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1. Introduction 

 Polyelectrolyte multilayer (PEM) thin films prepared via Layer-by-Layer (LbL) 

deposition technique are of special interest in this research. The purpose of this study is to 

replace the current mechanical closure systems based on hook and loop type fasteners (i.e. 

Velcro) with PEM thin films. PEMs via LbL deposition technique have attracted attention since 

Decher and coworkers
1, 2

 first introduced them in the early 1990s. The technique is simple, 

cheap, versatile and environmental friendly; as a consequence a variety of thin films can be 

easily fabricated. By proposing PEMs as non-mechanical and nanoscopic molecular closures, we 

aim to obtain hermetic sealing, good adhesive strength, and peel off ease. 

 We studied the adhesive forces of PEM thin films using atomic force microscopy (AFM) 

and colloidal silica probes. We performed the force measurements in air at a controlled humidity 

level. Each chapter discusses parameters that are important in the determination of adhesive 

strength.  

 In Chapter I, we investigated the effect of salt concentration and type on the adhesion 

forces, morphology, and roughness of the resulting PEM thin films. We conducted AFM 

measurements and imaging in air at ~45% relative humidity. PEI(PSS5PAH5) and 

PEI(PSS10PAH10) PEMs prepared from NaF, NaCl, and NaBr salts at 0.5 M and 1.0 M ionic 

strengths were studied. We hypothesized that the parameters used during the PEM construction 

were important to tune the properties of the resulting thin films. 

 In Chapter II, we studied the effect of probe chemistry on the adhesive forces of PEM 

thin films, namely PEI(PAA5PAH5) and PEI(PSS6PAH6). The interactions between a PEM-
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covered surface and a probe of interest were investigated in a systematic way. The probes were a 

colloidal silica probe (unmodified), a colloidal silica probe functionalized with COOH surface 

chemistry, and a colloidal silica probe coated with PEI-PSS. While an unmodified colloidal silica 

probe was used for the quantification of interaction forces on the PEMs, modified colloidal silica 

probes were used to simulate PEM-PEM interactions. 

 In Chapter III, we expanded the scope of research using samples prepared by LbL 

deposition and grafting methods. For this reason, we used different types and combinations of 

polyelectrolytes than we studied in previous chapters. We performed AFM force measurements 

with a colloidal silica probe functionalized with COOH at 45% RH. The adhesive strengths of 

LbL deposited PEMs and grafted films were compared. 

 In Chapter IV, we aimed at showing the effect of relative humidity (RH) on the adhesion 

forces. This chapter provides validation as to why we performed adhesion force measurements at 

~45% RH. It was important to determine the working conditions and be systematic while 

conducting AFM force measurements in air since capillary force effects and static charging can 

be significant at certain RH values. Clean glass slides were used and force measurements were 

made at different humidity levels; both adhesion force distribution and retraction curves helped 

to determine the best RH conditions. In addition, PEI(PSSxPAHx) PEMs, where x was varied as 

20, 40, and  60, were also studied at different humidity levels and a comparison was made.   
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2. Literature Review 

2.1. The Polyelectrolyte Layer-by-Layer Assembly Technique: An     

overview of the field 

 

 The modification of surfaces is of great interest for controlling the adhesion between 

substrates. Surface modification of substrates can be utilized through several methods. Layer-by-

Layer (LbL) deposition method is one of the most promising and versatile methods. Thin films 

prepared via LbL method have overcome Langmuir-Blodgett (LB) films
3
: LB technique has 

some limitations such as substrate size, film quality and stability. Furthermore this technique 

requires special equipment. As an alternative to the LB technique, chemisorption from solution is 

also not a great technique, since both of those methods are limited to certain class of molecules. 

  

In 1966, Iler
4
 proposed the layer-by-layer deposition of charged colloids to build-up 

multilayer films. This pioneering work led to the development of the research field of 

polyelectrolyte multilayer thin films. However, due to a lack of sensitive surface characterization 

techniques, the detailed study of such assemblies could not be done and the technique was 

neglected. In the beginning of 1990s, Decher and coworkers
1, 5

 demonstrated the feasibility of 

the layer-by-layer deposition of charged amphiphiles and polyelectrolytes, which led to thin 

polyelectrolyte multilayer (PEM) films. Since then, the technique progressed rapidly
6-8

 (Figure 

2.1).  
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Figure 2.1 Number of publications on LbL self assembly in the first decade after it was 

developed by Decher et.al.
8, 9

 

 

 Figure 2.1 demonstrates how the field rapidly expanded in the first decade. It was not 

surprising to observe this rapid progress in the field considering the simplicity and versatility of 

the technique. Schlenoff
10

 has recently written a perspective for the future of this field and has 

had a very important remark: the field is mushrooming rather than maturing due to the 
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incorporation of various materials such as dendrimers, colloids, carbon nanotubes, and viruses in 

the construction of multilayers. 

 Polyelectrolytes (PEs) are the most widely studied materials in the LbL method. They are 

commonly used as additives to control colloidal stability and adhesive properties of surfaces.
11

 

An example for the latter case can be found in the application of paper making, as cationic 

polyelectrolytes help increase the dry strength of paper, serving as retention aids.
12

 

 Other materials can be used for creating LbL self assembly structures, including colloidal 

particles,
13

 biopolymers
14, 15

 (such as peptides, proteins, etc.), carbon nanotubes,
16

 and 

microgels.
17

 By incorporating a variety of materials into the fabrication of thin films via LbL 

technique, highly tuned films with controllable composition, structure, and thickness can be 

created. Another advantage of the LbL method is that the shape of the substrate does not matter. 

Thin films can be built-up on colloidal particles
18, 19

 as well as flat substrates.
1
 

 A depiction of the LbL method on the glass substrate can be seen in Figure 2.2. 

Polyelectrolyte multilayers (PEMs) are fabricated via LbL deposition method which is the 

immersion of a substrate into oppositely charged polyelectrolyte solutions alternatingly. Between 

each PE deposition layer, a rinsing step takes place, which helps remove weakly bounded 

polyelectrolytes on the surface. Rinsing is also important to prevent the contamination of the 

subsequent PE solution by adhered PEs from the previous PE solution. Usually, after each 

rinsing step, drying is also applied prior to the subsequent PE formation on the surface. 
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Figure 2.2 Schematic of the Layer-by-Layer Deposition Process.
2
 a) The molecular 

representation shows how polyanion and polycation are adsorbed on the positively charged 

substrate. Blue is used for polyanion chains while red is used for polycation chains. b) 

Immersion of positively charged substrate into polyanion and polycation solutions, respectively, 

with an intermittent rinsing step. 

 

 PEMs are fabricated by dipping, either manually or with an automated device. 

Nowadays, the studies with spray deposition are of great interest since the fabrication of thin 

films in this technique is much faster compared to those made by dipping (Figure 2.3).
20-22

 The 



Literature Review 
 

7 
 

studies are aimed at proving that PEM thin films are stable when they are prepared via spray 

deposition; as a consequence, spraying can replace dipping.   

 

 

 

Figure 2.3 Comparison of dipping (left) versus spray (right) methods.
20

 

 

 Since the polyelectrolyte layer-by-layer assembly technique is environmentally friendly, 

inexpensive, simple, and versatile due to adaptability to a large number of surfaces, it could be 

used in various fields. The technique has been extensively investigated for various applications 

in electrical,
23, 24

 optical,
25

 and biomedical devices.
26, 27

 To name some examples, contact lenses,
7
 

sensors,
28

 electrochromic films,
29

 conductive layers,
30

 and non-linear optical devices
31

 can be 

given. As it is obvious, the technique can be used on both surface modification and fabrication of 

thin film devices. 
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2.2. Polyelectrolyte Multilayer (PEM) Thin Films 

 PEM thin films have been studied by several techniques such as ellipsometry, X-ray 

reflectivity, quartz-crystal microbalance (QCM), atomic force microscopy (AFM), and surface 

force apparatus (SFA), etc.
7, 32-35

 

 The parameters used during the build-up process are very important and they can be used 

to tune the properties of the desired film. The choice of polycation/polyanion pair, pH  of the 

solution,
32, 36-38

  ionic strength,
33, 39, 40

 solvent quality,
33, 41

 molecular weight of 

polyelectrolytes,
35, 36

 and dipping time
42

 are among those several parameters that govern the 

properties of PEMs.  The conformation of the polyelectrolyte chains in solution is assumed to be 

preserved during the PEM formation and this conformation determines the internal structure of 

the deposited multilayer. For instance, when the PE solutions are prepared at high salt 

concentrations, thicker and rougher films are obtained, which is the result of coiled conformation 

of PE chains at this high ionic strength.
37

 A detailed review can be found elsewhere that 

discusses the internal structure and dynamics of PEMs as well as their functional properties.
43

 

 The heterogeneity of the substrate plays an important role in the PEM deposition. Trybala 

et al.
39

 studied the deposition of PSS/PAH on various substrates. For this reason, polished and 

unpolished silica, polished and electrochemically passivated titanium, polished and unpolished 

surgical stainless steel were used. They concluded that relatively higher amount of polymers 

adsorbed at heterogeneous surfaces. 

 The properties of the PEMs are dependent on the substrate features at the very first 

deposition layers. Above a minimal number of layers, which are called „precursor‟ layers, the 

properties of the system are independent of the underlying substrate and governed by the choice 
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of polycation/polyanion pair, as well as the deposition conditions. At the precursor layer regime, 

the properties of the system such as thickness and roughness are different than the so called „true 

multilayer regime‟. This fact was shown by several researchers.
35, 44

 M. Kolasinska et al.
35

 

showed that the increase of PAH/PSS film thickness with the number of deposition layers were 

smaller for the first six layers than the layers comprising the rest of the system. While the 

thickness per layer for the first six layers was 0.5 nm, it was 1.1 nm for the subsequent layers. 

