
Submitted By: Michael Burns, Ian Lukens, Christopher McAndrews

Advised By: Professor Elke Rundensteiner

Sponsored By: BAE Systems

Sponsor Liaisons: James Costa and Keith Pray

TRACKING TESTING
FRAMEWORK

A Major Qualifying Project submitted to the Faculty of the Worcester
Polytechnic Institute in partial fulfilment of the requirements for the Degree of

Bachelor of Science on March 17, 2014

1

Abstract

For this project the team created a testing framework for the tracking and fusion domain. This

framework allows for automated testing of tracking engines and integrates with the Jenkins continuous

integration server. The framework has components that generate truth data, add error to the truth to

create modeled data, transform the modeled data into an estimate of the truth, calculate metrics by

comparing this estimate to the actual truth, and display the metrics in a human readable format on

Jenkins. The team also produced a user guide that provides documentation and instruction for use of

the framework.

2

Executive Summary

Our project was to design a testing framework for tracking and fusion engines. In order to do

this, the team researched tracking engines, specifically sensors, different tracking algorithms, the

Kalman filter, and generic problems with tracking. The team then established some useful metrics for

the tracking domain. Also, the team researched good testing procedures and applied these practices to

the testing framework. Additionally, the team did background research on several open source tools

including Jenkins and the Simulation of Urban Mobility (SUMO) traffic simulator.

Our design philosophy has sections that correspond to the different components of the testing

framework. This includes the data structures our framework uses, the traffic simulator we use to

generate truth data, and the error generator we created to manipulate that data. Next, follows sections

about the different tracker implementations we wrote to validate our framework, the truth association

algorithms involved, and the metrics implemented and displayed on Jenkins.

The paper concludes with a discussion of possible extensions to the framework and different

avenues to explore. Some ideas are using more realistic sensor models, a more complex tracking engine

utilizing Kalman filters to predict movement, live streaming of data, and more realistic truth association

algorithms. Finally, we have included the User Manual for BAE Systems which specifies how to use the

framework’s features as well as how to extend the framework. Also included is a test plan that explains

how we validated our framework.

3

Acknowledgements

The group would like to offer our thanks to the following people and organizations that assisted

and supported us throughout our project, which led to the successful completion of this Major

Qualifying Project.

 Elke Rundensteiner for advising our group and providing helpful feedback throughout the

project.

 James Costa for educating us on the Tracking and Fusion domain as well as guiding us on our

presentations and paper.

 Keith Pray for educating us on the Tracking and Fusion domain as well as guiding us on our

presentations and paper.

 BAE Systems for giving us the opportunity to work on this project.

4

Table of Contents

Abstract ... 1

Executive Summary ... 2

Acknowledgements ... 3

Table of Contents .. 4

Table of Figures ... 6

Table of Equations .. 7

Introduction .. 8

Background ... 9

Tracking ... 9

Sensors .. 9

Tracking Algorithms .. 11

The Kalman Filter .. 13

Problems with Tracking ... 14

Metrics .. 16

Identifying a useful metric .. 17

Established tracking metrics ... 18

Testing ... 21

Testing Procedure ... 21

Testing Framework ... 22

Traffic Simulator .. 22

Jenkins ... 24

Bamboo ... 25

Design Philosophy ... 26

Data Structures ... 27

Traffic Simulator .. 28

Error Generator ... 29

Tracker Interface ... 30

Identity Tracker ... 30

Parameterized Tracker .. 31

Truth Association Interface ... 31

5

Implementation of Truth Association Interface ... 32

How the Truth Association Interface is used in the framework ... 33

Metric Interface .. 33

List of Included Metrics ... 34

Jenkins Plugin .. 38

Future Extensions ... 39

Conclusion ... 41

Bibliography .. 43

Appendix A - User Manual .. 46

Appendix B – Test Plan .. 69

6

Table of Figures

Figure 1: Layers of Abstraction from Raw Points to Fused Tracks .. 12

Figure 2: Tracking Engines Predict Next State .. 13

Figure 3: Kalman Filters Maintain Multiple Hypotheses ... 14

Figure 4: Tracks Crossing and Splitting ... 16

Figure 5: Starburst Pattern.. 16

Figure 6: Example SUMO Network ... 23

Figure 7: Components of the Framework ... 26

Figure 8: Position Skew ... 29

Figure 9: Position Bias ... 29

Figure 10: Extra Readings .. 30

Figure 11: Point Dropping ... 30

Figure 12: Example Output on Jenkins ... 41

7

Table of Equations

Equation 1: Accuracy Metric ... 34

Equation 2: Assignment Accuracy Metric ... 34

Equation 3: False Discovery Rate .. 35

Equation 4: False Inclusion Rate ... 35

Equation 5: Matthew’s Correlation Coefficient .. 36

Equation 6: Negative Predictive Value .. 36

Equation 7: Positive Predictive Value ... 36

Equation 8: Specificity ... 37

Equation 9: Target Effectiveness .. 37

Equation 10: Track Purity .. 37

Equation 11: True Inclusion Rate .. 37

8

Introduction

The motivation for this project was to develop a simple way to automatically test tracking and

fusion engines. Our team developed a framework called the Tracking Testing Framework. Tracking is a

complex domain that requires algorithms that match measured data from sensors to accurate

approximations of reality. In order to validate tracking engines, it is useful to use testing simulations as

this allows users to save time by being able to perform tests without expending resources on acquiring

real world data. A desirable feature of the framework was that it interfaces with a continuous

integration server, such as Jenkins. The purpose of the framework was to provide feedback based on

defined metrics. Metrics are numerical values calculated from simple measurements. The purpose of

these metrics is to examine specific behaviors of a tracking engine. In order to validate each metric and

the framework, our team developed a JUnit test suite that exercised the metrics and the components of

the framework. Through this testing, our team constructed a framework that not only works with

simple simulated data, but also can accept input from real world exercises, provided that the data

conforms to our data structures. In order to make the system maintainable for future users, a

requirement for the project team was documentation. To this end we created a user guide document

(Appendix A - User Manual) which outlines basic use cases of the framework as well as how to extend

the framework’s functionality. The user manual supplements the source code, which contains extensive

Javadoc comments and further internal, clarifying comments.

9

Background

By implementing an automatic and prompt feedback loop for changes to a tracking engine,

engineers can more easily make improvements to the software. In order to show how a testing

framework for tracking engines could improve their design, this chapter reviews general tracking

methodology, the problems that occur in tracking, research on the usefulness of performance metrics,

and software testing procedures. The chapter concludes with background information on traffic

simulators and continuous integration servers.

