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Abstract 

Cells in physiological systems are constantly subjected to various mechanical forces. 

Different types and profiles of mechanical forces have varying effects on cellular functions, 

activities, and pathologies. Therefore, it is important to understand how different mechanical 

forces dictate cellular functions of different cell types. Several commercial devices have been 

developed to study cellular responses to substrate strain in vitro. However, drawbacks of these 

devices include the inability to provide “real-time” analysis of cellular responses, non-uniform 

uniaxial and equibiaxial strains as well as limited operation time. In order to overcome such 

shortcomings, a novel stretch device using four linear motors to apply cyclic mechanical stretch 

to cells was developed. Using finite element analysis, a unique Polydimethysiloxane (PDMS) 

substrate was designed and fabricated to translate mechanical forces from the motors and apply 

uniform strain to the cells seeded on the substrate. This new system will facilitate 

mechanobiology studies by enabling cyclic stretching of cells biaxially at variable strains (0 – 

30%), directions (pure uniaxial to equibiaxial) and frequencies (0.01 – 1Hz) for a minimum of 6 

hours as well as allowing “real time” analysis of cells under a standard inverted microscope 

while stretch is applied. Validation studies confirmed that the device can operate for a minimum 

of 6 hours without exceeding the room temperature. High Density Mapping (HDM) analysis 

showed better uniform strain patterns and increased in area of uniform strain fields in the newly 

designed well compared to commercially available well.   
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Introduction 

Cells and tissues in human body are constantly under dynamic conditions, meaning they 

are continuously changing in response to various chemical, electrical as well as mechanical 

signals exerted on them. Among these signals, mechanical signals play a particularly important 

role by dictating the functions and activities in various cells in the human body.  Mechanical 

forces have been shown to regulate cell orientation, morphology, remodeling, differentiation, 

proliferation, gene expression, production of cytokines and growth factors as well as 

extracellular matrix (ECM) protein synthesis 
1-8

.  Some common examples include constant bone 

development and remodeling due to cyclic mechanical forces exerted on them 
9
, heart valve 

repair stimulated by constant mechanical forces exerted by blood flow 
7
 and muscle growth 

elicited by mechanical stimulation during exercises 
10

.  

Mechanical forces have a significant effect on tissue homeostasis and pathophysiology. 

For example, endothelial and interstitial cells on heart valve leaflets are constantly under varying 

mechanical forces caused by continuing pulsatile blood flow. These mechanical forces are 

thought to be responsible for continual damage of these cells as well as leaflet tissue repair 
7
. 

Additionally, it has been shown that in the presence of mechanical forces, endothelial cells lining 

on blood vessels reorient themselves in a way to reduce the constant mechanical force they 

suffer.  However, failure to respond properly to these mechanical forces, may lead to diseases 

such as atherosclerosis 
18

. Another common example of mechano-sensitive cells are muscle cells 

which grow under intermittent stress caused by daily activities and exercises but atrophy in the 

absence of muscle activities 
10

. Due to the significant impact of mechanical loads on various 
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cellular activities and functions, it is essential to understand how these physical forces influence 

the cells and tissues.  

In order to better understand the mechanical forces and their effects on the cells and 

tissues in vivo, laboratory settings are used to replicate the mechanical stimulations on cells in 

vitro. Devices have been built in an effort to study mechanotransduction and mechanobiology of 

cells under compressive, tensile or shear stresses. There are commercial devices such as 

Flexcell
® 

Tension System from Flexcell International Corporation and Strex Cell Stretching 

System from B-Bridge International, Inc. Also, several groups have built their own devices in 

order to fit their custom needs to carry out specific experiments. These devices can be designed 

to apply stress using motors, vacuum or hydraulic pressures. Additionally, they can provide 

stresses in various directions at a variety of strain rates and frequencies. For example, tensile 

testing devices can be designed to provide strain ranging from uniaxial (tensile stress in one 

direction) to equibiaxial (equal tensile stresses in two perpendicular axes simultaneously). By 

combining various directions, frequencies and strains, these devices can be fabricated to provide 

mechanical stimulations that closely mimic those found in vivo. These devices allow for testing 

of different mechanical forces on a variety of cells and their effects on functions and activities of 

the cells. In addition to providing mechanical forces, some devices integrate viewing platforms 

that allow for viewing of cells while they are loaded. This unique functionality permits 

observation of cell orientation and other pathways real-time as the cells are being stretched. 

Traditionally cells need to be fixed to be viewed under a microscope after desired amount of 

mechanical forces at specific times have been applied. Therefore, if one needs to observe the 

effects of certain mechanical stimulation on cells, for example, at 2, 4 and 6 hour, three cell 

cultures will have to be stretched, and fixed. However, with devices which allow real-time 
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viewing, only one cell culture needs to be stretched and observed at 2, 4 and 6 hour or at any 

interval desired. Therefore, cell stretching device with microscope viewing ability is very 

desirable since it not only allows traditional mechanobiology experiments, but also increases 

efficiency.   

The goal of this project is to design, build and test a cell stretching device that can stretch 

cells biaxially at variable strains, axial ratios, and frequencies as well as allow for viewing of 

cells under a standard inverted microscope while stretch is being applied. The device will apply 

mechanical stretch along two axes and assure an area with uniform strain within which cells will 

be seeded. The cells will be seeded on an elastic cell culture well made of polydimethylsiloxane 

(PDMS). The device must allow observation of cell orientation over a period of stretching. This 

project will be accomplished with a $1,000 budget by April 2012.  
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Background 
Mechanobiology in vivo 

 Upon investigation and experimentation, it is now consensus among scientists that the 

stimulus of mechanical stresses affects numerous activities and functions of the cells.  Cells may 

experience mechanical forces in three forms, such as tension, compression and shear (Fig. 1). 

Depending upon the type of mechanical force and the rates at which the force is applied, various 

cells in body will respond differently 
13

.  

 

Figure 1. Schematic of different mechanical forces 

 The mechanical stress is very important in the body. It is an essential trigger for 

countless messages between cells and appropriate cellular responses to their environment, such 

as changes in adhesion, proliferation, locomotion, morphology, and synthetic profile 
12

.  Not only 

does it exist in many different areas of the body and on a variety of different cells but it also acts 

on these cells in diverse ways, and due to multiple distinct causes.  Most often, the stress 

experienced is cyclic, as a load is removed and applied alternatingly, or as the magnitude or 

direction of the load changes.  A pertinent review of mechanobiology reveals the varying effects 

of stretch on a multitude of cells, some of which include cells found in muscles, the heart and 

cardiovascular system, the lungs, connective tissue, skin and bones 
13

.   

Arteries and cardiovascular muscle cells have prompted tremendous interest in 

mechanobiology regarding mechanical stress, and are commonly utilized in the study of the 
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field.  They are a natural choice, as the pulsatile nature of blood pressure constantly causes them 

to be cyclically strained 
14

.  After investigation of these vascular cells and their profile of 

deformation, it has been validated that proliferation, apoptosis, and migration of vascular cells, 

as well as the synthesis, degradation, and reorganization of ECM are all moderated by cyclic 

mechanical stretch 
14

.  With this, the presence and importance of stretched cells in vivo is 

increasingly confirmed. 

Other prominent tissues that regularly sustain and react to mechanical stress are muscles, 

notably skeletal muscle cells.  This muscular tissue is not only stretched routinely through daily 

events, but also during exercise, through which the muscles undergo extreme stress.  Mass and 

strength of muscle are dependent on many stimuli, including mechanical stress, and can change 

rapidly 
10

.  Without this stress, the muscles atrophy, resulting in loss of strength and mass.  When 

this stress is immense and frequently induced, it enhances the muscle’s strength and mass.  This 

happens in two ways:  when muscles endure stress, the fibers undergo trauma, specifically 

referred to as “muscle damage.”  This activates muscle satellite cells, which proliferate to the 

damaged area, fusing to the muscle fibers. The fused muscle fibers repair the damage, increasing 

muscle size, and forming new muscle protein strands 
15

.  Biochemical activities are affected as 

well by such mechanical stimulations.  In response to mechanical forces, myriad cell signaling 

factors and proteins, such as mTORC1, eIF3f, eIF2B, FoxO, AMPK, and PGC1α, are transmitted 

to regulate growth and protein synthesis.  For example, Goodman et al. have proven that 

signaling by mTORC1 is controlled via numerous stimuli, prominently in response to 

hypertrophic stimuli, including mechanical loading.  They also stated that decrease in mechanical 

loading leads to atrophy of the muscles, as these and other signals cease to be transmitted 

without an applied mechanical load 
10

, thereby demonstrating the crucial importance of exercise 
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and mechanical stress on muscle cells. Likewise, mechanical forces have significant influence on 

other mechano-sensitive cells such as chondrocytes in articular cartilage, endothelial cells in 

blood vessels, fibroblasts in ligaments, osteocytes in bones, tenocytes in tendons and skins and 

so on, regulating their functions and maintaining the biochemical homeostasis 
13

. Therefore, 

studying these physical forces and their effects on cells is crucial in understanding cell functions, 

homeostasis and equilibrium. Furthermore, these understandings will have implications on 

biomedical applications such as tissue engineering, cancer treatment, gene therapy and wound 

healing.  

Mechanobiology in vitro 
The realization of the importance of mechanical forces on cellular responses has 

prompted several in vitro studies of mechanobiology. Among the various mechanical responses 

observed in cells, reorientation or realignment of cells is the most prominent reaction.  Cells alter 

their orientation when they are mechanically stretched. For example, when endothelial cells and 

actin filaments were mechanically stretched, they were observed to orient their longer axis 

perpendicular to the direction of stretch applied while static cells remained in random 

orientation
2
. In addition, cells may change functions and activities including morphology, 

proliferation, differentiation, as well as protein and gene expressions due to an external load or 

stretch 
13

. Leung et al. found that cyclic loading of rat aortic medial cells up-regulated certain 

protein expression 
16

. In addition, cyclic stretch stimulated structural alignment of MSCs leading 

to differentiation of smooth muscle cells without any added growth factors 
3
. These findings 

strongly emphasize the effects of mechanical stimuli on the behavior of cells.   
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Cell Orientation and Alignment Due to Mechanical Stretch 

The reorientation of cells when mechanical stretch is applied has been studied. MSCs 

were mechanically strained with Flexercell system at 1Hz with 10% elongation for 2 days. The 

mechanically stressed MSCs were observed to change in morphology and orientation. Unlike 

unstrained MSCs, which were randomly oriented, mechanically stretched MSCs show 

perpendicular orientation to the axis of the strain. In addition, these strained MSCs were 

observed to change their morphology to spindle shape 
17

. In addition, 15% strain at 1Hz was 

applied to MSCs for 2hr to investigate orientation of F-actin filaments. It has been found that 

stress fibers aligned perpendicular to the axis of the applied mechanical strain 
3
. Hsu et al. also 

reported similar reorientation of cells when exposed to mechanical stretch. Bovine aortic 

endothelial cells were stretched at 10% cyclic uniaxial stretch for 4 hours in a range of 0.1 Hz to 

1 Hz frequencies. It has been found that stress fibers realign themselves perpendicular to the axis 

of the strain. The extent of such perpendicular reorientation increases as the frequency of the 

stretch increases 
18

. The reorientation of actin stress fibers perpendicular to strain axis may be 

due to adaptation process in order to minimize the amount of stress the cell suffers 
3
. 

Furthermore, it has been suggested that improper cells alignment may lead to complications. For 

example, Hsu et al. has indicated that failure of endothelial cells to align at atrial branches may 

result in atherosclerosis 
18

. Additionally, the ability of the cells to reorient themselves highlights 

the fact that cells sense and dynamically respond to the mechanical stimuli applied to them 
18

.  

Significance of Mechanical Stretch on Skin and Wound Healing 

The effects of mechanical stretch on skin have been particularly interesting due to the 

findings that indicate enhanced dermal healing contributed by stretch 
19, 20

. Langrana et al. found 

that mechanical stimulation applied on healing incision of procine models promoted healing and 

remodeling of dermal tissue 
21

. Several other studies have demonstrated that cyclic stretch on 
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animal models of skin contributed to increased cellular proliferation in the epidermis and 

vascularity in dermis as well as increased expressions of neuropeptides and growth factors 
19, 20

. 

During dermal healing, scar formation occurs when fibroblasts remodel the fibrin-rich 

provisional matrix remodeling. The resulting scar is hugely affected by the mechanical 

environment that the scar is exposed to. It has been found that cyclic stretch in animal skin 

models resulted in more complaint and stronger scar but the scar has been found to have 

decreased contracture and thickness 
21, 22

. The increase in strength of the scar may be explained 

by the behaviors of fibril such as the fibril alignment, enhanced entanglement of the fibrils, 

bundling of the fibrils and so on 
22

. In contrast, undesirable outcomes such as hypertrophic 

scarring, edema, and scar lengthening as well as widening may be observed due to stretching 
23, 

24
. Therefore, in order to provide the stretch that allows optimum recovery of wound healing, 

thorough understanding of mechanisms underlying the effects of stretching on cells is required. 

