

 The analog input the system receives from the microphone is converted through an

AIC23 codec on the DSK and then is put through a lowpass filter. The lowpass filter has a

passband up to 10 kHz and a stopband that begins at 11 kHz. Some birds’ songs do go above this

range, but it is rare for them to as the average bird song frequency is 4 kHz (Brand, 1938).

Testing the bird song signals of interest confirmed that a 10 kHz passband was sufficient for the

purpose of the team’s samples. There was no highpass filter because a highpass filter would

remove the low frequency envelope information, which is part of the information represented by

the MFCCs.

Next, the MFCCs were found to identify the species of bird. To find the MFCCs, the

Fourier transform is first taken of a portion of the signal. Then, the power of the spectrum

obtained is mapped onto the mel scale and take the logs of the powers at each of the mel

frequencies. Finally, the discrete cosine transform of the list of mel log powers is taken and the

amplitudes of the resulting spectrum are the MFCCs. A more detailed description of this process

is discussed later.

 By comparing these MFCCs to MFCCs calculated from training data collected for each

bird species, the algorithm can identify the bird species. For this project, these trained MFCC

collections were generated using at least three bird calls from four different bird species and use

23

the same MFCC method described above. These MFCC replicas formed the four specie

database.

 From there, the system outputs the closest three matches to the console, complete with

how well the database MFCCs correlated with the MFCCs of the incoming signal. If the

correlation is below 0.50, the particular database signal is not considered a match. This prevents

a signal that does not correlate well with any signal in the database from being incorrectly

identified.

3.3 Creation of an Algorithm

In order to ascertain whether or not the final product would work as intended, some

research and testing had to be done. To test the algorithm before beginning the final product,

MATLAB was used. The team created a test algorithm in MATLAB to find out what would and

wouldn’t work when identifying bird calls with the MFCCs. The test algorithm had to take in

two waveforms, the number of MFCCs needed, and the frequency at which the waveforms

would be sampled. The two waveforms would be compared based on the separate MFCCs

created for each signal. For the MATLAB implementation, the team was lucky enough to find a

piece of code written by Olutope Foluso Omogbenigun (Omogbenigun, 2009) which was

available for public use. The group also used part of the MATLAB Signal Processing Toolbox,

VOICEBOX, for the project (Brookes, 2009).

The MFCC algorithm assumed that the signal vectors were the same size. To get the

signals to the same size, the signals were checked for size and then padded if necessary. Then,

for the signals to be compared easily, the most common features had to occur at the same time

for a correlation function to work. In order to get two bird songs to occur simultaneously in both

24

signals, the time domain signals are cross-correlated, and the signals are zero-padded accordingly

to align them in time.

The MFCCs are calculated using the method described in the Mel-frequency Cepstrum

section of this report. These MFCCs are then cross-correlated and the higher the resultant

correlation values, the more likely the two signals will be considered a match.

3.4 Obtaining Samples

In order to test the algorithm, the team needed to obtain samples. The largest library of

high quality bird sounds is found within the Macaulay Library, Cornell’s Lab of Ornithology. As

a short term solution, the team was able to obtain the Macaulay Library’s commercial CD of bird

songs titled, “An Evening in Sapsucker Woods”, through the Gordon Library at WPI. This

library contains thirty samples of bird songs from different species. However, to successfully test

the algorithm the team needed multiple calls from the same species. After contacting Macaulay

Library Director Mike Webster, the team was able to obtain many samples from the northeast.

Since the song of the same species can vary greatly from region to region and the team obtained

samples from all over the north east, the team was able to effectively test the algorithm with

these samples.

After sixty bird song samples were obtained from Macaulay Library at Cornell

University, the database could be created. The team specified that they needed ten bird calls from

six species of birds – the Cape May Warbler, Magnolia Warbler, Mourning Warbler, Carolina

Wren, House Wren, and Sedge Wren. The team wanted to compare birds within the same

families, but also within the same genus. It could be thought that birds within the same genus or

even family could have similar bird calls and may be confused with each other. To test this, the

team chose the three warblers of the Parulidae family and three wrens of the Troglodytidae

25

family. Within these groupings, the team chose to have two birds of the same genus and a third

bird of a different genus for the warbler group and three different genera for the wren group. In

the warbler group, the two birds of the same genus are the Magnolia Warbler and the Cape May

Warbler.

In order to further identify each bird type, the group listened to all ten songs of each bird

species and categorized them aurally. Some songs were difficult to categorize. In the end, most

bird species had three to four distinct categories for their songs and one or two outliers. After

categorizing the songs aurally, the group used the algorithm to test their hearing. Songs that

sounded the same did, in fact, correlate into the same groups as expected, with a correlation of at

least 75%. Songs in different types for the same bird species correlated anywhere from 40% to

80%. Interestingly, some of the outliers seemed to be mixtures of songs from other categories.

For example, a bird could begin a song with half of a certain song type and end it with half of a

song of another type. Furthermore, the samples that the team received were not devoid of noise.

In fact, many of the samples had other birds singing in the background. One important note is

that the bird song identification algorithm identifies the loudest bird song in the recording. The

figure below depicts a signal with noise being correctly identified by the algorithm. Results from

this MATLAB testing can be found in the results chapter and the Appendix A.

26

Figure 2: Cape May Warbler Song Comparison With Background Noise in Signal 1

3.5 Modular Design Choices

 The following sections describe each specific design choice. Each component was chosen

for many reasons and specifically fits the application. The components described are a netbook

processor, front end filters, digital signal processing chip, LCD screen and microphone. The

team looked at netbooks initially considering that a simple system realization could run the

algorithm in MATLAB on a netbook and if time permitted the MATLAB code could be

0.5 1 1.5 2

x 10
5

-0.4

-0.2

0

0.2

0.4

0.5 1 1.5 2

x 10
5

-0.4

-0.2

0

0.2

0.4

500 1000 1500 2000
-2

0

2

x 10
4

0 500 1000 1500
-20

0

20

0 500 1000 1500
-20

0

20

27

converted to the C language and at that point MATLAB would no longer be required to run the

project.

3.5.1 Netbook Processor

 The team examined netbooks with two criteria in mind, performance requirements and

cost. The chosen netbook, the Asus Eee PC netbook with Intel Atom Processor, was as

inexpensive as possible while still fitting the team’s performance requirements. This netbook

only costs $279.99 and can still run MATLAB with ease. Table 1 below shows the system

requirements to run the 32-bit version of MATLAB.

Table 1: System Requirements for 32-Bit MATLAB

Operating Systems Processors Disk Space RAM

Windows XP

Service Pack 2 or 3

Intel Pentium 4

and above

680 MB

(MATLAB only)

512 MB

(Recommend 1024 MB)

Windows Server 2003

Service Pack 2 or R2

Intel Celeron

Windows Vista

Service Pack 1 or 2

Intel Xeon

Windows Server 2008 Intel Core

Windows 7 Intel Atom

 AMD Athlon 64

 AMD Opteron

 AMD Sempron

 The chosen netbook comes standard with Windows XP Service Pack 3 and runs on an

Intel Atom processor. It contains a 160 GB hard drive and 1 GB of DDR2 memory. All of these

system requirements meet or exceed the requirements necessary to run MATLAB. This netbook

also contains an integrated sound card, which is required to record the bird songs. Even with all

these requirements, this netbook is cheap, which is why it was chosen for the initial system’s

development (“System Requirements – Release 2010a”).

28

3.5.2 Front End Filter

 In order to reduce the noise associated with input bird songs, the team needed to

implement some filtering after they acquired their samples. The MATLAB Filter Design and

Analysis Tool was used to create an FIR Direct-Form I Equiripple Filter. The magnitude

response of the filter is seen in Figure 4 below. It is a stable filter of order thirty.

Figure 3: Magnitude Response of Lowpass Filter

 In order to implement this filter in C, the coefficients were exported as single precision

floats into a C header file. These coefficients were used to implement this filter on the DSP chip.

Floating point math was used instead of fixed point math in the C filter to increase stability and

ease of implementation. As each sample was recorded, it was filtered in real time to avoid

additional signal storage problems.

3.6.3 Digital Signal Processing Chip

 The digital signal processing chip that was chosen for this application is the Texas

Instruments TMS320C6713. It was chosen for many reasons, first being ease of access and use.

This chip and its development environment are used in WPI labs for other courses and are

29

readily available to the team. The second reason it was chosen was because all team members

have previous experience programming this chip. This chip is a floating point DSP, which makes

it easier to code than a fixed point DSP chip. The C6713 also has an AIC23 stereo codec, which

is ideal for audio applications. It can sample at multiple rates between 8-96 kHz, which fall

within the frequency ranges for bird songs. The chip also has line in and out as well as a

microphone in and headphone out, which is necessary for this application. Lastly this board has a

USB interface to a PC, which will make it easier to program. Figure 2 below shows the block

diagram of the C6713 DSK (Chassaing, Rulph, 2005).

Figure 4: Block Diagram of C6713 DSK

3.6.4 LCD Screen

The LCD screen that best fits the application is the LCM-X12232GXX from the Epson

SED1520 Series of LCD drivers. This LCD screen is from a family of dot matrix LCD drivers

that are designed for displaying characters and graphics. The application requires the team to be

30

able to display the names of birds that are potential matches and this LCD will allow the team to

do that with ease. The team also has considerable experience with both character and graphics

display for this LCD from prior course work. The LCD is also readily available because it is used

for other courses. Note that the team did not implement this LCD screen due to time constraints,

but given additional time the group could have.

3.6.5 Microphone

 When this project is implemented as a handheld device, the team decided that it should be

up to the user to decide the quality of microphone that they want to use based on their

application. Microphones can range in cost from $20 to over $500 depending on the quality and

range the user wants. Since the team is testing on high quality recordings of bird sounds, the

group decided to use an inexpensive microphone. The microphone that bests fit the project

budget is the Audio-Technica Unidirectional Microphone. The team chose a unidirectional

microphone because it records sounds coming from one direction, rather than using an omni-

directional microphone which would record potentially many sounds coming from all directions.

The MFCC algorithm functions best when there is the least amount of undesired noise, and a

unidirectional microphone would help minimize the noise. Lastly, this microphone was chosen

because it is the least expensive microphone found that would not hinder the performance of the

device.

3.7 Algorithm Implementation

This section explains the team’s design choices and why each decision was made. It is

true that much of the team’s methodology came from the literature, but there is a reason behind

each suggestion that came from the literature. Although the team used the processing stream

from the MATLAB code as a template, the bulk of the C implementation was written from

31

scratch with the exception of Texas Instruments’ speed-optimized FFT functions

(“TMS320C6713 DSP Starter”).

3.7.1 Filtering and Frame Generation

 First of all, the MFCC algorithm takes a five second signal in the time domain sampled at

44.1 kHz and separates it into 861 overlapping frames containing 512 samples. This means that

the step size is 256 samples, exactly half of the frame size. This was chosen in order to prevent

more than two frames from having duplicate data, which in turn keeps the same data from

correlating across many frames. The overall algorithm works by recording a large buffer of

220500 samples and pulling a 512 sample frame out of the buffer. Each frame then moves

through the processing stream and when one frame is complete, the next frame moves through

the processing stream. A flow chart of the complete process is shown below in Figure 5.

32

Figure 5: Algorithm Flow Chart

The team implemented a lowpass filter as the first step of the processing stream to

remove excess noise and prevent aliasing. As previously mentioned, the filtering is performed in

real-time to reduce storage requirements. Although the overall algorithm does not run in real

time, a short computation time is still desired as the user may not wish to wait until the bird flies

away before discovering the identity of the bird.

3.7.2 Windowing Concepts

 From there, each frame was multiplied by a 512 point Hamming window. This causes

smearing in the frequency domain although it smoothly tapers the signal towards a zero-value at

33

point 0 and N-1. There were many window functions to choose from such as a Bartlett window,

a Hanning window, a Hamming window, and a Blackman window, but a Hamming window was

chosen because it maintained an adequately wide main lobe without having too great of a side

lobe amplitude. The equation for a Hamming window is depicted below:

where n is the particular point being calculated on the Hamming window and N corresponds with

512, the length of the Hamming window.

3.7.3 Mel-Scale Filtering

 At this point an FFT is taken of each 512 sample frame. The result is then mel-scale

filtered. This means that the signal is filtered in the frequency domain with a mel frequency

bank.

This bank is an independently generated matrix full of coefficients and it depends upon

sampling rate, desired number of mel frequency cepstral coefficients, and the number of points in

the FFT. The mel frequency bank was separately implemented as a matrix (or array of arrays) of

constants generated in MATLAB. As mentioned above, the only variables necessary for the

creation of this matrix are to remain constant regardless of the input signal. Therefore, declaring

a constant matrix as opposed to calculating this matrix each time the program runs saves

processing time. The implementation creates a sparse matrix with eight columns (corresponding

with the desired number of MFCCs) and 257 rows (corresponding with half of the samples in the

frame) of coefficients that are multiplied by the complex-valued FFT output.

 The FFT output frames are then multiplied by corresponding points in the mel frequency

bank and then summed together. For example, the first FFT output frame has 512 samples. Due

34

to the even symmetry of the FFT, the algorithm only needs to consider half of the FFT output.

The algorithm multiplies the first 257 samples within the frame by the 257 corresponding

coefficients in the first row of the mel frequency bank. It then sums each of these products

together into one data point. This data point represents one frequency-filtered frame for the first

coefficient. The process is repeated eight times for each of the eight MFCCs in the mel

frequency bank. At this point, the process repeats itself with the next frame. The result is a

matrix of eight columns representing the eight MFCCs and 861 rows representing each frame

that originated from the buffer. This method was chosen in order to compress the data while still

retaining a sufficient pool of results. A flow chart of the above frequency domain filtering

process is shown below in Figure 6.

35

Figure 6: Frequency Domain Filtering Flow Chart

MATLAB results returned 24 MFCCs, but it was determined through testing that eight

coefficients displayed an adequate set of features and the remaining 16 MFCCs were ignored.

