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ABSTRACT 

 
 

The interaction of the exocyst complex and SNARE proteins is essential in exocytosis, 

specifically to the tethering and fusion of secretory vesicles at the plasma membrane. While the 

specific mechanisms of vesicle trafficking are largely unknown, direct interactions have been 

found between the exocyst subunit Sec6p and the t-SNARE Sec9p.  To investigate a possible 

binding site for the two proteins, a recombinant S. cerevisiae Sec9p mutant, designed to disrupt 

binding with Sec6p, was cloned, expressed in E. coli, and purified.  Binding studies, including 

gel filtration and gel shift assays, were conducted. The results indicate that the mutations tested 

did not disrupt binding of the proteins of interest, so likely the mutagenized sites are not strongly 

involved in binding.  Future work should include examination of other possible binding sites in 

Sec9p. 
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BACKGROUND 
 

 

 

Exocytosis 

 

Exocytosis is an essential cellular function in which the cell secretes membrane-bound 

vesicles into the extracellular environment. Exocytosis (Figure 1) is necessary for the export or 

delivery of various molecules, including waste products, components of the extracellular matrix, 

various proteins (antibodies, enzymes, etc.), hormones and other lipids, and integral membrane 

proteins. Exocytosis is also employed to deliver and present antigens on the surface of the 

plasma membrane during an immune response.  Products destined for exocytosis are bound by 

vesicles pinched off from various organelles, including the endosomes, endoplasmic reticulum, 

Golgi apparatus, and lysosomes. The vesicles are trafficked to sites of secretion along the 

cytoskeleton or microtubules of the cell to their target destinations. Interestingly, despite the 

necessity of this process in numerous cellular activities, the regulation and mechanisms of 

exocytosis remain largely unknown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Diagram of Exocytosis.  The left section of the diagram 

denotes constitutive secretion, while the right section shows 

secretion triggered by calcium influx. 

http://cellbiology.med.unsw.edu.au/units/science/lecture0805.htm 
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Polarized Exocytosis 

 

Polarity is a vital element of cellular functions, from embryogenesis through apoptosis. 

Cell division, a highly regulated and polarized process, is necessary for embryonic development, 

cytokinesis, chromosome segregation, membrane growth, secretion activities, and cell fate 

determination. Exocytosis is also highly regulated and carefully polarized, as the trafficking of 

cargo to specific determinate sites is essential for cell survival. Examples of polarized exocytosis 

abound within the human body; correct polarization is essential for the trafficking of synaptic 

vesicles in the nervous system (Figure 2), or the secretion of waste products (in the form of 

sweat) from epithelial cells, or the secretion of gastric enzymes in the stomach, among other 

processes. 

 

 

Figure 2:  Vesicle Trafficking at the Neuronal Synapse. Diagram shows the exocytosis process 

used by neuro-muscular pre-synaptic neurons to release vesicles containing acetylcholine into the 

synaptic cleft.  (Bargmann, 2005) 
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Polarized exocytosis occurs in four distinct stages: trafficking, tethering, docking, and 

fusion. Trafficking involves the physical, directed movement of the vesicle from the organelle of 

origin to the site of secretion along microtubules or the cytoskeleton. This project focuses on the 

trafficking of vesicles from the Golgi apparatus along the actin cytoskeleton. The budding yeast 

Sacchromyces cerevisiae is used as a model experimental system. 

 

Yeast as a Model System 

 

Yeast is a particularly attractive model system for the study of exocytic regulation. This 

organism is the simplest eukaryote, and was the first to offer a completely sequenced genome 

(Dujon, 1996). Analysis of this completed genome has determined that S. cerevisiae, also known 

as budding yeast, contains significantly less non-coding DNA regions than higher eukaryotes. 

Higher eukaryotes often possess genomes containing complex regulatory elements that render 

genetic manipulation and analysis difficult. Yeast offer numerous advantages to other available 

model systems, including rapid growth, simple culture requirements, well-dispersed cells, ease of 

cell cycle regulation and synchronization, low cost of maintenance, and ease of genetic 

manipulation.  

Additionally, S. cerevisiae exhibits polarized growth, a characteristic that makes this 

organism useful for the study of polarized cellular processes (including exocytosis). This 

particular species of yeast buds in only one direction (Figure 3), as cell growth and secretion are 

localized to the bud tip only. Further, the actin cytoskeleton of budding yeast is highly polarized, 

running from the mother cell to the bud tip, parallel to the mother-bud axis (Pruyne et al., 1998). 

The class V myosin protein Myo2p serves as the ‘motor’ that traffics vesicles along the actin 

filaments to sites of secretion. Myo2p, coupled with the Rab protein Sec4p, facilitates the 

targeted movement and delivery of secretory vesicles from the mother body to the daughter bud 
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tip (Pruyne et al., 1998; Karpova et al, 2000). These characteristics make S. cerevisiae 

particularly useful for in vivo studies of polarized exocytosis. Vesicle delivery is easily 

visualized using fluorescence microscopy or similar techniques.  Further, yeast proteins may be 

recombinantly expressed in other systems (i.e. Escherichia coli), thereby aiding in vitro studies 

of exocytosis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3: Photograph of the Budding of Sacchromyces cerevisiae as 

a Model of Polarized Exocytosis. 

http://pathmicro.med.sc.edu/mycology/yeast2.jpg 

 

 

 

 

The Exocyst Complex  

 

Vesicles are trafficked to sites of secretion along the cytoskeleton , and are ‘tethered’ to 

the plasma membrane by the multi-subunit exocyst complex (Figure 4). Tethering binds the 

vesicle in close enough proximity to the plasma membrane for SNARE complexes to form 

between SNARE proteins on the vesicle and the plasma membrane. As the SNARE complexes 

form, the two membranes are brought together to allow membrane fusion to take place. 