This result was in agreement with the zone model proposed by Ladam et al.,
44

 in which the 

multilayer structure is divided into three zones. The first zone is adjacent to the substrate where 

thinner layers are observed. The second zone is the real bulk film and the third one is closest to 

the air. 

 Furthermore, several researchers conducted studies on poly (ethyleneimine) (PEI), which 

is the most studied polyelectrolyte (PE) as a precursor layer.
35, 39, 45

 PEI serves as an anchoring 

layer and helps to obtain homogenous and smoother films. Of special importance, PEI is also 

intensively used in pharmaceutical formulations, personal care products, household and 

industrial detergents.
46

 The effect of PEI on the built up of PEMs was shown in one of the 

studies where the multilayers prepared with PEI as the first layer were much less rough than 

those having the same number of layers but without an anchoring  layer.
35

 In addition, Bosio et 

al.
45

 showed that without a PEI precursor layer, the adhesion forces between the surfaces were 

affected by the heterogeneity of the substrate in the very first layer depositions. 

 The effect of PEI as a precursor layer was also shown on the tapping mode AFM 

images.
45

 When only two layers of PAH/PSS was deposited without PEI, some holes were 

observed in the size of around 300-400 nm which was about 10 times larger than the typical 

contact radius of a colloidal probe. The holes disappeared when the more layers were deposited 
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and no holes existed if PEI-precoated surfaces were used for the deposition treatment. 

Furthermore, the films without PEI were significantly rougher than the films with PEI-precoated. 

The root mean square (rms) of a film (four layers) with PEI was ~ 0.5 nm while it was ~3.0 nm 

for the same film without PEI. 

 

2.3. Interactions between PEM Covered Surfaces 

  

The majority of studies on the adhesive forces of PEMs were conducted using the surface 

force apparatus (SFA) and atomic force microscopy (AFM). One of the first studies on the 

interactions between polyelectrolyte coated surfaces was carried out by Lowack and Helm using 

SFA.
40

 One can find an information on the current understanding of interactions between 

surfaces coated with polyelectrolytes in a review, where various surface force techniques were 

reported.
47

  

 

 AFM is a powerful technique for probing the interactions between various surfaces. From 

the force-distance curves, the pull-off force or called adhesion force is obtained which gives 

information about the adhesive strength.
48

 Furthermore, colloidal probes are ideal candidates to 

be used with AFM to investigate the molecular interactions. The principles of the colloidal probe 

technique with an overview on the adhesion force measurements can be found elsewhere.
49

 By 

this technique, the interactions between a bare or modified colloidal probe and a planar surface 

can be studied. The importance of modified colloidal probes comes from the fact that those are 

helpful on the investigations where i.e. polymer coated surfaces are of interest. It is also worth to 
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note some comprehensive overviews by Drelich et al.,
50

 Capella et al.,
48

 and Butt et al.
51

 on the 

adhesion force measurements with AFM. 

 In the literature, the studies on the interactions between PE coated surfaces can be 

grouped as symmetrical and asymmetrical systems. The interactions between identical charges 

are named as symmetrical, such as the studies of Bosio et al.
45

 and Johansson et al.
52

 On the 

other hand, the study of Gong et al.
53

 is an example of an asymmetrical system where the 

interactions between oppositely charged surfaces were probed. Some of the studies will be 

briefly overviewed here. 

 Johansson et al.
52

 studied the symmetrical system formed from PAH and PAA on silica 

surfaces and mica, at a low ionic strength (0.01 M NaCl). They investigated the effect of 

molecular weight and contact time, using SFA and AFM under both dry and wet conditions. 

From the AFM measurements in a liquid cell, they observed greater pull-off force adhesion when 

PAH was formed on the outermost layer. The same phenomenon was also shown in a study 

conducted by Notley et al.
34

 In addition, when low molecular weight (LMW) polyelectrolyte 

combinations were used, the pull-off forces were greater than those for high molecular weight 

(HMW) combinations. This observation was a contrary to what Creton et al.
54

 suggested. 

However, Johansson et al.
52

 made a strong interpretation on this result. Higher pull-off forces in 

the case of LMW polyelectrolyte combinations were attributed to the higher mobility of chain 

ends, which would diffuse across the interface and form entanglements; and also to the increased 

contact area due to the compression of easily deformable LMW PEMs at a given load. The pull-

off force for (PAH6PAA5) formed from LMW polyelectrolytes was 6 mN/m at a contact time of 5 

s while it was 3.5 mN/m for the HMW combination at the same conditions. From the SFA 

measurements, they found that the adhesion forces between two bare mica substrates under dry 
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conditions were decreased when the mica was coated with PEMs. At 100% relative humidity 

(RH), the adhesive strength was higher for the PEM covered surfaces compared to those 

obtained under dry conditions, and a rapid decrease in adhesion forces was observed when the 

wet conditions were used. 

 Another study on symmetrical systems was conducted by Notley et al.
34

 who studied the 

interactions between PAH/PAA pair using QCM-D and AFM. They investigated the pH effect 

on the growth behavior of PEMs deposited at 0.01 M NaCl ionic strength on two silica surfaces; 

silicon wafer and colloidal silica probe. They investigated the pull-off forces under wet 

conditions and they found that the pull-off force was greater when PAH was adsorbed on the 

outermost layer. They interpreted this result as PAH being less rigid and easily penetrating 

across the interface which in turn leads to an increased adhesion between the PEMs. The 

normalized pull-off force values were approximately 2.2 mN/m for PAH6 PAA6 and 3.8 mN/m 

for PAH6PAA5. The stronger adhesive pull-off force stemmed from the more conformable and 

looser structure of the multilayer when PAH was deposited on the outermost layer. 

 On the other hand, Gong et al.
53

 studied an asymmetrical system. The interactions 

between a glass sphere and PEMs formed from PSS/PAH and DNA/PAH on the glass substrates 

were investigated using AFM in liquid. This study differed from the other studies where the 

interactions between two PEM covered surfaces were investigated. When PAH was deposited on 

the outermost layer, they did not observe any adhesion force between the glass sphere and the 

negatively charged PEM surface. They observed strong adhesion forces when PAH served as an 

outermost layer due to the interactions between the oppositely charged surfaces and possible 

entanglements of the polyelectrolyte chains that form a bridge between the glass particle and 

multilayer. The magnitude of the pull-off forces was lower for PSS/PAH than those for 
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DNA/PAH.  For PEI(PSS5PAH5), the pull-off force was roughly 0.18 mN/m while it turned out 

to be roughly 5.0 mN/m when PSS was replaced by DNA. The difference on the magnitude of 

adhesion forces was related to different surface morphologies of the resulted films and bridging 

of the polyelectrolyte chains. Moreover, the pull-off forces differed qualitatively, too; they 

obtained multiple adhesion peaks, which they referred to as the so called „sawtooth pattern‟, for 

PSS/PAH, and a larger single adhesion peak for DNA/PAH. 

 

 Adhesion forces are strongly dependent on environmental conditions. The adhesive 

strength obtained in a liquid environment or in air can differ. Studies in air must be performed 

carefully due to the existence of capillary forces. Even though capillary effects become strong at 

higher humidity levels, one should be always careful about adjusting the humidity in the work 

environment. For instance, at too low RH, static charging can also be a problem. 
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3. Chapter I: The Effect of Salt Type and Concentration on 

the Adhesive Strength and Morphology of Polyelectrolyte 

Multilayers 

 

3.1. Introduction 

 Polyelectrolyte multilayer (PEM) thin films have attracted attention since they were 

introduced by Decher et al.
1, 2

 in the early 1990s.These films are prepared by so called layer-by-

layer (LbL) deposition, which is the consecutive immersion of the substrate into oppositely 

charged polyelectrolyte solutions. The LbL deposition technique is an efficient method for 

surface modification and obtaining multilayered thin films with a controllable thickness at the 

angstrom level.  The technique and its applications have been extensively investigated.
7, 28, 55

  

 For the LbL deposition technique, any charged surface can be used as a substrate. A wide 

variety of substrates were used such as SiO2, quartz, glass, titanium plates, charged colloids, and 

polymers. Different from the conventional substrates that are inorganic, it is possible to find 

studies on a variety of polymers such as poly (propylene), poly (styrene), etc.
56

 Chen and 

McCarthy
57

 applied LbL deposition on chemically modified and unmodified PET substrates, 

such as on neutral (PET), negatively (PET-CO2
-
) and positively charged (PET-NH3

+
) substrates .  

 The parameters that govern the properties of the PEMs are the choices of 

polycation/polyanion pair, ionic strength, 
33, 39, 40

 solvent quality,
33, 41

 molecular weight of 

polyelectrolytes,
35, 36

 pH  of the solution,
32, 36-38

  and dipping time.
42

 The conformation of the 

polyelectrolyte chains in solution is assumed to be preserved during the PEM formation and this 
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conformation determines the internal structure of the deposited multilayer. From this point of 

view, the parameters used during the build-up process can be used to tune the properties of the 

desired film. A detailed review can be found elsewhere that discusses the internal structure and 

dynamics of PEMs as well as their functional properties.
43

 

 The deposition of the first layer is very important during PEM formation. Due to the 

heterogeneities of the substrate, the properties of the film are affected, where the film can be 

treated independent of the substrate only after a certain numbers of the deposition layers or by a 

certain choice of the first deposition layer. Poly (ethyleneimine) (PEI) is the most studied 

polyelectrolyte (PE) as a precursor layer
35, 45

 , which helps to obtain homogenous and smoother 

films starting from the first layer. Bosio et al.
45

 showed that not only morphology and thickness 

are altered, also adhesion between the surfaces are affected in the prior to „true‟ multilayer 

regime. Without a PEI precursor layer, the adhesion forces were influenced by the heterogeneity 

of the substrate, such that even between same charged PEs, a strong adhesion was observed. The 

adhesion disappeared with the addition of layers when the „true‟ multilayer regime was reached. 

