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Abstract of the Virtual Environment Handheld Controller 
By 

Nicholas Wirth 

Roger Burns 

 

 

The purpose of this project was to design a new handheld Virtual Environment controller. 

The design goal was to use accelerometer technology, along with a unique combination 

of other inputs in a device usable by any computer with a USB port. The device is based 

around an embedded microprocessor that formats both analog and digital signals and 

communicates with a software environment over USB. The Virtual Environment was 

designed to provide graphical interaction based on received input data. 
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1. Introduction 

The purpose of this project is to design, create and test a hand held controller that 

interfaces with a computer. This allows a user to interact with a simulated environment. 

Just as someone moves through a room by walking, the controller provides a user the 

ability to navigate through the simulated space. Other actions that can be done in real life 

are possible in the environment. A person moving through a bedroom may wish to 

choose amongst a pile of pictures lying on a desk, pick that picture up and examine it. 

The project’s aim is to provide that level of interaction using simple hardware that has 

been in the hands of gaming enthusiasts for years. The addition of new technology will 

allow an increased ability to interact with the system and provide the ability to create a 

life-like experience while interacting with these computer simulations. 
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2. Project Background 

2.1 Comparative Products 

 It was necessary to research other products in the controller market to help create 

the product specifications to meet expectations of potential users.  The project looked at 

the history of virtual reality controllers, to see how they developed over time and how 

their specific features impacted success. Some controllers have become commonplace 

while others have been passed over and ignored by the public.  Current devices were 

reviewed to determine benchmarks in performance must be met to be competitive in the 

market.   

 

2.1.1 Controller History  

In the past, controllers were designed to provide interaction with the computer 

systems with which people were using. The first computer mouse was designed and 

implemented in 1965 by Stanford Research Laboratory [13]. It was a simple device 

providing the user with a unit that would scroll a selector/manipulating graphic on a 

computer screen. This added versatility to the computer world and eventually would 

become a common component when the first desktop environment was created. The 

concept of playing a game represented in 2-D space was seen in the gaming world when 

in 1972 Atari was founded and released its groundbreaking game, Pong. How does one 

manipulate objects on a screen so that they can interact with each other? The progression 

of devices and their uses started with this simple question, and moved on to evolve into 

the controllers we use today.[14] 
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Atari introduced the joystick, a simple box with a stick that provided the ability to 

distinguish between eight directions (Figure 1).  It was now possible to move an object 

selector around along horizontal, vertical and diagonal axes. Later Atari introduced a 

joystick that provided motion control in 360 degrees. A keypad with button inputs was 

also added and would allow a game to become more complex, providing a means for 

multiple inputs. This was soon to be replaced by a common symbol of games and gaming 

for years to come [14]: the gamepad. 

 

Figure 1 : Atari Joystick 

 

Nintendo, currently one of the largest game console companies, designed a simple 

rectangular controller to be used with their Nintendo Entertainment System in 

1986(Figure 2). It incorporated a simple four way directional pad. This mimicked the 

ability of the joystick, but incorporated it into a small button system taking stress away 

from the wrist and hand. They also used two buttons to manipulate the in-game 

characters and objects, and two other buttons for menu navigation. This simple layout 

was a design that would be expanded and upgraded as games required more-complex 

input [14]. 
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Figure 2 : Nintendo Controller 

Companies changed the basic design of the controller as time progressed and the 

technology available to the gaming market advanced.  Designs that succeeded were basic 

yet provided great functionality.  Most controllers soon consisted of some sort of 

ergonomic curve to better fit the hands of gamers and relieve stress from long durations 

of use. The world of gaming encapsulated movement through a supposed 3-D 

environment, most often the case with first person shooters, and controllers began using 

analog joysticks to provide a form of movement and view control. This was apparent 

with the arrival of the Nintendo 64 controller in 1996 [8]. (Figure 3). 

 

Figure 3 : Nintendo 64 Controller 

The following generations of controllers provided not only directional pads and 

buttons, but pressure sensitive triggers, accelerometers and analog sticks. The versatility 

of these devices is wide, but is limited to an environment largely used by games. Pressure 

sensitivity was incorporated in the previous generation of controllers in the gaming 

market, namely the PlayStation 2 controller and the Xbox controller (Figure 4). 
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Figure 4 : PlayStation 2 and Xbox Controllers 

The methods by which someone manipulates perspective or movement with these 

controllers may not be tailored to specific applications, but because of generalization 

these controllers provide functionality for a wide range of software supporting different 

forms of manipulation. This method of creating a controller out of multiple simpler 

controls is essential for a device to be able to work with hundreds of applications, 

requiring only remapping for increased functionality. 

This segues into the personal desktop world where two devices have dominated 

the market for years; the keyboard and mouse.   They have been used for games, graphics 

design, and engineering.  They are even used to emulate game console controllers in 

order to play comparable games.  They are versatile and provide the necessary inputs to 

navigate through a 2-D environment [9]. 

 

2.1.2 Current Competition 

 Regarding products that are currently on the market, two main categories of 

controllers are available: high-end, VR-specific devices, and consumer-level controllers 

aimed at video games.  Both groups are used for interaction with a virtual environment, 

but they serve distinct purposes.   The high-end controllers provide a large degree of 

motional freedom, essential for complex environments, but they will only function with 

proprietary software and cost a large amount of money.  For example, the Flock of Birds 

motion tracking system provides six degrees of freedom with magnetic sensors, but 

prices for such a system start at $2,500 [20].  The gaming controllers are reasonably 

compatible with various systems, and are affordable, but have limited input options to 

keep price down.  Our goal is to bridge the gap between these two product groups and 

create a device that will provide enough control for a virtual environment, yet will be 
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functional and affordable for the gaming market as well. 

 One example of a device that attempted to achieve this goal is the Spaceorb 360 

[10] (Figure 5). 

Figure 5 : Spaceorb 360 

The ball on this device allows for six degrees of movement, for traveling within a virtual 

environment or video game.  It combines the functionality of multiple input devices into 

one, but was only mildly successful.  In a review by Jason Bergman, the Spaceorb was 

tested with multiple computer games and commented on for its functionality and ease of 

use.  Bergman comments, “The strange ball affixed to the SpOrb reacts beautifully in 

Descent, and really provides a clear advantage over any other input device” [2].  For 

specific uses, such as this flight-based game, the controller has a distinct benefit over 

traditional gamepads.  However in a first-person shooter game he goes on to say, “When 

all's said and done...sure you can play Quake with the SpOrb...but why?!?!?. There really 

isn't any major advantage to it, it has a really steep learning curve....” This shows that 

outside of a few specific applications, the controller's difficulty of use outweighs its 

increased control.  While designing our controller it was necessary to keep in mind a 

wide range of uses so as not to pigeon hole the device for a small number of applications. 
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Another device that has recently come to market is the Wii Remote (pronounced 

“wee”) from game console manufacturer Nintendo.  This controller makes use of a 

number of features including accelerometers and infrared technology to track its motion 

in 3D space (Figure 6).  

 

Figure 6 : Nintendo Wii Remote 

 This device is one of a small number of controller devices using accelerometers to 

track motion of the device as a user input.  Reviews for this device have been positive, 

generating a wave of new games focused primarily on the use of the new controller.  

However, this device is limited because only owners of the Nintendo system can use this 

device.  Our project plans to employ a similar accelerometer technology (along with a 

unique combination of other inputs) in a device that will be usable by any computer with 

a USB port.   
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2.2 Component Selection 

 This section will provide background on the technology behind the various 

components of the controller.  The chosen sensors will be analyzed, providing 

explanations of their operation, and the signals they will generate.  It is necessary to 

understand how these signals are produced in order to effectively troubleshoot them 

during testing, as well as determine how to best handle the data they produce for 

translation into a virtual environment. 

2.2.1 Accelerometers 

One of the devices that is planned to be built into the controller is an 

accelerometer.  This device measures its own acceleration, and outputs a proportional 

voltage.  This device is useful as an input sensor, because the user can tilt and move the 

controller around in order to perform a task such as locomotion.  Because the 

accelerometer is internal to the controller, the user's fingers are free to operate other 

controls simultaneously, and more readily interact with their virtual environment.  In our 

application, the accelerometers will be used to measure the force of gravity.  As the 

controller is tilted, the accelerometer's orientation varies between perpendicular and 

parallel with the force of gravity.  When parallel with the force of gravity, a force of 1g 

(or 9.8m/s2) is registered with the accelerometer.  In the perpendicular position, 0g is 

measured.  The variation in this measured force can be used to calculate the angle at 

which the device is oriented.  By employing three orthogonally mounted devices (or one 

3-axis device).  The controller's attitude comprised of its yaw, pitch, and roll can be 

calculated.   
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Figure 7 : Pitch, Yaw, Roll1 

This method of operation allows the accelerometer to output values which 

describe the tilt of the controller at any time, providing a means for fluid motion control.  

The use of accelerometers also allows the controller to measure the absolute three-

dimensional position of itself with a different interpretation of the data.  If the 

acceleration data from the controller is collected and stored over time, the speed, and 

position of the controller can be obtained by calculating the first and second integral of 

acceleration with respect to time.  This alternative method of operation allows the device 

to be used in multiple ways with only changes in software.   

 

Over the last decade, Microelectromechanical systems (MEMS) have advanced a 

great deal, allowing once-bulky mechanical devices to be manufactured into tiny 

integrated circuits.  Currently, multiple MEMS accelerometers are on the market, such as 

Analog Devices' ADXL330, which simultaneously measures 3-axes of force with a 

sensitivity of 300mV/g [7], and occupies a footprint of only 4mm x 4mm.  With today's 

mass manufacturing of integrated circuits, this device costs much less than a traditional 

mechanical accelerometer at $5.45 per unit (at 1,000 units).  These advances in MEMS 

technology will allow the controller to provide more methods of input compared to 

previous controllers without significantly increasing its price, or complicating  its design. 

2.2.2 Optical Encoders 

One common electromechanical device used for translating rotational movement 

into an electrical signal is an optical encoder.  This device is used both in the operation of 
                                                 
1 http://liftoff.msfc.nasa.gov/academy/rocket_sci/shuttle/attitude/pyr.html 
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a trackball, and a scroll wheel, which are elements found in the design of this controller.  

An image of a typical optical wheel encoder can be seen in Figure 8. 

 

Figure 8: Optical Wheel Encoder 

 In this trackball example, rotating the ball turns two shafts through friction, one 

for the X-axis and one for the Y-axis of movement.  A slotted disc is located at the end of 

each shaft (only one wheel is pictured above).  As the wheel turns, the slots pass by two 

optical sensors (the clear plastic squares in Figure 8).  On the opposite side of the wheel, 

two light sources are pointed at the sensors.  If a slot lines up with the sensor, it detects 

light and outputs a digital “1”.  If the sensor is blocked by the wheel, it cannot see the 

light and outputs a digital “0”.  By counting the number of light pulses as the wheel turns, 

the position of the wheel (and indirectly the ball) can be calculated2.   

 There are two sensors on each wheel in order to determine the direction of 

rotation.  The sensors are positioned so that when one is lined up with a slot, the other is 

in transition between slots.  This offsets the signals from the two sensors as shown in 

Figure 9. 

                                                 
2    http://www.4qdtec.com/meece.html 
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Figure 9: Optical Encoder Waveform3 

 When a “1” is sensed by the controller's processor from the first sensor, an 

immediate check of the second sensor will determine the direction the wheel is turning.  

This system necessitates that there be two sensors present for each axis of rotation to be 

monitored.  For a trackball, four optical sensors will be needed.  For a scroll wheel, only 

two sensors will be needed.  Optical encoders are simple to implement, because they 

output a digital signal, which is easier to work with than an analog signal when 

performing logic in a microprocessor.   

2.2.3 Potentiometers 

 Another common electromechanical device for measuring movement is a 

potentiometer.  A potentiometer acts as a variable resistor, whose value changes with the 

position of a shaft.  A typical potentiometer can be seen in Figure 10. 

 

                                                 
3 ibid 
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Figure 10: Generic Potentiometer4 

 As the wiper is turned, the resistance from point A to point W (as well as from 

point B to point W) changes.  This can be useful in an analog circuit, where a varying 

resistance can be translated into a varying voltage, and input into a microprocessor.   

 This type of input sensor is commonly seen in a joystick.  Potentiometers are 

attached to the ends of two rotating shafts in the base of the joystick.  As it is moved, its 

displacement in the X-axis is recorded by one potentiometer, and its displacement in the 

Y-axis by the other.  This system can be seen in Figure 11. 

 

Figure 11: Joystick Mechanics 

                                                 
4 http://www.markallen.com 
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 A joystick also typically has internal springs that force the stick back to its center 

position when released, and outputs a varying voltage for each axis of rotation.  These 

analog signals require the microprocessor to contain an analog-to-digital converter in 

order to create usable position data.   

 

2.2.4 Digital Buttons 

 One of the simplest electromechanical devices that will be integrated into the 

controller is a digital button.  A button works to momentarily complete a circuit, resulting 

in a digital “1”.  When the button is released, the signal returns to a digital “0”.  The 

symbol for a momentary button is shown below in Figure 12, illustrating its simple 

operation. 

Figure 12:  Standard Button Symbol 

 Buttons are useful for initiating a predefined action in a virtual environment.  

They are easy to design into a system compared to other components because they 

require little additional circuitry, and processing logic requires little code.  For this 

application, button debouncing was not necessary, as the digital buttons do not function 

on interrupts.  The microprocessor is set to poll the buttons’ status whenever it sends data 

to the PC.   
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3. Project Specifications 

In order to be a successful design, a VR controller must meet a set of pre-defined 

specifications.  These specifications will detail the tasks the controller must be able to 

accomplish.  Each of the defined specifications must be clearly measurable in order to 

determine if it has been met.  After the design was completed and the controller had been 

built, a series of tests were run to verify these specifications.    

The overall goal of the controller is to allow a user to interact with a three-

dimensional virtual environment.  The design of this controller focuses on three actions 

determined to be the most critical in a virtual environment; 3-D navigation, object 

selection, and object manipulation.  The controller should be tailored for these types of 

actions so that the user can easily multi-task and feel as if he is in the simulated 

environment.  Table 1 lists a number of tasks to be performed in a virtual environment, 

and matches each to possible sensors that would be well suited to accept user input. 

 

 

TASK Possible Hardware 

Navigate (Front, Back, Left, Right) Accelerometers 

Navigate (Up, Down) Possible accelerometers 

Object Selection Scroll wheel / Accelerometer 

Object Manipulation Trackball, analogue stick, Accelerometer 

Menu Call Button 

Menu Control (Up, Down) Scroll Wheel (clicking roll Up, Down) 

Menu Control (Left, Right) Scroll Wheel (left and right click) 

Selector Manipulation Track Ball 

Point of View Manipulation Analogue Stick 

Table 1: Task vs Hardware 
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Another way of viewing this information is to start with a sensor type, display its 

attributes, and determine a task that fits those characteristics.  This format is shown in 

Table 2. 

