TRACKING TESTING
FRAMEWORK

A Major Qualifying Project submitted to the Faculty of the Worcester
Polytechnic Institute in partial fulfilment of the requirements for the Degree of
Bachelor of Science on March 17, 2014

Submitted By: Michael Burns, lan Lukens, Christopher McAndrews
Advised By: Professor Elke Rundensteiner
Sponsored By: BAE Systems

Sponsor Liaisons: James Costa and Keith Pray

Abstract

For this project the team created a testing framework for the tracking and fusion domain. This
framework allows for automated testing of tracking engines and integrates with the Jenkins continuous
integration server. The framework has components that generate truth data, add error to the truth to
create modeled data, transform the modeled data into an estimate of the truth, calculate metrics by
comparing this estimate to the actual truth, and display the metrics in a human readable format on
Jenkins. The team also produced a user guide that provides documentation and instruction for use of

the framework.

Executive Summary

Our project was to design a testing framework for tracking and fusion engines. In order to do
this, the team researched tracking engines, specifically sensors, different tracking algorithms, the
Kalman filter, and generic problems with tracking. The team then established some useful metrics for
the tracking domain. Also, the team researched good testing procedures and applied these practices to
the testing framework. Additionally, the team did background research on several open source tools

including Jenkins and the Simulation of Urban Mobility (SUMO) traffic simulator.

Our design philosophy has sections that correspond to the different components of the testing
framework. This includes the data structures our framework uses, the traffic simulator we use to
generate truth data, and the error generator we created to manipulate that data. Next, follows sections
about the different tracker implementations we wrote to validate our framework, the truth association

algorithms involved, and the metrics implemented and displayed on Jenkins.

The paper concludes with a discussion of possible extensions to the framework and different
avenues to explore. Some ideas are using more realistic sensor models, a more complex tracking engine
utilizing Kalman filters to predict movement, live streaming of data, and more realistic truth association
algorithms. Finally, we have included the User Manual for BAE Systems which specifies how to use the
framework’s features as well as how to extend the framework. Also included is a test plan that explains

how we validated our framework.

Acknowledgements

The group would like to offer our thanks to the following people and organizations that assisted
and supported us throughout our project, which led to the successful completion of this Major

Qualifying Project.

e Elke Rundensteiner for advising our group and providing helpful feedback throughout the
project.

e James Costa for educating us on the Tracking and Fusion domain as well as guiding us on our
presentations and paper.

e Keith Pray for educating us on the Tracking and Fusion domain as well as guiding us on our
presentations and paper.

e BAE Systems for giving us the opportunity to work on this project.

Table of Contents

Y o1 - [t O PSPPSR P RO VOTTOPPRTR 1
EXECULIVE SUMIMIAIY ittt e e ettt et e e e e e et e et e e e e e s e btbeeeeeeeeesaanbbaaeeeeesesannnsnaaaeesssnan 2
ACKNOWIEUZEMENTS.eiii ittt e e s et e e e sttt e e s s bteeessabteeessbtaeeesasteeessnstaeessnsseeessasseeessnse 3
TADIE OF CONETENESeieeetee ettt ettt e s bt e s bt st st s bt e bt e s beesbeesme e eate et e enbeesaeesanenas 4
LI o] Tl Y T T T 6
LI o1 1ol Y il =L TV F= o T o L3 7
INEFOAUCTION .ttt ettt et e e s bt e e be e e s at e e s abe e e sabeesabeesaseeesabeeeseeesnbeesaneeesareenn 8
2ol 4= {4 o TU 1o o USRS 9
LI 1oL = PRSPPI 9
YT 01T o] TP ST TP PP PO PPPRTOPPPRPTOR: 9

LN T0 =g N F=doT 1 o[o SR 11

THE KalIMan FIlEEE c...eeeiiieee ettt et ettt st st e b e beesbeesbeeemeeeneeennean 13
Problems With TraCKiNg......cocuiii i e e e sbee e e s st e e e e sbee e e e s beeeeesareeas 14
IVIEETICS ettt ettt e ettt e sttt e s ettt e e e b et e e s e bt e e e s sabe e e e s e be e e e s e be e e e s e re e e e e e reeeeeenreeeesanreeeesanee 16
Identifying @ USEfUl MELIIC ..ouviiii e e e e e e e e e sareeas 17
Established tracking METIICScocuiiii i et e e tee e e et e e e e eabae e e e s beee e eeareeas 18

I X1~ N 21
I3 T Tl o o Tot =T U SR PRPRRNE 21
TESHING FrAMEWOTK .. e et e e s et e e e e st e e e e s sbeaeeesntaeeesstaeeesanraeassnnes 22
TrATFIC SIMUIBEOT ..ttt et sae e eee e e s 22
JENKINS 1.ttt b e b e s bt s a e e a bt et e e bt e e bt e eheeeab e st e e bt e be e be e beesaeeeateentean 24
2T 00] oTo o B OO TP P OPR RPN 25

B LT F=q 0T 2] a1 e 1YoT o] o1V 2SS 26
Data STIUCTUIES ..eviiiiiiiiii it a e e b s e e s saba e e s sanes 27
TrafIC SIMUIBTON ..ttt et s e st st e b e b e b e smeesaeeeneeenneen 28
o] gl CT=T g T=T = o PP PPPTPPPTRN 29
TrACKET INTEITACE ...ttt ettt et e b e e s he e sae e s ab e e be e bt e b e e s bt e sbeesaeeeateeneean 30

Lo L= o Y =Tl =T SRR 30
Parameterized TraCKe .. .o . ei et e e esne e e nnnes 31
Truth ASSOCIAtION INTEITACEiiiieeee et 31

Implementation of Truth Association INtErfacecooceviieciei i 32

How the Truth Association Interface is used in the frameworkccoceeeiiiriiiinnn e, 33
IMEEIIC INEEITACE ..ttt sttt ettt b e s bt e s et e st e s bt e bt e b e e s beesmeesmeeenseenneen 33
LiSt Of INCIUAEA IMETIICSentieeeieetee ettt st sttt e b e sae e s s b s b e b enns 34
JENKINS PIUGIN ..ttt e et e e e et e e e s ebt e e e e e bteeeseabteeeeeastaeeesastaeeesstaeeesntaeeesansanassnes 38
FULUIE EXTENSIONS .eiieeiee ettt ettt ettt e sttt s et e st e e s e e e s an et e e s am et e e s e nre e e s e nreeesenreee s e nrenesenrenes 39
CONCIUSION .ttt sttt e st e s be e e s ab e e s bt e e sabeesabeeeabeeesabee e bbeesaseesabeeesabeesabeeesnseesanaeesareenn 41
211 o] [Te} = =T o] o1 TSP 43
FN oY1= g Yo [P N W YTl 1V, = o U - SR 46
F YT 1< oY [P = T =T o - o TSR 69

Table of Figures

Figure 1: Layers of Abstraction from Raw Points to Fused Tracks.......cccccevrcieeiiiiiiieiniiiee e 12
Figure 2: Tracking Engines Predict NeXt State ...t 13
Figure 3: Kalman Filters Maintain Multiple HYpotheses..........ccooiiiiiiiiiii i 14
Figure 4: Tracks Crossing and SPIIttiNgGeccuieiiiiiiiiieie e e s e s e nree s 16
TV T - [o U ¢ Al o1 =1 o o PO PSP 16
Figure 6: EXample SUMO NETWOTK ..oc.eviiiieee ettt e et e e e e e sarae e e ennaee e enareeas 23
Figure 7: Components of the FrameWO Koccuuiiiiiiiiiiiieee ettt e s e s bee e s s 26
FIGUIE 8: POSITION SKEW ...eiiiiiiiiieiiiieeeitee e itee ettt ettt e e et e e et e e e st be e e e s bbeeeesnsbaeeessbeeeseabeeesannseeessnnsens 29
FIBUIE O: POSITION BiaS ..ciiiiiiiiiiiiiiiiiiiiiiiiieieieeeeeeeeeeeee et e e e e e e e e ee st e eeeeeeee e e e eeeeseeeseeeeeeeeeeeseesesaeeeseseeeeeeeeeeeeeanaees 29
=V I O R A I =T o [T Y -{ PP 30
FISUIE 11: POINT DIOPPING ..vvvtetteiiiiiiiiitteeeeeeseiirteeeeesessetbtteeeeesssssuaabereaeeesssasssseaaaeeessssssssssnaeeeesssnsssseseeees 30
Figure 12: Example OULPUL ON JENKINS ...oiieiiiee et e et e et e e e e abee e e eenreeas 41

Table of Equations

EQUAtION 1: ACCUIACY IMBIIIC .ceiiiiiiiiiiteiie ettt ettt e ettt e e e e s et e e e e e e e s saaanreaaeeeeessanannneneeeeas 34
Equation 2: AsSignmeNnt ACCUIaCy IMEIIICuuuuuiiiiieiii ittt et e e e e e e st e e e e s e s anreeeeeeas 34
EqUation 3: FalSe DiSCOVEIY RATEcccccuiiiiiiiiiee e ettt e ettt ettt e e e sttee e e s etee e s e ate e e s e atee e e eabaeeseataeeeenneeeeennsenas 35
Equation 4: False INCIUSION RATEuiiiiiiiiiiiiiee ettt et e e st e e e s abe e e s s e e e s enbeeesenareeas 35
Equation 5: Matthew’s Correlation COEffiCientoocuiiiiiiiiiice e 36
Equation 6: Negative Predictive ValUe............eii ittt e et e e e e e e e e e e eareeas 36
Equation 7: POSItive Predictive ValUe ...ttt e s s e s e s e s s 36
o TV N aloT oI T o T=Tol 1 ol Y 2P 37
EqUation 9: Target EffECHIVENESSoiic et e st e e et be e e e e abe e e s e are e e s enaeee e enareeas 37
o[V N a o] o I (O N - Vol [U 4 Y PP 37
Equation 11: True INCIUSION RAtEciiiuiiiiiciiee ettt ee e et e e e st e e e s tbe e e e s abee e s enbeeesennseeas 37

Introduction

The motivation for this project was to develop a simple way to automatically test tracking and
fusion engines. Our team developed a framework called the Tracking Testing Framework. Trackingis a
complex domain that requires algorithms that match measured data from sensors to accurate
approximations of reality. In order to validate tracking engines, it is useful to use testing simulations as
this allows users to save time by being able to perform tests without expending resources on acquiring
real world data. A desirable feature of the framework was that it interfaces with a continuous
integration server, such as Jenkins. The purpose of the framework was to provide feedback based on
defined metrics. Metrics are numerical values calculated from simple measurements. The purpose of
these metrics is to examine specific behaviors of a tracking engine. In order to validate each metric and
the framework, our team developed a JUnit test suite that exercised the metrics and the components of
the framework. Through this testing, our team constructed a framework that not only works with
simple simulated data, but also can accept input from real world exercises, provided that the data
conforms to our data structures. In order to make the system maintainable for future users, a
requirement for the project team was documentation. To this end we created a user guide document
(Appendix A - User Manual) which outlines basic use cases of the framework as well as how to extend
the framework’s functionality. The user manual supplements the source code, which contains extensive

Javadoc comments and further internal, clarifying comments.