 

http://pathmicro.med.sc.edu/mycology/yeast2.jpg
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Figure 4: The Exocyst Complex in S. cerevisiae.  The upper left diagram shows 

the directional budding of the yeast, with a vesicle targeted from the golgi 

apparatus to the cytoplasmic membrane within the bud.  The upper right diagram 

shows the exocyst complex tethering the vesicle to the membrane.  The lower 

diagram shows a closeup of the exocyst complex and its various proteins. 

Diagram courtesy of the Munson lab.  

www.umassmed.edu/faculty/graphics/208/Figure1.jpg 

 

 

The exocyst complex is an octameric protein complex conserved in all eukaryotes, and is 

essential in the tethering required for exocytosis and membrane growth. The complex is involved 
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in trans-Golgi network trafficking to the plasma membrane, and is composed of the subunits 

Sec3p, Sec5p, Sec6p, Sec8p, Sec10p, Sec15p, Exo70p, and Exo84p (shown in the figure, lower 

panel). These subunits appear to traffic to sites of secretion via secretory vesicles; at these sites, 

the complex tethers vesicles to the plasma membrane in preparation for membrane fusion. 

Crystallographic studies of four exocytic subunits (Sec15p, Exo70p, Exo84p, Sec6p) indicate 

that the subunits are rod-like helical bundle structures (Sivaram et al., 2006; Munson & Novick, 

2006). 

 

 

SNARE Proteins 

 

Soluble N-ethylmaleimide-sensitive-factor attachment protein receptor (SNARE) proteins 

are essential players in intracellular trafficking events. The SNARE proteins, found on the 

vesicle (v-SNAREs) and target membranes (t-SNAREs) in various pathways, these proteins 

assemble complexes necessary for subsequent membrane fusion. Most SNAREs are anchored to 

their respective membranes via C-terminal transmembrane domains (Sutton et al., 1998).  

SNARE complexes are formed by the specific interactions of v-SNAREs and t-SNAREs.  

Each SNARE complex is a parallel four-helix bundle (Sutton et al., 1998); the specificity of 

bundle assembly is dictated by the SNARE motif of each protein in the complex. The SNARE 

motif, a homologous 60-70 amino acid region forming a coiled coil domain, is responsible for 

the specificity of SNARE complex assembly via cognate protein pairing (Paumet et al., 2004).  

In the yeast trans-Golgi network (Figure 5), the SNARE complex is made up of the t-SNAREs 

Sso1p (red) and Sec9p (blue), both localized to the plasma membrane, and the v-SNARE Snc2p 

(green), which is localized to the vesicle membrane. 
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Figure 5: SNARE Complex Assembly in S. cerevisiae.  Figure from Nicholson 

et al., 1998. 

 

 

Sso1p and Snc2p each contribute one SNARE motif to the complex; the t-SNARE Sec9p 

contributes the two remaining motifs. SNARE proteins, like the exocyst, are conserved 

trafficking structures in eukaryotes. Sso1p, Snc2p, and Sec9p are homologous to the human 

SNAREs Synaptobrevin-II, Syntaxin-1A, and SNAP-25B, respectively (Figure 6). 

 

 

 

 

 

Figure 6: Domains of Human SNARE Proteins. 
http://www.cellsignal.com/reference/domain/snare.html  

 

 

Interactions Between Sec6p and Sec9p 

 

The exocyst subunit Sec6p is a predominantly helical, 88kD protein. Various mutant 

strains of this protein in S. cerevisiae exhibit the accumulation of secretory vesicles at the bud tip 
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at the restrictive temperature (37°C), indicating that the subunit is essential for the targeting of 

vesicles to sites of secretion (St. Pierre et al., 1994).  Recent studies (Songer & Munson, 2009) 

implicate Sec6 in the polarization of the other exocyst subunits to sites of secretion. This more 

recent work (Figure 7) found that patch mutants exhibited temperature sensitive growth. 

Interestingly, vesicles were still correctly trafficked to the plasma membrane; however, the intact 

exocyst complex was mislocalized.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The t-SNARE Sec9p, unlike other t-SNAREs, is not localized to sites of secretion 

(Brennwald et al., 1994). The C-terminal region of Sec9p (residues 416-651), homologous to 

human SNAP-25, has been used for Sec9p binding analysis in previous work (Sivaram et al., 

2005), and has been shown to have fully functional characteristics in vivo (Brennwald et al, 

Figure 7. Patch mutations in Sec6 result in proper vesicle 

trafficking, but mislocalization of the exocyst complex, at 

37°C.  Songer & Munson, 2008 
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1994).  This C-terminal construct, called Sec9CT, was used in this study to examine the potential 

Sec6p binding site in Sec9p. 