Such understanding may be obtained from in vitro skin cells or tissue stretching experiments that 

will allow for an optimum treatment regimen for dermal wound healing.  

Effects of Mechanical Forces on Musculoskeletal Cells  

Mechanical forces also play a huge role in human musculoskeletal system. Cells in 

musculoskeletal forces experience various mechanical forces on a daily basis. Such mechanical 

forces, such as tension, compression and shear stresses, regulate cellular functions including but 

not limited to cell proliferation, differentiation and gene expression 
1
. Every cell and tissue in the 

musculoskeletal system, including bone, tendon, ligament and cartilaginous tissues, has 

remarkable ability convert mechanical stimuli into biochemical signals 
25

. Musculoskeletal cells 

respond to tensile strain by realigning actin stress fibers and nucleoli, orienting themselves 

relative to the direction of tensile stress applied
25

. In addition, progenitor bone cells cultured and 
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stretched in linear collagen gel construct have been shown to increase expression of bone 

morphogenetic protein-2 mRNA expression, realign the actin fibers and increase 

proinflammatory cytokines synthesis 
4
. Wang et al. reported that cyclic 10% uniaxial stretching 

at 1Hz applied to rat bone marrow mesenchymal stem cells lengthened and realigned the cells. 

Moreover, compared to control groups, cyclically stretched cells expressed collagen types I and 

III mRNAs as well as tenascin-C mRNA significantly higher after 12 hours and 24 hours 

respectively 
5
.  In addition to tensile forces, compressive stresses also play an important role in 

musculoskeletal system. Compressive forces not only contribute to cartilage formation but also 

impact osteogenesis 
25

. Rath et al. reported 10% saw-tooth profile cyclic compressive strain 

applied at 0.5 Hz to osteoblasts in 3-D scaffold upregulated expression of bone morphogenic 

protein-2, runt-related transcription factor 2 and MAD homolog 5 all of which enhanced 

expression of genes and proteins required for extracellular matrix. These findings indicate that 

compressive strain on osteoblasts can promote osteogenesis. However, exposure to 20% 

compressive strain was found not to be osteogenic 
6
. According to these findings, different 

regimes of mechanical stimuli have varying effects on musculoskeletal cells and their functions. 

Therefore, understanding of various mechanical responses may lead to useful therapeutic 

application such as bone, cartilage or tendon regeneration.  

Mechanical Forces on Heart Valve Cells 

Heart valve cells, including endothelial and interstitial cells, are under constant 

mechanical forces caused by constant pulsatile blood flow in the heart. This dynamic mechanical 

environment has influences on the remodeling and repair of the cells. Due to the continuing 

mechanical loads, these cells are continually damaged. At the same time, such varying loads act 

as mechanical signals that are converted into molecular signals for leaflet tissue repair. 
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Remodeling of extracellular matrix in heart valves has been shown to be induced by the 

application of mechanical strains 
28

.  Ku et al. reported significantly increased expression of 

mRNA for type III collagen when aortic valve interstitial cells in 2D culture are stretched 

cyclically for 14% at 0.6Hz 
29

. In addition, GAGs and proteoglycans, integral ECM components 

of valve tissues which have significant influence on the material and structural behavior of the 

valves, are also regulated by cyclic stretching conditions 
28

. The understanding of GAG and 

proteoglycans regulation is important since their synthesis play a role in pathological conditions 

such as myxomatous mitral valve disease. In the study conducted by Gupta et al., cells from 

mitral valve leaflets and chordate were seeded in 3D collagen gels and cyclically stretched at 2%, 

5% or 10% strain at 1.16Hz for 48hr. It has been found that total GAG released was lowest in 

10% and highest in 2%, while total GAG released in cyclically strained group was significantly 

lower than in control unstrained groups. Likewise, the amount of proteoglycan released was 

lowest in 10% and highest in 2% 
28

. These findings correlate with the myxomatous mitral valve 

leaflets and chordae in which low loading magnitudes and increased concentration of GAGs are 

observed in diseased conditions 
30

.  These findings highlight the need to understand the various 

mechanical forces acting on the cells found in heart valves and their effects. Understanding the 

mechanobiology in heart valve cells will enable better treatment of heart valve pathologies as 

well as better designing of engineered tissue for heart valves.  

Effects of Mechanical Stimulation on Differentiation and Proliferation of Mesenchymal 

Stem Cells 

Mesenchymal stem cells are important cells in therapeutic applications due to their ability 

to proliferate as well as differentiate into various cell lineages. Recent studies have indicated that 

mechanical stimulation can enhance the proliferation capacities of MSCs 
3, 8, 31

. Choi et al. 

reported increased proliferation of MSCs when exposed to cyclic mechanical stretch. They 
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reported enhanced proliferation when MSCs were strained at 5% compared to 0% strain.  The 

findings has been supported by a separate study in which  it has been found that cyclically loaded 

MSCs at 5%-10% strain rates significantly increases proliferation rates within a few hours of 

stretching 
3
. Similarly, Koike et al. showed that compared to unstrained MSCs, increased 

proliferation was observed in MSCs subjected to 5%, 10% and 15% strain using Flexercell Strain 

system 
31

. According to these findings, it is evident that mechanical stimulation plays a 

significant role in proliferation capacities of MSCs.  

Transdifferentiation of MSCs can be induced by chemicals, growth factors and/or co-

culture of cells in vitro 
32

. Recent studies have explored the effects of mechanical stimuli on 

MSCs and the effects of stretch differentiation patterns of these cells. Different mechanical 

regimen contributes to different differentiation of MSCs. Rangappa et al. investigated the role of 

cyclic stretch on human MSCs by stretching at 1Hz using the Flexercell system with 4% and 8% 

elongation of cells alternating every 12 hours for 7 days under 5% CO2 and 37
o
C. They found 

that such cyclic stretch induces gene expression of neurogenic lineage such as synaptobrevin, 

macrotubule associated protein (MAP-2), and Galactocerebroside, as well as those of 

cardiogenic lineage including Connexin-43 and BMP-2 
32

. Such understanding will enable 

preconditioning of MSCs to transplant into myocardial infarct patients enabling enhanced 

effectiveness of MSCs by promoting cardiac differentiation 
33

. Ghazanfari et al. applied uniaxial 

strain of 5% and 10% for 1,2 and 4 hr. Application of such cyclic stretch promoted better 

proliferation of MSCs in 10% than both 5% and control. Interestingly, the MSCs exposed to 

cyclic stretch of 10% strain at 1Hz significantly promoted gene expression of α-smooth muscle 

actin at 2hr 
3
. In addition, mechanical stimuli on MSCs have also been shown to promote 

osteogenic differentiation. A short period of cyclic strain of 0.2% strain for 40 min on rat MSCs 
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upregulated mRNA expression of Cbfa1 and Ets-1, which are important transcription factor in 

the differentiation of MSCs into osteoblast, as well as ALP, a specific osteoblast marker. This 

finding indicates that mechanical strain may play a vital role in bone formation in distraction 

osteogenesis by inducing differentiation of MSCs into osteoblast 
34

.  Additionally, specific 

mechanical stress on MSCs may promote expression of anterior cruciate ligament (ACL) cells. 

Lee et al. stretched human MSCs at 1Hz and 10% elongation for 2 days and compared the 

expression of important ligament cell markers including collagen type I and III as well as 

tenascin-C between four experimental groups – control, MSCs co-cultured with ACL cells, 

mechanically strained MSCs and mechanically strained MSCs after ACL co-culture. It has been 

found that the latter two groups showed increased mRNA expression of collagen type I, III and 

tenascin-C compared to the first two groups. Such findings may be important for programming 

MSCs into better differentiation of ACL cells in ACL treatment 
17

.  These findings indicate the 

significance of mechanical stimuli on the differentiation patterns of MSCs. Corresponding to 

various mechanical strains, MSCs may be programmed to enhanced differentiation and 

proliferation of specific cell types needed for desired therapeutic applications. Therefore, 

understanding on how different profiles of mechanical strains will affect on MSCs may be 

crucial for clinical application of such cells.  

Methods to Achieve Mechanical Stimulation of Cells in vitro 
Several different systems have been developed to achieve mechanical stimulation of cells 

in vitro. Some of the most popular functional attributes of these systems are devices utilizing 

electric motors, hydrostatic pressurization, and regulated vacuum pressure 
35

. Each of these three 

major methods employs a different technique to achieve the same common goal, mechanical 
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stimulation of cells in vitro. This section outlines each of these three methods and reviews 

devices that utilize such methods. 

Electric Motorized Devices 

Commercial Devices 

 One of the most common functional attributes of a cell stretch system is the utilization of 

electric motors. In general, these systems are built around a well, or elastic membrane, where 

cells are seeded onto a substrate that has been adhered to the membrane. Popular commercial 

wells include the B-Bridge International, Inc. biaxial silicon stretch chamber and the B-Bridge 

International, Inc. uniaxial silicon stretch chamber (Fig. 1.) 
36

. Biaxial stretch can be obtained by 

physically pulling the substrate (via the well) outward along two perpendicular axes, X, and Y. 

Uniaxial stretch, on the other hand, can be achieved by pulling the substrate (via the well) 

outward along a single axis, X 
35

.   

 

Figure 2. B-Bridge International, Inc. biaxial well (left) and uniaxial well being stretched 

along X axis (right) (Reprinted with permission) 

  B-Bridge International, Inc. has commercially developed microscope mountable devices 

for both uniaxial and biaxial stretch. Facilitating their “Strex Cell Stretching System”, B-Bridge 

International, Inc. has created their devices to cyclically stretch membranes from 1-20% stretch 

at frequencies between 1-60 cycles/minute utilizing two distinct wave patterns, square wave 
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pattern or sinusoidal wave pattern (Fig. 2.). Computer controlled selection of strain programs is 

highly dependent on cell line and experimental procedure. For example, a smaller stretch and 

lower frequency may be better suited when studying bone cell regeneration or capturing calcium 

influx images. However, a 20% stretch at 60 cycles/minute sinusoidal stretch would be more 

appropriate for morphological analysis of cardiomyocytes or signal transduction in endothelial 

cells lining blood vessels 
36

. 

 

Figure 3. Examples of square wave and sinusoidal wave strain patterns (Reprinted with 

permission) 

 Designed for short term studies (~20 minutes of continuous stretch), the B-Bridge 

International, Inc. ST-190-XY is capable of both biaxial and uniaxial stretch at frequency ranges 

from .01 Hz to 1 Hz for a maximum of 20% Strex well stretch. Using specially designed 

software unique to B-Bridge International, Inc., the ST-190-XY’s dual stepper motors are 

programmed to drive two metal frames closer or further apart (Fig. 4.). Attached to the metal 

frames is the biaxial silicon chamber (or membrane) and is stretched or compressed depending 

on the movement of the frames. As shown in schematic (Fig. 5.), motor A moves frame A along 

the threaded rod A upward or downward while motor B moves frame B along threaded rod B left 

or right. These, in turn, moves frame C and D along threaded rod C and D, respectively. Thus, 

compression or tension of the silicone substrate, which has a fixed end at one corner and attached 
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to frame A, B and C at other corners, is achieved depending of the motor movement. For 

example, alternating upward and downward movement of frame A by motor A together with 

alternating leftward and rightward movement of frame B by motor B will stretch the silicone 

substrate equibiaxially. In addition, the ST-190-XY fits on most microscope stages allowing for 

real-time observations and fits in most laboratory incubators to maintain proper cell conditions 

36
.  

 

Figure 4. B-Bridge International, Inc. ST-190-XY (Reprinted with permission) 

 

Figure 5. Schematic of ST-190-XY 
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Custom Devices 

 In several studies, researchers have designed and built their own electric motor devices to 

mechanically stretch cells. In a study by Hsu et al., bovine aortic endothelial cells were subjected 

to cyclic uniaxial stretch via a custom-built device belonging to Department of Biomedical 

Engineering Professor, Ronald Kaunas, of Texas A&M University. The device, as pictured in 

Figure 4, facilitates four computer operated linear actuators capable of applying sinusodially-

varying stretch of different magnitudes (0-20%), patterns (pure uniaxial, equibiaxial, etc.) and 

frequencies (0.01-1 Hz). The device sits on an inverted microscope stage and utilizes the B-

Bridge International, Inc. biaxial and uniaxial silicon stretch chambers (Fig. 6) 
37

. 

