
Deep Ensemble Learning

A Major Qualifying Project Report:

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Bachelor of Science

By:
Juan Luis Herrero Estrada

Everett Harding
Luke Buquicchio

Advisors:
Randy Paffenroth

Stephan Sturm

Sponsor:
Jörg Osterrieder, ZHAW

Date: March 2, 2018

1

This project is submitted in partial fulfillment of the degree requirements
of Worcester Polytechnic Institute. The views and opinions expressed herein
are those of the authors and do not necessarily reflect the positions or opinions
Worcester Polytechnic Institute.

2

Contents

1 Introduction 7

2 Background 9
2.1 Feedforward Neural Network . 9
2.2 Performance Evaluation . 13

2.2.1 Classifier Evaluation . 13
2.2.2 Regressor Evaluation . 15

2.3 Bias-Variance Trade-off . 16
2.3.1 Bias-Variance Decomposition 17

2.4 Ensemble Learning . 19
2.4.1 Bootstrap Aggregation 19
2.4.2 Diversity in Ensemble Learning 20

3 Model Development 23
3.1 Data . 23
3.2 Model Structure . 27
3.3 Benchmark Models . 31

3.3.1 Classical Auto-encoding 31
3.3.2 Classical Ensemble . 31
3.3.3 Random Forest as Adapter 31

4 Results 32
4.1 Experiments . 32
4.2 Model Performance . 32

4.2.1 Neural Network Adapter Results 33
4.2.2 Random Forest Adapter Results 36

4.3 Analysis . 39

5 Conclusion and Future Work 40

A Description of Dataset 43

3

Glossary

MSE Mean Squared Error.
Var Variance.

Notation Dictionary
Rn The set of all n-dimensional vectors of real numbers.

|S| Number of elements in the set S.

x Input vector such that x = [x1,x2, . . . ,xn]
T and x ∈ Rn.

y Target value y ∈ R for some input x ∈ Rn.

ŷ Approximated model output ŷ ∈ R for some input x ∈ Rn.

w Weight value associated with some input or response.

f̂ Approximated model mapping x to an output ŷ.

p(A) Probability of event A.

p(A|B) Probability of event A conditional on event B.

E[X] Expected value of a random variable X.

ε Error calculated from some model.

σ Activation function.

σ2 Total variance of a distribution.

D Input dataset such D = [x1,x2, . . . ,xp] where x j ∈ Rn and D ∈ Rn×p.

D ′ New dataset created from the original D with the same dimensions.

Φ Combined model Φ : Rn→ R of all M base learners φ in the ensemble where
some arbitrary learner φm : Rn→ R.

4

List of Figures
1 A Sample Neuron . 10
2 A Sample Feedforward Neural etwork 12
3 Confusion Matrix of a Classifier 14
4 Distribution of Base Learners with Independent Misclassification . 22
5 Distribution of Base Learners with Dependent Misclassification . 22
6 Convex and Nonconvex Data Example 24
7 Bagging with Undersampling Visualization 25
8 Deep Ensemble with FFNN Adapter 27
9 Sample Deep Ensemble Member 28
10 Deep Ensemble with FFNN Adapter Expanded 30
11 Adapter Accuracy v Ensemble Size: FFNN Adapter 33
12 Adapter F1 Score v Ensemble Size: FFNN Adapter 34
13 Adapter Precision v Ensemble Size: FFNN Adapter 34
14 Adapter Recall v Ensemble Size: FFNN Adapter 35
15 Adapter Accuracy v Ensemble Size: Random Forest Adapter . . . 36
16 Adapter F1 Score v Ensemble Size: Random Forest Adapter . . . 37
17 Adapter Precision v Ensemble Size: Random Forest Adapter . . . 38
18 Adapter Recall v Ensemble Size: Random Forest Adapter 39

List of Tables
2 Benchmark Results . 32
3 Description of Dataset Features 43

5

Abstract

This project combines feedforward neural networks (FFNN) with en-
semble learning in a classification model applied to credit card defaults. To
solve this problem, we generate FFNNs as the members of the ensemble.
Each FFNN in the ensemble is built using different subsets of predictors as
inputs and a separate predictor as the target (instead of the label). The output
from the final hidden layer of each network is aggregated into a new dataset.
A classification model then uses this new dataset to predict credit defaults.
The classification model is evaluated using various metrics to show that an
increase in ensemble size increases the consistency of the performance of
the model.

6

1 Introduction
As availability of data in the modern world increases, it is vital that the tools

used to analyze data are made more perceptive in order to filter out noise and
discover the underlying trends in it. One particular application of finding trends
in a dataset is classification. In classification every data point is labeled with a
particular category and models are trained to predict the category of an unknown
data point. A method for doing so that has found a high rate of success is ensemble
learning. In ensemble learning, many models train on the same dataset and vote to
determine the most likely category for a given data point. Another method that has
found success in this area is a feedforward neural network (described in Section
2.1). This project attempts to improve on the performance of both by combining
and adapting these two techniques.

In ensemble learning, one of the key features to the success of an ensemble
is the diversity of the models in the ensemble. For example, a game of BINGO
can be played with one card or multiple. When playing with one card there are
10 ways to get a traditional bingo on a given arrangement of numbers (5 rows, 5
columns, and 2 diagonals). With multiple cards, the number of ways to get bingo
can increase. However, if the arrangement of the numbers on each additional card
is identical, the number of ways to get bingo does not increase. The more dif-
ferences that exist between the cards, the more likely the player is to get bingo.
Similarly, the more differences that exist between the models in an ensemble, the
more likely the ensemble is to correctly categorize a data point. This project at-
tempts to promote high diversity in the ensemble by heavily injecting randomness
into the creation of each member in the ensemble. The resultant level of diversity
in the ensemble is designed to improve the performance of the ensemble.

An important property of neural networks, and the motivation for their use in
this application, is neural networks do no assume a linear relationship between
a data point and its corresponding category exists, giving them an advantage
over other methods. When used in this ensemble, the inherent complexity of the
networks, combined with the randomness of their generation allows for an even
higher level of diversity between the models used in the ensemble.