Therefore, only eight MFCCs are utilized in the C implementation to increase the speed of the

algorithm.

 Before the final matrix is assembled, however, the logarithm base ten is taken of the data

points. This returns the data to a linear frequency scale. The discrete cosine transform is then

taken of each column of mel logarithmic powers. The results are eight time domain signals, one

for each MFCC. These signals correlate well with other similarly processed signals of the same

species.

36

3.7.4 Correlation and Database Implementation

 To quantitatively measure the similarity of two of these resulting matrices, the data was

correlated from two different bird call signals. One resides in a database within the program, and

the other is the recent input signal that has been processed. The first MFCC from one signal is

correlated with the first MFCC from the other, and this process is repeated for each of the eight

MFCCs. Through testing the team determined not to take the first MFCC into account because it

measures the power of the signal, which frequently correlates with many other bird call signals

as the signal power can be similar from species to species. Additionally, it may poorly correlate

with a bird of the same species that happens to be further away from the microphone. Without

taking this first coefficient into account, the average of the remaining seven coefficient

correlations often made it possible to determine the bird’s species.

When determining whether two signals are from the same species, one can only say with

a certain level of confidence whether or not the signals match. The higher the correlation, the

more likely the two birds are of the same species. Either one is confident that two signals match

or one is unconfident that two signals match. It was determined that an appropriate correlation

cutoff is 0.50. This is realistic because of the nature of the implementation. It searches through a

database of different bird songs, so if none of them can come up with a 0.50 average correlation

across the MFCCs then it is determined that the signal is from an unknown source. It is possible

that a given signal matches just over 0.50 with the database, which is not a strong correlation, but

the system is designed so that the signal eventually finds a better match within the database.

 The database is implemented as a lookup table. If one database entry correlates well and

becomes the new top match, the prior second place match overwrites the third place match, the

prior first place match overwrites the prior second place match, and the new first place match

37

overwrites the prior first place match. This allows the output data to contain both strings and

floating point numbers in order to give the user meaningful information.

38

Chapter 4: Results

 This section will outline the results of the project including MATLAB testing results, C

testing results, obstacles encountered along the way, and other general data pertaining to the

project.

4.1 MATLAB Testing Results

It was necessary to test the MFCC algorithm to be sure that it would function in the

intended manner. To do this, a variety of bird songs were sampled and compared with the

algorithm. To start out simply, two signals compared were from a single Carolina Wren. As seen

in the figure below, the MFCCs of each bird call had many similarities. The correlation match-up

for these bird calls was around 85%.

39

Figure 7: Comparison of Two Calls from the Same Carolina Wren

It was necessary to test this algorithm with signals that are vastly different from bird

songs. Therefore, the algorithm was also tested with two human whistle trills. The correlation of

these signals had an average correlation of MFCCs around 88%. The comparison of these two

whistle trills is shown below.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

-1

0

1

Waveform of first birdcall

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

-1

0

1

Waveform of second birdcall

0 50 100 150 200 250
-50

0

50

MFCCs of first birdcall

0 50 100 150 200 250
-50

0

50

MFCCs of second birdcall

0 2 4 6 8 10 12
-1

0

1

Correlation of the MFCCs of both signals

40

Figure 8: Comparison of Two Human Whistle Trills

After identifying that the algorithm was reasonably reliable at identifying bird songs, the

MATLAB algorithm was automated for further testing. One song was taken from each bird song

type of each bird species and added to the database in order to decrease the processing time of

the identification algorithm. The automated algorithm took in only one bird song as well as the

number of MFCCs needed and the sampling frequency. The algorithm then compared the

unknown bird song with all of the songs in the database.

The algorithm was then tested with bird songs that were not in the database to see how

accurate the algorithm was with signals unknown to the system.

4 5 6 7 8 9 10 11

x 10
4

-0.2

0

0.2

First whistle trill

3 4 5 6 7 8 9 10

x 10
4

-0.2

0

0.2

Second whistle trill

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

-2

0

2

4
x 10

8

Correlation of both

200 250 300 350 400 450 500 550 600 650 700

-4

-2

0

2

MFCCs of first whistle

200 250 300 350 400 450 500 550 600 650

-4

-2

0

2

MFCCs of second whistle

41

Figure 9: Magnolia Warbler Comparison with One "Unknown" Song

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

-0.5

0

0.5

0 0.5 1 1.5 2 2.5

x 10
5

-1

0

1

2500 3000 3500 4000 4500 5000 5500 6000
-5000

0

5000

500 1000 1500 2000 2500 3000 3500 4000

-20

-10

0

10

500 1000 1500 2000 2500 3000 3500 4000
-20

-10

0

10

42

Figure 10: Carolina Wren Comparison with One "Unknown" Song

 The available songs from the Macaulay Library that were not part of the database were

tested to find the accuracy of the algorithm for a small sample set. For this sample set, the

algorithm was 93.75% accurate in identifying bird songs. However, although the algorithm

correctly identified the birds most of the time, some bird calls would not correlate well with the

same species. For example, the House Wren’s “song” is for the most part just a series of tweets.

When creating the algorithm, it was not a consideration that the term “bird song” may mean

something very different from one species to the next. The results of the MATLAB experiments

are shown below.

0 2 4 6 8 10 12

x 10
4

-0.5

0

0.5

1.2 1.4 1.6 1.8 2 2.2

x 10
5

-1

-0.5

0

0.5

500 1000 1500 2000

-5000

0

5000

10000

15000

500 600 700 800 900 1000 1100 1200 1300 1400 1500

-10

0

10

600 700 800 900 1000 1100 1200 1300 1400 1500
-20

-10

0

10

43

Table 2: Bird song average correlations and percentages choosing the correct bird

Bird Type
Cape May

Warbler
Magnolia

Warbler
Mourning

Warbler
Carolina

Wren Overall

Sample 1 0.8655 0.5989 0.7042 0.7115
 Sample 2 0.8326 0.7324 0.9782 0.5139
 Sample 3 0.7941 0.7158 0* 0.6178
 Sample 4 0.787 0.9387 0.7031 0.5455
 Sample 5 0.9382 0.9415

0.6178

 Average Correlation 0.84348 0.78546 0.795166667 0.6013 0.756351667

Percentage Correct 100 100 75 100 93.75

 *A zero on this table indicates that an incorrect bird species was chosen by the algorithm.

4.2 Testing the Algorithm in C

 This section outlines how the group tested each part of the algorithm in C to prove that it

worked correctly. The parts of the algorithm listed in this section are Fast Fourier Transform

(FFT), the Discrete Cosine Transform (DCT), the correlation function, Hamming window

function, and MFCC algorithm.

4.2.1 Fast Fourier Transform Test

 The team tested the FFT by using a 2 kHz input signal and performing an FFT on this

data. The plot of the input data can be seen below, as it was recorded by the development board

using a frame buffering function and interrupts.

44

Figure 11: 2 kHz Sine Wave

The group performed an FFT on this data to prove that it functions appropriately and the results

are shown in the graph below.

45

Figure 12: Fast Fourier Transform of 2 kHz Sine Wave

As shown, there are two clear spikes at the appropriate frequencies. Because the DSP chip was

sampling at 16 kHz, the Nyquist frequency was 8 kHz, causing the FFT to wrap around and

making another spike appear at 6 kHz, which is expected. The team eventually increased the

sampling frequency, but this module was proven to work beforehand so it was not retested.

4.2.2 Discrete Cosine Transform Test

 The discrete cosine transform was tested using a small array of predefined values. The

output was compared to the output of the DCT function in MATLAB to prove that both

functioned in the same manner. The input samples were an array of eleven values from 0 to 1,

incrementing by 0.1 each time. The graph of the DCT of this data is shown below.

46

Figure 13: DCT of Input Samples in C

The same input samples were used in MATLAB. The resulting graph of MATLAB’s DCT is

identical to DCT calculated in C, and can be seen below.

47

Figure 14: DCT of Input Samples in MATLAB

Both of these graphs are clearly the same, proving that the team’s DCT implementation in C

functions exactly the same as the DCT in MATLAB.

4.2.3 Correlation Function

 The next function that the group tested was the correlation function. The team used a

wrap around cross correlation function, which should produce a 100% correlation with two

different signals, even if they are shifted in time, while a rectangular windowed cross correlation

function would not produce a 100% match with two signals shifted in time. The wrap around

cross correlation function was compared to a non wrap around function using two identical time

shifted signals. The two signals that were used in the correlation can be seen below.

48

Figure 15: Original Input Signal

The next signal is the time shifted version of the signal shown above.

Figure 16: Time Shifted Input Signal

49

The rectangular windowed correlation function returned a match of 81%, a graph of the cross

correlations at each point in the time shift can be seen below and the highest correlation is visible

as the highest spike in the graph.

Figure 17: Rectangular Windowed Cross Correlation of Input Signals

The next graph shows the wrap around cross correlation function used in this project. It is clear

that this function achieves the 100% match as expected.

50

Figure 18: Wrap Around Cross Correlation of Input Signals

Unlike the previous graph, the team’s function successfully achieves a full match, proving that

the wrap around cross correlation function successfully returns a 100% match on time shifted

signals, while the windowed cross correlation function does not.

4.2.4 Hamming Window Function

 The last function in the algorithm that the team tested was the Hamming window

function. They tested to make sure that the hamming window of any input size would produce

the correct result. This was shown by testing against the hamming function in MATLAB that the

team used in their MATLAB algorithm. To test the function, the group used a Hamming window

of size one hundred and compared the graphs from the MATLAB and C functions. The first

graph below is the hamming window function in C.

51

Figure 19: Hamming Window Function in C

This graph shows a smooth Hamming window curve of one hundred, exactly similar to the

MATLAB curve shown in the graph below.

52

Figure 20: Hamming Window Function in MATLAB

This verifies that the team’s hamming window function in C operates exactly the same as the

hamming window function in MATLAB that is used in the MATLAB version of the algorithm.

The values range from just under 0.1 to 1 in each case with a smooth curve from 0 to 100.

4.2.5 Testing the MFCC Algorithm

 To test the final algorithm, the group played bird signals through a computer’s sound

card, and recorded them onto the development board via the line in audio input. There is a four

song database in the C code, and each recording is compared against the four birds and the one

with the highest match is returned along with the correlation percentage. The average correlation

between the bird songs and the library was 73.379%, which is about ten percent lower than the

average correlations for MATLAB, but that is expected because of the amount of noise in the

signal in the C program. The correlations for each bird can be seen in the four tables below. Each

53

bird song was played five times and the correlations with each song in the library are displayed.

Correct matches are shown in green while incorrect matches are shown in red.

Table 3: Cape May Correlations

Cape May Warbler Correlations

 1 2 3 4 5

Cape May 0.791672 0.769434 0.776941 0.82797 0.764354

Carolina 0.775264 0.677315 0.748241 0.699389 0.708077

Magnolia 0.702732 0.685081 0.654663 0.690685 0.725959

Mourning 0.700666 0.725249 0.642847 0.77486 0.75083

Table 4: Carolina Wren Correlations

Carolina Wren Correlations

 1 2 3 4 5

Cape May 0.778909 0.706168 0.754237 0.772692 0.769016

Carolina 0.723266 0.77087 0.709941 0.779205 0.778964

Magnolia 0.645363 0.702268 0.683869 0.6588 0.767653

Mourning 0.717673 0.717515 0.690208 0.675831 0.755142

Table 5: Magnolia Warbler Correlations

Magnolia Warbler Correlations

 1 2 3 4 5

Cape May 0.750675 0.766816 0.676857 0.766021 0.678284

Carolina 0.7297 0.683459 0.733553 0.76459 0.688087

Magnolia 0.676445 0.79717 0.772399 0.63541 0.730769

Mourning 0.755648 0.748219 0.730483 0.657862 0.708104

Table 6: Mourning Warbler Correlations

Mourning Warbler Correlations

 1 2 3 4 5

Cape May 0.704017 0.745095 0.776211 0.674686 0.776768

Carolina 0.745325 0.675282 0.730211 0.713834 0.75301

Magnolia 0.787587 0.781311 0.81613 0.77414 0.737939

Mourning 0.796035 0.749148 0.792085 0.787375 0.78637

54

The algorithm picked the correct bird fourteen times out of twenty attempts for an overall

percentage of 70%, although the percentage ranged from 60% to 100% depending on the species

of bird. The MATLAB algorithm was over 90% accurate, however we stated that due to noise,

our algorithm would be less accurate than the MATLAB version. However the group believes an

accuracy of 70% is still acceptable for a proof of concept project and considers this algorithm to

be successful.

4.3 Obstacles

 The purpose of this section is to outline many of the obstacles that the team encountered

when implementing the bird call identifier on a hand-held device. A brief list of major problems

that were solved is the record and playback function, the front end filtering, imaginary numbers,

the Fast Fourier Transform, memory mapping, and noise.

4.3.1 Record and Playback Function

 The first problem that the group encountered was implementing a record and playback

function that never had to be reset. This function would allow the user to press a button to start

recording a sound, then allow the user to play back the sound with another button press. The first

attempt that the team made was through the use of interrupts. The decision was made to write an

interrupt service routine to collect samples at the designated sampling frequency of 16 kHz.

Interrupts were only enabled when the record button was pressed, and then disabled when the

device was finished recording its preset time of five seconds. However this did not prove to work

because the interrupts were never successfully enabled therefore no samples were ever recorded.

55

 In order to fix this problem, the team took a different approach. The decision was made to

move away from interrupt service routines and use polling to take the samples. With this method,

the sampling frequency was set to 16 kHz and a loop was used to poll five seconds of samples

into a buffer after the button was pressed. The program then moved into a playback stage where

it would await user input via a different button to playback the recording. This method seemed to

prove successful and the group was able to successfully record samples, store them in a buffer,

and play them back to the user. Note that the group later implemented a 44.1 kHz sampling

frequency in order to obtain a better quality input signal.