 Thus far, the interactions between PEM covered substrates and a colloidal particle or two 

PEM covered surfaces were investigated with the surface force apparatus (SFA) and atomic 

force microscopy (AFM). One of the first studies on the interactions between polyelectrolyte 

coated surfaces were carried out by Lowack and Helm using SFA.
40

 In the present study, we 

used AFM and colloidal probe microscopy. The principles of the colloidal probe technique with 

an overview of adhesion force measurements can be found elsewhere.
49

 The studies investigating 

the interactions and adhesive properties of the thin films have mainly used silicon wafer, glass, 

or mica as a substrate. In this work, poly (ethylene terephthalate) (PET) which is a thermoplastic 
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was used as a substrate, different from conventional inorganic supports. PET has been previously 

used as a substrate on which the LbL technique was investigated. 
56, 57

  

 There are numerous studies on the self-assembly and growth mechanism of 

polyelectrolytes, whereas studies on the interactions between polyelectrolyte coated surfaces are 

scarce. Bosio et al.
45

 (2004) and Gong et al.
53

 (2005) have also pointed out this gap in their 

studies. The present study attempts to fill this gap using AFM and colloidal probe microscopy. 

We prepared the thin films of PEI(PSS/PAH) at 5 and 10 bilayers with NaCl, NaBr and NaF salts 

at 0.5 M and 1.0 M concentrations, for the purpose of investigating the role of salt type and ionic 

strength on the adhesion properties, morphology and roughness of these films. The interactions 

between positively charged outermost layer of PEMs and negatively charged probes were 

studied. While force measurements and roughness measurements gave quantitative results, 

imaging of the samples indicated some information about the morphology. 

 

3.2. Materials and methods 

3.2.1. Materials 

 For the preparation of PEM thin films, poly(ethyleneimine) (PEI, 50 % w/v, MW of 600-

1000 kg/mol) and poly(allylamine hydrochloride) (PAH, MW   70 kg/mol) as polycations and 

poly(sodium 4-styrenesulfonate) (PSS, 30 % w/v, MW   200 kg/mol) as a polyanion were used 

(Figure 3.1). The salts used during the build up process were NaCl (purity ≥99.0 %), NaF (MW of 

41.99 g/mol), and NaBr (MW of 102.89 g/mol). All the polyelectrolytes and salts were purchased 

from Sigma-Aldrich, except NaBr from J.T. Baker. MilliQ reversed osmosis water (purity 18.2 
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ohms.cm) was used during multilayer deposition. Poly(ethylene terephthalate) (PET) film 

(Melinex S/142 Gauge) was used as the substrate, purchased from  DuPont Teijin Films. 

 Two different types of AFM probes were used for the purposes of adhesion force 

measurements and imaging. Colloidal silicon AFM probes (1 µm SiO2 particles) functionalized 

with COOH surface chemistry, spring constant of 14 N/m, were purchased from Novascan 

Technologies, Inc. Regular silicon cantilevers (Asylum Research, manufacturer Olympus®) with 

a spring constant of 42 N/m were used for only imaging while the colloidal probes were used for 

adhesion force measurements.  

                  

 

Figure 3.1 Structural formulas of the polyelectrolytes used in this study. 

 

3.2.2. Polyelectrolyte Film Formation 

 The LbL deposition technique was applied to prepare the PEM thin films. HMS
TM

 Series 

Programmable Slide Container (Carl Zeiss, Inc.) was used for dipping. Prior to multilayer 

deposition, PET films were air plasma-treated (PDC-32G, Harrick Plasma Cleaner) for 20 

minutes to improve surface coverage and enhance adhesion between surfaces. The preparation of 

PEI                                                                          PSS                                     PAH 
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films was initiated by immersing the substrate into PEI solution followed by consecutive 

adsorption of oppositely charged polyions from their solutions (30 minutes each). The 

concentration of PE solutions was 1 mg mL
-1

, containing 0.5 M NaCl.
53

 Between each deposition 

layer, the films were rinsed twice with water for 2 minutes each and later dried in air for 10 

minutes. The washing steps are helpful to stabilize the weakly adsorbed polymer layer.
2
 The 

repetition of deposition of PEs was continued until the desired number of layers was obtained. 

For the investigation of salt type effect, PE solutions were prepared with either NaF or NaCl or 

NaBr at ionic strengths of 0.5 M and 1.0 M. 

 

3.2.3. Adhesion Force Measurements 

  

Adhesion forces were quantified with an AFM, NanoScope IIIa (Dimension 3100, Veeco 

Metrology Inc., Santa Barbara, CA), by using intermittent contact mode in air. Fifty force 

measurements were taken from each sample. For increased accuracy, five repeat measurements 

were taken from each location. By moving the cantilever to ten different locations on the sample 

in both x and y directions, fifty measurements were obtained. The raw force curves were 

processed with the assistance of self-written MATLAB® and Microsoft Excel scripts. Humidity 

control played an important role in these experiments because the measurements were taken in 

air. For all the experiments, the relative humidity (RH) was set to ~45% RH where it is safe to be 

away from capillary force effects.
58, 59
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3.2.4. Roughness Measurements 

  

Sample morphology and roughness were investigated via another AFM, (MFP-3D™, 

Asylum Research, Santa Barbara, CA), by using intermittent contact mode in air. The images 

were taken with a scan size of 5 µm   5 µm. The scan rate was kept constant at 1.0 Hz. A high 

resolution of 512   512 data points was acquired. All the images were flattened by applying a 1
st
 

order flattening.  The roughness was analyzed on at least two independent samples with 5 

equally divided areas on each (having the number of measurements to be at least 10). A box size 

of 1 µm   1 µm was used to quantify the roughness. Standard deviation values were obtained 

from all the measurements.  

The root-mean-square (rms) of the films was calculated using the Igor Pro 6 software, 

according to: 

                     
 

       
   

                                                   (3.1) 

 

where    is the height value and V_npoints is the number of points for the defined area. 
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3.3. Results and Discussion 

3.3.1. Adhesive Strength of the PEM Thin Films 

 In our study, the adhesion forces between oppositely charged surfaces were investigated 

by colloidal probe technique via AFM. A colloidal probe functionalized with a negative surface 

chemistry was used to quantify the interactions between the probe and the positively charged 

PEM in the outermost layer.  To the best of our knowledge, this is the first study investigating 

the role of salt type and ionic strength on the adhesive strength of PEM covered PET substrates. 

 The studies investigating the interactions between charged surfaces can be grouped as 

symmetrical (same charged surfaces) and asymmetrical (oppositely charged surfaces) systems. 

Bosio et al.
45

 and  Johansson et al. 
52

 studied symmetrical systems comprised of PSS/PAH and 

PAH/PAA, respectively. Our system is asymmetrical because the interactions between the 

surfaces of interest are oppositely charged. 

 Independent of the deposition number, salt type and ionic strength, we observed only one 

single sharp peak for the pull-off force upon the retraction curves (Figure 9.1). This result is in 

agreement with an earlier study
53

 where the interactions between a glass sphere and positively 

charged multilayer formed from DNA/PAH were investigated and only a large single adhesion 

peak was observed. In that same study,
53

 when DNA was replaced by PSS, the behavior of the 

adhesion peaks changed from a single adhesion to multiple adhesions. The „sawtooth pattern‟, as 

this was called, was attributed to bridging between the negatively charged glass sphere and 

positively charged polymer. The difference between those adhesion peak behaviors were 

attributed to the bridging and structure and morphology of the multilayers. Single adhesion was 
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observed likely due to the entanglement of PAH/DNA chains that caused partial detachment of 

adsorbed DNA layers, considering the pull-off force range and contour lengths of 

polyelectrolytes. Although our system is very similar to theirs, the discrepancy between the 

adhesion peak behaviors could be related to the conditions under which the AFM force 

measurements were made. Their results show the interactions between oppositely charged 

surfaces in an aqueous environment while our experiments investigated the interactions under 

ambient conditions at a controlled humidity level. Pericet-Camara et al.
60

 also showed multiple 

adhesion events in an experiment conducted in an aqueous environment, namely in KCl solution. 

 Figure 9.1 shows typical force-distance curves obtained for PEI(PSS5PAH5) prepared at 

0.5 M NaBr ionic strength as a representative of all systems. Although fifty force cycles were 

taken for each sample, only ten are shown. Different colors refer to different locations on the 

sample and one out of the five replicate force measurements from the same spot. We consistently 

observed a single adhesion peak in the retraction curves, without any exception. Upon the 

approach, we did not observe any long-range attraction. For both the retraction and approach 

curves, we had some perturbations due to the noise effect related to AFM. 

 Our objective was to determine the role of various salts and ionic strength on the 

adhesion properties of the samples as well as to find the best sample(s) that would show the 

greatest adhesive strength.  
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Figure 3.2 Adhesion forces as a function of salt type and concentration. The reported adhesion 

values are the average of fifty measurements between the PEM and a colloidal silica probe. 

Measurements were made in air at 45 % relative humidity. 