Background

By implementing an automatic and prompt feedback loop for changes to a tracking engine,
engineers can more easily make improvements to the software. In order to show how a testing
framework for tracking engines could improve their design, this chapter reviews general tracking
methodology, the problems that occur in tracking, research on the usefulness of performance metrics,
and software testing procedures. The chapter concludes with background information on traffic

simulators and continuous integration servers.

Tracking

In this section we describe the basics behind tracking and its principles. We begin with an
overview of tracking sensors and the different factors that influence their readings. We then discuss the
use of tracking algorithms for interpreting sensor data and the common issues that tracking engines

encounter.

Sensors

Tracking builds on sensor systems based on radar, sonar, electro-optical, or infrared readings
(Blackman, 2004). The two types of sensor groups are passive and active sensors. Passive sensors
measure energy that is naturally available. For example, a microwave radio meter is a passive sensor
(Government of Canada, 2014). An active sensor is one which produces the energy that it detects. In
general, an active sensor works by propagating a wave outward, and the wave eventually reflects off
some target (Skolnik, 2008). The reflection’s composition is largely variable on the target, and
consequently, using sensors well depends on the analysis of the data they produce. Ideally, a reading
returns a perfectly isometric reflection, a radial output equal in all directions clearly indicating the
target’s exact position. However, in practice, reflections have unbalanced readings, referred to as

scatterings, which occur due to differentiating size in objects, multiple reflection sources on a single

object, or inaccurate equipment. Once the scattered wave returns, sensor readers compare its energy
strength against the outputted wave to determine characteristics of the target. A tracking system then
uses this information to identify targets of interest, and uses the data from the sensor to track these
targets over time. Still, sensors have many limiting factors including their response time, accuracy of

readings, and interpretation of data.

Consequently, target readings are still not necessarily useful due to signal noise - the number of
false or undesired objects picked up by a sensor, or inherent system biases. For example, radar sensor
systems must account for noise since any metal object or even other radar waves can cause noise.
Noise handling begins with trying to reduce noise at its source by adjusting the gain on a reader
(Toomay & Hannen, 2004). This affects sensor sensitivity by reducing or increasing the number of
readings a sensor perceives. For example, upping the gain on a sensor will allow it to sense more
objects, but also increase the noise or false positives of objects. Conversely, decreasing the gain will
reduce noise but can end in no object readings or missed objects. Along with gain manipulation, most
sensor algorithms use target thresholds, also known as gates, to filter out noise readings. The
specification of these gates considers the specific environment of the sensor and the objects the user

wants it to identify.

In addition to noise, sensors can have issues with poor resolution. Resolution refers to how far
apart objects must be before they can be identified as separate entities (Skolnik, 2008). With poor
resolution, the track of one object can seemingly turn into two separate tracks instantaneously; which is
problematic for tracking algorithms. However, a high resolution means more possibly superfluous data
input, so consequently, resolution varies depending on a sensor’s purpose. For example, weapons
tracking radar can have resolution of a few yards, but search radars might have a resolution of several

miles (Wolff, 2013).

10

Once a sensor identifies a desired target, radar systems extrapolate useful information about
the target from the sensor reading (Wolff, 2013). In radar systems, the most accurate data a sensor can
give is the slant range, meaning the distance from the sensor to a target. Using the speed of light and
the time of the wave’s round trip, a sensor can yield a precise distance measurement. Sensors also
estimate the radar cross section, an estimation of the target size. This size estimate corresponds to the
target’s components that reflect radio magnetic waves, but does not necessarily correspond to the
actual size of the object. Furthermore, a sensor reading gives a radial velocity, the general speed of the
object in relation to the radar. Although accurate, the radial velocity is not final in determining the
direction of the target; this requires the angle of motion (Skolnik, 2008). A sensor can read the angle,
but a slight inaccuracy produces a large area of uncertainty due to the typical distance between the

sensor and the target.

As a final note, different sensors are better suited for identifying different attributes of objects
(Wolff, 2013). For example, using a small, vertical radar wave typically yields a more precise elevation
reading than horizontal radar waves. For the best results, one would want to use multiple sensors to

form the most accurate tracks.

Tracking Algorithms

The next step of tracking is to interpret sensor data. Sensors collect large amounts of diverse
information including background clutter, hardware errors, thermal noise, and finally, targets of interest
(Blackman, 2004). With so much ambiguous data collected by the sensors, proper tracking requires
advanced algorithms to interpret it. Tracking algorithms analyze the sensor data making estimations of
different tracks for the targets of interest the algorithm identifies (Wolff, 2013). A track is a series of
reports corresponding to a single object. The tracking algorithm links tracks, which contain additional

information collected by the sensors. Using the last estimated positions and tracks and contrasting

11

them with any newly generated information, a tracker updates and checks its targets, always fulfilling
certain criteria to attempt to build realistic and accurate tracks. During the creation and analysis of
tracks, algorithms use data fusion, the process of combining simple data into more advanced, and useful
information. This helps to pool either sensor data or multiple tracks into a single aggregate track. See

Figure 1 for an illustration of this process.

Sensor 1 Fused Track Tracker 1 Fused Track
® rS
ry ~ °
r, TY—
t1

Figure 1: Layers of Abstraction from Raw Points to Fused Tracks

Fusing data depends mostly on the concepts of association and state estimate fusion (Chong,
Chang, More, & Barker, 2000). Association is the linking of various reports from sensors and accurately
identifying if tracks or readings refer to the same or different objects. The state estimates are the
estimations of an object’s movement. They refer to the status of assumptions made by previous
estimations that then affect future estimations. In other words, they hold the certainty of different
states and the assumptions used to make them. These become especially significant when state
estimates have correlations between different data states. In particular, a distinction arises when data
fusion occurs between tracks rather than reports because the creation of different tracks is likely
associated due to using algorithms with similar assumptions. Therefore, any assumptions made by
fusing engines need to account for such dependencies and covariance between data and consequently

keep certainty correspondingly lower than if there were no such correlation.

When a sensor identifies data that the tracking algorithm deems unassociated with a previous

track, the algorithm creates a new track (Wolff, 2013). As more readings come in, this new track will

12

either lengthen or the algorithm will discard the track as noise. This method helps generate a better
picture of the actually relevant data. The intake of data also allows the software to generate further
predictions about the targets’ attributes and future movement (Figure 2). More advanced algorithms

will take these predictions into account when taking in other readings.

A 4
=

Figure 2: Tracking Engines Predict Next State

The Kalman Filter

Trackers use many different algorithms and equations, but the one that we will focus on in this
paper is the Kalman filter. Most modern tracking systems that utilize radar use the Kalman filter (Wolff,
2013). The Kalman filter is a proposed solution to understanding discrete data gathered over time, such
as sensor data, and uses a system of mathematical equations to remove extraneous noise or outlier
data, such as sensor noise (Bayoumi, 2012). The purpose of the Kalman filter is to establish values closer
to the truth from unclean and uncertain data. The Kalman filter also allows estimations of past, present,
and future readings. The key basis of the Kalman Filter is that it assumes the relationship between data
is linear and Gaussian distributed. By applying a linear operator to each new reading while factoring in
its previously predicted state, the Kalman filter measures any new possible associations and then
updates its state accordingly while also keeping track of its own uncertainty (Wolff, 2013). Covariance

matrices represent this uncertainty.

Covariance is a measure of the correlation between two variables, and in the case of its use for

tracking, the Kalman filter derives covariance from the variation that could be present in sensor

13

readings. A matrix encapsulates the uncertainty of covariance in each dimension. This allows further
extrapolation of the given sensor readings to produce an area of uncertainty around a sensor’s reported
location. This area is important to consider since any changes can greatly affect how the sensor data
gets interpreted (Figure 3). Tracking this area is necessary to allow Kalman filters to make accurate

predictions due to the unreliability of sensor readings.

Sensor 1 Sensor 1 Sensor 1

Figure 3: Kalman Filters Maintain Multiple Hypotheses

Uncertainty is particularly important for Kalman filter, because once they run long enough and
collect enough data, the math can become over-confident in its own predictions rather than relying on
sensor data (Wolff, 2013). Therefore, it is necessary to keep a proper weight between the Kalman

filter’s data and the sensor data.

Problems with Tracking

Despite advanced algorithms and highly technological sensors, tracking still has failure cases.
One major issue is the need for timeliness. Although a tracking algorithm could theoretically take in
gigabytes of data at once and painstakingly check every possible association upon each update, limiting
factors of time and computing power factor in (Wolff, 2013). Therefore, a need for quicker algorithms
develops, and to make it faster, something must be lost while still maintaining accuracy. Subsequently,
this creates the dilemma of labeling part of the algorithm superfluous. Should the algorithm throw out
more readings as noise? Should it reduce the amount of different possibilities for tracks it keeps in

memory or reduce the area of uncertainty to cut down on different possibilities altogether? To help

14

answer these questions, it is important to know the specific problems trackers encounter. These issues
include high false alarm rates with sensors, target fading, sensor uncertainty, unpredictable maneuvers,

confusion events, radar jamming, and non-uniformly distributed clutter.

High false alarm rates occur when a sensor detects too many objects, either due to natural
interference or imprecise sensor settings. Altering the gain on the radar or identifying interference

patterns can help alleviate this issue (Toomay & Hannen, 2004).

Target fading occurs due to either change in a target’s detectability or inherently low target
detectability. Targets will disappear and reappear between sensor readings, so the tracking algorithm

must keep a larger memory of tracks rather than instantly discarding those that end abruptly.

Sensor uncertainty means that tracks will also have a larger covariance, and more track options
will exist in a given data set. A tracking algorithm in this scenario must accurately acknowledge the

resultant uncertainty of its own assumptions.

Unpredictable target maneuvers hinder a tracking algorithm’s ability to estimate future motion.
To account for this, a Kalman filter applied to unpredictable targets ought to give more weight to sensor

readings.

A confusion event concerns junctures when sensor data creates an extremely ambiguous
situation. One example is target crossing. This occurs when two tracks appear to cross from data
reports. Due to the incremental updates of sensors, it is unclear whether the two objects on these
tracks crossed paths, as in both continuing on their course, or split, meaning that they essentially met at

a point and then turned away from each other. Figure 4, below, shows an illustration of the issue.

15

T T.
2 T, 2

Cross Split

Figure 4: Tracks Crossing and Splitting

Starbursts are similar problems that occur when tracked objects split into multiple, smaller
targets (Figure 5). In this situation, a tracking algorithm must create new tracks seemingly out of

nowhere.

T‘1
.\.\. >

Starburst

Figure 5: Starburst Pattern

Radar jamming is when some external factor is blocking sensor readings. It has similar

repercussions as target fading.