 

Sensor Input 

Dimensions 

Advantages Disadvantages Possible Tasks 

Trackball 2D Precision, absolute 

position 

No continuous 

movement 

Object 

selection/manip

ulation 

Joystick 2D Rate of movement, 

automatically 

centers 

Poor precision Object 

selection/manip

ulation 

Scroll Wheel 1D Discrete points in 

movement 

No continuous 

(smooth) 

scrolling 

Object “depth” 

selection 

Accelerometer 3D 3D input, doesn’t 

occupy fingers 

Poor precision Movement 

Binary Button 0D On/off functions Few input 

dimensions 

Selection, map 

to function 

Analog Button 1D Amplitude Control Poor precision Rate control 

Table 2: Sensor Attributes 

Using tables 1 & 2, the conclusion was made that multiple device types are 

necessary to achieve the desired functionality of the controller.  By implementing a 

combination of these inputs in a package with which the user can efficiently and easily 

accomplish all above-mentioned tasks, the result should be a useful product that will have 

a distinct place in the PC and VR-controller markets. 

The following list of specifications must be met in order to create a competitive 

controller that allows the user to perform 3-D navigation, object selection, and object 

manipulation: 
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1. Must provide an input for movement in a 3-D environment 

2. Must provide an input for selecting of an object in 3-D space 

3. Must provide an input for interaction with a selected object 

4. Controller should allow at least two actions to be performed simultaneously 

5. Usable after five minutes of training 

6. USB Compatible 

7. Software configurable (input sensors can be remapped for different applications) 

 

In order to assure these specifications have been met, a series of tests was 

performed that will result in a clear yes/no or numerical value for each item on the above 

list.  These procedures are detailed in the results and analysis section of the report. 
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4. Project Design Overview 

The design process and specifications set the background of the project. This 

section will explore the specific hardware and software components of the design for the 

prototype controller.  An overall system flow will be presented, along with discrete 

device choices.   

4.1 Hardware 

The hardware design of the controller begins with a functional block diagram 

(Figure 13) displaying the major system components and the interactions between each 

component, the user, and the software. 

 

Figure 13 :  Hardware Design 
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The block diagram consists of four major components, the input sensors, signal 

conditioning, a microprocessor, and a Universal Serial Bus (USB) controller.  The arrows 

represent the flow of information and power.  The signal data originates from the user, 

and is transformed into electrical signals by the sensors.  These signals are then 

conditioned into a form that allows them to be compatible with the microprocessor.  The 

processor takes these analog (and digital) signals and converts them into digital 

information.  The microprocessor synchronizes its output data with the USB controller's 

clock.  The USB controller acts as a translator between the microprocessor and the PC, 

allowing them to exchange data.  The PC sends control data back through the USB 

controller to the microprocessor, in order to change modes of operation.  The PC also 

supplies power to the entire circuit through the USB connection.  All of the blocks shown 

in this diagram will be contained within the body of the controller, and connected to the 

PC with an external cable.   

4.1.1 Sensors and Signal Conditioning 

Through a combination of background research on previous virtual environment 

controllers and input sensor analysis, it has been determined that to best achieve the 

specifications for interaction with a virtual environment this hand-held controller will 

contain the following sensors: 

 

• 1 - 3-axis accelerometer 

• 1 - trackball 

• 1 - joystick 

• 4 - digital buttons 

• 2 - scroll wheels 

 

All of the input devices result in a total of 17 separate signals that need to be 

interpreted by the processor and sent to the computer. Table 3 summarizes these inputs. 
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Device Analog Signals Digital Signals Total Signals 

Accelerometer 3 0 3 

Trackball 0 4 4 

Joystick 2 0 2 

Scroll Wheel (2) 0 4 4 

Digital Button (4) 0 4 4 

 5 12 17 

Table 3: Device Outputs 

 

The accelerometer will be housed within the body of the controller, and mounted 

directly to the main Printed Circuit Board (PCB).  The product chosen to fulfill this task 

is the ADXL330 Accelerometer produced by Analog Devices Inc.  This MEMS device is 

capable of measuring up to 3.6g in 3D space, and is contained in a 4mm x 4mm Lead 

Frame Chip Scale Packaging (LFCSP).  A pin out of the device is displayed in Figure 14. 

Figure 14: ADXL330 Diagram5 

 The ADXL330 requires a supply voltage between 2.0V and 3.6V.  The 5V 

                                                 
5  Analog Devices Inc. 
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supplied by the USB port will be sufficient after being attenuated by a voltage regulator 

circuit.  The device supplies three analog outputs corresponding to the 3 axes of 

movement (X,Y,Z) which are interpreted by the analog-to-digital converter in the 

microprocessor.  The manufacturer states common applications of this device to be 

“Motion and Tilt sensing in Mobile Devices” as well as “Motion-Enabled Gaming 

Devices”, which both closely describe the goal of this controller.  At a price of $5.45 (@ 

1,000pcs.), this device is easily attainable for a low budget project.   

 The trackball operates with the use of optical wheel encoders measuring its X and 

Y axis movement.  This results in the device having 4 digital connections to the 

microprocessor.  The joystick is based on potentiometers and provides 2 analog signals to 

the microprocessor.  Each digital button provides one digital input to the microprocessor, 

resulting in a total of 4 inputs.  Finally, the two scroll wheels are based on one-axis 

optical wheel encoders, and output a sum of 4 digital signals. 

 For the prototype controller, all of the input sensors except the accelerometer are 

sourced from existing devices, as complete sensors are generally not available from 

manufacturers.  For example, rotary encoders are available, but scroll wheels are not.  

Research shows devices such as joysticks, trackballs, and scroll wheels are specially 

made for products under large quantity contracts.  The accelerometer however, is a bare 

sensor and was readily ordered from the manufacturer, Analog Devices.    

 In order to properly interface with the microprocessor, all of the signals from the 

input devices must be properly conditioned.  For digital signals, the amplitude of a logic 

“1” will be made sufficiently high to trigger each digital input.  This value is the 

microprocessor's system voltage of 3V, which is higher than the input threshold voltage 

of 1.9V.  If necessary, the signals are filtered to reduce false triggers resulting from 

overshoot or noise.  For example, analog signals from the accelerometer are filtered with 

a simple RC low-pass filter consisting of a surface mount capacitor of 0.1μF, and the 

internal resistance of the sensors.  This will result in more accurate digital data as the 

analog input signal will contain less noise.  After being adjusted, the data is input to a 

suitable microprocessor. 
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4.1.2 Microprocessor 

 The microprocessor for this controller must meet a number of criteria in order to 

function properly: 

• Minimum of 17 I/O pins for sensors 

• Minimum of 5 A/D channels 

• Operable on <= 5V supply 

• Universal interface to communicate with USB controller. 

• Moderate memory volume to hold program and sensor data 

• Powerful processor to handle multiple data streams 

• Small dimensions to fit in controller 

• As few extraneous features as possible 

 

 Many solutions were researched and analyzed, ranging from simple 8-bit 

architecture microcontrollers to high-end DSP (Digital Signal Processing) capable chips.  

It was determined that a level of performance between these two extremes be chosen for 

this application.  The low-end controllers are simple to program, require fewer resources, 

and cost less money, but they lack features, memory size, and processing speed.  The 

high-end DSPs provide ample computing power, but are very complex to control, more 

expensive, and most of the chip's features would go unused.   

 The middle ground is a mid-range RISC (Reduced Instruction Set) based 

microcontroller, lacking DSP capability, but still containing the features necessary to 

monitor all the sensors and process the incoming data.  A device based on Texas 

Instruments' 16-bit MSP430 family contains the required features and complexity 

necessary for this project.  Analysis of the features within this family results in a choice 

of the MSP430x1xx line.  Although smaller models contain enough I/O pins, a 64pin chip 

is necessary because with all 17 pins occupied (5 of which consist of analog inputs), the 

UART (universal asynchronous receiver/transmitter) interface pins of the smaller device 

would be unavailable.  At a cost ranging from $5-$8, this processor fits comfortably in 

the project's budget.  An additional benefit of choosing this processor is the availability of 

comprehensive developer kits that can be used for testing the device and becoming 

familiar with its interface.  The final model chosen is the MSP430F169, as it is included 
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in both the development kit, and the Softbaugh USB interface test board (discussed in the 

next section).  In order to program and test the microprocessor, a Texas Instruments USB 

FET debugger board and IAR Embedded Workbench Kickstart software suite are 

utilized.   

 

4.1.3 USB Controller 

 The USB controller must be capable of taking output data from the 

microprocessor, converting it into the USB format, and transmitting it to the PC.  

Additionally, the controller must also be able to convert any control signals sent from the 

PC to a serial format so that they can be recognized by the microprocessor.  This process 

must occur at a sufficient speed such that the microprocessor can send data to the PC as 

fast as it is obtained.  For example, a typical USB mouse operates at 125Hz as shown 

through Windows configuration settings. 

 Research into USB interface devices results in the choice of a USB Peripheral 

controller.  This chip is designed specifically to organize communication between a USB 

host (such as a PC) and an attached device (such as the VR controller of this project).  

The FT232BM from Future Technology Devices International Ltd (FTDI) meets all these 

criteria, and provides additional features such as a low-power mode when the controller is 

inactive.  Figure 15 shows an image of the device. 

Figure 15: FT232BM6 

                                                 
6   Future Technology Devices International Ltd 
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 This interface chip has the ability to power itself from the USB bus, a 5V source 

that can supply a maximum of 500mA.   With the addition of a 5V voltage regulator, the 

USB port is capable of powering the VR controller's entire circuit.  This USB peripheral 

device also has an attainable price of about $5.   

 

4.1.4 Layout and Construction 

 Following the selection of all the controller's components, and the design of any 

supporting circuitry such as signal filtering, decoupling capacitors, or current limiting 

resistors, an overall circuit design was created.  The system-level schematic of the 

controller is shown in figure 16.   

 

Figure 16: System Schematic 

This circuit shows the connections between the sensors, and the microprocessor and 

includes all major components.  The input from the accelerometers and the joystick are 

input to port 6 of the microprocessor, which are configured as a multi-channel analog to 
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digital converter.  The digital signals from the optical encoders are set up on port 2, 

which allows changing input signals to trigger an interrupt.  The digital buttons are set up 

on port 1.  What is not shown in this schematic are the details of the interface between the 

microprocessor and the USB controller.  Each major section of the system-level 

schematic will now be examined in detail.   

4.1.4.1 BFT232U169 test board 

The original design of this project involved the use of a Texas Instruments based USB 

controller solution, detailed in Appendix A.  After experiencing difficulty with that 

configuration, a switch to the FTDI chip was made.  This allowed the use of the 

Softbaugh BFT232U169 evaluation board, pictured in figure 17, which formed the core 

of the system's circuit.   

 

Figure 17: Softbaugh BFT232U169 

 This board includes both the MSP430F169 and the FT232BM of the design, with 

the interfacing circuitry fully constructed.  A detailed schematic of this test board can be 

seen in Appendix B.  This board is set up so that both the MSP430 and the FT232 are 

supplied with power and a clock crystal for proper operation, (32kHz and 6MHz 

respectively).  A 93LC46B 1kb EEPROM chip is interfaced with the FT232, holding 

configuration firmware and USB identifier tags.  A 5V to 3V voltage regulator is 

included on the board, creating a power supply for the controller.  The black plastic 14-

pin connector on the board is a JTAG connector which allows easy programming of the 

on-board MSP430.  Finally, all the I/O pins of the microprocessor are accessible along 

the edge of the board via header pins.   
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4.1.4.2 Custom Printed Circuit Boards 

 The PCB was designed within the program ExpressPCB, as it provides adequate 

design flexibility, a direct board ordering feature and a relatively inexpensive source of 

boards.  All of the traces, mounting pads, vias, and board layers can be mapped out in a 

fashion displayed in figure 18. 

Figure 18: ExpressPCB CAD Software7 

 All dimensions can be directly adjusted by the designer, and custom templates can 

be created for specific devices to be attached.  Once the board is designed, the resulting 

CAD (Computer-Aided Design) file is sent directly from the program to a manufacturer 

who creates the boards and ships them to the designer.  Three copies of a simple 2-layer 

board can be purchased for about $50.  With the acquisition of a PCB and all the system 

components, the board can be populated and tested for functionality. 

 

The primary board designed for this project is the test board for the accelerometer, 

and its supporting passive components.  Along with the chip itself, four frequency setting 

(and filtering) surface mount capacitors are necessary.  An array of vias (small metal-

plated holes through a PCB) are also placed along the edge of the board to facilitate easy 

attachment of wires.  Some of the components such as the capacitors were laid easily 

through the use of templates in the software.  The accelerometer on the other hand resides 

in a relatively new package, so it was necessary to manually create the template.  Package 

dimension data was taken from the ADXL330 data sheet and used to determine pad sizes 

                                                 
7  http://www.expresspcb.com 
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and correct spacing.  The layout for this board is shown in figure 19.   

 

Figure 19: Accelerometer PCB 

 

 The accelerometer circuit is located on the right half of the board layout.  

The red traces represent conductive metal which will be placed on the top layer of the 

board.  The green traces represent the bottom layer of the board. The yellow outlines of 

components would normally be printed as a silkscreen, but for the low cost 

manufacturing option, this board has no silk screen mask.  The circuit on the left of the 

board is a pin-out for one of our tested USB solutions.  Each pin is sent to a row of 

headers, and the USB data lines are sent to a USB B-style header for connection to a USB 

cable.  This file was sent out to ExpressPCB, and after a wait time of about one week, the 

board was received.  The fully populated board is shown in figure 20. 

 

Figure 20: Populated Accelerometer Board 

Due to the LFCSP package of the accelerometer and the small size of the 
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capacitors, a non-standard method for populating the test board was used.  Instead of 

using a traditional soldering iron, a water-soluble solder paste, Kester R276 shown in 

figure 21 was used.   

 

Figure 21: Solder Paste 

Using the heating method found at seattlerobotics.org, the board was brought up 

to temperature in a small oven.  It was held at the following temperatures for each 

specified amount of time.   

 4 min. 200 deg. Warm up board and allow temperatures to equalize. 

 2 min. 325 deg. Bring temperature up to saturation. 

 30 sec + 450 deg. Temperature raised until solder melts and beads at individual 

pins, then held for 30 additional seconds. 

 Tap the oven before cool down 

 

After this procedure, the water has evaporated from the solder paste, and the 

components are securely attached to the board.  Lead testing reveals solid connections, 

and no short circuits.  Lastly, the wires are manually soldered onto the board for 

breadboard interfacing.   

 

4.1.4.3 Sensor Wiring 

 Apart from the accelerometer, the other sensors of the controller are taken from 

other human interface devices.  This section will detail how their printed circuit boards 

are configured, and how they are connected to the microprocessor.  The circuit board 

holding the scroll wheel is shown in figure 22. 
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Figure 22: Scroll  Wheel 

The rotary encoder is highlighted with a red box.  Four terminals extend through the 

printed circuit board, and perform the following functions: 

 Power  

 Ground 

 Signal 1 

 Signal 2 

  

 The power is provided with 3V from the system rail, and the ground pin is 

grounded.  The signal 1 and 2 pins are routed via wires to the port 2 inputs of the 

MSP430.  These signals represent the two square wave signals, separated by 90 degrees 

to determine the direction of rotation.   

The red circles show examples of the digital buttons. The mechanics of each 

button are comprised of two conductive metal pieces on each end of the button.  The 

white plastic button contains a metal pellet that connects the circuit.  When the button is 

pressed down, the two halves are connected, and the circuit is completed.   
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 The trackball also operates through the use of rotary encoders, with its board 

shown in figure 23.   

 

Figure 23: Trackball PCB 

 The two rotary encoders (one for X-axis and one for Y-axis) are highlighted with 

red boxes.  The notched wheels that are rotated by the trackball fit into the slots in these 

encoders, and translate rotational movement into a stream of digital pulses.  The 

underside of the board is shown in figure 24 to illustrate the connections. 