  

 Figure 3.2 shows the average adhesion forces as a function of salt type and concentration 

at 5 and 10 bilayers of prepared PEM thin films. The adhesive strength of these thin films is in 

the range of approximately 80-490 nN. The adhesion values in a range of 0-200 nN were 

observed for samples prepared from only NaBr salt, comprising 33.33 % of overall adhesion 
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(avg) force data. The samples prepared from NaCl and NaF salts showed higher adhesion forces 

and they were in the range of 200-400 nN. The adhesion force contribution of these salts to the 

overall data was 58.33 %. The highest adhesion force was obtained as 489.12 nN for a sample, 

having the 8.33 % contribution to the overall adhesion force data. The role of ionic strength as an 

increase on adhesion forces was pronounced when NaCl and NaF salts were used at the 

multilayer build-up process, except for 10 bilayers of NaF. Furthermore, the effect of increasing 

the deposition number on the adhesion forces was pronounced especially on the samples 

prepared from NaF salt. On the other hand, any treatment such as increase on deposition number 

or salt concentration did not help improving the adhesive strength of samples prepared from 

NaBr salt. Regardless of the deposition number and ionic strength, the poorest adhesive 

properties were obtained for this salt. 
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Figure 3.3 Adhesion force distribution for PEI(PSS5PAH5) as a function of salt type effect  at an 

ionic strength of a) 0.5 M, and b) 1.0 M. 

 

 

 

 

 

 

 

Figure 3.4 Adhesion force distribution for PEI(PSS5PAH5) as a function of salt type effect  at an 

ionic strength of a) 0.5 M, and b) 1.0 M. 
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 The discussion held for average adhesion forces requires further analysis of the data. For 

this reason, the adhesion force distribution plots were created for all the samples. The narrowest 

adhesion force range at lower values obtained for NaBr salt confirms why the poorest adhesive 

strength was observed for the films prepared from this salt (Figures 3.3 and 3.4). In addition, the 

broader adhesion force distribution for NaCl and NaF is indicative of the greater adhesive 

strength. The adhesion forces for 1.0 M NaCl (5 and 10 bilayers, Figures 3.3 and 3.4) and 0.5 M 

NaF (10 bilayers, Figure 3.4) range up to 700 nN, 900 nN and 1100 nN, respectively (Figure 

3.4). Furthermore, when the force-separation data for all the samples were put into one plot, it 

was observed that most of the data accumulated at the range of ~ 25-500 nN while the whole 

range was approximately 25-1000 nN (Figure 9.2). In Figure 9.2, each color represents different 

case, such as different deposition number with a chosen salt type and concentration. The 

contributions from the higher adhesion values, 500 nN to 1000 nN, should have made a 

difference for some samples, which outstand as showing the greatest adhesive strength. 

Confirmed from both the average adhesion values and the distribution plots, those samples were 

the ones prepared from 1.0 M NaCl (5 and 10 bilayers) and 0.5 M NaF (10 bilayers).  

 To compare our adhesion forces with the ones from literature, all the average values were 

divided by the probe radius. Our normalized adhesion forces are much greater than those 

reported in the literature. While our results are on the order of 1OOs of mN/m (the lowest 158.1 

mN/m, the highest 978.24 mN/m), the reported values are much lower for similar studies. 

Johansson et al.
52

 showed that the pull-off force for PAH6PAA5 formed from LMW 

polyelectrolytes was 6 mN/m at a contact time of 5 s while it was 3.5 mN/m for the HMW 

combination at the same conditions. In another study, Notley et al.
34

 obtained approximately 2.2 

mN/m for PAH6PAA6 and 3.8 mN/m for PAH6PAA5. In a similar study to ours, Gong et al.
53
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showed that the pull-off force obtained for PEI(PSS5PAH5) was roughly 0.18 mN/m while it 

turned out to be roughly 5.0 mN/m when PSS was replaced by DNA.  

 There are several possible reasons. First, it should be noted that the contact time at the 

measurements were held constant. One of the possible scenarios could be based on the 

„screening effect‟ of charges when the ionic strength was high. At higher salt concentrations, 

polyelectrolytes tend to form coiled structures due to the reduced interactions along the PE 

chains. As a consequence, greater pull-off force is required to snap away from the surface and to 

break the stronger interactions between the coiled structure of PEM and the probe. The second 

possible scenario could be any excess charge at the PEM surface bridging with the probe surface. 

Under high salt concentration, one can expect to have more PAH or PSS monomers that are not 

polyion paired and cause residual charges. This observation was discussed in a study where the 

presence of uncompensated polyion charges was probably the main cause for the oscillations in 

the solvent fraction.
61

 

 The modeling of the forces is not in the scope of this work; however, one can assume that 

the contributions from van der Waals attraction could be higher in air than those in water. 

Claesson et al.
11

 obtained significantly greater pull-off forces for  polymer coated mica surfaces  

in air (1000 mN/m) while the same system in water showed much lower values (2-5 mN/m). The 

strong pull-off force for polymer coated mica surfaces in air is reasonable when the interactions 

between highly energetic mica surfaces are considered (800-1200 mN/m).
11

  Similarly, in 

another study, the interactions between PEM covered mica surfaces obtained from the SFA 

measurements in wet conditions were significantly lower (1.9 mN/m) than those in dry 

conditions (100 mN/m) and PEM coverage decreased the adhesion force between bare mica 

surfaces (1500 mN/m).
52

 Therefore, it should not be surprising to obtain greater adhesive 
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strength in our system compared to the reported values in water. Although we made some 

conclusions about the differences on the adhesive strength of the samples prepared at various salt 

types and concentrations, the reasons for observing such differences when the salt type was 

changed are not clear yet. 

 

3.3.2. Roughness and Morphology of the PEM Thin Films 

 Furthermore, we performed AFM imaging on the same samples. The ionic strength of the 

polyelectrolyte solution is important since the thickness and roughness of the resulted films are 

affected. Several researchers have observed this fact which was attributed to the conformational 

changes of the PE chains in their aqueous solutions.  At high ionic strengths, the chains can form 

a more coiled conformation since the electric charges are screened along these PE chains.
39

 As 

well as increasing ionic strength effect, decreasing degree of polymer charge also leads to more 

coiled conformation of PE chains which is the result of reduced electrostatic repulsions along 

these chains. As a conclusion, thicker and rougher films are obtained.
37

 Despite some exceptions, 

we also observed much rougher films when the ionic strength was increased (Table 3.1). The 

images taken for 5 bilayers with a NaBr salt at different ionic strengths demonstrate this 

observation (Figure 3.5). With an increase in ionic strength, much taller features on a 

comparatively larger area were observed.  The ionic strength affects also the morphology of the 

films. McAloney et al.
62

 found that the morphology of the films was different at low and high 

salt concentrations (NaCl, 0.0001 M to 1.0 M) for PDDA/PSS films at 10 bilayer.  At high salt 

concentrations, they observed vermiculate structures in these films which were stable even in 

high temperatures and existed in wet conditions. 
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 The films prepared from PEI(PSS/PAH) with different deposition number, salt type and 

concentration  are relatively smooth compared to other studies which used other PEs. McAloney 

et al.
62

 obtained much rougher films of (PDDA/PSS)10 when the salt concentration was increased 

from 0.5 M (rms,~13 nm) to 1.0 M (rms,~21 nm). For our films, the range of the rms values is 

approximately 3-6 nm. On the other hand, Gong et al.
53

 showed much smoother films comprised 

by PSS/PAH up to 5 bilayers. They did not observe any dependence of deposition number on the 

rms values, which were in the same order of for bare glass substrates (rms, ~ 1 nm). Despite the 

same parameters used in the LbL deposition technique (0.5 M NaCl, 1.0 g/l PE concentration), 

the discrepancy between their results and ours might stem from the scan size (1 µm   1 µm) of 

the images that were used for roughness analysis and the substrate (glass).  

 

Table 3.1 Roughness (nm) of the PEM thin films as a function of salt type and concentration. 

  0.5 M 

NaF 

0.5 M 

NaCl 

0.5 M 

NaBr 

1.0 M 

NaF 

1.0 M 

NaCl 

1.0 M 

NaBr 

PEI(PSS5PAH5) 

 

avg 5.01 5.53 4.55 8.50 6.09 5.39 

stdev 1.69 1.73 1.73 1.92 2.89 2.41 

PEI(PSS10PAH10) avg 6.74 3.48 4.40 2.97 3.64 7.34 

stdev 3.02 1.21 2.22 1.20 1.74 2.22 

 

 In contrast to what was shown by Wong et al.,
37

 we could not make any generalization on 

the roughness values of different types of salt. They obtained thicker and rougher films for 

PSS/PDADMAC system, in the order of F
-
<Cl

-
<Br

-
. They interpreted the results as Br

-
 being a 
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much bigger ion and having larger polarizability (∼12.2 *10
-6

 m
3
/mol) compared to F

-
 ion (∼2.3 

*10
-6

 m
3
/mol). They also claimed that PDADMAC ions could interact more strongly with Br

-
 

than with F
-
, possibly by means of “bridging” or another way, since Br

-
 ion is surrounded by a 

thin, less-ordered hydration shell which makes it easy to adjust to the environment. Therefore, 

when Br
-
 ions were used, the screening effect was more effective along the charges of polycation 

chain that lead to stronger coiling of the chains and thicker films with rougher multilayers.
37

 

However, in our case, having a weak polycation (PAH) could have changed this scenario.  
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Figure 3.5 AFM images of PEI(PSS5PAH5) at an ionic strength of 0.5 M NaBr (top) and 1.0 M 

NaBr (bottom). The bars represent z-scale. 
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3.3.3. Relating Adhesive Strength and Roughness of the PEM 

Thin   Films 

 Furthermore, we attempted to find some correlations between the adhesive and roughness 

properties of the PEM thin films. 
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Figure 3.6 Adhesion forces versus RMS roughness for all systems. 