Tracking

In this section we describe the basics behind tracking and its principles. We begin with an

overview of tracking sensors and the different factors that influence their readings. We then discuss the

use of tracking algorithms for interpreting sensor data and the common issues that tracking engines

encounter.

Sensors

Tracking builds on sensor systems based on radar, sonar, electro-optical, or infrared readings

(Blackman, 2004). The two types of sensor groups are passive and active sensors. Passive sensors

measure energy that is naturally available. For example, a microwave radio meter is a passive sensor

(Government of Canada, 2014). An active sensor is one which produces the energy that it detects. In

general, an active sensor works by propagating a wave outward, and the wave eventually reflects off

some target (Skolnik, 2008). The reflection’s composition is largely variable on the target, and

consequently, using sensors well depends on the analysis of the data they produce. Ideally, a reading

returns a perfectly isometric reflection, a radial output equal in all directions clearly indicating the

target’s exact position. However, in practice, reflections have unbalanced readings, referred to as

scatterings, which occur due to differentiating size in objects, multiple reflection sources on a single

10

object, or inaccurate equipment. Once the scattered wave returns, sensor readers compare its energy

strength against the outputted wave to determine characteristics of the target. A tracking system then

uses this information to identify targets of interest, and uses the data from the sensor to track these

targets over time. Still, sensors have many limiting factors including their response time, accuracy of

readings, and interpretation of data.

Consequently, target readings are still not necessarily useful due to signal noise - the number of

false or undesired objects picked up by a sensor, or inherent system biases. For example, radar sensor

systems must account for noise since any metal object or even other radar waves can cause noise.

Noise handling begins with trying to reduce noise at its source by adjusting the gain on a reader

(Toomay & Hannen, 2004). This affects sensor sensitivity by reducing or increasing the number of

readings a sensor perceives. For example, upping the gain on a sensor will allow it to sense more

objects, but also increase the noise or false positives of objects. Conversely, decreasing the gain will

reduce noise but can end in no object readings or missed objects. Along with gain manipulation, most

sensor algorithms use target thresholds, also known as gates, to filter out noise readings. The

specification of these gates considers the specific environment of the sensor and the objects the user

wants it to identify.

In addition to noise, sensors can have issues with poor resolution. Resolution refers to how far

apart objects must be before they can be identified as separate entities (Skolnik, 2008). With poor

resolution, the track of one object can seemingly turn into two separate tracks instantaneously; which is

problematic for tracking algorithms. However, a high resolution means more possibly superfluous data

input, so consequently, resolution varies depending on a sensor’s purpose. For example, weapons

tracking radar can have resolution of a few yards, but search radars might have a resolution of several

miles (Wolff, 2013).

11

Once a sensor identifies a desired target, radar systems extrapolate useful information about

the target from the sensor reading (Wolff, 2013). In radar systems, the most accurate data a sensor can

give is the slant range, meaning the distance from the sensor to a target. Using the speed of light and

the time of the wave’s round trip, a sensor can yield a precise distance measurement. Sensors also

estimate the radar cross section, an estimation of the target size. This size estimate corresponds to the

target’s components that reflect radio magnetic waves, but does not necessarily correspond to the

actual size of the object. Furthermore, a sensor reading gives a radial velocity, the general speed of the

object in relation to the radar. Although accurate, the radial velocity is not final in determining the

direction of the target; this requires the angle of motion (Skolnik, 2008). A sensor can read the angle,

but a slight inaccuracy produces a large area of uncertainty due to the typical distance between the

sensor and the target.

As a final note, different sensors are better suited for identifying different attributes of objects

(Wolff, 2013). For example, using a small, vertical radar wave typically yields a more precise elevation

reading than horizontal radar waves. For the best results, one would want to use multiple sensors to

form the most accurate tracks.

Tracking Algorithms

The next step of tracking is to interpret sensor data. Sensors collect large amounts of diverse

information including background clutter, hardware errors, thermal noise, and finally, targets of interest

(Blackman, 2004). With so much ambiguous data collected by the sensors, proper tracking requires

advanced algorithms to interpret it. Tracking algorithms analyze the sensor data making estimations of

different tracks for the targets of interest the algorithm identifies (Wolff, 2013). A track is a series of

reports corresponding to a single object. The tracking algorithm links tracks, which contain additional

information collected by the sensors. Using the last estimated positions and tracks and contrasting

12

them with any newly generated information, a tracker updates and checks its targets, always fulfilling

certain criteria to attempt to build realistic and accurate tracks. During the creation and analysis of

tracks, algorithms use data fusion, the process of combining simple data into more advanced, and useful

information. This helps to pool either sensor data or multiple tracks into a single aggregate track. See

Figure 1 for an illustration of this process.

Figure 1: Layers of Abstraction from Raw Points to Fused Tracks

Fusing data depends mostly on the concepts of association and state estimate fusion (Chong,

Chang, More, & Barker, 2000). Association is the linking of various reports from sensors and accurately

identifying if tracks or readings refer to the same or different objects. The state estimates are the

estimations of an object’s movement. They refer to the status of assumptions made by previous

estimations that then affect future estimations. In other words, they hold the certainty of different

states and the assumptions used to make them. These become especially significant when state

estimates have correlations between different data states. In particular, a distinction arises when data

fusion occurs between tracks rather than reports because the creation of different tracks is likely

associated due to using algorithms with similar assumptions. Therefore, any assumptions made by

fusing engines need to account for such dependencies and covariance between data and consequently

keep certainty correspondingly lower than if there were no such correlation.

When a sensor identifies data that the tracking algorithm deems unassociated with a previous

track, the algorithm creates a new track (Wolff, 2013). As more readings come in, this new track will

13

either lengthen or the algorithm will discard the track as noise. This method helps generate a better

picture of the actually relevant data. The intake of data also allows the software to generate further

predictions about the targets’ attributes and future movement (Figure 2). More advanced algorithms

will take these predictions into account when taking in other readings.

Figure 2: Tracking Engines Predict Next State

The Kalman Filter

Trackers use many different algorithms and equations, but the one that we will focus on in this

paper is the Kalman filter. Most modern tracking systems that utilize radar use the Kalman filter (Wolff,

2013). The Kalman filter is a proposed solution to understanding discrete data gathered over time, such

as sensor data, and uses a system of mathematical equations to remove extraneous noise or outlier

data, such as sensor noise (Bayoumi, 2012). The purpose of the Kalman filter is to establish values closer

to the truth from unclean and uncertain data. The Kalman filter also allows estimations of past, present,

and future readings. The key basis of the Kalman Filter is that it assumes the relationship between data

is linear and Gaussian distributed. By applying a linear operator to each new reading while factoring in

its previously predicted state, the Kalman filter measures any new possible associations and then

updates its state accordingly while also keeping track of its own uncertainty (Wolff, 2013). Covariance

matrices represent this uncertainty.