Another important part of an ensemble is the voting scheme, or method of
combining the individual results of each model in the ensemble. For example,
one method might weight the prediction of each model equally and use the most
common prediction as the result of the model. Another method could weight the
predictions of each model according to how often that model’s prediction aligned
with the majority decision in the past, and combine the current votes according

7

to those weights. Each of these methods are ways of aggregating the relation-
ships that models discover between data points and their corresponding categories.
While most voting schemes aggregate and determine a result in one step, this
project uses two steps. The first step aggregates the learned relationships in each
neural network into a new dataset. The second step treats this new aggregation as
a transformation of the original dataset and performs a classification that learns
relationships between the transformed data points and their categories.

The two-step aggregation of the ensemble results allows the framework de-
scribed to be split into two parts: the ensemble and the aggregation (called an
adapter). The training of the ensemble in this project is unsupervised, mean-
ing the relationships within the data are discovered without giving the models
the corresponding categories of each data point. The second step, the adapter,
makes use of the relationships learned in the first (unsupervised) step to perform
a traditional classification, which is a supervised learning technique. Supervised
learning means the model is given the data points and the corresponding cate-
gories when it is trained. The implementation of the second step is independent
from the implementation of the ensemble, meaning the results of the ensemble can
be examined with multiple classification methods. This project examines the dif-
ferences between using another feedforward neural network and a random forest
model (described below) as the adapter step.

8

2 Background
This section explains the theory and implementation of the techniques used

in Section 3.2 to correctly classify the data described in Section 3.1. The section
presents an explanation of feedforward neural networks and how they are used
as part of an ensemble of learners described in Section 2.4. Finally, metrics to
evaluate both the feedforward neural networks and the ensemble of learners are
detailed in this section.

2.1 Feedforward Neural Network
A feedforward neural network (FFNN) is a type of specific artificial neural

network (ANN). An artificial neural network, a machine learning technique, dis-
covers relationships in data without requiring specific knowledge of, or tailoring
to, the domain of the data. The structure of an ANN mimics the human brain [1].
The basic unit of an ANN is called an artificial neuron. Given an input signal, it
will send an output signal to the next neurons, depending on the magnitude of the
input [1]. In the context of ANN’s, artificial neurons are referred to as neurons
for simplicity. Neurons are organized into groups called layers. In feedforward
neural networks, the layers connect sequentially, the outputs from the neurons of
one layer connecting to the inputs of the neurons in the next layer. The connec-
tions between the neurons in each layer are assigned weights which express the
strength of the connection between the two neurons. The combination of layers
and the weighted connections between them forms the network.

The neuron N receives n inputs and calculates a weighted sum s of the inputs,

s = wT a+b. (1)

In equation (1), column vector a is the vector of inputs received by N while the
vector w is composed of all the weights associated with each input [2]. The i-th
input ai is weighted by the i-th connection weight wi. b is a scalar known as the
bias (not to be confused with bias error in Section 2.3) used for shifting the result
from a function left or right. A nonlinear activation function σ(s) = z produces
an output value z, which in turn is input to the following neurons.

9

a2 w2 σ (s) z
Output

a1 w1

an wn

Weights

...

...

Inputs

Figure 1: Neuron N receives n inputs a associated with n weights w. It performs a
weighed sum s = wT a which is then mapped by the activation function σ(s) = z.

Neurons in the network are arranged into layers. In the case of feedforward
neural networks each neuron in a layer is only connected to all the neurons in the
following layer except for neurons in the output layer. See Figure 2 for an example
of a feedforward neural network [2]. Equation (1) can be generalized to

s = Wa+b

to consider all neurons in a layer and its connections to the following layer. W is
here a m×n matrix containing the weight connections between two layers were n
it the number of outputs from the previous layer and m represents the number of
neurons in the current layer. a becomes the input coming from all neurons in the
previous layer and vector b contains all biases associated with signals transferred
from one layer to another. Again, utilizing σ , all the outputs from a layer are
obtained as

σ(s) = z

where any given zi is the output of a single neuron in the layer.
An input layer, one more hidden layers, and an output layer comprise a basic

ANN [2]. Together the layers classify input x by associating a label y with the
input. A number L of layers transform the input x by

z(L) = σ
(L)(W(L) . . .(σ (2)(W(2)

σ
(1)(W(1)x+b(1))+b(2)) . . .+b(L)))

where σ (i), W(i), and b(i) respectively represent the activation function, associated
weights, and the bias vector of layer i. The output of the final layer, z(L), is

10

compared to the actual classification of the data point y to determine the accuracy
of the network. More on the comparison between the model’s prediction and the
label for the dataset can be seen in Section 2.2. Note that if there is more than one
neuron in the output layer (in regression FFNN’s output layer only has 1 neuron)
then the result is a vector instead of scalar which is compared to a scalar y. z(L)
can be represented as a scalar ŷ. In the case of classification each value of z(L) is
the probability the result is a given class and the class with the highest probability
is the one chosen. Thus, ŷ is that respective label and for this paper ŷ is always the
outcome of a FFNN.

The choice of σ defines the behavior of a neural network layer. Note that
even though the input of σ is a vector the operation is applied entry-wise. If σ is
a linear function such as the identity function

σ(x) = x,

then z = s and
z = Wa+b.

With linear σ the layer maps a ∈ Rn to z ∈ Rm and if m < n, then the layer ap-
proximately performs a principal component analysis (PCA), a technique to map
higher dimensional data to lower dimensions where the most variance from the
original dataset is preserved [3]. However, there are differences between standard
PCA and this variation. First, W is not the m eigenvectors or principal compo-
nents of DDT , where a belongs to dataset D ∈ Rn×p. Second, bias b, inexistent
in classical PCA, shifts data points along the respective m axes. For more on stan-
dard PCA see [3]. If σ is nonlinear, then the network layer can better approximate
nonlinear relationships which are more complex and prevalent in practical settings
[4]. Two common nonlinear functions used in FFNNs are the rectified linear unit
(ReLU) defined as

σ(x) = max(0,x)

and the sigmoid function

σ(x) =
1

1+ e−x .

