

Virtual Environment Handheld Controller

MQP

Final Design Report

Worcester Polytechnic Institute

Roger Burns

CS 2007

rburns07@wpi.edu

Nick Wirth

ECE 2007

nwirth@wpi.edu

Advisors:

Robert Lindeman (CS)

gogo@wpi.edu

Susan Jarvis (ECE)

sjarvis@wpi.edu

Roger Burns
Nick Wirth

 ii

Abstract of the Virtual Environment Handheld Controller
By

Nicholas Wirth

Roger Burns

The purpose of this project was to design a new handheld Virtual Environment controller.

The design goal was to use accelerometer technology, along with a unique combination

of other inputs in a device usable by any computer with a USB port. The device is based

around an embedded microprocessor that formats both analog and digital signals and

communicates with a software environment over USB. The Virtual Environment was

designed to provide graphical interaction based on received input data.

Roger Burns
Nick Wirth

 iii

Table of Contents

Abstract of the Virtual Environment Handheld Controller... ii
Table of Contents... iii
List of Figures ... v
List of Tables ... vi
List of Tables ... vi
1. Introduction... 1
2. Project Background... 2

2.1 Comparative Products... 2
2.1.1 Controller History .. 2
2.1.2 Current Competition .. 5

2.2 Component Selection .. 8
2.2.1 Accelerometers .. 8
2.2.2 Optical Encoders.. 9
2.2.3 Potentiometers.. 11
2.2.4 Digital Buttons ... 13

3. Project Specifications.. 14
4. Project Design Overview .. 17

4.1 Hardware... 17
4.1.1 Sensors and Signal Conditioning ... 18
4.1.2 Microprocessor .. 21
4.1.3 USB Controller .. 22
4.1.4 Layout and Construction.. 23
4.1.4.1 BFT232U169 test board.. 24
4.1.4.2 Custom Printed Circuit Boards ... 25
4.1.4.3 Sensor Wiring ... 27

4.2 Software .. 32
4.2.1 Virtual COM .. 33
4.2.3 Information Parsing ... 33
4.2.4 OpenGL.. 35
4.2.4.1 Navigation... 35
4.2.4.2 Object Selection.. 36
4.2.4.3 Object Manipulation ... 37
4.2.5 The Virtual Environment ... 40

5. Results and Analysis ... 41
5.1 Hardware... 41

5.1.1 Sensors ... 41
5.1.2 Microprocessor .. 46
5.1.3 Communication.. 47
5.1.4 Program Flow... 47
5.1.5 System Testing... 49

5.2 Software .. 50
6. Conclusions... 51

6.1 Future Work .. 52
6.1.1 Software ... 52

Roger Burns
Nick Wirth

 iv

6.1.2 Physical Design.. 52
6.1.3 Continued Testing.. 54

References... 55
Appendix A: TUSB3410 Design .. 57
Appendix B: Softbaugh BFT232U169 Schematic.. 61
Appendix C: MSP430F169 Code ... 62
Appendix D: Intersection Math & Code... 65
Appendix E: Serial Communication Code.. 64

SERIAL.H... 64
SERIAL.CPP .. 65

Appendix F: Parser ... 67
PARSER.H.. 67
PARSER.CPP ... 68

Appendix G: Virtual Environment Code ... 73
POINT3.H... 73
POINT3.CPP... 73
OBJECT.H.. 74
OBJECT.CPP.. 76
OBJECT.CPP.. 77
CAMERA.H.. 81
CAMERA.CPP ... 82
ENV.H .. 83
ENV.CPP .. 84
TEST.CPP... 85

Roger Burns
Nick Wirth

 v

List of Figures

Figure 1 : Atari Joystick ... 3
Figure 2 : Nintendo Controller... 4
Figure 3 : Nintendo 64 Controller.. 4
Figure 4 : PlayStation 2 and Xbox Controllers .. 5
Figure 5 : Spaceorb 360 ... 6
Figure 6 : Nintendo Wii Remote ... 7
Figure 7 : Pitch, Yaw, Roll ... 9
Figure 8: Optical Wheel Encoder... 10
Figure 9: Optical Encoder Waveform .. 11
Figure 10: Generic Potentiometer.. 12
Figure 11: Joystick Mechanics ... 12
Figure 12: Standard Button Symbol .. 13
Figure 13 : Hardware Design .. 17
Figure 14: ADXL330 Diagram ... 19
Figure 15: FT232BM .. 22
Figure 16: System Schematic.. 23
Figure 17: Softbaugh BFT232U169 ... 24
Figure 18: ExpressPCB CAD Software .. 25
Figure 19: Accelerometer PCB .. 26
Figure 20: Populated Accelerometer Board... 26
Figure 21: Solder Paste .. 27
Figure 22: Scroll Wheel... 28
Figure 23: Trackball PCB .. 29
Figure 24: Trackball Wiring... 29
Figure 25: Joystick and Digital Buttons ... 30
Figure 26: Complete Circuit... 31
Figure 27: Software Design.. 32
Figure 28: First Person View into the VE .. 36
Figure 29: OpenGL Translate ... 37
Figure 30: OpenGL Scale ... 38
Figure 31: OpenGL Rotation.. 39
Figure 32: Accelerometer Orientation ... 42
Figure 33: Sample Controller Design .. 53

Roger Burns
Nick Wirth

 vi

List of Tables

Table 1: Task vs Hardware... 14
Table 2: Sensor Attributes .. 15
Table 3: Device Outputs ... 19
Table 4: Accelerometer X-Axis ... 43
Table 5: Accelerometer Y-Axis ... 43
Table 6: Accelerometer Z-Axis ... 43
Table 7: Joystick X-Axis.. 45
Table 8: Joystick Y-Axis.. 45

Roger Burns
Nick Wirth

 1

1. Introduction

The purpose of this project is to design, create and test a hand held controller that

interfaces with a computer. This allows a user to interact with a simulated environment.

Just as someone moves through a room by walking, the controller provides a user the

ability to navigate through the simulated space. Other actions that can be done in real life

are possible in the environment. A person moving through a bedroom may wish to

choose amongst a pile of pictures lying on a desk, pick that picture up and examine it.

The project’s aim is to provide that level of interaction using simple hardware that has

been in the hands of gaming enthusiasts for years. The addition of new technology will

allow an increased ability to interact with the system and provide the ability to create a

life-like experience while interacting with these computer simulations.

Roger Burns
Nick Wirth

 2

2. Project Background

2.1 Comparative Products

 It was necessary to research other products in the controller market to help create

the product specifications to meet expectations of potential users. The project looked at

the history of virtual reality controllers, to see how they developed over time and how

their specific features impacted success. Some controllers have become commonplace

while others have been passed over and ignored by the public. Current devices were

reviewed to determine benchmarks in performance must be met to be competitive in the

market.

2.1.1 Controller History

In the past, controllers were designed to provide interaction with the computer

systems with which people were using. The first computer mouse was designed and

implemented in 1965 by Stanford Research Laboratory [13]. It was a simple device

providing the user with a unit that would scroll a selector/manipulating graphic on a

computer screen. This added versatility to the computer world and eventually would

become a common component when the first desktop environment was created. The

concept of playing a game represented in 2-D space was seen in the gaming world when

in 1972 Atari was founded and released its groundbreaking game, Pong. How does one

manipulate objects on a screen so that they can interact with each other? The progression

of devices and their uses started with this simple question, and moved on to evolve into

the controllers we use today.[14]

Roger Burns
Nick Wirth

 3

Atari introduced the joystick, a simple box with a stick that provided the ability to

distinguish between eight directions (Figure 1). It was now possible to move an object

selector around along horizontal, vertical and diagonal axes. Later Atari introduced a

joystick that provided motion control in 360 degrees. A keypad with button inputs was

also added and would allow a game to become more complex, providing a means for

multiple inputs. This was soon to be replaced by a common symbol of games and gaming

for years to come [14]: the gamepad.

Figure 1 : Atari Joystick

Nintendo, currently one of the largest game console companies, designed a simple

rectangular controller to be used with their Nintendo Entertainment System in

1986(Figure 2). It incorporated a simple four way directional pad. This mimicked the

ability of the joystick, but incorporated it into a small button system taking stress away

from the wrist and hand. They also used two buttons to manipulate the in-game

characters and objects, and two other buttons for menu navigation. This simple layout

was a design that would be expanded and upgraded as games required more-complex

input [14].

Roger Burns
Nick Wirth

 4

Figure 2 : Nintendo Controller

Companies changed the basic design of the controller as time progressed and the

technology available to the gaming market advanced. Designs that succeeded were basic

yet provided great functionality. Most controllers soon consisted of some sort of

ergonomic curve to better fit the hands of gamers and relieve stress from long durations

of use. The world of gaming encapsulated movement through a supposed 3-D

environment, most often the case with first person shooters, and controllers began using

analog joysticks to provide a form of movement and view control. This was apparent

with the arrival of the Nintendo 64 controller in 1996 [8]. (Figure 3).

Figure 3 : Nintendo 64 Controller

The following generations of controllers provided not only directional pads and

buttons, but pressure sensitive triggers, accelerometers and analog sticks. The versatility

of these devices is wide, but is limited to an environment largely used by games. Pressure

sensitivity was incorporated in the previous generation of controllers in the gaming

market, namely the PlayStation 2 controller and the Xbox controller (Figure 4).

Roger Burns
Nick Wirth

 5

Figure 4 : PlayStation 2 and Xbox Controllers

The methods by which someone manipulates perspective or movement with these

controllers may not be tailored to specific applications, but because of generalization

these controllers provide functionality for a wide range of software supporting different

forms of manipulation. This method of creating a controller out of multiple simpler

controls is essential for a device to be able to work with hundreds of applications,

requiring only remapping for increased functionality.

This segues into the personal desktop world where two devices have dominated

the market for years; the keyboard and mouse. They have been used for games, graphics

design, and engineering. They are even used to emulate game console controllers in

order to play comparable games. They are versatile and provide the necessary inputs to

navigate through a 2-D environment [9].

2.1.2 Current Competition

 Regarding products that are currently on the market, two main categories of

controllers are available: high-end, VR-specific devices, and consumer-level controllers

aimed at video games. Both groups are used for interaction with a virtual environment,

but they serve distinct purposes. The high-end controllers provide a large degree of

motional freedom, essential for complex environments, but they will only function with

proprietary software and cost a large amount of money. For example, the Flock of Birds

motion tracking system provides six degrees of freedom with magnetic sensors, but

prices for such a system start at $2,500 [20]. The gaming controllers are reasonably

compatible with various systems, and are affordable, but have limited input options to

keep price down. Our goal is to bridge the gap between these two product groups and

create a device that will provide enough control for a virtual environment, yet will be

Roger Burns
Nick Wirth

 6

functional and affordable for the gaming market as well.

 One example of a device that attempted to achieve this goal is the Spaceorb 360

[10] (Figure 5).

Figure 5 : Spaceorb 360

The ball on this device allows for six degrees of movement, for traveling within a virtual

environment or video game. It combines the functionality of multiple input devices into

one, but was only mildly successful. In a review by Jason Bergman, the Spaceorb was

tested with multiple computer games and commented on for its functionality and ease of

use. Bergman comments, “The strange ball affixed to the SpOrb reacts beautifully in

Descent, and really provides a clear advantage over any other input device” [2]. For

specific uses, such as this flight-based game, the controller has a distinct benefit over

traditional gamepads. However in a first-person shooter game he goes on to say, “When

all's said and done...sure you can play Quake with the SpOrb...but why?!?!?. There really

isn't any major advantage to it, it has a really steep learning curve....” This shows that

outside of a few specific applications, the controller's difficulty of use outweighs its

increased control. While designing our controller it was necessary to keep in mind a

wide range of uses so as not to pigeon hole the device for a small number of applications.

Roger Burns
Nick Wirth

 7

Another device that has recently come to market is the Wii Remote (pronounced

“wee”) from game console manufacturer Nintendo. This controller makes use of a

number of features including accelerometers and infrared technology to track its motion

in 3D space (Figure 6).

Figure 6 : Nintendo Wii Remote

 This device is one of a small number of controller devices using accelerometers to

track motion of the device as a user input. Reviews for this device have been positive,

generating a wave of new games focused primarily on the use of the new controller.

However, this device is limited because only owners of the Nintendo system can use this

device. Our project plans to employ a similar accelerometer technology (along with a

unique combination of other inputs) in a device that will be usable by any computer with

a USB port.

Roger Burns
Nick Wirth

 8

2.2 Component Selection

 This section will provide background on the technology behind the various

components of the controller. The chosen sensors will be analyzed, providing

explanations of their operation, and the signals they will generate. It is necessary to

understand how these signals are produced in order to effectively troubleshoot them

during testing, as well as determine how to best handle the data they produce for

translation into a virtual environment.

2.2.1 Accelerometers

One of the devices that is planned to be built into the controller is an

accelerometer. This device measures its own acceleration, and outputs a proportional

voltage. This device is useful as an input sensor, because the user can tilt and move the

controller around in order to perform a task such as locomotion. Because the

accelerometer is internal to the controller, the user's fingers are free to operate other

controls simultaneously, and more readily interact with their virtual environment. In our

application, the accelerometers will be used to measure the force of gravity. As the

controller is tilted, the accelerometer's orientation varies between perpendicular and

parallel with the force of gravity. When parallel with the force of gravity, a force of 1g

(or 9.8m/s2) is registered with the accelerometer. In the perpendicular position, 0g is

measured. The variation in this measured force can be used to calculate the angle at

which the device is oriented. By employing three orthogonally mounted devices (or one

3-axis device). The controller's attitude comprised of its yaw, pitch, and roll can be

calculated.

Roger Burns
Nick Wirth

 9

Figure 7 : Pitch, Yaw, Roll1

This method of operation allows the accelerometer to output values which

describe the tilt of the controller at any time, providing a means for fluid motion control.

The use of accelerometers also allows the controller to measure the absolute three-

dimensional position of itself with a different interpretation of the data. If the

acceleration data from the controller is collected and stored over time, the speed, and

position of the controller can be obtained by calculating the first and second integral of

acceleration with respect to time. This alternative method of operation allows the device

to be used in multiple ways with only changes in software.

Over the last decade, Microelectromechanical systems (MEMS) have advanced a

great deal, allowing once-bulky mechanical devices to be manufactured into tiny

integrated circuits. Currently, multiple MEMS accelerometers are on the market, such as

Analog Devices' ADXL330, which simultaneously measures 3-axes of force with a

sensitivity of 300mV/g [7], and occupies a footprint of only 4mm x 4mm. With today's

mass manufacturing of integrated circuits, this device costs much less than a traditional

mechanical accelerometer at $5.45 per unit (at 1,000 units). These advances in MEMS

technology will allow the controller to provide more methods of input compared to

previous controllers without significantly increasing its price, or complicating its design.

2.2.2 Optical Encoders

One common electromechanical device used for translating rotational movement

into an electrical signal is an optical encoder. This device is used both in the operation of

1 http://liftoff.msfc.nasa.gov/academy/rocket_sci/shuttle/attitude/pyr.html

Roger Burns
Nick Wirth

 10

a trackball, and a scroll wheel, which are elements found in the design of this controller.

An image of a typical optical wheel encoder can be seen in Figure 8.