Covariance is a measure of the correlation between two variables, and in the case of its use for

tracking, the Kalman filter derives covariance from the variation that could be present in sensor

14

readings. A matrix encapsulates the uncertainty of covariance in each dimension. This allows further

extrapolation of the given sensor readings to produce an area of uncertainty around a sensor’s reported

location. This area is important to consider since any changes can greatly affect how the sensor data

gets interpreted (Figure 3). Tracking this area is necessary to allow Kalman filters to make accurate

predictions due to the unreliability of sensor readings.

Figure 3: Kalman Filters Maintain Multiple Hypotheses

Uncertainty is particularly important for Kalman filter, because once they run long enough and

collect enough data, the math can become over-confident in its own predictions rather than relying on

sensor data (Wolff, 2013). Therefore, it is necessary to keep a proper weight between the Kalman

filter’s data and the sensor data.

Problems with Tracking

Despite advanced algorithms and highly technological sensors, tracking still has failure cases.

One major issue is the need for timeliness. Although a tracking algorithm could theoretically take in

gigabytes of data at once and painstakingly check every possible association upon each update, limiting

factors of time and computing power factor in (Wolff, 2013). Therefore, a need for quicker algorithms

develops, and to make it faster, something must be lost while still maintaining accuracy. Subsequently,

this creates the dilemma of labeling part of the algorithm superfluous. Should the algorithm throw out

more readings as noise? Should it reduce the amount of different possibilities for tracks it keeps in

memory or reduce the area of uncertainty to cut down on different possibilities altogether? To help

15

answer these questions, it is important to know the specific problems trackers encounter. These issues

include high false alarm rates with sensors, target fading, sensor uncertainty, unpredictable maneuvers,

confusion events, radar jamming, and non-uniformly distributed clutter.

High false alarm rates occur when a sensor detects too many objects, either due to natural

interference or imprecise sensor settings. Altering the gain on the radar or identifying interference

patterns can help alleviate this issue (Toomay & Hannen, 2004).

Target fading occurs due to either change in a target’s detectability or inherently low target

detectability. Targets will disappear and reappear between sensor readings, so the tracking algorithm

must keep a larger memory of tracks rather than instantly discarding those that end abruptly.

Sensor uncertainty means that tracks will also have a larger covariance, and more track options

will exist in a given data set. A tracking algorithm in this scenario must accurately acknowledge the

resultant uncertainty of its own assumptions.

Unpredictable target maneuvers hinder a tracking algorithm’s ability to estimate future motion.

To account for this, a Kalman filter applied to unpredictable targets ought to give more weight to sensor

readings.

A confusion event concerns junctures when sensor data creates an extremely ambiguous

situation. One example is target crossing. This occurs when two tracks appear to cross from data

reports. Due to the incremental updates of sensors, it is unclear whether the two objects on these

tracks crossed paths, as in both continuing on their course, or split, meaning that they essentially met at

a point and then turned away from each other. Figure 4, below, shows an illustration of the issue.

16

Figure 4: Tracks Crossing and Splitting

Starbursts are similar problems that occur when tracked objects split into multiple, smaller

targets (Figure 5). In this situation, a tracking algorithm must create new tracks seemingly out of

nowhere.

Figure 5: Starburst Pattern

Radar jamming is when some external factor is blocking sensor readings. It has similar

repercussions as target fading.

Non-uniformly distributed clutter refers to the noise or unwanted feedback a radar receives. As

previously stated, there must be a delicate balance between allowing noise and discarding it for tracking

to be useful.

Metrics

In this section we discuss metrics and how they can be used for analyzing a tracking system. The

first section describes the characteristics needed for a metric to be useful, and the second section

describes metrics used in evaluating the performance of tracker engines.

17

Identifying a useful metric

The main purpose of analytics is to measure progress towards a goal (Yoskovitz, 2013). Metrics

are one of the tools used in analytics to help evaluate progress by creating sub-goals. A metric itself is a

formal standard or goal that ought to be met to indicate success, and by using a combination of metrics,

people are able to analyze what they did well and what they need to improve in order to meet their

goal.

To identify a helpful metric, one must leverage knowledge of what success means and an

understanding of how to succeed. The goal of tracking is to accurately track objects. A simple ratio of

the right answer over wrong answer, although a useful metric, paints a very general picture of possible

problems without a direction on how to improve. If a tracker returns a fifty percent accuracy rate for

identifying tracks, the only assumption is that the tracker is working poorly. However, this does not

begin to answer why. Is it sensor noise or too much sensor uncertainty? Do the tracks cross too much,

or do objects keep fading? Perhaps the algorithm simply makes bad assumptions. By gathering more

data and calculating additional metrics, these questions start becoming answerable.

A useful metric is actionable (Yoskovitz, 2013). This means that a metric should create a

feedback loop whereupon receiving its value, a person takes some appropriate response. The better a

metric is, the clearer it is what this response should be. For instance, after receiving a low grade on a

calculus exam, a student might respond with study more, but if the metric were a low test grade on

areas that covered integrals, the student would know to specifically study more integrals. A metric is

not always perfectly clear in the actions needed to improve it, but it does create a starting point for

exploration and problem solving.

A useful metric is also comparable (Yoskovitz, 2013). This means that people can compare the

values of a metric over time. This way, people can graph metrics to show progress, decline, or no

18

change. Often times, this means that most metrics are quantitative, standard number formats that

improve either the higher or lower they get. Such comparisons are useful for analyzing progress.

The last important note on metrics is that they do not always mean what people might first

think. Like all tools, metrics can have faults. Specifically, correlation does not imply causation. When

analyzing metrics, it is always good to find the cause of problems as this then allows someone to fix

them. However, metrics are sometimes limited in their analytical power, and people should not follow

them blindly. Each metric and metric reading is different and greatly depends on the context behind it.

Established tracking metrics

Previous studies have established useful tracking metrics. The difficulties with these metrics

arise due to the complexity of a standard multi-part tracking system. Within a complete system, there

are sensor uncertainties, noise, track impurities, and reading interpretations that all affect the output of

the tracking engine. In theory, the correct result from a tracking engine is not necessarily one that

accurately identifies a track when accounting for these issues (Smith, Register, Blair, & Levedahl, 2010).