All the films are relatively smooth films. The highest adhesion force with a relatively 

rough surface was obtained for NaF salt at 0.5 M ionic strength and 10 bilayers (489.12 nN and 

6.74 nm). The next highest adhesion forces were obtained at an ionic strength of 1.0 M NaCl and 



Chapter I                                                                                               salt effect 
 

32 
 

NaF salts (386.01 nN, 385.02 nN, and 381.74 nN) where the roughness of these films varied 

between approximately 3-6 nm (Figure 3.6). These observations show that a film with good 

adhesive properties might have relatively smooth structure when another salt type was used. 

Although the adhesion forces are approximately the same for NaF and NaCl salts at 1.0 M ionic 

strength, the surface properties seem to differ when the deposition layer number is changed. One 

can decrease the roughness of the resulted films by depositing more PEMs while keeping the 

adhesive strength same. Furthermore, the lowest adhesion forces at medium roughness, except 

7.34 nm, obtained in the case of NaBr salt.  

 All the observations reward for the applications of PEM thin films where smooth surfaces 

with good adhesive properties or vice versa are preferred. By changing the salt type, 

concentration and deposition number, the properties of the films could be tuned.  

 

3.4. Conclusions 

 We have studied the role of salt type and concentration on the adhesive properties and 

morphology of PEI(PSS/PAH) thin films.  AFM was used for both imaging and quantifying the 

adhesion forces of the prepared samples at 5
th

 and 10
th

 bilayers. We showed both the distribution 

and the average adhesion forces to explain the adhesive properties of the PEMs. The films 

prepared from NaCl and NaF at an ionic strength of 1.0 M were outstanding among all the 

samples by showing the greatest adhesive strength. Furthermore, the highest adhesion force was 

obtained as 489.12 nN (0.5 M NaF, 10 bilayers). The PEMs deposited in the case of NaBr salt 

exhibited the poorest adhesive strength and neither deposition number nor salt concentration 

helped to improve the adhesion properties. Moreover, the reasons for obtaining significantly 
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higher (normalized) adhesion forces compared to the reported values from literature were 

discussed stating some possible scenarios. Those results were attributed to the measurements 

taken in dry conditions and van der Waals force contribution in air as well as coiled structures of 

PEMs at high ionic strengths and any excess charge on the surface. Films with relatively smooth 

surfaces were obtained and the roughness of the films varied with a change on ionic strength and 

multilayer number. We proposed that by changing the salt type, concentration and deposition 

number, the thin films with the desired adhesive strength and morphology could be obtained.  
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4. Chapter II: The Effect of Various Probes on the Adhesion 

Force Measurements 

 

4.1. Introduction 

 

 The interactions between polyelectrolyte multilayer (PEM) covered surfaces are of great 

interest. There are numerous studies about the growth and self-assembly of PEM thin films since 

the layer-by-layer (LbL) deposition technique was first introduced;
1, 2

 however the little work 

about the interactions of polyelectrolyte coated surfaces is not satisfactory for the moment. 

Surface force apparatus (SFA) and atomic force microscopy (AFM) are the most common tools 

that have been used for the investigation of the interactions between the surfaces. One of the first 

studies on the matter of this subject was held by Lowack and Helm using SFA.
40

 On the other 

hand, adhesive strength can also be quantified at macroscopic level, such as applying the peel-off 

test between the two surfaces.
63, 64

  

 Atomic force microscopy and colloidal probe technique have been used for the 

quantification of interaction forces between various surfaces. Colloidal probes with a diameter of 

1 µm to several microns are used either as bare or coated with various polymers.
52, 58, 65

 From this 

point of view, colloidal probes bring versatility to the field by allowing various coatings on their 

sphere surfaces. As a consequence, the interactions between PEM covered surfaces can be 

probed by AFM at nanonewton to piconewton sensitivity.  

 The properties of the PEM thin films, prepared by layer-by-layer deposition technique, 

can be tuned simply by the choice of  polycation/polyanion pair, molecular weight of the PEs,
35, 
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36
 pH of the solution,

32, 37, 38
 ionic strength,

33, 39, 40
 and etc. The adhesion force, or so called pull-

off force, between the polyelectrolyte coated surfaces does not depend only on the conformation 

of the polyelectrolytes that adsorbed on the sample, but it also depends on the environmental 

conditions where the force measurements are conducted. Specifically, the measurements in air 

can be affected by the relative humidity or the presence of organic vapors in the environment.
66

 

Therefore, it is important to understand the interactions between an AFM tip and a sample 

surface under different environmental conditions.  

 

 The studies on the interaction forces between two PEM covered surfaces or a PEM 

covered surface and a bare surface were held commonly in aqueous environments.
34, 45, 52, 53, 60

 

However, the studies carried out on the matter of this subject in air are scarce. In our previous 

study, we pointed out this gap and discussed in detail (Chapter I). The present work discusses the 

interactions between oppositely charged surfaces in air; one PEM-covered sample and a probe of 

interest. Three different probes were used to investigate the effect of various probes on the 

adhesion forces; namely as, a colloidal silica probe, a colloidal silica probe functionalized with 

either COOH surface chemistry or PEI/PSS coating. While a bare silica probe was used for the 

quantification of interaction forces on the PEMs, functionalized silica probes were used to 

simulate PEM-PEM interactions.  
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4.2. Experimental Section 

4.2.1. Formation of the PEM Thin Films 

 Thin films of PEI(PAA5PAH5) and PEI(PSS6PAH6) were prepared using LbL deposition 

technique on PET (DuPont Teijin Films, Melinex S/142 Gauge) substrates. Poly(ethyleneimine) 

(PEI, 50 % w/v, MW of 600-1000 kg/mol) and poly(allylamine hydrochloride) (PAH, MW   70 

kg/mol) as polycations and poly(sodium 4-styrenesulfonate) (PSS, 30 % w/v, MW   200 kg/mol) 

and poly(acrylic acid) (PAA, 25 % w/v,  MW   50 kg/mol) as polyanions were used. PE 

solutions of concentration 1 mg/mL containing 0.5 M NaCl (purity ≥99.0 %) were prepared with 

milliQ reversed osmosis water (purity 18.2 ohms.cm). All the polyelectrolytes and salt were 

purchased from Sigma-Aldrich, except PAA from Polyscience Inc. The PEM thin films were 

built up automatically by using HMS
TM

 Series Programmable Slide Container (Carl Zeiss, Inc.). 

First, PET substrates were exposed to air-plasma cleaning (PDC-32G, Harrick Plasma Cleaner) 

for 20 minutes to enhance adhesion between surfaces. LbL deposition of polyelectrolytes were 

initiated by immersing the substrate into PEI solution and continued by the consecutive 

adsorption of oppositely charged polyions from their solutions (30 minutes each). Post 

deposition a layer, the film was always rinsed twice with water for 2 minutes each and dried in 

air for 10 minutes. After this washing and drying steps, the procedure was continued till the 

desired number of layers was obtained. 
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4.2.2. AFM Probes and Force Measurements 

 For investigating the effect of various probes on the interactions between two surfaces, 

three different types of AFM probes were used. Colloidal silica probes (1 µm SiO2 particles) 

with a spring constant of 14 N/m were purchased from Novascan Technologies, Inc. in two 

forms: bare and functionalized with COOH surface chemistry. The third type of probe was 

prepared at the lab conditions using the LbL deposition method. A bare silica probe was coated 

with a monolayer of PEI (50 % w/v, MW   750 kg/mol) and PSS (30 % w/v, MW   70 kg/mol) 

by manually dipping the probe into the solutions. The rinsing and drying steps were applied as 

well. The spring constant of this PE coated probe was assumed to be the same as bare colloidal 

silica probes. The probes were cleaned prior to AFM measurements leaving under UV light 

overnight. 

 AFM, NanoScope IIIa (Dimension 3100, Veeco Metrology Inc., Santa Barbara, CA), was 

used for the quantification of adhesion forces. Twenty-five force measurements were collected 

for each sample in air at ~45% relative humidity (RH) where it was safe to be away from the 

capillary force effects.
58, 59

 The cantilever was moved to five different locations on the sample in 

both x and y directions, and five measurements were collected from each location. The raw force 

curves were processed with the assistance of self-written MATLAB® and Microsoft Excel 

scripts.  
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4.3. Results and Discussion 

4.3.1. Probe effect on the adhesion forces of PEI(PAA5PAH5) 

  

 The interactions between oppositely charged PEM thin films and probes of interest were 

investigated using AFM. The force measurements were made in air at a controlled humidity level 

(45% RH). For the ease of discussion of the various probes, each type of the probe will be named 

shortly. A colloidal silica probe will be referred to as a „bare probe‟, while a colloidal silica 

probe functionalized with COOH surface chemistry will be referred to as a „functionalized 

probe‟ and a PEI-PSS deposited colloidal silica probe will be referred to as a „PE coated probe‟. 

Considering a series of probe measurements, starting from a bare probe to a functionalized probe 

and finally to a PE coated probe, we aimed to have the best representative system for the 

interactions between two PEM covered surfaces. In the present study, for the interactions 

between a PEM-covered substrate and a probe, the pull-off force as a magnitude and a range was 

of great interest (Figure 4.1). The magnitude of the pull-off force is simply the adhesive strength 

of the sample. The range of the pull-off force is the distance where the adhesion peak is observed 

and this range is important since it can give an idea about the molecular interactions. For 

instance, this range can give information about bridging between the polymer surface and probe 

based on the contour lengths of polymers. 