The more hidden layers with nonlinear σ an FNNN has, the deeper the network
is considered. Deeper networks have a higher representational power than net-
works with fewer layers. Adding more layers mimics the universal approximation
theorem which states that

11

G(x) =
n

∑
i=1

αiσ(wT
i x+bi),

where αi is a weight and σ is any continuous sigmoidal function, approximates
function f [5]. However, the difference between this theorem and modern FFNNs
is that for FFNNs σ in every layer can be different and the output of any layer
is used input as for the next layer unlike a weighed sum of all layer outputs. For
more on the universal approximation theorem, see [5].

Figure 2: A Sample Feedforward Neural etwork

12

2.2 Performance Evaluation
For a data point x ∈ Rn with n being the number of features in the dataset,

there exists a target y ∈ R and a function f : Rn→ R such that

y = f (x)+ ε

where ε is a normally distributed error term with zero mean that cannot be dimin-
ished known as the irreducible error [6]. This mapping function f is unknown and
the best that can be done is to approximate it with another function f̂ : Rn→ R.
The result from f̂ known as ŷ and defined as

ŷ = f̂ (x)

is compared to y. Specifically, for FFNNs f̂ is calculated as the output from the
network

f̂ (x) = σ
(L)(W(L) . . .(σ (2)(W(2)

σ
(1)(W(1)x+b(1))+b(2)) . . .+b(L))).

The two functions are compared using a performance metric. The metric depends
on if f and f̂ are classifiers or regressors. Classifiers associate a label, from a
finite set, to the input given to the model. Metrics for this kind of model work
in terms of the number of correct and incorrect associations. Regressors produce
a continuous output attempting to approximate y. Performance for this kind of
model is based on the Euclidean distance, defined in Section 2.2.2, between ŷ and
y.

2.2.1 Classifier Evaluation

For classifiers, having categorical target variables, the performance of a neu-
ral network is evaluated by counting how many of its predictions are true pos-
itives, true negatives, false positives (type I error) and false negatives (type II
errors). These four values come from comparing the model’s output label ŷ and
the ground truth label y. In the case of binary classification, if both labels give the
true label then it is a true positive (tp) and if both labels give the false label it is
a true negative (tn). If the labels disagree then the result is either a false negative
(fn) or a false positive (fp) depending on the ground truth label. These results are
summarized in a table known as the confusion matrix, described in Figure 3.

13

ground
truth
y

model output ŷ

true false

true
true
positive

false
negative

false false
positive

true
negative

Figure 3: Confusion Matrix of a Classifier

The counts are compared in three steps. The first, called precision p, uses
the ratio of true positives to total positive predictions:

p =
t p

t p+ f p
.

The second, called recall r, is the ratio of correctly identified positives to total
possible positives

r =
t p

t p+ f n
.

These two metrics, precision and recall, are combined through their harmonic
mean as the F1 Score. The harmonic mean of precision p and recall r is calculated
as

F1 = 2
pr

p+ r
.

The advantage of the harmonic mean is its resistance to a large discrepancy be-
tween the two values, meaning a high precision value and a low recall value will
still result in a low F1 score. This metric ranges between 0 and 1 with 0 being the
worst F1 score and 1 the best possible score.

Generally, the accuracy, the percentage of correct instances compared to the
total number of samples is defined as

14

accuracy =
t p+ tn

t p+ tn+ f p+ f n

and is used as a basic metric to evaluate a classifier. However, if the dataset
contains unequal instances of the different classes, such as the one in shown in
Section 3.1, then a very naive classifier will label all input as the majority class
and will get a high accuracy percentage. This high accuracy is misleading. The
labeling of all instances as the majority category indicates all errors committed
will be exclusively false negatives (type I error) or false positives (type II error).
Depending on the context, one type of error can be harmless to make while the
other could lead to a decision incurring in extraordinary losses. Given the financial
context and the unbalanced classification dataset in Section 3.1, the F1 score with
its resistance to large discrepancies, provides a more insightful measurement of
the classifier’s predictive ability than basic accuracy [7].

2.2.2 Regressor Evaluation

For a regressor, a model with a continuous target variable, the performance is
evaluated based on the Euclidean distance between the prediction ŷ and the actual
value y calculated as

d(y, ŷ) =
√

(y− ŷ)2.

Using the Euclidean distance d of the outputs, a metric called loss function calcu-
lates the mean squared error (MSE) as

MSE =
1

2p

p

∑
i=1

d2(yi, ŷi),

where ŷi ∈ R and yi ∈ R correspond to some xi in a training dataset D ∈ Rn×p.
Since all inputs come from a training dataset it means that f and f̂ have seen
these data points before and tweaked their parameters accordingly. To calculate
the MSE of the models on testing dataset, meaning data that the model has not
seen before, then it is defined as

MSE = E
[(

f̂ − y
)2
]

where E is the expected value operation which is described in Section 2.3. MSE
is used for the performance evaluation of the continuous outputs or targets for the

15

feedforward neural networks that make up the ensemble (see Section 2.4 for more
on this) attempting to predict if an individual will default. The larger the MSE,
the worse the FFNN approximated the ground truth.

2.3 Bias-Variance Trade-off
Using an FFNN (described in Section 2.1), a model f̂ is built. The model f̂

is an estimator parameterized by the data points x ∈ Dtrain, the training dataset,
and trained to be used on more datasets [8]. We abbreviate notation by letting
f̂ = f̂ (x) and f = f (x). As f̂ is dependent on the training data provided, it is thus
a random variable whose expected value is defined by the formula

E[f̂] =
n

∑
i=1

ŷi p(f̂ = ŷi)

where ŷi is a possible outcome of the random variable and p(f̂ = ŷi) is the proba-
bility of the outcome ŷi.