Non-uniformly distributed clutter refers to the noise or unwanted feedback a radar receives. As
previously stated, there must be a delicate balance between allowing noise and discarding it for tracking

to be useful.

Metrics

In this section we discuss metrics and how they can be used for analyzing a tracking system. The
first section describes the characteristics needed for a metric to be useful, and the second section

describes metrics used in evaluating the performance of tracker engines.

16

Identifying a useful metric

The main purpose of analytics is to measure progress towards a goal (Yoskovitz, 2013). Metrics
are one of the tools used in analytics to help evaluate progress by creating sub-goals. A metric itself is a
formal standard or goal that ought to be met to indicate success, and by using a combination of metrics,
people are able to analyze what they did well and what they need to improve in order to meet their

goal.

To identify a helpful metric, one must leverage knowledge of what success means and an
understanding of how to succeed. The goal of tracking is to accurately track objects. A simple ratio of
the right answer over wrong answer, although a useful metric, paints a very general picture of possible
problems without a direction on how to improve. If a tracker returns a fifty percent accuracy rate for
identifying tracks, the only assumption is that the tracker is working poorly. However, this does not
begin to answer why. Is it sensor noise or too much sensor uncertainty? Do the tracks cross too much,
or do objects keep fading? Perhaps the algorithm simply makes bad assumptions. By gathering more

data and calculating additional metrics, these questions start becoming answerable.

A useful metric is actionable (Yoskovitz, 2013). This means that a metric should create a
feedback loop whereupon receiving its value, a person takes some appropriate response. The better a
metric is, the clearer it is what this response should be. For instance, after receiving a low grade on a
calculus exam, a student might respond with study more, but if the metric were a low test grade on
areas that covered integrals, the student would know to specifically study more integrals. A metric is
not always perfectly clear in the actions needed to improve it, but it does create a starting point for

exploration and problem solving.

A useful metric is also comparable (Yoskovitz, 2013). This means that people can compare the

values of a metric over time. This way, people can graph metrics to show progress, decline, or no

17

change. Often times, this means that most metrics are quantitative, standard number formats that

improve either the higher or lower they get. Such comparisons are useful for analyzing progress.

The last important note on metrics is that they do not always mean what people might first
think. Like all tools, metrics can have faults. Specifically, correlation does not imply causation. When
analyzing metrics, it is always good to find the cause of problems as this then allows someone to fix
them. However, metrics are sometimes limited in their analytical power, and people should not follow

them blindly. Each metric and metric reading is different and greatly depends on the context behind it.

Established tracking metrics

Previous studies have established useful tracking metrics. The difficulties with these metrics
arise due to the complexity of a standard multi-part tracking system. Within a complete system, there
are sensor uncertainties, noise, track impurities, and reading interpretations that all affect the output of
the tracking engine. In theory, the correct result from a tracking engine is not necessarily one that
accurately identifies a track when accounting for these issues (Smith, Register, Blair, & Levedahl, 2010).
Consider the situation where a tracker correctly identifies an object despite the presence of a lot of
noise. Although this seems like a useful reading, this may lead the algorithm to incorrectly disregard
objects that it perceives as extraneous noise in future cases. Situations like this necessitate the use of
advanced metrics with multiple simulations and evaluations to provide useful feedback. To this end,
there are two subcategories of metrics: measures of effectiveness and measures of performance. A
measure of effectiveness analyzes the algorithms and processes used to arrive at a conclusion while the
measures of performance focus on the results. From our studies, it appears most established tracking

metrics fit the measure of performance category rather than measure of effectiveness.

Typically a tracking metric is derived from using ground truth data and simulating a sensor

reading from the truth data (Smith, Register, Blair, & Levedahl, 2010). This simulated sensor reading is

18

entered into the tracking engine, and its output gets compared to the truth data. Through this
comparison, four general categories of data interpretation arise: true inclusion, true exclusion, false
inclusion, and false exclusion (Canavan, McCullough, & Farrell, 2009). True inclusion refers to a sensor
data point correctly identified within a track. True exclusion refers to a sensor data point correctly
excluded from a track such as noise or a separate track. False inclusion refers to any noise or incorrect
data points wrongly included in a track, and false exclusion denotes data points left out of a track that
should have been included. Although the determination of these four categories still has inherent
imprecision to account for simulated area of uncertainty, they allow creation of a decent array of
general performance metrics as defined in the paper by Canavan, McCullough, and Farrell and

represented in Table 1.

19

Metric Description Calculation

Track Purity The percentage of correctly Ti
included points divided by the TI+ FI + FE
total included points plus the
wrongly excluded points

Target The number of correct TI

Effectiveness

inclusions divided by the size of
the fusion track set

Size of data set

Assignment The number of correct Tl
Accuracy inclusions divided by the size of TI+TE + FI + FE
the truth track set
Accuracy The number of correct TI+TE
inclusions and exclusion divided TI+TE + FI + FE
by the total size of the track set
Specificity The number of correct TE
exclusions divided by the TE + FI
number of correct exclusions
plus the number of false
inclusions
Positive The number of correct T1
Predictive inclusions divided by the FI +TI
Value number of correct inclusions
and exclusions
Negative The number of correct TE
Predictive exclusions divided by the TE + FE
Value number of correct inclusions
and exclusions
False Discovery | The number of incorrect FI
Rate inclusions over the number of FI +TI

inclusions

Matthews Machine learning classification (T *TE) — (FI * FE)
Correction of binary inclusion systems (i.e. \/(m + FI) % (TI + FE) = (TE + FI) * (TE + FE))
Coefficient included vs. excluded)
True Inclusion | The true inclusions divided by TI
Rate the true inclusion plus the false TI+ FE
exclusions
False Inclusion | The false inclusions divided by FI
Rate the false inclusion plus the true FI+TE

exclusions

Table 1: Example Metrics (Tl = true inclusion, TX= true exclusion, Fl = false inclusion, FX = false exclusion)

20

Despite the extensiveness of these calculations, like all metrics, they require appropriate

understanding.

Testing

In this section, we describe good testing practices required when evaluating a software system.

Testing Procedure

The first part of creating any test is planning (Spillner, Linz, Rossner, & Winter, 2012). During
planning, the testers should provide a detailed testing procedure document that explicitly outlines the
purposes of tests and their execution. These testing purposes are called testing requirements that the
actual tests must fulfill. This phase includes analysis, design, and evaluation of exit criteria and leads to
the eventual derivation of test techniques and strategies. Two of the most important aspects of testing
are purpose and role. Since exhaustive testing is usually impractical, the tests that the testers run must
be high priority tests that serve specific and useful functions within the testing framework. During
planning it is also important to note the different process phases within the software and the amount of

control over different program aspects.

After the analysis and design phase comes implementation and execution (Spillner, Linz,
Rossner, & Winter, 2012). Testers create concrete test cases derived from logical test cases and execute
them. This involves using a test oracle of expected results and comparing them to actual results. All test

failures must have a clear origin or be traceable.

However, execution does not imply completion in this case. A large part of testing is analyzing
results, improving tests, and retesting. This is why it is important for tests to have sufficient reporting
on their results for further analysis. The main evaluation of the software starts with asking what the test
results mean. After that, testers decide if the results are okay or if the software needs improvement.
Besides evaluation of the software, testers ought to evaluate the tests themselves. For example, if test

21

results show inaccurate specification, testers must improve their techniques to generate better results.

Most testing results in software improvement and further testing.

Testing Framework

In this section, we discuss the tools we researched in order to create a suitable testing
framework for our metric simulations. In the first section, we discuss our process for finding a suitable
traffic simulator, and in the second section, we provide an overview of Jenkins, the integration and

testing server we used. Finally, we discuss an alternative to Jenkins known as Bamboo.

Traffic Simulator

In order to test our tracking framework, we need to generate realistic data that the framework
can use as input for the different trackers. For the sake of simplicity, we decided to limit our simulated
data to two dimensions, removing altitude as a variable. With the goal of our simulation confined to
two dimensions, we decided that traffic simulators would be a reasonable solution. Implementing a
traffic simulator from scratch is beyond the intended scope of this project, so our group decided to

utilize available open-source traffic simulators.

The first traffic simulator that our group investigated was a “Microscopic Traffic Simulator”
developed by Martin Trieber. It fit many of our requirements, in that it was open-source, developed in
Java, and could simulate different road scenarios. However, the main purpose of this traffic simulator
was to demonstrate the “fundamental issues of traffic dynamics rather than simulating specific road
networks” (Trieber, 2011). Unfortunately, our goal was to find a traffic simulator that focused on
individual vehicles, rather than the traffic system as a whole. Additionally, this simulator turned out to
not be very extensible, and it would have required a significant amount of development work in order to
get the desired output from the simulator. As such, our team decided to use the SUMO traffic simulator

instead.

22

The Simulation of Urban Mobility (SUMOQ) is “an open source, highly portable, microscopic and
continuous road traffic simulation package” (Sumo Wiki, 2013). Our team ultimately decided to use
SUMO because it has many important features. For example, SUMO can be executed from the
command line, so our tests can automatically run SUMO simulations without any real-time input
required. Additionally, the output of SUMO simulations can be saved to a file, which we can then use as
input for multiple tests, making it possible to have predictable test results when we are evaluating our
trackers and metrics. The simulations themselves are also highly customizable. It is possible to select
the road configuration used in the simulation. For example, the simulation can involve a single road, or

two roads that cross each other (Figure 6).

Figure 6: Example SUMO Network

23

Additionally, the number of vehicles per simulation is variable. These customizations make it

very easy to test our trackers and metrics on different scenarios.

Jenkins

Jenkins is an open source continuous integration server that allows teams of software
developers to work quickly and efficiently (Kawaguchi, n.d.). A more concrete definition of continuous
integration is that it is a process in which members of a team make contributions to a project daily (or
even more often) and automated builds and tests validate and verify each contribution (Fowler, 2006).
This helps ensure that changes to a build do not cause any new errors and also gives results of tests per
build iteration. Jenkins helps to accomplish a continuous integration environment by handling the

automated build and test process described above.

Jenkins is also highly customizable (Moser & O'Brien, 2011). Jenkins allows developers a great
deal of configuration options in many different aspects of continuous integration. It allows the
developer to specify versions of Java Developer Kits (JDKs) to use when building the project. Jenkins
also is flexible with its build options and supports automated Ant builds, or integrating with Maven to
execute build goals. As both Maven and Ant can set automated testing goals, Jenkins is popular for
utilizing test driven development, and it is easy to setup. Jenkins further promotes continuous
integration by working with popular source control systems such as Subversion (SVN) and Git to start
automated builds by probing the source control for changes. At the conclusion of the build process,

Jenkins allows communication to the team via test results by email, IRC, RSS, or a Jenkins web server.

In addition to these basic functions, Jenkins supports extensions via plugins (Kawaguchi, n.d.).
Plugins extend the functionality of Jenkins at over one hundred possible extension points allowing for

customization of nearly all aspects of the system. Plugins add a great deal of options to Jenkins such as

24

adding more graphical user interface options or customizable build options. Using plugins, a user can

graphically display test output for all their builds and tests.