Figure 8: Optical Wheel Encoder

 In this trackball example, rotating the ball turns two shafts through friction, one

for the X-axis and one for the Y-axis of movement. A slotted disc is located at the end of

each shaft (only one wheel is pictured above). As the wheel turns, the slots pass by two

optical sensors (the clear plastic squares in Figure 8). On the opposite side of the wheel,

two light sources are pointed at the sensors. If a slot lines up with the sensor, it detects

light and outputs a digital “1”. If the sensor is blocked by the wheel, it cannot see the

light and outputs a digital “0”. By counting the number of light pulses as the wheel turns,

the position of the wheel (and indirectly the ball) can be calculated2.

 There are two sensors on each wheel in order to determine the direction of

rotation. The sensors are positioned so that when one is lined up with a slot, the other is

in transition between slots. This offsets the signals from the two sensors as shown in

Figure 9.

2 http://www.4qdtec.com/meece.html

Roger Burns
Nick Wirth

 11

Figure 9: Optical Encoder Waveform3

 When a “1” is sensed by the controller's processor from the first sensor, an

immediate check of the second sensor will determine the direction the wheel is turning.

This system necessitates that there be two sensors present for each axis of rotation to be

monitored. For a trackball, four optical sensors will be needed. For a scroll wheel, only

two sensors will be needed. Optical encoders are simple to implement, because they

output a digital signal, which is easier to work with than an analog signal when

performing logic in a microprocessor.

2.2.3 Potentiometers

 Another common electromechanical device for measuring movement is a

potentiometer. A potentiometer acts as a variable resistor, whose value changes with the

position of a shaft. A typical potentiometer can be seen in Figure 10.

3 ibid

Roger Burns
Nick Wirth

 12

Figure 10: Generic Potentiometer4

 As the wiper is turned, the resistance from point A to point W (as well as from

point B to point W) changes. This can be useful in an analog circuit, where a varying

resistance can be translated into a varying voltage, and input into a microprocessor.

 This type of input sensor is commonly seen in a joystick. Potentiometers are

attached to the ends of two rotating shafts in the base of the joystick. As it is moved, its

displacement in the X-axis is recorded by one potentiometer, and its displacement in the

Y-axis by the other. This system can be seen in Figure 11.

Figure 11: Joystick Mechanics

4 http://www.markallen.com

Roger Burns
Nick Wirth

 13

 A joystick also typically has internal springs that force the stick back to its center

position when released, and outputs a varying voltage for each axis of rotation. These

analog signals require the microprocessor to contain an analog-to-digital converter in

order to create usable position data.

2.2.4 Digital Buttons

 One of the simplest electromechanical devices that will be integrated into the

controller is a digital button. A button works to momentarily complete a circuit, resulting

in a digital “1”. When the button is released, the signal returns to a digital “0”. The

symbol for a momentary button is shown below in Figure 12, illustrating its simple

operation.

Figure 12: Standard Button Symbol

 Buttons are useful for initiating a predefined action in a virtual environment.

They are easy to design into a system compared to other components because they

require little additional circuitry, and processing logic requires little code. For this

application, button debouncing was not necessary, as the digital buttons do not function

on interrupts. The microprocessor is set to poll the buttons’ status whenever it sends data

to the PC.

Roger Burns
Nick Wirth

 14

3. Project Specifications

In order to be a successful design, a VR controller must meet a set of pre-defined

specifications. These specifications will detail the tasks the controller must be able to

accomplish. Each of the defined specifications must be clearly measurable in order to

determine if it has been met. After the design was completed and the controller had been

built, a series of tests were run to verify these specifications.

The overall goal of the controller is to allow a user to interact with a three-

dimensional virtual environment. The design of this controller focuses on three actions

determined to be the most critical in a virtual environment; 3-D navigation, object

selection, and object manipulation. The controller should be tailored for these types of

actions so that the user can easily multi-task and feel as if he is in the simulated

environment. Table 1 lists a number of tasks to be performed in a virtual environment,

and matches each to possible sensors that would be well suited to accept user input.

TASK Possible Hardware

Navigate (Front, Back, Left, Right) Accelerometers

Navigate (Up, Down) Possible accelerometers

Object Selection Scroll wheel / Accelerometer

Object Manipulation Trackball, analogue stick, Accelerometer

Menu Call Button

Menu Control (Up, Down) Scroll Wheel (clicking roll Up, Down)

Menu Control (Left, Right) Scroll Wheel (left and right click)

Selector Manipulation Track Ball

Point of View Manipulation Analogue Stick

Table 1: Task vs Hardware

Roger Burns
Nick Wirth

 15

Another way of viewing this information is to start with a sensor type, display its

attributes, and determine a task that fits those characteristics. This format is shown in

Table 2.

Sensor Input

Dimensions

Advantages Disadvantages Possible Tasks

Trackball 2D Precision, absolute

position

No continuous

movement

Object

selection/manip

ulation

Joystick 2D Rate of movement,

automatically

centers

Poor precision Object

selection/manip

ulation

Scroll Wheel 1D Discrete points in

movement

No continuous

(smooth)

scrolling

Object “depth”

selection

Accelerometer 3D 3D input, doesn’t

occupy fingers

Poor precision Movement

Binary Button 0D On/off functions Few input

dimensions

Selection, map

to function

Analog Button 1D Amplitude Control Poor precision Rate control

Table 2: Sensor Attributes

Using tables 1 & 2, the conclusion was made that multiple device types are

necessary to achieve the desired functionality of the controller. By implementing a

combination of these inputs in a package with which the user can efficiently and easily

accomplish all above-mentioned tasks, the result should be a useful product that will have

a distinct place in the PC and VR-controller markets.

The following list of specifications must be met in order to create a competitive

controller that allows the user to perform 3-D navigation, object selection, and object

manipulation:

Roger Burns
Nick Wirth

 16

1. Must provide an input for movement in a 3-D environment

2. Must provide an input for selecting of an object in 3-D space

3. Must provide an input for interaction with a selected object

4. Controller should allow at least two actions to be performed simultaneously

5. Usable after five minutes of training

6. USB Compatible

7. Software configurable (input sensors can be remapped for different applications)

In order to assure these specifications have been met, a series of tests was

performed that will result in a clear yes/no or numerical value for each item on the above

list. These procedures are detailed in the results and analysis section of the report.

Roger Burns
Nick Wirth

 17

4. Project Design Overview

The design process and specifications set the background of the project. This

section will explore the specific hardware and software components of the design for the

prototype controller. An overall system flow will be presented, along with discrete

device choices.

4.1 Hardware

The hardware design of the controller begins with a functional block diagram

(Figure 13) displaying the major system components and the interactions between each

component, the user, and the software.

Figure 13 : Hardware Design

Roger Burns
Nick Wirth

 18

The block diagram consists of four major components, the input sensors, signal

conditioning, a microprocessor, and a Universal Serial Bus (USB) controller. The arrows

represent the flow of information and power. The signal data originates from the user,

and is transformed into electrical signals by the sensors. These signals are then

conditioned into a form that allows them to be compatible with the microprocessor. The

processor takes these analog (and digital) signals and converts them into digital

information. The microprocessor synchronizes its output data with the USB controller's

clock. The USB controller acts as a translator between the microprocessor and the PC,

allowing them to exchange data. The PC sends control data back through the USB

controller to the microprocessor, in order to change modes of operation. The PC also

supplies power to the entire circuit through the USB connection. All of the blocks shown

in this diagram will be contained within the body of the controller, and connected to the

PC with an external cable.

4.1.1 Sensors and Signal Conditioning

Through a combination of background research on previous virtual environment

controllers and input sensor analysis, it has been determined that to best achieve the

specifications for interaction with a virtual environment this hand-held controller will

contain the following sensors:

• 1 - 3-axis accelerometer

• 1 - trackball

• 1 - joystick

• 4 - digital buttons

• 2 - scroll wheels

All of the input devices result in a total of 17 separate signals that need to be

interpreted by the processor and sent to the computer. Table 3 summarizes these inputs.

Roger Burns
Nick Wirth

 19

Device Analog Signals Digital Signals Total Signals

Accelerometer 3 0 3

Trackball 0 4 4

Joystick 2 0 2

Scroll Wheel (2) 0 4 4

Digital Button (4) 0 4 4

 5 12 17

Table 3: Device Outputs

The accelerometer will be housed within the body of the controller, and mounted

directly to the main Printed Circuit Board (PCB). The product chosen to fulfill this task

is the ADXL330 Accelerometer produced by Analog Devices Inc. This MEMS device is

capable of measuring up to 3.6g in 3D space, and is contained in a 4mm x 4mm Lead

Frame Chip Scale Packaging (LFCSP). A pin out of the device is displayed in Figure 14.

Figure 14: ADXL330 Diagram5

 The ADXL330 requires a supply voltage between 2.0V and 3.6V. The 5V

5 Analog Devices Inc.

Roger Burns
Nick Wirth

 20

supplied by the USB port will be sufficient after being attenuated by a voltage regulator

circuit. The device supplies three analog outputs corresponding to the 3 axes of

movement (X,Y,Z) which are interpreted by the analog-to-digital converter in the

microprocessor. The manufacturer states common applications of this device to be

“Motion and Tilt sensing in Mobile Devices” as well as “Motion-Enabled Gaming

Devices”, which both closely describe the goal of this controller. At a price of $5.45 (@

1,000pcs.), this device is easily attainable for a low budget project.

 The trackball operates with the use of optical wheel encoders measuring its X and

Y axis movement. This results in the device having 4 digital connections to the

microprocessor. The joystick is based on potentiometers and provides 2 analog signals to

the microprocessor. Each digital button provides one digital input to the microprocessor,

resulting in a total of 4 inputs. Finally, the two scroll wheels are based on one-axis

optical wheel encoders, and output a sum of 4 digital signals.

 For the prototype controller, all of the input sensors except the accelerometer are

sourced from existing devices, as complete sensors are generally not available from

manufacturers. For example, rotary encoders are available, but scroll wheels are not.

Research shows devices such as joysticks, trackballs, and scroll wheels are specially

made for products under large quantity contracts. The accelerometer however, is a bare

sensor and was readily ordered from the manufacturer, Analog Devices.

 In order to properly interface with the microprocessor, all of the signals from the

input devices must be properly conditioned. For digital signals, the amplitude of a logic

“1” will be made sufficiently high to trigger each digital input. This value is the

microprocessor's system voltage of 3V, which is higher than the input threshold voltage

of 1.9V. If necessary, the signals are filtered to reduce false triggers resulting from

overshoot or noise. For example, analog signals from the accelerometer are filtered with

a simple RC low-pass filter consisting of a surface mount capacitor of 0.1μF, and the

internal resistance of the sensors. This will result in more accurate digital data as the

analog input signal will contain less noise. After being adjusted, the data is input to a

suitable microprocessor.

Roger Burns
Nick Wirth

 21

4.1.2 Microprocessor

 The microprocessor for this controller must meet a number of criteria in order to

function properly:

• Minimum of 17 I/O pins for sensors

• Minimum of 5 A/D channels

• Operable on <= 5V supply

• Universal interface to communicate with USB controller.

• Moderate memory volume to hold program and sensor data

• Powerful processor to handle multiple data streams

• Small dimensions to fit in controller

• As few extraneous features as possible

 Many solutions were researched and analyzed, ranging from simple 8-bit

architecture microcontrollers to high-end DSP (Digital Signal Processing) capable chips.

It was determined that a level of performance between these two extremes be chosen for

this application. The low-end controllers are simple to program, require fewer resources,

and cost less money, but they lack features, memory size, and processing speed. The

high-end DSPs provide ample computing power, but are very complex to control, more

expensive, and most of the chip's features would go unused.

 The middle ground is a mid-range RISC (Reduced Instruction Set) based

microcontroller, lacking DSP capability, but still containing the features necessary to

monitor all the sensors and process the incoming data. A device based on Texas

Instruments' 16-bit MSP430 family contains the required features and complexity

necessary for this project. Analysis of the features within this family results in a choice

of the MSP430x1xx line. Although smaller models contain enough I/O pins, a 64pin chip

is necessary because with all 17 pins occupied (5 of which consist of analog inputs), the

UART (universal asynchronous receiver/transmitter) interface pins of the smaller device

would be unavailable. At a cost ranging from $5-$8, this processor fits comfortably in

the project's budget. An additional benefit of choosing this processor is the availability of

comprehensive developer kits that can be used for testing the device and becoming

familiar with its interface. The final model chosen is the MSP430F169, as it is included

Roger Burns
Nick Wirth

 22

in both the development kit, and the Softbaugh USB interface test board (discussed in the

next section). In order to program and test the microprocessor, a Texas Instruments USB

FET debugger board and IAR Embedded Workbench Kickstart software suite are

utilized.

4.1.3 USB Controller

 The USB controller must be capable of taking output data from the

microprocessor, converting it into the USB format, and transmitting it to the PC.

Additionally, the controller must also be able to convert any control signals sent from the

PC to a serial format so that they can be recognized by the microprocessor. This process

must occur at a sufficient speed such that the microprocessor can send data to the PC as

fast as it is obtained. For example, a typical USB mouse operates at 125Hz as shown

through Windows configuration settings.

 Research into USB interface devices results in the choice of a USB Peripheral

controller. This chip is designed specifically to organize communication between a USB

host (such as a PC) and an attached device (such as the VR controller of this project).

The FT232BM from Future Technology Devices International Ltd (FTDI) meets all these

criteria, and provides additional features such as a low-power mode when the controller is

inactive. Figure 15 shows an image of the device.

Figure 15: FT232BM6

6 Future Technology Devices International Ltd

Roger Burns
Nick Wirth

 23

 This interface chip has the ability to power itself from the USB bus, a 5V source

that can supply a maximum of 500mA. With the addition of a 5V voltage regulator, the

USB port is capable of powering the VR controller's entire circuit. This USB peripheral

device also has an attainable price of about $5.

4.1.4 Layout and Construction

 Following the selection of all the controller's components, and the design of any

supporting circuitry such as signal filtering, decoupling capacitors, or current limiting

resistors, an overall circuit design was created. The system-level schematic of the

controller is shown in figure 16.

Figure 16: System Schematic

This circuit shows the connections between the sensors, and the microprocessor and

includes all major components. The input from the accelerometers and the joystick are

input to port 6 of the microprocessor, which are configured as a multi-channel analog to

Roger Burns
Nick Wirth

 24

digital converter. The digital signals from the optical encoders are set up on port 2,

which allows changing input signals to trigger an interrupt. The digital buttons are set up

on port 1. What is not shown in this schematic are the details of the interface between the

microprocessor and the USB controller. Each major section of the system-level

schematic will now be examined in detail.

4.1.4.1 BFT232U169 test board

The original design of this project involved the use of a Texas Instruments based USB

controller solution, detailed in Appendix A. After experiencing difficulty with that

configuration, a switch to the FTDI chip was made. This allowed the use of the

Softbaugh BFT232U169 evaluation board, pictured in figure 17, which formed the core

of the system's circuit.