4.3.2 Front End Filtering

 The second problem that the team encountered was adding front end filtering to the

samples before performing any calculations on them. Typical bird calls lie in the range of 2 kHz

to 8 kHz. The group decided to implement a bandpass filter to pass frequencies within this range

in order to avoid any aliasing. The first problem encountered was that the team was unable to set

any filter parameters beyond 8 kHz because the sampling frequency was 16 kHz. This means that

the high frequency cutoff for the filter cannot start at 8 kHz and end by 9 kHz, it must end at 8

kHz, which means the cutoff must start lower than 8 kHz. In order to avoid filtering out any data

from the sample, the group decided to make a higher order, very steep filter. However, a

bandpass filter with these parameters created an unexpectedly high order filter. When the team

implemented this filter into the code, the filtering took a very long time because of the high

order. To solve this problem, the team decided to implement separate lowpass and highpass

filters instead of a single bandpass filter. The lowpass filter stops frequencies around 7.8 kHz and

the highpass filter stops frequencies below 2 kHz. This allowed both filters to be lower order and

56

actually improved the overall filtering speed. The team later changed the sampling frequency to

44.1 kHz in order to obtain a higher quality input signal.

4.3.3 Complex Numbers

 The next problem the group found was consistency with imaginary numbers. When

MATLAB performs the required algorithms, it automatically handles complex numbers.

However, in C code, the floating point data type does not account for complex numbers, and the

programmer needs to create its own complex number structure to keep track of imaginary parts.

The team realized that there were imaginary numbers while coding the Fast Fourier Transform

function in C. An FFT always outputs both real and imaginary numbers, so the team needed to

implement complex number structures. After stepping through the MATLAB algorithms one at a

time, the group learned which functions dealt with complex numbers and which sections used

only real numbers.

 After realizing that certain sections of code were now using complex arguments, the team

had to double check to see if every function still worked correctly. The group was using the

absolute value function from the C math library, but this function was not working because it

was intended for double data types rather than complex numbers. In MATLAB, the absolute

value function abs() accepts complex arguments, calculates the magnitude of the complex

number and returns a real number. After figuring this out, the team wrote their own function to

calculate the magnitude of complex numbers, which returned a floating point real number to

emulate the MATLAB algorithm.

57

4.3.4 Fast Fourier Transform

 The Fast Fourier Transform (FFT) takes samples in the time domain and transforms them

into the frequency domain. The FFT is an integral part of the algorithm and it will not work

without a fully functional and accurate FFT. After initial testing of Texas Instrument’s optimized

radix-2 FFT, the team could not get a working result. The group was testing the algorithm using

Code Composer Studio (CCS) and graphing the output buffer of the FFT. The first mistake that

the team was making was with CCS’s graphing functions. The group was using the FFT

Magnitude graphing function, which produces its own FFT on the data selected and graphs it for

the user. This means that the group was graphing an FFT of an FFT, which clearly produces the

wrong results.

 After realizing how to properly test the FFT, the group continued to run into more

problems. MATLAB’s FFT was performing a 400 point FFT on the frame, which is the entire

frame size. An FFT is ideally performed on buffers that are only divisible by a power of two in

length. Some FFTs take longer to perform the calculation when the number of points is not a

power of two, and some do not work at all. MATLAB’s FFT was able to make this calculation,

however it takes much more time to calculate a 400 point FFT than a 512 point FFT. After more

debugging, the team discovered that TI’s optimized radix-2 FFT only works when the number of

points is a power of two. The team solved this problem by changing the step size and frame

window size so that each frame is 512 points long. The FFT now performs a 512 point FFT,

solving the problem.

4.3.5 Memory Problems

 TI’s TMS320C6713DSK has a limited amount of onboard memory. Ideally, the team

would implement all of the code and variables to be contained in the fast RAM (the IRAM),

58

however the amount of space is limited, only 512kB. The DSK also contains a large amount of

slower RAM (the SDRAM), about 16MB, but running code or variables from this memory will

greatly increase the amount of time necessary to run the algorithm. Lastly the chip contains

FLASH memory, however it is very difficult to program and it was recommended that the group

avoided using the FLASH memory at all costs.

 While writing the software, the team encountered several memory problems. The search

algorithm works by storing many large two dimensional arrays in memory, called f-matrices, and

compares the incoming signal to these arrays. The group knew it was necessary to store these f-

matrices in the SDRAM, however the program would not compile while trying to store these

large arrays into external memory. The group realized that chip writes constants into a buffer

called “.cinit”, which is located in the fast memory, and this buffer was filling up if more than

one f-matrix was written into slow memory. The team figured out how to edit the DSK’s

command file which designates where each section of memory is located. This problem was

solved by relocating the “.cinit” as well as the f-matrices buffer into the SDRAM.

 After solving the “.cinit” memory problem, the team quickly ran into another. Now that

the f-matrices could be successfully written into external memory, the group could write their

search algorithm to correlate the incoming signal’s f-matrix with the stored library of f-matrices.

After finishing this algorithm, the team ran out of code space in the IRAM. The first attempt at

fixing this problem was to move all code memory to SDRAM. This allowed the code to compile

correctly, however the program now took around ten minutes to perform all the MFCC

calculations and correlations on a single recorded sample. It is realistic that the device does not

have to operate in real time; however a delay time of ten minutes is very unreasonable.

59

The team noticed earlier in the project that the chip does not allow the user to access all

of the slow and fast memory. After some research, the group realized that many sections of the

chip are reserved for certain functions and others are simply set to “Protected.” CCS allows the

user to change the memory mapping of the chip, as long as the user does not overwrite any of the

reserved sections. The group realized that they could expand the upper address of the IRAM

from 0x0002FFFF to 0x00080000, more than doubling the amount of usable space, without

overwriting any reserved sections. This allowed the team to keep the code memory in the IRAM

and successfully expand the code without running into any more memory problems.

4.3.6 Noise

 A major problem with MFCCs is noise. The MATLAB algorithm works with high

quality bird samples from the Macaulay Library that contain minimal noise. However, when the

DSK implementation recorded samples to create f-matrix libraries, as well as when recording

incoming samples, there is a significant amount of noise present. The lowpass filter catches the

majority of the noise outside the passband; however a significant amount of noise is still present.

The group has made many attempts at solving this problem. The first attempt was to use

MATLAB’s f-matrices that contain limited noise. The problem that occurs is the MATLAB

algorithm uses a different frame size and step size, so that the correlation between the two is

mediocre. In order to solve this problem, the team would have to change the MATLAB

algorithm and recalculate each bird sample.

The next attempt was to use recorded bird songs played from the computer into the DSK.

This produces a high level of machine noise and produces mediocre calculations as well, with

correlation percentiles around 50 to 60 percent. Also, expected high correlations are not much

higher than expected bad correlations and sometimes it is difficult to distinguish them from each

60

other. In order to clean up the f-matrices, the group tried to implement a cutoff value with each f-

matrix coefficient. This essentially minimized the value of insignificant parts of the MFCC in an

attempt to isolate the actual information in the MFCC. This produced significantly higher

correlations, around 90%, however every correlation was then around this level and it was still

very difficult to distinguish which correlations are supposed to match and which are not. The last

method the team looked into is to compare which songs have higher matching coefficients

instead of taking simple averages of the coefficients. For example Bird A may be the correct

match; however one of its coefficients had a very low correlation rate, which is dragging down

its overall correlation. Bird A may have higher correlations in almost every coefficient; however

because of the single poor correlation its average may be lower than that of Bird B, the incorrect

match. The original algorithm would return Bird B, however this algorithm would realize that

Bird A was higher in every coefficient but one, therefore it is the better match. Testing proved

that this method was ineffective. This noise issue could be solved in any future work that would

be attempted after this project.

61

Chapter 5: Conclusions

 This chapter will summarize the group’s project and draw conclusions based on the

results. It will also recommend future work that the team has suggested in order to create the

intended final product.

5.1 Discussion of MATLAB Results

 The MATLAB results were excellent for their purpose. It was possible to determine a

bird’s species with a high degree of confidence given the small sample set. Further testing is

necessary to determine how well the algorithm is able to handle very large databases containing

more than six species, but the team believes the MATLAB results can be used as a valid proof of

concept.

5.2 Discussion of C Results

 The C results were sufficient. For some species it is not possible to claim with confidence

which species the bird call originated from. Further research is necessary to alter this MFCC

algorithm to become more robust in the presence of noise.

 However, the C results highlighted that the algorithm is sensitive to noise. As the team

tested each module within the algorithm, the results were comparable with the MATLAB results.

Only when the final MFCCs are generated and then correlated together is there a discrepancy.

Furthermore, when the final blocks are tested with constant, known vectors, they correlate

appropriately. This evidence suggests that the MFCC algorithm may not be robust in the

presence of noise.

62

5.3 Future Work Recommendations

 This section will explain the team’s suggestions for device improvement. This includes a

broader scope for each facet of the project.

5.3.1 MATLAB Future Work

 As described above, the database that began in MATLAB needs to be significantly larger.

It is possible that the MATLAB results change as more birds are added to the database. The

algorithm may struggle identifying two similar species that are not currently present within the

database. Furthermore, it is likely that as the bird songs within the database increases, the

probability for multiple songs to match the input signal increases. Results that prove the

algorithm is still valid for a database with a larger number of bird songs would confirm that the

MFCCs are indeed identifying the unique differences between signals and classifying them

accordingly.

5.3.2 C Implementation Future Work

 The C implementation needs work in two major areas. First of all, the algorithm needs to

modify its implementation such that it is not as strongly affected by noise. This may entail

creating additional algorithms. For instance, another algorithm might have better classification

features for a given signal, such as linear discriminate analysis (LDA).

Additionally, the C implementation will need to be optimized for speed. As the algorithm

grows in complexity, the processing time will increase. There are many ways to do this. One

could implement an algorithm that analyzes the signal and determines which of the potentially

many classification algorithms to pass an input signal to. One could also implement a way to

input a general geographical region to prevent comparison against irrelevant database samples.

63

These suggestions are possible solutions in addition to general C optimization techniques and

practices such as hand-optimized assembly and automatic CCS optimization settings, and there

may be a tradeoff against memory consumption, which is another obstacle.

5.3.3 Hardware Design Future Work

 The hardware design part of this project was largely abandoned due to time constraints,

but there is a considerable amount of work to be done. First of all, the output of the system needs

to be changed to a more portable solution. The cheapest and easiest way to do this would be to

implement an LCD screen. More functions are required in the C implementation to support more

than a simple stdout printf call. The dot matrix LCD screen discussed earlier in the component

choices section would be the team’s choice, however LCD driver circuitry would be necessary in

addition to the LCD screen.

 The hardware also needs to be reworked. The TI C6713 is relatively inexpensive,

however the DSK development kit is not. If the group’s product were ever to go to market, the

relevant portions of the DSK need to be reverse engineered, including the microphone line in, the

audio codec, and the five volt power supply.

 Additionally, the five volt power supply needs to be converted to portable power,

preferably a rechargeable battery. There are various different technologies for rechargeable

batteries that the team has not been able to explore. Future work on this subject would entail

making a design choice and then implementing it.

 Finally, the final product needs a reasonable production cost. The prototype will

determine whether or not it is feasible to produce a functional product within the price range of

64

its consumer demand. From there a decision can be made whether or not this design is ultimately

viable or not.

In conclusion, the team’s project was very successful. The concept of using MFCCs to

identify certain bird species based on their bird song has been proven. If completed, this product

could increase the enjoyment of bird watching and even become an attachment for binoculars for

more precise aim with the unidirectional microphone. The team believes that the success of this

project could potentially lead to a marketable product.

65

Appendices

 The following sections are appendices containing the full MATLAB results, MATLAB

code, and C code.

Appendix A: MATLAB Test Results

 This section documents the full MATLAB results and includes the code used to obtain

such results. Each figure shows five different data graphs. The first signal is the time-domain

signal of an “unknown” bird being passed into the system. The second signal is the time-domain

signal of a bird from the database. The third signal shows eight MFCCs from the unknown bird,

with each color corresponding with a different MFCC. The fourth signal shows the same eight

MFCCs from the known bird from the database. Finally, the fifth graph correlates the MFCCs

from the unknown bird with the MFCCs from the known bird.