Bamboo

Another tool that is popular for continuous integration is Bamboo. Bamboo is a continuous
integration server made by Atlassian. A common use for Bamboo is to automate the build process and
run tests to validate each developer’s contribution to a shared code base. Some of the key features of
Bamboo are its strong integration with JIRA, an issue tracking tool to aid in code development, stronger
integration with Git, such that it can automate merging, and a better method of deploying the finished
product to customers. Bamboo also includes a great deal of customization in order to support different
project sets and build goals that an end user can specify. Unfortunately, Bamboo is not open source,
and licenses for the system have a monetary cost. However, Bamboo has a feature to import quickly
from Jenkins, so teams can opt to use it in the future if the monetary cost makes sense (Atlassian:

Bamboo, 2013).

25

Design Philosophy

According to Joshua Bloch, “an interface is generally the best way to define a type that permits
multiple implementations” (Bloch, 2008). Our overall goal when designing the framework was to keep it
flexible and extensible by abstracting specific implementations with interfaces, and using files to pass
data between the different components of the framework. In order to make the framework clear and

easily extensible, we divided the framework into several distinct, independent components.

Traffic Simulator Truth Data

Error Generator Modeled Data

Tracker Data

Metrics Suite

\)

Jenkins Plot Plugin

Figure 7: Components of the Framework

As seen in Figure 7, the components of our framework are the traffic simulator, the error
generator, the tracker interface, the metric interface, and the Jenkins plugin. Though not pictured here,
the framework also includes truth association. The framework implements the traffic simulator using
the Simulation of Urban Mobility (SUMO). The error generator is a custom built module that produces
more realistic data by introducing one or more pre-defined error types. The tracker interface allows the
framework to use any tracking algorithm, as long as the tracker implements the simple functions

26

defined in the interface. The truth association interface allows the framework to use any truth

association algorithm, as long as the algorithm implements the interface. The metric interface allows
the framework to calculate any metric, as long as the metric implements the functions defined in the
interface. The Jenkins plugin, which we did not create, allows for quick updating and visualization of

metric results because of its integration with the source code management of the development team.

Data Structures

To allow information to travel through the testing framework we created several data structures

that encapsulate the data of sensor reports and tracker output.

The first data structure, named a TrackDataPoint, mirrors a report of an object from a sensor.
This contains a time of when a sensor spotted the object, the position of the object, and a covariance
allowing for trackers to create an area of uncertainty around the point. The CoordinatePosition data
structure represents the position, which is stored as x, y, and z coordinates. Additionally, the covariance
itself is another data structure specifying a matrix of uncertainty values. The framework also adds an

identification number to each TrackDataPoint in order to help with truth association.

The next data structure is a Track. A Track is a list of TrackDataPoints and an identifying name.
A collection of Tracks makes up the main data structure used by the framework — the TrackStruct.
TrackStructs contain any number of Tracks and a unique identifying name. We extended TrackStructs to
make ErrorTrackStructs, which the ErrorGenerator outputs. ErrorTrackStructs have a truth source,
which is a field containing the identifying name of the original TrackStruct used to create the
ErrorTrackStruct. This allows us to keep track of where the modeled data came from, information that
can then be used in our metrics. Modeled data is data that has had errors introduced to it by the
ErrorGenerator. We use these TrackStructs to represent all of the tracking data moving through the

framework including the truth data, modeled data, and tracker data.

27

Traffic Simulator

In order to test our framework, we needed to be able to generate large amounts of truth data,
which is data where we know the position of objects at given points in time. We decided to use a traffic
simulator for this purpose because it would be able to handle the positions and times of multiple

objects, and it would be easy to extract that information from the simulator.

For this framework we utilized the Simulation of Urban Mobility (SUMO) for a variety of reasons.
The primary motivation for using SUMO was its command line functionality. From the command line we
were able to run simulations and extract the positions of the vehicles into a file. Our framework then
parsed the file and used it as truth data for testing purposes. While the framework does not support
automatically running SUMO simulations, it does contain scripts to facilitate converting the output of

simulations into the data structure that the framework uses.

In addition to the above features, SUMO was favored because it could handle popular file types
already in use by the geographic information community. SUMO contains tool scripts that support the
conversion of TIGER database Shapefiles to SUMO simulations. The TIGER (Topologically Integrated
Geographic Encoding and Referencing) database contains spatial representations that include “features
such as roads, railroads, rivers, as well as legal and statistical geographic areas” (United States Census
Bureau, 2014). The process of converting Shapefiles into SUMO simulations involved three different
sub-tools. The first sub-tool converted the Shapefile to a SUMO network file. The second tool took the
existing network and generated a trips file. The third and final tool took both of these files and
generated different routes for the cars to follow from the trips. Finally, a SUMO configuration file would
wrap these three files, allowing the simulator to run the simulation. This process was poorly

documented and error prone, so our team created a script to handle the process. By combining the

28

various existing tools our team was able to make it fairly simple and less error prone for any user to

come up with fairly complex and somewhat realistic simulations of actual traffic and tracking scenarios.

Error Generator

Another tool we used to test our framework was a custom-built error generator. We designed
this error generator to take in truth data. The error generator outputs mutations of the input data
based on specified error configurations. These error configurations are a collection of error types and
associated probabilities. Our framework supports several error types, which simulate realistic errors
that could occur with real-world sensors. The first error type is position skew, in which data points are

randomly moved within a maximum displacement in any direction on the x and y axes (Figure 8).

,
LLF I ry Iy r Iy

Figure 8: Position Skew

This is to simulate uncertainty in a sensor’s measurement. The next two error types are x and y

position bias respectively (Figure 9).

Figure 9: Position Bias

These errors simulate if a sensor was reading all measurements a fixed distance from the truth.
For example, a sensor might shift all of the data points five meters to the right of where the object is

actually located. Another error type is time skew, which is where the time values of the data points are

29

increased or decreased within a threshold. Finally, there are extra readings and dropping readings,

which either generate new points within the track, or drop old points from the track (Figure 10 and

Figure 11).

[]
I'4 \/F4
r > r > r
1 ry 3 1 e 3 1 ry 3
I's I's
Figure 10: Extra Readings
-
r r
T, N ! g

Figure 11: Point Dropping

All of these error types can be included in any combination in an error configuration. This allows

for highly customizable error scenarios that can be increasingly complex.

Tracker Interface

The third step of the Testing Tracking Framework involves running various tracking and fusion

engines against the modeled data output from the various error configurations. These engines will then

output their own set of tracks that metrics will analyze. In the following sections, we describe two

tracker implementations that we used in order to validate the testing framework.

Identity Tracker

The first tracking engine that we implemented in the Testing Tracking Framework was an

identity tracker. The identity tracker takes in a list of tracks and outputs the same set of tracks without

alteration. This tracker served as an important first step to implementing a full run through of the

30

system. This allowed the team to discover any components that were missing from the initial design of
the framework. The primary benefit of this identity tracker was that it allowed for the ability to verify
that the metrics scored by the system had some sanity to them. For example, the identity tracker was
excellent for validating metrics such as average track length, and number of tracks. However, the
identity tracker was insufficient to test more complicated metrics, especially metrics that required truth

data, because the tracker did not interact with the input data in a meaningful manner.

Parameterized Tracker

To compensate for the limitations of the identity tracker, we designed a more robust, parameter
based tracker. The parameterized tracker is different from the identity tracker in several useful ways.
The first is that it takes in the truth data in addition to the modeled data. Using this data it is able to
restore the modeled data to a more accurate state. In order to determine how much correction of the
modeled data should be performed the parameterized tracker takes in several variable parameters. The
parameters are percentages for the number of falsely added points to remove, incorrectly dropped
points to re-insert, and incorrectly split tracks to reconnect. The ability to quickly tweak the inputs to
the parameterized tracker allowed for faster testing of metric behavior. This allowed us to verify that
metrics would produce different values when the tracker had different inputs, and therefore performed
differently. Additionally, it demonstrated that our framework could support multiple, because the
framework handled multiple instances of the parameterized tracker running concurrently but with

different inputs.

Truth Association Interface

The fourth component of our testing framework is truth association. Truth association is the

process of associating the measured points specified from the output of the tracker back to their

31

corresponding truth points. This step is essential to a testing framework as it allows for many more

complex metrics that can give meaningful insight into the performance of a tracking engine.

Implementation of Truth Association Interface
We developed a simple Point Association Interface that has a single function call that returns
the data points outputted by the tracker mapped to associated truth points. From this data, we

associate tracks from the tracker with truth tracks to generate true and false inclusions and exclusions.

Nearest Neighbor
The Nearest Neighbor algorithm associates points outputted from the tracker with those closest
to them using the Mahalanobis distance as its measurement (Orlov). In this algorithm, multiple tracker

points may associate with the same truth point.

Global Nearest Neighbor

The Global Nearest Neighbor algorithm is similar to the Nearest Neighbor algorithm except that
it matches data points on a one to one basis. This algorithm works in three stages. In the first stage, it
goes through a gating process that discards points that are not close enough in time and distance for the
algorithm to consider them for association. These time and distance gates are parameters of the truth
association function due to the varying nature of sensor reliability and different expectations of test
cases. Inthe next step, the algorithm calculates the Mahalanobis distance between tracker points and
each of the truth points. Then, using an A* style searching method with Mahalanobis distance as its
scoring system, the algorithm attempts to associate each point with a truth point (Russell & Norvig,
1994). The searching method continues until each point has an association or there are no associations
left to make. The algorithm scores unassociated points as the maximum distance allowed due to
gating. This allows the search to advance and still find the best possible fit of truth points to tracker

points.

32

Known Truth

Due to the complexity of the Nearest Neighbor and Global Nearest Neighbor algorithms, we
determined that we ought to use a more transparent association technique to demonstrate the
effectiveness of metrics when data had a higher guarantee of accuracy. To that end, we implemented
the Known Truth algorithm that uses data point identification numbers to associate points. We set up
this method by adding point identification numbers to the truth data and maintaining them when
outputted from the tracker. This allows easy association by ID with guaranteed correctness even after

the error generator distorts points.

How the Truth Association Interface is used in the framework

The truth association occurs after the tracker outputs its results from truth data. Then, if the
framework calculates a metric that uses truth data on this data set, the truth association occurs and
generates true and false inclusions and exclusions. To do this, the association technique matches tracks
from the tracker with truth tracks using the best fit possible as determined by a computation of the sum
of true inclusions and exclusions minus the sum of false inclusions and exclusions to score tracks. The
framework uses the highest scoring track and its associated inclusion and exclusion values in the overall
association of the TrackStruct. This technique of simple association helps create more advanced

metrics.

Metric Interface

To help evaluation of a tracking system, the fifth part of our framework involves outputting
metrics of different values depending on tracker performance. These metrics create unique files for all
interpreted data put through the testing framework. The metric interface includes a calculate function

that takes in the tracker’s outputted TrackStruct. Metrics that use truth data extend the truth metric

33

class that gives access to true and false inclusion and exclusion data generated from the truth

association.