 For each probe, the pull-off forces were presented in force-separation curves. In each 

system, only one single sharp peak was observed upon retraction. Based on the probe, the 

strength of the interactions was different as it was seen in the magnitude of the pull-off forces. 

With a bare probe, very large adhesive forces were obtained (Figure 4.2). Although the tip-

sample separation occurred at considerably short distances (~2 nm), the range where the pull-off 
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forces observed was large, being approximately 80-120 nm. Even though the tip-sample 

interactions were broken at shorter distances, the reason of having large pull-off force range can 

be related to bridging or interactions between the PE chain and the probe. In other words, upon 

snapping off the probe from the surface, the detachment of the PE chain still continues and this is 

what makes the variation on the pull-off force range. The pull-off force range increased with an 

increase in the magnitude of the pull-off force. We believe that this relation is important. 

However, the reason(s) for this relation are not clear yet. 

 

Figure 4.1 A typical force-separation curve shown for the clarity of discussed terms such as 

range and magnitude of pull-off force and tip-sample separation. 
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Figure 4.2 Force-separation curves for PEI(PAA5PAH5) prepared at 0.5 M NaCl. The 

measurements were collected at 45% RH with a colloidal silica probe. Ten force curves, five 

being from the same spot, were represented upon retraction. 
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Figure 4.3 Force-separation curves for PEI(PAA5PAH5) prepared at 0.5 M NaCl. The 

measurements were collected at 45% RH with a colloidal silica probe functionalized with 

COOH. Ten force curves, five being from the same spot, were represented upon retraction. 

 

 Another type of probe used in the present study was a functionalized probe. The adhesive 

strength obtained from the interactions of a functionalized probe and a PEM surface was very 

low (Figure 4.3). To be consistent on the comparisons of force-separation curves, the scale for 

both separation and force was kept same for all the systems. However, it was difficult to 

distinguish the adhesion peaks from the curves in this scale for a functionalized probe. For this 

reason, the figure was zoomed-in (Figure 9.3). Contrary to the pull-off force range obtained for 
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bare probe interactions, much smaller values were obtained (~7-15 nm). Even 40% of the data 

(25 force cycles) showed that this range was less than 1 nm which was very close to the tip-

sample separation values. The interactions with a functionalized probe were not as strong as the 

ones observed with a bare probe.  

 

 Finally, two PEM-covered surfaces were investigated using a PE coated probe. Similar to 

the results obtained from a bare probe, relatively large adhesion forces were observed (Figure 

4.4). Contrary to the pull-off force range from a functionalized probe, considerably larger range 

was obtained varying from 15 nm to 80 nm, but still smaller than a bare probe range. A 

remarkable and systematic trend was caught in the relation between the magnitude of pull-off 

forces and the range. In other words, at a certain adhesion force window, the pull-off force range 

was scaled to the corresponding adhesive strength and increased with an increase on adhesion 

force. 

 Furthermore, we investigated the behavior of approach curves (Figure 4.5). No long-

range forces were observed upon approach for any type of the probes. For a functionalized 

probe, the approach curves could not be zeroed to the x-axis: This might be related to optical 

noise of the instrument (AFM). 
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Figure 4.4 Force-separation curves for PEI(PAA5PAH5) prepared at 0.5 M NaCl. The 

measurements were collected at 45% RH with a PEI-PSS deposited colloidal silica probe. Ten 

force curves, five being from the same spot, were represented upon retraction. 
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Figure 4.5 Probe effect on the approach curves for PEI(PAA5PAH5) is represented with ten 

force curves for each probe, five being from the same spot, were represented. The measurements 

were collected at 45% RH. 
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Figure 4.6 Probe effect on the adhesion force distribution values for PEI(PAA5PAH5). Each 

color stands for one type of probe. The measurements were collected at 45% RH. 

 

 The adhesive strength of the sample was dependent on the interactions with different 

probes. A wide range of adhesion force distribution was obtained where each probe interaction 

resulted in a different adhesive force window (Figure 4.6). Even though each probe was 

negatively charged, different functional groups in each probe probably affected the interactions 

and caused differences on the adhesive strengths. The adhesion forces accumulated at a narrow 

range and lower values for a functionalized probe while relatively broader adhesion force 
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distribution at higher values were obtained for a silica probe and a PE coated probe. The majority 

of the adhesion forces obtained with a bare probe was around 1000 nN. For a PE coated probe, 

adhesion forces as high as 500 nN and 700 nN were obtained. On the other hand, the adhesion 

forces of a functionalized probe did not exceed 150 nN. 

 

Table 4.1 Comparison of mean and normalized adhesion forces obtained with various probes. 

Type of probe Bare probe 
Functionalized 

probe 
PE coated probe 

 
mean stdev mean stdev mean stdev 

Adhesion Force (nN) 1104.88 256.50 70.73 36.15 372.61 220.26 

Normalized Mean 

Adhesion Force (mN/m) 
2209.76 141.46 745.22 

 

 Furthermore, we normalized the mean adhesion forces to make a comparison within the 

present study and literature. The greatest adhesive strength was obtained when a bare probe was 

used (Table 4.1). On the other hand, the lowest adhesive strength was observed when a 

functionalized probe was used. Relatively higher adhesive strength was obtained with a PE 

coated probe. When these results were compared with similar studies, a substantial difference on 

the adhesive strengths was found. For instance, the symmetric systems where the interactions 

between the identical surfaces were studied revealed that the adhesive strength was only several 

mN/m. Both deposited at pH 7.5 but at different molecular weight combinations, the pull-off 

forces of 3.8 mN/m
34

 and 3.5 mN/m
52

 were obtained for PAH6PAA5 in two similar studies. On 

the other hand, in the present study, the adhesive strength obtained from the interactions with a 

PE coated probe is much greater (745.22 mN/m) than those reported values. It should be noted 
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that the present study differs from those discussed studies in the number of PE layers deposited 

on the sample and the probe, in force measurement conditions and also in the type of charges that 

interact with. 

 The comparison of different probes showed that the lowest adhesion forces, confirmed 

from both mean and distribution values, were obtained with a functionalized probe. The lowest 

interactions can be explained by considering the discrepancy between the dispersion forces of 

functionalized and bare probes. Chen et. al
67

 conducted a study where the interactions of a 

COOH-terminated probe and various surfaces were investigated. In that study, they obtained 

relatively lower adhesion forces for the interactions between a COOH-terminated probe and CH3 

surface compared to the interactions between an unmodified Si3N4 probe and the same sample 

surface. The observed phenomenon was attributed to the lower dispersion force of a COOH-

terminated probe, 26.6 mJ/m
2
, compared to a fully hydroxylated SiO2 probe‟s (as a model for the 

Si3N4 probe), 29.4 mJ/m
2
.
68

 The same observation was also made by Noy et al.
69

 who obtained 

lower adhesion force between a COOH-terminated probe and a CH3 self-assembled monolayer 

(SAM) surface measured in alcohol, than that between a CH3-terminated probe and a CH3 SAM 

surface or a COOH-terminated probe and a COOH SAM surface. Considering all these 

observations, we speculate that the reason for having lower adhesion forces between a COOH-

terminated probe and a PEM-covered sample in the present study could have stemmed from the 

lower dispersion force of the functionalized probe.  

 Relatively lower adhesion forces were observed for a PE coated probe compared to the 

ones from a bare probe, and this can be attributed to the single layer of PE deposited on the probe 

(regarding PEI deposition as a precursor layer and counting for only PSS while starting 

numbering). Johansson et al.
52

 studied the interactions between identical surfaces formed from 
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PAA/PAH onto one flat and one spherical silica substrates in a liquid cell and observed an 

increase on the adhesion forces when the number of deposition steps is increased. The interaction 

forces after the first layer deposition were weaker, reaching as low as 0.8 mN/m, compared to 6 

mN/m at the 11
th

 layer. The same trend could be seen in other studies
34, 53

 as well, where the 

interactions were monitored at each layer and an increase on the pull-off forces was obtained 

with further deposition steps. Therefore, we likely would have stronger interactions and greater 

adhesion forces if we had more layers deposited on the silica probe.  

 The pull-off force range was discussed by Gong et al.
53

 in a similar study and this range 

was related to the contour length of each polyelectrolyte. For the interactions between 

PEI(PSS3PAH3) sample and a bare glass sphere investigated in liquid using AFM, they observed 

multiple adhesion peaks and a pull-off force range of (above 600 nm) greater than the sum of 

individual PE contour lengths (PAH, 187 nm and PSS, 91 nm). This so-called sawtooth pattern 

was attributed to a bridge formed by entangled PAH and PSS chains. In that same study, in the 

case of PEI(DNA3PAH3), their pull-off force range (~600 nm) well exceeded the contour length 

of PAH but not DNA‟s (~3 µm). It was interpreted as the entanglement of PAH/DNA chains 

causing partial detachment of adsorbed DNA layers. However, the pull-off force range obtained 

in the present study for any sample-probe interactions was well below the established numbers 

from that study.
53

 The contour length of PSS was recalculated (270 nm) since the molecular 

weight of this PE used in the present study was different than the one discussed above, using the 

bare chain cross section stated in another study.
70

 However, the pull-off force ranges were 

always lower than the contour lengths of each PE chains. All in all, we observed a noteworthy 

relation between the pull-off force range (nm) and magnitude (nN). Greater adhesive strengths 

were observed at relatively large pull-off force ranges. Variation on the pull-off force range was 
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attributed to the interactions between a PE chain and a probe of interest where sometimes it 

seemed to be difficult to break the interaction even after snapping away from the surface.  