 

Figure 24: Trackball Wiring 

 The two red boxes (each containing eight pins) are the two rotary encoders shown 
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in the previous figure.  It can be seen that for each encoder, the pins are separated into 

groups of four.  This is because the encoders are comprised of two pieces.  An LED on 

one side of the device emits a constant light, while the other side is an optical receiver.  

The pins marked in blue are the signal pins for the receivers.  The pins marked in red 

provide power to the encoders. The orange pins are the ground pins for the devices.  All 

four signals pins are routed to the port 2 inputs of the MSP430 as digital signals.   

 The joystick and digital buttons are sources from a disassembled X-box 

controller, shown in figure 25.   

 

Figure 25: Joystick and Digital Buttons 

 

 The joystick is pictured on the right of the image.  This device is based on two 

potentiometers, one for each axis of motion.  Each potentiometer has three terminals, 

highlighted by the blue boxes.  The two outer pins of each one are the power and ground 

pins.  Because a potentiometer is essentially a variable resistor, these can be wired with 
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either polarity.  The center pins of each are the signal outputs, which are sent to port 6 

(analog to digital converter) of the MSP430.   

 With the signal paths of all the individual sensors identified, a complete circuit 

was constructed.  Each of the sensors was fixed with epoxy to a small sheet of 

polycarbonate, and connecting wires were soldered to data and power pins.  The 

complete circuit is shown in Figure 26.  This circuit allows testing of the devices as a 

whole, while retaining the ability to re-wire and add or remove components. 

 

Figure 26: Complete Circuit 
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4.2 Software 

A device must have software to interact with the computer system that it is 

connected to. This is a device driver. Drivers are files that describe to the operating 

system, the necessary functions to perform based upon the input received from a specific 

device. In looking to create a unique device, it was important to do work on a method to 

gather the information from the device within the software. When determining if the 

device is acting as expected, it is required to have a way to inspect if the information 

being provided to the personal computer is being interpreted correctly. To check for this 

flow of information as well as the interpretation is being carried out successfully this 

project will employ a Virtual Environment (VE). The VE will provide the tools to check 

the information coming in and assist with the determination of hardware capabilities as 

well as standard input from the devices on the controller. This extends to a visual 

inspection of the interaction between the device and the computer as well a visual 

approach to determine the correct mapping of the functions to controller operation. 

 

Figure 27: Software Design 

Figure 27 represents the flow of information from the computer through a Serial 

port. The data is passed to the parser and separated into individual data fields that are 

interpreted by the OpenGL libraries and the VE. The screen displays the interpreted data 

and is a direct corollary to the input the user signaled by interacting with the device. The 

specifics of each of these blocks is explained below. 



Roger Burns 
Nick Wirth   

 33

4.2.1 Virtual COM 

 The communication between the VE and the device will be handled in a serial 

fashion. While USB is being used for the hardware to communicate as well as provide 

power, the late implementation of USB software for the computer left communication 

over a COM port as the reasonable technology to use. The evaluation board used to 

provide USB communication provides device drivers that mimic a COM port on a 

personal computer. This is a Virtual COM Port Driver and allows access to the data as if 

opening a serial communication over COM in the VE. A BAUD rate of 9600 was set as 

the standard, but through trial and error with the device, the evaluation board only 

allowed the VE to receive information at 2400 baud. 2400 baud refers to the number of 

symbols per second received, in this case, over the Serial port. When connecting to the 

Serial port the software declares that it receives 8 bits per symbol. This translates to 

19200 bits per second. The information that is being passed is a stream of 19 bytes. On 

the windows architecture a byte corresponds to 8 bits. The stream then is 152 bits of 

information. Dividing the amount of information in the steam into the baud rate gives 

19200 / 152. This is the equivalent to a rounded down number of 126 samples of 

information. While this is low for the capabilities of the Serial port, it provides ample 

enough information to have a rough conveyance of user interaction with the device. 

Future work to improve this rate will improve the precision that the device can have as a 

higher baud would allow a greater sample speed. 

4.2.3 Information Parsing 

 The information that is passed to the VE is in the form of a structured stream of 

data. This is passed whenever the VE sends a control signal to the device. The structured 

stream is passed to a parser object that splits the information into various data structures 

that handle the update of variables in the VE. The passed data handles the numeric values 

of the buttons, joystick, trackball, scroll wheels and the accelerometer. When the parser 

gets this information and parses it, it returns the updated variables to the VE. In turn the 

VE updates the visual representation according to the change as dictated by the user. 

Since the information that’s being parsed is in byte form, it was important to check the 

hardware description and determine the actual bits within each byte are important. The 
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information coming from the device followed the following protocol: 

 

 

 

• Buttons (4):  xxxxdddd 

• Trackball X:  dddddddd dddddddd 

• Trackball Y:  dddddddd dddddddd 

• Scroll 1:   dddddddd dddddddd 

• Scroll 2:   dddddddd dddddddd 

• Accel X:   xxxxdddd dddddddd 

• Accel Y:   xxxxdddd dddddddd 

• Accel Z:   xxxxdddd dddddddd 

• Joystick X:  xxxxdddd dddddddd 

• Joystick Y: xxxxdddd dddddddd 

 

 

The only information that the VE should be concerned with is the bits where it is 

represented by the character ‘d’ in the above depiction of the information. The parser is 

now concerned with determining the correct addition of the information represented in 

several bytes.  Utilizing bitwise operations in C++, it is possible to ensure the exclusion 

of any information by masking a byte and retrieving the pertinent information. In the case 

of the buttons and accelerometers this implies masking the first four bits of the byte and 

ensuring that they are zeros. 

• Input AND 0x0F   (AND is equivalent to &) 

The previous statement is a hexadecimal representation of the masked bits as the ‘0’ after 

the x represents the zeroing of the left most bits while the ‘F’ represents all ones which 

leaves the information in the right most bits as is. This is a method of ensuring that only 

the pertinent data in each byte is accounted for. The next step in the parsing process 

revolves around the shift of information received from the first byte to combine it bitwise 

with the second byte received (for those components whose information spans more than 

one byte of information).  
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• (Input & 0x0F)<<8 

This statement represents that shift, adding padding while the 8 bits from input are 

shifted. The final step is to apply the second byte that follows, combining the two bytes to 

represent one numerical value. 

• ((Input & 0x0F)<<8) | (Input & 0xFF) 

This final representation shows the OR operator between the two bytes. This is similar to 

the below representation. 

00001111 00000000 

OR                               11111111 

00001111 11111111 

This is a binary representation combines the two bytes of information into one value that 

can be cast as an integer in the VE.  Simply adding the two bytes to form a single 

numeric representation would not give the correct answer, hence the use of the bitwise 

operators.  

4.2.4 OpenGL 

 OpenGL is a set of graphical libraries often used for games as well as visual 

representation of data to a user on the screen. The libraries include functions to initialize 

views into a 3-D space, initialize and change objects as well as assist in the definition of 

interaction. This is done through drawing the display to the screen upon a change in the 

variables in the environment or upon an explicit redraw. The usage of the OpenGL 

libraries assisted in the implementation in the following areas: navigation, object 

manipulation, and object selection. 

4.2.4.1 Navigation 

Navigation is provided through the interface as is familiar with many games in 

today’s game market. When a person wishes to move, as the user interacts with the 

controller, the eye, or rather the camera slides through the graphical environment. This is 

visible by the addition of a floor to the environment. This allows for a permanent point of 

reference that the user can use to judge the accuracy of the movement based on the 

interaction with the controller. As proposed earlier in the paper, the mapping of the 
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controller to the navigational portion of the software is something that will be reflected in 

the VE. 

 

Figure 28: First Person View into the VE 

Figure 28 depicts a sample view of the world the VE places the user into. The approach 

that is being utilized is mainly centered around the use of the accelerometer and the 

joystick. The accelerometer uses the three axis to provide forward/backward and left/right 

motion in a sliding motion in each of those directions. The third axis is used to travel up 

and down. The joystick, because of it’s familiarity to the role being used for, it allowing 

the user to turn his/her head to the left/right as well as tilt up/down. While this is the 

current setup in the environment, the particular problem of functional mapping is 

something that can be addressed by inspection of the expected movement through the VE 

as well as the actual movement depicted on the screen. This can be adjusted for 

individual users or a standard can be set based upon future user studies. 

4.2.4.2 Object Selection 

 Object selection is the process by which the user can, upon inspecting the VE, 

determine what object they would select. This reflects upon the ability of the controller to 

allow the user to distinguish between individual objects in the environment and the 
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software’s ability to single out an individual component. The act of selection revolves 

around the intersection between any given object and a ray. Currently this is not 

implemented in the VE, but the capabilities certainly exist. The mathematics that 

concerns the intersection of a ray and a sphere can be found in Appendix D. The ray is a 

simple line with a start and an end at the far viewpoint. This effectively stretches to 

“infinity” as the user is only concerned with selecting objects that are within the view 

space currently presented. The intended use of the ability would be to have a ray interact 

with the environment based upon camera movement (always present in your view, 

similar to a cursor) as well as user input. The user input would change the position of the 

cursor, moving through the space in front of the user. The final intention was to 

implement a selection function, mapped to a button, that would allow the user to directly 

manipulate an object as outlined in the next section.  

 

4.2.4.3 Object Manipulation 

 The ability to manipulate an object revolves around the functions built around the 

transformation of the current OpenGL matrix. This allows for the transformation of 

objects, whether it is a scale, translation or rotation. This covers the basic manipulations 

one can perform on an object. This allows the device to explore the differences when 

incorporating various modes into a device.  

• Translation:  

 

Figure 29:  OpenGL Translate 

http://www.limsi.fr/Individu/jacquemi/IG-TR-4-5-6/opengl-transf3.png 
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 The above Matrix represents the calculations to translate (slide) an object in 3-D 

space. It is equivalent to moving an object along an axis. The numerical input to dx, dy, 

or dz represents the amount the object moves along the respective axis. 

 

• Scaling:  

 

Figure 30: OpenGL Scale 

http://www.comp.leeds.ac.uk/marcelo/opengl/transform2d-b.png 
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 The above matrix represents the scale of a triangle utilizing the OpenGL 

libraries. The first (green) triangle is drawn with no change to the current matrix that is 

currently used as a reference. The function to scale is called and the matrix that represents 

the current numerical multiplication of the objects represented on the screen. When the 

scale is applied, the new triangle (red) is drawn over the old according to the new scale 

factor. 

• Rotation:  

 

Figure 31: OpenGL Rotation 

http://www.naturewizard.com/Tutorials/Tutorial01/images/image010.jpg 
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 Rotation matrices are applied just as the previous two are and can change the 

rotation of an object in relation to any of the three axes. Figure 31 shows a sample 

application of the matrices to an object. The pyramid rotates along several axes at once, 

showing a practical application of these functions. 

 

4.2.5 The Virtual Environment 

 

 The Virtual Environment is the compilation of the previous software related 

sections. It ties together each of the three classes into one cohesive unit. There exists one 

parser, one environment and one communication module. There exists within the 

environment any arbitrary number of objects. Currently this is set in the code but is open 

in the future for expansion.  The purpose of the entire package is to simplify the 

components and define their interaction. Thus, a single executable can be run under 

Windows allowing the controller to connect over a COM port and update the display.  
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5. Results and Analysis 

5.1 Hardware 

 After the completion of the system design and the acquisition of components 

begin, each subsystem of the controller was individually tested to ensure proper 

operation.   

5.1.1 Sensors 

 Testing the controller's sensors involves applying power to each device, moving it 

through its full range of motion, and comparing the measured output to the expected 

output at specific points.  Once the analog voltage levels from each device are verified, 

they can be passed to the microprocessor with confidence.   

 The first device tested was the 3-axis accelerometer.  In order to power up the 

device, the system's 3V is applied to the Vcc pin of the accelerometer, and the ground pin 

is grounded.  The device has three individual analog outputs corresponding to the X, Y, 

and Z acceleration forces on the package.  According to the datasheet for the ADXL330, 

with 0 gs applied to the device, the output should remain around half of the voltage 

supply, or 1.5V.  With a sensitivity of ~0.3V/g, the outputs should range from 1.2V for -

1g, and 1.8V for +1g.  Subject to 0 gs of force, the equilibrium voltage of each axis is 

measured to be: 

• X 0g --> 1.52V 

• Y 0g --> 1.51V 

• Z 0g --> 1.52V 

 This shows a small bias of about 0.02V given no input.  Figure 32 shows the 

orientation of the package to obtain specific gravitational forces. 
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Figure 32: Accelerometer Orientation [1] 

 For each axis of the accelerometer, a test was performed at 0, 45, 90, 135, and 180 

degrees.  Using trigonometry to calculate the force of gravity at the various angles, as 

well as the stated sensitivity of the accelerometer, the anticipated output voltages were 

calculated. 

sin(θ) = Vout/(V/g) 

45 degrees X-axis 

Vout = sin( θ ) * V/g 

Vout = sin (45) * 0.3 = 0.212V 

 

1.52V at 0 degrees + 0.212V = 1.73V 

Actual measured voltage: 1.725V 

 

 Tables 4-6 show the calculated and measured values for each axis of the 

accelerometer. 
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Accelerometer X-Axis 
Degrees ΔV Calculated V Measured V Digital Val 

0 0V 1.520 1.520 2045 

45 0.212V 1.732 1.725 2280 

90 0.3V 1.820 1.812 2450 

135 -0.212V 1.308 1.315 1821 

180 -0.3V 1.220 1.230 1633 

Table 4: Accelerometer X-Axis 

 
Accelerometer Y-Axis 

Degrees ΔV Calculated V Measured V Digital Val 

0 0V 1.510 1.510 2041 

45 0.212V 1.722 1.720 2278 

90 0.3V 1.810 1.810 2448 

135 -0.212V 1.298 1.300 1822 

180 -0.3V 1.210 1.215 1645 

Table 5: Accelerometer Y-Axis 

 
Accelerometer Z-Axis 

Degrees ΔV Calculated V Measured V Digital Val 

0 0V 1.520 1.520 2050 

45 0.212V 1.732 1.730 2280 

90 0.3V 1.820 1.820 2445 

135 -0.212V 1.308 1.310 1830 

180 -0.3V 1.220 1.230 1650 

Table 6: Accelerometer Z-Axis 

 

 It can be concluded from these results that the accelerometer performs within the 

specifications listed in its data sheet.  Although the measured voltages are not exactly as 

expected (about 0.01V off in many cases), they are consistently offset, so a correlation 

between voltage and angle can still be determined.  Although this accelerometer does not 

have very high precision, it is precise enough for the tilt sensing application of this 

controller. One issue that may have to be resolved in software is jitter.  As the 
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accelerometer sits in a static position, its output varies slightly.  In order for this variation 

not to create movement in the virtual environment, an averaging function must be 

performed on the incoming data.   