 

Figure 6. Texas A&M University custom-built stretch device with four linear actuators 

(Reprinted with permission) 

 Another custom-built device was designed and built by a group of 3
rd

 year mechanical 

engineering students at Imperial College of London, England. Supervised by Dr. E.M. Drakakis 

of the Department of Bioengineering, the eight motor design was developed with the means of 

studying the effects of mechanical “training” on differentiated cardiac myocytes. The group 
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hopes that by stretching the cells and utilizing different stretch patterns and strain rates, the cells 

will develop the necessary strength and morphology to withstand heartbeat after implantation 

(Fig. 7.). The device was designed to operate with a frequency range of 0.01-10 Hz, 0-80% 

percentage of stretch and with several different stretch patterns (pure uniaxial to equibiaxial) 

operating under microscope real-time viewing. The device facilitates a user friendly touch screen 

with heat dissipation components (fans and heat sinks) and printed circuit boards (PCB) for 

controller and driver components. In order to compensate for the innovative 8-directional 

stretching system, the group developed their own membrane 
38

. 

 

Figure 7. Imperial College of London custom-built stretch device with eight motors 

(Reprinted with permission) 

 In order to study the effects of uniaxial strain on mesenchymal stem cells (MSCs), a 

custom-built device was developed by Park et al at The Center for Tissue Bioengineering at the 

University of California-Berkeley. The device consists of six parallel chambers for the stretching 

of six custom-made silicone membranes, clamped stationary at one end and attached to a 
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cam/rotator system on the other (Fig. 8). The cam is driven by a motor and belt system, 

stretching the membranes with cultured cells in a sinusoidal motion. Strain rates are selected by 

inserting strain-designated “keys” into the cam arm and frequencies of 0.01-1 Hz are precisely 

selected through the motor’s controller. This device is not meant to fit on a microscope stage for 

real-time observations but can fit in most commercial incubators 
38

. 

 

Figure 8. University of California-Berkley custom-built uniaxial stretch device (Reprinted 

with permission) 

Regulated Vacuum Pressure Devices 

 Devices utilizing regulated vacuum pressure to stretch a substrate are available 

commercially.  A successful example is the Flexcell family of devices developed by the Flexcell 

International Corporation.  They manufacture a number of devices, the ones most relevant to this 

project being the Flexcell tension systems.  The Flexcell StageFlexer is especially pertinent, as it 

is meant to be used while mounted on a microscope in real time.  Paired with the Flexcell 

vacuum pump unit, the StageFlexer contains a valving mechanism to adjust and maintain 
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pressure to obtain the strain needed.  Both gradient biaxial strain and equibiaxial strain are 

obtainable with this device depending on the usage procedure of the device stage.  They use 

membranes manufactured by Flexcell International 
40

.  Schematic of how Flexcell achieves 

stretch can be seen in Figure 11. Briefly, cells are seeded onto a soft substrate. The substrate is 

placed on top of the loading post. When the vacuum is applied, the regions of the substrate not 

on top of the loading post will move downward, stretching the regions of the substrate on the 

loading post. This mechanism essentially provides stretch on the cells. When the vacuum is 

removed, the substrate will return to its initial position. The repetitive applying and removing of 

vacuum is done to achieve cyclic biaxial or uniaxial stretch on the cells.   

 Cells have commonly been seeded and stretched using Flexcell products in laboratory 

settings.  Authors Park et al. discuss their procedure for applying equibiaxial strain to a cell-

loaded substrate.  In this experiment, however, a different Flexcell model is used (Flexcell 

TensionPlus system) which does not permit real time microscopic viewing 
38

. An example of a 

Flexcell
®
 stretching device and the schematic of how it achieves stretch can be seen in Figure 10 

and 11 below.  
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Figure 9. An example of vacuum pressure Flexcell stretching device (Reprinted with 

permission) 

 

Figure 10. Schematic of how Flexcell works (Reprinted with permission) 

Devices using Hydrostatic Pressurization: 

Currently, Cell Lines Service (Germany) provides cell-stretching devices that use 

pressure as stretching force. This device consists of three main parts, namely the pressure 

chamber, the power supply and the stretching unit. The desired cells can be seeded onto six-well-



32 

 

plate with elastic membranes. Power supply unit applies power to the pressure chamber. The 

pressure chamber generates cyclic pressure changes above and below atmospheric pressure. 

According to the change in pressure, the flexible membranes on which cells are seeded are 

deformed up or down causing stretch on the cells. The pressure chamber is connected to the 

stretch units with small tubings to relay pressure changes into elastic membrane deformations 
39

. 

The mechanism through which the device achieves stretch is similar to Flexcell. Instead of 

applying vacuum as in Flexcell, the device applies pressure lower or higher than atmospheric 

pressure to stretch and release the substrate. This device, named the S1 Cell Stretcher, is 

commercially available from Cell Lines Service and is shown as below (Fig. 11).  

 

Figure 11. S1 Cell Stretcher from Cell Lines Service  

In addition to the commercial devices and custom devices, there are cell stretching 

devices patented at the United States Patent and Trademark Office. A few selected devices are 

discussed in Appendix A.  

Despite these available devices to study mechanobiology, there are certain limitations 

associated with each device. For example, Flexcell stretching devices and hydraulics devices are 

limited in studying cells under uniaxial strain due to non-uniform uniaxial strain fields. 
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Additionally, such systems need a vacuum chamber or pressure chamber, which can be 

cumbersome to use. One other limitation is the ability to observe cells under a microscope while 

being stretched. The “real time” viewing is an important function since it will allow 

experimenters to observe effects of mechanical stretch on cells as they are stretched. For 

example, when reorientation of cells under stretch is studied, “real time” viewing will allow 

understanding of the relation between stretching time and orientation of cells at each specific 

time point. While such function is available for devices such as ST-190-XY, their operation time 

is extremely limited to approximately 20 min, possibly restricting a variety of experimental 

designs. Flexcell International Corporation also offers devices such as Flexcell
®
 StageFlexer

®
 

and Flexcell
®
 StageFlexer

® 
Jr. that can fit under the microscope. However, the major limitation 

with Flexcell
®
 devices is the inability to provide uniform strain patterns when uniaxial stretch is 

performed on cells. Moreover, high cost is associated with the commercially available devices. 

Considering the limitations of the current devices, the project intends to facilitate better 

mechanobiology study by significantly improving upon the functions and addressing the existing 

shortcomings of current devices. Therefore, this design project will aim at developing a device 

that will stretch cells accurately at variable strain and axial rates as well as frequencies while 

allowing “real time” viewing of stretching cells.  
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Project strategy 

Initial Client Statement 
 Our primary goal in this MQP is to design a device that would cyclically stretch cells on 

a microscope stage at a range of strain rates. This device would mainly be used in research 

concerning the structure and alignment of cells under stress. The device had to be built with 

precision, and among other functions, stretch cells with a high degree of versatility. This meant 

stretching cells in a strip biaxial (1:0) configuration to an equibiaxial configuration (1:1), and any 

ratio in between. The device would also have to be compact enough in order to be mounted on a 

standard inverted microscope, and it has to provide proper cell culture conditions to keep the 

cells alive. After an introductory meeting with the client, an initial client statement was created, 

shown below. 

“Design, build, and test a cost efficient device that will accurately stretch cells from 

uniaxially to equibiaxially at a range of strain rates cyclically. The device will be used on a 

standard inverted microscope during operation in order to view the effects of loading on cell 

structure and alignment. The device must operate for a minimum of six hours, as well as provide 

proper cell culture conditions. Lastly, the device should be safe to use and user friendly.” 

Once written, the initial client statement would be revised through an iterative process 

including client meetings and interviews, and further clarification of what the device was 

intended to do. 

Objectives 

In order to fully understand the project assigned to the team, the features of the device 

were described through objectives and constraints. The objectives, or goals, were features of the 
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Cell Stretching 
Device 

Versatile 

Stretch 
functionality 
ranges from 
uniaxial to 
equibiaxial 

Range of strain 
rates 

Cost efficient Functional 

Data reliability 
(Uniform strain 

across the 
substrate) 

Long operating 
times 

Precision (how 
well the design 

is built) 

User friendly 

design that the team would focus on in order to develop as close to a device as the client 

envisioned. Through iterative feedback with the client, an objectives tree was created underlining 

the primary features of the desired design (Fig. 12).  

 

 

  

  

 

 

 

Figure 12. Objective tree of the design 

The tree (Fig. 12) shows all of the objectives intended for the design grouped under four 

main objectives: versatility, functionality, cost efficient, and user friendly. Comprised of these 

main objectives, a pairwise comparison chart (PCC) was created to determine the importance of 

each objective (Table 1). Completed by the client, the PCC would serve as a tool for evaluating 

all alternative designs created for the project. 
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Table 1. Pairwise comparison chart comparing 1st level objectives 

GOALS Versatile Cost efficient Functional User 

friendly 

SCORE 

Versatile X 1 0 1 2 

Cost efficient 0 X 0 0 0 

Functional 1 1 X 1 3 

User friendly 0 1 0 X 1 

As shown by Table 1, the client wanted the design to be functional above all else. The 

term functional was defined by the client as “how well the design works”. This objective 

includes precision (how well the design is built), long operating times, and data reliability 

(uniform strain percentage across the substrate). The second objective with regards to importance 

is versatility. This objective incorporates all of the stretching profiles possible on the device, 

specifically different forms of stretching (uniaxial/equibiaxial), multiple strain rates, total 

substrate strain, and duty cycles. Lastly, user friendly and cost efficient placed 3
rd

 and last in 

terms of importance, respectively. Overall, the PCC reflects the client’s interest in obtaining a 

well-built device that incorporates as many functions as possible, with a focus on accuracy. 

Constraints 
Constraints are design specifications that the final design had to meet. The device had to 

be compact enough to fit on top of a microscope stage. To complete this requirement, a suitable 

microscope had to be chosen. A Zeiss microscope modified with a motorized stage was chosen 

by the client for this project. The microscope, located at Gateway Park, was measured for 

dimensions to better understand the space constraints for the final device, shown below in Fig. 

13. The final device needs to be compact enough to fit on to the microscope stage shown. 

Specifically, the entire device needs to fit on the microscope stage of 160x110 mm shown by 
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double headed blue arrows in Fig. 13. However, since the client expressed desire to use XY 

motorized stage on the scope, the device needs to sit atop the motorized stage (152x103 mm, 

shown by double headed green arrows, Fig. 13). Additionally, protrusions on the microscope 

stage shown by black arrows in Fig. 13 also constraint the overall shape of the final device. 

While on the motorized stage, the device could not cause damage to the tray or to the 

microscope. The cells stretched must be incubated and kept under homeostatic conditions. If the 

device were to utilize electronics to control the motors, some type of protection against heat and 

humidity should be present. The overall design of the device had to be safe to use, causing harm 

to neither the user nor the cells being stretched. Lastly, the device should cost no more than 

$1,000. 

 

Figure 13. Base Plate of the Zeiss Microscope on which the final device needs to fit  
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Functions and Specifications 

 The primary goal of this project was to design a device that can cyclically stretch cells at 

a range of strain rates. The final design would include different stretching configurations ranging 

from strip biaxial (i.e. pure uniaxial) to equibiaxial, including every ratio between the two 

configurations. The motors in the design would apply a force to stretch the well to a minimum of 

5% and a maximum of 30%, while also remaining within 10% accuracy. The strain field 

generated on the well can vary from area to area, but it must be uniform in the center of the well. 

The strain rate applied by the motors would range from 0.01Hz to 1Hz, or one cycle every 100 

seconds to 1 second, respectively. In addition, the motors would be programmed in a fashion to 

allow the strain rate to increase or decrease mid-cycle. A 40x microscope magnification lens will 

be used to view the cells while on the device.   

Revised Client Statement 
Initial client statement was revised after extensive research on existing cell stretch 

devices was accomplished. Afterwards client interview was performed to better understand 

specific needs of the client as well as to establish better defined functions and specifications. 

Revised final client statement is shown below: 

“Design, build, and test a cost efficient device that will cyclically stretch cells biaxially at 

a range of strain rates. The device will be used on a standard inverted microscope during 

operation in order to view the effects of loading on cell structure and alignment. The device 

must operate for a minimum of six hours, as well as provide proper cell culture conditions. 

Lastly, the device should be safe to use and user friendly.” 
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Design Alternatives 

Functions and means 
 In order to determine alternative designs to achieve desired functions, function-mean 

chart was created. The functions desired in the final design were listed on the first column. 

Afterwards all the possible means to achieve each particular function were put together. Doing 

so expanded the design area. For the function-mean chart shown below, there will be 54 ways to 

achieve the functions. Exploring different means to achieve functions helped developing 

different alternative designs.  

Table 2. Function-Mean Chart 

Functions                                                              Means 

           1         2      3   4 
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Alternative Designs 
 After our client statement was successfully developed, the team started developing 

concepts how the design could be accomplished. Considering the various objectives the device is 
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intended to achieve and functions that it is aimed to perform, four different approaches were 

developed. Each of these four alternative designs incorporates the use of different possible means 

created in function mean chart so that each design carries out the desired functions. Each 

alternative design will be discussed in the following sections. 