Figure 17: Softbaugh BFT232U169

 This board includes both the MSP430F169 and the FT232BM of the design, with

the interfacing circuitry fully constructed. A detailed schematic of this test board can be

seen in Appendix B. This board is set up so that both the MSP430 and the FT232 are

supplied with power and a clock crystal for proper operation, (32kHz and 6MHz

respectively). A 93LC46B 1kb EEPROM chip is interfaced with the FT232, holding

configuration firmware and USB identifier tags. A 5V to 3V voltage regulator is

included on the board, creating a power supply for the controller. The black plastic 14-

pin connector on the board is a JTAG connector which allows easy programming of the

on-board MSP430. Finally, all the I/O pins of the microprocessor are accessible along

the edge of the board via header pins.

Roger Burns
Nick Wirth

 25

4.1.4.2 Custom Printed Circuit Boards

 The PCB was designed within the program ExpressPCB, as it provides adequate

design flexibility, a direct board ordering feature and a relatively inexpensive source of

boards. All of the traces, mounting pads, vias, and board layers can be mapped out in a

fashion displayed in figure 18.

Figure 18: ExpressPCB CAD Software7

 All dimensions can be directly adjusted by the designer, and custom templates can

be created for specific devices to be attached. Once the board is designed, the resulting

CAD (Computer-Aided Design) file is sent directly from the program to a manufacturer

who creates the boards and ships them to the designer. Three copies of a simple 2-layer

board can be purchased for about $50. With the acquisition of a PCB and all the system

components, the board can be populated and tested for functionality.

The primary board designed for this project is the test board for the accelerometer,

and its supporting passive components. Along with the chip itself, four frequency setting

(and filtering) surface mount capacitors are necessary. An array of vias (small metal-

plated holes through a PCB) are also placed along the edge of the board to facilitate easy

attachment of wires. Some of the components such as the capacitors were laid easily

through the use of templates in the software. The accelerometer on the other hand resides

in a relatively new package, so it was necessary to manually create the template. Package

dimension data was taken from the ADXL330 data sheet and used to determine pad sizes

7 http://www.expresspcb.com

Roger Burns
Nick Wirth

 26

and correct spacing. The layout for this board is shown in figure 19.

Figure 19: Accelerometer PCB

 The accelerometer circuit is located on the right half of the board layout.

The red traces represent conductive metal which will be placed on the top layer of the

board. The green traces represent the bottom layer of the board. The yellow outlines of

components would normally be printed as a silkscreen, but for the low cost

manufacturing option, this board has no silk screen mask. The circuit on the left of the

board is a pin-out for one of our tested USB solutions. Each pin is sent to a row of

headers, and the USB data lines are sent to a USB B-style header for connection to a USB

cable. This file was sent out to ExpressPCB, and after a wait time of about one week, the

board was received. The fully populated board is shown in figure 20.

Figure 20: Populated Accelerometer Board

Due to the LFCSP package of the accelerometer and the small size of the

Roger Burns
Nick Wirth

 27

capacitors, a non-standard method for populating the test board was used. Instead of

using a traditional soldering iron, a water-soluble solder paste, Kester R276 shown in

figure 21 was used.

Figure 21: Solder Paste

Using the heating method found at seattlerobotics.org, the board was brought up

to temperature in a small oven. It was held at the following temperatures for each

specified amount of time.

 4 min. 200 deg. Warm up board and allow temperatures to equalize.

 2 min. 325 deg. Bring temperature up to saturation.

 30 sec + 450 deg. Temperature raised until solder melts and beads at individual

pins, then held for 30 additional seconds.

 Tap the oven before cool down

After this procedure, the water has evaporated from the solder paste, and the

components are securely attached to the board. Lead testing reveals solid connections,

and no short circuits. Lastly, the wires are manually soldered onto the board for

breadboard interfacing.

4.1.4.3 Sensor Wiring

 Apart from the accelerometer, the other sensors of the controller are taken from

other human interface devices. This section will detail how their printed circuit boards

are configured, and how they are connected to the microprocessor. The circuit board

holding the scroll wheel is shown in figure 22.

Roger Burns
Nick Wirth

 28

Figure 22: Scroll Wheel

The rotary encoder is highlighted with a red box. Four terminals extend through the

printed circuit board, and perform the following functions:

 Power

 Ground

 Signal 1

 Signal 2

 The power is provided with 3V from the system rail, and the ground pin is

grounded. The signal 1 and 2 pins are routed via wires to the port 2 inputs of the

MSP430. These signals represent the two square wave signals, separated by 90 degrees

to determine the direction of rotation.

The red circles show examples of the digital buttons. The mechanics of each

button are comprised of two conductive metal pieces on each end of the button. The

white plastic button contains a metal pellet that connects the circuit. When the button is

pressed down, the two halves are connected, and the circuit is completed.

Roger Burns
Nick Wirth

 29

 The trackball also operates through the use of rotary encoders, with its board

shown in figure 23.

Figure 23: Trackball PCB

 The two rotary encoders (one for X-axis and one for Y-axis) are highlighted with

red boxes. The notched wheels that are rotated by the trackball fit into the slots in these

encoders, and translate rotational movement into a stream of digital pulses. The

underside of the board is shown in figure 24 to illustrate the connections.

Figure 24: Trackball Wiring

 The two red boxes (each containing eight pins) are the two rotary encoders shown

Roger Burns
Nick Wirth

 30

in the previous figure. It can be seen that for each encoder, the pins are separated into

groups of four. This is because the encoders are comprised of two pieces. An LED on

one side of the device emits a constant light, while the other side is an optical receiver.

The pins marked in blue are the signal pins for the receivers. The pins marked in red

provide power to the encoders. The orange pins are the ground pins for the devices. All

four signals pins are routed to the port 2 inputs of the MSP430 as digital signals.

 The joystick and digital buttons are sources from a disassembled X-box

controller, shown in figure 25.

Figure 25: Joystick and Digital Buttons

 The joystick is pictured on the right of the image. This device is based on two

potentiometers, one for each axis of motion. Each potentiometer has three terminals,

highlighted by the blue boxes. The two outer pins of each one are the power and ground

pins. Because a potentiometer is essentially a variable resistor, these can be wired with

Roger Burns
Nick Wirth

 31

either polarity. The center pins of each are the signal outputs, which are sent to port 6

(analog to digital converter) of the MSP430.

 With the signal paths of all the individual sensors identified, a complete circuit

was constructed. Each of the sensors was fixed with epoxy to a small sheet of

polycarbonate, and connecting wires were soldered to data and power pins. The

complete circuit is shown in Figure 26. This circuit allows testing of the devices as a

whole, while retaining the ability to re-wire and add or remove components.

Figure 26: Complete Circuit

Roger Burns
Nick Wirth

 32

4.2 Software

A device must have software to interact with the computer system that it is

connected to. This is a device driver. Drivers are files that describe to the operating

system, the necessary functions to perform based upon the input received from a specific

device. In looking to create a unique device, it was important to do work on a method to

gather the information from the device within the software. When determining if the

device is acting as expected, it is required to have a way to inspect if the information

being provided to the personal computer is being interpreted correctly. To check for this

flow of information as well as the interpretation is being carried out successfully this

project will employ a Virtual Environment (VE). The VE will provide the tools to check

the information coming in and assist with the determination of hardware capabilities as

well as standard input from the devices on the controller. This extends to a visual

inspection of the interaction between the device and the computer as well a visual

approach to determine the correct mapping of the functions to controller operation.

Figure 27: Software Design

Figure 27 represents the flow of information from the computer through a Serial

port. The data is passed to the parser and separated into individual data fields that are

interpreted by the OpenGL libraries and the VE. The screen displays the interpreted data

and is a direct corollary to the input the user signaled by interacting with the device. The

specifics of each of these blocks is explained below.

Roger Burns
Nick Wirth

 33

4.2.1 Virtual COM

 The communication between the VE and the device will be handled in a serial

fashion. While USB is being used for the hardware to communicate as well as provide

power, the late implementation of USB software for the computer left communication

over a COM port as the reasonable technology to use. The evaluation board used to

provide USB communication provides device drivers that mimic a COM port on a

personal computer. This is a Virtual COM Port Driver and allows access to the data as if

opening a serial communication over COM in the VE. A BAUD rate of 9600 was set as

the standard, but through trial and error with the device, the evaluation board only

allowed the VE to receive information at 2400 baud. 2400 baud refers to the number of

symbols per second received, in this case, over the Serial port. When connecting to the

Serial port the software declares that it receives 8 bits per symbol. This translates to

19200 bits per second. The information that is being passed is a stream of 19 bytes. On

the windows architecture a byte corresponds to 8 bits. The stream then is 152 bits of

information. Dividing the amount of information in the steam into the baud rate gives

19200 / 152. This is the equivalent to a rounded down number of 126 samples of

information. While this is low for the capabilities of the Serial port, it provides ample

enough information to have a rough conveyance of user interaction with the device.

Future work to improve this rate will improve the precision that the device can have as a

higher baud would allow a greater sample speed.

4.2.3 Information Parsing

 The information that is passed to the VE is in the form of a structured stream of

data. This is passed whenever the VE sends a control signal to the device. The structured

stream is passed to a parser object that splits the information into various data structures

that handle the update of variables in the VE. The passed data handles the numeric values

of the buttons, joystick, trackball, scroll wheels and the accelerometer. When the parser

gets this information and parses it, it returns the updated variables to the VE. In turn the

VE updates the visual representation according to the change as dictated by the user.

Since the information that’s being parsed is in byte form, it was important to check the

hardware description and determine the actual bits within each byte are important. The

Roger Burns
Nick Wirth

 34

information coming from the device followed the following protocol:

• Buttons (4): xxxxdddd

• Trackball X: dddddddd dddddddd

• Trackball Y: dddddddd dddddddd

• Scroll 1: dddddddd dddddddd

• Scroll 2: dddddddd dddddddd

• Accel X: xxxxdddd dddddddd

• Accel Y: xxxxdddd dddddddd

• Accel Z: xxxxdddd dddddddd

• Joystick X: xxxxdddd dddddddd

• Joystick Y: xxxxdddd dddddddd

The only information that the VE should be concerned with is the bits where it is

represented by the character ‘d’ in the above depiction of the information. The parser is

now concerned with determining the correct addition of the information represented in

several bytes. Utilizing bitwise operations in C++, it is possible to ensure the exclusion

of any information by masking a byte and retrieving the pertinent information. In the case

of the buttons and accelerometers this implies masking the first four bits of the byte and

ensuring that they are zeros.

• Input AND 0x0F (AND is equivalent to &)

The previous statement is a hexadecimal representation of the masked bits as the ‘0’ after

the x represents the zeroing of the left most bits while the ‘F’ represents all ones which

leaves the information in the right most bits as is. This is a method of ensuring that only

the pertinent data in each byte is accounted for. The next step in the parsing process

revolves around the shift of information received from the first byte to combine it bitwise

with the second byte received (for those components whose information spans more than

one byte of information).

Roger Burns
Nick Wirth

 35

• (Input & 0x0F)<<8

This statement represents that shift, adding padding while the 8 bits from input are

shifted. The final step is to apply the second byte that follows, combining the two bytes to

represent one numerical value.

• ((Input & 0x0F)<<8) | (Input & 0xFF)

This final representation shows the OR operator between the two bytes. This is similar to

the below representation.

00001111 00000000

OR 11111111

00001111 11111111

This is a binary representation combines the two bytes of information into one value that

can be cast as an integer in the VE. Simply adding the two bytes to form a single

numeric representation would not give the correct answer, hence the use of the bitwise

operators.

4.2.4 OpenGL

 OpenGL is a set of graphical libraries often used for games as well as visual

representation of data to a user on the screen. The libraries include functions to initialize

views into a 3-D space, initialize and change objects as well as assist in the definition of

interaction. This is done through drawing the display to the screen upon a change in the

variables in the environment or upon an explicit redraw. The usage of the OpenGL

libraries assisted in the implementation in the following areas: navigation, object

manipulation, and object selection.

4.2.4.1 Navigation

Navigation is provided through the interface as is familiar with many games in

today’s game market. When a person wishes to move, as the user interacts with the

controller, the eye, or rather the camera slides through the graphical environment. This is

visible by the addition of a floor to the environment. This allows for a permanent point of

reference that the user can use to judge the accuracy of the movement based on the

interaction with the controller. As proposed earlier in the paper, the mapping of the

Roger Burns
Nick Wirth

 36

controller to the navigational portion of the software is something that will be reflected in

the VE.

Figure 28: First Person View into the VE

Figure 28 depicts a sample view of the world the VE places the user into. The approach

that is being utilized is mainly centered around the use of the accelerometer and the

joystick. The accelerometer uses the three axis to provide forward/backward and left/right

motion in a sliding motion in each of those directions. The third axis is used to travel up

and down. The joystick, because of it’s familiarity to the role being used for, it allowing

the user to turn his/her head to the left/right as well as tilt up/down. While this is the

current setup in the environment, the particular problem of functional mapping is

something that can be addressed by inspection of the expected movement through the VE

as well as the actual movement depicted on the screen. This can be adjusted for

individual users or a standard can be set based upon future user studies.

4.2.4.2 Object Selection

 Object selection is the process by which the user can, upon inspecting the VE,

determine what object they would select. This reflects upon the ability of the controller to

allow the user to distinguish between individual objects in the environment and the

Roger Burns
Nick Wirth

 37

software’s ability to single out an individual component. The act of selection revolves

around the intersection between any given object and a ray. Currently this is not

implemented in the VE, but the capabilities certainly exist. The mathematics that

concerns the intersection of a ray and a sphere can be found in Appendix D. The ray is a

simple line with a start and an end at the far viewpoint. This effectively stretches to

“infinity” as the user is only concerned with selecting objects that are within the view

space currently presented. The intended use of the ability would be to have a ray interact

with the environment based upon camera movement (always present in your view,

similar to a cursor) as well as user input. The user input would change the position of the

cursor, moving through the space in front of the user. The final intention was to

implement a selection function, mapped to a button, that would allow the user to directly

manipulate an object as outlined in the next section.

4.2.4.3 Object Manipulation

 The ability to manipulate an object revolves around the functions built around the

transformation of the current OpenGL matrix. This allows for the transformation of

objects, whether it is a scale, translation or rotation. This covers the basic manipulations

one can perform on an object. This allows the device to explore the differences when

incorporating various modes into a device.

• Translation:

Figure 29: OpenGL Translate

http://www.limsi.fr/Individu/jacquemi/IG-TR-4-5-6/opengl-transf3.png

Roger Burns
Nick Wirth

 38

 The above Matrix represents the calculations to translate (slide) an object in 3-D

space. It is equivalent to moving an object along an axis. The numerical input to dx, dy,

or dz represents the amount the object moves along the respective axis.

• Scaling:

Figure 30: OpenGL Scale

http://www.comp.leeds.ac.uk/marcelo/opengl/transform2d-b.png

Roger Burns
Nick Wirth

 39

 The above matrix represents the scale of a triangle utilizing the OpenGL

libraries. The first (green) triangle is drawn with no change to the current matrix that is

currently used as a reference. The function to scale is called and the matrix that represents

the current numerical multiplication of the objects represented on the screen. When the

scale is applied, the new triangle (red) is drawn over the old according to the new scale

factor.