>> mfcc_auto('CapeMayWarbler (10).wav',8,16000)

third_fit =
 0

second_fit =
CapeMayWarbler (1).wav

max =
 0.8655

x =
 NaN 0.9099 0.9208 0.9134 0.8876 0.9184 0.5902 0.9180

ans =
CapeMayWarbler (2).wav

66

Figure 21: Cape May Warbler song comparison

>> mfcc_auto('CapeMayWarbler (3).wav',8,16000)

third_fit =
 0

second_fit =
 0

max =
 0.8326

x =
 NaN 0.8405 0.8768 0.8388 0.8429 0.8363 0.7646 0.8286

ans =
CapeMayWarbler (1).wav

0 0.5 1 1.5 2 2.5 3

x 10
5

-1

0

1
Song of "unknown" bird

0 0.5 1 1.5 2 2.5

x 10
5

-0.5

0

0.5
Song of matched bird from database

0 500 1000 1500 2000 2500 3000 3500 4000
-1

0

1

2
x 10

4 Correlation of bird song MFCCs

0 500 1000 1500 2000 2500
-20

-10

0

10
MFCCs of "unknown" bird

0 500 1000 1500 2000 2500
-20

-10

0

10
MFCCs of matched bird from database

67

Figure 22: Cape May Warbler song comparison

0 0.5 1 1.5 2 2.5 3

x 10
5

-1

0

1
Song of "unknown" bird

0 0.5 1 1.5 2 2.5 3

x 10
5

-0.5

0

0.5
Song of matched bird from database

0 500 1000 1500 2000 2500 3000 3500
-5000

0

5000

10000
Correlation of bird song MFCCs

0 200 400 600 800 1000 1200 1400 1600
-20

0

20
MFCCs of "unknown" bird

0 200 400 600 800 1000 1200 1400 1600
-10

0

10
MFCCs of matched bird from database

68

>> mfcc_auto('CapeMayWarbler (4).wav',8,16000)

third_fit =
 0

second_fit =
 0

max =
 0.7941

x =
 NaN 0.7935 0.8451 0.8017 0.8087 0.7880 0.7180 0.8035

ans =
CapeMayWarbler (1).wav

Figure 23: Cape May Warbler song comparison

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

-1

0

1
Song of "unknown" bird

0 0.5 1 1.5 2 2.5 3

x 10
5

-0.5

0

0.5
Song of matched bird from database

0 500 1000 1500 2000 2500 3000 3500
-5000

0

5000

10000
Correlation of bird song MFCCs

0 200 400 600 800 1000 1200 1400 1600 1800
-20

0

20
MFCCs of "unknown" bird

0 200 400 600 800 1000 1200 1400 1600 1800
-10

0

10
MFCCs of matched bird from database

69

>> mfcc_auto('CapeMayWarbler (5).wav',8,16000)

third_fit =
 0

second_fit =
CapeMayWarbler (1).wav

max =
 0.7870

x =
 NaN 0.8793 0.8733 0.8851 0.7663 0.8806 0.3855 0.8386

ans =
CapeMayWarbler (2).wav

Figure 24: Cape May Warbler song comparison

0 0.5 1 1.5 2 2.5

x 10
5

-0.5

0

0.5
Song of "unknown" bird

0 0.5 1 1.5 2 2.5

x 10
5

-0.5

0

0.5
Song of matched bird from database

0 500 1000 1500 2000 2500 3000
-1

0

1

2
x 10

4 Correlation of bird song MFCCs

0 200 400 600 800 1000 1200 1400
-20

0

20
MFCCs of "unknown" bird

0 200 400 600 800 1000 1200 1400
-20

-10

0

10
MFCCs of matched bird from database

70

>> mfcc_auto('CapeMayWarbler (9).wav',8,16000)

third_fit =
CapeMayWarbler (1).wav

second_fit =
CapeMayWarbler (2).wav

max =
 0.9382

x =
 NaN 0.9355 0.9542 0.9410 0.9634 0.9523 0.8544 0.9663

ans =
CapeMayWarbler (8).wav

Figure 25: Cape May Warbler song comparison

0 0.5 1 1.5 2 2.5

x 10
5

-0.5

0

0.5
Song of "unknown" bird

0 0.5 1 1.5 2 2.5 3

x 10
5

-0.5

0

0.5
Song of matched bird from database

0 500 1000 1500 2000 2500 3000 3500
-5000

0

5000

10000
Correlation of bird song MFCCs

0 200 400 600 800 1000 1200 1400 1600 1800
-20

0

20
MFCCs of "unknown" bird

0 200 400 600 800 1000 1200 1400 1600 1800
-10

0

10
MFCCs of matched bird from database

71

>> mfcc_auto('MagnoliaWarbler (2).wav',8,16000)

third_fit =
 0

second_fit =
CapeMayWarbler (1).wav

max =
 0.5989

x =
 NaN 0.6562 0.6981 0.6502 0.6470 0.6484 0.4107 0.4815

ans =
MagnoliaWarbler (1).wav

Figure 26: Magnolia Warbler song comparison

0 0.5 1 1.5 2 2.5

x 10
5

-0.5

0

0.5
Song of "unknown" bird

0 0.5 1 1.5 2 2.5 3

x 10
5

-1

0

1
Song of matched bird from database

0 500 1000 1500 2000 2500 3000 3500 4000
-2000

0

2000

4000
Correlation of bird song MFCCs

0 500 1000 1500 2000 2500
-10

0

10
MFCCs of "unknown" bird

0 500 1000 1500 2000 2500
-20

-10

0

10
MFCCs of matched bird from database

72

>> mfcc_auto('MagnoliaWarbler (4).wav',8,16000)

third_fit =
MagnoliaWarbler (1).wav

second_fit =
MagnoliaWarbler (3).wav

max =
 0.7324

x =
 NaN 0.7448 0.8344 0.7612 0.8221 0.7389 0.6369 0.5885

ans =
MagnoliaWarbler (6).wav

Figure 27: Magnolia Warbler song comparison

0 0.5 1 1.5 2 2.5 3

x 10
5

-1

0

1
Song of "unknown" bird

0 0.5 1 1.5 2 2.5

x 10
5

-1

0

1
Song of matched bird from database

0 500 1000 1500 2000 2500 3000 3500
-5000

0

5000

10000
Correlation of bird song MFCCs

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-20

0

20
MFCCs of "unknown" bird

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-20

0

20
MFCCs of matched bird from database

73

>> mfcc_auto('MagnoliaWarbler (5).wav',8,16000)

third_fit =
CapeMayWarbler (6).wav

second_fit =
MagnoliaWarbler (1).wav

max =
 0.7158

x =
 NaN 0.7255 0.8297 0.7995 0.6772 0.7766 0.6047 0.5973

ans =
MagnoliaWarbler (3).wav

Figure 28: Magnolia Warbler song comparison

0 0.5 1 1.5 2 2.5 3

x 10
5

-1

0

1
Song of "unknown" bird

0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

-1

0

1
Song of matched bird from database

0 500 1000 1500 2000 2500 3000 3500 4000
-1

0

1

2
x 10

4 Correlation of bird song MFCCs

0 500 1000 1500 2000 2500
-20

0

20
MFCCs of "unknown" bird

0 500 1000 1500 2000 2500
-20

0

20
MFCCs of matched bird from database

74

>> mfcc_auto('MagnoliaWarbler (8).wav',8,16000)

third_fit =
MagnoliaWarbler (3).wav

second_fit =
MagnoliaWarbler (6).wav

max =
 0.9387

x =
 NaN 0.9585 0.9530 0.9549 0.9367 0.9428 0.9145 0.9103

ans =
MagnoliaWarbler (7).wav

Figure 29: Magnolia Warbler song comparison

0 0.5 1 1.5 2 2.5

x 10
5

-1

0

1
Song of "unknown" bird

0 0.5 1 1.5 2 2.5 3

x 10
5

-1

0

1
Song of matched bird from database

0 500 1000 1500 2000 2500 3000 3500 4000
-1

0

1

2
x 10

4 Correlation of bird song MFCCs

0 500 1000 1500 2000 2500
-20

0

20
MFCCs of "unknown" bird

0 500 1000 1500 2000 2500
-20

0

20
MFCCs of matched bird from database

75

>> mfcc_auto('MagnoliaWarbler (9).wav',8,16000)

third_fit =
MagnoliaWarbler (3).wav

second_fit =
MagnoliaWarbler (6).wav

max =
 0.9415

x =
 NaN 0.9636 0.9484 0.9602 0.9335 0.9487 0.9167 0.9198

ans =
MagnoliaWarbler (7).wav

Figure 30: Magnolia Warbler song comparison

0 0.5 1 1.5 2 2.5

x 10
5

-1

0

1
Song of "unknown" bird

0 0.5 1 1.5 2 2.5 3

x 10
5

-1

0

1
Song of matched bird from database

0 500 1000 1500 2000 2500 3000 3500 4000
-1

0

1

2
x 10

4 Correlation of bird song MFCCs

0 500 1000 1500 2000 2500
-20

0

20
MFCCs of "unknown" bird

0 500 1000 1500 2000 2500
-20

0

20
MFCCs of matched bird from database

76

>> mfcc_auto('MourningWarbler (9).wav',8,16000)

third_fit =
CapeMayWarbler (6).wav

second_fit =
MagnoliaWarbler (1).wav

max =
 0.7042

x =
 NaN 0.7193 0.8145 0.7226 0.7324 0.7363 0.5642 0.6403

ans =
MourningWarbler (1).wav

Figure 31: Mourning Warbler song comparison

0 0.5 1 1.5 2 2.5 3

x 10
5

-1

0

1
Song of "unknown" bird

0 0.5 1 1.5 2 2.5

x 10
5

-0.5

0

0.5
Song of matched bird from database

0 500 1000 1500 2000 2500 3000 3500
-5000

0

5000

10000
Correlation of bird song MFCCs

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-20

-10

0

10
MFCCs of "unknown" bird

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-20

0

20
MFCCs of matched bird from database

77

>> mfcc_auto('MourningWarbler (2).wav',8,16000)

third_fit =
MagnoliaWarbler (1).wav

second_fit =
MagnoliaWarbler (3).wav

max =
 0.9782

x =
 NaN 0.9829 0.9839 0.9810 0.9798 0.9752 0.9728 0.9718

ans =
MourningWarbler (1).wav

Figure 32: Mourning Warbler song comparison

0 0.5 1 1.5 2 2.5 3

x 10
5

-1

0

1
Song of "unknown" bird

0 0.5 1 1.5 2 2.5

x 10
5

-0.5

0

0.5
Song of matched bird from database

0 500 1000 1500 2000 2500 3000 3500
-5000

0

5000

10000
Correlation of bird song MFCCs

0 200 400 600 800 1000 1200 1400 1600 1800
-20

0

20
MFCCs of "unknown" bird

0 200 400 600 800 1000 1200 1400 1600 1800
-20

0

20
MFCCs of matched bird from database

78

>> mfcc_auto('MourningWarbler (8).wav',8,16000)

third_fit =
MagnoliaWarbler (1).wav

second_fit =
MagnoliaWarbler (7).wav

max =
 0.5905

x =
 NaN 0.7839 0.7393 0.7839 0.3272 0.6754 0.6094 0.2143

ans =
MagnoliaWarbler (10).wav

Figure 33: Mourning Warbler song comparison

0 0.5 1 1.5 2 2.5 3

x 10
5

-1

0

1
Song of "unknown" bird

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

-1

0

1
Song of matched bird from database

0 500 1000 1500 2000 2500 3000 3500 4000
-5000

0

5000

10000
Correlation of bird song MFCCs

0 500 1000 1500 2000 2500
-20

-10

0

10
MFCCs of "unknown" bird

0 500 1000 1500 2000 2500
-20

-10

0

10
MFCCs of matched bird from database

79

>> mfcc_auto('MourningWarbler (10).wav',8,16000)

third_fit =
MagnoliaWarbler (1).wav

second_fit =
MagnoliaWarbler (3).wav

max =
 0.7031

x =
 NaN 0.7728 0.8500 0.7863 0.6421 0.7602 0.5750 0.5349

ans =
MourningWarbler (1).wav

Figure 34: Mourning Warbler song comparison

0 0.5 1 1.5 2 2.5 3

x 10
5

-1

-0.5

0

0.5
Song of "unknown" bird

0 0.5 1 1.5 2 2.5

x 10
5

-0.5

0

0.5
Song of matched bird from database

0 500 1000 1500 2000 2500 3000 3500
-1

0

1

2
x 10

4 Correlation of bird song MFCCs

0 200 400 600 800 1000 1200 1400 1600 1800
-20

-10

0

10
MFCCs of "unknown" bird

0 200 400 600 800 1000 1200 1400 1600 1800
-20

0

20
MFCCs of matched bird from database

80

>> mfcc_auto('CarolinaWren (7).wav',8,16000)

third_fit =
MagnoliaWarbler (10).wav

second_fit =
MourningWarbler (5).wav

max =
 0.7115

x =
 NaN 0.7560 0.7839 0.7394 0.6852 0.7611 0.6225 0.6321

ans =
CarolinaWren (1).wav

Figure 35: Carolina Wren song comparison

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

-1

0

1
Song of "unknown" bird

0 0.5 1 1.5 2 2.5 3

x 10
5

-0.5

0

0.5
Song of matched bird from database

0 500 1000 1500 2000 2500 3000 3500 4000 4500
-1

0

1

2
x 10

4 Correlation of bird song MFCCs

0 500 1000 1500 2000 2500
-20

0

20
MFCCs of "unknown" bird

0 500 1000 1500 2000 2500
-10

0

10
MFCCs of matched bird from database

81

>> mfcc_auto('CarolinaWren (8).wav',8,16000)

third_fit =
MourningWarbler (5).wav

second_fit =
CarolinaWren (1).wav

max =
 0.5139

x =
 NaN 0.5698 0.4056 0.5554 0.5976 0.4777 0.4453 0.5454

ans =
CarolinaWren (5).wav

Figure 36: Carolina Wren song comparison

0 0.5 1 1.5 2 2.5

x 10
5

-1

0

1
Song of "unknown" bird

0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

-1

0

1
Song of matched bird from database

0 500 1000 1500 2000 2500 3000 3500 4000
-5000

0

5000

10000
Correlation of bird song MFCCs

0 500 1000 1500 2000 2500
-20

-10

0

10
MFCCs of "unknown" bird

0 500 1000 1500 2000 2500
-20

-10

0

10
MFCCs of matched bird from database

82

>> mfcc_auto('CarolinaWren (9).wav',8,16000)

third_fit =
MourningWarbler (6).wav

second_fit =
CarolinaWren (1).wav

max =
 0.6178

x =
 NaN 0.6659 0.6026 0.6267 0.6405 0.6885 0.5950 0.5052

ans =
CarolinaWren (2).wav

Figure 37: Carolina Wren song comparison

0 0.5 1 1.5 2 2.5 3

x 10
5

-1

0

1
Song of "unknown" bird

0 0.5 1 1.5 2 2.5 3

x 10
5

-1

0

1
Song of matched bird from database

0 500 1000 1500 2000 2500 3000 3500 4000
-5000

0

5000

10000
Correlation of bird song MFCCs

0 500 1000 1500 2000 2500
-20

-10

0

10
MFCCs of "unknown" bird

0 500 1000 1500 2000 2500
-10

0

10
MFCCs of matched bird from database

83

>> mfcc_auto('CarolinaWren (10).wav',8,16000)

third_fit =
MourningWarbler (5).wav

second_fit =
MourningWarbler (6).wav

max =
 0.5455

x =
 NaN 0.6534 0.5236 0.6568 0.5851 0.4905 0.4355 0.4738

ans =
CarolinaWren (2).wav

Figure 38: Carolina Wren song comparison

0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

-1

0

1
Song of "unknown" bird

0 0.5 1 1.5 2 2.5 3

x 10
5

-1

0

1
Song of matched bird from database

0 500 1000 1500 2000 2500 3000 3500 4000
-5000

0

5000

10000
Correlation of bird song MFCCs

0 500 1000 1500 2000 2500
-20

-10

0

10
MFCCs of "unknown" bird

0 500 1000 1500 2000 2500
-10

0

10
MFCCs of matched bird from database

84

>> mfcc_auto('Carolina_Wren_Bird.wav',8,16000)

third_fit =
MourningWarbler (7).wav

second_fit =
CarolinaWren (1).wav

max =
 0.6178

x =
 NaN 0.7906 0.5959 0.7694 0.6810 0.2547 0.5677 0.6653

ans =
CarolinaWren (5).wav

Figure 39: Carolina Wren song comparison

0 2 4 6 8 10 12

x 10
4

-0.5

0

0.5
Song of "unknown" bird

0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

-1

0

1
Song of matched bird from database

0 500 1000 1500 2000 2500 3000 3500 4000
-1

0

1

2
x 10

4 Correlation of bird song MFCCs

0 500 1000 1500 2000 2500 3000
-20

-10

0

10
MFCCs of "unknown" bird

0 500 1000 1500 2000 2500 3000
-20

-10

0

10
MFCCs of matched bird from database

85

Appendix B: MATLAB Source Code

Bird Finder with Database
function best_fit = mfcc_auto(data1, num, fs)
%MFCC correlation calculation
max = 0;
second_fit = 0;
third_fit = 0;
best_fit = 0;