 The next device under test was the scroll wheel.  The functionality of this sensor 

is tested in two ways.  First the voltage levels are tested, and second the offset of the two 

signals is verified.  As the wheel is rotated, the two outputs of encoder should provide a 

digital 1 or 0 as each detent in the wheel is reached.  The power and ground pins of the 

scroll wheel are wired, and the outputs are measured with a digital multi-meter.  As 

expected, the output alternate between 0V and 3V as the wheel is rotated.  To test the 

offset of the two signals, the outputs are monitored through a small LED circuit.  As each 

output goes high, it lights its corresponding LED.  The center pin is wired to LED #1 and 

the outer signal pin is wired to LED #2.  By slowly rotating the wheel clockwise, it can 

be seen that LED #1 is enabled slightly before the other.  Reversing the direction of 

rotation (counter clockwise) results in  LED #2 lighting up slightly before LED #1.  This 

will allow the microprocessor to determine which direction the wheel is rotating, and 

therefore whether to increment or decrement the appropriate counter.   

 The joystick was the next sensor to be tested.  This device functions with the use 

of potentiometers, which vary their resistance as the joystick is moved throughout its 

range.  By applying a constant voltage to the potentiometers, a proportional voltage will 

be output to the microprocessor.  Below is a sample calculation of the voltage output 

from the potentiometers: 

 

Total (power to ground) resistance: 5.9kΩ 

Power to Output resistance: 2.95kΩ 

Output voltage = (2.95/5.9) * 3V = 1.5V 
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Tables 7 & 8 show the data obtained from each axis of the joystick. 

 
X-Axis 

Degrees Resistance(kΩ) Calculated V Measured V 

Digital 

Val 

0 2.95 1.5 1.5 2035 

23L 2.25 1.86 1.85 3802 

45L 1.56 2.16 2.15 4094 

23R 3.65 1.45 1.44 1592 

45R 4.34 0.79 0.8 2 

Table 7: Joystick X-Axis 

Y-Axis 

Degrees Resistance(kΩ) Calculated V Measured V 

Digital 

Val 

0 2.85 1.5 1.49 2032 

23L 2.15 1.88 1.87 3811 

45L 1.51 2.21 2.2 4094 

23R 3.58 1.13 1.15 1559 

45R 4.19 0.79 0.78 1 

Table 8: Joystick Y-Axis 

 

 The “R” or “L” in the degrees field indicates if the joystick was pushed right of 

left of its origin.  It can be determined from this data set that the joystick outputs data as 

expected.  One important note, however is that the voltage output is non-linear; it is 

slightly more sensitive near the center position than it is near the edges of its motion.   

 The last device to be tested is the trackball.  For accuracy purposes, the pulses per 

revolution of the ball can be calculated given the number of “notches” in the wheel, and 

the dimension of the wheel and rollers. 

30 openings = 60 positions/revolution (each axis) 

 

roller diameter = 2.2mm 

C = π * d = 3.14159*2.2mm = 6.911mm 
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ball diameter = 19mm 

C = π * d = 3.14159*19mm = 59.690mm 

59.690/6.911 = 8.636 rev/rev 

 

8.636*60 = 518 positions/revolution of ball 

 

 This means that for one full revolution of the trackball, the microprocessor's 

counter will be incremented 518 times, assuming the ball remains in full contact with the 

rollers the entire time.  Because the trackball operates on the basis of wheel encoders, its 

testing procedures follow that of the scroll wheels.  Each sensor is provided 3V of power, 

and its ground terminal is grounded.  As the slotted disc is rotated through the sensor, the 

outputs alternate between the 3V high and 0V low.  The two outputs are next wired to 

LED #1 and #2 used in the previous test.  As the wheel is slowly rotated, LED #1 lights 

up ¼ of a pulse width before LED #2.  When rotated the opposite direction, LED #2 

lights up first.   

5.1.2 Microprocessor 

 Now with the sensors providing consistent and documented data, the 

microprocessor's functions must be tested to ensure the incoming data is properly 

interpreted.  The first test performed to the process is a basic functionality procedure.  A 

simple program that uses a timer to continuously blink an attached LED is programmed 

onto the chip.  When powered up, the program begins automatically, and the LED 

proceeds to blink.  This verifies both the functionality of the MSP430 chip, and the 

debugging interface.   

 With the debugging interface correctly working, it was possible to begin testing 

the different peripherals of the MSP430.  Because the wheel encoders of the trackball and 

scroll wheels will function by causing interrupts in the microprocessor's code, the digital 

I/O interrupts must be tested.  A simple program is created that waits in a lower power 

mode until an input (high) is recognized on port 2.0.  When this occurs, the LED will be 

enabled and remain lit.  Using this program, the interrupt functionality of the MSP430 

was successfully verified.   
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 Next to be tested was the analog to digital converter.  Using a sample program 

provided by Texas Instruments, a single channel analog to digital conversion is repeated, 

with the results stored in a global variable.  By setting the reference voltage to Avcc, this 

test should also verify the minimum and maximum values that can be held in the ADC 

result buffers.  Using the IAR Kickstart software and USB FET debugger, the register 

values of the microprocessor can be actively monitored as the program is run.  Running 

the program provides the expected results.  With an input of ground (0V), an output of 

0000 is stored in the ADC results buffer.  With the supply (3V) applied at the input, the 

maximum 4095 value is stored in the buffer.  This corresponds to 212 -1, as the device is a 

12-bit converter.   

5.1.3 Communication 

 In order for data to be sent from the microprocessor to the PC, the UART 

functionality of the MSP430, as well as the FT232 chip had to be tested simultaneously.  

Again, a simple TI-provided program was loaded onto the MSP430.  This program 

simply takes a string “Hello World” and sends it character by character over UART, 

through the FT232 to the PC.  On the PC a serial terminal (Terraterm) is opened, and set 

to monitor the correct serial port.  When the program is initiated, The message “Hello 

World” is successfully sent every second to the PC.   

 The next test was to verify two-way communication.  Again a sample program 

was loaded.  The function of this program is to take a keyboard character from the PC, 

increment its ASCII value, and send it back.  Setting up a terminal window on the PC 

allows a connection to the microprocessor.  As expected, typing a character in the 

terminal window results in a response of the next character in the ASCII code.  With the 

PC to microprocessor connection verified, data can now be successfully sent to the PC 

with an increased degree of confidence.   

 

5.1.4 Program Flow 

 With both the sensors output tested, and the functionality of the microprocessor 

and communication links, the overall program that takes data and sends it to the PC can 
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be constructed and tested. This section will provide the primary functions of the 

microprocessor code, and explain in detail how they function.  The full code is located in 

Appendix C. 

 The first step in the program is to provide any include statements and initialize 

variables.  The include statement ensures all the predefined keywords and functions 

designed for the MSP430x14x series will be available.  The next six lines initialize the 

global variables for the program.  Some variables to note are the array of 5 ADC results, 

and the 4 wheel counters.  The wheel counters are all set to 32768, half-way between 

their minimum and maximum values to allow counting in either direction.   

 The main function of the code is used primarily to initialize the input and output 

functions of the processor.  First the USART1 is configured to output on Port 3, and set 

up for 2400 baud using a 32kHz crystal.  USART is then initialized, and the receive (RX) 

interrupt is enabled, which causes an interrupt in any incoming data.  Next, Port 1 and 

Port 2 are configured to be inputs for the wheel encoders and digital buttons.  Half of the 

inputs interrupts are enabled to allow the leading edge signal of the wheel encoders to 

cause in interrupt.  Lastly, the analog to digital converter is initialized.  It is setup to take 

samples from 5 channels, and store them in the appropriate registers.  The reference 

voltages are all set to Avcc, to ensure the inputs will not hit the positive or negative 

limits.  The ADC finish interrupt is enabled, and the conversion process is started.  At 

this point the microprocessor is then put into lower power mode (LPM) while the 

conversions take place.   

 The next function is the interrupt vector for the analog to digital converter.  This 

function is performed when the ADC finishes its conversion, and sets the corresponding 

interrupt flag.  This function just takes the current results from the conversions and 

transfers them into global variables.   

 The Port 2 interrupt function is next in the program.  When one of the configured 

inputs of Port 2 is set high, this routine is called.  It goes through a series of IF 

statements, to determine which of the wheel encoders has tripped the interrupt.  This is 

determined by comparing the interrupt bit all four possible inputs.  Once the correct 

sensor is identified, the status of the 2nd signal is checked.  If it is high, the wheel counter 
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is incremented.  If it is low, the counter is decremented.  At the end of this routine, the 

interrupt flags for the wheel encoders is reset.   

 The last function in the program is designed to send all of the sensor data to the 

PC.  It is called when the UART receive interrupt flag is set.  If the input to the 

microprocessor is the ASCII code for the letter 'u', then the data is sent to the PC.  This 

polling method is used to prevent excessive amounts of data being sent to the PC, and 

causing false device identification when the controller is first plugged in.  When the poll 

character is verified, the function then checks to make sure the transmit buffer is ready to 

send.  When it is, status of the buttons is loaded into the transmit buffer and sent.  The 

next loop sends the contents of the wheel encoder counters.  These counters are 16-bit 

numbers and must be split up into two separate 8-bit numbers to send over the 8-bit 

UART interface.  This loop splits each counter into two pieces, and sends each half when 

the receive buffer is ready.  The next loop performs the same operation of splitting and 

sending the data created by the analog to digital conversions.  At the end of each of the 

interrupt functions, the microprocessor is sent back to the main loop and into lower 

power mode.   

 

5.1.5 System Testing 

 As the microprocessor's code develops, the overall function of the controller can 

be tested as well.  With all, or some of the sensors connected (disconnected sensors 

results in readings of zero), and the program running, a terminal window can be opened 

on a PC, and connected to the controller via a virtual communications port driver.  When 

the letter 'u' is typed into the console, the controller responds with all the current sensor 

information displayed in ASCII (or hexadecimal with a simple converter program).  

Through the use of the MSP430 debugging interface, the memory data on the processor 

can be monitored and compared to the data being displayed on the screen of the PC.  

Repeated polls to the controller show that the data is successfully transmitted to the 

computer.  Data values can be verified in this step as well.  For example, with 0 gs 

applied to an axis of the accelerometer, a reading of half supply or 1.52 V is output to the 

microprocessor.  This in turn is converted to (1.52/3) * 4095 = 2075, which correctly 
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matches the range of values being sent to the PC.   

 

5.2 Software 

The testing regarding the software revolves around specifically invoking each of 

the functions the VE is capable of handling. Individually this means opening an 

environment and testing navigation, object selection, manipulation as well as the parsing 

and communication. The parsing and communication require that the software be capable 

of outputting the information that is being received by the computer. This can be used to 

check the information coming in against what’s expected. Graphically, the VE allows the 

user to determine if the information coming in is correct and whether if it’s producing the 

correct transformations to the display the user sees after interacting with the device. 

Through the early stages of testing it was also deemed necessary to account for noise in 

the device. The initialization of the parser, due to component testing, now includes 

functionality to calibrate the devices. Currently functionality exists for the accelerometer 

alone. Calibration consists of taking a number of samples from the accelerometer. These 

are added to a total and averaged to produce an effective “zero” where the accelerometer 

rests. Through the process of the calibration, the function keeps track of the min and max 

values received by the accelerometer. These are used in the VE to determine whether the 

information coming in is a large enough change to warrant translation to the environment. 

What this implies is a loss in precision on part of the accelerometer. During calibration it 

is necessary to maintain steady surroundings to ensure that you do not lose any precision. 

This calibration functionality should be applied to any component of the device that 

shows flux in data at a resting position.
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6. Conclusions 

The project started with an idea of a new virtual reality handheld controller. After 

researching the current controller on the market and the past controllers that the gaming 

industry had seen over the years, we drew conclusions about the components that were 

most successful for interaction with a virtual environment. Having seen what was 

available, we turned to look at new possibilities focusing on the accelerometers that were 

present in the new and upcoming Nintendo Wii controllers. A list of functions was 

created to explore the requirements of the controller as it would interact with a virtual 

environment. Control mappings were explored as each component was assigned strengths 

and weaknesses and finally picked to perform an action. After we outlined our 

expectations we proceeded with a design and the project took form. We had to design the 

entire hardware system, drawing out circuits as well as implementing the software to 

unify the components. The software evolved around the central idea of interacting in a 

Virtual Environment as input from the hardware was made available. After our design 

was complete we began to implement and test the different components of our system. 

Our main conclusions revolve around the two sections of our project. The hardware 

system successfully transmits data over the USB to the PC. The software takes in that 

data and can transform the environment on the display of the PC. 

If we had more time to pursue the advancement of this project the two aspects of 

this project would continue as follows. The team would more thoroughly test and explore 

the interaction between the software and hardware as well as solidify the components into 

a hard case to unify them. Closely related, if we could start over again there would be 

some changes that would be made to have ensure this project could have ran smoother. 

The lack of experience, while expected on a project of this magnitude and at this point in 

any student’s college career, there was a lot to learn in the specific field in a short period 

of time. The setbacks that were experienced also contributed to this feeling of frustration 

as certain research proved to be misleading, as in the case of certain device driver 

implementation libraries, or when hardware did not respond as expected as according to 

the manufacturer’s specifications. Although this project may have proved difficult, it has 
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equipped us with the tools necessary to tackle a similar project in the respective fields 

with additional knowledge and expertise. Although this project did not completely reach 

its original goals, we were still able to create a functioning system that can be built upon 

in the future. 

 

6.1 Future Work 

As the project progressed and evolved, some aspects presented themselves in both 

software and hardware that could be expanded upon in the future beyond the scope of this 

project.  

6.1.1 Software 

 The environment, while adequate for the time being in determining if the device is 

correctly gathering and outputting the input from the user could be expanded upon to 

provide greater functionality as well as become a future testing ground for other devices. 

In having a standard testing suite to compare multiple products, one can begin to look at 

the effectiveness in separate controllers and the future marketability of any new device 

that is being developed. The environment's generic implementation of the basic modes of 

interaction between a virtual world provide for testing without discrimination between a 

specific implementation of device, game, or other world that could be used to compare 

devices. 

 The communications the environment uses are adequate for its current use, but the 

project could benefit greatly from the development of specific device drivers. Particularly 

utilize the USB capabilities of the device and tailor the data communications to use USB 

protocol. While this would limit the implementation to the Operating System the USB 

driver was written for, it would allow the device to take full advantage of the speed that 

USB offers and allow the environment the option to no longer treat the device as a 

polling system. 

6.1.2 Physical Design 

Based upon the project specifications it is possible in the future to draft a physical 
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design, implementing the selected hardware, circuitry, and sensors into a hand-held 

controller device  

 

Figure 33: Sample Controller Design 

 

The controller follows a simple ergonomic design that is commonplace in most 

controllers on the market today. Each shoulder has a scroll wheel. This provides two 

methods of input along an axis in a segmented manner, and grants the user the ability to 

move through a series of selections either in a graphical list, or within an environment 

and easily move between the options. The left half of the controller provides the user with 

an analog joystick and two buttons. This analog stick provides a joystick with a centering 

characteristic that can improve the way in which a user moves through an environment. 

The right side mirrors the left with the exception of the analog stick. It is replaced with a 

trackball. This configuration provides versatility and numerous ways to manipulate the 

environment. This is one of many possible configurations. Having implemented the 

major hardware required to fill this casing, it would be a huge benefit to see this 

implemented and made real some point in the future. 
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6.1.3 Continued Testing 

 It would behoove the project to have continued testing of the device and its 

development. The original purpose of this device was to improve upon the existing 

designs by adding some twists and utilizing components that you would not normally 

find on a hand held game controller device. The continued testing would allow for the 

evolution and improvement upon the configuration of the mapping of functionality. 