• Rotation:

Figure 31: OpenGL Rotation

http://www.naturewizard.com/Tutorials/Tutorial01/images/image010.jpg

Roger Burns
Nick Wirth

 40

 Rotation matrices are applied just as the previous two are and can change the

rotation of an object in relation to any of the three axes. Figure 31 shows a sample

application of the matrices to an object. The pyramid rotates along several axes at once,

showing a practical application of these functions.

4.2.5 The Virtual Environment

 The Virtual Environment is the compilation of the previous software related

sections. It ties together each of the three classes into one cohesive unit. There exists one

parser, one environment and one communication module. There exists within the

environment any arbitrary number of objects. Currently this is set in the code but is open

in the future for expansion. The purpose of the entire package is to simplify the

components and define their interaction. Thus, a single executable can be run under

Windows allowing the controller to connect over a COM port and update the display.

Roger Burns
Nick Wirth

 41

5. Results and Analysis

5.1 Hardware

 After the completion of the system design and the acquisition of components

begin, each subsystem of the controller was individually tested to ensure proper

operation.

5.1.1 Sensors

 Testing the controller's sensors involves applying power to each device, moving it

through its full range of motion, and comparing the measured output to the expected

output at specific points. Once the analog voltage levels from each device are verified,

they can be passed to the microprocessor with confidence.

 The first device tested was the 3-axis accelerometer. In order to power up the

device, the system's 3V is applied to the Vcc pin of the accelerometer, and the ground pin

is grounded. The device has three individual analog outputs corresponding to the X, Y,

and Z acceleration forces on the package. According to the datasheet for the ADXL330,

with 0 gs applied to the device, the output should remain around half of the voltage

supply, or 1.5V. With a sensitivity of ~0.3V/g, the outputs should range from 1.2V for -

1g, and 1.8V for +1g. Subject to 0 gs of force, the equilibrium voltage of each axis is

measured to be:

• X 0g --> 1.52V

• Y 0g --> 1.51V

• Z 0g --> 1.52V

 This shows a small bias of about 0.02V given no input. Figure 32 shows the

orientation of the package to obtain specific gravitational forces.

Roger Burns
Nick Wirth

 42

Figure 32: Accelerometer Orientation [1]

 For each axis of the accelerometer, a test was performed at 0, 45, 90, 135, and 180

degrees. Using trigonometry to calculate the force of gravity at the various angles, as

well as the stated sensitivity of the accelerometer, the anticipated output voltages were

calculated.

sin(θ) = Vout/(V/g)

45 degrees X-axis

Vout = sin(θ) * V/g

Vout = sin (45) * 0.3 = 0.212V

1.52V at 0 degrees + 0.212V = 1.73V

Actual measured voltage: 1.725V

 Tables 4-6 show the calculated and measured values for each axis of the

accelerometer.

Roger Burns
Nick Wirth

 43

Accelerometer X-Axis
Degrees ΔV Calculated V Measured V Digital Val

0 0V 1.520 1.520 2045

45 0.212V 1.732 1.725 2280

90 0.3V 1.820 1.812 2450

135 -0.212V 1.308 1.315 1821

180 -0.3V 1.220 1.230 1633

Table 4: Accelerometer X-Axis

Accelerometer Y-Axis

Degrees ΔV Calculated V Measured V Digital Val

0 0V 1.510 1.510 2041

45 0.212V 1.722 1.720 2278

90 0.3V 1.810 1.810 2448

135 -0.212V 1.298 1.300 1822

180 -0.3V 1.210 1.215 1645

Table 5: Accelerometer Y-Axis

Accelerometer Z-Axis

Degrees ΔV Calculated V Measured V Digital Val

0 0V 1.520 1.520 2050

45 0.212V 1.732 1.730 2280

90 0.3V 1.820 1.820 2445

135 -0.212V 1.308 1.310 1830

180 -0.3V 1.220 1.230 1650

Table 6: Accelerometer Z-Axis

 It can be concluded from these results that the accelerometer performs within the

specifications listed in its data sheet. Although the measured voltages are not exactly as

expected (about 0.01V off in many cases), they are consistently offset, so a correlation

between voltage and angle can still be determined. Although this accelerometer does not

have very high precision, it is precise enough for the tilt sensing application of this

controller. One issue that may have to be resolved in software is jitter. As the

Roger Burns
Nick Wirth

 44

accelerometer sits in a static position, its output varies slightly. In order for this variation

not to create movement in the virtual environment, an averaging function must be

performed on the incoming data.

 The next device under test was the scroll wheel. The functionality of this sensor

is tested in two ways. First the voltage levels are tested, and second the offset of the two

signals is verified. As the wheel is rotated, the two outputs of encoder should provide a

digital 1 or 0 as each detent in the wheel is reached. The power and ground pins of the

scroll wheel are wired, and the outputs are measured with a digital multi-meter. As

expected, the output alternate between 0V and 3V as the wheel is rotated. To test the

offset of the two signals, the outputs are monitored through a small LED circuit. As each

output goes high, it lights its corresponding LED. The center pin is wired to LED #1 and

the outer signal pin is wired to LED #2. By slowly rotating the wheel clockwise, it can

be seen that LED #1 is enabled slightly before the other. Reversing the direction of

rotation (counter clockwise) results in LED #2 lighting up slightly before LED #1. This

will allow the microprocessor to determine which direction the wheel is rotating, and

therefore whether to increment or decrement the appropriate counter.

 The joystick was the next sensor to be tested. This device functions with the use

of potentiometers, which vary their resistance as the joystick is moved throughout its

range. By applying a constant voltage to the potentiometers, a proportional voltage will

be output to the microprocessor. Below is a sample calculation of the voltage output

from the potentiometers:

Total (power to ground) resistance: 5.9kΩ

Power to Output resistance: 2.95kΩ

Output voltage = (2.95/5.9) * 3V = 1.5V

Roger Burns
Nick Wirth

 45

Tables 7 & 8 show the data obtained from each axis of the joystick.

X-Axis

Degrees Resistance(kΩ) Calculated V Measured V

Digital

Val

0 2.95 1.5 1.5 2035

23L 2.25 1.86 1.85 3802

45L 1.56 2.16 2.15 4094

23R 3.65 1.45 1.44 1592

45R 4.34 0.79 0.8 2

Table 7: Joystick X-Axis

Y-Axis

Degrees Resistance(kΩ) Calculated V Measured V

Digital

Val

0 2.85 1.5 1.49 2032

23L 2.15 1.88 1.87 3811

45L 1.51 2.21 2.2 4094

23R 3.58 1.13 1.15 1559

45R 4.19 0.79 0.78 1

Table 8: Joystick Y-Axis

 The “R” or “L” in the degrees field indicates if the joystick was pushed right of

left of its origin. It can be determined from this data set that the joystick outputs data as

expected. One important note, however is that the voltage output is non-linear; it is

slightly more sensitive near the center position than it is near the edges of its motion.

 The last device to be tested is the trackball. For accuracy purposes, the pulses per

revolution of the ball can be calculated given the number of “notches” in the wheel, and

the dimension of the wheel and rollers.

30 openings = 60 positions/revolution (each axis)

roller diameter = 2.2mm

C = π * d = 3.14159*2.2mm = 6.911mm

Roger Burns
Nick Wirth

 46

ball diameter = 19mm

C = π * d = 3.14159*19mm = 59.690mm

59.690/6.911 = 8.636 rev/rev

8.636*60 = 518 positions/revolution of ball

 This means that for one full revolution of the trackball, the microprocessor's

counter will be incremented 518 times, assuming the ball remains in full contact with the

rollers the entire time. Because the trackball operates on the basis of wheel encoders, its

testing procedures follow that of the scroll wheels. Each sensor is provided 3V of power,

and its ground terminal is grounded. As the slotted disc is rotated through the sensor, the

outputs alternate between the 3V high and 0V low. The two outputs are next wired to

LED #1 and #2 used in the previous test. As the wheel is slowly rotated, LED #1 lights

up ¼ of a pulse width before LED #2. When rotated the opposite direction, LED #2

lights up first.

5.1.2 Microprocessor

 Now with the sensors providing consistent and documented data, the

microprocessor's functions must be tested to ensure the incoming data is properly

interpreted. The first test performed to the process is a basic functionality procedure. A

simple program that uses a timer to continuously blink an attached LED is programmed

onto the chip. When powered up, the program begins automatically, and the LED

proceeds to blink. This verifies both the functionality of the MSP430 chip, and the

debugging interface.

 With the debugging interface correctly working, it was possible to begin testing

the different peripherals of the MSP430. Because the wheel encoders of the trackball and

scroll wheels will function by causing interrupts in the microprocessor's code, the digital

I/O interrupts must be tested. A simple program is created that waits in a lower power

mode until an input (high) is recognized on port 2.0. When this occurs, the LED will be

enabled and remain lit. Using this program, the interrupt functionality of the MSP430

was successfully verified.

Roger Burns
Nick Wirth

 47

 Next to be tested was the analog to digital converter. Using a sample program

provided by Texas Instruments, a single channel analog to digital conversion is repeated,

with the results stored in a global variable. By setting the reference voltage to Avcc, this

test should also verify the minimum and maximum values that can be held in the ADC

result buffers. Using the IAR Kickstart software and USB FET debugger, the register

values of the microprocessor can be actively monitored as the program is run. Running

the program provides the expected results. With an input of ground (0V), an output of

0000 is stored in the ADC results buffer. With the supply (3V) applied at the input, the

maximum 4095 value is stored in the buffer. This corresponds to 212 -1, as the device is a

12-bit converter.

5.1.3 Communication

 In order for data to be sent from the microprocessor to the PC, the UART

functionality of the MSP430, as well as the FT232 chip had to be tested simultaneously.

Again, a simple TI-provided program was loaded onto the MSP430. This program

simply takes a string “Hello World” and sends it character by character over UART,

through the FT232 to the PC. On the PC a serial terminal (Terraterm) is opened, and set

to monitor the correct serial port. When the program is initiated, The message “Hello

World” is successfully sent every second to the PC.

 The next test was to verify two-way communication. Again a sample program

was loaded. The function of this program is to take a keyboard character from the PC,

increment its ASCII value, and send it back. Setting up a terminal window on the PC

allows a connection to the microprocessor. As expected, typing a character in the

terminal window results in a response of the next character in the ASCII code. With the

PC to microprocessor connection verified, data can now be successfully sent to the PC

with an increased degree of confidence.

5.1.4 Program Flow

 With both the sensors output tested, and the functionality of the microprocessor

and communication links, the overall program that takes data and sends it to the PC can

Roger Burns
Nick Wirth

 48

be constructed and tested. This section will provide the primary functions of the

microprocessor code, and explain in detail how they function. The full code is located in

Appendix C.

 The first step in the program is to provide any include statements and initialize

variables. The include statement ensures all the predefined keywords and functions

designed for the MSP430x14x series will be available. The next six lines initialize the

global variables for the program. Some variables to note are the array of 5 ADC results,

and the 4 wheel counters. The wheel counters are all set to 32768, half-way between

their minimum and maximum values to allow counting in either direction.

 The main function of the code is used primarily to initialize the input and output

functions of the processor. First the USART1 is configured to output on Port 3, and set

up for 2400 baud using a 32kHz crystal. USART is then initialized, and the receive (RX)

interrupt is enabled, which causes an interrupt in any incoming data. Next, Port 1 and

Port 2 are configured to be inputs for the wheel encoders and digital buttons. Half of the

inputs interrupts are enabled to allow the leading edge signal of the wheel encoders to

cause in interrupt. Lastly, the analog to digital converter is initialized. It is setup to take

samples from 5 channels, and store them in the appropriate registers. The reference

voltages are all set to Avcc, to ensure the inputs will not hit the positive or negative

limits. The ADC finish interrupt is enabled, and the conversion process is started. At

this point the microprocessor is then put into lower power mode (LPM) while the

conversions take place.

 The next function is the interrupt vector for the analog to digital converter. This

function is performed when the ADC finishes its conversion, and sets the corresponding

interrupt flag. This function just takes the current results from the conversions and

transfers them into global variables.

 The Port 2 interrupt function is next in the program. When one of the configured

inputs of Port 2 is set high, this routine is called. It goes through a series of IF

statements, to determine which of the wheel encoders has tripped the interrupt. This is

determined by comparing the interrupt bit all four possible inputs. Once the correct

sensor is identified, the status of the 2nd signal is checked. If it is high, the wheel counter

Roger Burns
Nick Wirth

 49

is incremented. If it is low, the counter is decremented. At the end of this routine, the

interrupt flags for the wheel encoders is reset.

 The last function in the program is designed to send all of the sensor data to the

PC. It is called when the UART receive interrupt flag is set. If the input to the

microprocessor is the ASCII code for the letter 'u', then the data is sent to the PC. This

polling method is used to prevent excessive amounts of data being sent to the PC, and

causing false device identification when the controller is first plugged in. When the poll

character is verified, the function then checks to make sure the transmit buffer is ready to

send. When it is, status of the buttons is loaded into the transmit buffer and sent. The

next loop sends the contents of the wheel encoder counters. These counters are 16-bit

numbers and must be split up into two separate 8-bit numbers to send over the 8-bit

UART interface. This loop splits each counter into two pieces, and sends each half when

the receive buffer is ready. The next loop performs the same operation of splitting and

sending the data created by the analog to digital conversions. At the end of each of the

interrupt functions, the microprocessor is sent back to the main loop and into lower

power mode.

5.1.5 System Testing

 As the microprocessor's code develops, the overall function of the controller can

be tested as well. With all, or some of the sensors connected (disconnected sensors

results in readings of zero), and the program running, a terminal window can be opened

on a PC, and connected to the controller via a virtual communications port driver. When

the letter 'u' is typed into the console, the controller responds with all the current sensor

information displayed in ASCII (or hexadecimal with a simple converter program).

Through the use of the MSP430 debugging interface, the memory data on the processor

can be monitored and compared to the data being displayed on the screen of the PC.

Repeated polls to the controller show that the data is successfully transmitted to the

computer. Data values can be verified in this step as well. For example, with 0 gs

applied to an axis of the accelerometer, a reading of half supply or 1.52 V is output to the

microprocessor. This in turn is converted to (1.52/3) * 4095 = 2075, which correctly

Roger Burns
Nick Wirth

 50

matches the range of values being sent to the PC.

5.2 Software

The testing regarding the software revolves around specifically invoking each of

the functions the VE is capable of handling. Individually this means opening an

environment and testing navigation, object selection, manipulation as well as the parsing

and communication. The parsing and communication require that the software be capable

of outputting the information that is being received by the computer. This can be used to

check the information coming in against what’s expected. Graphically, the VE allows the

user to determine if the information coming in is correct and whether if it’s producing the

correct transformations to the display the user sees after interacting with the device.

Through the early stages of testing it was also deemed necessary to account for noise in

the device. The initialization of the parser, due to component testing, now includes

functionality to calibrate the devices. Currently functionality exists for the accelerometer

alone. Calibration consists of taking a number of samples from the accelerometer. These

are added to a total and averaged to produce an effective “zero” where the accelerometer

rests. Through the process of the calibration, the function keeps track of the min and max

values received by the accelerometer. These are used in the VE to determine whether the

information coming in is a large enough change to warrant translation to the environment.

What this implies is a loss in precision on part of the accelerometer. During calibration it

is necessary to maintain steady surroundings to ensure that you do not lose any precision.