%Create database of bird calls
database_entry = strvcat('CapeMayWarbler (1).wav','CapeMayWarbler

(2).wav','CapeMayWarbler (6).wav','CapeMayWarbler (8).wav','MagnoliaWarbler

(1).wav','MagnoliaWarbler (3).wav','MagnoliaWarbler (6).wav','MagnoliaWarbler

(7).wav','MagnoliaWarbler (10).wav','MourningWarbler

(1).wav','MourningWarbler (3).wav','MourningWarbler (4).wav','MourningWarbler

(5).wav','MourningWarbler (6).wav','MourningWarbler (7).wav','CarolinaWren

(1).wav','CarolinaWren (2).wav','CarolinaWren (3).wav','CarolinaWren

(5).wav','CarolinaWren (6).wav');

%Find the size of the database
S = size(database_entry);

%Compare the MFCC correlation vectors of each bird call
% with the unknown bird call to find the best fit
for i = 1:S(1)
 x = mfcc_nooutput(data1,database_entry(i,:),num,fs);
 compared(i) = mean(x(2:num));
 if compared(i) > max
 max = compared(i);
 third_fit = second_fit;
 second_fit = best_fit;
 best_fit = database_entry(i,:);
 end
end

%Output the best fit
third_fit
second_fit
max
mfcc(data1,best_fit,num,fs);

end

MFCC Comparison Code
function x = mfcc_nooutput(data1, data2, num, fs)
%MFCC correlation calculation

%Read in the wave files
y1 = wavread(data1);
y2 = wavread(data2);

%Calculate MFCCs

86

z1 = kannumfcc(num,y1,fs);
z2 = kannumfcc(num,y2,fs);

%Find the size of the MFCCs
[s1,q] = size(z1);
[s2,q] = size(z2);

%Compare the sizes to fix any differences in size
% between the two files
if(s1 ~= s2)
 if(s1 > s2)
 z2 = padarray(z2,(s1-s2),0,'post');
 end
 if(s1 < s2)
 z1 = padarray(z1,(s2-s1),0,'post');
 s1 = s2;
 end
end

%Go through each MFCC infividually and find their
% cross correlation values
s = size(z1);
for i=2:num
 [C,I] = max(xcorr(z1(:,i),z2(:,i)));
 g(:,i) = xcorr(z1(:,i),z2(:,i));
 if(I < (s1))
 w1(1:(s+(s1-I)),i) = padarray(z1(:,i),((s1)-I),0,'pre');
 w2(1:(s+(s1-I)),i) = padarray(z2(:,i),((s1)-I),0,'post');
 end
 if(I > (s1))
 w1(1:(s+(I-s1)),i) = padarray(z1(:,i),(I-(s1)),0,'post');
 w2(1:(s+(I-s1)),i) = padarray(z2(:,i),(I-(s1)),0,'pre');
 end
 if(I == (s1))
 w1 = z1;
 w2 = z2;
 end
end

%Output the correlation vector for comparison
for i=1:num
 x(i) = corr(w1(:,i),w2(:,i));
end

end

87

Appendix C: DSP Source Code

source.c

//MQP

#define CHIP_6713
#define DEBUG_MODE 0

//include files
#include <stdio.h>
#include <c6x.h>
#include <csl.h>
#include <csl_mcbsp.h>
#include <csl_irq.h>

#include "dsk6713.h"
#include "dsk6713_aic23.h"
#include "fft.h"
#include "kannumfcc1.2.h"
#include "corr.h"

//Uint32 fs=DSK6713_AIC23_FREQ_16KHZ;

Uint32 fs=DSK6713_AIC23_FREQ_44KHZ;

//#define REC_LEN 163840 //10 seconds of recording at 16384 Hz
//#define REC_LEN 81920 //5 seconds of recording at 16384 Hz
#define REC_LEN 220500 //5 seconds of recording at 44100 Hz

int var;

short inout;
float buffer[REC_LEN];
#pragma DATA_SECTION(buffer,".EXT_RAM"); //write buffer to external memory

//Filtering Prototypes and Variables

//High Pass Filter
const int BL_High = 11;

const float B_High[11] = {
 -0.03768008947, -0.05519120023, -0.08344765007, -0.1095543131, -0.1280400008,
 0.8652742505, -0.1280400008, -0.1095543131, -0.08344765007, -0.05519120023,
 -0.03768008947
};

//Low Pass Filter

const int BL_Low = 31;
const float B_Low[31] = {
 0.004959571641, 0.02198479138,-0.007192821242, -0.01577280462,0.0003676032065,
 0.02300152369, 0.007212243043, -0.02984294109, -0.0206382703, 0.03626932949,
 0.04415991902, -0.04150832444, -0.0936364457, 0.04492767528, 0.314013809,

88

 0.4538732469, 0.314013809, 0.04492767528, -0.0936364457, -0.04150832444,
 0.04415991902, 0.03626932949, -0.0206382703, -0.02984294109, 0.007212243043,
 0.02300152369,0.0003676032065, -0.01577280462,-0.007192821242, 0.02198479138,
 0.004959571641

};

//variables for filtering
float samples_high[11];
float samples_low[31];
float result;

//variables for MFCCs

float fmatrix[numFrames][NUM_COEFFS];
float fmatrix2000[2000][NUM_COEFFS];

//kannumfcc
float num = NUM_COEFFS;
int i, j, k;
//int a = 1;

//float b[] = {1, -0.97}; //a and b are high pass filter coefficients
float frame[N];
COMPLEX F[n]; //FFT needs to be a power of 2 to work
float spectr1[fn];
float spectr[fn];
float c[fn];
float melf[24][257];

float Ce1 = 0, Ce2 = 0, Ce = 0;
float coeffs[NUM_COEFFS];
float hamming[N];
COMPLEX *input;
float noFrames; //maximum no of frames in speech sample
float lifter[NUM_COEFFS];
int len = REC_LEN;
float mean;

float max = 0;
float cutoff;

#pragma DATA_ALIGN(F,sizeof(COMPLEX)); //align F for fft()

//Variables for correlation
float c1d[length];

float d1d[length];
float maxr = 0;
float avgr = 0;
float corrs[CORR_LEN];
float corrs2d[NUM_COEFFS];
float r;

//Variables for search algorithm
int bird = 0;
float maxcorr = 0;

89

//Bird Call FMatrix Library Variables
#pragma DATA_SECTION(capemay1,".EXT_RAM");
#pragma DATA_SECTION(carolina1, ".EXT_RAM");

#pragma DATA_SECTION(magnolia1, ".EXT_RAM");
#pragma DATA_SECTION(mourning1, ".EXT_RAM");
//#pragma DATA_SECTION(capemay2,".EXT_RAM");
//#pragma DATA_SECTION(capemay1cutoff, ".EXT_RAM");
//#pragma DATA_SECTION(carolina1cutoff, ".EXT_RAM");
void main(){

 //initialize Board

 comm_poll();
 //initialize DIPs
 DSK6713_DIP_init();
 //initialize LEDs
 DSK6713_LED_init();

 if(DEBUG_MODE == 1){

 printf("\n\n*********PROGRAM STARTED IN DEBUG MODE*********\n\n");
 } else {
 printf("\n\n*********PROGRAM STARTED*********\n\n");
 }

 while(1){

 //initialize filtering arrays to zero
 for(i = 0; i < BL_High; i++){
 samples_high[i] = 0;

 }
 for(i = 0; i < BL_Low; i++){
 samples_low[i] = 0;

 }

 while(1){

 if(DSK6713_DIP_get(3) == 0){
 //turn LED3 on to indicate recording in progress
 printf("Recording in progress...\n");

 DSK6713_LED_on(3);
 //filter samples as they come in
 for(i = 0; i < REC_LEN; i++){

 inout = input_sample();
 buffer[i] = inout;

 }
 //turn LED3 off when buffer full

90

 DSK6713_LED_off(3);

 printf("...finished\n");

 break;
 }
 };
 var = 0;

 //Low Pass Filter - Stop 10kHz+
 if(DEBUG_MODE == 1){
 printf("Low pass filter in progress...");

 }
 for(i = 0; i < REC_LEN; i++){

 result = 0;

 //Update array samples
 for(j = BL_Low-2; j >= 0; j--){

 //move all samples down one
 samples_low[j+1] = samples_low[j];
 }

 //add new sample
 samples_low[0] = buffer[i];

 //Filter
 for(j = 0; j < BL_Low; j++){
 result += (samples_low[j] * B_Low[j]);
 }

 buffer[i] = result;

 }

 if(DEBUG_MODE == 1){
 printf("...finished\n");
 }

 //End Low Pass Filter

 //*********End Filtering********

 //Insert MFCC Code here - LED on and off when complete
 DSK6713_LED_on(1);
 DSK6713_LED_on(2);

 //allocate fmatrix to zero
 for(i=0;i<numFrames;i++){

 for(j=0;j<NUM_COEFFS;j++){
 fmatrix[i][j]=0;
 }

91

 }

 //kannumfcc(buffer, REC_LEN, fmatrix);

 //*****************kannumfcc.c**************************
 noFrames = floor(len/FrameStep); //maximum no of frames in speech sample
 //lifter vector index
 for(i = 0; i < NUM_COEFFS; i++){
 lifter[i] = i+1;
 lifter[i] = 1 + floor(num/2) * (sin(lifter[i]*PI/num));
 } //raised sine lifter version

 //normalizes to compensate for mic vol differences
 //not sure we have to do this
 /*
 for(i = 0; i < len; i++){
 mean += abs(buffer[i]);
 if(max < buffer[i]){

 max = buffer[i];
 }
 }
 mean = mean / len;
 if(mean > 0.01){
 for(i = 0; i < len; i++){
 buffer[i] = buffer[i]/max;

 }
 }
 */
 //end normlization

 //generate hamming window
 create_hamming(hamming, N);

 //create mel filter bank
 create_mel_bank(melf);

 printf("MFCC Calculations in progress...\n");

 for(i = 1; i <= noFrames-2; i++){

 if(DEBUG_MODE == 1){

 if(i == 50){
 printf("computing 50th frame\n");
 }
 if(i == 250){
 printf("computing 250th frame\n");

 }
 }
 Ce1 = 0;

92

 Ce2 = 0;
 Ce = 0;
 for(j = 1; j <= N; j++){
 frame[j-1] = buffer[(i-1)*FrameStep+(j-1)]; //holds

individual frames
 //frame energy
 Ce1 += (frame[j-1] * frame[j-1]);
 if(Ce1 < (2*pow(10, -22))){
 Ce2 = (2*pow(10, -22));
 } else {
 Ce2 = Ce1;
 }

 }
 Ce = log(Ce2);

 if(DEBUG_MODE == 1){
 if(i == 1){
 printf("calculated frame energy\n");
 }

 }

 //multiply each frame with hamming window
 for(j = 0; j < n; j++){
 F[j].re = hamming[j] * frame[j];
 F[j].im = 0;
 }

 if(DEBUG_MODE == 1){
 if(i == 1){
 printf("multplied hamming window\n");
 }
 }

 //compute FFT

 //our FFT does not take inputs, fft will be rewritten in F
 //initialize complex FFT input array with known values
 input = &F[0];

 fft(input, n);

 if(DEBUG_MODE == 1){

 if(i == 1){
 printf("performed FFT\n");
 }
 }

 //result is mel-scale filtered, up to halfn of F
 for(k = 0; k < fn; k++){

 spectr1[k] = 0;
 for(j = 1; j <= halfn; j++){

93

 spectr1[k] += melf[k][j-1]*(pow(imag_mag(F[j-1].re, F[j-
1].im),2));
 }
 spectr1[k] = log10(spectr1[k]);

 if(spectr1[k] < pow(10, -22)){
 spectr[k] = pow(10, -22);
 } else {
 spectr[k] = spectr1[k];
 }
 }

 if(DEBUG_MODE == 1){

 if(i == 1){
 printf("results are mel-scale filtered\n");
 }
 }

 //Compute DCT
 dct(spectr, c, fn);

 if(DEBUG_MODE == 1){
 if(i == 1){
 printf("performed dct\n");
 }
 }

 //obtains DCT, changes to cepstral domain
 c[0] = Ce;

 for(j = 0; j < NUM_COEFFS; j++){
 coeffs[j] = c[j];

 fmatrix[i][j] = coeffs[j] * lifter[j];
 }

 if(DEBUG_MODE == 1){
 if(i == 1){
 printf("wrote to fmatrix\n");
 printf("...first frame finished\n");
 }
 }