Previous work (Sivaram et al., 2005; Sivaram et al., 2006) established a direct interaction 

between the exocyst subunit Sec6p and the t-SNARE Sec9p. This published work characterized 

the structure of Sec6p, and established that the protein’s interaction with Sec9p inhibits the 

ternary complex assembly of the t-SNARE protein and its partner t-SNARE Sso1p. However, 

studies have not yet determined the Sec9p region responsible for Sec6p binding. 
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PROJECT PURPOSE 

 

 
The main goal of this project was to elucidate the region of the S. cerevisiae t-SNARE 

Sec9p responsible for the protein’s binding to the exocyst subunit Sec6p. A mutant Sec9 

construct (9KAKR) was cloned, expressed in E. coli, and purified in order to perform in vitro 

binding studies of the two proteins. The binding of Sec9p (and the 9KAKR mutant) to its partner 

t-SNARE, Sso1p, was also examined to ensure that the mutations made in Sec9p did not disrupt 

any other binding site.   
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METHODS 

 

Cloning 

 

To clone the Sec9 mutant necessary for this investigation, a truncated construct of Sec9p 

containing a C-terminal fragment (known as Sec9CT) was used.  Prior data gathered from 

Sec6/Sec9 cross-linking experiments (personal communication) suggested that the peptide 

QRKNVLEKAKRYQ in Sec9CT contained residues possibly essential for the binding to Sec6. 

A ‘patch’ of mutations in the KAKR peptide was determined to be a starting point for this 

project’s investigation. The residues in this 4-amino acid peptide (lysine, alanine, lysine, and 

arginine) were to be mutated to four alanine residues, as alanine is an uncharged amino acid, 

rendering the mutations far less likely to disturb the native structure of the Sec9CT protein.  

To create the mutant Sec9KAKR-AAAA (herein referenced as 9KAKR), two cloning 

primers were created:  

Forward primer: 9KAKR-AAAA-F  

5’ GGAAGAATGTTCTAGAAGCGGCAGCGGCATATCAGTTTGAG 3’ 

 

Reverse primer: 9KAKR-AAAA-R  

5’ CTCAAACTGATATGCCGCTGCCGCTTCTAGAACATTC 3’ 

 

Plasmid pLM-1 was selected to be the cloning vector for the 9KAKR mutant. The mutant 

was cloned into the vector in the EcoRI and BamHI restriction sites, using the following primers: 

5’ (EcoRI) primer: E-sec9ct 

5’ CGGAATTCTAAGGAGGATATTAAAATGG 3’ 

 

3’ (BamHI) primer: sec9ct-B 

5’ CGGGATCCCTATCTGATACCTGCC 3’ 

 

To ensure that proper cloning occurred, mutant DNA samples were sent for sequencing 

using the commercially available SP6 and T7 primers: 
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SP6 sequencing primer 

5’ ATTTAGGTGACACTATAG 3’ 

 

T7 sequencing primer 

5’ TAATACGACTCACTATAGGG 3’ 

 

 

Expression Trials 

 

Expression trials were necessary to determine if the 9KAKR mutant could be expressed 

in sufficient levels for protein purification. A volume of 1µL of the 9KAKR DNA was 

transformed into 100 µL of BL21 (DE3) Codon Plus competent E. coli cells, and incubated on 

ice for 1 hour. Cells were plated on LB (plus 1X carbenicillin and 1X chloramphenicol) plates, 

and grown overnight at 37°C. After overnight incubation, the cells were scraped from the plates 

into two 50mL starter cultures of LB media containing 1X ampicillin and 1X chloramphenicol. 

The starter cultures were grown at 37°C, shaking at 200 rpm, until they reached an OD600 of 0.6. 

At this density, 50 µL samples were taken for later gel analysis; the samples were spun down in a 

cold room centrifuge (13,200 rpm at 4°C), the pellets resuspended in 30 µL of 1X loading dye, 

and then boiled at 95°C for 5 minutes. The samples were stored at -20°C until gel analysis was 

performed. The starter cultures were inoculated with 0.1 mM and 0.3 mM (respectively) final 

concentrations of isopropyl β-D-1-thiogalactopyranoside (IPTG) to induce protein expression, 

and grown for 3 hours at 37°C.  Post-induction samples were taken and prepared similarly to the 

pre-induction samples; 7 µL samples from both trial cultures were run on 15% SDS-PAGE gels. 

The gels were then stained with Coomassie Blue to visualize the protein in each sample to 

determine if the 9KAKR mutant expressed in levels similar to Sec9CT.  
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Growth and Purification of 9KAKR Protein 

 

To obtain purified 9KAKR protein, 1 µL of DNA was transformed into BL21 (DE3) 

Codon Plus competent cells, and allowed to incubate on ice for 1 hour. Cells were plated on LB 

(plus 1X carbenicillin and 1X chloramphenicol) plates, and grown overnight at 37°C. Cells were 

scraped into a 200 mL starter culture of LB media (plus 1X carbenicillin and 1X 

chloramphenicol), and grown at 37°C shaking at 200 rpm to an OD600 of 1.0.  Six liters of LB 

media (plus 1X carbenicillin) were inoculated, in equal volumes, with the starter culture, and 

allowed to grow to an OD600 of ~1. Cultures were induced at a final concentration of 0.1 mM 

IPTG, and grown another 3 hours at 37°C. Cells were harvested by spinning at 4°C, 5000 rpm in 

an Evolution centrifuge, scraping into appropriately sized conical tubes, and stored at -80°C.  