Consider the situation where a tracker correctly identifies an object despite the presence of a lot of

noise. Although this seems like a useful reading, this may lead the algorithm to incorrectly disregard

objects that it perceives as extraneous noise in future cases. Situations like this necessitate the use of

advanced metrics with multiple simulations and evaluations to provide useful feedback. To this end,

there are two subcategories of metrics: measures of effectiveness and measures of performance. A

measure of effectiveness analyzes the algorithms and processes used to arrive at a conclusion while the

measures of performance focus on the results. From our studies, it appears most established tracking

metrics fit the measure of performance category rather than measure of effectiveness.

Typically a tracking metric is derived from using ground truth data and simulating a sensor

reading from the truth data (Smith, Register, Blair, & Levedahl, 2010). This simulated sensor reading is

19

entered into the tracking engine, and its output gets compared to the truth data. Through this

comparison, four general categories of data interpretation arise: true inclusion, true exclusion, false

inclusion, and false exclusion (Canavan, McCullough, & Farrell, 2009). True inclusion refers to a sensor

data point correctly identified within a track. True exclusion refers to a sensor data point correctly

excluded from a track such as noise or a separate track. False inclusion refers to any noise or incorrect

data points wrongly included in a track, and false exclusion denotes data points left out of a track that

should have been included. Although the determination of these four categories still has inherent

imprecision to account for simulated area of uncertainty, they allow creation of a decent array of

general performance metrics as defined in the paper by Canavan, McCullough, and Farrell and

represented in Table 1.

20

Metric Description Calculation

Track Purity

The percentage of correctly
included points divided by the
total included points plus the
wrongly excluded points

𝑇𝐼

𝑇𝐼 + 𝐹𝐼 + 𝐹𝐸

Target
Effectiveness

The number of correct
inclusions divided by the size of
the fusion track set

𝑇𝐼

𝑆𝑖𝑧𝑒 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑠𝑒𝑡

Assignment
Accuracy

The number of correct
inclusions divided by the size of
the truth track set

𝑇𝐼

𝑇𝐼 + 𝑇𝐸 + 𝐹𝐼 + 𝐹𝐸

Accuracy The number of correct
inclusions and exclusion divided
by the total size of the track set

𝑇𝐼 + 𝑇𝐸

𝑇𝐼 + 𝑇𝐸 + 𝐹𝐼 + 𝐹𝐸

Specificity The number of correct
exclusions divided by the
number of correct exclusions
plus the number of false
inclusions

𝑇𝐸

𝑇𝐸 + 𝐹𝐼

Positive
Predictive
Value

The number of correct
inclusions divided by the
number of correct inclusions
and exclusions

𝑇𝐼

𝐹𝐼 + 𝑇𝐼

Negative
Predictive
Value

The number of correct
exclusions divided by the
number of correct inclusions
and exclusions

𝑇𝐸

𝑇𝐸 + 𝐹𝐸

False Discovery
Rate

The number of incorrect
inclusions over the number of
inclusions

𝐹𝐼

𝐹𝐼 + 𝑇𝐼

Matthews
Correction
Coefficient

Machine learning classification
of binary inclusion systems (i.e.
included vs. excluded)

(𝑇𝐼 ∗ 𝑇𝐸) − (𝐹𝐼 ∗ 𝐹𝐸)

√((𝑇𝐼 + 𝐹𝐼) ∗ (𝑇𝐼 + 𝐹𝐸) ∗ (𝑇𝐸 + 𝐹𝐼) ∗ (𝑇𝐸 + 𝐹𝐸))

True Inclusion
Rate

The true inclusions divided by
the true inclusion plus the false
exclusions

𝑇𝐼

𝑇𝐼 + 𝐹𝐸

False Inclusion
Rate

The false inclusions divided by
the false inclusion plus the true
exclusions

𝐹𝐼

𝐹𝐼 + 𝑇𝐸

Table 1: Example Metrics (TI = true inclusion, TX= true exclusion, FI = false inclusion, FX = false exclusion)

21

Despite the extensiveness of these calculations, like all metrics, they require appropriate

understanding.

Testing

In this section, we describe good testing practices required when evaluating a software system.

Testing Procedure

The first part of creating any test is planning (Spillner, Linz, Rossner, & Winter, 2012). During

planning, the testers should provide a detailed testing procedure document that explicitly outlines the

purposes of tests and their execution. These testing purposes are called testing requirements that the

actual tests must fulfill. This phase includes analysis, design, and evaluation of exit criteria and leads to

the eventual derivation of test techniques and strategies. Two of the most important aspects of testing

are purpose and role. Since exhaustive testing is usually impractical, the tests that the testers run must

be high priority tests that serve specific and useful functions within the testing framework. During

planning it is also important to note the different process phases within the software and the amount of

control over different program aspects.

After the analysis and design phase comes implementation and execution (Spillner, Linz,

Rossner, & Winter, 2012). Testers create concrete test cases derived from logical test cases and execute

them. This involves using a test oracle of expected results and comparing them to actual results. All test

failures must have a clear origin or be traceable.

However, execution does not imply completion in this case. A large part of testing is analyzing

results, improving tests, and retesting. This is why it is important for tests to have sufficient reporting

on their results for further analysis. The main evaluation of the software starts with asking what the test

results mean. After that, testers decide if the results are okay or if the software needs improvement.

Besides evaluation of the software, testers ought to evaluate the tests themselves. For example, if test

22

results show inaccurate specification, testers must improve their techniques to generate better results.

Most testing results in software improvement and further testing.

Testing Framework

In this section, we discuss the tools we researched in order to create a suitable testing

framework for our metric simulations. In the first section, we discuss our process for finding a suitable

traffic simulator, and in the second section, we provide an overview of Jenkins, the integration and

testing server we used. Finally, we discuss an alternative to Jenkins known as Bamboo.

Traffic Simulator

In order to test our tracking framework, we need to generate realistic data that the framework

can use as input for the different trackers. For the sake of simplicity, we decided to limit our simulated

data to two dimensions, removing altitude as a variable. With the goal of our simulation confined to

two dimensions, we decided that traffic simulators would be a reasonable solution. Implementing a

traffic simulator from scratch is beyond the intended scope of this project, so our group decided to

utilize available open-source traffic simulators.