This calibration functionality should be applied to any component of the device that

shows flux in data at a resting position.

Roger Burns
Nick Wirth

 51

6. Conclusions

The project started with an idea of a new virtual reality handheld controller. After

researching the current controller on the market and the past controllers that the gaming

industry had seen over the years, we drew conclusions about the components that were

most successful for interaction with a virtual environment. Having seen what was

available, we turned to look at new possibilities focusing on the accelerometers that were

present in the new and upcoming Nintendo Wii controllers. A list of functions was

created to explore the requirements of the controller as it would interact with a virtual

environment. Control mappings were explored as each component was assigned strengths

and weaknesses and finally picked to perform an action. After we outlined our

expectations we proceeded with a design and the project took form. We had to design the

entire hardware system, drawing out circuits as well as implementing the software to

unify the components. The software evolved around the central idea of interacting in a

Virtual Environment as input from the hardware was made available. After our design

was complete we began to implement and test the different components of our system.

Our main conclusions revolve around the two sections of our project. The hardware

system successfully transmits data over the USB to the PC. The software takes in that

data and can transform the environment on the display of the PC.

If we had more time to pursue the advancement of this project the two aspects of

this project would continue as follows. The team would more thoroughly test and explore

the interaction between the software and hardware as well as solidify the components into

a hard case to unify them. Closely related, if we could start over again there would be

some changes that would be made to have ensure this project could have ran smoother.

The lack of experience, while expected on a project of this magnitude and at this point in

any student’s college career, there was a lot to learn in the specific field in a short period

of time. The setbacks that were experienced also contributed to this feeling of frustration

as certain research proved to be misleading, as in the case of certain device driver

implementation libraries, or when hardware did not respond as expected as according to

the manufacturer’s specifications. Although this project may have proved difficult, it has

Roger Burns
Nick Wirth

 52

equipped us with the tools necessary to tackle a similar project in the respective fields

with additional knowledge and expertise. Although this project did not completely reach

its original goals, we were still able to create a functioning system that can be built upon

in the future.

6.1 Future Work

As the project progressed and evolved, some aspects presented themselves in both

software and hardware that could be expanded upon in the future beyond the scope of this

project.

6.1.1 Software

 The environment, while adequate for the time being in determining if the device is

correctly gathering and outputting the input from the user could be expanded upon to

provide greater functionality as well as become a future testing ground for other devices.

In having a standard testing suite to compare multiple products, one can begin to look at

the effectiveness in separate controllers and the future marketability of any new device

that is being developed. The environment's generic implementation of the basic modes of

interaction between a virtual world provide for testing without discrimination between a

specific implementation of device, game, or other world that could be used to compare

devices.

 The communications the environment uses are adequate for its current use, but the

project could benefit greatly from the development of specific device drivers. Particularly

utilize the USB capabilities of the device and tailor the data communications to use USB

protocol. While this would limit the implementation to the Operating System the USB

driver was written for, it would allow the device to take full advantage of the speed that

USB offers and allow the environment the option to no longer treat the device as a

polling system.

6.1.2 Physical Design

Based upon the project specifications it is possible in the future to draft a physical

Roger Burns
Nick Wirth

 53

design, implementing the selected hardware, circuitry, and sensors into a hand-held

controller device

Figure 33: Sample Controller Design

The controller follows a simple ergonomic design that is commonplace in most

controllers on the market today. Each shoulder has a scroll wheel. This provides two

methods of input along an axis in a segmented manner, and grants the user the ability to

move through a series of selections either in a graphical list, or within an environment

and easily move between the options. The left half of the controller provides the user with

an analog joystick and two buttons. This analog stick provides a joystick with a centering

characteristic that can improve the way in which a user moves through an environment.

The right side mirrors the left with the exception of the analog stick. It is replaced with a

trackball. This configuration provides versatility and numerous ways to manipulate the

environment. This is one of many possible configurations. Having implemented the

major hardware required to fill this casing, it would be a huge benefit to see this

implemented and made real some point in the future.

Roger Burns
Nick Wirth

 54

6.1.3 Continued Testing

 It would behoove the project to have continued testing of the device and its

development. The original purpose of this device was to improve upon the existing

designs by adding some twists and utilizing components that you would not normally

find on a hand held game controller device. The continued testing would allow for the

evolution and improvement upon the configuration of the mapping of functionality.

Roger Burns
Nick Wirth

 55

References

1. Analog Devices Inc. ADXL330 3-Axis Accelerometer Datasheet.

ADXL330.pdf.

http://www.analog.com/en/prod/0%2C2877%2CADXL330%2C00.html

2. Bergman, Jason. "SpaceOrb 360 Game Controller." Blue's News. 25 Oct. 1997.

<http://www.bluesnews.com/articles/spaceorb360-review.html>.

3. Davis, Tom and Neider, Jackie and Woo, Mason. “OpenGL Programming Guide”

1994,Silicon Graphics, INC.

4. Gyration. <http://www.gyration.com/en-US>.

5. Kopchak, Jeremy. "Nintendo® Wiimote: Technology Limitations." X-Arcade.

<http://www.xgaming.com/newsletter/Wii%20Dupe.shtml>.

6. Maxon, Kenneth. “Have you seen my new soldering iron?” Encoder.

http://www.seattlerobotics.org/encoder/200006/oven_art.htm

7. Jeff Molofee “NeHe Productions” OpenGL Game Development.

http://nehe.gamedev.net/

8. Nintendo 64. CyberiaPC.com

9. "Nintendo Wii - Controllers." Nintendo.

<http://wii.nintendo.com/controller.html>.

10. "Products." MINDFLUX. <http://www.mindflux.com.au/products/index.html>.

11. Rick. "Nintendo's Investment in Gyration." Gamecubicle.

<http://www.gamecubicle.com/news-nintendo_gyration.htm>.

12. Wisniowski, Howard, ed. "Analog Devices and Nintendo Collaboration Drives

Video Game Innovation with the IMEMS Motion Signal Processing Technology."

Analog Devices. 9 May 2006.

<http://www.analog.com/en/press/0,2890,3%255F%255F99573,00.html>.

13. Brad A. Myers. "A Brief History of Human Computer Interaction Technology."

ACM interactions. Vol. 5, no. 2, March, 1998. pp. 44-54.

14. Koushik, Sud. "Evolution of Controllers." Advanced Media Network. 30 Jan.

2006. 20 Sept. 2006 <http://wii.advancedmn.com/article.php?artid=6355>.

15. Texas Instruments Inc. MSP430F169 Datasheet.

Roger Burns
Nick Wirth

 56

http://focus.ti.com/docs/prod/folders/print/msp430f169.html

16. Texas Instruments Inc. MSP430 USB Connectivity Using TUSB3410.

slaa276a.pdf

17. Texas Instruments Inc. MSP430x1xx Family Users Guide. Slau049f.pdf

18. Texas Instruments Inc. TUSB3410 USB to Serial Port Controller Datasheet.

Tusb3410.pdf.

19. Texas Instruments Inc. TUSB3410_UART Evaluation Board User’s Guide.

Sllu043.pdf

20. Taylor, Russel M., Thomas Hudson, Adam Seeger, and Hans Webber. VRPN: a

Device-Independent, Network-Transparent. University of North Carolina at

Chapel Hill. 2 Oct. 2006

<http://www.cs.unc.edu/Research/vrpn/VRST_2001_conference/vrst_vrpn_paper

_reprint.pdf>.

21. Flock of Birds – Virtual Reality Motion Tracker. Vrealities.com

Roger Burns
Nick Wirth

 57

Appendix A: TUSB3410 Design

 Through the design process of this virtual reality controller, an alternate USB

controller was incorporated into the hardware system. The initial design contained a

TUSB3410 USB controller from Texas Instruments. This device is very similar to the

FT232 that was eventually included. Both devices are designed to interface an RS232

data stream with a USB data stream. The primary difference between the two devices is

that the TUSB3410 was purchased as an individual chip, and the FT232 was purchased as

part of an evaluation board. The reason for the switch from the TUSB3410 to the FT232

was an inability of the TI part to be properly configured. Although it is common for a

USB controller to have an auxiliary EEPROM memory chip to hold configuration and

identifier data, the TUSB3410 data sheet claimed that it could also be successfully be

implemented without one. After a great deal of testing and troubleshooting time was

spent, it has been concluded that this device cannot be used without an EEPROM, or if it

can, it requires special configuration not detailed in the data sheet or application paper8.

 The testing of this device began with the construction of a custom printed circuit

board (PCB) that would allow easy access to all the pins of the device for wiring a

breadboard circuit. Due to the cost ($50) and turn around time (1 week) with creating a

professionally made PCB, a custom, home-made board was constructed. It was produced

using a transfer and etch method involving toner transfer and a ferric chloride etch. The

supplies needed for the construction of this board included:

• Radio Shack PCB Design Kit

o Copper Clad PCB

o Bottle of ferric chloride

o Chemical solvent (isopropyl alcohol)

o Abrasive pad

o Plastic tray

• Ink-Jet photo paper

• Laser printer

8 Texas Instruments Inc. TUSB3410 USB to Serial Port Controller Datasheet. Tusb3410.pdf

Roger Burns
Nick Wirth

 58

• Masking tape

• Household Iron

 The first step of this process is creating the layout for the board in any PCB

layout software. For this board, the ExpressPCB software was used. The resulting board

(previously mentioned in the report) is shown in figure A1.

Figure A1: Board Layout

 For this board, the accelerometer circuit is not used, and was deleted before

printing the layout. It is important when creating the traces to lay them in a “mirrored”

fashion. That is the entire circuit should be flipped over to create a mirror image. This is

because the transfer will reverse will image when it is applied to the copper PCB. The

next step is to print the layout onto a piece of photo paper with a laser printer. It essential

that only the copper traces are printed, and not the silkscreen or any other layers as they

will all be applied to the board.

 The printed schematic should now be taped to the copper PCB, making sure it

Roger Burns
Nick Wirth

 59

will not shift while heat is applied. A hot iron is not pressed on the paper for

approximately five minutes, transferring the toner to the copper board. After the board is

cooled down, it should be placed in a container of water for approximately twenty

minutes to soak off the photo paper. After soaking, the paper can be removed by peeling

and gentle scrubbing. The resulting board is shown in figure A2.

Figure A2: Pre-Etched Board

 Here the toner traces can be seen applied to the copper board. The next step is to

submerse the board in the ferric chloride until the exposed copper has been removed

(approximately one hour). With the excess copper removed, the ink traces can be

removed with the solvent and abrasive pad. The fully etched board is shown in figure

A3.

Roger Burns
Nick Wirth

 60

Figure A3: Post-Etched Board

 The final step is to use a small drill bit and drill press to create holes for soldering

wires and other through-hole components.

 After soldering the TUSB3410 chip to the custom PCB and wiring up all its

supporting circuitry, detailed in the application note9, connecting it to a PC's USB port

failed to produce any actions. Many different configurations were tried, and the PC

would not recognize the device under any circumstances. Due to the fact that time was a

major consideration, and little to no progress was being made toward USB

communication, the FT232 solution was adopted.

1. 9 Texas Instruments Inc. TUSB3410_UART Evaluation Board User’s Guide.

Sllu043.pdf

Roger Burns
Nick Wirth

 61

Appendix B: Softbaugh BFT232U169 Schematic

Roger Burns
Nick Wirth

 62

Appendix C: MSP430F169 Code
#include <msp430x14x.h>

unsigned int i,j;
static unsigned int ADresults[5]; // These need to be global in
static unsigned int wheel_counter[4] = {32768, 32768, 32768, 32768};
static unsigned char buttons;
static unsigned char UB0;
static unsigned char LB0;

void main(void)
{
 WDTCTL = WDTPW+WDTHOLD; // Stop watchdog timer
 // USART Config
 P3SEL |= 0xC0; // P3.6,7 = USART1 option
select
 ME2 |= UTXE1 + URXE1; // Enable USART1 TXD/RXD
 UCTL1 |= CHAR; // 8-bit character
 UTCTL1 |= SSEL0; // UCLK = ACLK
 UBR01 = 0x0D; // 32k/2400 - 13.65
 UBR11 = 0x00;
 UMCTL1 = 0x6B; // Modulation
 UCTL1 &= ~SWRST; // Initialize USART state
machine
 IE2 |= URXIE1; // Enable USART1 RX
interrupt
 // Digital IO
 P1SEL = 0x00; // All set to I/O
 P1DIR = 0xF0; // P1.0 - 1.3 input, rest
output
 P2SEL = 0x00; // All set to I/O
 P2DIR = 0x00; // All set for input
 P2IES = 0xFF;
 P2IFG = 0x00;
 P2IE = 0x55; // half of signals set
interrupts

 // ADC Config
 P6SEL = 0x1F; // Enable A/D channel
inputs
 ADC12CTL0 = ADC12ON+MSC+SHT0_8; // Turn on ADC12, extend
sampling time
 // to avoid overflow of
results
 ADC12CTL1 = SHP+CONSEQ_3; // Use sampling timer,
repeated sequence
 ADC12MCTL0 = INCH_0; // ref+=AVcc, channel = A0
 ADC12MCTL1 = INCH_1; // ref+=AVcc, channel = A1
 ADC12MCTL2 = INCH_2; // ref+=AVcc, channel = A2
 ADC12MCTL3 = INCH_3;
 ADC12MCTL4 = INCH_4+EOS; // ref+=AVcc, channel = A3,
end seq.
 ADC12IE = 0x10; // Enable ADC12IFG.3
 ADC12CTL0 |= ENC; // Enable conversions
 ADC12CTL0 |= ADC12SC; // Start conversion

Roger Burns
Nick Wirth

 63

 _BIS_SR(LPM0_bits + GIE); // Enter LPM0, Enable
interrupts
}

#pragma vector=ADC_VECTOR
__interrupt void ADC12ISR (void)
{

 ADresults[0] = ADC12MEM0; // Move A0 results, IFG is
cleared
 ADresults[1] = ADC12MEM1; // Move A1 results, IFG is
cleared
 ADresults[2] = ADC12MEM2; // Move A2 results, IFG is
cleared
 ADresults[3] = ADC12MEM3; // Move A3 results, IFG is
cleared
 ADresults[4] = ADC12MEM4;

}
#pragma vector=PORT2_VECTOR
__interrupt void PORT2_RX (void)
{
 // wheel 1 scroll 1
 if ((P2IFG & BIT0) == BIT0) // P2.0
 {
 if ((P2IN & BIT1) == BIT1)
 wheel_counter[0]++; //CW
 else
 wheel_counter[0]--; //CCW
 }
 // wheel 2 scroll 2
 if ((P2IFG & BIT2) == BIT2) // P2.2
 {
 if ((P2IN & BIT3) == BIT3)
 wheel_counter[1]++; //CW
 else
 wheel_counter[1]--; //CCW
 }
 // wheel 3 track x
 if ((P2IFG & BIT4) == BIT4) // P2.4
 {
 if ((P2IN & BIT5) == BIT5)
 wheel_counter[2]++; //CW
 else
 wheel_counter[2]--; //CCW
 }
 // wheel 4 track y
 if ((P2IFG & BIT6) == BIT6) // P2.6
 {
 if ((P2IN & BIT7) == BIT7)
 wheel_counter[3]++; //CW
 else
 wheel_counter[3]--; //CCW
 }
 P2IFG = 0x00; //reset interrupt