Cells were resuspended in cold Tris lysis buffer (pH 8), lysed in a cell disupter at 80 psi, 

and spun for 15 minute minutes at 5000 rpm in an Evolution centrifuge to pellet cell debris. The 

supernatant was removed, and placed into a glass beaker surrounded by ice. The supernatant was 

stirred slowly while approximately 5 mL of a 10% polyethyleneimine (PEI) solution was added; 

the PEI served to precipitate the nucleic acids remaining in the supernatant. An additional 100 

µL PMSF was added to the supernatant after the precipitation of nucleic acids was complete; the 

supernatant was spun as above to pellet the precipitated nucleic acids. After spinning, an 

additional 100 µL PMSF was again added. The supernatant (containing proteins) was filtered to 

remove any remaining particulates.  

The supernatant was loaded onto an 85 mL column volume Q Sepharose column pre-

equilibrated in a 10 mM Tris, pH 8, 50 mM NaCl buffer.  A secondary buffer (Buffer B: 10 mM 

Tris, pH 8; 1M NaCl) was also used to create a linear elution gradient. The protein was eluted 

from the column in 9 mL fractions over a 5-50% buffer B gradient, following a 2 column volume 
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(~170 mL) column wash. Samples from the chromatograph peaks were run on 15% 

polyacrylamide SDS-PAGE gels and stained with Coomassie Blue; those samples containing 

protein of the approximate correct size were pooled. 

To continue the purification process, ammonium sulfate was added to an 800 mM final 

concentration to the pooled solution. The solution was then loaded onto a pre-equilibrated 35 mL 

phenyl sepharose column; the column was  pre-equilibrated in a 43% buffer of 50 mM sodium 

phosphate, pH 7 (‘Buffer B’), and 53% Buffer A (50 mM sodium phosphate, pH 7; 1.4M 

ammonium phosphate). The column was eluted in 5 mL fractions over a 10 column volume 

(~350 mL) gradient from 43-100% Buffer B, following a 2 column volume (~70 mL) wash at 

43% Buffer B. Samples from the chromatograph peaks were run on 15% polyacrylamide SDS-

PAGE gels and stained with Coomassie Blue; those samples containing protein of the 

approximate correct size were pooled. 

The volume of pooled fractions totaled approximately 55 mL; this was concentrated to 8 

mL using a nitrogen spin concentrator, then brought to a total final volume of 50 mL with a 10 

mM Hepes buffer (pH 7.5). The volume of sample was then loaded onto a MonoQ 10/10 column 

pre-equilibrated in 10 mM Hepes buffer (pH 7.5). A secondary buffer (‘Buffer B’) was also used 

(10 mM Hepes, pH 7.5; 1M NaCl) to create a linear elution gradient. The column was washed 

with 2 column volumes of buffer at 5% Buffer B, then eluted over a 20 column volume gradient 

from 5-50% Buffer B.  Fractions were collected throughout (9 mL each during wash, and 2 mL 

each during elution). Samples from the chromatograph peaks were run on 15% polyacrylamide 

SDS-PAGE gels and stained with Coomassie Blue; those samples containing protein of the 

approximate correct size were pooled. 
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The pooled sample volume (approximately 39 mL) were concentrated with a nitrogen 

spin concentrator, and exchanged to potassium phosphate buffer (10 mM K2PO4, 10 mM 

KH2PO4, 140 mM KCl; pH 7.4) to a final volume of ~2.5 mL. The protein was then divided into 

150 µL aliquots and flash frozen in liquid nitrogen. The protein aliquots were stored at -80°C 

until use.  

 

Growth and Purification of Sec6N Protein 

 

BL21 (DE3) competent cells were transformed with 1 µL each of Sec6N DNA, incubated 

on ice for ~20 minutes, and plated on LB (plus 1X carbenicillin) plates. The plates were 

incubated at 37°C overnight. After overnight incubation, colonies were scraped into a starter 

culture of LB media (plus 1X ampicillin), and placed in an incubator shaking at 200 rpm for 1 

hour at 37°C. At an OD600 of ~1, the starter culture was evenly divided into six 1-liter bottles of 

LB media (plus 1X ampicillin), and incubated at 37°C, shaking at 200 rpm, until the OD600 

reached 0.4.  At this point, flasks were moved to 20°C and shaken at 200 rpm until the OD600 

reached 0.8.  The cultures were then induced with 0.1 mM IPTG (final concentration), and 

incubated at the same conditions for 3 hours. The cultures were spun down in an RC-3C 

centrifuge (4°C, 5000 rpm for 10 minutes); the supernatant was poured off, and the cells were 

scraped and frozen at -80°C until purification was performed.  