 }

 //*************Correlation*****************

 printf("Correlation started...\n");

 //CapeMay1
 maxr = 0;

94

 avgr = 0;

 for(i = 0; i < NUM_COEFFS; i++){

 //pad fmatrix array with zeros to length 2000 to match other fmatrices

 for(j = 0; j < length; j++){
 /*
 if(j < numFrames){
 fmatrix2000[j][i] = fmatrix[j][i];
 } else {
 fmatrix2000[j][i] = 0.01;

 }

 if(capemay1[j][i] != 0){
 c1d[j] = fmatrix[j][i];
 d1d[j] = capemay1[j][i];
 } else {
 c1d[j] = fmatrix[j][i];

 d1d[j] = 0.01;
 }
 */
 c1d[j] = fmatrix[j][i];
 d1d[j] = capemay1[j][i];

 }

 r = cross_corr_wrap(c1d, d1d, corrs, NUM_COEFFS);
 corrs2d[i] = r;
 if(r > maxr){
 maxr = r;
 }
 }
 //Do not count first correlation

 for(i = 1; i < NUM_COEFFS; i++){
 avgr += corrs2d[i];
 }
 avgr /= NUM_COEFFS-1;

 maxcorr = avgr; //set avg correlation to current maximum
 bird = 1; //set current bird to cape may 1

 if(DEBUG_MODE == 1){
 printf("Max corr capemay1: %f\n", maxr);
 }
 printf("Avg corr capemay1: %f\n", avgr);

 if(DEBUG_MODE == 1){
 for(i = 0; i < NUM_COEFFS; i++){

 printf("%f\n", corrs2d[i]);
 }
 }

95

 //carolina1
 maxr = 0;
 avgr = 0;

 for(i = 0; i < NUM_COEFFS; i++){

 //pad fmatrix array with zeros to length 2000 to match other fmatrices

 for(j = 0; j < length; j++){

 c1d[j] = fmatrix[j][i];

 d1d[j] = carolina1[j][i];
 }

 r = cross_corr_wrap(c1d, d1d, corrs, NUM_COEFFS);
 corrs2d[i] = r;
 if(r > maxr){
 maxr = r;

 }
 }
 //Do not count first correlation
 for(i = 1; i < NUM_COEFFS; i++){
 avgr += corrs2d[i];
 }
 avgr /= NUM_COEFFS-1;

 //if correlation is highest, set maxcorr and highest bird type
 if(avgr > maxcorr){
 maxcorr = avgr;
 bird = 2;
 }

 if(DEBUG_MODE == 1){

 printf("Max corr carolina1: %f\n", maxr);
 }
 printf("Avg corr carolina1: %f\n", avgr);

 if(DEBUG_MODE == 1){
 for(i = 0; i < NUM_COEFFS; i++){
 printf("%f\n", corrs2d[i]);

 }
 }

 //Magnolia1
 maxr = 0;
 avgr = 0;

 for(i = 0; i < NUM_COEFFS; i++){

 for(j = 0; j < length; j++){

96

 c1d[j] = fmatrix[j][i];
 d1d[j] = magnolia1[j][i];
 }

 r = cross_corr_wrap(c1d, d1d, corrs, NUM_COEFFS);
 corrs2d[i] = r;
 if(r > maxr){
 maxr = r;
 }
 }
 //Do not count first correlation
 for(i = 1; i < NUM_COEFFS; i++){

 avgr += corrs2d[i];
 }
 avgr /= NUM_COEFFS-1;

 //if correlation is highest, set maxcorr and highest bird type
 if(avgr > maxcorr){
 maxcorr = avgr;

 bird = 3;
 }

 if(DEBUG_MODE == 1){
 printf("Max corr magnolia1: %f\n", maxr);
 }
 printf("Avg corr magnolia1: %f\n", avgr);

 if(DEBUG_MODE == 1){
 for(i = 0; i < NUM_COEFFS; i++){
 printf("%f\n", corrs2d[i]);
 }
 }

 //Mourning1

 maxr = 0;
 avgr = 0;

 for(i = 0; i < NUM_COEFFS; i++){

 for(j = 0; j < length; j++){
 c1d[j] = fmatrix[j][i];

 d1d[j] = mourning1[j][i];
 }

 r = cross_corr_wrap(c1d, d1d, corrs, NUM_COEFFS);
 corrs2d[i] = r;
 if(r > maxr){
 maxr = r;

 }
 }
 //Do not count first correlation

97

 for(i = 1; i < NUM_COEFFS; i++){
 avgr += corrs2d[i];
 }
 avgr /= NUM_COEFFS-1;

 //if correlation is highest, set maxcorr and highest bird type
 if(avgr > maxcorr){
 maxcorr = avgr;
 bird = 4;
 }

 if(DEBUG_MODE == 1){

 printf("Max corr mourning1: %f\n", maxr);
 }
 printf("Avg corr mourning1: %f\n", avgr);

 if(DEBUG_MODE == 1){
 for(i = 0; i < NUM_COEFFS; i++){
 printf("%f\n", corrs2d[i]);

 }
 }

 //Print bird with highest correlation
 //if highest correlation is under .50, change to no match
 if(maxcorr < 0.50){
 bird = 0;

 maxcorr = 0;
 }

 printf("Highest Correlation:\n");
 switch(bird){
 case 0:
 printf("No Match\n");
 printf("Correlation: %f\n", maxcorr);

 break;
 case 1:
 printf("Cape May Warbler1\n");
 printf("Correlation: %f\n", maxcorr);
 break;
 case 2:
 printf("Carolina Wren1\n");

 printf("Correlation: %f\n", maxcorr);
 break;
 case 3:
 printf("Magnolia Warbler1\n");
 printf("Correlation: %f\n", maxcorr);
 break;
 case 4:

 printf("Mourning Warbler1\n");
 printf("Correlation: %f\n", maxcorr);
 break;

98

 default:
 printf("Default Case Reached\n");
 break;
 }

 //turn off LEDs to indicate signal processing complete
 DSK6713_LED_off(1);
 DSK6713_LED_off(2);

 //************Play back section*****************
 while(1){

 if((DSK6713_DIP_get(0) == 0) /*&& (var == 0)*/){
 //turn LED0 to indicate play back
 DSK6713_LED_on(0);

 printf("Playback in progress...\n");

 for(i = 0; i<REC_LEN; i++){

 //play back
 inout = buffer[i];
 output_sample(inout*10);
 }
 //var = 1;
 //turn LED0 off when play back is complete
 DSK6713_LED_off(0);

 printf("...finished\n");

 break;

 }

 };

 }

}

kannumfcc1.2.c

//Kannumfcc1.2.c

//The whole project.....
#include "kannumfcc1.2.h"

void kannumfcc(COMPLEX sample[], int len, float fmatrix[500][8]){
 float num = NUM_COEFFS;
 int i, j, k;

99

 //int a = 1;
 //float b[] = {1, -0.97}; //a and b are high pass filter coefficients
 COMPLEX frame[N], F[N];
 float spectr1[fn];

 float spectr[fn];
 float c[fn];
 float melf[24][257];
 float Ce1 = 0, Ce2 = 0, Ce = 0;
 float coeffs[NUM_COEFFS], ncoeffs[NUM_COEFFS];
 float hamming[N];
 COMPLEX *input;

 float noFrames = floor(len/FrameStep); //maximum no of frames in speech sample
 float lifter[NUM_COEFFS]; //lifter vector index
 for(i = 0; i < NUM_COEFFS; i++){
 lifter[i] = i+1;
 lifter[i] = 1 + floor(num/2) * (sin(lifter[i]*PI/num));
 } //raised sine lifter version

 //normalizes to compensate for mic vol differences
 //not sure we have to do this
 /*
 float mean;
 float max = 0;
 for(i = 0; i < len; i++){

 mean += abs(sample[i]);
 if(max < sample[i]){
 max = sample[i];
 }
 }
 mean = mean / len;
 if(mean > 0.01;){
 for(i = 0; i < len; i++){

 sample[i] = sample[i]/max;
 }
 }
 */
 //end normlization

 //segment the signal into overlapping frames and compute MFCC coefficients

 for(i = 0; i < halfn; i++){
 spectr1[i] = 0;
 spectr[i] = 0;
 }

 //generate hamming window
 create_hamming(hamming, N);

100

 //create mel filter bank
 create_mel_bank(melf);

 for(i = 1; i <= noFrames-2; i++){
 for(j = 1; j <= N; j++){
 frame[j-1].re = sample[(i-1)*FrameStep+(j-1)].re; //holds
individual frames
 //frame energy
 //Ce1 += (frame[j-1].re * frame[j-1].re) + 2*(frame[j-1].re + frame[j-1].im) +
(frame[j-1].im * frame[j-1].im); //sqaure imaginary number???
 //Imaginary numbers = 0

 Ce1 += (frame[j-1].re * frame[j-1].re);
 if(Ce1 < (2*pow(10, -22))){
 Ce2 = (2*pow(10, -22));
 } else {
 Ce2 = Ce1;
 }
 }

 Ce = log(Ce2);

 //filter frame using a and b
 //not sure we have to do this...

 //multiply each frame with hamming window
 for(j = 0; j < N; j++){

 F[j].re *= hamming[j];
 }

 //compute FFT
 //our FFT does not take inputs, fft will be rewritten in F
 //initialize complex FFT input array with known values
 input = &F[0];

 fft(input, N);

 //result is mel-scale filtered, up to halfn of F
 for(k = 0; k < fn; k++){
 for(j = 1; j <= halfn; j++){
 spectr1[k] += log10(melf[k][j-1]*(pow(imag_mag(F[j-1].re, F[j-
1].im),2)));

 }
 if(spectr1[k] < pow(10, -22)){
 spectr[k] = pow(10, -22);
 } else {
 spectr[k] = spectr1[k];
 }
 }

 //Compute DCT
 dct(spectr, c, fn);

101

 //obtains DCT, changes to cepstral domain
 c[0] = Ce;

 for(j = 0; j < NUM_COEFFS; j++){
 coeffs[j] = c[j];
 ncoeffs[j] = coeffs[j] * lifter[j];
 fmatrix[i][j] = ncoeffs[j];
 }

 }

 return;
}

//creates a hamming window of length len
void create_hamming(float hamming[], int len){
 int i;
 for(i = 0; i < len; i++){

 hamming[i] = 0.54 - 0.46 * cos(2*PI * ((float)i/(len-1)));
 }
 return;
}

//finds the magnitude if an imaginary number
float imag_mag(float real, float imag){

 float ans = sqrt(pow(real, 2) + pow(imag, 2));
 return ans;
}

//performs a DCT-II
void dct(float input[], float output[], int M){
 int k, m;
 int K = M;

 float temp = 0;
 for(k = 1; k <= K; k++){

 for(m = 1; m <= M; m++){
 temp += input[m-1] * cos((PI*(2*m-1)*(k-1))/(2*M));
 }

 if(k == 1){
 output[k-1] = (1/sqrt(M)) * temp;
 } else {
 output[k-1] = sqrt(2/(float)M) * temp;
 }

 temp = 0;

 }
 return;
}

102

fft.c

//fft.c

//Performs TI's optimized FFT function

#include "fft.h"

// align data (nothing works if you omit these pragma!!!!!!!!!!)
#pragma DATA_ALIGN(w,sizeof(COMPLEX)) //align w

// global variables

COMPLEX w[FFT_N/RADIX]; // array of complex twiddle factors
float DELTA = 2.0*PI/FFT_N;
short iw[FFT_N/2],ix[FFT_N]; // indices for bit reversal

void fft(COMPLEX data[], int len)
{
 int i;

 // compute first N/2 twiddle factors
 for(i=0;i<len/RADIX;i++){
 w[i].re = cos(DELTA*i);
 w[i].im = sin(DELTA*i); // negative imag component
 //iw[i] = 0;
 //ix[i] = 0;
 //ix[(len/RADIX)+i] = 0;

 }

 digitrev_index(iw,(float)len/RADIX,RADIX);//produces index for bitrev() W
 bitrev(w,iw,(float)len/RADIX); //bit reverse W
 cfftr2_dit(data,w,len) ; //TI floating-pt complex FFT
 digitrev_index(ix, len, RADIX); //produces index for bitrev() X
 bitrev(data,ix,len); //freq scrambled->bit-reverse X
}

corr.c

//MQP
//corr.c

//This function cross correlates two arrays

#include "corr.h"
#include "kannumfcc1.2.h"

float cross_corr(float x[], float y[], float corrs[], int nn){

 int i,j, k = 0;
 float mx,my,sx,sy,sxy,denom,r, maxr = 0;
 int delay;

103

 int maxdelay = MAXDELAY;

 /* Calculate the mean of the two series x[], y[] */
 mx = 0;

 my = 0;
 for (i=0;i<nn;i++) {
 mx += x[i];
 my += y[i];
 }
 mx /= nn;
 my /= nn;

 /* Calculate the denominator */
 sx = 0;
 sy = 0;
 for (i=0;i<nn;i++) {
 sx += (x[i] - mx) * (x[i] - mx);
 sy += (y[i] - my) * (y[i] - my);
 }

 denom = sqrt(sx*sy);

 /* Calculate the correlation series */
 for (delay=-maxdelay; delay<maxdelay; delay++) {
 sxy = 0;
 for (i=0;i<nn;i++) {
 j = i + delay;

 if (j < 0 || j >= nn)
 continue;
 else
 sxy += (x[i] - mx) * (y[j] - my);
 }
 /*
 if(denom == 0){
 r = 0;