Roger Burns
Nick Wirth

 64

}

// UART0 RX ISR
#pragma vector=UART1RX_VECTOR
__interrupt void usart1_rx (void)
{
 if (RXBUF1 == 'u') // 'u' received?
 {
 buttons = P1IN; // get status of buttons
 while (!(IFG2 & UTXIFG1));
 TXBUF1 = buttons;
 for(j=0; j<4; j++)
 {
 LB0 = wheel_counter[j];
 UB0 = wheel_counter[j] >> 8;
 while (!(IFG2 & UTXIFG1));
 TXBUF1 = UB0;
 while (!(IFG2 & UTXIFG1));
 TXBUF1 = LB0;
 }
 for(i=0; i<5; i++)
 {
 LB0 = ADresults[i];
 UB0 = ADresults[i] >> 8;
 while (!(IFG2 & UTXIFG1));
 TXBUF1 = UB0;
 while (!(IFG2 & UTXIFG1));
 TXBUF1 = LB0;
 }
 }

Roger Burns
Nick Wirth

 65

Appendix D: Intersection Math & Code

Roger Burns
Nick Wirth

 66

Roger Burns
Nick Wirth

 67

/*
 Calculate the intersection of a ray and a sphere
 The line segment is defined from p1 to p2
 The sphere is of radius r and centered at sc
 There are potentially two points of intersection given by
 p = p1 + mu1 (p2 - p1)
 p = p1 + mu2 (p2 - p1)
 Return FALSE if the ray doesn't intersect the sphere.
*/
int RaySphere(XYZ p1,XYZ p2,XYZ sc,double r,double *mu1,double *mu2)
{
 double a,b,c;
 double bb4ac;
 XYZ dp;

 dp.x = p2.x - p1.x;
 dp.y = p2.y - p1.y;
 dp.z = p2.z - p1.z;
 a = dp.x * dp.x + dp.y * dp.y + dp.z * dp.z;
 b = 2 * (dp.x * (p1.x - sc.x) + dp.y * (p1.y - sc.y) + dp.z * (p1.z
-
sc.z));
 c = sc.x * sc.x + sc.y * sc.y + sc.z * sc.z;
 c += p1.x * p1.x + p1.y * p1.y + p1.z * p1.z;
 c -= 2 * (sc.x * p1.x + sc.y * p1.y + sc.z * p1.z);
 c -= r * r;
 bb4ac = b * b - 4 * a * c;
 if (ABS(a) < EPS || bb4ac < 0) {
 *mu1 = 0;
 *mu2 = 0;
 return(FALSE);
 }

 *mu1 = (-b + sqrt(bb4ac)) / (2 * a);
 *mu2 = (-b - sqrt(bb4ac)) / (2 * a);

 return(TRUE);
}

Roger Burns
Nick Wirth

 64

Appendix E: Serial Communication Code

SERIAL.H
// Includes
#include <windows.h>

//DEFINE for serial port settings

//////////////////Serial Functions/////////////////
/*********Open*******************
*return int 1 (true) 0 (false)
*
*This should open the serial port and
*set the settings to the constants defined above
*
*/

/*********Open*******************************
*Function: serialOpen
*Params: Port Number, File Handler
*
*Purpose: To open Port Number (portNum), using
* a predefined handle. It also sets
the
* basic properties of the port,
such as
* a 9600 baud rate, one stop bit,
no parity
* 8 bit Byte size etc.
*
*/

HANDLE serialOpen(int portNum, HANDLE comPrt);

/*********"READ"************************
*Function: serialRead
*Params: File Handler,pointer to Byte Buffer,
pointer to struct CONTROLDAT
*
*Purpose: Reads in a set amount of data. This
data will fall under the following
 format, with what the data
represents coming in from the controller.
 Buttons (4): xxxxdddd
 Trackball X: dddddddd
dddddddd
 Trackball Y: dddddddd
dddddddd
 Joystick X: xxxxdddd
dddddddd
 Joystick Y: xxxxdddd
dddddddd
 Accel X: xxxxdddd dddddddd
 Accel Y: xxxxdddd dddddddd
 Accel Z: xxxxdddd dddddddd
 Scroll 1: dddddddd dddddddd
 Scroll 2: dddddddd dddddddd
 Where every 'd' represents a bit
that we are interested in keeping track of. Every
 'x' is data that we don't care
about. It will most likely be set to 0, but make
sure
 to skip over that data anyways.
The data should be recieved in 8 bit chunks.

*Output: The output should be a data structure
to be passed to the graphics program that can
 then extract the data for
processing. The data structure is better explained
in the
 serialDAT.h.

Roger Burns
Nick Wirth

 65

*/
int serialOut(HANDLE comPrt);
int serialRead(HANDLE File, char * buffer, int
len);

/**********Write******************************
*Function: serialWrite
*Params: File Handle, pointer to struct
CONTROLDAT
*
*Purpose: To write to a serial port. This is
mostly used
* for testing purposes and doesn't
really need
* to be output to a serial port. It
could be a
* log file.
* ******WARNING******** Implementation is
going to change
*/
int serialWrite();

int serialClose(HANDLE comPrt);

SERIAL.CPP
#include <windows.h>
#include <stdlib.h>
#include <strsafe.h>

//User defined includes for serial commmunication
#include "serial.h"

HANDLE serialOpen(int portNum, HANDLE comPrt)
{

 //declare objects for class
 DCB dcb;
 COMMTIMEOUTS timeouts;
 TCHAR com[5];
 wsprintf(com,TEXT("COM%d"),portNum);

 comPrt = CreateFile(
 com,
 GENERIC_READ | GENERIC_WRITE,
 0,
 NULL,
 OPEN_EXISTING,
 0,
 NULL
);
 if (comPrt == INVALID_HANDLE_VALUE)
 {
 printf("invalid Handle value\n");
 return NULL;
 }
 else
 {
 printf("Port is now open\n");
 }
 // default: 9600,8,n,1 no flow control
 ZeroMemory(&dcb, sizeof(dcb));
 dcb.DCBlength = sizeof(dcb);
 dcb.BaudRate = CBR_2400;
 dcb.ByteSize = 8;
 dcb.Parity = NOPARITY;
 dcb.StopBits = ONESTOPBIT;

 // disable read timeouts (asynchronous mode)
 timeouts.ReadIntervalTimeout = MAXDWORD;
 timeouts.ReadTotalTimeoutMultiplier = 0;
 timeouts.ReadTotalTimeoutConstant = 0;

 //Disable write timeouts

Roger Burns
Nick Wirth

 66

 timeouts.WriteTotalTimeoutMultiplier = 0;
 timeouts.WriteTotalTimeoutConstant =
0;//MAXDWORD;

 // set new comm state
 SetCommState(comPrt, &dcb);
 SetCommTimeouts(comPrt, &timeouts);
 SetCommMask(comPrt, EV_TXEMPTY);

 return comPrt;
}
int serialOut(HANDLE comPrt)
{
 char * buff = "u";
 int success = 0;
 DWORD dwBytesRead, dwBytesWritten;
 dwBytesRead = 1;
 if(comPrt != INVALID_HANDLE_VALUE)
 {
 if(WriteFile(comPrt, buff, dwBytesRead,
&dwBytesWritten, NULL))
 {
 success =1;
 }
 return success;
 }
 else
 return success;
}
int serialRead(HANDLE comPrt, char * buffer, int
len)
{
 int success;

 //check to see if the file is open
 if (comPrt != INVALID_HANDLE_VALUE)
 {

 //nread is used to keep track of the
number of chars read
 DWORD nread;
 success = 0;
 if(ReadFile(comPrt, buffer, 19, &nread,
NULL))
 {
 //printf("Read Success\n");
 success = 1;
 }
 else
 {
 printf("Failed to read\n");
 }
 }
 return success;
}
int serialClose(HANDLE comPrt)
{
 int result=-1;
// close serial port
 if (comPrt != INVALID_HANDLE_VALUE)
 {
 PurgeComm(comPrt, PURGE_TXCLEAR |
PURGE_RXCLEAR);

 CloseHandle(comPrt);
 comPrt = INVALID_HANDLE_VALUE;

 result = 0;
 }

 return result;
}

Roger Burns
Nick Wirth

 67

Appendix F: Parser

PARSER.H
#include <windows.h>
#include "serial.h"

/***********Purpose of Parser*****
*Utilizing the "serial" class, this class parses
the information
*that is on the Serial line (COM ports). Functions
are available
*to grab the characters off the line and check for
numerous things.
*
*
*
*
*/

class parse
{
public:
 /***********Variables**************
 *char buffer[19] - private
 * A char array of size 13. This is the
size
 * of the input from the controller. It
will be utilized
 * to check for the initial character of
the structure
 * (The '$' sign). It will then store the
following 13 characters
 *
 *int portNum - private

 * An integer representing the port number
that should
 * be opened during the init function
 */

 typedef struct CALIBRATE
 {
 int calx, caly, calz;
 int tnum,avgx,avgy, avgz;
 int xmin,ymin,zmin,xmax,ymax,zmax;
 };

 struct CONTROLDAT
 {
 char buttons;
 int track[2],joy[2],accel[3],scroll[2];
 }input;

 CALIBRATE calAccel;

 /***********Functions**************
 *init - Initializes the parse
object. This opens
 * a serial port with
tbe number indicated by
 * the private portNum
integer.
 *getCInfo - check for the first
character in the input
 * from the serial port.
If it is a '$' then
 * that indicates the
beginning of the information
 * coming from the
controller.
 *readInfo - Reads in 19 characters that
are the information

Roger Burns
Nick Wirth

 68

 * sent by the
controller.
 *
 */
 parse();
 int init();
 int getCInfo();
 int readInfo();
 int closePort();
 int parseBuff();

 /********Setters/Getters***********/

 int setHandle(HANDLE Port);
 int getPort(){return portNum;};
 void setPort(int x){portNum = x;};
 int getPOpen(){return portOpen;};
 int poll();
 int calibrateSensors();
 void zero(CALIBRATE & x);
private:
 int portOpen,calAx,calAy,calAz;
 int portNum;
 HANDLE comPrt;
 char buffer[19];
};

PARSER.CPP
#include <windows.h>
#include "parse.h"
#include <strsafe.h>

parse::parse()
{
 printf("Parser listening at: COM2");

 portNum = 2;
 portOpen = 0;
}

int parse::setHandle(HANDLE Port)
{
 if(Port != INVALID_HANDLE_VALUE)
 {
 comPrt = Port;
 printf("COM Port handler set\n");
 return 1;
 }
 else
 {
 printf("Invalid Handle Value: COM Port
handler not set\n");
 return 0;
 }
}
int parse::init()
{
 zero(calAccel);
 if(comPrt != INVALID_HANDLE_VALUE)
 {
 if(comPrt = serialOpen(portNum,comPrt))
 {
 printf("Serial Port %d
opened\n",portNum);
 portOpen = 1;
 //calibrate Accelerometer
 printf("Calibrating
Accelerometer.");
 for(int i = 0; i<100;i++)
 {
 calibrateSensors();
 if((i%10) == 0)printf(".");
 }

Roger Burns
Nick Wirth

 69

 printf("\nFinished
Calibration\n");
 printf("Calibration Information
for Accelerometer\n");
 printf("-------------------------
----------------\n");
 printf("Avg X: %d Min X:
 %d Max X: %d
\n",calAccel.avgx,calAccel.xmin,calAccel.xmax);
 printf("Avg Y: %d Min Y:
 %d Max Y: %d
\n",calAccel.avgy,calAccel.ymin,calAccel.ymax);
 printf("Avg Z: %d Min Z:
 %d Max Z: %d
\n",calAccel.avgz,calAccel.zmin,calAccel.zmax);
 return 1;
 }
 else
 {
 printf("Serial Port failed to
open\n");
 return 0;
 }
 }
 else
 {
 printf("Invalid COM value\n");
 return 0;
 }
}

int parse::getCInfo()
{
 //read in characters 1 at a time
 if(serialRead(comPrt, buffer, 19))
 {
 //printf("Success reading in Controller
Information\n");

 //success in reading controller info -
return 1
 return 1;
 }
 else
 {
 printf("Error reading in Controller
Information\n");
 //fail to read controller information -
return -1
 return -1;
 }
 return 0;
}
int parse::readInfo()
{

 return 0;
}
int parse::closePort()
{
 if(serialClose(comPrt) == -1)
 {
 printf("Invalid Handler Value was
passed: Your port may not be set and/or open\n");
 return 1;
 }
 else
 {
 portOpen = 0;
 printf("Serial Port closed
successfully\n");
 }
 return 1;
}

int parse::parseBuff()

Roger Burns
Nick Wirth

 70

{
 if(getPOpen() == 0)
 {
 printf("Port is not open to read
from\n");
 return 0;
 }
 else if(getPOpen() == 1)
 {
 int checkValue = 0;
 //Read the information from the parser
 //being sent by the controller and
assess
 //the change to the local variables
 checkValue = getCInfo();
 //After read, check for integer
information
 //in checkValue. If 1, success and
change information
 //based on the input from the
controller
 //if -1, then dislpay error message and
break out of
 //reading and close Serial Connection.
 if(checkValue == 1)
 {
 //parse buffer into apporopriate
local variables
 input.buttons = buffer[0] & 0x0F;
 // Get Trackball info.

 input.track[0]=((((int)(buffer[1]&0xFF))<<8)|
((int)(buffer[2]&0xFF)));

 input.track[1]=((((int)(buffer[3]&0xFF))<<8)|
((int)(buffer[4]&0xFF)));
 //scroll wheel

 input.scroll[0]=((((int)(buffer[5]&0xFF))<<8)
|((int)(buffer[6]&0xFF)));

 input.scroll[1]=((((int)(buffer[7]&0xFF))<<8)
|((int)(buffer[8]&0xFF)));
 // Get Accelerometer info.
 //printf("Accel %d Raw: %d
 %d\n",0,(int)(buffer[9]&0xFF),((int)(buffer[1
0]&0xFF)));

 input.accel[0]=((((int)(buffer[9]&0x0F))<<8)|
((int)(buffer[10]&0xF0)));

 input.accel[1]=((((int)(buffer[11]&0x0F))<<8)
|((int)(buffer[12]&0xF0)));

 input.accel[2]=((((int)(buffer[13]&0x0F))<<8)
|((int)(buffer[14]&0xF0)));
 // Get Joystick info.

 input.joy[0]=((((int)(buffer[15]&0x0F))<<8)|(
(int)(buffer[16]&0xFF)));

 input.joy[1]=((((int)(buffer[17]&0x0F))<<8)|(
(int)(buffer[18]&0xFF)));
 //update the local variables -
return 1 for success
 printf("Numerical Input:%d
%d %d %d %d %d %d %d %d %c\n",

 input.track[0],input.track[1],

 input.joy[0],input.joy[1],

 input.accel[0],input.accel[1],input.accel[2],

 input.scroll[0],input.scroll[1],

Roger Burns
Nick Wirth

 71

 input.buttons);
 return 1;