The cells were resuspended in approximately 300 mL of cold His lysis buffer (50 mM 

NaH2PO4, 300 mM NaCl, 10 mM imidazole; pH 8. Fresh leupeptin, pepstatin, 5 mM (final) B-

mercaptoethanol, 1 mM (final) PMSF were added to the buffer just prior to cell lysis.). Cells 

were lysed using a cell disrupter at 80 psi, and spun for 30 minutes at 13000 rpm, 4°C, in an 

Evolution centrifuge. The supernatant was added to 6 mL of an Ni-NTA agarose bead slurry pre-
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equilibrated in His lysis buffer; beads were rocked on a Nutator at 4°C for 1 hour to allow 

binding of the His-tagged Sec6 protein to the beads. Beads were then spun at 800 rpm at 4°C for 

5 minutes, resuspended in a small volume of HIS lysis buffer, and poured into a BIO-RAD 

column to create a column bed. The bed volume of beads was then washed three times with a 

total of 18 mL of His wash buffer (50 mM NaH2PO4, 300 mM NaCl, 20 mM imidazole; pH 8. A 

fresh 5 mM final concentration of β-mercaptoethanol was added to the buffer just prior to 

washing). The beads were eluted with ten 3mL aliquots of His elution buffer (50 mM NaH2PO4, 

300 mM NaCl, 250 mM imidazole; pH 8. Fresh β-mercaptoethanol was again added just prior to 

elution) at 4°C. Each aliquot was collected as a separate fraction, and 5 µL of each was spotted 

onto Whatman paper; the Whatman paper was then stained with Coomassie Blue to determine 

which fractions contained protein.  

The fractions containing protein were pooled, filtered for aggregrates/particulate, and 

diluted to 50 mM NaCl.  This entire sample was loaded onto a MonoQ 10/10 column 

preequilibrated in 20% Buffer B (10 mM Tris, pH 8; 1M NaCl; 1 mM DTT). The column was 

eluted over a 20-60% gradient of Buffer B (where Buffer A was: 10 mM Tris, pH 8; 1 mM DTT) 

over 20 column volumes, with 0.5 mL fractions collected throughout. Fractions corresponding to 

chromatograph peaks indicated the elution of various proteins; samples from those fractions were 

run on 12% SDS-PAGE gels, and stained with Coomassie Blue.  

Those fractions containing protein were pooled, and loaded onto a Superose 200 16/60 

preparation-grade column (GE Healthcare) that was pre-equilibrated in potassium phosphate 

buffer (10 mM K2PO4, 10 mM KH2PO4, 140 mM KCl; pH 7.4. 1 mM DTT was added fresh to 

the buffer before column equilibration.). The column was eluted in 1mL fractions with potassium 

phosphate buffer. Samples from the fractions corresponding to chromatograph peaks were again 
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run on 12% SDS-PAGE gels. Those fractions corresponding to the purest Sec6 samples were 

pooled, yielding approximately 14.5 mL of sample. Using a spin nitrogen concentrator pre-

equilibrated with potassium phosphate buffer, this sample was concentrated down to 

approximately 0.85 mL in volume. Glycerol was added to the concentrated protein to a 10% final 

volume, along with a 1 mM final concentration of DTT; the protein was then divided into 50 µL 

and 100 µL aliquots, and flash frozen in liquid nitrogen. The protein aliquots were stored at  

-80°C until use.  

 

 

 

Determination of Protein Concentration: Ninhydrin Assay 

 

A ninhydrin assay was used to quantitatively determine the final concentration of the 

proteins used for this project. A 10 mM leucine standard was prepared, and an aliquot of the 

protein sample to be tested was thawed out and kept cold on ice. A series of dilutions (0 µL, 5 

µL, 7.5 µL, 10 µL, 12.5 µL, 20 µL) of the leucine standard was set up to create a standard curve 

for comparison; the same series of dilutions was used for the protein sample. A sample of 5 µL 

of filtered potassium phosphate buffer (10 mM K2PO4, 10 mM KH2PO4, 140 mM KCl; pH 7.4) 

was used for the 0 µL samples. These samples were added to polypropylene tubes containing 

0.15 mL 13N NaOH; the tubes were then covered with aluminum foil and autoclaved on the 

liquid cycle to hydrolyze the protein to amino acids. After autoclaving, the tubes were allowed to 

cool to room temperature before the addition of 0.25 mL glacial acetic acid, which was used to 

neutralize the hydrolysis reaction.  

A 0.4 mL volume of CN-ninhydrin solution was added to each reaction; the tubes were 

then loosely capped and placed in a water bath, where they were allowed to boil for exactly 15 

minutes. Immediately after boiling, 2mL of 50% isopropanol was added to each reaction. Each 
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tube was then tightly capped and shaken, then allowed to again cool to room temperature. The 

A570 of each sample was taken using a UV spectrophotometer, and a standard curve was created 

for each sample. The curve for the 10 mM leucine sample served as the standard/reference for 

the protein sample curve; the concentration of the protein sample in question was determined 

using the following formulas: 

 

(10mM)(slope of sample curve)      =   mM of amino acids 

(slope of leucine standard curve) 

 

         mM of amino acids                 =   mM of protein in sample 

# amino acids in protein sample 

 

 

 

Binding Assay I: Gel Filtration 

 

In order to quantitatively determine the Sec6/Sec9 interactions for this project, gel 

filtration runs of the proteins and their complexes were run using a Superose 200 10/30 

analytical column (GE Healthcare). 150 µL samples were prepared for each protein, each at a 10 

µM concentration per protein in the sample, in potassium phosphate buffer (10 mM K2PO4, 10 

mM KH2PO4, 140 mM KCl; pH 7.4). Complex samples were incubated at 18°C for the time 

period desired for binding examination, and the column pre-equilibrated in potassium phosphate 

buffer.  Samples were spun at 13,200 rpm in a cold room centrifuge (4°C) to pellet any 

precipitation or contaminates, then injected using a sterile 1mL syringe into a 100 µL loading 

loop.  Samples were loaded onto the gel filtration column using a 100 µL injection of potassium 

phosphate buffer through the loading loop; the column was then eluted in 0.5 mL fractions using 

potassium phosphate buffer. Absorbance at 280nm was used to determine protein elution from 

the column. 