The TestingController class calculates the metrics using their calculate function, before
outputting their return values to files. Rather than running every metric in the framework, only those
included as xml files in the MetricsToRun folder get calculated. This allows for picking and choosing

those metrics that developers wish to use while still being easily extensible for adding more metrics.

List of Included Metrics
The following metrics correspond to the example metrics given in Table 1. For metrics that use
truth data, their calculations will be shown as Tl = true inclusions, TE = true exclusions, Fl = false

inclusions, FE = false exclusions.

Accuracy Metric
This metric calculates the accuracy of track inclusions based on truth data. It provides a good

indicator of overall tracker performance.

TI+TE
TI+TE +FI+ FE

Equation 1: Accuracy Metric

Assignment Accuracy Metric
This metric calculates the percent of true inclusions over the size of the dataset. It provides an

indication of how well the tracking engine is identifying objects correctly.

TI
TI+TE +FI+FE

Equation 2: Assignment Accuracy Metric

34

Average Track Lifespan Metric
This metric calculates the average time length of a reported track. It helps provide insight

on how quickly tracks might end or continue according to the tracking engine.

Average Track Update Rate Metric
This metric returns the average time between updates in the reported tracks. This can show

how well a tracker does depending on the rate of the data it receives.

False Discovery Rate Metric
This metric calculates the rate of false inclusions in the data against all inclusions. This value

helps show whether or not the tracker includes too much noise.

FI
FI+TI

Equation 3: False Discovery Rate

False Inclusion Rate Metric
This metric calculates the false inclusions compared to the true exclusions. High values in this

metric mean the tracker is too lenient in adding points to its tracks.

Fl
FI+TE

Equation 4: False Inclusion Rate

Lifespan Similarity Metric

This metric calculates the average lifespan of the reported tracks divided by the average lifespan

of the truth data tracks. This helps generate a better idea of how well the tracker handles track length

35

Matthews Correlation Coefficient Metric
This metric calculates the Matthew’s Correlation Coefficient using true and false inclusions and
exclusions. It indicates overall performance based on distance from pure chance with a ceiling being

that everything is predicted correctly or incorrectly.

(TI « TE) — (FI = FE)

\/((TI + FI) = (T1 + FE) * (TE + FI) » (TE + FE))

Equation 5: Matthew’s Correlation Coefficient

Negative Predictive Value Metric
This metric calculates the percentage of true exclusions versus false exclusions. A high value

here indicates that the tracker effectively identifies noise.

TE
TE + FE

Equation 6: Negative Predictive Value

Number of Tracks Metric
This metric calculates the number of tracks. This can be useful in tracking performance due to
memory overhead with a higher number of tracks or incorrect splitting of longer tracks into multiple

smaller ones.

Positive Predictive Value Metric
This metric calculates the percentage of true inclusions versus false inclusions. This metric

shows how accurately the tracker includes points within its tracks.

Ti
FI+TI

Equation 7: Positive Predictive Value

36

Specificity Metric
This metric calculates the percentage of true exclusions versus false inclusions. A high value

shows that the tracker excludes points very well.

TE
TE + FI

Equation 8: Specificity

Target Effectiveness Metric

This metric calculates the percentage of true inclusions versus the size of the track.

TI
Size of data set

Equation 9: Target Effectiveness

Track Count Purity Metric
This metric calculates the percentage of the size of the outputted tracks versus the size of the

truth data. This helps indicate the data discrepancy between the sets.

Track Purity Metric
This metric calculates the number of true inclusions divided by the true and false inclusions and

the false exclusions. This value helps give a general idea of how well the tracker is performing.

TI
Tl +FI +FE

Equation 10: Track Purity

True Inclusion Rate Metric
This metric calculates the true inclusions compared to the false exclusions. Low values in this

metric mean the tracker is too strict in adding points to its tracks.

Ti
TI+FE

Equation 11: True Inclusion Rate

37

Jenkins Plugin

The final component of the Tracking Testing Framework is the integration with Jenkins. Our use
of Jenkins was twofold; Jenkins organized a set of jobs which worked together to generate output data
from a JUnit test suite of metrics, and then displayed the results on graphs. To plot the test outputin a
human readable format, we utilized an existing plugin, the Plot Plugin (Neilson, n.d.). Our framework
integrates with the plugin by creating a variety of properties files that the plugin parses in order to
display. By configuring the plugin with Jenkins it is possible to display a wide variety of graphs and other
metrics that a user wants to examine. This plugin simplifies tracking the performance of a tracker, as it
allows users to quickly see if there are any major changes in performance that would require further

investigation.

38

Future Extensions

We acknowledge that some of our components are only basic implementations, so below we

discuss some possible future extensions of our framework.

An extension to this project could be more realistic simulations for data generation. In such a
method, simulations would not only be the generation of data points, but would also simulate sensor
behavior. The framework does not currently have a sensor interface that has associated error
generation. Realistically, a sensor would observe only a certain area, and it would have unique
imperfections that would cause errors in the data reports. The framework could simulate these
imperfections using our current implementation of error generation and covariance. A possible
implementation of sensors would involve a sensor interface where each sensor is associated with a
specific error configuration, covariance, and data capture area. This would allow the simulations to
generate data points from multiple sensors for the same object, making data fusion a more important

feature of tracking engines, which our current simulations do not address.

For another possible continuation of the project, a future group could implement a more
realistic tracking engine, specifically a tracking engine that utilizes a Kalman filter to predict each track’s
next data point. Using a more robust tracking engine would enable the framework to calculate more
interesting data for the metric suite, which allows for more in depth analysis of the use of the metrics.
Due to the limitations of the parameterized tracker, it is unclear which metrics would be the most useful

in the development of a realistic tracking engine.

The current truth association algorithms implemented in the framework are a naive method of
analyzing data due to the complexity of tracking and fusion engines. Our implementation would have
little value to actual tracking systems due to the incorrect assumption that points associate on a one to

one or near one to one basis. Real world tracker engines would have multiple sensor inputs that could

39

duplicate points that would correspond to a single tracked object. A better truth association algorithm
would associate outputted tracks with truth tracks using their position and shape, and then determine if
its points ought to have been included rather than our reverse method of associating points and then

associating tracks.

Future teams could also extend the project in a variety of non-component focused areas. For
example, the framework is currently a file-based system. However, it could also support a stream-based
system, which takes in data reports in real time. This would allow for more dynamic testing of a tracker
actually receiving sensor reports asynchronously while constantly updating its tracks with its current
state. Another extension would be improvements for ease of use through the development of a GUI,
possibly implemented either as a desktop application or a Jenkins plugin. The framework could also

allow for users to have more control over their tests.

40

Concl

engine.

loop by

0.75
0.70
0.65
0.60
0.55
0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

Percentage

usion

For this project, we successfully implemented a proof of concept framework for a tracking
Using Jenkins in conjunction with the Plot plugin, the framework provides a prompt feedback

outputting metrics based on tracker performance.

Demo Track Accuracy

T =] =] =1 =) T
™ (¥} (¥} ™ ™ ™
(= (= (= = = =
M M M m m m
= = = = = =
[[yl [l =t ul W
* #* #* H# H H
Build
(]

Figure 12: Example Output on Jenkins

The framework benefitted greatly from using various open source software tools, such as SUMO

and Jenkins, because they saved us a great deal of time. Particularly, SUMO allowed us to generate

realistic

scenarios by using simulations based on Shapefiles (Figure 13).

41

=

o
3
i,

a a

Figure 13: Example Shapefile of Worcester County in SUMO

Additionally, we designed the framework to be easily extensible by making all of the
components implement basic interfaces. The framework allows users to automatically run test cases of
standardized scenarios, which developers can create. Users can easily compare metrics against
established benchmarks on a per build basis. This allows for comparing performance of tracking engines
over time, enabling developers to measure improvement over time using actionable feedback.
Furthermore, the framework uses Jenkins, providing a continuous integration environment for
developers. Overall, the framework removes the burden of manually testing tracking engines from

developers, and maintains flexibility for future extensions.

42

Bibliography

Atlassian: Bamboo. (2013). Retrieved from Atlassian: https://www.atlassian.com/software/bamboo/got-

jenkins

Bayoumi, M. (2012). Kalman Filter. Resource-Aware Data Fusion Algorithms for Wireless Sensor

Networks, 59.

Blackman, S. S. (2004, January). Multiple Hypothesis Tracking For Multiple Target Tracking. Aerorspace

and Electronic Systems Magazine, IEEE, pp. 5-18.
Bloch, J. (2008). Effective Java (2 ed.). Addison-Wesley.

Canavan, R., McCullough, C., & Farrell, W. (2009, July). Track-centric metrics for track fusion systems.

Information Fusion, pp. 1147-1154.

Chong, C.-Y., Chang, K.-C., More, S., & Barker, W. H. (2000, January). Architectures and algorithms for

Track Association and Fusion. Aerorspace and Electronic Systems Magazine, IEEE, pp. 5-13.

Fowler, M. (2006, May 1). Continuous Integration. Retrieved from

http://www.martinfowler.com/articles/continuousintegration.htmi

Government of Canada. (2014, January 29). Natural Resources Canada: Passive vs. Active Sensing.
Retrieved from Natural Resources Canada: http://www.nrcan.gc.ca/earth-
sciences/geomatics/satellite-imagery-air-photos/satellite-imagery-products/educational-

resources/14639
Kawaguchi, K. (n.d.). Jenkins. Retrieved from http://jenkins-ci.org

Moser, M., & O'Brien, T. (2011). The Hudson Book. Retrieved from http://www.eclipse.org/hudson/the-

hudson-book/book-hudson.pdf

43

Neilson, E. (n.d.). Plot Plugin. Retrieved from https://wiki.jenkins-ci.org/display/JENKINS/Plot+Plugin

Orlov, A. I. (n.d.). Encyclopedia of Mathematics: Mahalanobis Distance. Retrieved from

http://www.encyclopediaofmath.org/index.php?title=Mahalanobis_distance&oldid=17720

Russell, S. J., & Norvig, P. (1994). Artificial Intelligence: A Modern Approach.

Skolnik, M. (2008). Radar Handbook (3 ed.).

Smith, D., Register, A., Blair, W. D., & Levedahl, M. (2010). A Track Purity Aproach for Trackin Metrcs.

Aerospace Conference, 2010 IEEE, (pp. 1-11). Big Sky, MT.

Spillner, A,, Linz, T., Rossner, T., & Winter, M. (2012). Software Testing Practice: Test Management.

Rocky Nook.

Sumo Wiki. (2013, August 28). Retrieved October 14, 2013, from http://sumo-sim.org/wiki/Main_Page

Toomay, J. C., & Hannen, P. J. (2004). Radar Principles for the Non-Specialist (3 ed.). Retrieved from

http://common.books24x/.com.ezproxy.wpi.edu/toc.aspx?bookid=22971

Trieber, M. (2011, June 1). Microsimulation of Road Traffic Flow. Retrieved October 14, 2013, from

http://www.traffic-simulation.de/

United States Census Bureau. (2014, February 6). TIGER Products. Retrieved from

http://www.census.gov/geo/maps-data/data/tiger.html

Wolff, C. (2013). Radar Tutorial.