Four Motor Design  

The first four-motor design is one that incorporates linear actuators (Fig. 14, B) placed 

90° from each other in order to provide the linear force needed to stretch the wells. By using 

these linear motors, the design will be compact and relatively lightweight. The motors would be 

secured to the base plate motor mounts (Fig. 14, C) to restrict motion in all directions, only being 

connected to the well via function-specific detachable hooks.  By incorporating detachable hooks 

(Fig. 14, D and E), the design would be able to achieve two types of stretch depending on the 

configuration of the device. In one configuration, all four motors are connected to the well at the 

corners to provide equibiaxial strain (Fig. 14). In order for the device to perform pure uniaxial 

stretching, a different configuration is required.  In this second configuration (Fig. 14), the well 

is rotated 45° and the hooks used for equibiaxial stretching would be replaced by two different 

types of hooks. The first connects the linear actuator to two corners on the well; this motor and 

the one across from it would stretch the cells uniaxially. In order to prevent the Poisson’s effect 

from preventing pure uniaxial stretch, another hook that serves as a lid would cover the 

remaining two sides of the well, preventing the walls from deflecting inward while allowing 

strain in the uniaxial direction.   
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Figure 14. Four motor design 

Two Motor ST-190-XY Reverse-Engineered Design 

The two-motor design is a replica of the STREX motor device. This device utilizes two 

stepper motors (Fig. 15, A) connected to threaded rods (Fig. 15, B). On each threaded rod there 

is a bearing (Fig. 15, C) that is driven axially once the rod rotates. This provides the force 

necessary to stretch the well in the x and y direction on two corners. The third corner (Fig. 15, D) 

is stretched in both directions, achieved through the linear rods (Fig. 15, E) connected to a third 

block, while the fourth corner (Fig. 15, F) is held fixed. This device was designed to be rigid, 

with multiple linear slides and bearings to keep the threaded and non-threaded rods linear. Due to 
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the amount of parts required for the design and the limited space available on the microscope 

tray, the device would have to be as compact as possible to conserve space.  

 

Figure 15. Two motor design with stepper motors and belt drive 

Four Motor Design with Attached Corner 

 The second four-motor design is a compact and simple design that uses linear actuators to 

achieve stretch profiles ranging from pure uniaxial to equibiaxial. This design is similar to the 

STREX in concept, but it is different in how it achieves stretch across the well. While the 
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STREX uses two motors, threaded rods, and linear bearing to achieve stretch in three corners, 

this design uses four motors, with two set up in a stacked motor configuration. The four motors 

are named A1, A2, B1, and B2 for clarification. Motors of the same letter will stretch the well to 

the same strain and at the same strain rate. One corner of the well would remain fixed, while the 

remaining three would be attached to motors to achieve stretch. Two motors are placed on the 

corners adjacent to the fixed one. These two motors, A1 and B2, will stretch the well biaxially. In 

order to achieve an even strain field in the well, the remaining two motors (A2 and B1) are placed 

in a stacked configuration. Motor B1 is connected to a raised platform whose motion is restricted 

to that of the motor via a linear slide. On the raised platform, motor A2 is connected to the well 

via a dipped hook. In conjunction with the other motors, this configuration will allow uniform 

strain across the well. 

 

Figure 16. Four motor design with double stacked motors 
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Two Motor Design with Linear Actuators 

The second two-motor design is similar to the first STREX in all but motor choice. This 

design would be driven by linear actuators instead of stepper motors. This choice was made in 

the attempt to minimize the size of the design, as the threaded rod and belt mechanism require a 

large amount of space. Since linear actuators already convert rotational force to linear force, 

these components would no longer be required. This design would retain the majority of the 

linear bearings and slides in order to keep the design as rigid as possible. 

 

Figure 17. Two motor design with linear actuators 

 



45 

 

Design Decision 

Evaluation Matrix  

In order to choose the final design, an evaluation matrix was created. The evaluation 

matrix compared the constraints and the objectives to the four alternative designs. The team 

assigned weighting factors to determine the importance of each objective. The weighting factors 

were derived from PCC. The objective that scored highest (functionality) in PCC was assigned 

weighting factor of 4 and the objective that scored lowest (cost efficient) was assigned 1. The 

metrics for scoring the objectives was also assigned and are shown as below: 

0 – 25: Design will not meet objective 

25 – 50: Design will meet objective with restrictions 

50 – 75: Design satisfies the objective, but does not optimize it 

75 – 100: Design fully meets the objective 

After the scores were summed up, the four motor system with double stacked motors achieved 

the highest score. Consequently, this design was chosen as the final design. The evaluation 

matrix can be seen in Table 3.   
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Table 3. Evaluation matrix for deciding the final design 

Constraints (C) & 

Objectives (O) 

Four motor 

system 

Four motor 

system with 

double 

stacked 

motors 

Two motor 

Strex reserve-

engineered 

design 

Two motor 

system with 

linear 

actuators 

C: Must fit on the 

microscope stage 

    

C: Must not damage 

microscope stage 

    

C: Cells must be viable at 

all time while being 

stretched      

C: Must be safe for user 

    

         

O: Versatile (x3)  50x3 = 150 100x3=300 100x3=300 100x3=300 

O: Cost efficient (x1)  90x1=90 95x1=95 50x1=50 65x1=65 

O: Functional (x4)  80x4=320 90x4=360 60x4=240 70x4=280 

O: User friendly (x2)   60x2=120 100x3=300 100x3=300 100x3=300 

TOTAL  680 1,055 890 945 

 

Modeling of Chosen Design 

In order to completely conceptualize the chosen design, a CAD SolidWorks model was 

made of the four motor designs with double stacked motors. 
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Figure 18. CAD of four motor design with stacked motors in two different views 

The heart of the design is the four linear actuators with encoders (A.) strategically placed 

atop a subplate (D.) and baseplate (C.). The motors are secured to the baseplate via motor 

mounts (B.). Due to the dimensional constraints presented by the microscope and its mechanical 

stage, all components of the design are placed very snug with limited flexibility. Three of the 
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four motors are attached to metal hooks (E and G.) that sit on linear ball slides (F.). The motors 

are secured to the hooks with L-mounts (H). The forth motor is attached to the subplate. At the 

ends of the hooks where they dip down into the baseplate is where the PDMS well attaches for 

real-time microscope viewing. Drawings of individual components are attached in Appendix B.  

The design utilizes four linear ball slides, four hooks, four linear actuators with encoders, 

one subplate all mounted to a single baseplate. The baseplate, subplate and hooks will be CNC 

machined for proper precision, along with any other additional high-precision parts. Motors, 

encoders, linear ball slides and hardware will be ordered from various retailers. 

Final Design 

 In order to successfully accomplish the client statement, the team divided the project into 

two parts. The first part, which is the device development, comprises of motors, motor controls 

and other mechanisms to apply mechanical stretch to the substrate. The second part, which is the 

substrate development, includes designing and developing a PDMS substrate which will translate 

mechanical stretch applies on it to the cells seeded.  

Device Design  

 Feasibility tests were performed in order to assess whether or not experiments can be 

carried out or the design can be built with its desired functions. For example, the cells seeded 

well that will be stretched must allow viewing of the cells through the microscope. Feasibility 

study will determine whether or not the well planned to be used in the design allow such viewing 

capability. Additionally, different motors can facilitate stretching desired by this design project. 

However, in order to determine whether commercially available motors can provide the capacity 

to stretch the well at 30% strain (maximum) at 1Hz (maximum), the well must be tested in 
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simpler mechanical stretching system to determine the maximum force needed for said 30% 

strain. The force calculated can then be used in motor selection in the design process. In short, 

these feasibility tests are performed to decide the practicability of the project itself and whether 

certain aspects of the project will succeed.   

Motors 

Three types of motors have been considered in the designing of this device:  servomotors, 

stepper motors, and linear motors.  Servomotors are DC motors with a servomechanism.  A DC 

motor converts electric energy from DC current electricity into mechanical energy by creating 

torque.  DC motors use stationary magnets to rotate a rotor in the form of an electric current 

supplied wire, thus generating torque due to the principle of Lorentz force 
42

.  The 

servomechanism controls the motor rotational position using negative feedback to find the 

difference between desired position and actual position, known as the error signal, which then 

drives the motor further to eliminate the error, and in doing so achieve the desired position 
43

. 

 A stepper motor also uses magnets to create torque, but is able to divide one full rotation 

into steps, the number of which depends on the design of the motor.  A magnetic gear is attached 

to the shaft, and is driven by a number of toothed electromagnets, dependent on specifications of 

the individual motor.  The gear is designed such that the teeth only align with one electromagnet 

per position.  To rotate the gear, one electromagnet is activated, aligning the gear to itself.  The 

next electromagnet in line is then activated, shutting off the previous, and the gear advances to 

align with the newly energized electromagnet. The process is continued to cycle through the 

electromagnets, thus driving the motor through a number of incremental steps, which allows the 

motor to be moved very precisely 
44

. 
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 The third motor type considered, the linear motor, is a linear actuator, which translates 

the torque and rotational motion into linear thrust and motion via integrated mechanisms, often 

in the form of ball lead screw or roller screw units, attached to a motor.  They are easily 

controlled using logic controllers or processors, and so have become popular options in 

applications requiring precise motion control 
45

. 

 After comparing various commercially available motors and through deliberation, the 

team decided that linear actuator motors were the fit best for the final device for a multitude of 

reasons. Firstly, linear motors have a small and compact form factor which met the design’s 

space constraints. Additionally, linear motors reduced the complexity of the design by 

eliminating the need to translate the rotational motion of common motors to linear motion. 

Moreover, stretching cells require very fine positional control, thereby making linear motors with 

high precise motion controlling ability very desirable. Consequently, the team performed 

extensive market research to elect the best linear motor available for the final device.  

Determining Force Requirement of the Motor  

In order to select the motor that will efficiently stretch the well at the desired rates but at 

minimal cost, a Strex
®
 well, ST-CH-04.0-XY well, was stretched uniaxially using Instron 5544 

Uniaxial Mechanical Testing Device. The well was stretched at 25% strain at 1Hz. Three 

separate experiments were carried out to average the maximum loads required to achieve 25% 

strain. The team did not strain the well at 30% since the Strex® well manual specifies the 

maximum strain allowed to be 20%. The dimensions of the well were input as 

40mmx20mmx10mm. The thickness used, 10mm, was the thickness of the walls of the well but 

not the membrane. However, that value was used so that the force calculated will be more than 

the actual required force. The results are shown below:  
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Table 4. Three experiments showing maximum loads required for each maximum 

extension and strain 

Experiment # Maximum load 

(N) 

Extension at maximum load 

(mm) 

Maximum strain (%) 

1 34 11 28 

2 33 11 27 

3 30 10 25 

Average 32 11 27 

The average maximum load was calculated to be 32N. In order to make an estimate of 

required force for 30%, linear interpolation was performed. Therefore, for 30% strain, 39 N 

forces is required. However, load and strain may not be linearly proportional due to properties of 

the PDMS well, the team decided to assume 45 N maximum load would be required for 30% 

strain. This assumption allows choosing a motor with power that slightly exceeds actual 

requirement.  Doing so will prevent motor failures since our device may potentially exceed usage 

and undergo experiments that require continuous operation for 6-24 hrs.  

Motor Selection for Chosen Design 

 Due to the amount of constraints associated to building an electronic motor-driven device 

to be fitted on a microscope, the MQP’s success was largely dependent on finding quality motors 

with a high degree of functionality.  As per the client’s desired design specifications, the well 

would have to be stretched from 5-30% with a frequency of 0.01-1Hz with accuracy within 10%. 

In addition, the final device needs to operate for at least 6 hours. In order to build a device that 

meets these specifications, compact and powerful motors with accuracy and durability is 

required. The majority of linear actuators on the market today consist of high speed, low force 

actuators with large form factors, with only a small percentage of companies advertising 

precision movement. Among these companies is Haydon-Kerk, which provides a variety of 

stepper-driven linear actuators with the capacity for precision control. 
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 The most important aspect of the motor being considered for the design was its capacity 

to apply a load and the rate at which it was applied. Although the PDMS well’s mechanical 

properties could be modulated through a variety of methods, the well in possession by the team 

required 40N to be stretched 30%. This, accompanied by the client’s desire for a device that 

could stretch cells cyclically at up to 1Hz, required the motor to pull at least 40N at 12mm/s. 

Therefore, any motor taken into consideration for use in the MQP had to meet these 

specifications. Haydon-Kerk provides multiple versions of the same motors, with larger form 

factors for more powerful motors. They also provide a variety of differently threaded models for 

different force/speed curves. Fig. 19 illustrates the variety of force/speed profiles for one size of 

motor as advertised by the company. 