 



22 

 

Binding Assay II: Gel Shift 

 

 In order to validate the results determined by gel filtration assay, native gels were used to 

examine the binding of Sec6/Sec9 in their native structures. 10 µL samples were prepared, with 

each protein at 10 µM concentration, in potassium phosphate buffer (10 mM K2PO4, 10 mM 

KH2PO4, 140 mM KCl; pH 7.4). Complex samples were incubated for 24 hours at 18°C; control 

samples were prepared fresh just prior to gel loading.  

Native gels (6% polyacrylamide) were pre-equilibrated at 4°C by running in 1X native 

gel buffer (10.75 mM imidazole, 8.75 mM Hepes; pH 7.4) at 30 mA for 15 minutes. A 2 µL 

volume of 6X native gel loading buffer was added to each sample prior to gel loading; 12 µL of 

each sample was loaded into gel wells (at the bottom, to prevent curved bands).  Gels were run at 

4°C for 45 minutes at 30 mA, then stained with Coomassie Blue to visualize the proteins. 
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RESULTS 

 
 

 

Purification of Sec9 9KAKR Mutant 

 

 The 9KAKR mutant was grown in E. coli, and the lysates purified over three preparatory 

columns using FPLC: an 85mL Q Sepharose column, a 35mL phenyl sepharose column, and a 

MonoQ 10/10 preparatory column. Several peaks were eluted from the Q Sepharose column 

(Figure 8); fractions corresponding to peak #5 (Figure 8, blue box) were pooled and prepared 

for loading onto the phenyl sepharose column as described in Methods.  

 

 

 

 

 

 

 

 

 

 

 

Three main protein peaks were eluted from the phenyl sepharose column (Figure 9), and 

fractions corresponding peak #2 (blue box) were pooled and prepared for loading onto the 

MonoQ 10/10 as described in Methods.  

Figure 8. Purification of 9KAKR, Column #1. This figure illustrates 

the chromatograph obtained from eluting the 85mL Q Sepharose 

column.  Fractions corresponding to peak #5 (blue box) were pooled 

and prepared for loading onto the phenyl sepharose column.   

1 

2 3 4 

5 

Fractions pooled 
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Two peaks eluted from the MonoQ 10/10 column; fractions containing >95% pure 

protein from peak #3 (Figure 10, blue box) were pooled and concentrated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Purification of 9KAKR, Column #2.  This figure illustrates the 

chromatograph obtained from eluting the 35mL phenyl sepharose column. 

Fractions corresponding to the second peak (blue box) were pooled and 

prepared for loading onto the MonoQ 10/10 column.   

 

Fractions pooled 

Figure 10. Purification of 9KAKR, Column #3. This figure illustrates 

the chromatograph obtained from eluting the MonoQ 10/10 column. 

Fractions containing >95% pure protein (blue box) were pooled and 

concentrated.   

 

1 

2 

3 

Fractions pooled 
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Purification of Sec6N 

 

 Sec6N was purified over two preparatory columns using FPLC: a MonoQ 10/10 column, 

followed by a Superose 200 16/60 column. Two main peaks eluted from the MonoQ 10/10 

(Figure 11); fractions corresponding to peak #2 (red box) were pooled and prepared for loading 

onto the Superose 200 16/60, as described in Methods. 

  

 

 

 

 

 

 

 

 

 

     

 

 One main peak eluted from the Superose 200 16/60 column (Figure 12).  Fractions 

containing >95% pure protein (red box) were pooled and prepared for concentration, as 

described in Methods. 

 

 

 

 

 

 

 

Figure 11. Purification of Sec6N, MonoQ Column #1. This figure 

illustrates the chromatograph obtained from eluting the MonoQ 10/10 

column. The fractions corresponding to the second peak (red box) were 

pooled and prepared for elution over the Superose 200 16/60 column. 

 

Fractions pooled 
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Gel Filtration is Sufficient for Separation of the Complexed Proteins of Interest 

 

 A Superose 200 10/30 gel filtration column was used to analyze interactions of purified 

Sec6p, Sec9p, Sso1p, and the 9KAKR mutant.  100 µL samples of each protein or complex were 

prepared at 10 µM concentrations; then complexes were incubated at 18°C for 24 hours. The 

samples were loaded onto the column in separate runs, and eluted from the column with 

potassium phosphate buffer, as described in Methods.  Analysis of the gel filtration runs for each 

individual protein indicated that the Superose 200 10/30 column was sufficient to differentiate 

the proteins of interest (Figure 13).  Thus, the resolution of this separation technique was 

sufficient to proceed with the mixing experiments.  Note that Sec9CT (red) and 9KAKR (green) 

absorb weakly due to their lack of phenylalanine residues.  

 

 

 

 

 

Figure 11. Purification of Sec6N, Column #1. This figure illustrates the 

chromatograph obtained from eluting the MonoQ 10/10 column. Fractions 

corresponding to peak __ were pooled and prepared for purification over the 
Superose 200 16/60 column. 