 }
 else if(checkValue == -1)
 {
 printf("Error reading from Serial
Port.\n Action(s) being taken: ");
 printf("Closing Serial Port:
%d\n",portNum);
 //close the port associated with
this read
 closePort();
 return 0;
 }
 //printf("No conditions were met for
Parsing information on Serial Port\n");
 return 0;
 }
 return 0;
}
int parse::poll()
{
 int success = 0;
 if(serialOut(comPrt))
 {
 //printf("Polling the device\n");
 success =1;
 return success;
 }
 else
 {
 printf("Failed to poll device\n");
 return success;
 }
}
int parse::calibrateSensors()
{

 int x,y,z;
 //init calibration variables
 poll();
 Sleep(100);
 getCInfo();
 x =
((((int)(buffer[9]&0x0F))<<8)|((int)(buffer[10]&0xF
0)));
 y =
((((int)(buffer[11]&0x0F))<<8)|((int)(buffer[12]&0x
F0)));
 z =
((((int)(buffer[13]&0x0F))<<8)|((int)(buffer[14]&0x
F0)));

 //printf("Accel Raw Data: %d %d
 %d\n",x,y,z);

 calAccel.calx +=x;
 calAccel.caly +=y;
 calAccel.calz +=z;

 if(calAccel.tnum == 0)
 {
 calAccel.xmax = x;
 calAccel.xmin = x;
 calAccel.ymax = y;
 calAccel.ymin = y;
 calAccel.zmax = z;
 calAccel.zmin = z;
 }
 else
 {
 calAccel.avgx =
calAccel.calx/calAccel.tnum;
 calAccel.avgy =
calAccel.caly/calAccel.tnum;

Roger Burns
Nick Wirth

 72

 calAccel.avgz =
calAccel.calz/calAccel.tnum;
 if(calAccel.xmin > x)
 {
 calAccel.xmin = x;
 }
 else if(calAccel.xmax < x)
 {
 calAccel.xmax = x;
 }
 if(calAccel.ymin > y)
 {
 calAccel.ymin = y;
 }
 else if(calAccel.ymax < y)
 {
 calAccel.ymax = y;
 }
 if(calAccel.zmin > z)
 {
 calAccel.zmin = z;
 }
 else if(calAccel.zmax < z)
 {
 calAccel.zmax = z;
 }
 }
 calAccel.tnum += 1;

 return calAccel.tnum;
}
void parse::zero(CALIBRATE & x)
{
 x.avgx = x.avgy = x.avgz = x.calx = x.caly =
x.calz = x.tnum = x.xmax =0;
 x.xmin = x.ymax = x.ymin = x.zmax = x.zmin =
0;
}

Roger Burns
Nick Wirth

 73

Appendix G: Virtual Environment Code

POINT3.H
/*********Point3 and Vector3***************
*Credit the OpenGl Book
*
*
*
*/

#ifndef point3_env
#define point3_env

#include <stdio.h>
#include <stdlib.h>
#include <vector>

using namespace std;

class Point3{
public:
 float x,y,z;
 void set(float dx, float dy, float dz){x =
dx; y = dy; z = dz;}
 void set(Point3& p){x= p.x;y =p.y; z = p.z;}
 Point3(float xx, float yy, float zz){x = xx;
y=yy; z=zz;}
 Point3(){x=0;y=0;z=0;}
};

class Vector3{
public:
 float x,y,z;

 void set(float dx, float dy, float
dz){x=dx;y=dy;z=dz;}
 void set(Vector3& v){x=v.x;y=v.y;z=v.z;}
 void setDiff(Point3& a, Point3& b){x=a.x-
b.x;y=a.y-b.y;z=a.z-b.z;}
 void normalize();
 Vector3(float xx, float yy, float zz){x =
xx;y=yy;z=zz;}
 Vector3(Vector3& v){x=v.x;y=v.y;z=v.z;}
 Vector3(){x=y=z=0;}
 Vector3 cross(Vector3& b);
 float dot(Vector3& b);
};
#endif

POINT3.CPP
#include "Point3.h"
#include <math.h>
#include <stdlib.h>
#include <windows.h>
#include <assert.h>
#include <iostream>

float Vector3::dot(Vector3& b)
{
 return(x * b.x + y * b.y + z * b.z);
}

Vector3 Vector3::cross(Vector3 &b)
{
 Vector3 c(y*b.z - z*b.y, z*b.x - x*b.z, x*b.y
- y*b.x);
 return c;
}

void Vector3::normalize()
{

Roger Burns
Nick Wirth

 74

 double sizeSq = x * x + y * y + z * z;
 if(sizeSq < 0.0000001)
 {
 cerr<<"\nnormalize() see
vector(0,0,0)!";
 return;
 }
 float scaleFactor = 1.0/(float)sqrt(sizeSq);
 x *= scaleFactor;
 y *= scaleFactor;
 z *= scaleFactor;
}

OBJECT.H
#ifndef controller_object
#define controller_object

#include <windows.h>
#include <iostream>
#include <gl/GL.h> // Header File For
The OpenGL32 Library
#include <gl/glut.h> // Header File For
The GLut Library
#include <gl/GLU.h>
#include <stdio.h>
#include <stdlib.h>
#include <vector>
using namespace std;

/*Class - object
*
*This serves as the base class for any object that
we look to make in our
*environment. It holds all the variables that we're
looking for such as size and

*color, providing setters and getters for each.
This will allow the subclasses
*that deal with specific shapes to concentrate on
the shape itself and let the
*object class worry about the specifics.
*/
class object
{
 public:
 //Properties of an object

 //Draw type of object
 // type == 1 mesh
 // type == 0 solid
 int drawType;

 //type of object
 //0 == generic object
 //1 == pyramid
 //2 == cube
 //3 == sphere
 int shapeType;

 //integers that represent the color of the
object
 float r,g,b;

 //relative size in "units" of the object.
 float sizeUnits;

 //scale of the object
 float sx, sy, sz;

 //position of the object
 float posx, posy, posz;

 //rotation of the object
 float rx,ry,rz;

Roger Burns
Nick Wirth

 75

 //constructor of any object
 object(){
 setScale(1.0,1.0,1.0);
 setPos(0.0,0.0,0.0);
 setRot(0.0,0.0,0.0);
 setColor(1,1,1);
 setSize(1);
 setType(1);
 }
 //setters and getters
 void setPos(float x, float y, float
z){posx=x;posy=y;posz=z;}
 void setColor(float cr, float cg, float
cb){r=cr;g=cg;b=cb;}
 void setSize(float size){sizeUnits = size;}
 void setScale(float x, float y,float
z){sx=x;sy=y;sz=z;}
 void setRot(float x, float y, float
z){rx=x;ry=y;rz=z;}
 void setType(int x){drawType = x;}

 //default draw
 void Draw(){printf("This is a typical
object...set it's type");}

 int getRed(){return r;}
 int getBlue(){return b;}
 int getGreen(){return g;}
 void printColor(){cout<<"\nRed :
"<<r<<"\nGreen : "<<g<<"\nBlue : "<<b;}
 float getSize(){return sizeUnits;}
};
/*****************************Pyramid**************
****************************/
class pyramid:public object
{
 public:

 pyramid();
 void Draw();
};

/*****************************Cube*****************
****************************/
class cube: public object
{
 public:
 cube();
 void Draw();
};

/*****************************Sphere***************
****************************/
class sphere:public object
{
 public:
 sphere();
 void Draw();
};

/****************************Selector**************

*The selector is a special object, but can utilize
the same variables that
*a regular object uses.
*
*posx - used to set the base of the selector.
*
*/
class selector:public object
{
 public:
 float endx,endy,endz;

 selector();
 void Draw();

Roger Burns
Nick Wirth

 76

};
#endif

OBJECT.CPP
#ifndef controller_object
#define controller_object

#include <windows.h>
#include <iostream>
#include <gl/GL.h> // Header File For
The OpenGL32 Library
#include <gl/glut.h> // Header File For
The GLut Library
#include <gl/GLU.h>
#include <stdio.h>
#include <stdlib.h>
#include <vector>
using namespace std;

/*Class - object
*
*This serves as the base class for any object that
we look to make in our
*environment. It holds all the variables that we're
looking for such as size and
*color, providing setters and getters for each.
This will allow the subclasses
*that deal with specific shapes to concentrate on
the shape itself and let the
*object class worry about the specifics.
*/
class object
{
 public:
 //Properties of an object

 //Draw type of object

 // type == 1 mesh
 // type == 0 solid
 int drawType;

 //type of object
 //0 == generic object
 //1 == pyramid
 //2 == cube
 //3 == sphere
 int shapeType;

 //integers that represent the color of the
object
 float r,g,b;

 //relative size in "units" of the object.
 float sizeUnits;

 //scale of the object
 float sx, sy, sz;

 //position of the object
 float posx, posy, posz;

 //rotation of the object
 float rx,ry,rz;

 //constructor of any object
 object(){
 setScale(1.0,1.0,1.0);
 setPos(0.0,0.0,0.0);
 setRot(0.0,0.0,0.0);
 setColor(1,1,1);
 setSize(1);
 setType(1);
 }
 //setters and getters

Roger Burns
Nick Wirth

 77

 void setPos(float x, float y, float
z){posx=x;posy=y;posz=z;}
 void setColor(float cr, float cg, float
cb){r=cr;g=cg;b=cb;}
 void setSize(float size){sizeUnits = size;}
 void setScale(float x, float y,float
z){sx=x;sy=y;sz=z;}
 void setRot(float x, float y, float
z){rx=x;ry=y;rz=z;}
 void setType(int x){drawType = x;}

 //default draw
 void Draw(){printf("This is a typical
object...set it's type");}

 int getRed(){return r;}
 int getBlue(){return b;}
 int getGreen(){return g;}
 void printColor(){cout<<"\nRed :
"<<r<<"\nGreen : "<<g<<"\nBlue : "<<b;}
 float getSize(){return sizeUnits;}
};
/*****************************Pyramid**************
****************************/
class pyramid:public object
{
 public:
 pyramid();
 void Draw();
};

/*****************************Cube*****************
****************************/
class cube: public object
{
 public:
 cube();
 void Draw();

};

/*****************************Sphere***************
****************************/
class sphere:public object
{
 public:
 sphere();
 void Draw();
};

/****************************Selector**************

*The selector is a special object, but can utilize
the same variables that
*a regular object uses.
*
*posx - used to set the base of the selector.
*
*/
class selector:public object
{
 public:
 float endx,endy,endz;

 selector();
 void Draw();
};
#endif

OBJECT.CPP
#include <windows.h>
#include <gl/GL.h> // Header File For
The OpenGL32 Library
#include <gl/glut.h> // Header File For
The GLut Library
#include <gl/GLU.h>

Roger Burns
Nick Wirth

 78

#include <vector>
#include "object.h"

/****************************Pyramids!!!!!*********
****************************/
/* --
----------------------- */
/* Function : void pyramid()
 *
 * Description : This is the constructor for the
pyramid class. It provides
 base size and color for the
pyramid. **NOTE** This does not
 draw a pyramid
 *
 * Parameters : void
 *
 * Returns : void
 */
 pyramid :: pyramid()
 {
 shapeType = 1;
 }

/* --
----------------------- */
/* Function : void Drawpyramid()
 *
 * Description : This function draws the pyramid to
the screen. It uses the
 member variables from the
base object class.
 *
 * Parameters : void
 *
 * Returns : void
 */
void pyramid :: Draw()

{
 glPushMatrix();
 glColor3d(r,g,b);
 glTranslatef(posx,posy,posz);
 glScalef(sx,sy,sz);
 if(drawType == 0)
 glBegin(GL_TRIANGLES);
 else if(drawType == 1)
 glBegin(GL_POLYGON);
 // start drawing a
pyramid
 glVertex3f(sizeUnits, sizeUnits,
sizeUnits); // Top of pyramid (front)
 glVertex3f(-sizeUnits,-sizeUnits,
sizeUnits); // left of pyramid (front)
 glVertex3f(sizeUnits,-sizeUnits,
sizeUnits); // right of traingle (front)

 // right face of pyramid
 glVertex3f(sizeUnits, sizeUnits,
sizeUnits); // Top Of pyramid (Right)
 glVertex3f(sizeUnits,-sizeUnits,
sizeUnits); // Left Of pyramid (Right)
 glVertex3f(sizeUnits,-sizeUnits, -
sizeUnits); // Right Of pyramid (Right)

 // back face of pyramid
 glVertex3f(sizeUnits, sizeUnits,
sizeUnits); // Top Of pyramid (Back)
 glVertex3f(sizeUnits,-sizeUnits, -
sizeUnits); // Left Of pyramid (Back)
 glVertex3f(-sizeUnits,-sizeUnits, -
sizeUnits); // Right Of pyramid (Back)

 // left face of pyramid.
 glVertex3f(sizeUnits, sizeUnits,
sizeUnits); // Top Of pyramid (Left)

Roger Burns
Nick Wirth

 79

 glVertex3f(-sizeUnits,-sizeUnits,-
sizeUnits); // Left Of pyramid (Left)
 glVertex3f(-sizeUnits,-sizeUnits,
sizeUnits); // Right Of pyramid (Left)
 glEnd();
 glPopMatrix();
}

/****************************Cubes!!!**************
***********************/
/* --
----------------------- */
/* Function : void cube()
 *
 * Description : This is the constructor for the
cube class. It provides
 base size and color for the
cube. **NOTE** This does not
 draw a cube
 *
 * Parameters : void
 *
 * Returns : void
 */
 cube :: cube()
 {
 shapeType = 1;
 }

/* --
----------------------- */
/* Function : void Drawcube()
 *
 * Description : This function draws the cube to
the screen. It uses the
 member variables from the
base object class.