 

Figure 19. Force vs. speed graph for Haydon-Kerk Size 14 Thread Models (Reprinted with 

permission) 

As seen in Fig. 19, the Q model provides a force ~22lbs at a speed of 12.7mm/s, which is 

faster and stronger than what the team estimated would need for the final device. In addition, 

Haydon-Kerk provides their motors in 200 step/revolution configuration. In the Q model, the 

thread has a lead pitch of 0.0243mm. Ultimately, this means that the motor would move 
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.0243mm per step, which is well within the desired range of error. Also, any force applied to the 

Q model motor if used in the device would be well under the recommended load limit as shown 

in the graph. Another consideration to take into account in the choice of the motor was stroke 

length. The client expressed interest in a total of 30% strain with the device. Using a 40x40mm 

well, that would amount to 12mm in either direction.  Therefore, a total thrust of one inch was 

decided to be sufficient for this application. 

In order to validate the necessity for such a powerful motor, and to better understand the 

basics of motor control, the team created a mock prototype to test the stretching capabilities of a 

single motor attached to the side of a test well. A Firgelli L12 motor with gearing option 100, 

obtained for testing, was used to stretch the Strex well in order to validate the calculations. Hook 

fixtures for the Strex well were mounted, one to a wooden block and another fixed to the clevis 

rod end of the Firgelli motor.  The Firgelli was fixed with screws to a separate wood block, and 

both blocks were clamped to a board.  The motor was connected to a function generator and a 

multimeter, and was powered using a current of 250 mA.  The voltage range used to power the 

motor was used to control speed, from 3.5 – 12V, slowest to fastest respectively.  Position was 

controlled by a separate voltage, over a range of 0V at start position to 5V for full extension. The 

Strex well was placed on the hooks, and the motor was run to stretch the well.  The mock 

prototype and test setup can be seen in Fig. 20.  



54 

 

 

Figure 20. Mock Prototype 

By using the mock prototype, it was determined that the well could be strained 30% and 

that the motor was capable of applying this strain. However, this came at the cost of speed, as the 

motor with the highest rated voltage (12V) was only able to stretch the well at ~5mm/s.. The 

Firgelli motor would be a suitable candidate for the design, but the force required to stretch the 

STREX hindered its speed to the extent that it would not be useful for the application. As seen in 

Fig. 21, Firgelli L12 with gear option 100 and 210 meet the force requirement of 30 N. However, 

as per client’s request, the maximum frequency at which the substrate will be strained requires to 

be at 1 Hz, translating to speed requirement of 24 mm/s to strain 40x40x10 mm Strex well at 

30% strain. However, both Firgelli L12 only allow ~4mm/s at 30 N (shown by black arrow in 

Fig. 21), failing to meet the specification requirements. In contrast, Haydon-Kerk Size 14 type Q 

allows approximately 4 times the speed required at maximum force required at 30N (~7lbs) (Fig. 

19). These experiments served to further solidify the choice in the Haydon-Kerk motors, as they 

could apply a greater force than the Firgelli motor while maintaining an adequate speed. 
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Figure 21. Force vs. speed graph for Firgelli L12 with different gear option (Reprinted with 

permission) 

Another important factor to consider was the overall size of the motor.  Due to the 

microscope the device will be used on, size was one of our most limiting constraints. 

Specifically, the microscope arm and head restricted the device axially and vertically with 

regards to size, respectively. When in place, the head of the microscope became the largest 

constraint, only allowing 7.2cm vertically for the device. Haydon-Kerk size 14 motors have a 

surprisingly small form factor compared to other similar motors on the market. Having a height 

of only 3.2cm, the motors would fit on the microscope stage with enough space for other 

components of the design (Fig.22).  
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Figure 22. Haydon-Kerk Size 14 Type Q motor with encoder  

In addition to having a motor tailored by the manufacturer for specific applications 

requiring different forces, thrust, and thread pitch, Haydon-Kerk also allows their motors to be 

fitted with precision add-ons that are encoders. The quadriture encoders provided by Haydon-

Kerk would allow the monitoring of steps taken by the motor in either direction and provide the 

data as an input for programming purposes. This would allow precision control of the motors as 

well as allow the creation of safeguard and therefore providing preventative means against 

damaging either the device or the microscope.  

Motor Controls 

Motor controllers, drivers and user interfaces for command delegation were extensively 

researched in order to successfully operate the Haydon-Kerk Series 14 linear actuators. For a 

motor controller, the Arduino Mega 2560 was chosen due to its versatility and potential 

troubleshooting support. Four Big Easy Drivers from www.sparkfun.com  were chosen to drive 

the four linear actuators because of their proven reliability and low-cost. Tying everything 

together will be a LabVIEW interface focused on easy utility and user friendliness. 

Motor controllers, drivers and user interfaces for command delegation were extensively 

researched in order to successfully operate the Haydon-Kerk Series 14 linear actuators. For a 

http://www.sparkfun.com/
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motor controller, the ChipKit Max32 was chosen due to its versatility and potential 

troubleshooting support. Four Big Easy Drivers from www.sparkfun.com were chosen to drive 

the four linear actuators because of their proven reliability and low-cost. Tying everything 

together is the software user interface, MPIDE. 

The ChipKit Max32 microcontroller board is based on the PIC32MX795F512 chip as 

seen in Fig. 23 below. Functioning at a clock speed of 80 MHz, the ChipKit utilizes 83 digital 

input/output pins to send and receive commands; more than enough to support four linear 

actuators and digital encoders. The board can be powered by either a 6 to 20 volt external power 

supply via the power jack or through the micro-USB port parallel to the power jack. 

Communication with the ChipKit is accomplished through the USB port and MPIDE software 

that can be downloaded for free from https://github.com/chipKIT32/chipKIT32-MAX/ 

downloads. MPIDE is used to create programs which can be uploaded and saved to the board’s 

512K of flash memory and 128K RAM
46

. 

 

Figure 23:  ChipKit Max32 Controller (Reprinted with permission) 
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 The Easy Driver from www.sparkfun.com is a cheap and popular solution to drive a 

variety of stepper motors (Fig. 24). Primarily for bi-polar stepper motors, the Easy Driver has the 

capabilities to drive motors up to .750Amp/phase, which is over the 570mA/phase needed to 

operate the Haydon-Kerk Series 14 linear actuator. Because the driver acts as a chopper 

microstepper, it defaults to a 8 step microstepping mode that needs to be compensated for when 

programming the user interface. Lastly, the driver can take a maximum motor driver voltage of 

35V, ample enough voltage to accustom the 5V motors 
47

. 

 

Figure 24:  Easy Driver (Reprinted with permission) 

 In order to test the feasibility of the proposed motor control setup, a prototype was 

constructed as depicted in the schematic shown in Fig. 25. First, a 12V power supply (Fig. 25, A) 

is used to supply power to the motor (Fig. 25, E). The ChipKit Max32 micro-controller (Fig. 25, 

B) receives programs from a computer (Fig. 25, D) and transmits the commands to the Easy 

Driver (Fig. 25, C). These drivers, in turn, translate commands into electric pulses to the motor. 
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Figure 25. Schematic of motor controller and driver (Reprinted with permission) 

 Prototype construction started with the soldering of the four wire leads of the linear 

actuator to the motor pins of the Easy Driver in their appropriate locations. Next, the two wires 

to the power supply (V+ and GND) were soldered to the driver along with the three wires (GND, 

step and direction) for the ChipKit Max32. The controller pins were connected to the ChipKit at 

their appropriate pins and the microcontroller USB was plugged into the computer. For initial 

testing of the prototype, MPIDE was installed and the following code was written to operate the 

motor: 

#define DIR_PIN 2 

#define STEP_PIN 3 

 

void setup() { 

D

. 

D

. 

A. 

B. 
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  pinMode(DIR_PIN, OUTPUT); 

  pinMode(STEP_PIN, OUTPUT);}  

void loop(){  

//rotate a specific number of microsteps (16 microsteps per 

step) 

  rotate(5400, .5); 

  delay(10);  

 

  rotate(-5400, .25); //reverse 

  delay(10);} 

 

void rotate(int steps, float speed){ 

  //rotate a specific number of microsteps (16 microsteps per 

step) - (negitive for reverse movement) 

  //speed is any number from .01 -> 1 with 1 being fastest - 

Slower is stronger 

  int dir = (steps > 0)? HIGH:LOW; 

  steps = abs(steps); 

 

  digitalWrite(DIR_PIN,dir);  

 

  float usDelay = (1/speed) * 70; 

 

  for(int i=0; i < steps; i++){ 

    digitalWrite(STEP_PIN, HIGH); 

    delayMicroseconds(usDelay);  

 

    digitalWrite(STEP_PIN, LOW); 

    delayMicroseconds(usDelay);}}  

 

 By changing the code slightly, the speed of the motor was modified as well as the length 

extended and retracted by the actuator arm (number of steps). More elaborate programs utilizing 

the Accelstepper Library were developed to provide a more defined speed control. See Appendix 

G for more information. 

Linear Ball Slides 

The success of this design relies upon the ability to apply constant strain to the cells. The 

mechanical strain is applied to the cells when the elongation and retraction of the motor arms 



61 

 

stretches and contracts the substrate on which the cells are attached. However, in our design, 

there are concerns of moments acting on the motor arms. The effects of moments may lead to 

undesirable strain patterns on the cells. Therefore, the team decided to arrange the motors in such 

a way that the arms of the motors are attached on and guided by linear ball-bearing slides. Doing 

so removes the moments affecting on the arms and place them instead on the ball slides.  

As a result of removing the moment from the motor, the moment is transferred to the 

linear bearings themselves, which must be accounted for.   The Del-tron crossed roller slides 

were incorporated in the design for their compact form factor and their ability to withstand 

relatively large loads. A quick verification was done to determine which model slide would be 

able to withstand the load generated by pulling the well. From these calculations, the following 

linear ball slides were chosen for use in the final design: RS2-1, RS2-2 and RN-3. The RS2-2 is 

depicted in the figure below. The calculations for the largest hook as well as the specifications 

for the RN series are shown below (Fig. 26 A).  

 The equation used to calculate the moments was M=F*d, where F is the load applied to 

the hook and d is the moment arm. The loads for both M1 and M2 were estimated to be 11 lb-in, 

well below the max recommended load for each parameter. The moment arm for both loads is 

the length of the hook in the y-axis, which is 1.1in. The force caused by the well resisting stretch, 

was estimated to be 10lbs. 
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Figure 26. A. Moment calculation for the linear slide attaching the largest hook. B. Del-tron 

RS2-2 linear ball slide (Reprinted with permission) 

Design Materials 

To hold and transfer strain to the cell culture wells, four hook assemblies are used.  In 

order to ensure that the desired strain (requested of the motors) is equivalent to that present on 

the wells, these hooks must not absorb much strain.  This means they must be very stiff and 

deflect minimally.  Stainless steel is chosen to construct the hooks.  There are a number of 

advantages to using stainless steel.  Most importantly, it is very strong and stiff, which is critical 

for this design, as any deflection in the structure will negatively affect the stretching of the well.  

To verify the structural integrity of the hooks, finite element analysis is performed on the longest 

hook, as it will endure the greatest stresses and strains.  The hook is designed and drafted in 

SolidWorks, then imported to ANSYS Workbench.  A bearing load of 10 Newtons, greater than 
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the force required to stretch the wells 10%, is applied to the hook end of the arm.  Deformation 

in both x (Fig. 27) and y (Fig. 28) direction are analyzed using ANSYS.   

 

Figure 27. FEA of arm and hook: x-axis deformation 
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Figure 28. FEA of arm and hook: y-axis deformation 

From Fig. 27 and 28, it can be seen that x-directional deformation does not exceed 0.075 

mm and y-directional deformation does not exceed 0.069 mm, which are both less than 0.1% of 

the allowed error of 1mm at 10N.  This is very small and the team considers it insignificant, and 

therefore these arm and hook connections are sufficient to translate strain from the motors to the 

wells.  These analyses demonstrate that stainless steel is both strong enough to withstand the 

forces and stiff enough to ensure the precision of the device.  In addition to meeting mechanical 

requirements, stainless steel is ideal for any part of this device because it is corrosion resistant, 

important as the device may be exposed to high humidity.  Stainless steel can also be feasibly 

machined by the resources available. All hardware, such as screws, are stainless steel.  It is again 

important that they do not corrode.  Their strength is still favorable, and stainless steel hardware 

is standard and readily available. 
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 The baseplate for the device as well as the subplate onto which the raised hook and third 

motor is mounted are made of 1100 aluminum.  A quarter-inch aluminum plate is sufficient to 

support the weight of the motors and other device components, and it is stiff enough to prevent 

deflection.  The aluminum will not rust or corrode, and because it is lightweight, the overall 

weight of the device can be minimized. Lastly, rubber feet are added on the bottom of the plate.  

This is a standard material for motion-resistant, surface-preserving feet for most devices, and 

they can be easily obtained and attached to the baseplate. 