The closer the output ŷ of model f̂ is to the output y of f , the better f̂ is. f̂
can only approximate f , meaning there will be always some error or difference
between the outcomes of the two models. Error in any prediction model can be at-
tributed to three major sources: bias, variance and irreducible error. Bias, defined
as

Bias(f , f̂) = E[f̂]−E[f]

or simply

Bias(f , f̂) = E[f̂]− f (2)

is the inability of the model to recognize the relationship between the target la-
bel y and its predictors {x1,x2, . . . ,xn} and is measured as the average difference
between model prediction and the expected output value for a givens set of pre-
dictors. Variance, defined as

Var(f̂) = E[
(

f̂ −E[f̂]
)2
]

is the level to which the model considers random noise to be part of the relation-
ship and is measured as the expected difference between f̂ and f [8]. Bias and
variance are considered reducible error or part of the error because they can be

16

diminished by adjusting the parameters of a model. The third type of error is irre-
ducible error meaning it cannot be decreased, no matter how close f̂ is to f . The
irreducible error appears because in many cases there are lurking variables that do
not appear in the dataset used to train the model.

The precision of a model and its ability to generalize to similar datasets can
be measured by the MSE of an estimator. Subsection 2.3.1 decomposes the mean-
squared error in terms of its reducible error to understand how much each type of
error offsets the model [8].

2.3.1 Bias-Variance Decomposition

For the following decomposition we introduce the constant τ = E[f̂].

MSE = E
[
(f̂ − y)2]

= E
[
(f̂ − τ + τ− y)2]

= E
[
((f̂ − τ)+(τ− y))2]

= E
[
(f̂ − τ)2 +2(f̂ − τ)(τ− y)+(τ− y)2]

= E
[
(f̂ − τ)2]+2E

[
(f̂ − τ)(τ− y)

]
+E

[
(τ− y)2]

by the property of linearity and since 2E
[
(f̂ − τ)(τ− y)

]
= 0 by

2E
[
(f̂ − τ)(τ− y)

]
= 2E

[
(f̂ − τ)

]
E
[
(τ− y)

]
= 2E

[
(f̂ −E[f̂])

]
E
[
(τ− y)

]
= 2
(
E
[

f̂
]
−E

[
E[f̂
]])

E
[
(τ− y)

]
= 2
(
E
[

f̂
]
−E

[
f̂
])
E
[
(τ− y)

]
= 0

given that (f̂ − τ) and (τ − y) are independent by assumption. We can simplify
the decomposition

17

MSE = E
[
(f̂ − τ)2]+E

[
(τ− y)2]

= E
[

f̂ 2−2 f̂ τ + τ
2]+E

[
τ

2−2yτ + y2]
= E

[
f̂ 2]−2ττ + τ

2 + τ
2−2τ E

[
y
]
+E

[
y2]

= E
[

f̂ 2]− τ
2 + τ

2 +2τ E [y]+E
[
y2] .

Given that y = f + ε ,

MSE = E
[

f̂ 2]− τ
2 + τ

2 +2τ E [f + ε]+E
[
(f + ε)2]

= E
[

f̂ 2]− τ
2−2τ (E [f]+E [ε])+E

[
f 2]+E [2 f ε]+E

[
ε

2] .
E[f] = f and E[ε] = 0 since f is constant and ε has mean 0 by assumption. There-
fore,

MSE = E
[

f̂ 2]− τ
2 + τ

2−2τ f + f 2 +E
[
ε

2]
= E

[
f̂ 2]− τ

2 +(τ− f)2 +E
[
ε

2] .
Thus, by equation (2) and

Var(f̂) = E
[(

f̂ −E[f̂]
)2
]

= E
[(

f̂ −E[f̂]
)(

f̂ −E[f̂]
)]

= E
[

f̂ 2−2 f̂ E
[

f̂
]
+E2 [f̂

]]
= E

[
f̂ 2]−2E

[
f̂
]
E
[

f̂
]
+E2 [f̂

]
= E

[
f̂ 2]−E2 [f̂

]
we can then conclude

MSE =Var(f̂)+Bias2(f̂ , f)+E
[
ε

2] ,
where E

[
ε2] is the irreducible error.

By understanding the composition of the error, it can be minimized through
techniques that address those error components. For instance, in Section 2.4.1 it
is shown how bootstrap aggregation can reduce variance error. If the decomposed
error was comprised solely of bias error then bootstrap aggregation would not
improve the model.

18

2.4 Ensemble Learning
A classifier or regressor can be built and later trained on dataset Dtrain. This

regressor or classifier, known as a base learner ϕ : Rn→ R for its membership to
an ensemble, approximates the true mapping y = f (x)+ ε [9]. An ensemble is
the set of all base learners which are combined into a single learner Φ : Rn→ R.
The base learners that are classifiers are combined through a voting mechanism in
which the output label from each base learner counts as vote for that label and the
label that has simple majority becomes the output of combined ensemble. If the
base learners are regressors then they are combined through a sum

Φ(x) =
M

∑
m=1

wmϕm(x),

where wm is weight dependent on the type ensemble learning technique used [10].
For example, wm = 1

M represents a voting scheme where each learner’s vote counts
equally.

The performance of the ensemble Φ should be better than the performance of
any individual base learner [9]. Thus, the accuracy of the base learners becomes
a baseline for the overall result. Another metric of ensemble learning is diversity,
defined as the number of coincident errors committed by base learners on input x
[9]. For more on diversity see Section 2.4.2.

2.4.1 Bootstrap Aggregation

Bootstrap Aggregation, or bagging, is an ensemble learning technique meant
to reduce the variance error of a model by generating new sample datasets from
the original dataset [10]. Bagging creates each new dataset by sampling uniformly
and with replacement from the original dataset. Every new dataset generated has
size |D ′i | ≤ |D | were D ′i represents the generated dataset and D represents the
original dataset. Each base learner ϕi is trained on the corresponding subset D ′i
[11]. Once all the base learners have been trained, they solve the regression or
classification problem desired. If the model is solving a classification problem,
then the final prediction of the class label of y is the class most learners output
[11]. Otherwise if it is solving a regression problem, the prediction is

Φagg(x) =
1
M

M

∑
m=1

ϕm(x).