 

4.3.2. Probe effect on the adhesion forces of PEI(PSS6PAH6) 

 

 The same series of probes were used for another sample, PEI(PSS6PAH6). The 

interactions between a PAH-terminated thin film and a probe of interest were investigated. One 

single sharp peak was observed for each type of probe interactions. 

 The adhesion forces obtained via the interactions with a bare probe were around 100 nN 

(Figure 4.7). The strength of the adhesion forces was substantially lower than those obtained for 

the previous sample, PEI(PAA5PAH5), with the same probe. The magnitude of the pull-off forces 

was lower and the range of the pull-off forces was also lower. The pull-off force range was 

around 16-30 nm. 

 With a functionalized probe, low pull-off forces around 60-70 nN were obtained. It was 

again difficult to distinguish the adhesion peaks in the retraction curves (Figure 4.8) and for 

clarity, the retraction curves were zoomed-in (Figure 9.4). Low adhesion forces with a very low 

pull-off force range around 1.0 nm were observed.  

 The adhesion forces obtained with a PE coated probe were larger than those 

functionalized and bare probes (Figure 4.9). The pull-off forces around 200-300 nN were 

observed with a pull-off force range of 20-25 nm. The largest pull-off force range was 

approximately 45 nm at the greatest adhesive strength. A systematic increase on both the 

magnitude and range of the pull-off forces was seen.  
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 The tip-sample separation occurred around 1 nm for all the interactions investigated so 

far. This separation was greatly less than the pull-off force ranges for a bare probe and a PE 

coated probe while it was very close to the pull-off force range for a functionalized probe. Again, 

no long range forces were observed in the approach curves (Figure 4.10). 
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Figure 4.7 Force-separation curves for PEI(PSS6PAH6) prepared at 0.5 M NaCl. The 

measurements were collected at 45% RH with a colloidal silica probe. Ten force curves, five 

being from the same spot, were represented upon retraction. 
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Figure 4.8 Force-separation curves for PEI(PSS6PAH6) prepared at 0.5 M NaCl. The 

measurements were collected at 45% RH with a colloidal silica probe functionalized with COOH 

surface chemistry. Ten force curves, five being from the same spot, were represented upon 

retraction. 
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Figure 4.9 Force-separation curves for PEI(PSS6PAH6) prepared at 0.5 M NaCl. The 

measurements were collected at 45% RH with a PEI-PSS deposited colloidal silica probe. Ten 

force curves, five being from the same spot, were represented upon retraction. 

 

 

 



Chapter II                                                                                          probe effect 
 

53 
 

Separation, nm

0 50 100 150 200

F
o

rc
e

, 
n

N

-100

0

100

200

300

400

Colloidal SiO2 Probe 

Colloidal SiO2 Probe functionalized with COOH

PEI-PSS deposited Colloidal SiO2 Probe

 

 

Figure 4.10 Probe effect on the approach curves for PEI(PSS6PAH6) is represented with ten 

force curves for each probe, five being from the same spot, were represented. The measurements 

were collected at 45% RH. 
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Figure 4.11 Probe effect on the adhesion force distribution values for PEI(PSS6PAH6). The 

measurements were collected at 45% RH. 

 

 The adhesion force distribution for each probe was compared in Figure 4.11. Very 

narrow adhesion force distribution at around 70 nN was seen for a functionalized probe. 

Relatively broader distribution was obtained for both bare and PE coated probes. The adhesion 

forces for a PE coated probe were higher than those for a bare probe and this effect was also seen 

in the mean values (Table 4.2). Coating the probe with PE seemed to work well for this sample 

since the greatest adhesion force was obtained with a PE coated probe compared to the other 
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ones. Similarly what was concluded for PEI(PAA5PAH5), the lowest mean adhesion force was 

obtained for the interactions of a functionalized probe.  

 

 In summary, the mean adhesion forces for PEI(PSS6PAH6) are lower than those for 

PEI(PAA5PAH5) (Tables 4.1 and 4.2). For both samples, the interactions investigated between 

the two surfaces were same (a PAH-terminated sample and a probe of interest); however, we 

observed a substantial difference on the adhesive strengths when bare and PE coated probes were 

considered. On the other hand, close adhesive strengths were obtained for both samples when a 

functionalized probe was chosen for investigating the interactions. The discrepancy between the 

results of two samples may stem from the different properties of the resulting films. Two 

different polyanions were used for the preparation of those samples; while PSS was a strong 

polyanion, PAA was a weak polyanion. Strong polyelectrolytes are fully charged no matter what 

the pH of the solution is. However, weak polyelectrolytes strongly depend on the pH of the 

solution and the number of charges is different at various pH levels. Shiratori and Rubner 

studied
71

 the thickness of PEMs formed from PAA and PAH at different pH levels and observed 

significant changes in the thickness over a very narrow pH range. Similarly, any change on the 

structure of the thin films could possibly affect the interactions with a probe [We did not monitor 

the pH of the solutions during the build-up of PEM thin films]. Another difference between the 

two samples is the number of deposition steps [PEI(PAA5PAH5) versus PEI(PSS6PAH6)]. Even 

though the multilayer number might have an effect on the adhesion forces, we do not believe that 

it affects the results this much significantly. We propose that it is more likely to be the choice of 

polyanion/polycation pair that played an important role in here.  
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Table 4.2 Comparison of mean and normalized adhesion force values obtained with various 

probes 

Type of probe Bare probe 
Functionalized 

probe 
PE coated probe 

 
mean stdev mean stdev mean stdev 

Adhesion Force (nN) 128.12 38.28 71.68 9.50 205.34 70.54 

Normalized Mean 

Adhesion Force (mN/m) 
256.24 143.36 410.68 

 

 Finally, we present the adhesion forces in mean and normalized forms (Table 4.2). 

Normalized mean adhesion forces in the present study are significantly higher than those in a 

similar study.
53

 The interactions between PEI(PSS5PAH5) sample and a bare glass sphere were 

investigated using AFM in liquid and the adhesive strength was ~0.15 mN/m. When we 

compared the adhesive strength obtained via a bare probe (256.24 mN/m) to that value, we 

noticed a substantial difference on the strengths for these very similar systems. One of the main 

reasons can be the larger contribution of van der Waals (vdW) forces in air than in liquid. 

Claesson et al.
11

 also observed significantly greater adhesion forces in air than in water for the 

interactions of polyelectrolyte-coated surfaces (800 mN/m versus 2-5 mN/m). Another reason 

can be attributed to the size of probes. For the sample compared,
53

 the probe diameter was 10 µm 

which was larger than what we used in the present study. We believe that at larger probe sizes, 

the tip aspereties can possibly reduce the contact area and poor interactions can be experienced. 

Thomas et al.
72

 showed the dependence of surface energy for the interactions between two 

methyl-terminated SAMs on an Au probe and a planar Au substrate, with a varying probe radius 

from 50 nm to 60 µm. They showed that the magnitude of the normalized adhesive interactions 
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decreased strongly for larger probe radii, after the tip radii exceeded ~400 nm. Therefore, we 

suggest that the different probe sizes in the present study and the compared study could have 

some effect on the discrepancy of the measured adhesive strengths. 

 

4.4. Conclusions 

 The interactions between oppositely charged surfaces of PEM-covered samples and 

various probes were investigated in air using AFM. The adhesive strengths of two samples, 

PEI(PAA5PAH5) and PEI(PSS6PAH6), were studied using 3 different colloidal probes both in 

unmodified and modified forms. The greatest adhesive force, 2209.76 mN/m, was obtained with 

a bare probe for PEI(PAA5PAH5). On the other hand, the lowest adhesive forces were obtained 

with a functionalized probe for both samples. This observation was attributed to the lower 

dispersion force of a functionalized probe compared to a bare probe‟s.  The order of the adhesive 

strengths for PEI(PAA5PAH5) was such that bare probe > PE coated probe > functionalized 

probe, while this order changed (PE coated probe took the first place) when PEI(PSS6PAH6) was 

used. The adhesive strengths obtained for PEI(PAA5PAH5) were always greater than those of 

PEI(PSS6PAH6)‟s. Even though the samples were terminated with the same PE, the differences 

on adhesive strengths might have stemmed from the structural differences or properties of the 

resulting films as a result of the choice of polycation/polyanion pairing. In addition, the adhesive 

strengths of the samples in the present study were significantly greater than the reported 

literature, which were possibly due to the force measurements in air and greater contribution of 

vdW forces in these conditions. Furthermore, a correlation between the pull-off force range (nm) 

and magnitude (nN) was made; greater adhesive strengths were always obtained at larger pull-off 

force ranges. 
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5. Chapter III: Comparison of Adhesive Strength of Thin 

Films prepared via Different Techniques  

 

5.1. Introduction 

 The adhesive strength of thin films is of special interest in this study and atomic force 

microscopy (AFM) is a tool used for probing the interactions and quantifying the adhesion 

forces. Two different techniques were used for the fabrication of samples and a comparison of 

adhesive strengths was made. 

 Surface modification of substrates can be utilized through several different methods. 