The first traffic simulator that our group investigated was a “Microscopic Traffic Simulator”

developed by Martin Trieber. It fit many of our requirements, in that it was open-source, developed in

Java, and could simulate different road scenarios. However, the main purpose of this traffic simulator

was to demonstrate the “fundamental issues of traffic dynamics rather than simulating specific road

networks” (Trieber, 2011). Unfortunately, our goal was to find a traffic simulator that focused on

individual vehicles, rather than the traffic system as a whole. Additionally, this simulator turned out to

not be very extensible, and it would have required a significant amount of development work in order to

get the desired output from the simulator. As such, our team decided to use the SUMO traffic simulator

instead.

23

The Simulation of Urban Mobility (SUMO) is “an open source, highly portable, microscopic and

continuous road traffic simulation package” (Sumo Wiki, 2013). Our team ultimately decided to use

SUMO because it has many important features. For example, SUMO can be executed from the

command line, so our tests can automatically run SUMO simulations without any real-time input

required. Additionally, the output of SUMO simulations can be saved to a file, which we can then use as

input for multiple tests, making it possible to have predictable test results when we are evaluating our

trackers and metrics. The simulations themselves are also highly customizable. It is possible to select

the road configuration used in the simulation. For example, the simulation can involve a single road, or

two roads that cross each other (Figure 6).

Figure 6: Example SUMO Network

24

Additionally, the number of vehicles per simulation is variable. These customizations make it

very easy to test our trackers and metrics on different scenarios.

Jenkins

Jenkins is an open source continuous integration server that allows teams of software

developers to work quickly and efficiently (Kawaguchi, n.d.). A more concrete definition of continuous

integration is that it is a process in which members of a team make contributions to a project daily (or

even more often) and automated builds and tests validate and verify each contribution (Fowler, 2006).

This helps ensure that changes to a build do not cause any new errors and also gives results of tests per

build iteration. Jenkins helps to accomplish a continuous integration environment by handling the

automated build and test process described above.

Jenkins is also highly customizable (Moser & O'Brien, 2011). Jenkins allows developers a great

deal of configuration options in many different aspects of continuous integration. It allows the

developer to specify versions of Java Developer Kits (JDKs) to use when building the project. Jenkins

also is flexible with its build options and supports automated Ant builds, or integrating with Maven to

execute build goals. As both Maven and Ant can set automated testing goals, Jenkins is popular for

utilizing test driven development, and it is easy to setup. Jenkins further promotes continuous

integration by working with popular source control systems such as Subversion (SVN) and Git to start

automated builds by probing the source control for changes. At the conclusion of the build process,

Jenkins allows communication to the team via test results by email, IRC, RSS, or a Jenkins web server.

In addition to these basic functions, Jenkins supports extensions via plugins (Kawaguchi, n.d.).

Plugins extend the functionality of Jenkins at over one hundred possible extension points allowing for

customization of nearly all aspects of the system. Plugins add a great deal of options to Jenkins such as

25

adding more graphical user interface options or customizable build options. Using plugins, a user can

graphically display test output for all their builds and tests.

Bamboo

Another tool that is popular for continuous integration is Bamboo. Bamboo is a continuous

integration server made by Atlassian. A common use for Bamboo is to automate the build process and

run tests to validate each developer’s contribution to a shared code base. Some of the key features of

Bamboo are its strong integration with JIRA, an issue tracking tool to aid in code development, stronger

integration with Git, such that it can automate merging, and a better method of deploying the finished

product to customers. Bamboo also includes a great deal of customization in order to support different

project sets and build goals that an end user can specify. Unfortunately, Bamboo is not open source,

and licenses for the system have a monetary cost. However, Bamboo has a feature to import quickly

from Jenkins, so teams can opt to use it in the future if the monetary cost makes sense (Atlassian:

Bamboo, 2013).

26

Design Philosophy

According to Joshua Bloch, “an interface is generally the best way to define a type that permits

multiple implementations” (Bloch, 2008). Our overall goal when designing the framework was to keep it

flexible and extensible by abstracting specific implementations with interfaces, and using files to pass

data between the different components of the framework. In order to make the framework clear and

easily extensible, we divided the framework into several distinct, independent components.

Figure 7: Components of the Framework

As seen in Figure 7, the components of our framework are the traffic simulator, the error

generator, the tracker interface, the metric interface, and the Jenkins plugin. Though not pictured here,

the framework also includes truth association. The framework implements the traffic simulator using

the Simulation of Urban Mobility (SUMO). The error generator is a custom built module that produces

more realistic data by introducing one or more pre-defined error types. The tracker interface allows the

framework to use any tracking algorithm, as long as the tracker implements the simple functions

27

defined in the interface. The truth association interface allows the framework to use any truth

association algorithm, as long as the algorithm implements the interface. The metric interface allows

the framework to calculate any metric, as long as the metric implements the functions defined in the

interface. The Jenkins plugin, which we did not create, allows for quick updating and visualization of

metric results because of its integration with the source code management of the development team.

Data Structures

To allow information to travel through the testing framework we created several data structures

that encapsulate the data of sensor reports and tracker output.

The first data structure, named a TrackDataPoint, mirrors a report of an object from a sensor.

This contains a time of when a sensor spotted the object, the position of the object, and a covariance

allowing for trackers to create an area of uncertainty around the point. The CoordinatePosition data

structure represents the position, which is stored as x, y, and z coordinates. Additionally, the covariance

itself is another data structure specifying a matrix of uncertainty values. The framework also adds an

identification number to each TrackDataPoint in order to help with truth association.

The next data structure is a Track. A Track is a list of TrackDataPoints and an identifying name.

A collection of Tracks makes up the main data structure used by the framework – the TrackStruct.

TrackStructs contain any number of Tracks and a unique identifying name. We extended TrackStructs to

make ErrorTrackStructs, which the ErrorGenerator outputs. ErrorTrackStructs have a truth source,

which is a field containing the identifying name of the original TrackStruct used to create the

ErrorTrackStruct. This allows us to keep track of where the modeled data came from, information that

can then be used in our metrics. Modeled data is data that has had errors introduced to it by the

ErrorGenerator. We use these TrackStructs to represent all of the tracking data moving through the

framework including the truth data, modeled data, and tracker data.

28

Traffic Simulator

In order to test our framework, we needed to be able to generate large amounts of truth data,

which is data where we know the position of objects at given points in time. We decided to use a traffic

simulator for this purpose because it would be able to handle the positions and times of multiple

objects, and it would be easy to extract that information from the simulator.