19

Bootstrap aggregation reduces the variance error defined in Section 2.3.1 by
performing an average of the learners’ results [10]. By averaging independent
and identically distributed random variables, bootstrapping reduces the model’s
variance. This can be demonstrated as:

Var (Φagg(x)) =Var

(
1
M

M

∑
m=1

ϕm(x)

)
(3)

=
1

M2Var

(
M

∑
m=1

ϕm(x)

)

=
1

M2

M

∑
m=1

Var(ϕm(x)) (4)

=
1

M2 σ
2M

=
σ2

M
(5)

First, in (3) the learners of the ensemble are averaged. Given that each ϕm(x)
in (4) acts on the same group of data points and are independent and identically
distributed random variables1, they have all have variance σ2. In (5), the variance
is reduced by a factor M the size of the ensemble.

2.4.2 Diversity in Ensemble Learning

There exists no model that can perfectly match the true function f . Ensem-
bles, similarly to the universal approximation theorem mentioned in Section 2.1,
approximate f by including additional base learners. However, the additional base
learners do not increase the accuracy or reduce the loss of Φ if they are identical
to other base learners already in the ensemble [11]. Thus, diversity must be intro-
duced to improve the overall result.

Diversity can loosely be described as how different two or more objects are
[11]. The diversity of an ensemble or difference between its base learners is quan-
tified based on the errors committed by the learners [9]. For simplicity, in this

1These learners are not necessarily independent given that they come from the same dataset.
Independence is the baseline situation but in reality the best that could be expected is for learners
to be pairwise negatively correlated.

20

section ϕi and ϕ j are arbitrary base learners which are also binary classifiers. As
well, the following quantities are defined as

a = p(ϕi = 1∩ϕ j = 1),
b = p(ϕi = 1∩ϕ j = 0),
c = p(ϕi = 0∩ϕ j = 1),
d = p(ϕi = 0∩ϕ j = 0).

ϕi and ϕ j are further away from each other if they have less coincident errors.
There exist different diversity measurements that follow the axioms mentioned
before. See [11] for additional metrics. One simple example is the disagreement
measurement defined as

Dϕi,ϕ j = b+ c.

If the ensemble has M > 2 base learners then the diversity of M(M−1)
2 pairs of base

learners is measured and all of those results are then averaged together.
The correlation coefficient ρ of ϕi and ϕ j defined as

ρϕi,ϕ j =
ad−bc√

(a+b)(c+d)(a+ c)(b+d)

ranges between −1 indicating complete independence and 1 indicating complete
dependence. The greater diversity among base learners, the more independent
they are [11].

To illustrate the relationship between diversity, correlation, and accuracy
consider an ensemble with 21 base learners acting on input x. The accuracy of
each base learner is 70% and their misclassifications are completely independent.
The error rate (1−accuracy) of the combined model Φ is equal to the area under
the binomial distribution between M

2 and M, where M is the number of learners
in the ensemble [9]. See Figure 4 for more detail on the error rate of the en-
semble of 21 base learners. The diverse ensemble has a lower error rate than the
homogeneous ensemble in Figure 5 that also has 21 base learners each with 70%
accuracy.

21

Figure 4: Binomial distribution of 21 base learners each one with an accuracy rate
of 70% and independent misclassifications. The probability of more than half of
the learners misclassifying x, meaning the error rate of the ensemble, is 2.639%.
The more base learners with independent misclassifications and 70% accuracy
will reduce this error rate even more [9].

Figure 5: Distribution of 21 base learners each one with an accuracy rate of 70%
and dependent misclassifications. The probability of more than half of the learners
misclassifying x, meaning the error rate of the ensemble, is 30%. The error rate
stays at 30% if more dependent base learners are added with the same accuracy
[9].

22

3 Model Development

3.1 Data
All training and testing of the framework used the Credit Card Default dataset

from the University of California, Irvine Machine Learning Repository. The
dataset contains 30,000 monthly credit card records for consumers using credit
cards in Taiwan from May through October 2005. Each record consists of 23 fea-
tures covering demographic information, as well as the amount of bill statements,
bill payments, credit limit, and repayment status for the six months preceding the
record. Each of the 23 features are either categorical or numerically valued. A full
description of all features can be found in Appendix A. The label for each record
is either 1.0 indicating the consumer defaulted on their next credit card payment or
0.0 indicating the consumer did not default on their next payment. There are 6,636
records in the dataset representing a default in the next month, forming 22.12% of
the dataset, while the remaining records in the dataset representing non-defaults,
form the other 77.88% of the data. There are approximately four times as many
records in the non-default classification as there are in the default classification.
Therefore, non-default is named the majority class and default the minority class.

Established methods to deal with imbalanced classes in a classification prob-
lem include oversampling, undersampling and generating synthetic data points.
The last technique is popular for dealing with unbalanced datasets and thus bears
mention; however, it is beyond the extent of this project. Each method generates
a new dataset from the original where each class is equally represented. Over-
sampling randomly samples with replacement from the minority class until there
are as many examples of the minority class in the new dataset as there are sam-
ples of the majority class. Oversampling does not add any new information to the
dataset, but by repeating examples from the minority class to balance the distribu-
tion, it guards against the tendency of predictive models to err towards the more
prevalent class. The repetition of the minority examples can potentially make
the model fit more tightly to those examples, running the risk of over-fitting in
the minority class. Undersampling randomly samples with replacement from the
majority class only as many examples as there are minority class examples. Un-
dersampling avoids the issue of overfitting in the minority class, at the expense of
some amount of information from the majority class. In the case of the credit card
default dataset, undersampling would exclude almost three-fourths of the exam-
ples in the majority class. Generating synthetic data points is a general approach
that encompasses many different algorithms. A popular algorithm, SMOTE (Syn-

23

thetic Minority Oversampling Technique) generates synthetic data points along
lines drawn between existing examples [12]. It makes a key assumption that the
shape of the data in the minority class is convex. Convex data lies in a region
where for any line segment drawn between two of the data points, all the points
on that line lie within the same general region as the data [13].

Figure 6: An example of non-convex data and convex data. All points in the
convex data can be connected by a line that is approximately contained in the
general region of the data. In the non-convex data, where the shape follows a
parabola, a line drawn from one side of the parabola to another would clearly
cross outside the region occupied by the data.