 } else {
 r = sxy / denom;
 }
 */
 r = sxy / denom;
 corrs[k] = r;
 k++;

 if(r > maxr){
 maxr = r;
 }

 /* r is the correlation coefficient at "delay" */
 }
 return maxr;

}

104

float cross_corr_wrap(float x[], float y[], float corrs[], int nn){

 int i,j, k = 0;
 float mx,my,sx,sy,sxy,denom,r, maxr = 0;

 int delay;
 int maxdelay = MAXDELAY;

 /* Calculate the mean of the two series x[], y[] */
 mx = 0;
 my = 0;
 for (i=0;i<nn;i++) {
 mx += x[i];

 my += y[i];
 }
 mx /= nn;
 my /= nn;

 /* Calculate the denominator */
 sx = 0;

 sy = 0;
 for (i=0;i<nn;i++) {
 sx += (x[i] - mx) * (x[i] - mx);
 sy += (y[i] - my) * (y[i] - my);
 }
 denom = sqrt(sx*sy);

 /* Calculate the correlation series */
 for (delay=-maxdelay;delay<maxdelay;delay++) {
 sxy = 0;
 for (i=0;i<nn;i++) {
 j = i + delay;
 while (j < 0){
 j += nn;
 }

 j %= nn;
 sxy += (x[i] - mx) * (y[j] - my);
 }
 r = sxy / denom;

 corrs[k] = r;
 k++;

 if(r > maxr){
 maxr = r;
 }

 /* r is the correlation coefficient at "delay" */
 }
 return maxr;
}

105

mfcc_bank.c

//mfcc_bank.c

//This file creates a sparse matrix which contains the mel bank

#include "mfcc_bank.h"

void create_mel_bank(float bank[24][257]){
 //intialize values to zero
 int i, j;
 //i think it was 24 x 257?

 for(i = 0; i < 24; i++){
 for(j = 0; j < 257; j++){
 bank[i][j] = 0;
 }
 }

 bank [0] [1] = 1.6667 ;
 bank [0] [2] = 0.84 ;

 bank [1] [2] = 1.16 ;
 bank [1] [3] = 1.4875 ;
 bank [2] [3] = 0.5125 ;
 bank [1] [4] = 0.2514 ;
 bank [2] [4] = 1.7486 ;
 bank [2] [5] = 1.1134 ;
 bank [3] [5] = 0.8866 ;

 bank [2] [6] = 0.0589 ;
 bank [3] [6] = 1.9411 ;
 bank [3] [7] = 1.0766 ;
 bank [4] [7] = 0.9234 ;
 bank [3] [8] = 0.1572 ;
 bank [4] [8] = 1.8428 ;
 bank [4] [9] = 1.2931 ;

 bank [5] [9] = 0.7069 ;
 bank [4] [10] = 0.4781 ;
 bank [5] [10] = 1.5219 ;
 bank [5] [11] = 1.7068 ;
 bank [6] [11] = 0.2932 ;
 bank [5] [12] = 0.9749 ;
 bank [6] [12] = 1.0251 ;
 bank [5] [13] = 0.2784 ;

 bank [6] [13] = 1.7216 ;
 bank [6] [14] = 1.6142 ;
 bank [7] [14] = 0.3858 ;
 bank [6] [15] = 0.9793 ;
 bank [7] [15] = 1.0207 ;
 bank [6] [16] = 0.3714 ;
 bank [7] [16] = 1.6286 ;

 bank [7] [17] = 1.7881 ;
 bank [8] [17] = 0.2119 ;

106

 bank [7] [18] = 1.2275 ;
 bank [8] [18] = 0.7725 ;
 bank [7] [19] = 0.6881 ;
 bank [8] [19] = 1.3119 ;

 bank [7] [20] = 0.1681 ;
 bank [8] [20] = 1.8319 ;
 bank [8] [21] = 1.6664 ;
 bank [9] [21] = 0.3336 ;
 bank [8] [22] = 1.1815 ;
 bank [9] [22] = 0.8185 ;
 bank [8] [23] = 0.7125 ;
 bank [9] [23] = 1.2875 ;

 bank [8] [24] = 0.2584 ;
 bank [9] [24] = 1.7416 ;
 bank [9] [25] = 1.8181 ;
 bank [10] [25] = 0.1819 ;
 bank [9] [26] = 1.391 ;
 bank [10] [26] = 0.609 ;
 bank [9] [27] = 0.9762 ;

 bank [10] [27] = 1.0238 ;
 bank [9] [28] = 0.573 ;
 bank [10] [28] = 1.427 ;
 bank [9] [29] = 0.1808 ;
 bank [10] [29] = 1.8192 ;
 bank [10] [30] = 1.7991 ;
 bank [11] [30] = 0.2009 ;

 bank [10] [31] = 1.4273 ;
 bank [11] [31] = 0.5727 ;
 bank [10] [32] = 1.0648 ;
 bank [11] [32] = 0.9352 ;
 bank [10] [33] = 0.7113 ;
 bank [11] [33] = 1.2887 ;
 bank [10] [34] = 0.3662 ;
 bank [11] [34] = 1.6338 ;

 bank [10] [35] = 0.0292 ;
 bank [11] [35] = 1.9708 ;
 bank [11] [36] = 1.7 ;
 bank [12] [36] = 0.3 ;
 bank [11] [37] = 1.3782 ;
 bank [12] [37] = 0.6218 ;
 bank [11] [38] = 1.0634 ;

 bank [12] [38] = 0.9366 ;
 bank [11] [39] = 0.7553 ;
 bank [12] [39] = 1.2447 ;
 bank [11] [40] = 0.4537 ;
 bank [12] [40] = 1.5463 ;
 bank [11] [41] = 0.1584 ;
 bank [12] [41] = 1.8416 ;

 bank [12] [42] = 1.8689 ;
 bank [13] [42] = 0.1311 ;
 bank [12] [43] = 1.5852 ;

107

 bank [13] [43] = 0.4148 ;
 bank [12] [44] = 1.307 ;
 bank [13] [44] = 0.693 ;
 bank [12] [45] = 1.0341 ;

 bank [13] [45] = 0.9659 ;
 bank [12] [46] = 0.7663 ;
 bank [13] [46] = 1.2337 ;
 bank [12] [47] = 0.5033 ;
 bank [13] [47] = 1.4967 ;
 bank [12] [48] = 0.2451 ;
 bank [13] [48] = 1.7549 ;
 bank [13] [49] = 1.9915 ;

 bank [14] [49] = 0.0085 ;
 bank [13] [50] = 1.7423 ;
 bank [14] [50] = 0.2577 ;
 bank [13] [51] = 1.4973 ;
 bank [14] [51] = 0.5027 ;
 bank [13] [52] = 1.2564 ;
 bank [14] [52] = 0.7436 ;

 bank [13] [53] = 1.0195 ;
 bank [14] [53] = 0.9805 ;
 bank [13] [54] = 0.7864 ;
 bank [14] [54] = 1.2136 ;
 bank [13] [55] = 0.5571 ;
 bank [14] [55] = 1.4429 ;
 bank [13] [56] = 0.3313 ;

 bank [14] [56] = 1.6687 ;
 bank [13] [57] = 0.1091 ;
 bank [14] [57] = 1.8909 ;
 bank [14] [58] = 1.8902 ;
 bank [15] [58] = 0.1098 ;
 bank [14] [59] = 1.6747 ;
 bank [15] [59] = 0.3253 ;
 bank [14] [60] = 1.4623 ;

 bank [15] [60] = 0.5377 ;
 bank [14] [61] = 1.253 ;
 bank [15] [61] = 0.747 ;
 bank [14] [62] = 1.0467 ;
 bank [15] [62] = 0.9533 ;
 bank [14] [63] = 0.8433 ;
 bank [15] [63] = 1.1567 ;

 bank [14] [64] = 0.6428 ;
 bank [15] [64] = 1.3572 ;
 bank [14] [65] = 0.445 ;
 bank [15] [65] = 1.555 ;
 bank [14] [66] = 0.25 ;
 bank [15] [66] = 1.75 ;
 bank [14] [67] = 0.0575 ;

 bank [15] [67] = 1.9425 ;
 bank [15] [68] = 1.8676 ;
 bank [16] [68] = 0.1324 ;

108

 bank [15] [69] = 1.6801 ;
 bank [16] [69] = 0.3199 ;
 bank [15] [70] = 1.4951 ;
 bank [16] [70] = 0.5049 ;

 bank [15] [71] = 1.3125 ;
 bank [16] [71] = 0.6875 ;
 bank [15] [72] = 1.1321 ;
 bank [16] [72] = 0.8679 ;
 bank [15] [73] = 0.9539 ;
 bank [16] [73] = 1.0461 ;
 bank [15] [74] = 0.778 ;
 bank [16] [74] = 1.222 ;

 bank [15] [75] = 0.6041 ;
 bank [16] [75] = 1.3959 ;
 bank [15] [76] = 0.4324 ;
 bank [16] [76] = 1.5676 ;
 bank [15] [77] = 0.2627 ;
 bank [16] [77] = 1.7373 ;
 bank [15] [78] = 0.0949 ;

 bank [16] [78] = 1.9051 ;
 bank [16] [79] = 1.9291 ;
 bank [17] [79] = 0.0709 ;
 bank [16] [80] = 1.7652 ;
 bank [17] [80] = 0.2348 ;
 bank [16] [81] = 1.6032 ;
 bank [17] [81] = 0.3968 ;

 bank [16] [82] = 1.4429 ;
 bank [17] [82] = 0.5571 ;
 bank [16] [83] = 1.2844 ;
 bank [17] [83] = 0.7156 ;
 bank [16] [84] = 1.1277 ;
 bank [17] [84] = 0.8723 ;
 bank [16] [85] = 0.9726 ;
 bank [17] [85] = 1.0274 ;

 bank [16] [86] = 0.8192 ;
 bank [17] [86] = 1.1808 ;
 bank [16] [87] = 0.6674 ;
 bank [17] [87] = 1.3326 ;
 bank [16] [88] = 0.5172 ;
 bank [17] [88] = 1.4828 ;
 bank [16] [89] = 0.3686 ;

 bank [17] [89] = 1.6314 ;
 bank [16] [90] = 0.2215 ;
 bank [17] [90] = 1.7785 ;
 bank [16] [91] = 0.0759 ;
 bank [17] [91] = 1.9241 ;
 bank [17] [92] = 1.9317 ;
 bank [18] [92] = 0.0683 ;

 bank [17] [93] = 1.789 ;
 bank [18] [93] = 0.211 ;
 bank [17] [94] = 1.6476 ;

109

 bank [18] [94] = 0.3524 ;
 bank [17] [95] = 1.5077 ;
 bank [18] [95] = 0.4923 ;
 bank [17] [96] = 1.3691 ;

 bank [18] [96] = 0.6309 ;
 bank [17] [97] = 1.2318 ;
 bank [18] [97] = 0.7682 ;
 bank [17] [98] = 1.0958 ;
 bank [18] [98] = 0.9042 ;
 bank [17] [99] = 0.9611 ;
 bank [18] [99] = 1.0389 ;
 bank [17] [100] = 0.8277 ;

 bank [18] [100] = 1.1723 ;
 bank [17] [101] = 0.6954 ;
 bank [18] [101] = 1.3046 ;
 bank [17] [102] = 0.5644 ;
 bank [18] [102] = 1.4356 ;
 bank [17] [103] = 0.4346 ;
 bank [18] [103] = 1.5654 ;

 bank [17] [104] = 0.3059 ;
 bank [18] [104] = 1.6941 ;
 bank [17] [105] = 0.1784 ;
 bank [18] [105] = 1.8216 ;
 bank [17] [106] = 0.052 ;
 bank [18] [106] = 1.948 ;
 bank [18] [107] = 1.9267 ;

 bank [19] [107] = 0.0733 ;
 bank [18] [108] = 1.8025 ;
 bank [19] [108] = 0.1975 ;
 bank [18] [109] = 1.6793 ;
 bank [19] [109] = 0.3207 ;
 bank [18] [110] = 1.5572 ;
 bank [19] [110] = 0.4428 ;
 bank [18] [111] = 1.4362 ;

 bank [19] [111] = 0.5638 ;
 bank [18] [112] = 1.3161 ;
 bank [19] [112] = 0.6839 ;
 bank [18] [113] = 1.197 ;
 bank [19] [113] = 0.803 ;
 bank [18] [114] = 1.0789 ;
 bank [19] [114] = 0.9211 ;

 bank [18] [115] = 0.9618 ;
 bank [19] [115] = 1.0382 ;
 bank [18] [116] = 0.8456 ;
 bank [19] [116] = 1.1544 ;
 bank [18] [117] = 0.7304 ;
 bank [19] [117] = 1.2696 ;
 bank [18] [118] = 0.6161 ;

 bank [19] [118] = 1.3839 ;
 bank [18] [119] = 0.5026 ;
 bank [19] [119] = 1.4974 ;