For this framework we utilized the Simulation of Urban Mobility (SUMO) for a variety of reasons.

The primary motivation for using SUMO was its command line functionality. From the command line we

were able to run simulations and extract the positions of the vehicles into a file. Our framework then

parsed the file and used it as truth data for testing purposes. While the framework does not support

automatically running SUMO simulations, it does contain scripts to facilitate converting the output of

simulations into the data structure that the framework uses.

In addition to the above features, SUMO was favored because it could handle popular file types

already in use by the geographic information community. SUMO contains tool scripts that support the

conversion of TIGER database Shapefiles to SUMO simulations. The TIGER (Topologically Integrated

Geographic Encoding and Referencing) database contains spatial representations that include “features

such as roads, railroads, rivers, as well as legal and statistical geographic areas” (United States Census

Bureau, 2014). The process of converting Shapefiles into SUMO simulations involved three different

sub-tools. The first sub-tool converted the Shapefile to a SUMO network file. The second tool took the

existing network and generated a trips file. The third and final tool took both of these files and

generated different routes for the cars to follow from the trips. Finally, a SUMO configuration file would

wrap these three files, allowing the simulator to run the simulation. This process was poorly

documented and error prone, so our team created a script to handle the process. By combining the

29

various existing tools our team was able to make it fairly simple and less error prone for any user to

come up with fairly complex and somewhat realistic simulations of actual traffic and tracking scenarios.

Error Generator

Another tool we used to test our framework was a custom-built error generator. We designed

this error generator to take in truth data. The error generator outputs mutations of the input data

based on specified error configurations. These error configurations are a collection of error types and

associated probabilities. Our framework supports several error types, which simulate realistic errors

that could occur with real-world sensors. The first error type is position skew, in which data points are

randomly moved within a maximum displacement in any direction on the x and y axes (Figure 8).

Figure 8: Position Skew

This is to simulate uncertainty in a sensor’s measurement. The next two error types are x and y

position bias respectively (Figure 9).

Figure 9: Position Bias

These errors simulate if a sensor was reading all measurements a fixed distance from the truth.

For example, a sensor might shift all of the data points five meters to the right of where the object is

actually located. Another error type is time skew, which is where the time values of the data points are

30

increased or decreased within a threshold. Finally, there are extra readings and dropping readings,

which either generate new points within the track, or drop old points from the track (Figure 10 and

Figure 11).

Figure 10: Extra Readings

Figure 11: Point Dropping

All of these error types can be included in any combination in an error configuration. This allows

for highly customizable error scenarios that can be increasingly complex.

Tracker Interface

The third step of the Testing Tracking Framework involves running various tracking and fusion

engines against the modeled data output from the various error configurations. These engines will then

output their own set of tracks that metrics will analyze. In the following sections, we describe two

tracker implementations that we used in order to validate the testing framework.

Identity Tracker

The first tracking engine that we implemented in the Testing Tracking Framework was an

identity tracker. The identity tracker takes in a list of tracks and outputs the same set of tracks without

alteration. This tracker served as an important first step to implementing a full run through of the

31

system. This allowed the team to discover any components that were missing from the initial design of

the framework. The primary benefit of this identity tracker was that it allowed for the ability to verify

that the metrics scored by the system had some sanity to them. For example, the identity tracker was

excellent for validating metrics such as average track length, and number of tracks. However, the

identity tracker was insufficient to test more complicated metrics, especially metrics that required truth

data, because the tracker did not interact with the input data in a meaningful manner.

Parameterized Tracker

To compensate for the limitations of the identity tracker, we designed a more robust, parameter

based tracker. The parameterized tracker is different from the identity tracker in several useful ways.

The first is that it takes in the truth data in addition to the modeled data. Using this data it is able to

restore the modeled data to a more accurate state. In order to determine how much correction of the

modeled data should be performed the parameterized tracker takes in several variable parameters. The

parameters are percentages for the number of falsely added points to remove, incorrectly dropped

points to re-insert, and incorrectly split tracks to reconnect. The ability to quickly tweak the inputs to

the parameterized tracker allowed for faster testing of metric behavior. This allowed us to verify that

metrics would produce different values when the tracker had different inputs, and therefore performed

differently. Additionally, it demonstrated that our framework could support multiple, because the

framework handled multiple instances of the parameterized tracker running concurrently but with

different inputs.

Truth Association Interface

The fourth component of our testing framework is truth association. Truth association is the

process of associating the measured points specified from the output of the tracker back to their

32

corresponding truth points. This step is essential to a testing framework as it allows for many more

complex metrics that can give meaningful insight into the performance of a tracking engine.

Implementation of Truth Association Interface

We developed a simple Point Association Interface that has a single function call that returns

the data points outputted by the tracker mapped to associated truth points. From this data, we

associate tracks from the tracker with truth tracks to generate true and false inclusions and exclusions.

Nearest Neighbor

The Nearest Neighbor algorithm associates points outputted from the tracker with those closest

to them using the Mahalanobis distance as its measurement (Orlov). In this algorithm, multiple tracker

points may associate with the same truth point.

Global Nearest Neighbor

The Global Nearest Neighbor algorithm is similar to the Nearest Neighbor algorithm except that

it matches data points on a one to one basis. This algorithm works in three stages. In the first stage, it

goes through a gating process that discards points that are not close enough in time and distance for the

algorithm to consider them for association. These time and distance gates are parameters of the truth

association function due to the varying nature of sensor reliability and different expectations of test

cases. In the next step, the algorithm calculates the Mahalanobis distance between tracker points and

each of the truth points. Then, using an A* style searching method with Mahalanobis distance as its

scoring system, the algorithm attempts to associate each point with a truth point (Russell & Norvig,

1994). The searching method continues until each point has an association or there are no associations

left to make. The algorithm scores unassociated points as the maximum distance allowed due to

gating. This allows the search to advance and still find the best possible fit of truth points to tracker

points.

33

Known Truth

Due to the complexity of the Nearest Neighbor and Global Nearest Neighbor algorithms, we

determined that we ought to use a more transparent association technique to demonstrate the

effectiveness of metrics when data had a higher guarantee of accuracy. To that end, we implemented

the Known Truth algorithm that uses data point identification numbers to associate points. We set up

this method by adding point identification numbers to the truth data and maintaining them when

outputted from the tracker. This allows easy association by ID with guaranteed correctness even after

the error generator distorts points.