In higher dimensional spaces it becomes infeasible to fully understand the
shape of the dataset, therefore impossible to determine if the base assumption of
SMOTE holds.

Of the techniques outlined above, undersampling naturally lends itself to

24

ensemble learning through combination with bagging. When bagging generates
each new sample dataset, undersampling can impose the restriction that each new
dataset contains an equal number of examples from both the majority and mi-
nority classes. Individually, the new datasets lack the information of the whole
dataset. When combined in the ensemble, the entire dataset is represented in the
model, even though no single base learner sees all the information. Using bagging
in combination with undersampling both deals with the issue of the imbalanced
classes and retains all the information in the original dataset.

Figure 7: A visualization of bagging with undersampling. Each subset Xi of the
original dataset represents a smaller amount of data taken from the training exam-
ples. A single learner could not view all the data contained in the dataset from one
of these subsets. In aggregation, the subsets cover the extent of the data. There-
fore, in aggregating the learners built from each subset the ensemble can form a
prediction without the class imbalance bias but with all the information contained
in the dataset.

25

In a concrete sense, consider as an example of an ensemble of learners: a
group (the ensemble) of friends (the learners) examines a collection of photos and
attempts to model the best way to determine if the subject of a photo is a cat or
a dog. They have many pictures of dogs (the majority class) but relatively few
photos of cats (the minority class). If taken all at once, the model will have a
higher likelihood for predicting the label "dog" in a less obvious example. With
bagging and undersampling, each friend takes a random selection of equal size
from each category (dogs and cats). Based on those images, the friend comes up
with a model of how to tell the difference between the two categories. After com-
ing up with their model, the friend replaces the photos, and another friend repeats
the process. With equal numbers of photos from both categories, the consistent
bias towards the "dog" label disappears.

As more learners in the group take random selections from each class, the
selections cover more of the original datasets majority and minority class. The
result is a larger portion of the available information about the majority class is
used in the development of the model. The data in the minority class are likely
to be repeated across the learners, as there are fewer data points in the minority
class from which to sample. The repeated sampling of the majority class yields
more information because there are more data points sampled from it than simple
undersampling. The repeated sampling of the minority class yields no further
information than is available. Additionally, this means there is a size of ensemble
where every point in the majority class has been sampled at least once, and further
bagging does not add any information to the ensemble model.

Furthermore, we hypothesize that the underlying reason our model is viable
stems from the idea that from these random combinations, we make the under-
lying structure of the data more accessible to the models making predictions. By
including a combination of predictors ultimately representing each possible target,
we hope to improve the information given to our model and its overall accuracy.

26

3.2 Model Structure
The goal of the model creation is to construct a two-step framework for clas-

sification. In the first step, the model determines some underlying structure of the
dataset by repeatedly attempting to approximate the mapping from a subset of the
dataset features to a single other feature instead of the associated label. By ag-
gregating the results of the approximations, the model yields an expanded feature
set which shows some underlying structure of the dataset. In the second step, the
model uses its determination of the underlying structure to perform classification
on the testing samples in the dataset.

Figure 8: A deep ensemble learning network with an adapter network. The outputs
from the final hidden layer of each network in a trained ensemble of FFNNs are
concatenated and used as inputs to the final adapter network, which performs the
classification.

The first step to the framework builds an ensemble of FFNN’s using subsets
of the training set. The datasets are generated using bagging with undersampling.
Each neural network trains on a subset of the features in the dataset, attempting

27

to predict the value of a single other feature from the values of the subset. For
example, one base learner in the ensemble might use the AGE, SEX, EDUCA-
TION, and LIMIT_BAL features as inputs and use the MARRIAGE feature as
the target variable. Another learner might use PAY_5, PAY_2, BILL_AMT1, and
MARRIAGE features as inputs and use the AGE feature as the target variable.

Figure 9: Simple FFNNs for the ensemble. Each learner in the ensemble takes
a subset of the available features from an example as inputs. It uses these inputs
to predict the value of another feature from the example. The predicted feature
cannot be part of the subset used as inputs to the learner.

The networks learn a representation of the feature selected as their target
variable in relation to a subset of the other features in the dataset. Formally, each
network’s construction follows these steps:

1. Randomly select a single feature to use as a target variable for the network,
denoted here as xt

2. Select a random subset of features xa from the given set of features x such
that |xa|< |x| and xt 6∈ xa. The size of the subset xa is 0 < |xa|< n where n
is an integer representing the total number of features in the dataset.

3. Randomly generate the number of hidden layers in the network and the
number of units in each of those layers to create the network structure.

28

4. Train the network using an under-sampled subset of the training data with
only the features included in xa.

After completing the training of the ensemble, the outputs from the final
hidden layer of each network are extracted and concatenated to create an expanded
version of each example in the original dataset. To be concrete, say there are three
networks in the fully-trained ensemble, two with three layers (an input layer, a
hidden layer, and an output layer) and one with four layers (an input layer, a
first hidden layer, a second hidden layer, and an output layer). The first three-
layer network takes AGE, SEX, EDUCATION, and LIMIT_BAL as inputs with
MARRIAGE as its target variable. The second three-layer network takes PAY_5,
PAY_2, BILL_AMT1, and MARRIAGE as inputs with AGE as its target variable.
The four-layer network takes BILL_AMT2, BILL_AMT4, EDUCATION, and
PAY_3 as inputs with LIMIT_BAL as its target variable. As shown in Figure
3.2, given an input example to the ensemble xi, the value of each feature in the
example is used as an input to the corresponding input of each learner in the
ensemble which uses that feature. The corresponding outputs from the hidden
layer of the first two networks and the outputs from the second hidden layer of
the third network are concatenated into a single vector, notated as zi. The vector
zi is given the same label as the feature vector from which it was generated. The
completely expanded dataset is notated as Z where each entry corresponds to the
original label. Formally:

Z = ψ(X)

where ψ(X) denotes the transformation of X by the trained ensemble.
The second step of the framework trains a FFNN classifier to predict the

original labels Y from Z. In other words, the FFNN approximates the relationship
f (Z) = Y as:

f̂ (Z) = Y

The FFNN classifier consists of an input layer, three hidden layers, and an output
layer. The connections between the each of the three hidden layers have a dropout
rate of 30%. This means for any given evaluation of an example by the network, a
random 30% of the neurons in each layer will be disconnected from the others and
are neither used nor updated during that computation. Each hidden layer contains
fewer total neurons than the layer preceding it. The number of neurons in each
layer is calculated relative to the number of features in Z.