Figure 12. Purification of Sec6N, Column #2. This figure illustrates the 

chromatograph obtained from eluting the Superose 200 10/60 column. Fractions with 

>95% pure protein (red box) were pooled and concentrated.   
 

 

Fractions pooled 
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Gel Filtration Assay: 9KAKR Mutant Binds to Sso1 

 

 100 µL samples of each purified protein or complex were prepared at 10 µM 

concentrations.  Samples of Sso1p/Sec9CT and Sso1/9KAKR were prepared to determine the 

ability of the 9KAKR mutant to bind to Sso1p in a manner similar to Sec9CT.  The complex 

samples were incubated at 18°C for 24 hours prior to gel filtration.  Samples were loaded and 

eluted individually.  Analysis of the gel filtration runs indicated that the 9KAKR mutant 

(turquoise) and Sso1p (green) individual proteins when mixed together (red) form a complex 

(left peak eluting with low retention volume) whose position is larger than either of the 

individual proteins alone.  The height of the 9KAKR/Sso1p complex is similar in size and mass 

to the complex formed by Sec9CT and Sso1p (dark blue, left peak) (Figure 14). 

 

 

 

 

 

Figure 13. Gel Filtration is Sufficient for Separation of 

Individual Proteins. This figure shows the difference in 

retention volume per protein tested. 
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Gel Filtration Assay: 9KAKR Mutant Binds to Sec6p  

 

100 µL samples of each protein or complex were prepared at 10 µM concentrations. 

Samples of Sec6/Sec9CT and Sec6/9KAKR were prepared in order to determine the ability of 

the 9KAKR mutant to bind to Sec6p in a manner similar to Sec9CT. The complex samples were 

incubated at 18°C for 24 hours prior to gel filtration. Samples were loaded and eluted 

individually.  Analysis of the gel filtration runs indicated that the 9KAKR mutant and Sec6p 

form a complex (purple, upper left curve) in a similar amount as Sec9CT and Sec6p (light blue, 

upper left curve) (Figure 15). 

 

 

 

 

 

 

 

 

Figure 14. The 9KAKR Mutant Does Not Disrupt Binding to Partner t-

SNARE Sso1p.  This figure demonstrates negligible differences in 

retention volume and peak absorbance for the Sso1/Sec9CT (dark blue) and 

Sso1/9KAKR (red) complexes.   
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Gel Shift Assay: 9KAKR Mutant Binds to Sec6  

  

 10 µL samples of proteins and samples were prepared at 10 µM concentrations; complex 

samples were incubated for 24 hours at 18°C.  Samples were loaded onto a 6% polyacrylamide 

native gel, which was run at 4°C to separate the proteins and complexes. Analysis of the results 

by gel shift assay indicated that the 9KAKR mutant binds to Sec6p (center red circle) and Sso1p 

(right red circle) in a manner similar to Sec9CT, as indicated by the similar mobilities of the 

complex pairs in the native gel (Figure 16).  However, 9KAKR exhibits different gel mobility 

than Sec9CT (left red circle) (Figure 16).  

 

 

 

 

 

 

 

 

Figure 15. The 9KAKR Mutant Does Not Disrupt Binding to Exocyst 

Subunit Sec6p. This figure demonstrates negligible differences in retention 

volume and peak absorbance for the Sec6/Sec9CT (light blue) and 

Sec6/9KAKR (purple) complexes.   
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Figure 16. Gel Mobility Assay. 9KAKR exhibits shift in 

mobility, but does not disturb binding to Sec6p or Sso1p. 
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DISCUSSION 
 

 

 This study aimed to examine the in vitro effects of a Sec9p ‘patch’ mutant, 9KAKR, on 

the binding of the Sec9 t-SNARE to the exocyst subunit Sec6p.  Previous work in the Munson 

lab suggested a role of Sec6p in the regulation of SNARE complex assembly at the plasma 

membrane (Sivaram et al., 2005; Sivaram et al., 2006), however, the binding site for Sec6p was 

not determined in Sec9p. The 9KAKR mutant was designed to disturb residues in a peptide 

region (Appendix B) suspected to play a role in Sec6/Sec9 binding, as suggested by cross-linking 

experiments and mass spectrometry (Munson, personal communication). The residues KAKR 

were mutated to a patch of four alanine residues in order to create an uncharged ‘pocket’ that 

would potentially disrupt binding, but not disrupt the proper folding of the protein. The mutant 

was cloned, recombinantly expressed in E.coli, and purified using FPLC, and its interactions 

with Sec6 tested in vitro using gel filtration and gel shift assays.  

 

 All protein complex samples were incubated at 18°C for 24 hours prior to analysis by 

each method. These parameters had been used in previous examinations of Sec6/Sec9 binding 

(Sivaram et al., 2005), and were kept the same for the sake of continuity. Further, the t-SNARE 

Sso1 exhibits a closed conformation that requires opening time in vitro for the binding to Sec9 to 

occur (Munson et al., 2000). Complete complex formation requires approximately 48 hours in 

vitro for these two proteins; the 24 hour incubation time was selected in order to visualize each 

uncomplexed individual protein in the complex in addition to complex assembly (Figure 16).  