Roger Burns 
Nick Wirth   

 55

References 

1. Analog Devices Inc.  ADXL330 3-Axis Accelerometer Datasheet.  

ADXL330.pdf. 

http://www.analog.com/en/prod/0%2C2877%2CADXL330%2C00.html 

2. Bergman, Jason. "SpaceOrb 360 Game Controller." Blue's News. 25 Oct. 1997. 

<http://www.bluesnews.com/articles/spaceorb360-review.html>.  

3. Davis, Tom and Neider, Jackie and Woo, Mason. “OpenGL Programming Guide” 

1994,Silicon Graphics, INC. 

4. Gyration. <http://www.gyration.com/en-US>.  

5. Kopchak, Jeremy. "Nintendo® Wiimote: Technology Limitations." X-Arcade. 

<http://www.xgaming.com/newsletter/Wii%20Dupe.shtml>.  

6. Maxon, Kenneth.  “Have you seen my new soldering iron?” Encoder.  

http://www.seattlerobotics.org/encoder/200006/oven_art.htm 

7. Jeff Molofee  “NeHe Productions” OpenGL Game Development. 

http://nehe.gamedev.net/  

8. Nintendo 64.  CyberiaPC.com 

9. "Nintendo Wii - Controllers." Nintendo. 

<http://wii.nintendo.com/controller.html>.  

10. "Products." MINDFLUX. <http://www.mindflux.com.au/products/index.html>.  

11. Rick. "Nintendo's Investment in Gyration." Gamecubicle. 

<http://www.gamecubicle.com/news-nintendo_gyration.htm>.  

12. Wisniowski, Howard, ed. "Analog Devices and Nintendo Collaboration Drives 

Video Game Innovation with the IMEMS Motion Signal Processing Technology." 

Analog Devices. 9 May 2006. 

<http://www.analog.com/en/press/0,2890,3%255F%255F99573,00.html>.  

13. Brad A. Myers. "A Brief History of Human Computer Interaction Technology." 

ACM interactions. Vol. 5, no. 2, March, 1998. pp. 44-54.   

14. Koushik, Sud. "Evolution of Controllers." Advanced Media Network. 30 Jan. 

2006. 20 Sept. 2006 <http://wii.advancedmn.com/article.php?artid=6355>. 

15. Texas Instruments Inc.  MSP430F169 Datasheet.  



Roger Burns 
Nick Wirth   

 56

http://focus.ti.com/docs/prod/folders/print/msp430f169.html 

16. Texas Instruments Inc. MSP430 USB Connectivity Using TUSB3410.  

slaa276a.pdf 

17. Texas Instruments Inc.  MSP430x1xx Family Users Guide.  Slau049f.pdf 

18. Texas Instruments Inc.  TUSB3410 USB to Serial Port Controller Datasheet. 

Tusb3410.pdf. 

19. Texas Instruments Inc. TUSB3410_UART Evaluation Board User’s Guide. 

Sllu043.pdf 

20. Taylor, Russel M., Thomas Hudson, Adam Seeger, and Hans Webber. VRPN: a 

Device-Independent, Network-Transparent. University of North Carolina at 

Chapel Hill. 2 Oct. 2006 

<http://www.cs.unc.edu/Research/vrpn/VRST_2001_conference/vrst_vrpn_paper

_reprint.pdf>. 

21. Flock of Birds – Virtual Reality Motion Tracker.  Vrealities.com 



Roger Burns 
Nick Wirth   

 57

Appendix A: TUSB3410 Design 

 

 Through the design process of this virtual reality controller, an alternate USB 

controller was incorporated into the hardware system.  The initial design contained a 

TUSB3410 USB controller from Texas Instruments.  This device is very similar to the 

FT232 that was eventually included.  Both devices are designed to interface an RS232 

data stream with a USB data stream.  The primary difference between the two devices is 

that the TUSB3410 was purchased as an individual chip, and the FT232 was purchased as 

part of an evaluation board.  The reason for the switch from the TUSB3410 to the FT232 

was an inability of the TI part to be properly configured.  Although it is common for a 

USB controller to have an auxiliary EEPROM memory chip to hold configuration and 

identifier data, the TUSB3410 data sheet claimed that it could also be successfully be 

implemented without one.  After a great deal of testing and troubleshooting time was 

spent, it has been concluded that this device cannot be used without an EEPROM, or if it 

can, it requires special configuration not detailed in the data sheet or application paper8.   

 The testing of this device began with the construction of a custom printed circuit 

board (PCB) that would allow easy access to all the pins of the device for wiring a 

breadboard circuit.  Due to the cost ($50) and turn around time (1 week) with creating a 

professionally made PCB, a custom, home-made board was constructed.  It was produced 

using a transfer and etch method involving toner transfer and a ferric chloride etch.  The 

supplies needed for the construction of this board included: 

• Radio Shack PCB Design Kit 

o Copper Clad PCB 

o Bottle of ferric chloride 

o Chemical solvent (isopropyl alcohol)  

o Abrasive pad 

o Plastic tray 

• Ink-Jet photo paper 

• Laser printer 
                                                 
8 Texas Instruments Inc.  TUSB3410 USB to Serial Port Controller Datasheet. Tusb3410.pdf 
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• Masking tape 

• Household Iron 

 

 The first step of  this process is creating the layout for the board in any PCB 

layout software.  For this board, the ExpressPCB software was used. The resulting board 

(previously mentioned in the report) is shown in figure A1. 

 

Figure A1: Board Layout 

 

 For this board, the accelerometer circuit is not used, and was deleted before 

printing the layout.  It is important when creating the traces to lay them in a “mirrored” 

fashion.  That is the entire circuit should be flipped over to create a mirror image.  This is 

because the transfer will reverse will image when it is applied to the copper PCB.  The 

next step is to print the layout onto a piece of photo paper with a laser printer.  It essential 

that only the copper traces are printed, and not the silkscreen or any other layers as they 

will all be applied to the board.   

 The printed schematic should now be taped to the copper PCB, making sure it 
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will not shift while heat is applied.  A hot iron is not pressed on the paper for 

approximately five minutes, transferring the toner to the copper board.  After the board is 

cooled down, it should be placed in a container of water for approximately twenty 

minutes to soak off the photo paper.  After soaking, the paper can be removed by peeling 

and gentle scrubbing.  The resulting board is shown in figure A2. 

 

Figure A2: Pre-Etched Board 

 Here the toner traces can be seen applied to the copper board.  The next step is to 

submerse the board in the ferric chloride until the exposed copper has been removed 

(approximately one hour).  With the excess copper removed, the ink traces can be 

removed with the solvent and abrasive pad.  The fully etched board is shown in figure 

A3.   



Roger Burns 
Nick Wirth   

 60

 

Figure A3: Post-Etched Board 

 The final step is to use a small drill bit and drill press to create holes for soldering 

wires and other through-hole components.   

 

 After soldering the TUSB3410 chip to the custom PCB and wiring up all its 

supporting circuitry, detailed in the application note9, connecting it to a PC's USB port 

failed to produce any actions.  Many different configurations were tried, and the PC 

would not recognize the device under any circumstances.  Due to the fact that time was a 

major consideration, and little to no progress was being made toward USB 

communication, the FT232 solution was adopted.   

                                                 
1. 9 Texas Instruments Inc. TUSB3410_UART Evaluation Board User’s Guide. 

Sllu043.pdf 
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Appendix B: Softbaugh BFT232U169 Schematic 
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Appendix C: MSP430F169 Code 
#include  <msp430x14x.h> 
 
unsigned int i,j; 
static unsigned int ADresults[5];  // These need to be global in 
static unsigned int wheel_counter[4] = {32768, 32768, 32768, 32768}; 
static unsigned char buttons; 
static unsigned char UB0; 
static unsigned char LB0; 
 
void main(void) 
{ 
  WDTCTL = WDTPW+WDTHOLD;                   // Stop watchdog timer 
  // USART Config 
  P3SEL |= 0xC0;                            // P3.6,7 = USART1 option 
select 
  ME2 |= UTXE1 + URXE1;                     // Enable USART1 TXD/RXD 
  UCTL1 |= CHAR;                            // 8-bit character 
  UTCTL1 |= SSEL0;                          // UCLK = ACLK 
  UBR01 = 0x0D;                             // 32k/2400 - 13.65 
  UBR11 = 0x00; 
  UMCTL1 = 0x6B;                            // Modulation 
  UCTL1 &= ~SWRST;                          // Initialize USART state 
machine 
  IE2 |= URXIE1;                            // Enable USART1 RX 
interrupt 
  // Digital IO 
  P1SEL = 0x00;                             // All set to I/O 
  P1DIR = 0xF0;                             // P1.0 - 1.3 input, rest 
output   
  P2SEL = 0x00;                             // All set to I/O 
  P2DIR = 0x00;                             // All set for input 
  P2IES = 0xFF; 
  P2IFG = 0x00; 
  P2IE = 0x55;                              // half of signals set 
interrupts 
   
  // ADC Config 
  P6SEL = 0x1F;                             // Enable A/D channel 
inputs 
  ADC12CTL0 = ADC12ON+MSC+SHT0_8;           // Turn on ADC12, extend 
sampling time 
                                            // to avoid overflow of 
results 
  ADC12CTL1 = SHP+CONSEQ_3;                 // Use sampling timer, 
repeated sequence 
  ADC12MCTL0 = INCH_0;                      // ref+=AVcc, channel = A0 
  ADC12MCTL1 = INCH_1;                      // ref+=AVcc, channel = A1 
  ADC12MCTL2 = INCH_2;                      // ref+=AVcc, channel = A2 
  ADC12MCTL3 = INCH_3; 
  ADC12MCTL4 = INCH_4+EOS;                  // ref+=AVcc, channel = A3, 
end seq. 
  ADC12IE = 0x10;                           // Enable ADC12IFG.3 
  ADC12CTL0 |= ENC;                         // Enable conversions 
  ADC12CTL0 |= ADC12SC;                     // Start conversion 
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  _BIS_SR(LPM0_bits + GIE);                 // Enter LPM0, Enable 
interrupts 
} 
 
#pragma vector=ADC_VECTOR 
__interrupt void ADC12ISR (void) 
{ 
   
 
  ADresults[0] = ADC12MEM0;             // Move A0 results, IFG is 
cleared 
  ADresults[1] = ADC12MEM1;             // Move A1 results, IFG is 
cleared 
  ADresults[2] = ADC12MEM2;             // Move A2 results, IFG is 
cleared 
  ADresults[3] = ADC12MEM3;             // Move A3 results, IFG is 
cleared 
  ADresults[4] = ADC12MEM4; 
   
} 
#pragma vector=PORT2_VECTOR 
__interrupt void PORT2_RX (void) 
{ 
  // wheel 1 scroll 1 
  if ((P2IFG & BIT0) == BIT0) // P2.0 
  { 
    if ((P2IN & BIT1) == BIT1) 
      wheel_counter[0]++; //CW 
    else 
      wheel_counter[0]--; //CCW 
  } 
  // wheel 2 scroll 2 
  if ((P2IFG & BIT2) == BIT2) // P2.2 
  { 
    if ((P2IN & BIT3) == BIT3) 
      wheel_counter[1]++; //CW 
    else 
      wheel_counter[1]--; //CCW 
  } 
  // wheel 3 track x 
  if ((P2IFG & BIT4) == BIT4) // P2.4 
  { 
    if ((P2IN & BIT5) == BIT5) 
      wheel_counter[2]++; //CW 
    else 
      wheel_counter[2]--; //CCW 
  } 
  // wheel 4 track y 
  if ((P2IFG & BIT6) == BIT6) // P2.6 
  { 
    if ((P2IN & BIT7) == BIT7) 
      wheel_counter[3]++; //CW 
    else 
      wheel_counter[3]--; //CCW 
  } 
  P2IFG = 0x00;   //reset interrupt 
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} 
 
// UART0 RX ISR 
#pragma vector=UART1RX_VECTOR 
__interrupt void usart1_rx (void) 
{ 
  if (RXBUF1 == 'u')                        // 'u' received? 
  { 
    buttons = P1IN;                         // get status of buttons 
    while (!(IFG2 & UTXIFG1)); 
    TXBUF1 = buttons; 
    for(j=0; j<4; j++) 
    { 
      LB0 = wheel_counter[j]; 
      UB0 = wheel_counter[j] >> 8; 
      while (!(IFG2 & UTXIFG1)); 
      TXBUF1 = UB0; 
      while (!(IFG2 & UTXIFG1)); 
      TXBUF1 = LB0; 
    } 
    for(i=0; i<5; i++) 
    { 
      LB0 = ADresults[i]; 
      UB0 = ADresults[i] >> 8; 
      while (!(IFG2 & UTXIFG1)); 
      TXBUF1 = UB0; 
      while (!(IFG2 & UTXIFG1)); 
      TXBUF1 = LB0; 
    } 
  } 
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Appendix D: Intersection Math & Code 
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/* 
   Calculate the intersection of a ray and a sphere 
   The line segment is defined from p1 to p2 
   The sphere is of radius r and centered at sc 
   There are potentially two points of intersection given by 
   p = p1 + mu1 (p2 - p1) 
   p = p1 + mu2 (p2 - p1) 
   Return FALSE if the ray doesn't intersect the sphere. 
*/ 
int RaySphere(XYZ p1,XYZ p2,XYZ sc,double r,double *mu1,double *mu2) 
{ 
   double a,b,c; 
   double bb4ac; 
   XYZ dp; 
 
   dp.x = p2.x - p1.x; 
   dp.y = p2.y - p1.y; 
   dp.z = p2.z - p1.z; 
   a = dp.x * dp.x + dp.y * dp.y + dp.z * dp.z; 
   b = 2 * (dp.x * (p1.x - sc.x) + dp.y * (p1.y - sc.y) + dp.z * (p1.z 
- 
sc.z)); 
   c = sc.x * sc.x + sc.y * sc.y + sc.z * sc.z; 
   c += p1.x * p1.x + p1.y * p1.y + p1.z * p1.z; 
   c -= 2 * (sc.x * p1.x + sc.y * p1.y + sc.z * p1.z); 
   c -= r * r; 
   bb4ac = b * b - 4 * a * c; 
   if (ABS(a) < EPS || bb4ac < 0) { 
      *mu1 = 0; 
      *mu2 = 0; 
      return(FALSE); 
   } 
 
   *mu1 = (-b + sqrt(bb4ac)) / (2 * a); 
   *mu2 = (-b - sqrt(bb4ac)) / (2 * a); 
 
   return(TRUE); 
} 
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Appendix E: Serial Communication Code 

SERIAL.H 
// Includes 
#include <windows.h> 
 
 
//DEFINE for serial port settings 
 
 
//////////////////Serial Functions///////////////// 
/*********Open******************* 
*return int  1 (true) 0 (false) 
* 
*This should open the serial port and  
*set the settings to the constants defined above 
* 
*/ 
 
/*********Open******************************* 
*Function: serialOpen 
*Params: Port Number, File Handler 
* 
*Purpose: To open Port Number (portNum), using 
*   a predefined handle. It also sets 
the 
*   basic properties of the port, 
such as 
*   a 9600 baud rate, one stop bit, 
no parity 
*   8 bit Byte size etc. 
* 
*/ 
 
HANDLE serialOpen(int portNum, HANDLE comPrt); 

 
/*********"READ"************************ 
*Function: serialRead 
*Params: File Handler,pointer to Byte Buffer, 
pointer to struct CONTROLDAT 
* 
*Purpose: Reads in a set amount of data. This 
data will fall under the following 
   format, with what the data 
represents coming in from the controller. 
    Buttons (4): xxxxdddd 
    Trackball X: dddddddd 
dddddddd 
    Trackball Y: dddddddd 
dddddddd 
    Joystick X: xxxxdddd 
dddddddd 
    Joystick Y: xxxxdddd 
dddddddd 
    Accel X: xxxxdddd dddddddd 
    Accel Y: xxxxdddd dddddddd 
    Accel Z: xxxxdddd dddddddd 
    Scroll 1: dddddddd dddddddd 
    Scroll 2: dddddddd dddddddd 
   Where every 'd' represents a bit 
that we are interested in keeping track of. Every 
   'x' is data that we don't care 
about. It will most likely be set to 0, but make 
sure 
   to skip over that data anyways. 
The data should be recieved in 8 bit chunks. 
 