Yoskovitz, B. (2013, March 9). Measuring What Matters: How to Pick a Good Metric. Retrieved from
http://onstartups.com/tabid/3339/bid/96738/Measuring-What-Matters-How-To-Pick-A-Good

Metric.aspx

44

45

Appendix A - User Manual

46

TRACKING TESTING
FRAMEWORK USER GUIDE

By Michael Burns, lan Lukens, and Christopher McAndrews

March 5, 2014

47

Table of Contents

Tab | & T CONMEE TS s s s s e S TS o B T S S e e ettt 1
TaB I GO FIBNES v carusseusm s o s e 0 e o T o A e sttt 2
IS A A O s s s s e o B S A e s i S R s 3
Importing Our FrameWorkinto ECIiDSe i v mmi s i s s s v s s R R S S s SV s s s 3
Installing Je nKIN S s S R TR 3
SEtting UP @n INIEIAIJOD ..vuvviiiiiiecee e eb e st e s bbbt eer e s st e s b b b et 3
TSt CONTIGUIATION. ¢ outeitii ittt bbb st b bbbt e eb e e se e s e etk aa b s eba e eb e e se e s e s b s bes b s et s e st e s se e b naas 6
PLOt PIUGIN .ttt et bbb s a0 eb e bbb st 6
FrameEWOrK FEAtUIESccuiviviiitiiicieicici st bbb bbbt ab e bt ab s bbbt s 8
TR GO INETATION s s snsnsnsissmnsossen osmssns sxnmssns NS S A A SRS 4R N AN SRR D A KRS O AN NS A DR A 8
ISTOR IS LIV s cuscsmacuas vssmammmmsisnas o oss daemssdsom 04858 FoRa s 8 60 LB H4O R A E G RS F TS F A S8 U0 RN G AR RR S TR R SRR S 43 9
VPO EHIE TEUENG covonsnvmvumanonssinssonmssnsn oo aasm s 5oms s o845 8 884003 349 55 P43 AT S VO T TS SH GO ST A 4 10
Using the SUMO:CONVETEET JATTIIE . vumusiissiamimus vis s iiimis sois s sdonsos 5 easasss vois s o i v aas v e v Vv v s s 10
EXAmPIETEUN DATA: cuasicvwmuisvnvavasis o ss e sessaissvs 1aes 455 Voo 08 800 s a0 av3 RN S 4SS R B S S AR ST T VR VAV 10
5 o €= = o) T P T TR TP P e 13
BT O Ty S s R o S e e T S S s S S R ey 13
BT O O M A O S v smn sy oo s s e e N B s R S S SR RSy 14
How o Extend the Error Generator s s s s 14
How o Import Data With Error. o s s 15
TraCKer INTEITACE. cueiiiieie st 15
HOW 0 RUN TFaCKETS ..ottt bbb bbb st bbb s

How to Add New Trackers to the Framework

IV G T TR s s omumnmssinn wossonn osssns e h o ws A ey 3 4 AN A SAR A A NSRS OA A8 855 16
R N NN C T G5 s mimsicysmsaosnvmvssoen s sy e s e SRR B N A S A S S SR ST AP RS A e 16
HOWTEO RUNEIMBEIICS s avnassanarsmmsmmsssmousnn ooias o s sme somesm ax s s conasns aes a8 550 08 A0 Ao WA DA A DSBS AR SO 58050 17
How to Add New Metrics to the Framework. ... 47

Appendisc A = SAMPleTIUEH FilE . cuuniuismmimsimiiomsss i s s s s oo s s i s s e e s vinssiaves 18
AppendinB-—Sample’sumoclig Filek umunmnmmnamimaimim s 21
AppendixC—Sanmple Efror:Configliration’ File..cuunansamnannmnamaamusassasimnsnaisiainaiin 22

1

48

Table of Figures

Figure'1: Making a-JenKinS JOb StEP L i s s ot s o s e G e sV e s e sihad 3
Eigure:2: Making a: Jenkins JOb. SEEPI2ucumswvacssosnissscisissatinesnssos oiossssesnssrasssssss oo cinason dvas s dobas dvais faesics sinaand 4
Figure 3: Making @ JENKINS JOD SEEP 3.ttt sttt sr e e sr e e ebaeabsaans 4
Figure4: Making a Jenkins Job:Step 4. ssnssnn s 5
Figira'S: Making a-JenKiNSJOBIStEP S it st s s i osa i o s ol e e s e e s evaionnds
Figure 6: Making a Jenkins Job Step 6.
[= 140 BT E Aot VR 1< = e U OO

Figure 8: Jenkins Configuration Step 1
Figure 9: Jenkins Configuration Step 2

Figure:10: Jenhkins Configuration STEP 3 s invaavivi i vessosvessoes ses sdesiss dvans d6s svseaesivi ioivssiaaonssia s i vwsd 8
Figure 11: TrackStruct format w8
Figure 12: Image of Cross STrUCt NETWOIKcuviiviiiiiee ittt ettt ebe e sr e s e sbs s ebe e se e s e b 11
Figure 13: Image of Worcester Network . i msaminisannannasnmnsg 12
Figure14: Error Configuration FOTMAL i s s s emsn st s st s i s o v e e asaaons 14
Eiguraid 52 EXISHINE. EXFOT Datal s sarsumassssousves ovensse s senssns soss s sis v aisss 60 060500 503886465 b 4303 1401 65 D5 BAS DR GR 04999 00450 15

2

49

Installation

Importing Our Framework into Eclipse

To run the framework in Eclipse, import the .zip file as a new Maven Project. If itis not already
installed, install the m2e plugin or an equivalent maven extension through the Eclipse Marketplace. This
may require setting up Maven on the host computer. Documentation and download links for Maven
can be found at http://maven.apache.org/download.cgi.

Installing Jenkins

To install Jenkins, follow the instructions on the Jenkins wiki at https://wiki.jenkins-
ci.org/display/JENKINS/Installing+Jenkins+on+Ubuntu. We found the nginx proxy instructions easier to
use than the apache instructions. After installing Jenkins, you need to install Java in order to run the
JUnit tests. To install Java, run the following commands:

sudo add-apt-repository ppa:webupd8team/java
sudo apt-get update

sudo apt-get install oracle-java7-installer
sudo apt-get install oracle-java7-set-default

Setting up an Initial Job
To set up an initial Jenkins job, use the following instructions:

1. Select the New Item option on the main Jenkins page.

T AN&e .
it

Check File Fingerprint
Manage Jenkins

Credentials

&

My Views

Figure 1: Making a Jenkins Job Step 1

2. Select Free Style Project.

50

Item name ENew qu

* Build a free-style software project

This is the central feature of Jenkins. Jenkins will build your

Build a maven2/3 project
Build a3 maven 2/3 project. Jenkins takes advantage of you

Build multi-configuration project
Suitable for projects that need a large number of different

Monitor an external job

This type of job allows you to record the execution of a pro
details.

Copy existing Item
Copy from

i?@s

Figure 2: Making a Jenkins Job Step 2

3. Add the source control that includes the framework source code.

FIVIE OIS (e Tob

Description [oescripsion of the o5 |

[Raw HTML] Preview
Discard Old Builds
This build is parameterized
Disable Build (No new builds will be executed until the projact is re-enabled.)
Execute concurrent builds if necessary

Project Options.

Source Code

cvs
CVS Projectset

* None

| Subversion

Buiild Triggers

Figure 3: Making a Jenkins Job Step 3

4. Configure the source control with the proper credentials.

51

Scurce Coda

cvs
CVS Prajectsct
tione

* Subversion
Mocules . -
Lt s/ lusion wii.sewsvir/ba

=192/ unk

Cred=ntials =
mbuns23/ Y (SN Repusilucy)

tnal maile dirertary

Repnstory depts infinity v

Ianore externals

| Ass mosue

Neditioral Cradentisle | gz ssaions o

Check-out Strategy Use 'svil dodale’ as tud) as sussible

u

vr upests' whenever posziale making the builc faster. But this czusss the arifacts from the 3

Repostary browser (A1in)

Duild Triggers
suile after ather praects are huilt
“rigger builds rerctely (e.q., from szripts)
Rulle penndizally

¥ Pol 5CM

Schedile

| 2hou-ly|

Ianore post-commit hocks

Save

Aply

Figure 4: Making a Jenkins Job Step 4

5. Configure the build step to execute the test option.

Build Triggers

Build after other projects are built
Trigger builds remotely (e.g., from scripts)
Build periodically

¥ poll SCM

Schedule S

Igncre post-commit hooks

Build

Agd build step v

ecute Windows batch command
Execute shell
Invoke Ant
Invoke top-level

Figure 5: Making a Jenkins Job Step 5

6. Save your configurations.

52

Build

Invoke top-level Maven targets

Maven Version [(pefault)

Goals

compiel

Post-build Actions

[Addpo

uild action v |

[sove ||

Figure 6: Making a Jenkins Job Step 6

Test Configuration

To execute the testing framework, a test runner should use our TestingExecutable.jar. To
configure different customized tests, put files in the lib folder following the directory hierarchy as shown
in Figure 7. The jar assumes that these directories already exists, but it will create them if they do not
exist. This is important to note, because if the jar is in the incorrect location, it will generate a directory
structure that the user may not want. More specifics about which files go where are in their respective
sections.

4 é lib
[> [z ErrorToRun
> [MetricToRun
3 ModeledDataToRun
> [TrackerToRun
> [TruthToRun

Figure 7: Directory Hierarchy

As an important note, if new features are added to the framework, the TestingExecutable.jar
will need to be repackaged in order to function properly. To run the jar on Jenkins, it will be necessary
to wrap the jar in a simple JUnit test, Ant file, or some other method supported by Jenkins which will
execute the jar.

Plot Plugin

To install the plot plugin, go to the Manage Jenkins screen in Jenkins. Then select the Manage
Plugins option. Search for Plot on the available tab, and select Install and Restart Jenkins.

To output metrics to a visual plot display, you must configure the plots using the Plots plugin as
shown below.

0. Have alJenkins job configured with the framework.
1. Select the configure option on the Jenkins Job.

53

Jenkins (i) Pause Record O Stop Record

Back tc Dashboard

w

O, status

} Changes

h Workspace

@ Build New

Delete Maven project
Cng’uﬁure

Modifles

*] subversion Polling Lok

“

Build History

E) &ss for all (Y

=] Add Comment @@ ~

Maven project Demonstration

- j
@ Workspace

00003000,
/ Recent Changes
2

Permalinks

(trend) =

for failures

Help us localize this page

Figure 8: Jenkins Configuration Step 1

2. Select “Plot build data” from the “Add post-build action” drop down.

Post Steps

Run only if build succeeds

Should the post-build stzp= run enly for succes=ful bullds, 2tc,

A0d postbuild step ¥ |

Aggregsts dovmstrazm test rezults
Archive the artifacts

Run only if build succeeds or is unstable

Run regardless of build result

Build other projects

Deploy =rtifacts to Maven repositary

Figure 9: Jenkins Configuration Step 2

3. Fill out the fields with the pertinent data. It isimportant to note that if no test output
exists when the plot plugin is being configured, it will warn that the specified output file
does not exist, but this does not impact functionality.