 

 Gel filtration separates proteins according to their relative sizes; smaller proteins diffuse 

into the porous beads of gel filtration columns and take greater time to elute from the column 



32 

 

than larger proteins, which do not diffuse as easily. The 9KAKR mutant was not a truncation or 

expanded construct of Sec9CT, and eluted from the gel filtration column similarly to Sec9CT 

(Figure 10).  The low absorbance of the Sec9CT and 9KAKR constructs can be attributed to the 

residues in each protein; the analysis of eluted proteins using FPLC was taken at 280nm, and 

since the Sec9CT and 9KAKR constructs do not contain phenylalanine residues, they do not 

absorb well at that particular wavelength.  However, the results indicated that the gel filtration 

column provided sufficient resolution to separate the complex and individual proteins of interest 

for this project (Figure 13).  

 

 Gel filtration analysis of 9KAKR binding to Sec6p and Sso1p indicated that the 

mutations made did not disrupt binding to the partner t-SNARE or to the exocyst subunit 

(Figures 14 and 15).  In each case, the results of the complex samples for the 9KAKR construct 

were compared to the complex samples of Sec9CT. Complex formation is indicated by a shift in 

elution volume; since complexes are larger in size, they elute from the gel filtration column more 

quickly than the proteins within them. The results demonstrate that the 9KAKR mutant was not 

sufficient to disrupt binding to Sec6p or Sso1p; further, the mutant binds to Sec6p and Sso1 in a 

manner that forms the same amount of complex as Sec9CT.  

 

 Gel shift assays were used to determine the in vitro binding of 9KAKR while 

demonstrating if any structural changes occurred due to the mutations made. The data suggests 

that the 9KAKR mutant has a difference in structure, pH, or another characteristic in comparison 

to Sec9CT, as the two proteins exhibit different mobilities within the native gel (Figure 16). 
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Interestingly, there is also a shift in the formation of complex with Sso1p, again suggesting a 

change in some physical characteristic of the 9KAKR mutant. 

 

Recommendations for Future Work 

 The data collected during this project suggest that the peptide sequence of interest 

(Appendices A & B) may not be the Sec6p binding region in Sec9p. However, this conclusion 

should be considered carefully due to the significant shift in mobility of the 9KAKR mutant as 

compared to Sec9CT in the gel shift assays performed.  Should interested parties wish to pursue 

this mutant further, structural analysis (ex. circular dichroism) of the 9KAKR construct should 

be performed to analyze its native structure. This analysis would shed light on the construct’s 

conformation and enable the determination of whether the mutations made disrupted proper 

folding.  Other possible binding sites in Sec9p should also be pursued, as it is possible that other 

residues in the peptide region are more influential in binding to the exocyst. It may also be 

possible that the peptide region itself is wrong – examination of other regions in Sec9p should be 

undertaken as well. 
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Appendix I. Amino Acid Sequence of Sec9p 

 

 
Note that the highlighted peptide region (QRKNVLEKAKRY) was the region of interest for the 

Sec6/Sec9 binding site. 

 

 
MGLKKFFKIKPPEEATPEQNKDTLMELGISVKNPSKKRKE KFAAYGKFAN 

DKAEDKVYAPPGYEQYARPQDELEDLNASPLDANANEATAGSNRGSSGTQ 

DLGNGAESNSMQDPYAIENDDYRYDDDPYARFQANKSNGRGSVNAAPYGD 

YGGGYNGTSLNSYNNDGPYSNQNTSNSWVNANGRNSLNHSNSTLNVGPSR 

QTRQPPVSTSTNSLSLDQRSPLANPMQEKRNPYADMNSYGGAYDSNTNRS 

SGTRQGSSKNANPYASMANDSYSNGNLNRSANPYSSRSVRQPQSQQAPMT 

YTPSFIASDEAARNSEVDLNEEPRTGEFDFEEVYADKSAENRAALDEPDL 

NAVMTNEDSIDLNASEVDHSSRQQQQQQWFMDEQQQQQQHFNATNNQYGD 

QRGYKTFEEIQKEEEARQQQEEDEAVDEIKQEIKFTKQSSVASTRNTLKM 

AQDAERAGMNTLGMLGHQSEQLNNVEGNLDLMKVQNKVADEKVAELKKLN 

RSILAVHVSNPFNSKRRRREREEQLKNRKI EEKLMREQTSQQLSQSTQRI 

EGAMNANNNISEVRERYQRKNVLEKAKRYQFENDEEDDEMELEIDRNLDQ 

IQQVSNRLKKMALTTGKELDSQQKRLNNIEESTDDLDINLHMNTNRLAGI R 
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Appendix II. Amino Acid Sequence of Sec9CT 
 

 

Note that the highlighted peptide region (QRKNVLEKAKRY) was the region of interest for the 

Sec6/Sec9 binding site. 

 

 

MARQQQEEDEAVDEIKQEIKFTKQSSVASTRNTLKMAQDAERAGMNTLGMLG

HQSEQLNNVEGNLDLMKVQNKVADEKVAELKKLNRSILAVHVSNPFNSKRRR

REREEQLKNRKIEEKLMREQTSQQLSQSTQRIEGAMNANNNISEVRERYQRKN

VLEKAKRYQFENDEEDDEMELEIDRNLDQIQQVSNRLKKMALTTGKELDSQQ

KRLNNIEESTDDLDINLHMNTNRLAGIR 

 

 