*Output: The output should be a data structure 
to be passed to the graphics program that can 
   then extract the data for 
processing. The data structure is better explained 
in the 
   serialDAT.h. 
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*/ 
int serialOut(HANDLE comPrt); 
int serialRead(HANDLE File, char * buffer, int 
len); 
 
/**********Write****************************** 
*Function: serialWrite 
*Params: File Handle, pointer to struct 
CONTROLDAT 
* 
*Purpose: To write to a serial port. This is 
mostly used 
*   for testing purposes and doesn't 
really need 
*   to be output to a serial port. It 
could be a  
*   log file.  
*  ******WARNING******** Implementation is 
going to change 
*/ 
int serialWrite(); 
 
int serialClose(HANDLE comPrt); 

 

SERIAL.CPP 
#include <windows.h> 
#include <stdlib.h> 
#include <strsafe.h> 
 
//User defined includes for serial commmunication 
#include "serial.h" 
 
 
HANDLE serialOpen(int portNum, HANDLE comPrt) 
{ 

 //declare objects for class 
 DCB dcb; 
 COMMTIMEOUTS timeouts; 
 TCHAR com[5]; 
 wsprintf(com,TEXT("COM%d"),portNum); 
 
 comPrt = CreateFile( 
   com, 
   GENERIC_READ | GENERIC_WRITE, 
   0, 
   NULL, 
   OPEN_EXISTING, 
   0, 
   NULL 
   ); 
 if (comPrt == INVALID_HANDLE_VALUE) 
 { 
  printf("invalid Handle value\n"); 
  return NULL; 
 } 
 else 
 { 
  printf("Port is now open\n"); 
 } 
 // default: 9600,8,n,1 no flow control 
 ZeroMemory(&dcb, sizeof(dcb)); 
 dcb.DCBlength = sizeof(dcb); 
 dcb.BaudRate = CBR_2400; 
 dcb.ByteSize = 8; 
 dcb.Parity = NOPARITY; 
 dcb.StopBits = ONESTOPBIT; 
 
 // disable read timeouts (asynchronous mode) 
 timeouts.ReadIntervalTimeout = MAXDWORD; 
 timeouts.ReadTotalTimeoutMultiplier = 0; 
 timeouts.ReadTotalTimeoutConstant = 0; 
 
 //Disable write timeouts 
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 timeouts.WriteTotalTimeoutMultiplier = 0; 
 timeouts.WriteTotalTimeoutConstant = 
0;//MAXDWORD; 
 
 // set new comm state 
 SetCommState(comPrt, &dcb); 
 SetCommTimeouts(comPrt, &timeouts); 
 SetCommMask(comPrt, EV_TXEMPTY); 
 
 
 return comPrt; 
} 
int serialOut(HANDLE comPrt) 
{ 
 char * buff = "u"; 
 int success = 0; 
 DWORD dwBytesRead, dwBytesWritten; 
 dwBytesRead = 1; 
 if(comPrt != INVALID_HANDLE_VALUE) 
 { 
  if(WriteFile(comPrt, buff, dwBytesRead, 
&dwBytesWritten, NULL)) 
  { 
   success =1; 
  } 
  return success; 
 } 
 else 
  return success; 
} 
int serialRead(HANDLE comPrt, char * buffer, int 
len) 
{ 
 int success; 
 
 //check to see if the file is open 
 if (comPrt != INVALID_HANDLE_VALUE) 
 { 

  //nread is used to keep track of the 
number of chars read 
  DWORD nread; 
  success = 0; 
  if(ReadFile(comPrt, buffer, 19, &nread, 
NULL)) 
  { 
   //printf("Read Success\n"); 
   success = 1; 
  } 
  else 
  { 
   printf("Failed to read\n"); 
  } 
 } 
 return success; 
} 
int serialClose(HANDLE comPrt) 
{ 
 int result=-1; 
// close serial port 
 if (comPrt != INVALID_HANDLE_VALUE) 
 { 
  PurgeComm(comPrt, PURGE_TXCLEAR | 
PURGE_RXCLEAR); 
 
  CloseHandle(comPrt); 
  comPrt = INVALID_HANDLE_VALUE; 
 
  result = 0; 
 } 
 
 return result; 
} 
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Appendix F: Parser 

PARSER.H 
#include <windows.h> 
#include "serial.h" 
 
/***********Purpose of Parser***** 
*Utilizing the "serial" class, this class parses 
the information 
*that is on the Serial line (COM ports). Functions 
are available 
*to grab the characters off the line and check for 
numerous things. 
* 
* 
* 
* 
*/ 
 
class parse 
{ 
public: 
 /***********Variables************** 
 *char buffer[19] - private 
 * A char array of size 13. This is the 
size 
 * of the input from the controller. It 
will be utilized 
 * to check for the initial character of 
the structure 
 * (The '$' sign). It will then store the 
following 13 characters 
 * 
 *int portNum - private 

 * An integer representing the port number 
that should 
 * be opened during the init function 
 */ 
  
 typedef struct CALIBRATE 
 { 
  int calx, caly, calz; 
  int tnum,avgx,avgy, avgz; 
  int xmin,ymin,zmin,xmax,ymax,zmax; 
 }; 
 
 struct CONTROLDAT 
 { 
  char buttons; 
  int track[2],joy[2],accel[3],scroll[2]; 
 }input; 
 
 CALIBRATE calAccel; 
 
 /***********Functions************** 
 *init  - Initializes the parse 
object. This opens 
 *    a serial port with 
tbe number indicated by 
 *    the private portNum 
integer. 
 *getCInfo - check for the first 
character in the input 
 *    from the serial port. 
If it is a '$' then  
 *    that indicates the 
beginning of the information 
 *    coming from the 
controller. 
 *readInfo - Reads in 19 characters that 
are the information 
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 *    sent by the 
controller. 
 * 
 */ 
 parse(); 
 int init(); 
 int getCInfo(); 
 int readInfo(); 
 int closePort(); 
 int parseBuff(); 
 
 /********Setters/Getters***********/ 
 
 int setHandle(HANDLE Port); 
 int getPort(){return portNum;}; 
 void setPort(int x){portNum = x;}; 
 int getPOpen(){return portOpen;}; 
 int poll(); 
 int calibrateSensors(); 
 void zero(CALIBRATE & x); 
private: 
 int portOpen,calAx,calAy,calAz; 
 int portNum; 
 HANDLE comPrt; 
 char buffer[19]; 
}; 

 

PARSER.CPP 
#include <windows.h> 
#include "parse.h" 
#include <strsafe.h> 
 
parse::parse() 
{ 
 printf("Parser listening at: COM2"); 

 portNum = 2; 
 portOpen = 0; 
} 
 
int parse::setHandle(HANDLE Port) 
{ 
 if(Port != INVALID_HANDLE_VALUE) 
 { 
  comPrt = Port; 
  printf("COM Port handler set\n"); 
  return 1; 
 } 
 else 
 { 
  printf("Invalid Handle Value: COM Port 
handler not set\n"); 
  return 0; 
 } 
} 
int parse::init() 
{ 
 zero(calAccel); 
 if(comPrt != INVALID_HANDLE_VALUE) 
 { 
  if(comPrt = serialOpen(portNum,comPrt)) 
  { 
   printf("Serial Port %d 
opened\n",portNum); 
   portOpen = 1; 
   //calibrate Accelerometer 
   printf("Calibrating 
Accelerometer."); 
   for(int i = 0; i<100;i++) 
   { 
    calibrateSensors(); 
    if((i%10) == 0)printf("."); 
   } 
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   printf("\nFinished 
Calibration\n"); 
   printf("Calibration Information 
for Accelerometer\n"); 
   printf("-------------------------
----------------\n"); 
   printf("Avg X: %d Min X:
 %d Max X: %d   
\n",calAccel.avgx,calAccel.xmin,calAccel.xmax); 
   printf("Avg Y: %d Min Y:
 %d Max Y: %d   
\n",calAccel.avgy,calAccel.ymin,calAccel.ymax); 
   printf("Avg Z: %d Min Z:
 %d Max Z: %d   
\n",calAccel.avgz,calAccel.zmin,calAccel.zmax); 
   return 1; 
  } 
  else 
  { 
   printf("Serial Port failed to 
open\n"); 
   return 0; 
  } 
 } 
 else 
 { 
  printf("Invalid COM value\n"); 
  return 0; 
 } 
} 
 
int parse::getCInfo() 
{ 
 //read in characters 1 at a time 
 if(serialRead(comPrt, buffer, 19)) 
 { 
  //printf("Success reading in Controller 
Information\n"); 

  //success in reading controller info - 
return 1 
  return 1; 
 } 
 else 
 { 
  printf("Error reading in Controller 
Information\n"); 
  //fail to read controller information - 
return -1    
  return -1; 
 } 
 return 0; 
} 
int parse::readInfo() 
{ 
  
 return 0; 
} 
int parse::closePort() 
{ 
 if(serialClose(comPrt) == -1) 
 { 
  printf("Invalid Handler Value was 
passed: Your port may not be set and/or open\n"); 
  return 1; 
 } 
 else 
 { 
  portOpen = 0; 
  printf("Serial Port closed 
successfully\n"); 
 } 
 return 1; 
} 
 
 
int parse::parseBuff() 
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{ 
 if(getPOpen() == 0) 
 { 
  printf("Port is not open to read 
from\n"); 
  return 0; 
 } 
 else if(getPOpen() == 1) 
 { 
  int checkValue = 0; 
  //Read the information from the parser 
  //being sent by the controller and 
assess 
  //the change to the local variables 
  checkValue = getCInfo(); 
  //After read, check for integer 
information 
  //in checkValue. If 1, success and 
change information 
  //based on the input from the 
controller 
  //if -1, then dislpay error message and 
break out of  
  //reading and close Serial Connection. 
  if(checkValue == 1) 
  { 
   //parse buffer into apporopriate 
local variables 
   input.buttons = buffer[0] & 0x0F; 
   // Get Trackball info. 
   
 input.track[0]=((((int)(buffer[1]&0xFF))<<8)|
((int)(buffer[2]&0xFF))); 
   
 input.track[1]=((((int)(buffer[3]&0xFF))<<8)|
((int)(buffer[4]&0xFF))); 
   //scroll wheel 

   
 input.scroll[0]=((((int)(buffer[5]&0xFF))<<8)
|((int)(buffer[6]&0xFF))); 
   
 input.scroll[1]=((((int)(buffer[7]&0xFF))<<8)
|((int)(buffer[8]&0xFF))); 
   // Get Accelerometer info. 
    //printf("Accel %d Raw: %d
 %d\n",0,(int)(buffer[9]&0xFF),((int)(buffer[1
0]&0xFF))); 
   
 input.accel[0]=((((int)(buffer[9]&0x0F))<<8)|
((int)(buffer[10]&0xF0))); 
   
 input.accel[1]=((((int)(buffer[11]&0x0F))<<8)
|((int)(buffer[12]&0xF0))); 
   
 input.accel[2]=((((int)(buffer[13]&0x0F))<<8)
|((int)(buffer[14]&0xF0))); 
   // Get Joystick info. 
   
 input.joy[0]=((((int)(buffer[15]&0x0F))<<8)|(
(int)(buffer[16]&0xFF))); 
   
 input.joy[1]=((((int)(buffer[17]&0x0F))<<8)|(
(int)(buffer[18]&0xFF))); 
   //update the local variables - 
return 1 for success 
    printf("Numerical Input:%d 
%d %d %d %d %d %d %d %d %c\n", 
    
 input.track[0],input.track[1], 
    
 input.joy[0],input.joy[1], 
    
 input.accel[0],input.accel[1],input.accel[2], 
    
 input.scroll[0],input.scroll[1], 
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     input.buttons); 
   return 1; 
 
  } 
  else if(checkValue == -1) 
  { 
   printf("Error reading from Serial 
Port.\n Action(s) being taken: "); 
   printf("Closing Serial Port: 
%d\n",portNum); 
   //close the port associated with 
this read 
   closePort(); 
   return 0; 
  } 
  //printf("No conditions were met for 
Parsing information on Serial Port\n"); 
  return 0; 
 } 
 return 0; 
} 
int parse::poll() 
{ 
 int success = 0; 
 if(serialOut(comPrt)) 
 { 
  //printf("Polling the device\n"); 
  success =1; 
  return success; 
 } 
 else 
 { 
  printf("Failed to poll device\n"); 
  return success; 
 } 
} 
int parse::calibrateSensors() 
{ 

 int x,y,z; 
 //init calibration variables 
 poll(); 
 Sleep(100); 
 getCInfo(); 
 x = 
((((int)(buffer[9]&0x0F))<<8)|((int)(buffer[10]&0xF
0))); 
 y = 
((((int)(buffer[11]&0x0F))<<8)|((int)(buffer[12]&0x
F0))); 
 z = 
((((int)(buffer[13]&0x0F))<<8)|((int)(buffer[14]&0x
F0))); 
  
 //printf("Accel Raw Data: %d %d
 %d\n",x,y,z); 
 
 calAccel.calx +=x; 
 calAccel.caly +=y; 
 calAccel.calz +=z; 
 
 if(calAccel.tnum == 0) 
 { 
  calAccel.xmax = x; 
  calAccel.xmin = x; 
  calAccel.ymax = y; 
  calAccel.ymin = y; 
  calAccel.zmax = z; 
  calAccel.zmin = z; 
 } 
 else 
 { 
  calAccel.avgx = 
calAccel.calx/calAccel.tnum; 
  calAccel.avgy = 
calAccel.caly/calAccel.tnum; 
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  calAccel.avgz = 
calAccel.calz/calAccel.tnum; 
  if(calAccel.xmin > x) 
  { 
   calAccel.xmin = x; 
  } 
  else if(calAccel.xmax < x) 
  { 
   calAccel.xmax = x; 
  } 
  if(calAccel.ymin > y) 
  { 
   calAccel.ymin = y; 
  } 
  else if(calAccel.ymax < y) 
  { 
   calAccel.ymax = y; 
  } 
  if(calAccel.zmin > z) 
  { 
   calAccel.zmin = z; 
  } 
  else if(calAccel.zmax < z) 
  { 
   calAccel.zmax = z; 
  } 
 } 
 calAccel.tnum += 1; 
 
 return calAccel.tnum; 
} 
void parse::zero(CALIBRATE & x) 
{ 
 x.avgx = x.avgy = x.avgz = x.calx = x.caly = 
x.calz = x.tnum = x.xmax =0; 
 x.xmin = x.ymax = x.ymin = x.zmax = x.zmin = 
0; 
} 
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Appendix G:  Virtual Environment Code 

POINT3.H 
/*********Point3 and Vector3*************** 
*Credit the OpenGl Book 
* 
* 
* 
*/ 
 