54

Post-bulld Acticns.

Plot burld dats F)

W
&
3

L]

® sed demfror prevesies f
Sat

e poaresy 2

dem e o £ &

_sed demfro senl fils Lsira <oath o

s |

;;‘

Figure 10: Jenkins Configuration Step 3

Framework Features

Truth Generation
Truth generation is required in order to test tracking engines. In order to put truth data into this
framework, the data must conform to the following data structure.

<track.TrackStruct>
<name>Unique data set name</name>
<tracks>
<track.Track>
<id>Unique Track ID number</id>
<dataPoints>
<track.TrackDataPoint>
<time>
<milliseconds>Time value</milliseconds>
</time>
<position>
<x>X value</x>
<y>Y value</y>
<z>Z value</z>
</position>
<pointID>Unique Point ID number</pointID>
</track.TrackDataPoint>
</dataPoints>
</track.Track>
</tracks>
</track.TrackStruct>

Figure 11: TrackStruct format

55

An example data file can be found in Appendix A — Sample Truth File. Truth data generation through
SUMO is supported by our framework, but other methods can be used if desired.

Using SUMO

SUMO (Simulation of Urban Mobility) is an open-source, external tool that can be found at
http://sumo-sim.org/. To convert Shapefiles into the format supported by SUMO, you can use a script
that we have provided.

Generating SUMO Configuration Files
These instructions are for use with Shapefiles from http://www.census.gov/geo/maps-

data/data/tiger-line.html. Specifically, this works with Shapefiles from 2012. We selected this year

because it was the most recent year that had downloads readily available online.

Using Our Script for Shapefiles

In order to run our script (ShapefileConverter.py) to convert Shapefiles into a SUMO supported
file format, you must have sumo and its associated executables on your computer. The script takes in
several inputs from the user, but also has some default values for simplification. The inputs are listed in
Table 1.

Table 1: ShapefileConveter.py Arguments

Input | Description Required | Default Value
-d The directory on your computer where SUMO is installed. At | Yes None
this level you should see the bin and tools directories.
-p Path to and prefix for the Shapefiles to convert. Yes None
-n Name of the net file. No net.net.xml
-t Name of the trip file. No trips.trips.xml
-S Name of the sumo configuration file. No sumocfg.sumocfg
-l Length of the simulation in SUMO steps. No 500

An example input to the script is as follows:

ShapefileConverter.py -d lib\sumo-0.18.0 -p Shapefiles\tl 2013 25027_edges
-n example.net.xml -t example.trips.xml -s example.sumocfg -1 123

An example sumocfg file produced by this script is included as Appendix B — Sample sumocfg
File.

R Ainn <IINAD
Running SUMUO

To run an actual SUMO simulation, use the following command:

sumo.exe -c SUMOCFG_FILE --fcd-output OUTPUT_FILE --fcd-output.geo

It is important to note that the final option, “--fcd-output.geo”, is only required if you want the
data to be output in latitude and longitude, rather than just on an arbitrary x-y grid.

56

Importing Truth

To import truth data into the framework, convert the data into the TrackStruct format as shown
in Figure 11, then place the file in the “lib\TruthToRun” directory. If your data is in SUMO’s output
format, it can easily be converted to the TrackStruct format by using the SumoConverter.jar which is
included with the framework.

Using the SUMO Converter jar file

The SUMO Converter jar is a tool we have provided that takes an output file from a SUMO
simulation and converts it into the TrackStruct data structure used in our framework. It takes in two
command line arguments, the first being the path to the SUMO output file, and the second being the
desired name of the new TrackStruct. This name is also used as the name of the TrackStruct file, which
will be created in the local directory of the jar. This output file should then be moved to the TruthToRun
folder if the tester wants it to be used in future tests.

Example Truth Data
The following are example data sets that were used for testing. They were generated with
SUMO and are included as examples and for continued unit testing of the framework.

Figure 12: Image of Cross Struct Network

10

57

i\ ; ‘: i «
PR RSB
S S AT
PR A

S = VRN

3 e
AT N Wa A

Figure 13: Image of Worcester Network

11

Error Generator

The framework allows for users to input truth data and to generate error on top of the truth
data. This modeled data is used to test the effectiveness of different trackers. Our error generator
currently supports six error types.

Error Types
Position Skew

Position Skew is an error that alters the position of individual points based on input parameters.
This error takes in a probability and a strength. The probability determines whether or not the point is
skewed. Ifit is selected, the second step of skewing makes use of the strength input. The point gets
moved in the X, Y, and Z dimensions according to a random number between -0.5 and 0.5 multiplied by
the strength. This number is recalculated on a point by point basis resulting in each point moving
unique distances. Thus by upping the strength a user can add a greater window of variance to the
position.

X_Position_Bias

X_Position_Bias is an error that alters the position of individual points based on input
parameters. This error takes in a probability and a strength. The probability determines whether or not
the point is biased. If it is selected, the second step of skewing makes use of the strength input. The
point gets moved in the X dimension according to the input strength. Thus by upping the strength a
user can add greater distance biasing.

Y_Position_Bias
Y_Position_Bias is an error that alters the position of individual points based on input
parameters. This error takes in a probability and a strength. The probability determines whether or not
the point is biased. If it is selected, the second step of skewing makes use of the strength input. The
point gets moved in the Y dimension according to the input strength. Thus by upping the strength a user

can add greater distance biasing.

Ime_Skew

Time Skew is an error that alters the recorded time of observation of individual points based on
input parameters. This error takes in a probability and a strength. The probability determines whether
or not the point is skewed. If it is selected, the second step of skewing makes use of the strength input.
The point’s time is moved according to a random number between -0.5 and 0.5 multiplied by the
strength. This number is recalculated on a point by point basis resulting in each point moving unique

times. Thus by upping the strength a user can add a greater window of variance to the time.

Extra_Readings

Extra_Readings is an error that adds in new points based on input parameters. This error takes
in a probability and a strength, but the strength is unused. The probability determines if the pair of two
points will generate a new point between them. Currently, if the randomly generated number is within
the probability, a new point will be generated with the values being the average between the two
existing points.

12

59

Drop_Readings

Drop_Readings is an error that removes points based on input parameters. This error takes ina
probability and a strength, but the strength is unused. The probability determines if a given point is
dropped. Currently, if the randomly generated number is within the probability, then the point is
removed from the set of tracks.

Error Configurations

In order to support customization our system supports the use of error configurations. Error
configurations are made up of the errors mentioned in the section above, and the associated
probabilities and strengths. A user may have as many error types as they would like in the
configuration. The configuration will run the errors in sequential order, and at the end the modeled
data will be returned.

Using Previously Created Error Configurations

Using previously generated error configurations is simple. The system will run every error
configuration in ErrorsToRun each time it runs its main method. This means that if a user doesn't
remove an error configuration it will run every time without the user doing anything.

Creating New Error Configurations

To create a new error configuration the user will have to make a new ErrorConfig file and place
it in the ErrorToRun folder. The error configuration files are XML documents. A basic template XML is
given below, if the user wants to add more errors then they simply added more
<error.ErrorSpecification> and fill out the fields with the type of error they would like to generate.

<error.ErrorConfig>
<name>Insert Name Here</name>
<errorList>
<error.ErrorSpecification>
<type>Type of Error Listed in Enum</type>
<strength>Insert Strength</strength>
<probability>Insert Probability</probability>
</error.ErrorSpecification>
</errorList>

</error.ErrorConfig>

Figure 14: Error Configuration Format

An example error configuration file can be found in Appendix C— Sample Error Configuration
File.

How to Extend the Error Generator
To extend the ErrorGenerator to support new types of errors, there are two steps:

13

60

1. The new error must be added to the ErrorType enum.
2. A new case statement must be added to the manipulateTrackHelper function in the
ErrorGenerator class.

How to Import Data with Error
To import data with error into the framework, convert the data into the ErrorTrackStruct format
as shown in Figure 15, then place the file in the “lib\ModeledDataToRun” directory.

<track.ErrorTrackStruct>
<name>Unique data set name</name>
<truthSource>Name of truth data set</truthSource>
<tracks>
<track.Track>
<id>Unique Track ID number</id>
<dataPoints>
<track.TrackDataPoint>
<time>
<milliseconds>Time value</milliseconds>
</time>
<position>
<x>X value</x>
<y>Y value</y>
<z>Z value</z>
</position>
<pointID>Unique Point ID number</pointID>
</track.TrackDataPoint>
</dataPoints>
</track.Track>
</tracks>
</track.ErrorTrackStruct>

Figure 15: Existing Error Data

Tracker Interface

All trackers in the framework must implement the Track Interface. The interface requires that
trackers implement a calculateTrackStruct function that takes in a TrackStruct and an ErrorTrackStruct,
and outputs a TrackStruct produced by the tracker.

How to Run Trackers

To run a tracker with the testing data sets, serialize the tracker and put the file in the
TrackerToRun directory. An easy way to serialize the tracker is to use the writeFile method in our
GenericFileHandler class.

How to Add New Trackers to the Framework
To create a new tracker that can then be added to the framework go to the tracker package and

create a new class that implements the Tracker Interface. Then, implement the tracker’s desired output
to return in the calculateTrackStruct function. While the calculateTrackStruct function takes in truth

data and modeled data as inputs, a realistic tracker will simply disregard the truth data field.

14

61

Metric Interface

All metrics in the framework must implement the Metric Interface. The only function that
metrics need to implement is calculate, which takes in the TrackStruct and calculates the metric value as
a double.

Example Metrics
The framework includes several example metrics, which are listed below.

Accuracy Metric
This metric calculates the accuracy of track inclusions based on truth data

Assignment Accuracy Metric

This metric calculates the percent of true inclusions over the size of the dataset

A AASFr

)an v IC

Average Tr

This metric calculates the average time length of a reported track

te Vi

Average Track Update Ra
This metric returns the average time between updates in the reported tracks
False Discovery Rate Metric

This metric calculates the rate of false inclusions in the data against all inclusions

clusion Rate Metric

This metric calculates the false inclusions compared to the true exclusions

Lifespan Similarity Metric
This metric calculates the average lifespan of the reported tracks divided by the average lifespan
of the truth data tracks

Matthews Correction Coefficient Metric

This metric calculates the Matthew’s Correction Coefficient using true and false inclusions and

exclusions

Bieoalintin /Al K by
Freaictive Vaiue Metric

This metric calculates the percentage of true exclusions versus false exclusions

Number of Tracks Metric

This metric calculates the number of tracks

> \/

e Value |

—

ive Predictiy ic

This metric calculates the percentage of true inclusions versus false inclusions

15

62

Track Count Purity Metric

This metric calculates the percentage of the size of the outputted tracks versus the size of the
truth data

[rack Purity

rL'
This metric calculates the number of true inclusions divided by the true and false inclusions and
the false exclusions

True Inclusion Rate Metric

This metric calculates the true inclusions compared to the false exclusions

How to Run Metrics

To run a metric with the testing data sets, serialize the metric and put the file in the
MetricToRun directory. An easy way to serialize the metric is to use the writeFile method in our
GenericFileHandler class.