 *
 * Parameters : void
 *
 * Returns : void
 */
void cube :: Draw()
{
 glBegin(GL_QUADS); // start
drawing the cube.
 glColor3d(r,g,b);
 // top of cube
 glVertex3f(sizeUnits, sizeUnits,-sizeUnits);
 // Top Right Of The Quad (Top)
 glVertex3f(-sizeUnits, sizeUnits,-sizeUnits);
 // Top Left Of The Quad (Top)
 glVertex3f(-sizeUnits, sizeUnits, sizeUnits);
 // Bottom Left Of The Quad (Top)
 glVertex3f(sizeUnits, sizeUnits, sizeUnits);
 // Bottom Right Of The Quad (Top)

 // bottom of cube
 glVertex3f(sizeUnits,-sizeUnits, sizeUnits);
 // Top Right Of The Quad (Bottom)
 glVertex3f(-sizeUnits,-sizeUnits, sizeUnits);
 // Top Left Of The Quad (Bottom)
 glVertex3f(-sizeUnits,-sizeUnits,-sizeUnits);
 // Bottom Left Of The Quad (Bottom)
 glVertex3f(sizeUnits,-sizeUnits,-sizeUnits);
 // Bottom Right Of The Quad (Bottom)

 // front of cube
 glVertex3f(sizeUnits, sizeUnits, sizeUnits);
 // Top Right Of The Quad (Front)
 glVertex3f(-sizeUnits, sizeUnits, sizeUnits);
 // Top Left Of The Quad (Front)
 glVertex3f(-sizeUnits,-sizeUnits, sizeUnits);
 // Bottom Left Of The Quad (Front)

Roger Burns
Nick Wirth

 80

 glVertex3f(sizeUnits,-sizeUnits, sizeUnits);
 // Bottom Right Of The Quad (Front)

 // back of cube.
 glVertex3f(sizeUnits,-sizeUnits,-sizeUnits);
 // Top Right Of The Quad (Back)
 glVertex3f(-sizeUnits,-sizeUnits,-sizeUnits);
 // Top Left Of The Quad (Back)
 glVertex3f(-sizeUnits, sizeUnits,-sizeUnits);
 // Bottom Left Of The Quad (Back)
 glVertex3f(sizeUnits, sizeUnits,-sizeUnits);
 // Bottom Right Of The Quad (Back)

 // left of cube
 glVertex3f(-sizeUnits, sizeUnits, sizeUnits);
 // Top Right Of The Quad (Left)
 glVertex3f(-sizeUnits, sizeUnits,-sizeUnits);
 // Top Left Of The Quad (Left)
 glVertex3f(-sizeUnits,-sizeUnits,-sizeUnits);
 // Bottom Left Of The Quad (Left)
 glVertex3f(-sizeUnits,-sizeUnits, sizeUnits);
 // Bottom Right Of The Quad (Left)

 // Right of cube
 glVertex3f(sizeUnits, sizeUnits,-sizeUnits);
// Top Right Of The Quad (Right)
 glVertex3f(sizeUnits, sizeUnits, sizeUnits);
 // Top Left Of The Quad (Right)
 glVertex3f(sizeUnits,-sizeUnits, sizeUnits);
 // Bottom Left Of The Quad (Right)
 glVertex3f(sizeUnits,-sizeUnits,-sizeUnits);
 // Bottom Right Of The Quad (Right)
 glEnd(); // Done Drawing
The Cube
}
/****************************Spheres!!!!!**********
***************************/

/* --
----------------------- */
/* Function : void sphere()
 *
 * Description : This is the constructor for the
sphere class. It provides
 base size and color for the
sphere. **NOTE** This does not
 draw a sphere
 *
 * Parameters : void
 *
 * Returns : void
 */
 sphere :: sphere()
 {
 shapeType = 1;
 }

/* --
----------------------- */
/* Function : void Drawsphere()
 *
 * Description : This function draws the sphere to
the screen. It uses the
 member variables from the
base object class.
 *
 * Parameters : void
 *
 * Returns : void
 */

void sphere :: Draw()
{
 switch(drawType)
 {
 case 0:

Roger Burns
Nick Wirth

 81

 //printf("Solid Sphere drawn\n");
 glPushMatrix();

 glColor3f((float)r,(float)g,(float)b);

 glTranslatef(posx,posy,posz);
 glScalef(1,1,1);

 glutSolidSphere(sizeUnits,10,10);
 glPopMatrix();
 break;

 case 1:
 //printf("Wire Sphere drawn\n");
 glPushMatrix();
 glColor3f(r,g,b);

 glTranslatef(posx,posy,posz);
 glScalef(sx,sy,sz);

 glutWireSphere(sizeUnits,10,10);
 glPopMatrix();
 break;
 default:
 cout<<"Wrong parameters passed to
Draw\n";
 break;
 }
}

selector :: selector()
{

}
void selector :: Draw()
{

 GLUquadricObj *quadric;
 quadric = gluNewQuadric();
 glPushMatrix();
 glScalef(.25,.25,1);
 gluCylinder(quadric, 1, 0.75, 1, 15, 15);
 glPopMatrix();
}

CAMERA.H
/************Camera Class****************
*Author: Roger Burns
*Adapted from "Computer Graphics Using OpenGL"
*/

#ifndef camera_env
#define camera_env

#include <stdio.h>
#include <stdlib.h>
#include <vector>

#include "Point3.h"

using namespace std;

class Camera{

public:
 //default constructor
 Camera();

 //similar to gluLookAt()
 void set(Point3 eye, Point3 look, Vector3
up);
 //camera movement
 void roll(float angle);

Roger Burns
Nick Wirth

 82

 void yaw(float angle);
 void pitch(float angle);
 void move(float de1U, float de1V, float
de1N);
 void setShape(float vAng, float asp, float
nearD, float farD);

private:
 void setModelViewMatrix();
 Point3 eye;
 Vector3 u,v,n;
 double viewAngle, aspect, nearDost,farDist;
};
#endif

CAMERA.CPP
//Camera implementation
#include "camera.h"
#include "Point3.h"
#include <windows.h>
#include <gl/GL.h> // Header File For
The OpenGL32 Library
#include <gl/glut.h> // Header File For
The GLut Library
#include <gl/GLU.h>
#include <math.h>

#define PI 3.14159265
#define RAD 3.14159265/180

Camera::Camera()
{}
void Camera::move(float de1U, float de1V, float
de1N)
{
 eye.x += de1U * u.x + de1V * v.x + de1N *
n.x;

 eye.y += de1U * u.y + de1V * v.y + de1N *
n.y;
 eye.z += de1U * u.z + de1V * v.z + de1N *
n.z;
 setModelViewMatrix();
}
void Camera::pitch(float angle)
{
 float cs = cos(RAD * angle);
 float sn = sin(RAD * angle);
 Vector3 t = v;
 v.set(cs*v.x - sn*n.x, cs*v.y - sn*n.y,
cs*v.z - sn*n.z);
 n.set(sn*v.x + cs*n.x, sn*v.y + cs*n.y,
sn*v.z + cs*n.z);
 setModelViewMatrix();
}
void Camera::yaw(float angle)
{
 float cs = cos(RAD * angle);
 float sn = sin(RAD * angle);
 Vector3 t = u;
 u.set(cs*t.x - sn*n.x, cs*t.y - sn*n.y,
cs*t.z - sn*n.z);
 n.set(sn*t.x + cs*n.x, sn*t.y + cs*n.y,
sn*t.z + cs*n.z);
 setModelViewMatrix();
}
void Camera::roll(float angle)
{
 float cs = cos(RAD * angle);
 float sn = sin(RAD * angle);
 Vector3 t = u;
 u.set(cs*t.x - sn*v.x, cs*t.y - sn*v.y,
cs*t.z - sn*v.z);
 v.set(sn*t.x + cs*v.x, sn*t.y + cs*v.y,
sn*t.z + cs*v.z);
 setModelViewMatrix();

Roger Burns
Nick Wirth

 83

}
void Camera::set(Point3 Eye, Point3 look, Vector3
up)
{
 eye.set(Eye);
 n.set(eye.x - look.x, eye.y - look.y, eye.z -
look.z);
 u.set(up.cross(n));
 n.normalize();
 u.normalize();
 v.set(n.cross(u));
 setModelViewMatrix();
}
void Camera::setShape(float vAng, float asp, float
nearD, float farD)
{
 gluPerspective(vAng,asp,nearD,farD);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
}
void Camera::setModelViewMatrix()
{
 float m[16];
 Vector3 eVec(eye.x,eye.y,eye.z);
 m[0] = u.x; m[4] = u.y; m[8] = u.z; m[12] = -
eVec.dot(u);
 m[1] = v.x; m[5] = v.y; m[9] = v.z; m[13] = -
eVec.dot(v);
 m[2] = n.x; m[6] = n.y; m[10]= n.z; m[14] = -
eVec.dot(n);
 m[3] = 0; m[7] = 0; m[11]= 0; m[15] =
1.0;
 glMatrixMode(GL_MODELVIEW);
 glLoadMatrixf(m);
}

ENV.H
#ifndef controller_env
#define controller_env

#include <stdio.h>
#include <stdlib.h>
#include <vector>

/*Defined Classes*/
#include "object.h"
#include "camera.h"

using namespace std;

class env
{
 public:
 //camera structure
 Camera cam;

 //objects
 sphere planet;
 sphere planet2;
 sphere sun;
 pyramid tut;
 pyramid tut2;
 cube romulan;
 cube romulan2;

 //selector object
 selector sel;

 /*constructor*/
 env();

 /*Environment Variables*/
 float lookrot;

Roger Burns
Nick Wirth

 84

 /*object funtions*/
 void updateObj(int x, int y, int z, int rotx,
int roty, int rotz, int sx, int sy, int sz);
 void updateSel();
 void envDraw();

 //object selection
 void selectObj(int i);

 private:
};

#endif

ENV.CPP
#include <windows.h>
#include <iostream>
#include <fstream>
#include <gl/GL.h> // Header File For
The OpenGL32 Library
#include <gl/glut.h> // Header File For
The GLut Library
#include <gl/GLU.h>
#include <math.h>
#include "object.h"
#include "env.h"
#include "camera.h"
/*Special Keys*/

//only to be called once at startup of environment
env :: env()
{
 //init one of each shape
 sun.setPos(0,5,-10);

 sun.setType(0);
 sun.setColor(1.0,0.2,0.2);
 planet2.setColor(1.0,.5,0);
 planet2.setPos(3,4,-10);
 planet2.setType(0);
 planet.setPos(.2,10,-5);
 planet.setType(0);
 planet.setColor(0,.8,.2);
 tut.setPos(1,5,0);
 tut.setColor(0.05,.8,.8);
 romulan.setPos(3,3,0);
 romulan.setColor(0.2,0.18,0.16);
}

void env::updateObj(int x, int y, int z, int rotx,
int roty, int rotz, int sx, int sy, int sz)
{
 //given a selected object
 //update it as per the input given
 //position as well as rotation and scale

}

void env::envDraw()
{

 //draw grid
 for(int x = -100; x < 100 ; x++)
 {
 for(int z = - 100; z < 100; z++)
 {
 glBegin(GL_LINES);
 glVertex3d(100, 0, z);
 glVertex3d(-100, 0, z);
 glEnd();
 }
 }

Roger Burns
Nick Wirth

 85

 sun.Draw();
 sel.Draw();
 planet.Draw();
 planet2.Draw();
 tut.Draw();
 tut2.Draw();
 romulan.Draw();
 romulan2.Draw();

}

TEST.CPP
#include "env.h"
#include "object.h"
#include "serial.h"
#include "parse.h"
#include "camera.h"

#include <windows.h>
#include <iostream>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <gl/GL.h> // Header File For
The OpenGL32 Library
#include <gl/glut.h> // Header File For
The GLut Library
#include <gl/GLU.h>
#include <math.h>
#include <time.h>

using namespace std;

//ASCII codes for special keys
#define ESCAPE 27
#define PAGE_UP 73

#define PAGE_DOWN 81
#define UP_ARROW 72
#define DOWN_ARROW 80
#define LEFT_ARROW 75
#define RIGHT_ARROW 77

/*********************Serial Port
Variables************************
*
*/
HANDLE comPort = NULL;
char buffer[19];
parse * Parser = new parse();

/**********************Graphics
Setup******************************
*
*
*
*/
float angle = 0.0;
int dist = 0;
env ement;
float x=0,y=0,z=0;
Camera cam;
Point3 eye;
Point3 look;
Vector3 up;
void init()
{
 eye.x = 0;
 eye.y = 0;
 eye.z = 5.0;
 look.x =look.y =look.z = 0;
 up.x = up.z = 0;
 up.y = 1;
 cam.set(eye,look,up);

Roger Burns
Nick Wirth

 86

 cam.setShape(60.0, 680.0f/480.0f, 1.0,
2000.0);
 int x=2;
 //get the user input for what Port the
controller is located on
 printf("\nPlease indicate what port
(numerical value) the controller is on: ");
 cin>>x;
 //set the serial port in the Parser
 Parser->setPort(x);
 //open the serial port
 Parser->init();
 //init the graphics
 glClearColor(0.0,0.0,0.0,0.0);
 glShadeModel(GL_FLAT);
}
void display(void)
{
 //display the graphics
 glClear(GL_COLOR_BUFFER_BIT);
 glColor3f(1.0,1.0,1.0);
 glPushMatrix();
 ement.envDraw();
 glPopMatrix();
 glutSwapBuffers();
 glFlush();
}

void reshape(int w, int h)
{
 glViewport(0,0,(GLsizei) w, (GLsizei) h);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 cam.setShape(60.0, (GLfloat) w/(GLfloat) h,
1.0, 2000.0);
 //gluPerspective(60.0, (GLfloat) w/(GLfloat)
h, 1.0, 2000.0);
 //glMatrixMode(GL_MODELVIEW);

 //glLoadIdentity();
}

void serialRead()
{
 //get time for serialRead()
 clock_t t1 = clock();
 if(t1==clock_t(-1))
 {
 cerr<<"clock overflow\n";
 exit(2);
 }
 //check to see if you need to update the
variables
 if(Parser->parseBuff() == 1)
 {

 clock_t t2 = clock();
 if(t2==clock_t(-1))
 {
 cerr<<"clock overflow\n";
 exit(2);
 }
 //double d = difftime(t2,t1);
 printf("Amount of time for serialRead,
parsebuff,varUpdate: ");
 cout<<double(t2-t1)<<"seconds\n";
 }
}
void TimerCallback(int value) {
 static int i = 1;
 i++;
 //start a timer
 //force a poll
 if(Parser->poll())
 {
 //read in from the serial Port
 serialRead();

Roger Burns
Nick Wirth

 87

 //update the variables
 cam.move(((Parser->input.accel[0])/(Parser-
>calAccel.avgx)),
 ((Parser->input.accel[1])/(Parser-
>calAccel.avgy)),
 ((Parser->input.accel[2])/(Parser-
>calAccel.avgz)));
 }

 // Force a redraw.
 glutPostRedisplay();
 //finish the timer - used for baud rate check

 //calculate time

 // Set it to wake us again.
 glutTimerFunc(1000, TimerCallback, 1);
}

void keyboard(unsigned char key, int x, int y)
{
 switch(key) {
 case 'q':
 cam.roll(0.5);
 break;
 case 'e':
 cam.roll(-0.5);
 break;
 case 'a':
 cam.yaw(1);
 break;
 case 'd':
 cam.yaw(-1);
 break;
 case 'w':
 cam.pitch(-1);
 break;
 case 's':

 cam.pitch(1);
 break;
 case 'i':
 cam.move(0,0,-1);
 break;
 case 'j':
 cam.move(-1,0,0);
 break;
 case 'l':
 cam.move(1,0,0);
 break;
 case 'k':
 cam.move(0,0,1);
 break;
 case 'u':
 cam.move(0,1,0);
 break;
 case 'o':
 cam.move(0,-1,0);
 break;
 case 'z':
 ement.planet.posx++;
 break;
 case 'Z':
 ement.planet.posx--;
 break;
 case 'x':
 ement.sun.posy++;
 break;
 case 'X':
 ement.tut.posy--;
 break;
 case 'v':
 ement.planet2.posx--;
 break;
 case 'V':
 ement.romulan2.posy--;
 break;

Roger Burns
Nick Wirth

 88

 case ESCAPE:
 exit(-1);
 }
 glutPostRedisplay();
}

int main(int argc, char* argv[])
{
 glutInit(&argc, argv);
 glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);
 glutInitWindowSize(500,500);
 glutInitWindowPosition(100,100);
 glutCreateWindow(argv[0]);
 init();
 glutDisplayFunc(display);
 glutReshapeFunc(reshape);
 glutKeyboardFunc(keyboard);
 //Use the idle func to run through the input
 //from the controller on the serial line
 glutTimerFunc(1,TimerCallback,1);
 glutMainLoop();
 return 0;
}