#ifndef point3_env 
#define point3_env 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <vector> 
 
using namespace std; 
 
class Point3{ 
public: 
 float x,y,z; 
 void set(float dx, float dy, float dz){x = 
dx; y = dy; z = dz;} 
 void set(Point3& p){x= p.x;y =p.y; z = p.z;} 
 Point3(float xx, float yy, float zz){x = xx; 
y=yy; z=zz;} 
 Point3(){x=0;y=0;z=0;} 
}; 
 
 
class Vector3{ 
public: 
 float x,y,z; 

 void set(float dx, float dy, float 
dz){x=dx;y=dy;z=dz;} 
 void set(Vector3& v){x=v.x;y=v.y;z=v.z;} 
 void setDiff(Point3& a, Point3& b){x=a.x-
b.x;y=a.y-b.y;z=a.z-b.z;} 
 void normalize(); 
 Vector3(float xx, float yy, float zz){x = 
xx;y=yy;z=zz;} 
 Vector3(Vector3& v){x=v.x;y=v.y;z=v.z;} 
 Vector3(){x=y=z=0;} 
 Vector3 cross(Vector3& b); 
 float dot(Vector3& b); 
}; 
#endif 

POINT3.CPP 
#include "Point3.h" 
#include <math.h> 
#include <stdlib.h> 
#include <windows.h> 
#include <assert.h> 
#include <iostream> 
 
float Vector3::dot(Vector3& b) 
{ 
 return(x * b.x + y * b.y + z * b.z); 
} 
 
Vector3 Vector3::cross(Vector3 &b) 
{ 
 Vector3 c(y*b.z - z*b.y, z*b.x - x*b.z, x*b.y 
- y*b.x); 
 return c; 
} 
 
void Vector3::normalize() 
{ 
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 double sizeSq = x * x + y * y + z * z; 
 if(sizeSq < 0.0000001) 
 { 
  cerr<<"\nnormalize() see 
vector(0,0,0)!"; 
  return; 
 } 
 float scaleFactor = 1.0/(float)sqrt(sizeSq); 
 x *= scaleFactor; 
 y *= scaleFactor; 
 z *= scaleFactor; 
} 
 

OBJECT.H 
#ifndef controller_object 
#define controller_object 
 
#include <windows.h> 
#include <iostream> 
#include <gl/GL.h>  // Header File For 
The OpenGL32 Library 
#include <gl/glut.h>  // Header File For 
The GLut Library 
#include <gl/GLU.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <vector> 
using namespace  std; 
 
/*Class - object 
* 
*This serves as the base class for any object that 
we look to make in our 
*environment. It holds all the variables that we're 
looking for such as size and 

*color, providing setters and getters for each. 
This will allow the subclasses 
*that deal with specific shapes to concentrate on 
the shape itself and let the 
*object class worry about the specifics. 
*/ 
class object 
{ 
 public: 
 //Properties of an object 
  
 //Draw type of object 
 // type == 1 mesh 
 // type == 0 solid 
 int drawType; 
 
 //type of object 
 //0 == generic object 
 //1 == pyramid 
 //2 == cube 
 //3 == sphere 
 int shapeType; 
 
 //integers that represent the color of the 
object 
 float r,g,b; 
 
 //relative size in "units" of the object.  
 float sizeUnits; 
 
 //scale of the object 
 float sx, sy, sz; 
 
 //position of the object 
 float posx, posy, posz; 
 
 //rotation of the object 
 float rx,ry,rz; 



Roger Burns 
Nick Wirth   

 75

 
 //constructor of any object 
 object(){ 
  setScale(1.0,1.0,1.0); 
  setPos(0.0,0.0,0.0); 
  setRot(0.0,0.0,0.0); 
   setColor(1,1,1); 
   setSize(1); 
  setType(1); 
 } 
 //setters and getters 
 void setPos(float x, float y, float 
z){posx=x;posy=y;posz=z;} 
 void setColor(float cr, float cg, float 
cb){r=cr;g=cg;b=cb;} 
 void setSize(float size){sizeUnits = size;} 
 void setScale(float x, float y,float 
z){sx=x;sy=y;sz=z;} 
 void setRot(float x, float y, float 
z){rx=x;ry=y;rz=z;} 
 void setType(int x){drawType = x;} 
  
 //default draw 
 void Draw(){printf("This is a typical 
object...set it's type");} 
 
 int getRed(){return r;} 
 int getBlue(){return b;} 
 int getGreen(){return g;} 
 void printColor(){cout<<"\nRed : 
"<<r<<"\nGreen : "<<g<<"\nBlue : "<<b;} 
 float getSize(){return sizeUnits;} 
}; 
/*****************************Pyramid**************
****************************/ 
class pyramid:public object 
{ 
 public: 

  pyramid(); 
  void Draw(); 
}; 
 
/*****************************Cube*****************
****************************/ 
class cube: public object 
{ 
 public: 
 cube(); 
 void Draw(); 
}; 
 
/*****************************Sphere***************
****************************/ 
class sphere:public object 
{ 
 public: 
 sphere(); 
 void Draw(); 
}; 
 
/****************************Selector**************
*************************** 
*The selector is a special object, but can utilize 
the same variables that  
*a regular object uses. 
* 
*posx - used to set the base of the selector.  
* 
*/ 
class selector:public object 
{ 
 public: 
  float endx,endy,endz; 
 
 selector(); 
 void Draw(); 
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}; 
#endif 

OBJECT.CPP 
#ifndef controller_object 
#define controller_object 
 
#include <windows.h> 
#include <iostream> 
#include <gl/GL.h>  // Header File For 
The OpenGL32 Library 
#include <gl/glut.h>  // Header File For 
The GLut Library 
#include <gl/GLU.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <vector> 
using namespace  std; 
 
/*Class - object 
* 
*This serves as the base class for any object that 
we look to make in our 
*environment. It holds all the variables that we're 
looking for such as size and 
*color, providing setters and getters for each. 
This will allow the subclasses 
*that deal with specific shapes to concentrate on 
the shape itself and let the 
*object class worry about the specifics. 
*/ 
class object 
{ 
 public: 
 //Properties of an object 
  
 //Draw type of object 

 // type == 1 mesh 
 // type == 0 solid 
 int drawType; 
 
 //type of object 
 //0 == generic object 
 //1 == pyramid 
 //2 == cube 
 //3 == sphere 
 int shapeType; 
 
 //integers that represent the color of the 
object 
 float r,g,b; 
 
 //relative size in "units" of the object.  
 float sizeUnits; 
 
 //scale of the object 
 float sx, sy, sz; 
 
 //position of the object 
 float posx, posy, posz; 
 
 //rotation of the object 
 float rx,ry,rz; 
 
 //constructor of any object 
 object(){ 
  setScale(1.0,1.0,1.0); 
  setPos(0.0,0.0,0.0); 
  setRot(0.0,0.0,0.0); 
   setColor(1,1,1); 
   setSize(1); 
  setType(1); 
 } 
 //setters and getters 
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 void setPos(float x, float y, float 
z){posx=x;posy=y;posz=z;} 
 void setColor(float cr, float cg, float 
cb){r=cr;g=cg;b=cb;} 
 void setSize(float size){sizeUnits = size;} 
 void setScale(float x, float y,float 
z){sx=x;sy=y;sz=z;} 
 void setRot(float x, float y, float 
z){rx=x;ry=y;rz=z;} 
 void setType(int x){drawType = x;} 
  
 //default draw 
 void Draw(){printf("This is a typical 
object...set it's type");} 
 
 int getRed(){return r;} 
 int getBlue(){return b;} 
 int getGreen(){return g;} 
 void printColor(){cout<<"\nRed : 
"<<r<<"\nGreen : "<<g<<"\nBlue : "<<b;} 
 float getSize(){return sizeUnits;} 
}; 
/*****************************Pyramid**************
****************************/ 
class pyramid:public object 
{ 
 public: 
  pyramid(); 
  void Draw(); 
}; 
 
/*****************************Cube*****************
****************************/ 
class cube: public object 
{ 
 public: 
 cube(); 
 void Draw(); 

}; 
 
/*****************************Sphere***************
****************************/ 
class sphere:public object 
{ 
 public: 
 sphere(); 
 void Draw(); 
}; 
 
/****************************Selector**************
*************************** 
*The selector is a special object, but can utilize 
the same variables that  
*a regular object uses. 
* 
*posx - used to set the base of the selector.  
* 
*/ 
class selector:public object 
{ 
 public: 
  float endx,endy,endz; 
 
 selector(); 
 void Draw(); 
}; 
#endif 

OBJECT.CPP 
#include <windows.h> 
#include <gl/GL.h>  // Header File For 
The OpenGL32 Library 
#include <gl/glut.h>  // Header File For 
The GLut Library 
#include <gl/GLU.h> 
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#include <vector> 
#include "object.h" 
 
/****************************Pyramids!!!!!*********
****************************/ 
/* ------------------------------------------------
----------------------- */ 
/* Function    : void pyramid() 
 * 
 * Description : This is the constructor for the 
pyramid class. It provides 
     base size and color for the 
pyramid. **NOTE** This does not 
     draw a pyramid 
 * 
 * Parameters  : void 
 * 
 * Returns     : void 
 */ 
 pyramid :: pyramid() 
 { 
 shapeType = 1; 
 } 
 
/* ------------------------------------------------
----------------------- */ 
/* Function    : void Drawpyramid() 
 * 
 * Description : This function draws the pyramid to 
the screen. It uses the 
     member variables from the 
base object class. 
 * 
 * Parameters  : void 
 * 
 * Returns     : void 
 */ 
void pyramid :: Draw() 

{ 
  glPushMatrix(); 
   glColor3d(r,g,b); 
   glTranslatef(posx,posy,posz); 
   glScalef(sx,sy,sz); 
   if(drawType == 0) 
    glBegin(GL_TRIANGLES); 
   else if(drawType == 1) 
    glBegin(GL_POLYGON);   
     // start drawing a 
pyramid 
   glVertex3f(sizeUnits, sizeUnits, 
sizeUnits);      // Top of pyramid (front) 
   glVertex3f(-sizeUnits,-sizeUnits, 
sizeUnits);   // left of pyramid (front) 
   glVertex3f(sizeUnits,-sizeUnits, 
sizeUnits);      // right of traingle (front)
  
  
   // right face of pyramid 
   glVertex3f( sizeUnits, sizeUnits, 
sizeUnits);   // Top Of pyramid (Right) 
   glVertex3f( sizeUnits,-sizeUnits, 
sizeUnits);   // Left Of pyramid (Right) 
   glVertex3f( sizeUnits,-sizeUnits, -
sizeUnits);  // Right Of pyramid (Right) 
  
   // back face of pyramid 
   glVertex3f( sizeUnits, sizeUnits, 
sizeUnits);   // Top Of pyramid (Back) 
   glVertex3f( sizeUnits,-sizeUnits, -
sizeUnits);  // Left Of pyramid (Back) 
   glVertex3f(-sizeUnits,-sizeUnits, -
sizeUnits);  // Right Of pyramid (Back) 
  
   // left face of pyramid. 
   glVertex3f( sizeUnits, sizeUnits, 
sizeUnits);   // Top Of pyramid (Left) 
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   glVertex3f(-sizeUnits,-sizeUnits,-
sizeUnits);   // Left Of pyramid (Left) 
   glVertex3f(-sizeUnits,-sizeUnits, 
sizeUnits);   // Right Of pyramid (Left) 
   glEnd();  
  glPopMatrix(); 
} 
 
 
/****************************Cubes!!!**************
***********************/ 
/* ------------------------------------------------
----------------------- */ 
/* Function    : void cube() 
 * 
 * Description : This is the constructor for the 
cube class. It provides 
     base size and color for the 
cube. **NOTE** This does not 
     draw a cube 
 * 
 * Parameters  : void 
 * 
 * Returns     : void 
 */ 
 cube :: cube() 
 { 
 shapeType = 1; 
 } 
 
/* ------------------------------------------------
----------------------- */ 
/* Function    : void Drawcube() 
 * 
 * Description : This function draws the cube to 
the screen. It uses the 
     member variables from the 
base object class. 

 * 
 * Parameters  : void 
 * 
 * Returns     : void 
 */ 
void cube :: Draw() 
{ 
  glBegin(GL_QUADS);    // start 
drawing the cube. 
    glColor3d(r,g,b); 
  // top of cube 
  glVertex3f( sizeUnits, sizeUnits,-sizeUnits); 
 // Top Right Of The Quad (Top) 
  glVertex3f(-sizeUnits, sizeUnits,-sizeUnits); 
 // Top Left Of The Quad (Top) 
  glVertex3f(-sizeUnits, sizeUnits, sizeUnits); 
 // Bottom Left Of The Quad (Top) 
  glVertex3f( sizeUnits, sizeUnits, sizeUnits); 
 // Bottom Right Of The Quad (Top) 
 
  // bottom of cube 
  glVertex3f( sizeUnits,-sizeUnits, sizeUnits); 
 // Top Right Of The Quad (Bottom) 
  glVertex3f(-sizeUnits,-sizeUnits, sizeUnits); 
 // Top Left Of The Quad (Bottom) 
  glVertex3f(-sizeUnits,-sizeUnits,-sizeUnits); 
 // Bottom Left Of The Quad (Bottom) 
  glVertex3f( sizeUnits,-sizeUnits,-sizeUnits); 
 // Bottom Right Of The Quad (Bottom) 
 
  // front of cube 
  glVertex3f( sizeUnits, sizeUnits, sizeUnits); 
 // Top Right Of The Quad (Front) 
  glVertex3f(-sizeUnits, sizeUnits, sizeUnits); 
 // Top Left Of The Quad (Front) 
  glVertex3f(-sizeUnits,-sizeUnits, sizeUnits); 
 // Bottom Left Of The Quad (Front) 
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  glVertex3f( sizeUnits,-sizeUnits, sizeUnits); 
 // Bottom Right Of The Quad (Front) 
 
  // back of cube. 
  glVertex3f( sizeUnits,-sizeUnits,-sizeUnits); 
 // Top Right Of The Quad (Back) 
  glVertex3f(-sizeUnits,-sizeUnits,-sizeUnits); 
 // Top Left Of The Quad (Back) 
  glVertex3f(-sizeUnits, sizeUnits,-sizeUnits); 
 // Bottom Left Of The Quad (Back) 
  glVertex3f( sizeUnits, sizeUnits,-sizeUnits); 
 // Bottom Right Of The Quad (Back) 
 
  // left of cube 
  glVertex3f(-sizeUnits, sizeUnits, sizeUnits); 
 // Top Right Of The Quad (Left) 
  glVertex3f(-sizeUnits, sizeUnits,-sizeUnits); 
 // Top Left Of The Quad (Left) 
  glVertex3f(-sizeUnits,-sizeUnits,-sizeUnits); 
 // Bottom Left Of The Quad (Left) 
  glVertex3f(-sizeUnits,-sizeUnits, sizeUnits); 
 // Bottom Right Of The Quad (Left) 
 
  // Right of cube 
  glVertex3f( sizeUnits, sizeUnits,-sizeUnits);         
// Top Right Of The Quad (Right) 
  glVertex3f( sizeUnits, sizeUnits, sizeUnits); 
 // Top Left Of The Quad (Right) 
  glVertex3f( sizeUnits,-sizeUnits, sizeUnits); 
 // Bottom Left Of The Quad (Right) 
  glVertex3f( sizeUnits,-sizeUnits,-sizeUnits); 
 // Bottom Right Of The Quad (Right) 
  glEnd();     // Done Drawing 
The Cube 
} 
/****************************Spheres!!!!!**********
***************************/ 