Final Design Prototype 

In order to check the final design’s dimensions, a prototype of the CAD model was 

materialized and fit to a Zeiss inverted microscope with motorized stage. The design’s hooks, 

motor mounts and motors were created from rapid prototyping the exact parts that were defined 

in the SolidWorks model of the final design. Next, using a CAD drawing of the baseplate, a 

piece of 6.35mm wood composite was accurately cut to size using a table saw and a file to 

smooth the edges. The same process was used to create the subplate from a piece of 3.175mm 

wood composite. Lastly, using a jig saw, a 70mm x 60mm hole was cut in the baseplate and all 

components were prepared for assembly.  

Assembly of the prototype was accomplished by following the conditions set forth by the 

SolidWorks model. First, three of the four linear ball slides were strategically fixed to the 

baseplate with double sided tape. The rapid prototyped motor mounts were pasted to the plastic 

motors and then glued to their proper locations on the baseplate and subplate. Subsequently, the 

fourth linear ball slide was taped to the subplate which was then adhered to the largest of the four 

slides on the far right of the baseplate as seen in Fig. 29. Finally, the four rapid prototype hooks 
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were fixed on top of the linear slides and the fully assembled prototype was placed on the 

motorized stage of the microscope for dimensional analysis. 

 

Figure 29. Prototype on microscope stage with light up 

 As seen in Fig. 30 below, assessment of the prototype’s arrangement was carried out 

while positioned on the motorized microscope stage. First, the prototype was checked for 

clearance issues. The main concern of the design was centered around the elevated hook on top 

of the subplate. Though close, the hook managed to miss colliding with the light of the 

microscope (Fig. 30). To make this less of an issue, alternative designs were evaluated. 

Secondly, lower hook clearances (where the well sits) were examined. The subplate hook and the 

far left hook faintly grazed the top of the motorized stage. To fix this, the hooks were shortened 

by 1mm.  Lastly, the decision was made to slightly lower the sitting height of the design by 

cutting around a small elevated portion of the motorized stage. This allowed for better 

positioning of the device and more leeway for subplate clearances. 
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Figure 30. Prototype on microscope stage with light down 

Substrate Design 

While testing the mechanical properties of the STREX well, it was observed that the well 

would “twist” at the corners when strained uniaxially, as seen in the figure below (Fig. 31). This 

reorientation of the corners create strain concentrations around the edge of the well that, 

combined with the inward deflection of the walls due to Poisson’s Effect, would decrease the 

amount of area useful for data collection.  In order to examine if this is actually the case, 

simulation models were run using ANSYS software.  

 

Figure 31. Strex well being stretched uniaxially (twisted corners are shown in red arrows) 
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Finite Element Analysis of PDMS Well 

 In order to effectively apply mechanical force to the cells, a soft substrate onto which the 

cells will be cultured is needed to translate the mechanical forces from the motors to the cells.  

However, it is essential to investigate the strain field in the area of interest in which the cells are 

seeded to understand the actual strains the cells experience on the substrate. Such knowledge will 

enable investigators to determine the relation between strain produced by the motors and the 

strain suffered by the cells. Additionally, the designs of the substrate on which the cells will be 

seeded depend largely on its ability to provide uniform strain field for a specific area of interest. 

Only when cells are seeded onto the uniform strain field region of the substrate will the 

experiments be accurately controlled. Therefore, before fabricating a specific cell culture well, 

simulation models are required to determine if it can provide sufficient area of constant strain 

field.  

The team chose to use cell culture well similar to Strex
®
 well since it is a commercially 

available PDMS well. In addition, the well was readily available to the team in Prof. Billiar’s lab. 

FEA of the well was performed using ANSYS Workbench. The local strain, which is related to 

the global strain, of the well surface onto which the cells will be seeded under mechanical 

stimulation was investigated. A solid model was first constructed by the team using SolidWorks, 

and this model was then uploaded to ANSYS. PDMS was created as a new material in ANSYS, 

using a linear elastic model with an elastic modulus of 2.5 MPa and .45 Poisson’s ratio.  

Simulation forces and constraints were then defined for 10% equibiaxial strain. At each corner, a 

displacement load was applied using both x and y components. The top-left corner displacement 

was defined to be -2mm along the x-axis and 2 mm along the y-axis.  The top-right corner 

displacement was 2mm along the x-axis and along the y-axis, the bottom-right corner 
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displacement 2mm along the x-axis and -2mm along the y-axis, and the bottom-left corner 

displacement -2mm along the x-axis and -2mm along the y-axis. In order to ensure the forces 

would accurately represent the forces created by the posts of the hooks, the cylindrical faces of 

the hook holes were divided into two sections using small extrusion defects added in 

SolidWorks.  The faces were broken such that the division was perpendicular to the direction of 

the applied forces.  The geometry and setup were then transferred to ANSYS Mechanical APDL 

and strain fields were generated. 

X-directional as well as y-directional strain fields were generated and are shown in Fig. 

32 and Fig. 33.  The scale for each of the results was made identical for comparison. 

A uniaxial simulation was also performed.  Stretch was applied along the x-axis, and in 

Fig. 34 and 35, resultant strain along the x-axis and the y-axis are examined.   

Since the wells were strained 10%, acceptable area was defined as 10% strain with 10% 

error, meaning strain between 9 and 11%.  Areas colored in green and yellow correspond to this 

9 to 11% area. 
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Figure 32:  FEA: Axial strain field of Strex Well, 10% equibiaxial, x-directional 

 

Figure 33:  FEA: Transverse strain field of Strex Well, 10% equibiaxial, y-directional 

2.5% 

2.5% 
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Figure 34:  FEA: Axial strain field of Strex Well, 10% uniaxial, x-directional 

 

Figure 35:  FEA: Transverse strain field of Strex Well, 10% uniaxial, y-directional 

It can be seen from the figures that there is a relatively small area in the center of the well 

with a uniform strain field compared to total area of the well, and when the axial strain is 

superimposed over the transverse strain, the overlapping usable area was about 2.25%.  This 

means that cells must be seeded in the small area of uniform strain in order for them to 

9.4%

No usable area
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experience the same strain, resulting in a larger area of interest, which will burden imaging of the 

cell behavior.  It must be noted that outside this area there are stress concentrations, greatly 

increasing strain. Therefore, these areas should be avoided when seeding or observing cells.  

After the strain field of the Strex
®
 well had been analyzed, it was evident that during 

equibiaxial stretch, the uniform strain field area was actually small compared to the total area of 

the well. In addition, the equibiaxial Strex
®

 well provides almost no uniform strain field when 

the well is stretched uniaxially (Figs. 34 and 35). Only 9.4% uniform area is observed in x-

directional (Fig. 34) and no usable area was obtained in y-directional (Fig. 35) since strains in the 

middle region are much less than 10% strain simulated. Since this project requires the device to 

stretch uniaxially and equibiaxially, it is important for the soft substrate to provide considerably 

large and consistent uniform strain field whether it is stretched uniaxially or equibiaxially.     

Custom made PDMS well 

As noted earlier, the inconsistent strain field of the equibiaxial Strex well may due to the 

twisting of the corners when the well is stretched uniaxially. In order to minimize this effect with 

the intent to create a more uniform strain field, a new well was created. In the new well, the thin 

walls were aligned with the posts, thereby preventing the reorientation of the corners when 

stretched uniaxially. 

This custom well was then analyzed using ANSYS through the same procedure as for the 

Strex
®

 well.  These results are shown below (Fig. 36, 37, 38, 39). 
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Figure 36:  FEA: Axial strain field of Custom Well, 10% equibiaxial, x-directional 

 

Figure 37:  FEA: Transverse strain field of Custom Well, 10% equibiaxial, y-directional 

8.1% 
10% 

8.1% 
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Figure 38:  FEA: Axial strain field of Custom Well, 10% uniaxial, x-directional 

 

Figure 39:  FEA: Transverse strain field of Custom Well, 10% uniaxial, y-directional 

16.6%

13.8%
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It was observed that the usable area of the custom well is a vast improvement on the 

Strex
®

 well.  When the axial and transverse strain fields were superimposed, overlapping usable 

equibiaxial area was about 9% and uniaxial about 12%.  It was calculated that the usable area of 

the custom well is 300% larger during equibiaxial stretch and during uniaxial stretch the Strex
®

 

well did not have any usable area. 

With this analysis as verification of the custom PDMS well design, the well was next 

constructed. 

Final Design Construction 

Device Construction  

 The purpose of this section is to provide a brief overview of each part used in the final 

assembly of the device, including how each was created, and how it fits into the assembly.  

 All parts and subassemblies are secured to the base plate (Fig. 40), which contains 

mounting points for three linear slides, three motor mounts, stationary hook, and connector 

mount via clearance and tapped holes. The plate, made of 1/4 in. thick 1060 alloy, was 

manufactured through water jetting, with various clearances and tapped holes made manually as 

the design progressed. 

 

Figure 40:  Baseplate 
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The motor mounts (Fig. 41) were created simply to secure the motors to the baseplate 

while providing ample clearance between the motor arm and the linear slide subassembly. Made 

of 5/8 in. thick 1060 alloy, the motor mounts were created on campus through the use of CNC 

machining.  

 

Figure 41:  Motor Mount 

The subplate (Fig. 42), which is secured atop the Del-tron linear slide RS2-2, contains 

mounting points for one motor mount, one Del-tron RN2 slide, and one subplate L-bracket. The 

subplate, created from 1/8in. thick 1060 alloy, was created manually and tapped.  

 

Figure 42:  Subplate 
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 The L-brackets (Fig. 43, A) and hooks (Fig. 43, B) were all created from 304 alloy for 

corrosion resistance and strength. All angles pieces were created from 3/16in thick angle stock, 

which was cut down to shape through water jetting. This was done to limit the deflection in the 

parts caused by machining relatively thin material. The three L-mounts are secured to the hook 

assembly via screws, while also securing the motor arm to the hook assembly via a nut. The 

subplate L-mount connects one motor arm to the subplate. All hooks are connected to stainless 

steel blocks which contain tapped threads.  

 

Figure 43:  (A) L-Bracket and (B) Hook 

 

The hook mounts (Fig. 44) were also water jet parts, but were created from scrap 1/8in. 

thick 304 alloy material. The hook mounts function to secure the blocks and hooks to the linear 

slides via screws. These parts were created through water jetting. 
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Figure 44. Hook Mount 

The connector mount (Fig. 46), made from 1/4in thick 1060 alloy, was created to secure 

the female connectors for the motors and encoders to the baseplate. This part was created 

through water jetting. 

 

Figure 45:  Connector Mount 

 



79 

 

 

Figure 46. Final Device Placed on an Inverted Microscope 

 The final design of the device is shown in Fig. 46, which displays all of the components 

depicted above assembled together and mounted on a Nikon inverted microscope. All 1060 alloy 

components were anodized for increased wear and corrosion resistance.  

Housing Unit 

 A housing unit was created to hold all of the communication and driving components 

associated with the device, as seen in Fig. 47 below. A 12V DC power supply (D) was used to 

power the device. From here, the 12V power went to a 5 Amp voltage regulator (C) where it was 

adjusted down to 8V through an onboard potentiometer. Dialing the voltage to 8V was 

confirmed using a multimeter. Next, the 8V power was soldered in parallel on a shield unit 

which sits atop the ChipKit Max32 controller (A). Power was distributed to each of the Easy 

Drivers (B) through the P+ and P- (Gnd.) pins and to a small green LED on the front of the 

housing unit (two 150 ohm resistors were used for LED). Refer to Appendices D-F for Easy 

Driver, ChipKit 32Max controller and voltage regulator schematics. 
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Figure 47: Instrumentation Housing Unit – (A) Chipkit Max32 Controller (B) Four Easy 

Drivers (C) Voltage Regulator (D) 12V DC Power Source 

 

Figure 48:  Housing Unit 

 Communicating with the motors was done in a three part process. In part one, MPIDE 

software was used to write programs that would then be uploaded and executed by the motors 

through a micro USB jack on the front of the ChipKit Max32 controller. The coding library used 

was called accelstepper. Refer to Appendix G for software downloads and code examples. Part 

two included the controller’s relay and translation of the programs made in MPIDE to the motor 
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drivers. This was executed by calling step and direction pins in the program and making the 

physical connections of the corresponding pins to the desired driver (Ex. If step pin 4 was 

claimed in the program, step pin 4 on the controller is the called pin). The current setup for step 

and direction pins for each motor can be seen in Table 5 below.  

Table 5: Step and Direction Pins Associated with each Motor 

Motor Step Pin Direction Pin 

1 3 25 

2 2 31 

3 4 23 

4 5 29 

 

 Part three involved the transmission of current/voltage signals from motor drivers to 

stepper motors. The device utilizes the 5 volt version of the Haydon Kerk size 14 motors (Type 

Q). These are bipolar motors that operate at .56 Amps/phase (NOTE: the motors are currently 

running at .2 Amps/phase which is adjustable by the potentiometers located on each Easy 

Driver). The motor drivers (Easy Drivers) have four motor pins: two A pins and two B pins. 