How the Truth Association Interface is used in the framework

The truth association occurs after the tracker outputs its results from truth data. Then, if the

framework calculates a metric that uses truth data on this data set, the truth association occurs and

generates true and false inclusions and exclusions. To do this, the association technique matches tracks

from the tracker with truth tracks using the best fit possible as determined by a computation of the sum

of true inclusions and exclusions minus the sum of false inclusions and exclusions to score tracks. The

framework uses the highest scoring track and its associated inclusion and exclusion values in the overall

association of the TrackStruct. This technique of simple association helps create more advanced

metrics.

Metric Interface

To help evaluation of a tracking system, the fifth part of our framework involves outputting

metrics of different values depending on tracker performance. These metrics create unique files for all

interpreted data put through the testing framework. The metric interface includes a calculate function

that takes in the tracker’s outputted TrackStruct. Metrics that use truth data extend the truth metric

34

class that gives access to true and false inclusion and exclusion data generated from the truth

association.

The TestingController class calculates the metrics using their calculate function, before

outputting their return values to files. Rather than running every metric in the framework, only those

included as xml files in the MetricsToRun folder get calculated. This allows for picking and choosing

those metrics that developers wish to use while still being easily extensible for adding more metrics.

List of Included Metrics

The following metrics correspond to the example metrics given in Table 1. For metrics that use

truth data, their calculations will be shown as TI = true inclusions, TE = true exclusions, FI = false

inclusions, FE = false exclusions.

Accuracy Metric

This metric calculates the accuracy of track inclusions based on truth data. It provides a good

indicator of overall tracker performance.

𝑇𝐼 + 𝑇𝐸

𝑇𝐼 + 𝑇𝐸 + 𝐹𝐼 + 𝐹𝐸

Equation 1: Accuracy Metric

Assignment Accuracy Metric

This metric calculates the percent of true inclusions over the size of the dataset. It provides an

indication of how well the tracking engine is identifying objects correctly.

𝑇𝐼

𝑇𝐼 + 𝑇𝐸 + 𝐹𝐼 + 𝐹𝐸

Equation 2: Assignment Accuracy Metric

35

Average Track Lifespan Metric

This metric calculates the average time length of a reported track. It helps provide insight

on how quickly tracks might end or continue according to the tracking engine.

Average Track Update Rate Metric

This metric returns the average time between updates in the reported tracks. This can show

how well a tracker does depending on the rate of the data it receives.

False Discovery Rate Metric

This metric calculates the rate of false inclusions in the data against all inclusions. This value

helps show whether or not the tracker includes too much noise.

𝐹𝐼

𝐹𝐼 + 𝑇𝐼

Equation 3: False Discovery Rate

False Inclusion Rate Metric

This metric calculates the false inclusions compared to the true exclusions. High values in this

metric mean the tracker is too lenient in adding points to its tracks.

𝐹𝐼

𝐹𝐼 + 𝑇𝐸

Equation 4: False Inclusion Rate

Lifespan Similarity Metric

This metric calculates the average lifespan of the reported tracks divided by the average lifespan

of the truth data tracks. This helps generate a better idea of how well the tracker handles track length.

36

Matthews Correlation Coefficient Metric

This metric calculates the Matthew’s Correlation Coefficient using true and false inclusions and

exclusions. It indicates overall performance based on distance from pure chance with a ceiling being

that everything is predicted correctly or incorrectly.

(𝑇𝐼 ∗ 𝑇𝐸) − (𝐹𝐼 ∗ 𝐹𝐸)

√((𝑇𝐼 + 𝐹𝐼) ∗ (𝑇𝐼 + 𝐹𝐸) ∗ (𝑇𝐸 + 𝐹𝐼) ∗ (𝑇𝐸 + 𝐹𝐸))

Equation 5: Matthew’s Correlation Coefficient

Negative Predictive Value Metric

This metric calculates the percentage of true exclusions versus false exclusions. A high value

here indicates that the tracker effectively identifies noise.

𝑇𝐸

𝑇𝐸 + 𝐹𝐸

Equation 6: Negative Predictive Value

Number of Tracks Metric

This metric calculates the number of tracks. This can be useful in tracking performance due to

memory overhead with a higher number of tracks or incorrect splitting of longer tracks into multiple

smaller ones.

Positive Predictive Value Metric

This metric calculates the percentage of true inclusions versus false inclusions. This metric

shows how accurately the tracker includes points within its tracks.

𝑇𝐼

𝐹𝐼 + 𝑇𝐼

Equation 7: Positive Predictive Value

37

Specificity Metric

This metric calculates the percentage of true exclusions versus false inclusions. A high value

shows that the tracker excludes points very well.

𝑇𝐸

𝑇𝐸 + 𝐹𝐼

Equation 8: Specificity

Target Effectiveness Metric

This metric calculates the percentage of true inclusions versus the size of the track.

𝑇𝐼

𝑆𝑖𝑧𝑒 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑠𝑒𝑡

Equation 9: Target Effectiveness

Track Count Purity Metric

This metric calculates the percentage of the size of the outputted tracks versus the size of the

truth data. This helps indicate the data discrepancy between the sets.

Track Purity Metric

This metric calculates the number of true inclusions divided by the true and false inclusions and

the false exclusions. This value helps give a general idea of how well the tracker is performing.

𝑇𝐼

𝑇𝐼 + 𝐹𝐼 + 𝐹𝐸

Equation 10: Track Purity

True Inclusion Rate Metric

This metric calculates the true inclusions compared to the false exclusions. Low values in this

metric mean the tracker is too strict in adding points to its tracks.

𝑇𝐼

𝑇𝐼 + 𝐹𝐸

Equation 11: True Inclusion Rate

38

Jenkins Plugin

The final component of the Tracking Testing Framework is the integration with Jenkins. Our use

of Jenkins was twofold; Jenkins organized a set of jobs which worked together to generate output data

from a JUnit test suite of metrics, and then displayed the results on graphs. To plot the test output in a

human readable format, we utilized an existing plugin, the Plot Plugin (Neilson, n.d.). Our framework

integrates with the plugin by creating a variety of properties files that the plugin parses in order to

display. By configuring the plugin with Jenkins it is possible to display a wide variety of graphs and other

metrics that a user wants to examine. This plugin simplifies tracking the performance of a tracker, as it

allows users to quickly see if there are any major changes in performance that would require further

investigation.

39

Future Extensions

We acknowledge that some of our components are only basic implementations, so below we

discuss some possible future extensions of our framework.