/* ------------------------------------------------
----------------------- */ 
/* Function    : void sphere() 
 * 
 * Description : This is the constructor for the 
sphere class. It provides 
     base size and color for the 
sphere. **NOTE** This does not 
     draw a sphere 
 * 
 * Parameters  : void 
 * 
 * Returns     : void 
 */ 
 sphere :: sphere() 
 { 
 shapeType = 1; 
 } 
 
/* ------------------------------------------------
----------------------- */ 
/* Function    : void Drawsphere() 
 * 
 * Description : This function draws the sphere to 
the screen. It uses the 
     member variables from the 
base object class. 
 * 
 * Parameters  : void 
 * 
 * Returns     : void 
 */ 
 
void sphere :: Draw() 
{ 
 switch(drawType) 
 { 
  case 0: 
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   //printf("Solid Sphere drawn\n"); 
   glPushMatrix(); 
   
 glColor3f((float)r,(float)g,(float)b); 
   
 glTranslatef(posx,posy,posz); 
     glScalef(1,1,1); 
    
 glutSolidSphere(sizeUnits,10,10); 
   glPopMatrix(); 
   break; 
 
  case 1: 
   //printf("Wire Sphere drawn\n"); 
   glPushMatrix(); 
   glColor3f(r,g,b); 
   
 glTranslatef(posx,posy,posz); 
    glScalef(sx,sy,sz); 
   
 glutWireSphere(sizeUnits,10,10); 
   glPopMatrix(); 
   break; 
  default: 
   cout<<"Wrong parameters passed to 
Draw\n"; 
   break; 
 } 
} 
 
 
 
selector :: selector() 
{ 
   
} 
void selector :: Draw() 
{  

 GLUquadricObj *quadric; 
 quadric = gluNewQuadric(); 
 glPushMatrix(); 
 glScalef(.25,.25,1); 
 gluCylinder(quadric, 1, 0.75, 1, 15, 15);  
 glPopMatrix(); 
} 

CAMERA.H 
/************Camera Class**************** 
*Author: Roger Burns 
*Adapted from "Computer Graphics Using OpenGL" 
*/ 
 
#ifndef camera_env 
#define camera_env 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <vector> 
 
 
#include "Point3.h" 
 
using namespace std; 
 
class Camera{ 
 
public: 
 //default constructor 
 Camera(); 
 
 //similar to gluLookAt() 
 void set(Point3 eye, Point3 look, Vector3 
up); 
 //camera movement 
 void roll(float angle); 
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 void yaw(float angle); 
 void pitch(float angle); 
 void move(float de1U, float de1V, float 
de1N); 
 void setShape(float vAng, float asp, float 
nearD, float farD); 
 
private: 
 void setModelViewMatrix(); 
 Point3 eye; 
 Vector3 u,v,n; 
 double viewAngle, aspect, nearDost,farDist; 
}; 
#endif 

CAMERA.CPP 
//Camera implementation 
#include "camera.h" 
#include "Point3.h" 
#include <windows.h> 
#include <gl/GL.h>  // Header File For 
The OpenGL32 Library 
#include <gl/glut.h>  // Header File For 
The GLut Library 
#include <gl/GLU.h> 
#include <math.h> 
 
#define PI 3.14159265 
#define RAD 3.14159265/180 
 
Camera::Camera() 
{} 
void Camera::move(float de1U, float de1V, float 
de1N) 
{ 
 eye.x += de1U * u.x + de1V * v.x + de1N * 
n.x; 

 eye.y += de1U * u.y + de1V * v.y + de1N * 
n.y; 
 eye.z += de1U * u.z + de1V * v.z + de1N * 
n.z; 
 setModelViewMatrix(); 
} 
void Camera::pitch(float angle) 
{ 
 float cs = cos(RAD * angle); 
 float sn = sin(RAD * angle); 
 Vector3 t = v; 
 v.set(cs*v.x - sn*n.x, cs*v.y - sn*n.y, 
cs*v.z - sn*n.z); 
 n.set(sn*v.x + cs*n.x, sn*v.y + cs*n.y, 
sn*v.z + cs*n.z); 
 setModelViewMatrix(); 
} 
void Camera::yaw(float angle) 
{ 
 float cs = cos(RAD * angle); 
 float sn = sin(RAD * angle); 
 Vector3 t = u; 
 u.set(cs*t.x - sn*n.x, cs*t.y - sn*n.y, 
cs*t.z - sn*n.z); 
 n.set(sn*t.x + cs*n.x, sn*t.y + cs*n.y, 
sn*t.z + cs*n.z); 
 setModelViewMatrix(); 
} 
void Camera::roll(float angle) 
{ 
 float cs = cos(RAD * angle); 
 float sn = sin(RAD * angle); 
 Vector3 t = u; 
 u.set(cs*t.x - sn*v.x, cs*t.y - sn*v.y, 
cs*t.z - sn*v.z); 
 v.set(sn*t.x + cs*v.x, sn*t.y + cs*v.y, 
sn*t.z + cs*v.z); 
 setModelViewMatrix(); 
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} 
void Camera::set(Point3 Eye, Point3 look, Vector3 
up) 
{ 
 eye.set(Eye); 
 n.set(eye.x - look.x, eye.y - look.y, eye.z - 
look.z); 
 u.set(up.cross(n)); 
 n.normalize(); 
 u.normalize(); 
 v.set(n.cross(u)); 
 setModelViewMatrix(); 
} 
void Camera::setShape(float vAng, float asp, float 
nearD, float farD) 
{ 
 gluPerspective(vAng,asp,nearD,farD); 
 glMatrixMode(GL_MODELVIEW); 
 glLoadIdentity(); 
} 
void Camera::setModelViewMatrix() 
{ 
 float m[16]; 
 Vector3 eVec(eye.x,eye.y,eye.z); 
 m[0] = u.x; m[4] = u.y; m[8] = u.z; m[12] = -
eVec.dot(u); 
 m[1] = v.x; m[5] = v.y; m[9] = v.z; m[13] = -
eVec.dot(v); 
 m[2] = n.x; m[6] = n.y; m[10]= n.z; m[14] = -
eVec.dot(n); 
 m[3] = 0; m[7] = 0; m[11]= 0; m[15] = 
1.0; 
 glMatrixMode(GL_MODELVIEW); 
 glLoadMatrixf(m); 
} 

ENV.H 
#ifndef controller_env 
#define controller_env 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <vector> 
 
/*Defined Classes*/ 
#include "object.h" 
#include "camera.h" 
 
using namespace  std; 
 
class env 
{ 
 public: 
 //camera structure 
 Camera cam; 
 
 //objects 
 sphere planet; 
 sphere planet2; 
 sphere sun; 
 pyramid tut; 
 pyramid tut2; 
 cube romulan; 
 cube romulan2; 
  
 //selector object 
 selector sel; 
 
 /*constructor*/ 
 env(); 
  
 /*Environment Variables*/ 
 float lookrot; 
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 /*object funtions*/ 
 void updateObj(int x, int y, int z, int rotx, 
int roty, int rotz, int sx, int sy, int sz); 
 void updateSel(); 
 void envDraw(); 
  
 
 //object selection 
 void selectObj(int i); 
 
 private: 
}; 
 
#endif 

ENV.CPP 
#include <windows.h> 
#include <iostream> 
#include <fstream> 
#include <gl/GL.h>  // Header File For 
The OpenGL32 Library 
#include <gl/glut.h>  // Header File For 
The GLut Library 
#include <gl/GLU.h> 
#include <math.h> 
#include "object.h" 
#include "env.h" 
#include "camera.h" 
/*Special Keys*/ 
 
 
//only to be called once at startup of environment 
env :: env() 
{ 
 //init one of each shape 
 sun.setPos(0,5,-10); 

 sun.setType(0); 
 sun.setColor(1.0,0.2,0.2); 
 planet2.setColor(1.0,.5,0); 
 planet2.setPos(3,4,-10); 
 planet2.setType(0); 
 planet.setPos(.2,10,-5); 
 planet.setType(0); 
 planet.setColor(0,.8,.2); 
 tut.setPos(1,5,0); 
 tut.setColor(0.05,.8,.8); 
 romulan.setPos(3,3,0); 
 romulan.setColor(0.2,0.18,0.16); 
} 
 
void env::updateObj(int x, int y, int z, int rotx, 
int roty, int rotz, int sx, int sy, int sz) 
{ 
 //given a selected object 
 //update it as per the input given 
 //position as well as rotation and scale 
 
} 
 
void env::envDraw() 
{ 
 
 //draw grid 
    for( int x = -100; x < 100 ; x++ )   
 {  
  for(int z = - 100; z < 100; z++) 
  { 
  glBegin( GL_LINES ); 
    glVertex3d( 100, 0, z ); 
    glVertex3d( -100, 0, z ); 
  glEnd( ); 
  } 
 } 
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 sun.Draw(); 
 sel.Draw(); 
 planet.Draw(); 
 planet2.Draw(); 
 tut.Draw(); 
 tut2.Draw(); 
 romulan.Draw(); 
 romulan2.Draw(); 
 
} 

TEST.CPP 
#include "env.h" 
#include "object.h" 
#include "serial.h" 
#include "parse.h" 
#include "camera.h" 
 
#include <windows.h> 
#include <iostream> 
#include <fstream> 
#include <iomanip> 
#include <iostream> 
#include <gl/GL.h>  // Header File For 
The OpenGL32 Library 
#include <gl/glut.h>  // Header File For 
The GLut Library 
#include <gl/GLU.h> 
#include <math.h> 
#include <time.h> 
 
using namespace std; 
 
//ASCII codes for special keys 
#define ESCAPE 27 
#define PAGE_UP 73 

#define PAGE_DOWN 81 
#define UP_ARROW 72 
#define DOWN_ARROW 80 
#define LEFT_ARROW 75 
#define RIGHT_ARROW 77 
 
/*********************Serial Port 
Variables************************ 
* 
*/ 
HANDLE comPort = NULL; 
char buffer[19];  
parse * Parser = new parse(); 
 
/**********************Graphics 
Setup****************************** 
* 
* 
* 
*/ 
float angle = 0.0; 
int dist = 0; 
env ement; 
float x=0,y=0,z=0; 
Camera cam; 
Point3 eye; 
Point3 look; 
Vector3 up; 
void init() 
{ 
 eye.x = 0; 
 eye.y = 0; 
 eye.z = 5.0; 
 look.x =look.y =look.z = 0; 
 up.x = up.z = 0; 
 up.y = 1; 
 cam.set(eye,look,up); 
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 cam.setShape(60.0, 680.0f/480.0f, 1.0, 
2000.0); 
 int x=2; 
 //get the user input for what Port the 
controller is located on 
 printf("\nPlease indicate what port 
(numerical value) the controller is on: "); 
 cin>>x; 
 //set the serial port in the Parser 
 Parser->setPort(x); 
 //open the serial port 
 Parser->init(); 
 //init the graphics 
 glClearColor(0.0,0.0,0.0,0.0); 
 glShadeModel(GL_FLAT); 
} 
void display(void) 
{ 
 //display the graphics 
 glClear(GL_COLOR_BUFFER_BIT); 
 glColor3f(1.0,1.0,1.0); 
 glPushMatrix(); 
 ement.envDraw(); 
 glPopMatrix(); 
 glutSwapBuffers(); 
 glFlush(); 
} 
 
void reshape(int w, int h) 
{ 
 glViewport(0,0,(GLsizei) w, (GLsizei) h); 
 glMatrixMode(GL_PROJECTION); 
 glLoadIdentity(); 
 cam.setShape(60.0, (GLfloat) w/(GLfloat) h, 
1.0, 2000.0); 
 //gluPerspective(60.0, (GLfloat) w/(GLfloat) 
h, 1.0, 2000.0); 
 //glMatrixMode(GL_MODELVIEW); 

 //glLoadIdentity(); 
} 
 
void serialRead() 
{ 
 //get time for serialRead() 
 clock_t t1 = clock(); 
 if(t1==clock_t(-1)) 
  { 
   cerr<<"clock overflow\n"; 
   exit(2); 
  } 
 //check to see if you need to update the 
variables 
 if(Parser->parseBuff() == 1) 
 { 
   
  clock_t t2 = clock(); 
  if(t2==clock_t(-1)) 
  { 
   cerr<<"clock overflow\n"; 
   exit(2); 
  } 
  //double d = difftime(t2,t1); 
  printf("Amount of time for serialRead, 
parsebuff,varUpdate: "); 
  cout<<double(t2-t1)<<"seconds\n"; 
 } 
} 
void TimerCallback( int value )  { 
  static int i = 1; 
  i++; 
  //start a timer 
 //force a poll 
 if(Parser->poll()) 
 { 
   //read in from the serial Port 
   serialRead(); 
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   //update the variables 
   cam.move(((Parser->input.accel[0])/(Parser-
>calAccel.avgx)), 
    ((Parser->input.accel[1])/(Parser-
>calAccel.avgy)), 
    ((Parser->input.accel[2])/(Parser-
>calAccel.avgz))); 
 } 
 
  // Force a redraw. 
  glutPostRedisplay(); 
  //finish the timer - used for baud rate check 
  
  //calculate time 
  
  // Set it to wake us again. 
  glutTimerFunc( 1000, TimerCallback, 1 ); 
} 
 
void keyboard(unsigned char key, int x, int y) 
{ 
 switch(key) { 
  case 'q': 
   cam.roll(0.5); 
   break; 
  case 'e': 
   cam.roll(-0.5); 
   break; 
  case 'a': 
   cam.yaw(1); 
   break; 
  case 'd': 
   cam.yaw(-1); 
   break; 
  case 'w': 
   cam.pitch(-1); 
   break; 
  case 's': 

   cam.pitch(1); 
   break; 
  case 'i': 
   cam.move(0,0,-1); 
   break; 
  case 'j': 
   cam.move(-1,0,0); 
   break; 
  case 'l': 
   cam.move(1,0,0); 
   break; 
  case 'k': 
   cam.move(0,0,1); 
   break; 
  case 'u': 
   cam.move(0,1,0); 
   break; 
  case 'o': 
   cam.move(0,-1,0); 
   break; 
  case 'z': 
   ement.planet.posx++; 
   break; 
  case 'Z': 
   ement.planet.posx--; 
   break; 
  case 'x': 
   ement.sun.posy++; 
   break; 
  case 'X': 
   ement.tut.posy--; 
   break; 
  case 'v': 
   ement.planet2.posx--; 
   break; 
  case 'V': 
   ement.romulan2.posy--; 
   break; 
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  case ESCAPE: 
   exit(-1); 
 } 
 glutPostRedisplay(); 
} 
 
int main(int argc, char* argv[]) 
{ 
 glutInit(&argc, argv); 
 glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB); 
 glutInitWindowSize(500,500); 
 glutInitWindowPosition(100,100); 
 glutCreateWindow(argv[0]); 
 init(); 
 glutDisplayFunc(display); 
 glutReshapeFunc(reshape); 
 glutKeyboardFunc(keyboard); 
 //Use the idle func to run through the input 
 //from the controller on the serial line 
 glutTimerFunc(1,TimerCallback,1); 
 glutMainLoop(); 
 return 0; 
} 
 

 