How to Add New Metrics to the Framework
To create a new metric that can then be added to the framework go to the metrics package and

create a new class that implements the Metric Interface or if the metric uses truth data, extend the new
class from the TruthMetric class. Then, implement the metric’s desired output to return in the calculate

function.

For metrics that extend the TruthMetrics abstract class, you can access the true and false
inclusions and exclusions by instantiating an InclusionExclusionFactory instance and using its calls to get

the desired data.

16

63

Appendix A —Sample Truth File

<track.TrackStruct>
<name>CrossStruct</name>
<tracks>
<track.Track>
<id>1000</id>
<dataPoints>
<track.TrackDataPoint>
<time>
<milliseconds>@</milliseconds>
</time>
<position>
<X>501.6499938964844< /x>
<y>5.099999904632568</y>
£2>0.0</z>
</position>
<pointID>0</pointID>
</track.TrackDataPoint>
<track.TrackDataPoint>
<time>
<milliseconds>1000</milliseconds>
</time>
<position>
<X>501.6499938964844< /x>
<y>5.880000114440918</y>
£220.0</2>
</position>
<pointID>1</pointID>
</track.TrackDataPoint>
<track.TrackDataPoint>
<time>
<milliseconds>2000</milliseconds>
</time>
<position>
<x>501.6499938964844</x>
<Y>7.449999809265137</y>
<2>0.0¢/2>
</position>
<pointID>2</pointID>
</track.TrackDataPoint>
<track.TrackDataPoint>
<time>
<milliseconds>3000</milliseconds>
</time>
<position>
<X>501.6499938964844< /x>
<Y>9.59000015258789</y>
£2>0.0</z>
</position>
<pointID>3</pointID>
</track.TrackDataPoint>
<track.TrackDataPoint>
<time>

17

64

<milliseconds>4000</milliseconds>
</time>
<position>
<x>501.6499938964844< /x>
<y>12.270000457763672</y>
<2>0.0¢/2>
</position>
<pointID>4</pointID>
</track.TrackDataPoint>
<track.TrackDataPoint>
<time>
<milliseconds>5000</milliseconds>
</time>
<position>
<X>501.6499938964844< /x>
<y>15.640000343322754</y>
£2>0.0</2>
</position>
<pointID>5</pointID>
</track.TrackDataPoint>
<track.TrackDataPoint>
<time>
<milliseconds>6000</milliseconds>
</time>
<position>
<X>501.6499938964844< /x>
<y>19.540000915527344</y>
<220.0</2>
</position>
<pointID>6</pointID>
</track.TrackDataPoint>
</dataPoints>
</track.Track>
<track.Track>
<id>2000</id>
<dataPoints>
<track.TrackDataPoint>
<time>
<milliseconds>@</milliseconds>
</time>
<position>
<x>5.099999904632568< /x>
<y>498.3500061035156< /y>
<2>0.0</z>
</position>
<pointID>50</pointID>
</track.TrackDataPoint>
<track.TrackDataPoint>
<time>
<milliseconds>1000</milliseconds>
</time>
<position>
<X>5.539999961853027< /x>
<y>498.3500061035156</y>
<2>0.0</2>

18

65

</position>
<pointID>51</pointID>
</track.TrackDataPoint>
<track.TrackDataPoint>
<time>
<milliseconds>2000</milliseconds>
</time>
<position>
<x>6.590000152587891< /x>
<y>498.3500061035156</y>
<2>0.0</z>
</position>
<pointID>52</pointID>
</track.TrackDataPoint>
</dataPoints>
</track.Track>
</tracks>
</track.TrackStruct>

19

66

Appendix B —Sample sumocfg File

<?xml version="1.0" encoding="UTF-8"?>
<configuration xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://sumo.sf.net/xsd/sumoConfiguration.xsd">
<input>
<net-file value="burlington.net.xml"/>
<route-files value="routes.routes.xml"/>
</input>
<time>
<begin value="0"/>
<end value="500"/>
</time>
</configuration>

20

67

Appendix C — Sample Error Configuration File

<error.ErrorConfig>
<name>testErrorConfig</name>
<errorList>
<error.ErrorSpecification>
<type>DROP_READINGS</type>
<strength>1</strength>
<probability»>@.5</probability>
</error.ErrorSpecification>
<error.ErrorSpecification>
<type>X_POSITION_BIAS</type>
<strength>10</strength>
<probability>@.6</probability>
</error.ErrorSpecification>
</errorList>
</error.ErrorConfig>

21

68

Appendix B — Test Plan

Test Plan

Our test plan consists of a list of packages that comprehensively tests our code to ensure that
the desired result is produced by our code. This document is somewhat abridged, as many of the test
cases are repetitive or self-evident. Thus, we aim to explain the more confusing and complex test cases

as well as provide a high level view of our overall testing scheme.

Utilities Package

The utilities package stores all of the utility functions that are required for testing. The specific

functions in the Testing Utility Functions class are described in detail below.

Testing Utility Functions

The first function is the makeTwoPointTrack function, which creates the twoPointTrack
structure, a simple TrackStruct containing one track of two points. The second function is
makeTwoTrackData, which creates the twoTrackData structure, a simple TrackStruct containing two
tracks of three points. The third function is makeCrossStruct, which creates the crossStruct structure, a
TrackStruct with a large number of points in it. It is generated using the cross1l example sumocfg file.
The fourth function is makeBurlingtonStruct, which creates the Burlington structure, a TrackStruct based
on the city of Burlington, MA. It was generated using a sumo simulation based on a Shapefile of the city
of Burlington. The next three functions create ErrorConfigurations with specific properties that are

clearly outlined in their Javadoc comments.

Sumo Converter Test

This class exists to test the SumoConverter class. It is fairly straightforward, and only has a

single test to verify that it still works properly.

Error Package

The purpose of the error package is to test the functionality of our error generator. The error
generator is required to turn truth data into modeled data. In order to do this, the error generator adds,
removes, or modifies points based on error configurations. There are some elements of randomness to
the modifications performed by the error generator, so we test mainly for the quantity of data points,

rather than the actual data points.

69

Error Generator Test

The first step in this file is to set up data used during testing by calling functions from the Testing
Utility Functions class. The purpose of this class is to test the different ErrorTypes that can be passed to
the Error Generator. To that end, there are two tests for each ErrorType, one with zero probability of
modification, and one with full probability of modification. This is done to reliably test both cases of the

probability’s if statement.

Framework Package
The purpose of the framework package is to execute full runs of our testing framework. The

class that handles this testing is the Testing Controller Test.

Testing Controller Test
This class tests a full run of the framework and ensures that the proper output files are
generated. To ensure that the run goes smoothly, the test manually adds a truth data set, an error

configuration, a tracker, and a series of metrics to the necessary directories prior to the run through.

Metrics Package
The purpose of the metric package is to test the many metrics that we have included in our

framework. The class that handles this testing is Metric Test.

Metric Test
This class tests the many metric calculations that are included in the framework. It also tests
writing metrics to files. There are individual tests for each of the metrics in the framework, as well as a

few generic tests that write and read metrics to files.

Track Package

Coordinate Position Test
This class tests coordinate position data structure used in the framework. There are individual

tests for each of the functions included in the CoordinatePosition class.

Covariance Generator Test

This class tests the covariance generator used within the framework. There are individual tests
for each of the functions included in the CoordinatePosition class. The test first sets up a trackStruct
used during testing. The first test checks that the constructor without an inputted seed works properly.

The next test checks that the name of the trackStruct changes after running through the generator by

70

creating a covariance and then running the covariance and trackStruct through the generator. The next
test gives zero probability that the covariance will be manipulated from the added base covariance. The

last test has a one hundred percent chance of manipulation to check both branches.

Covariance Test
This class tests the Covariance data structure used in the framework. The tests create different
matrices and check that they are being translated into the Covariance structure correctly. There are also

tests for the InverseMatrix function that check example matrices against the expected output.

Time Test
This class tests Time data structure used in the framework. There are individual tests for each of

the functions included in the Time class.

Track Test
This class tests the Track data structure. There are individual tests for each of the functions
included in the Track classes including a test for the sortPoints function that sorts a track’s data points

by their time values.

TrackStruct Test

This class tests the TrackStruct data structure used in the framework. There are individual tests
for each of the functions included in the TrackStruct class.
TrackDataPoint Test

This class tests the TrackDataPoint data structure used in the framework. The tests are primarily
unit tests for the different fields and equality conditions in the data structure.

Tracker Package

Identity Tracker Test
This class tests the identity tracker that was used during the testing of the framework. The main
test simply makes sure that the TrackStruct inputted into the IdentityTracker is equal to the one

outputted. There is also a quick check that the getName() method returns its expected value.

Parameterized Tracker Test
This class tests the ParameterizedTracker used by the framework. To facilitate this test we use a
modified instance of the twoPointTrack data structure. The primary modification we make to the

structure is we do not explicitly specify the pointIDs, so they default to negative one. We do thisso the

71

parameterized tracker will believe that the points may have been added by the ErrorGenerator. The
first two tests correspond to the function that removes points added by the ErrorGenerator. The next
two tests correspond to the function that adds points that were removed by the ErrorGenerator. The
final two tests correspond to the function that incorrectly splits tracks into multiple smaller tracks. For
each of these sets, there is one test where the probability of fixing the points is 100%, and one test

where it is 0%.

Truth Association Package

Global Neighbor Test

This class tests that the Global Nearest Neighbor points association algorithm is return the
expected results. The test first sets up a truth and tracker data set of TrackStructs to be inputted into
the algorithm. The first test runs these through the algorithm and checks that it made the expected
matches. The next test adds an extra data point to the tracker data set to test the expected
performance of the algorithm when the tracker includes noise. The third and fourth tests add points
outside of the algorithm’s gating range for distance and time respectively to assurance that the

algorithm discards points correctly during the gating step.

Nearest Neighbor Test

This class tests the Nearest Neighbor truth association algorithm. It sets up two simple
TrackStructs, an output TrackStruct and a truth TrackStruct, and then checks the associations for
expected values. There are also tests to validate the calculations for Mahalanobis distance and time

differences.

Track Score Test

This class tests the RealTrackScore system used by the framework to generate true and false
inclusions and exclusions. It sets up simple TrackStructs and then runs them through the RealTrackScore
calculatelnclusionsAndExclusions function and then checks all the inclusions and exclusions against

expected values.

72