Connections from the housing unit to the device were made utilizing beau power connectors and 

following the correct wiring diagram for the size 14 motors found in Appendix C. In Fig. 49 

below, a complete wiring schematic of the housing unit can be found. 
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Figure 49: Schematic of Housing Unit 

Substrate Development  

In order to fabricate the new well, the material of which the well will be made of was 

chosen first. Since cells need to be seeded on the elastic substrate to apply mechanical forces, 

polydimethylsiloxane (PDMS) was chosen due to its elastomeric, optically transparent, and 

chemically inert properties. Additionally, PDMS can be fabricated easily and efficiently 
45

. 

Furthermore, the same material was used in Strex well. Afterwards, a solid works CAD model of 

the mold for was drawn for manufacturing purposes (Fig. 50). Laser cutting machine at WPI was 

used to machine the mold. The machined components can be seen in Fig. 51.  
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Figure 50: CAD drawing of PDMS well mold 

 

As seen in Fig. 51, components A and B are aligned with large pins D. Small pins C are 

placed in the mold to create holes in the cured PDMS well frame. These holes will attach well to 

Figure 51:  Components of the PDMS well mold 
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the hooks of the final device. To prevent leakage from the mold, external clamps are used to 

tighten the component A and B.  

PDMS well fabrication 

PDMS is molded into square-like shape well with a thin PDMS film of 0.004” thick 

(Thin silicone membrane, SSP-M823, Specialty Silicone Products) glued to the bottom for 

seeding cells. PDMS culturing well was fabricated using the protocol established in Dr. Billiar’s 

lab. Sylgard 184 silicone elastomer base is mixed with Sylgard 184 silicone elastomer 

crosslinker in 20:1 ratio (Sylgard elastomer kit, Dow Corning). After the base and corsslinker are 

very well mixed, the mixture is placed in the vacuum chamber for 5 minutes to degas. After 5 

minutes, remaining excess bubbles are removed by using nitrogen gas. The mixture is then 

poured evenly into the mold show in Fig. 51. The PDMS with the mold is then incubated in the 

oven at 50
o
C for overnight, after which the PDMS mold is taken out. The mold and PDMS film 

are then sterilized with 70% ethanol and exposed under ultraviolet rays for 15 min. The mold and 

film are glued together by medical grade silicone adhesive (Silbione MED ADH 4100 RTV, 

Bluestar Silicones) under the biosafety hood in sterilized conditions. The flowchart of PDMS 

well fabrication is shown in Fig. 52.  
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Figure 52: Process of making PDMS cell culture well 

 

Final Device Validation  

In order to ensure that the final device works properly and meets the expectations of 

clients, validation tests were conducted on the device as well as the substrate. High Density 

Mapping (HDM) technique was used to map the strain fields in the well. Operating time was 

Figure 53:  Strex well (left) and custom well (right) 
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validated by measuring motor temperature. Max frequency requirement was confirmed by 

measurements obtained from HDM strain data.   

Well Validation 

Additional analysis was performed to confirm the superiority of the custom designed well 

using HDM  Both wells were dusted with highly reflective particles and then stretched using the 

team’s device while a digital video recording was made to capture the deformation.  HDM 

analysis was performed for cyclical uniaxial stretch at 1 Hertz and at 10%, 20%, and 30% strain 

for the Strex
®
 well and the custom well using both the 20:1 and 15:1 PDMS ratios. The videos 

were analyzed using a special HDM computer program that tracks the reflective particles, and 

these results were further analyzed in Matlab to create graphical strain field maps.  The results 

for the Strex
® 

well and the 15:1 custom well at 10% strain can be seen below in Figures 54 and 

55.  Additional HDM results can be found in Appendix I. 
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Figure 54:  HDM: 15:1 Custom well, 10% uniaxial stretch, x-directional strain 

 

Figure 55: HDM: Strex
®
 well, 10% uniaxial stretch, x-directional strain 
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It was observed that the variance of the strain field is much more drastic for the Strex
® 

well than the custom well.  Since the program run with the device was to achieve 10% strain, the 

strain fields should show some area of 10% strain.  However, the Strex
®
 well exhibits a large 

area of only about 4% strain in the center and the two red vertical regions indicate strain of over 

12%.  The custom well exhibits a general range of 3-10% scattered throughout the surface, 

averaging to about 6% strain across the surface.  Though these results are not consistent with the 

FEA results, they show that the custom well has a less varied strain field than the Strex
®
 well. 

More HDM data can be found in Appendix I.  

Device Validation 

Operation Time 

Operation time was validated by running the motors for 6.5 hours and measuring the 

temperature using a thermocouple. A LabVIEW VI (see Appendix H) was written to obtain 

temperature measurements over 6.5 hours and the results were plotted as seen in Fig. 56. It can 

be observed that the temperature of the motor remained fairly constant at 27
o
C, thereby 

confirming that the device can operate at a minimum of 6.5 hours without overheating.  
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Figure 56:  Motor temperature vs. time for 6.5 hrs 

Cell Seeding and Viewing 

In order to confirm cell attachment on the PDMS film and visibility through the film with 

a microscope, GFP labeled human fibroblasts were seeded. Firstly, the PDMS substrate is 

cleansed and sterilized with 70% ethanol. The well is then exposed to UV light for 15 minutes 

for further sterilization. Pepsin extracted collagen was then coated onto the well to promote cells 

attachment. After 30 minutes, the well is rinsed with PBS and dried. GFP labeled fibroblasts 

were then seeded at 2800 cells/cm
2 

and incubated in 5% CO2 at 37
o
C.

 
After one day, the cells can 

be viewed via an inverted microscope under fluorescence and were observed to be attaching well 

(Fig. 57). This confirms not only visibility of cells through custom PDMS substrate but also that 

PDMS substrate does not provide harmful conditions for the cells seeded. However, the team 

observed that cells were not clearly visible. This may be due to the thickness of PDMS sheet that 

is obstructing the light source. Another cause may be due to dirt particles adhered to the PDMS 
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sheet. Utilizing commercially available sterilized PDMS sheet in the PDMS well may eliminate 

this problem.  

 

Discussion  

 The primary goal of this project was to create a device that surpassed some of the 

limitations of current biaxial stretching devices while also enabling real time viewing of cells 

under an inverted microscope. Through testing, it was determined that the device can stretch a 

40mm x 40mm PDMS well at a range from uniaxial to equibiaxial at a frequency from 0.01Hz to 

1 Hz. Our device allows users to apply various profiles of mechanical strain in each experiment. 

While performing cyclic motion, the device has a duty cycle resembling a sawtooth waveform, 

ensuring that strain is applied at a near-linear rate to the well. The motors are capable of 

operating for an extended period of time (>6 hours), compared to the 20 minute operating time of 

similar industry devices. Such increase in operation time extends the capabilities in studying in-

depth mechanobiology that requires long straining of cells. Although the team went over budget 

Figure 57:  Fluorescence images of GFP labeled human fibroblasts seeded after one day 
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for this design, the final device is market ready and cost twenty fold less than commercially 

available Strex device. Additionally, our final device successfully addresses major limitations 

associated with current devices including the inability to provide “real-time” analysis of cellular 

responses, non-uniform uniaxial and equibiaxial strains and limited operation time. Therefore, 

the team determines that exceeding of budget is justified.  

Sustainability and Hazard Issues 
The device created in this project was built to provide a utility for researchers to study the 

effects of mechanical strain on cells. Devices similar to the one created in this project are 

commercially available in the market to study mechanobiology. This device will not have a 

direct effect on the economy of everyday living, but further understanding of mechanobiology 

may ultimately lead to useful biomedical applications that could have an effect on economics of 

everyday living, specifically in health care services or treatments.  

This device was created using mostly spare metallic parts obtained through junk yards. 

Therefore, the creation of our device had a negligible impact on the environment, regarding the 

use of natural resources. In addition, the production of the device described in this report had no 

effect on the biology or ecology regarding renewable energy. 

The device, built solely for academic purposes, will not influence or have an impact on 

the “ordinary” person. If brought to the market, the device would primarily be used in both 

private and public laboratories, but will never be marketed toward the general populace.  

Additionally, our device will not have any effect on the global market. Likewise, the device will 

have no influence on any ethical issues.  

The prototype built during the duration of our project poses no issue with respect to the 

health and safety of people. The device’s main purpose is to assist in research and will not be 
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used outside of a laboratory setting.  The design will not pose a health risk to the individual using 

it if the device is operated accordingly to the instructions provided. 

The device was designed in a fashion that allows it to be replicated in its entirety in the 

future. The parts used in the design were modeled using SolidWorks, which allows the creation 

of engineering drawings used to accurately replicate modeled items. All engineering drawings 

used to create custom parts are included in Appendix B. The parts modeled using CAD software 

were manufactured using a combination of CNC machining and water jetting, both of which are 

standard machining processes. In addition, all electronic items used in this project are 

commercially available on the market, and can be purchased in order to manufacture the device. 

Conclusion and Recommendations 

Conclusion  

Validation tests confirmed that the final device fully accomplish the client statements. 

The device fits very well with the Zeiss Microscope allowing “real-time” visualization of cells 

under stretch. Additionally, the device can perform uniaxial stretch in either X or Y direction as 

well as equibiaxial stretch with strain rates ranging from 0.1-30%. Moreover, the device can 

achieve strain at a frequency of .01-1 Hz in sinusoidal sawtooth waveform as confirmed by 

HDM data. Overheating was not observed and the device was confirmed to be able to operate for 

at least 6.5 hrs. Better uniformity of strain in the custom PDMS substrate compared to 

commercially available Strex
® 

was also confirmed by HDM data. Lastly, the final market-ready 

device was constructed under a budget of $1,200 (See Appendix J for Bill of Materials).   
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Recommendations  

 Although the final device successfully achieved all the objectives set forth by the client 

and design team, a few modifications can be made to facilitate easier and more efficient use. 

Firstly, the team would like to suggest implementation of LabVIEW program to command the 

device. Using LabVIEW will increase user-friendliness due to its intuitive user interface.  

Additionally, an incubation chamber which provides physiological conditions need to be 

constructed to successfully perform mechanobiology studies. The chamber needs to provide 

37
o
C and 5% CO2 to better simulate the living conditions for the cells being stretched. This 

incubation chamber, however, must be designed in a way to avoid damaging the motors or any 

components of the final device as well as the microscope being used.  

Each size 14 linear actuator was ordered with a two channel quadrature TTL squarewave 

encoder with optional index as a third channel. Their primary application is for positional 

feedback. In short, the encoders’ main purposes are to count the number of steps each motor 

makes and relay this information back to the software interface. This information will help 

provide an absolute home position for the motors, greatly expanding the number of different 

programs the device can run. For example, if a user desired to run the motors that stretch the 

substrate in the y direction for a set amount of time and then switch to the motors that will stretch 

it in the x direction mid-test, the device will need a home position to retreat back to before 

commencing the second task. Currently, this cannot be achieved without the encoders. 

The group recommends programming the encoders to be used in conjunction with the rest of the 

device. The encoders have already been wired to the beau connector on the plate. The group will 

need to terminate the wiring within the housing unit and figure out how to incorporate the 

encoders in the MPIDE code. Additional information about the encoders can be found at:  
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http://www.haydonkerk.com/LinearActuatorProducts/StepperMotorLinearActuators/Line

arActuatorEncoders/tabid/200/Default.aspx 

Future works include determining the current the encoders draw and resisting the 8V main power 

down to the 5V needed to power the encoders using resistors. Then, each of the encoders are 

needed to be wired to the input pins on the ChipKit Max32 controller. Lastly, a program needs to 

be generated to properly utilize the encoders. 
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Appendices 

Appendix A- Patented cell stretching devices 

Patent ID Description Image  

US 

2007/0178584 

A1 

This device uses one stepper motor 

with a control unit and cell culture 

well (200um thick film). The walls 

(labeled 32 and 34) of the well are 

thicker than the rest. The thicker 

walls have 2 holes on each, which 

were attached to the pins of the 

stable plate (labeled 31) and 

moving plate (33). The uniaxial 

stretching is achieved by pulling or 

pushing the moving plate with the 

stepper motor through a linkage. 

Rotation of the motor is controlled 

by the control device (labeled 37).  

 

6,107,081 This device uses hydraulic pressure 

to stretch cells linearly. Cells 

(labeled 11) are seeded on the 

silicone membrane (labeled 8). The 

silicone is attached to the ram 

(labeled 7).  The left end of the ram 

is fixed while right end is movable. 