29

Figure 10: Expansion of data for classification. The values of each feature from an
example are used as input values to the corresponding inputs of each learner in the
ensemble. The outputs of the final hidden layer of each learner are concatenated
to form the expanded example z. Each example z is then concatenated to form
the expanded dataset Z. Finally, the classifying adapter layer of the framework is
trained to predict the value of DEFAULT from Z.

30

3.3 Benchmark Models
In order to place the results of the developed framework in perspective, it

was compared to the results of several other models. These models bear similarity
to the structure of the framework in implementation and in functionality. They
were selected to provide a reasonable comparison of the framework to established
models.

3.3.1 Classical Auto-encoding

The first of these models is comprised of an auto-encoder and a basic FFNN.
The auto-encoder mirrors the behavior of the ensemble of networks, taking in the
features and producing approximations of them. The hidden layer of the auto-
encoder is extracted to be used as the new base dimension for the classifier, just as
the hidden layer of the ensemble networks is extracted to be used as the new base
dimension for the adapter network. The classifier (and adapter network) use this
new base dimension to perform their predictions of whether or not the example
will result in a default next month.

3.3.2 Classical Ensemble

The second is an ensemble of simple neural networks, each attempting to
predict the label of the samples. The structure of the ensemble of neural networks
mirrors the structure of the framework, as both are built on ensembles of sim-
ple networks. The difference is in the targets and structure of the networks in
each of the ensembles. While the benchmark ensemble is comprised of networks
with randomized structure attempting to predict the label from all the features, the
framework ensemble is comprised of networks with uniform structure (excepting
the inputs) attempting to predict a feature of the dataset from a subset of the other
features. The results from the ensembles are aggregated and used to perform the
final classifications in both models.

3.3.3 Random Forest as Adapter

A third benchmark was constructed to compare the functionality of different
types of adapters as the ensemble size changed. In this benchmark the neural
network adapter was replaced with a random forest classifier with a fixed number
of trees. To compare the performance of the FFNN to the performance of the
random forest, the framework’s ensemble was trained with sizes ranging from 1

31

to 50 inclusive. Once trained, the expanded data from the framework’s ensemble
was used for both the neural network and the random forest classifier.

4 Results

4.1 Experiments
The effectiveness of the framework was tested with several experiments.

These experiments investigated the effect of different hyper parameters of the
model on results with the UCI Credit Card Default Dataset. The parameters tested
are: ensemble size, number of hidden layers in the adapter network, the sizes of
each of those layers, the loss function applied, and the activation functions used
at each layer of the adapter. Each experiment observes the change in the different
performance metrics of the adapter network, the average accuracy of the ensem-
ble, and the total time to train the framework.

The experiments intentionally avoid tuning the structure of the ensemble net-
works. The ensemble networks are randomized in the combinations of features
they use as inputs and the feature they selected as the target feature. Therefore,
tuning each network in the hopes of increasing accuracy would likely have to be
done individually for each generated network, which is computationally infeasi-
ble.

Model Accuracy Time
Unsupervised Ensemble with FFNN Adapter 70.03% 24230s
Classical Auto-Encoder 64.43% 306s
Supervised Ensemble of 200 FFNN 70.87% 21304s

Table 2: The results from the first two benchmark models compared to the Unsu-
pervised Ensemble with a FFNN Adapter. The proposed framework outperformed
a classical dimension reduction with an autoencoder before classification, and per-
formed approximately equivalent to a carefully tuned, supervised ensemble of 200
FFNNs.

4.2 Model Performance
This section is broken into two subsections: one displaying the results for the

Neural Network adapter and one for a random forest adapter. Both sets of tests

32

were run with the same hyperparameters and on the same split of training and
testing data.

4.2.1 Neural Network Adapter Results

Figure 11: Adapter Accuracy v Ensemble Size. From the data above, we see a
roughly positive logarithmic correlation between ensemble size and feedforward
neural network adapter accuracy with an asymptote at roughly 0.64.

33

Figure 12: Adapter F1 Score v Ensemble Size. From the data above, we see a
decrease in variance as the number of networks in the ensemble increases.

Figure 13: Adapter Precision v Ensemble Size. From the data above, we see a
roughly positive logarithmic correlation between ensemble size and feedforward
neural network adapter precision with an asymptote at roughly 0.68.

34

Figure 14: Adapter Recall v Ensemble Size. From the data above, we see a
roughly positive logarithmic correlation between ensemble size and feedforward
neural network adapter recall with an asymptote at roughly 0.88.

35

4.2.2 Random Forest Adapter Results

Figure 15: Adapter Accuracy v Ensemble Size. From the data above, we see a
roughly positive logarithmic correlation between ensemble size and random forest
adapter accuracy with an asymptote at roughly 0.72.

36

Figure 16: Adapter F1 Score v Ensemble Size. From the data above, we see a
roughly positive logarithmic correlation between ensemble size and random forest
adapter F1 score with an asymptote at roughly 0.75.

37

Figure 17: Adapter Precision v Ensemble Size. From the data above, we see a
roughly positive logarithmic correlation between ensemble size and random forest
adapter precision with an asymptote at roughly 0.72.

38

Figure 18: Adapter Recall v Ensemble Size. From the data above, we see a
roughly positive logarithmic correlation between ensemble size and random forest
adapter recall. Interestingly, there were some test cases that seemed to follow a
decay leading to the same asymptote with an asymptote at roughly 0.76.

Something noteworthy for the figures above is that each metric appears to
converge when the ensemble size reaches 23. We suspect this is due to the orig-
inal training set having 23 features acting in conjunction with the design of our
program. It specifies that while the ensemble size is less than 23, each feature can
only be selected once as a target for an ensemble member.