An extension to this project could be more realistic simulations for data generation. In such a

method, simulations would not only be the generation of data points, but would also simulate sensor

behavior. The framework does not currently have a sensor interface that has associated error

generation. Realistically, a sensor would observe only a certain area, and it would have unique

imperfections that would cause errors in the data reports. The framework could simulate these

imperfections using our current implementation of error generation and covariance. A possible

implementation of sensors would involve a sensor interface where each sensor is associated with a

specific error configuration, covariance, and data capture area. This would allow the simulations to

generate data points from multiple sensors for the same object, making data fusion a more important

feature of tracking engines, which our current simulations do not address.

For another possible continuation of the project, a future group could implement a more

realistic tracking engine, specifically a tracking engine that utilizes a Kalman filter to predict each track’s

next data point. Using a more robust tracking engine would enable the framework to calculate more

interesting data for the metric suite, which allows for more in depth analysis of the use of the metrics.

Due to the limitations of the parameterized tracker, it is unclear which metrics would be the most useful

in the development of a realistic tracking engine.

The current truth association algorithms implemented in the framework are a naïve method of

analyzing data due to the complexity of tracking and fusion engines. Our implementation would have

little value to actual tracking systems due to the incorrect assumption that points associate on a one to

one or near one to one basis. Real world tracker engines would have multiple sensor inputs that could

40

duplicate points that would correspond to a single tracked object. A better truth association algorithm

would associate outputted tracks with truth tracks using their position and shape, and then determine if

its points ought to have been included rather than our reverse method of associating points and then

associating tracks.

Future teams could also extend the project in a variety of non-component focused areas. For

example, the framework is currently a file-based system. However, it could also support a stream-based

system, which takes in data reports in real time. This would allow for more dynamic testing of a tracker

actually receiving sensor reports asynchronously while constantly updating its tracks with its current

state. Another extension would be improvements for ease of use through the development of a GUI,

possibly implemented either as a desktop application or a Jenkins plugin. The framework could also

allow for users to have more control over their tests.

41

Conclusion

For this project, we successfully implemented a proof of concept framework for a tracking

engine. Using Jenkins in conjunction with the Plot plugin, the framework provides a prompt feedback

loop by outputting metrics based on tracker performance.

Figure 12: Example Output on Jenkins

The framework benefitted greatly from using various open source software tools, such as SUMO

and Jenkins, because they saved us a great deal of time. Particularly, SUMO allowed us to generate

realistic scenarios by using simulations based on Shapefiles (Figure 13).

42

Figure 13: Example Shapefile of Worcester County in SUMO

Additionally, we designed the framework to be easily extensible by making all of the

components implement basic interfaces. The framework allows users to automatically run test cases of

standardized scenarios, which developers can create. Users can easily compare metrics against

established benchmarks on a per build basis. This allows for comparing performance of tracking engines

over time, enabling developers to measure improvement over time using actionable feedback.

Furthermore, the framework uses Jenkins, providing a continuous integration environment for

developers. Overall, the framework removes the burden of manually testing tracking engines from

developers, and maintains flexibility for future extensions.

43

Bibliography

Atlassian: Bamboo. (2013). Retrieved from Atlassian: https://www.atlassian.com/software/bamboo/got-

jenkins

Bayoumi, M. (2012). Kalman Filter. Resource-Aware Data Fusion Algorithms for Wireless Sensor

Networks, 59.

Blackman, S. S. (2004, January). Multiple Hypothesis Tracking For Multiple Target Tracking. Aerorspace

and Electronic Systems Magazine, IEEE, pp. 5-18.

Bloch, J. (2008). Effective Java (2 ed.). Addison-Wesley.

Canavan, R., McCullough, C., & Farrell, W. (2009, July). Track-centric metrics for track fusion systems.

Information Fusion, pp. 1147-1154.

Chong, C.-Y., Chang, K.-C., More, S., & Barker, W. H. (2000, January). Architectures and algorithms for

Track Association and Fusion. Aerorspace and Electronic Systems Magazine, IEEE, pp. 5-13.

Fowler, M. (2006, May 1). Continuous Integration. Retrieved from

http://www.martinfowler.com/articles/continuousIntegration.html

Government of Canada. (2014, January 29). Natural Resources Canada: Passive vs. Active Sensing.

Retrieved from Natural Resources Canada: http://www.nrcan.gc.ca/earth-

sciences/geomatics/satellite-imagery-air-photos/satellite-imagery-products/educational-

resources/14639

Kawaguchi, K. (n.d.). Jenkins. Retrieved from http://jenkins-ci.org

Moser, M., & O'Brien, T. (2011). The Hudson Book. Retrieved from http://www.eclipse.org/hudson/the-

hudson-book/book-hudson.pdf

44

Neilson, E. (n.d.). Plot Plugin. Retrieved from https://wiki.jenkins-ci.org/display/JENKINS/Plot+Plugin

Orlov, A. I. (n.d.). Encyclopedia of Mathematics: Mahalanobis Distance. Retrieved from

http://www.encyclopediaofmath.org/index.php?title=Mahalanobis_distance&oldid=17720

Russell, S. J., & Norvig, P. (1994). Artificial Intelligence: A Modern Approach.

Skolnik, M. (2008). Radar Handbook (3 ed.).

Smith, D., Register, A., Blair, W. D., & Levedahl, M. (2010). A Track Purity Aproach for Trackin Metrcs.

Aerospace Conference, 2010 IEEE, (pp. 1-11). Big Sky, MT.

Spillner, A., Linz, T., Rossner, T., & Winter, M. (2012). Software Testing Practice: Test Management.

Rocky Nook.

Sumo Wiki. (2013, August 28). Retrieved October 14, 2013, from http://sumo-sim.org/wiki/Main_Page

Toomay, J. C., & Hannen, P. J. (2004). Radar Principles for the Non-Specialist (3 ed.). Retrieved from

http://common.books24x/.com.ezproxy.wpi.edu/toc.aspx?bookid=22971

Trieber, M. (2011, June 1). Microsimulation of Road Traffic Flow. Retrieved October 14, 2013, from

http://www.traffic-simulation.de/

United States Census Bureau. (2014, February 6). TIGER Products. Retrieved from

http://www.census.gov/geo/maps-data/data/tiger.html

Wolff, C. (2013). Radar Tutorial.

Yoskovitz, B. (2013, March 9). Measuring What Matters: How to Pick a Good Metric. Retrieved from

http://onstartups.com/tabid/3339/bid/96738/Measuring-What-Matters-How-To-Pick-A-Good-

Metric.aspx

45

46

Appendix A - User Manual

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

Appendix B – Test Plan

70

71

72