The right end is attached to 

hydraulic compression chamber 

(labeled 4). Stretching is achieved 

by increasing or decreasing the 

hydraulic pressure generated by the 

pump (labeled 3) within the 

hydraulic compression chamber 

(labeled 4). This induces uni-

directional movement of the right 

end of the ram, thereby 

extending/distending the silicone 

and cyclically stretching the cells) 
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5,217,899 The device uses electric motor 

(labeled 38) to actuate a cam 

(labeled 40) which rotates about the 

axis (labeled 41). The rotation of 

the cam causes the rod (labeled 32) 

and displacement applicator 

(labeled 24) to move upward or 

downward. The silicone sheet, on 

which cells are seeded, is placed 

right above the displacement 

applicator. The sheet is circular 

shape and attached firmly around 

the rim. When the motor drives the 

cam and moves the rod upward, 

displacement applicator deforms 

the silicone sheet by moving 

upward. At the end of upward 

stroke, the cam and the spring 

(labeled 34) will return the rod and 

displacement applicator to a 

lowered position. This returns the 

deformed silicone to initial 

position. Repetitive movement of 

such mechanism will apply cyclic 

biaxial stretch on the cells.  

 

US 

2008/0166796 

A1 

In order to apply stretch to cells, 

they are seeded on the deformable 

culture surface (Fig.1 labeled 4). 

The membrane is attached to a 

series of posts (Fig.1 labeled 5) by 

bending the membrane around the 

post and secured by an elastic band 

(Fig.1 labeled 2). The posts are 

connected to arms (Fig.1 labeled 1) 

which extend in the direction away 

from culture surface. The arms, in 

turn, are connected to pivot points 

(Fig.2 labeled 7) which are fixed in 

an outer ring ((Fig.2 labeled 6) near 

the outer boundary of the device. 

Rotation of the arms about the pivot 

points will stretch the membrane 

biaxially (Figure 2a to Figure 2b), 

applying mechanical force to the 

cells. The movement of the arms 

 

 
Figure 1 
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from position shown in Figure 2a to 

Figure 2b back and forth will 

translate cyclic stretch. The patent, 

however, did not describe how the 

arm movement will be achieved. It 

does claim that the device will be 

compact enough to allow viewing 

of cells while being stretched.   

Figure 2 
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Appendix B- Drawings of individual components of the device 
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Appendix C-Size 14 Linear Actuator Specifications 

 

 

SERIES 35000 HYBRID LINEAR ACTUATOR ( SIZE 14: 35mm (1.4") HYBRID LINEAR ACTUATOR 1.8 degree step 

angle) 

Part No. Captive 35H4(X)-V 35H6(X)-V 

  Non-Captive 35F4(X)-V 35F6(X)-V 

  External Lin. E35H4(X)-V E35H6(X)-V 

Wiring Bipolar Unipolar** 

Operating voltage 2.33 VDC 5 VDC 12 VDC 5 VDC 12 VDC 

Current/phase 1.25 A 0.57 A 0.24 A 0.57 A 0.24 A 

Resistance/phase 1.86Ω 8.8 Ω 50.5 Ω 8.8 Ω 50.5 Ω 

Inductance/phase 2.8 mH 13 mH 60 mH 6.5 mH 30 mH 

Power consumption 5.7 W 

Rotor inertia 27.0 gcm2 

Temperature rise 135°F (75°C) Rise 

Weight 5.7 oz (162 g) 

Insulation resistance 20 M Ω 

 

 

 

 

 

Screw 0.21 Linear 

Travel / Step 8" 

(5.54 mm) 

Order Code 

I.D. 

inches mm 
 

  

0.00012 0.0030* N 

0.00024 0.0060* K 

0.00048 0.0121* J 

0.00096 0.0243* Q 

0.00192 0.0487* R 
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Appendix D- ChipKit Max32 Controller 

 

For schematics and manual see: 

http://www.digilentinc.com/Products/Detail.cfm?Prod=CHIPKIT-MAX32 
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Appendix E- Easy Driver 

 

Specifications 

 

Input voltage: 7-30V DC 

Adjustable current control from 150 mA/phase to 750 mA/phase 

MS1 and MS2 pins can be used to adjust microstepping 

 

Schematic 
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Appendix F- Voltage Regulator 

Specifications 

 

Maximum output current: 5 Amps 

Input voltage: 4-35V DC or 4-26V AC 

Output voltage range: 1.5-32V DC 

Onboard potentiometer to vary voltage output 

Uses the National Semiconductor voltage regulator model LM338T 

 

Schematics 
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117 

 

Appendix G- Software Download and Program Examples 

Software 

 

MPIDE software can be downloaded from: https://github.com/chipKIT32/chipKIT32-

MAX/downloads 

Accelstepper Library can be downloaded from: 

http://www.open.com.au/mikem/arduino/AccelStepper/ 

 

Save the Accelstepper library in the following two locations: 

 

/mpide-0023-windows-20120122-test/hardware/pic32/libraries/AccelStepper 

/mpide-0023-windows-20120122-test/libraries/AccelStepper 

 

Make sure to select the proper controller (ChipKit Max32) and serial port from the Tools menu 

in MPIDE 

 

Program Examples  

 

Home Program: Used to home posts so well can be placed in device 

 

#include <AccelStepper.h> 

 

// Define some steppers and the pins the will use. The second number is the step pin and the third 

number is the direction pin. Leave the first number as 1 

AccelStepper stepper1(1, 3, 25); 

AccelStepper stepper2(1, 2, 31); 

AccelStepper stepper3(1, 4, 23); 

AccelStepper stepper4(1, 5, 29); 

 

void setup() 

{ 

    stepper1.setMaxSpeed(20000); 

    stepper1.setAcceleration(20000); 

    stepper1.runToNewPosition(4980);  

    stepper1.setCurrentPosition(0);  

     

    stepper2.setMaxSpeed(20000); 

    stepper2.setAcceleration(20000); 

    stepper2.runToNewPosition(5000);  

    stepper2.setCurrentPosition(0);  

     

    stepper3.setMaxSpeed(20000); 

    stepper3.setAcceleration(20000); 

http://www.open.com.au/mikem/arduino/AccelStepper/
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    stepper3.runToNewPosition(4750);  

    stepper3.setCurrentPosition(0);  

     

    stepper4.setMaxSpeed(20000); 

    stepper4.setAcceleration(20000); 

    stepper4.runToNewPosition(5000);  

    stepper4.setCurrentPosition(0);  

} 

void loop() 

{  

    stepper1.setMaxSpeed(20000); 

    stepper1.setAcceleration(20000); 

    stepper1.runToNewPosition(-4880);  

     

    stepper2.setMaxSpeed(20000); 

    stepper2.setAcceleration(20000); 

    stepper2.runToNewPosition(-4900);  

     

    stepper3.setMaxSpeed(20000); 

    stepper3.setAcceleration(20000); 

    stepper3.runToNewPosition(-4650);  

     

    stepper4.setMaxSpeed(20000); 

    stepper4.setAcceleration(20000); 

    stepper4.runToNewPosition(-4900);  

} 

 

10% Strain at 1 Hz Program: 

 

#include <AccelStepper.h> 

 

// Define some steppers and the pins the will use 

AccelStepper stepper1(1, 3, 25); 

AccelStepper stepper2(1, 2, 31); 

AccelStepper stepper3(1, 4, 23); 

AccelStepper stepper4(1, 5, 29); 

 

void setup() 

{   

    stepper1.setMaxSpeed(1978.0); 

    stepper1.setAcceleration(20000); 

    stepper1.moveTo(988); 

     

    stepper2.setMaxSpeed(1978.0); 

    stepper2.setAcceleration(20000); 
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    stepper2.moveTo(988);  

     

    stepper3.setMaxSpeed(1978.0); 

    stepper3.setAcceleration(20000); 

    stepper3.moveTo(988);  

     

    stepper4.setMaxSpeed(1978.0); 

    stepper4.setAcceleration(20000); 

    stepper4.moveTo(988);  

} 

 

void loop() 

{ 

    if (stepper1.distanceToGo() == 0)stepper1.moveTo(0); 

    if (stepper2.distanceToGo() == 0)stepper2.moveTo(0); 

    if (stepper3.distanceToGo() == 0)stepper3.moveTo(0); 

    if (stepper4.distanceToGo() == 0)stepper4.moveTo(0); 

  

    stepper1.run(); 

    stepper2.run(); 

    stepper3.run(); 

    stepper4.run(); 

     

    if (stepper1.distanceToGo() == 0)stepper1.moveTo(988); 

    if (stepper2.distanceToGo() == 0)stepper2.moveTo(988); 

    if (stepper3.distanceToGo() == 0)stepper3.moveTo(988); 

    if (stepper4.distanceToGo() == 0)stepper4.moveTo(988); 

     

    stepper1.run(); 

    stepper2.run(); 

    stepper3.run(); 

    stepper4.run(); 

} 
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Appendix H- LabVIEW VI for Operation Time Validation 

Block Diagram: 

 

 
 

Front Panel: 
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Appendix I:  HDM Strain Fields of Strex and Custom Wells 

 

HDM: Strex
®

 well, 10% uniaxial stretch, y-directional strain 

 

HDM: 15:1 Custom well, 10% uniaxial stretch, y-directional strain 
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HDM: 20:1 Custom well, 30% uniaxial stretch, x-directional strain 

 

HDM: 20:1 Custom well, 30% uniaxial stretch, y-directional strain 
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HDM: 20:1 Custom well, 20% uniaxial stretch, x-directional strain 

 

HDM: 20:1 Custom well, 20% uniaxial stretch, y-directional strain 
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HDM: 15:1 Custom well, 30% uniaxial stretch, x-directional strain 

 

HDM: 15:1 Custom well, 30% uniaxial stretch, y-directional strain 
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HDM: 15:1 Custom well, 20% uniaxial stretch, x-directional strain 

 

HDM: 15:1 Custom well, 20% uniaxial stretch, y-directional strain 
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Appendix J: Bill of Materials 

Bill of Materials Table 

Materials             

Date Company Items Quantity 

Unit 

Cost 

Shipping 

Cost Notes 

11/28/2011 SSP Inc. SSP-M823 Silicone Sheeting 0.004" x 12" x 12" 1 $30.00  $12.65    

1/18/2012 Scrap Yard Aluminum Stock (1/8 in., 1/4 in., 5/8 in. plate) 1 $0  $0  Donated 

1/18/2012 Scrap Yard Stainless Steel (1/8 in., 1/2 in. plate and 3/16 in. angle) 1 $0  $0  Donated 

1/20/2012 SparkFun PRT-09684 Chameleon Face Plate Arduino 1 $4.95  $4.35    

1/20/2012 SparkFun PRT-10746 Small Heastsink with Thermal Tape 4 $7.95  $4.35    

1/20/2012 SparkFun ROB-10735 - Big Easy Drivers 4 $22.95  $4.35    

1/23/2012 

Hammond 

Enclosures Steel Enclosure (1458 Series) 1 $0  $0  Donated 

1/25/2012 Haydon Kerk 

35000 series size 14 stepper motor linear actuators with quadrature 

encoders 4 $0  $0  Donated 

1/27/2012 

Surplus Sales of 

Nebraska CNES321AB 21 pin female connectors 4 $6.00  $12.25    

1/27/2012 

Surplus Sales of 

Nebraska CNEP321CCT-K 21 pin male connectors 4 $17.00  $12.25    

1/27/2012 12V Adapters 12V - 5Amp adapter 1 $32.98  $0    

2/3/2012 RobotShop RB-Spa-616 Big Easy Driver Bipolar Motor 1 $22.95  $13.11    

2/6/2012 Electronics Salon 5 Amps Voltage Regulator Module 1 $19.80  $0    

3/15/2012 Ace Hardware #6-32 1/4 in. Cap Screws 6 $0  $0  Donated 

3/15/2012 Ace Hardware #6-32 1/8 in. Cap Screws 26 $0  $0  Donated 

3/15/2012 Ace Hardware #4-40 1/2 in. Flathead Screws 16 $0.27  $0    

3/15/2012 Ace Hardware #2-56 1/2 in. Flathead Screws 4 $0.27  $0    

3/15/2012 Ace Hardware #2-56 1/2 in. Female Standoffs 4 $0  $0  Donated 

3/15/2012 Ace Hardware M3x.05 16mm Flathead Screws 16 $0.27  $0    

3/15/2012 Ace Hardware #4-40 1/2 in. Female Standoffs 20 $0.27  $0    

4/2/2012 Digilent ChipKit Max32 1 $49.50  $17.80    

Total   $390.90 $81.11  
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Bill for Various Services Utilized in the Project 

Services       

Date Company Service Cost 

2/9/2012 Vangy Tool Baseplate Machining $59.00  

2/16/2012 Vangy Tool Subplate and Hook Mount Machining $90.00  

3/12/2012 Vangy Tool Hook, L Brackets, Blocks and Plate Modifications $475.00  

4/17/2012 H LA Rosee & Sons Inc. Anodize Aluminum Components $40.00  

    

Total $664 

 

Total Cost of Materials and Services Including Shipping and Handling 

Total Cost   

Unit $390.9 

Unit S&H $81.11 

Service $664 

  

Total $1136.01 

 