4.3 Analysis
Benchmarking showed that the performance of the random forest adapter was

dependent on the ensemble size until there were roughly 23 nets in the ensemble.
This contrasts with our neural network adapter that seemed to lack dependence
on ensemble size for certain metrics. The effect of an increased ensemble size for
the neural network adapter on F1 Score and Precision was a decrease in variance
around an almost flat trendline, whereas the effect on Percent-Correct and Recall
was positive. One possible explanation for this behavior is that the output of the
ensemble is not making the underlying structure or information about the data
more accessible to the random forest. Because the ensemble was built so that

39

the first 23 members were attempting to predict each of the different columns, it
logically follows that the random forest would keep improving with the addition
of more columns. However, it appears that the neural network adapter was able
to achieve peak performance before the ensemble size was equal to the number of
columns in the original data set.

5 Conclusion and Future Work
The results show that for both the FFNN implementation and the random for-

est implementation of the adapter, a larger ensemble reduces the variance of the
model’s performance as expected. The added randomness showed a high level of
error for small networks but as the size of the ensemble increased the aggregation
of the relationships learned within the data proved sufficient to achieve more con-
sistent results. The implementation of an unsupervised ensemble, combined with
a supervised classifier and no specific tuning of hyperparameters yielded compa-
rable results to a highly tuned supervised ensemble. With more extensive tuning,
the framework could achieve higher performance.

With slight tuning of hyperparameters, the random forest slightly outper-
formed the FFNN for ensembles with greater than 20 members. For ensembles
with fewer than 20 members the random forest showed a higher sensitivity to the
size of the FFNN ensemble than the FFNN adapter. Since both adapters showed
less variance across the other hyperparameters as the ensemble sized increased,
the new structure of the ensemble follows the expected behavior of ensembles.

Much of the possible future work for this framework involves different im-
plementations for the structure of the ensemble networks, different methods for
aggregation of the hidden layers, and other classifiers used as the adapter. For
example, one possible implementation could use an ensemble of FFNNs that map
the subset of features to a subset of different features, aggregated by averaging the
outputs from their hidden layers, and classified using k-nearest neighbors. This
adaptations still follows the general progression from an unsupervised ensemble
to a supervised classifier. There are many more combinations that follow this
framework to be explored.

40

References
[1] C. H. Dagli and P. Poshyanonda, “Basic artificial neural network architec-

tures,” Artificial Neural Networks for Intelligent Manufacturing, p. 39–65,
1994.

[2] B. C. Bangal, “Automatic generation control of interconnected power sys-
tems using artificial neural network techniques,” May 2009.

[3] Principal Component Analysis and Factor Analysis, pp. 150–166. New
York, NY: Springer New York, 2002.

[4] B. C. Csáji, “Approximation with artificial neural networks,” Faculty of Sci-
ences, Eötvös Loránd University, Hungary, vol. 24, p. 48, 2001.

[5] G. Cybenko, “Approximation by superpositions of a sigmoidal function,”
Mathematics of control, signals and systems, vol. 2, no. 4, pp. 303–314,
1989.

[6] S. Fortmann-Roe, “Understanding the bias-variance tradeoff,” 2012.

[7] L. A. Jeni, J. F. Cohn, and F. D. L. Torre, “Facing imbalanced data–
recommendations for the use of performance metrics,” 2013 Humaine Asso-
ciation Conference on Affective Computing and Intelligent Interaction, 2013.

[8] S. Geman, E. Bienenstock, and R. Doursat, “Neural networks and the
bias/variance dilemma,” Neural Computation, vol. 4, no. 1, p. 1–58, 1992.

[9] T. G. Dietterich, “Ensemble methods in machine learning,” Multiple Classi-
fier Systems Lecture Notes in Computer Science, p. 1–15, 2000.

[10] P. Bühlmann, “Bagging, boosting and ensemble methods,” Handbook of
Computational Statistics, p. 985–1022, 2011.

[11] L. I. Kuncheva, Combining pattern classifiers: methods and algorithms.
John Wiley and Sons Inc, 2014.

[12] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“Smote:synthetic minority oversampling technique,” Journal of Artificial In-
telligence Research, p. 321–357, Jun 6AD.

41

[13] C. C. Morris and R. M. Stark, Finite mathematics: models and applications.
Wiley, 1 ed., 2016.

42

A Description of Dataset

Table 3: Description of Dataset Features
Feature Name Feature Type Feature Description
LIMIT_BAL Numerical Amount of total credit
SEX Binary 1=male, 2=female
EDUCATION Categorical 1=grad school, 2=university, 3=high school, 4=others, 5,

6=unknown
MARRIAGE Categorical 1=married, 2=single, 3=others
AGE Numerical age in years
PAY_1 Categorical September, 2005 Repayment Status
PAY_2 August, 2005
PAY_3 July, 2005
PAY_4 June, 2005
PAY_5 May, 2005
PAY_6 April, 2005
BILL_AMT1 Numerical September, 2005 bill statement amount (NT dollar)
BILL_AMT2 August, 2005
BILL_AMT3 July, 2005
BILL_AMT4 June, 2005
BILL_AMT5 May, 2005
BILL_AMT6 April, 2005
PAY_AMT1 Amount of previous payment in: September, 2005
PAY_AMT2 August, 2005
PAY_AMT3 July, 2005
PAY_AMT4 June, 2005
PAY_AMT5 May, 2005
PAY_AMT6 April, 2005

43

	Introduction
	Background
	Feedforward Neural Network
	Performance Evaluation
	Classifier Evaluation
	Regressor Evaluation

	Bias-Variance Trade-off
	Bias-Variance Decomposition

	Ensemble Learning
	Bootstrap Aggregation
	Diversity in Ensemble Learning

	Model Development
	Data
	Model Structure
	Benchmark Models
	Classical Auto-encoding
	Classical Ensemble
	Random Forest as Adapter

	Results
	Experiments
	Model Performance
	Neural Network Adapter Results
	Random Forest Adapter Results

	Analysis

	Conclusion and Future Work
	Description of Dataset