110

 bank [18] [120] = 0.3901 ;
 bank [19] [120] = 1.6099 ;
 bank [18] [121] = 0.2784 ;
 bank [19] [121] = 1.7216 ;

 bank [18] [122] = 0.1676 ;
 bank [19] [122] = 1.8324 ;
 bank [18] [123] = 0.0577 ;
 bank [19] [123] = 1.9423 ;
 bank [19] [124] = 1.9486 ;
 bank [20] [124] = 0.0514 ;
 bank [19] [125] = 1.8403 ;
 bank [20] [125] = 0.1597 ;

 bank [19] [126] = 1.7328 ;
 bank [20] [126] = 0.2672 ;
 bank [19] [127] = 1.6261 ;
 bank [20] [127] = 0.3739 ;
 bank [19] [128] = 1.5202 ;
 bank [20] [128] = 0.4798 ;
 bank [19] [129] = 1.4151 ;

 bank [20] [129] = 0.5849 ;
 bank [19] [130] = 1.3107 ;
 bank [20] [130] = 0.6893 ;
 bank [19] [131] = 1.2071 ;
 bank [20] [131] = 0.7929 ;
 bank [19] [132] = 1.1042 ;
 bank [20] [132] = 0.8958 ;

 bank [19] [133] = 1.0021 ;
 bank [20] [133] = 0.9979 ;
 bank [19] [134] = 0.9007 ;
 bank [20] [134] = 1.0993 ;
 bank [19] [135] = 0.8 ;
 bank [20] [135] = 1.2 ;
 bank [19] [136] = 0.7 ;
 bank [20] [136] = 1.3 ;

 bank [19] [137] = 0.6007 ;
 bank [20] [137] = 1.3993 ;
 bank [19] [138] = 0.5021 ;
 bank [20] [138] = 1.4979 ;
 bank [19] [139] = 0.4041 ;
 bank [20] [139] = 1.5959 ;
 bank [19] [140] = 0.3068 ;

 bank [20] [140] = 1.6932 ;
 bank [19] [141] = 0.2102 ;
 bank [20] [141] = 1.7898 ;
 bank [19] [142] = 0.1142 ;
 bank [20] [142] = 1.8858 ;
 bank [19] [143] = 0.0188 ;
 bank [20] [143] = 1.9812 ;

 bank [20] [144] = 1.9241 ;
 bank [21] [144] = 0.0759 ;
 bank [20] [145] = 1.83 ;

111

 bank [21] [145] = 0.17 ;
 bank [20] [146] = 1.7365 ;
 bank [21] [146] = 0.2635 ;
 bank [20] [147] = 1.6436 ;

 bank [21] [147] = 0.3564 ;
 bank [20] [148] = 1.5513 ;
 bank [21] [148] = 0.4487 ;
 bank [20] [149] = 1.4596 ;
 bank [21] [149] = 0.5404 ;
 bank [20] [150] = 1.3685 ;
 bank [21] [150] = 0.6315 ;
 bank [20] [151] = 1.278 ;

 bank [21] [151] = 0.722 ;
 bank [20] [152] = 1.188 ;
 bank [21] [152] = 0.812 ;
 bank [20] [153] = 1.0986 ;
 bank [21] [153] = 0.9014 ;
 bank [20] [154] = 1.0097 ;
 bank [21] [154] = 0.9903 ;

 bank [20] [155] = 0.9214 ;
 bank [21] [155] = 1.0786 ;
 bank [20] [156] = 0.8336 ;
 bank [21] [156] = 1.1664 ;
 bank [20] [157] = 0.7464 ;
 bank [21] [157] = 1.2536 ;
 bank [20] [158] = 0.6597 ;

 bank [21] [158] = 1.3403 ;
 bank [20] [159] = 0.5735 ;
 bank [21] [159] = 1.4265 ;
 bank [20] [160] = 0.4878 ;
 bank [21] [160] = 1.5122 ;
 bank [20] [161] = 0.4026 ;
 bank [21] [161] = 1.5974 ;
 bank [20] [162] = 0.3179 ;

 bank [21] [162] = 1.6821 ;
 bank [20] [163] = 0.2338 ;
 bank [21] [163] = 1.7662 ;
 bank [20] [164] = 0.1501 ;
 bank [21] [164] = 1.8499 ;
 bank [20] [165] = 0.0669 ;
 bank [21] [165] = 1.9331 ;

 bank [21] [166] = 1.9841 ;
 bank [22] [166] = 0.0159 ;
 bank [21] [167] = 1.9019 ;
 bank [22] [167] = 0.0981 ;
 bank [21] [168] = 1.8201 ;
 bank [22] [168] = 0.1799 ;
 bank [21] [169] = 1.7388 ;

 bank [22] [169] = 0.2612 ;
 bank [21] [170] = 1.6579 ;
 bank [22] [170] = 0.3421 ;

112

 bank [21] [171] = 1.5775 ;
 bank [22] [171] = 0.4225 ;
 bank [21] [172] = 1.4976 ;
 bank [22] [172] = 0.5024 ;

 bank [21] [173] = 1.4181 ;
 bank [22] [173] = 0.5819 ;
 bank [21] [174] = 1.339 ;
 bank [22] [174] = 0.661 ;
 bank [21] [175] = 1.2603 ;
 bank [22] [175] = 0.7397 ;
 bank [21] [176] = 1.1821 ;
 bank [22] [176] = 0.8179 ;

 bank [21] [177] = 1.1043 ;
 bank [22] [177] = 0.8957 ;
 bank [21] [178] = 1.027 ;
 bank [22] [178] = 0.973 ;
 bank [21] [179] = 0.95 ;
 bank [22] [179] = 1.05 ;
 bank [21] [180] = 0.8734 ;

 bank [22] [180] = 1.1266 ;
 bank [21] [181] = 0.7973 ;
 bank [22] [181] = 1.2027 ;
 bank [21] [182] = 0.7216 ;
 bank [22] [182] = 1.2784 ;
 bank [21] [183] = 0.6462 ;
 bank [22] [183] = 1.3538 ;

 bank [21] [184] = 0.5713 ;
 bank [22] [184] = 1.4287 ;
 bank [21] [185] = 0.4967 ;
 bank [22] [185] = 1.5033 ;
 bank [21] [186] = 0.4225 ;
 bank [22] [186] = 1.5775 ;
 bank [21] [187] = 0.3487 ;
 bank [22] [187] = 1.6513 ;

 bank [21] [188] = 0.2753 ;
 bank [22] [188] = 1.7247 ;
 bank [21] [189] = 0.2023 ;
 bank [22] [189] = 1.7977 ;
 bank [21] [190] = 0.1296 ;
 bank [22] [190] = 1.8704 ;
 bank [21] [191] = 0.0573 ;

 bank [22] [191] = 1.9427 ;
 bank [22] [192] = 1.9853 ;
 bank [23] [192] = 0.0147 ;
 bank [22] [193] = 1.9137 ;
 bank [23] [193] = 0.0863 ;
 bank [22] [194] = 1.8425 ;
 bank [23] [194] = 0.1575 ;

 bank [22] [195] = 1.7716 ;
 bank [23] [195] = 0.2284 ;
 bank [22] [196] = 1.7011 ;

113

 bank [23] [196] = 0.2989 ;
 bank [22] [197] = 1.6309 ;
 bank [23] [197] = 0.3691 ;
 bank [22] [198] = 1.5611 ;

 bank [23] [198] = 0.4389 ;
 bank [22] [199] = 1.4915 ;
 bank [23] [199] = 0.5085 ;
 bank [22] [200] = 1.4224 ;
 bank [23] [200] = 0.5776 ;
 bank [22] [201] = 1.3535 ;
 bank [23] [201] = 0.6465 ;
 bank [22] [202] = 1.285 ;

 bank [23] [202] = 0.715 ;
 bank [22] [203] = 1.2168 ;
 bank [23] [203] = 0.7832 ;
 bank [22] [204] = 1.1489 ;
 bank [23] [204] = 0.8511 ;
 bank [22] [205] = 1.0814 ;
 bank [23] [205] = 0.9186 ;

 bank [22] [206] = 1.0142 ;
 bank [23] [206] = 0.9858 ;
 bank [22] [207] = 0.9472 ;
 bank [23] [207] = 1.0528 ;
 bank [22] [208] = 0.8806 ;
 bank [23] [208] = 1.1194 ;
 bank [22] [209] = 0.8143 ;

 bank [23] [209] = 1.1857 ;
 bank [22] [210] = 0.7483 ;
 bank [23] [210] = 1.2517 ;
 bank [22] [211] = 0.6826 ;
 bank [23] [211] = 1.3174 ;
 bank [22] [212] = 0.6172 ;
 bank [23] [212] = 1.3828 ;
 bank [22] [213] = 0.5521 ;

 bank [23] [213] = 1.4479 ;
 bank [22] [214] = 0.4873 ;
 bank [23] [214] = 1.5127 ;
 bank [22] [215] = 0.4228 ;
 bank [23] [215] = 1.5772 ;
 bank [22] [216] = 0.3586 ;
 bank [23] [216] = 1.6414 ;

 bank [22] [217] = 0.2947 ;
 bank [23] [217] = 1.7053 ;
 bank [22] [218] = 0.231 ;
 bank [23] [218] = 1.769 ;
 bank [22] [219] = 0.1676 ;
 bank [23] [219] = 1.8324 ;
 bank [22] [220] = 0.1045 ;

 bank [23] [220] = 1.8955 ;
 bank [22] [221] = 0.0417 ;
 bank [23] [221] = 1.9583 ;

114

 bank [23] [222] = 1.9792 ;
 bank [23] [223] = 1.9169 ;
 bank [23] [224] = 1.8549 ;
 bank [23] [225] = 1.7931 ;

 bank [23] [226] = 1.7317 ;
 bank [23] [227] = 1.6704 ;
 bank [23] [228] = 1.6095 ;
 bank [23] [229] = 1.5488 ;
 bank [23] [230] = 1.4883 ;
 bank [23] [231] = 1.4282 ;
 bank [23] [232] = 1.3682 ;
 bank [23] [233] = 1.3085 ;

 bank [23] [234] = 1.2491 ;
 bank [23] [235] = 1.1899 ;
 bank [23] [236] = 1.1309 ;
 bank [23] [237] = 1.0722 ;
 bank [23] [238] = 1.0138 ;
 bank [23] [239] = 0.9555 ;
 bank [23] [240] = 0.8975 ;

 bank [23] [241] = 0.8397 ;
 bank [23] [242] = 0.7822 ;
 bank [23] [243] = 0.7249 ;
 bank [23] [244] = 0.6678 ;
 bank [23] [245] = 0.611 ;
 bank [23] [246] = 0.5543 ;
 bank [23] [247] = 0.4979 ;

 bank [23] [248] = 0.4417 ;
 bank [23] [249] = 0.3858 ;
 bank [23] [250] = 0.33 ;
 bank [23] [251] = 0.2745 ;
 bank [23] [252] = 0.2192 ;
 bank [23] [253] = 0.1641 ;
 bank [23] [254] = 0.1092 ;

}

115

References

Brookes, Mike. (2009). Description of melbankm from Voicebox: Speech Processing ToolBox

for MATLAB. Retrieved April 20, 2010, from

http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/doc/voicebox/melbankm.html

Byers, Bruce E.. (1995). Song Types, Repertoires and Song Variability in a Population of

Chestnut-Sided Warblers. The Condor, Vol. 97, No. 2, pp. 390-401

Cai et al. (2007). “Sensor network for the monitoring of ecosystem: Bird species recognition,” in

ISSNIP 2007: Proceedings of the 3rd International Conference on Intelligent Sensors, Sensor

Networks and Information Processing, pp. 293–298.

Chassaing, Rulph. (2005). Digital signal processing and applications with the c6713 and c6416

dsk. John Wiley and Sons.

Emlen, Stephen T. (1972). An Experimental Analysis of the Parameters of Bird Song Eliciting

Species Recognition. Behaviour, Vol. 41, No. 1/2, pp. 130-171

Konishi, M. (1970). Evolution of design features in the coding of species-specificity.

American Zoology, Vol. 10, p. 67-72

Lee et al. (2006). Automatic recognition of animal vocalizations using averaged MFCC and

linear discriminant analysis. Pattern Recognition Letters, Vol. 27, pp. 93-101.

116

Lee et al. (2006). Automatic recognition of bird songs using cepstral coefficients, Journal of

Information Technology and Applications, Vol. 1, No. 1, May 2006, pp. 17-23

Nelson, Douglas A. (1989). The Importance of Invariant and Distinctive Features in Species

Recognition of Bird Song. The Condor, Vol. 91, No. 1, pp. 120-130

Omogbenigun, Olutope Foluso. (2009). File details from MATLAB Central. Retrieved April 20,

2010, from http://www.mathworks.com/matlabcentral/fileexchange/23119-mfcc

Proakis, John & Manolakis, Dimitris. (2005). Digital signal processing. Prentice Hall.

Sakata et al. (2008). Social Modulation of Sequence and Syllable Variability in Adult Birdsong.

J Neurophysiology, Vol. 99, pp. 1700-1711

Terasawa et al. (2005). Perceptual distance in timbre space. In International Conference on

Auditory Display, pages 61–68

Compare Birding Apps. iBird’s comparison of birding apps on the market. Retrieved April 20,

2010, from http://ibird.com/Compare.aspx

Cross-correlation. Wikipedia. Retrieved October 13, 2010, from

http://en.wikipedia.org/wiki/Cross_correlation

http://ibird.com/Compare.aspx

117

Discrete Fourier Transform. Wikipedia. Retrieved October 13, 2010, from

http://en.wikipedia.org/wiki/Discrete_Fourier_transform

eNature, eNature.com. Retrieved October 24, 2009, from http://www.enature.com/

Identiflyer. For the Bird Inc. Retrieved October 24, 2009, from http://www.identiflyer.com/

Mel Scale. Wikipedia. Retrieved April 20, 2010, from http://en.wikipedia.org/wiki/Mel_scale

Mel-frequency Cepstrum. Wikipedia. Retrieved April 20, 2010, from

http://en.wikipedia.org/wiki/Mel-frequency_cepstrum

Song Sleuth. Wildlife Acoustics. Retrieved October 25, 2009, from

http://www.wildlifeacoustics.com/news/aba.html

Song Meter 2. Wildlife Acoustics. Retrieved October 25, 2009, from

http://www.wildlifeacoustics.com/sm2/

System Requirements – Release 2010a. Mathworks. Retrieved November 4, 2009, from

http://www.mathworks.com/support/sysreq/current_release/index.html

http://en.wikipedia.org/wiki/Mel-frequency_cepstrum

118

TMS320C6713 DSP Starter Kit (DSK). Texas Instruments. Retrieved December 2, 2009, from

http://focus.ti.com/docs/toolsw/folders/print/tmdsdsk6713.html