Layer-by-layer (LbL) deposition method is in use and became one of the promising techniques 

since the pioneering work of Decher et al.
1, 2

 Thin films prepared via LbL method have overcome 

problems associated with Langmuir-Blodgettt (LB) films
3
 in many ways. Limitations of the LB 

technique include substrate size, film quality, and stability. Furthermore this technique requires 

special equipment. As an alternative to the LB technique, chemisorption can also be tried, but 

both techniques are limited to certain class of molecules. However, LbL assembly technique is 

versatile as a variety of materials for the fabrication of multilayered thin films can be used such 

as polymers, proteins, clay particles, colloids and etc. Another advantage of LbL deposition is 

that the technique is not limited to the shape of solid support. Thin films can be built-up on 

colloidal particles
18, 19

 as well as flat substrates.
1
  

 The use of polyelectrolytes (PEs) is common for forming multilayered structures. In the 

present study, poly(ethyleneimine) (PEI), poly(allylamine hydrochloride) (PAH), poly(sodium 4-
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styrenesulfonate) (PSS), poly(acrylic acid) (PAA), and poly(diallyldimethylammonium) chloride 

(PDADMAC) were used at different combinations and deposited on poly(ethylene terephthalate) 

(PET) substrates. The use of these polyelectrolytes is quite common in the literature. 

 Another method for surface modification is grafting, which we also used. In both 

„grafting from‟
73

 and „grafting to‟
74, 75

 methods, a polymer brush
76

 is created on the surface. 

Particularly for this study, poly(glycidyl methacrylate) (PGMA) was used as an anchoring 

layer
63, 77

 on PET substrate and further grafting was continued with either PAA or PEI. 

 The films in the present study were previously discussed in the literature, usually for their 

growth behavior and morphology. There are some studies where the growth of PDADMAC/PSS 

pair was investigated in terms of the effect of solvent quality,
33

 temperature,
78

 ionic strength,
62, 79

 

and charge density,
80

etc. Even though the PDADMAC/PSS pair is more common in literature, it 

is also possible to find studies on the PDADMAC/PAA pair,
32

 which we used. To the best of 

author‟s knowledge, there are no studies on the adhesive strength of these samples via AFM. 

Instead, the peel-off test is quite common for the quantification of adhesive strength. The 

adhesion between two planar substrates coated with PDADMAC/PSS was investigated in a study 

by lap shear measurements.
64

 In addition, PGMA anchored PET substrate grafted with either 

PAA or PEI was investigated in a study where the adhesive strength was quantified via peel-off 

test.
63
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5.2. Experimental section 

5.2.1. Materials 

 For the preparation of thin polymer-treated films, poly(ethylene terephthalate) (PET, 

DuPont Teijin Films, Melinex S/142 Gauge) substrates were used. Polyions used in this study are 

poly(ethyleneimine) (PEI, 50% w/v, MW of 600-1000 kg/mol), poly(allylamine hydrochloride) 

(PAH, MW   70 kg/mol), poly(sodium 4-styrenesulfonate) (PSS, 30 % w/v, MW   200 kg/mol), 

poly(acrylic acid) (PAA, 25 % w/v,  MW   50 kg/mol), poly-L-glutamic acid (PGA, MW   15-

50 kg/mol), poly(glycidyl methacrylate) (PGMA, 10 % w/v in MEK, MW   25 kg/mol), and 

poly(diallydimethylammonium chloride) (PDADMAC,  20 % w/v,  MW   200-350 kg/mol).  

 PE solutions were prepared either in water (milliQ reversed osmosis water, purity 18.2 

ohms.cm) or methanol (MW of 32.04 g/mol) or 2-butanone (Methyl Ethyl Ketone, MEK, 

Chromasolv for HPLC, 99.7%) using NaCl (purity ≥99.0 %) or NaBr (MW of 102.89 g/mol). 

Except for PAA and PGMA (Polyscience Inc.), NaBr salt (J.T. Baker) and methanol (Fisher 

Scientific Inc.), all the chemicals were purchased from Sigma-Aldrich. 

 

5.2.2. Layer-by-Layer Deposition Method 

 A variety of PE solutions were used to prepare polyelectrolyte multilayer (PEM) thin 

films. Prior to any deposition steps, PET substrate was air-plasma treated (PDC-32G, Harrick 

Plasma Cleaner) for 20 minutes. The deposition of layers took place in HMS
TM

 Series 

Programmable Slide Container (Carl Zeiss, Inc.). The layer-by-layer (LbL) deposition of 

mutilayers is a well-established method
2
 where oppositely charged polyelectrolytes are 

consecutively deposited on the substrate. 
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 PEI-PGA-PAH sample was prepared from PE solutions of 1.0 mg/ml containing 0.5 M 

NaBr. After each PE deposition (30 minutes), the layers were rinsed with water twice (2 minutes 

each) and then dried for 10 minutes. 

 PDADMAC-PSS-PAH sample was prepared the same way using 1.5 mg/ml PE 

concentration, containing 0.5 M NaCl. Likewise other samples, PDADMAC5PAA5 was prepared 

according to LbL deposition method at a PE concentration of 1.0 mg/ml and 1.0 M NaCl. 

 

5.2.3. Grafting Method 

 The samples were prepared by grafting method and PET thin films were used as 

substrates. The method was discussed in detail elsewhere.
63

 Briefly, an air plasma-treated PET 

substrate (20 minutes) was immersed into PGMA solution (0.1% w/v in MEK) for 30 minutes 

and dried in oven at 120°C for 2 hours. PGMA anchored PET substrate was then immersed into 

PAA solution (1% w/v in methanol, 1.0 M NaCl) for 20 minutes and annealed at 100°C for 40 

minutes. In another case, instead of PAA, PEI solution (1% w/v in methanol, 1.0 M NaCl) was 

used (20 minutes) at an annealing temperature of 80°C for an hour. A variety of samples were 

prepared by changing the deposition time of PGMA (30, 60, and 90 minutes) and the choice of 

PAA or PEI solution.  

 

5.2.4. AFM Force Measurements 

 Atomic force microscopy, NanoScope IIIa (Dimension 3100, Veeco Metrology Inc., 

Santa Barbara, CA), was used to quantify the adhesive strengths of the resulted thin films. A 

colloidal silica probe (1 µm SiO2 particles) functionalized with COOH surface chemistry was 

purchased from Novascan Technologies, Inc. The spring constant of the probe was 14 N/m. Force 
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measurements were carried out in air at a controlled humidity level (~ 45% RH). Five 

measurements from one spot on the sample were taken and by moving the cantilever to ten 

different locations on the sample in both x and y directions, fifty measurements were obtained. 

The raw force curves were processed with the assistance of self-written MATLAB® and 

Microsoft Excel scripts.  
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5.3. Results and discussion 

5.3.1. Adhesive strength of thin films prepared by the LbL 

deposition method 

 LbL-deposition of polyelectrolyte multilayers is a common method for producing thin 

films at controlled thickness. The adhesive strength of the films was quantified using AFM, in 

which the interactions between the film surface and a functionalized colloidal probe were 

investigated. For two of the samples, a precursor layer of PEI or PDADMAC was deposited. The 

samples created in this way were PEI-PGA-PAH and PDADMAC-PSS-PAH. On the other hand, 

the third sample was prepared without a precursor layer and five bilayers were deposited 

(PDADMAC5PAA5). In the present study, bilayer refers to polycation/polyanion pairs and layer 

is either polycation or polyanion. 

 Typical force-separation curves are presented in Figure 5.1. For all samples, one adhesion 

peak was observed. The common problem for each of them was having noise on both retraction 

and approach curves over a wide range, even though the effect is not seen clearly in this chosen 

scale. Some indentation at approach part was seen for both PEI-PGA-PAH and PDADMAC-

PSS-PAH (Figure 5.1 a, b); however, the indentation at approach curves was more pronounced 

for PDADMAC5PAA5 (Figure 5.1 c). The observed phenomena can be partly attributed to noise. 

Also, it can be interpreted as strong attractive forces between PE chains and COOH functional 

group of the probe. 
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Figure 5.1 Comparison of typical force-separation curves of a)PEI-PGA-PAH, b)PDADMAC-

PSS-PAH, c)PDADMAC5PAA5. 

-200

-100

0

100

200

-100 -50 0 50 100 150 200

F
o

rc
e
 (

n
N

)

Separation (nm)

-600

-400

-200

0

200

-100 -50 0 50 100 150 200

F
o

rc
e
 (

n
N

)

Separation (nm)

-400

-300

-200

-100

0

100

200

-100 -50 0 50 100 150 200

F
o

rc
e
 (

n
N

)

Separation (nm)

a) 

b) 

c) 

PEI-PGA-PAH 

PDADMAC-PSS-PAH 

PDADMAC5PAA5 



Chapter III                                                                        different techniques 
 

65 
 

 The adhesion force distribution of each sample is compared in Figure 5.2. The frequency 

of adhesion forces of PDADMAC-PSS-PAH and PDADMAC5PAA5 were close to each other at 

the observed adhesion force ranges. On the other hand, the frequency of adhesion force of PEI-

PGA-PAH were higher compared to other samples‟ frequency at the lowest adhesion force range 

and lower at the higher adhesion force ranges. 
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Figure 5.2 Adhesion force distribution for samples PEI-PGA-PAH, PDADMAC-PSS-PAH, and 

PDADMAC5PAA5. Fifty measurements were collected for each sample at 45% RH using a 

functionalized colloidal silica probe. 
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 Mean adhesion force values were obtained from fifty measurements and compared (Table 

5.1). The lowest adhesive strength was observed for PEI-PGA-PAH. The mean adhesive strength 

of PDADMAC-PSS-PAH and PDADMAC5-PAA5 was very close. These results show that not 

only the outermost layer of the thin film is important, but also the properties and features of the 

film are important at determining the adhesive strength. For PEI-PGA-PAH and PDADMAC-

PSS-PAH, although the outermost layer was the same for the investigated interactions with a 

functionalized probe, the adhesive strengths differed. One can conclude that the choice of 

polyelectrolyte combinations plays an important role on the adhesive strength of the films. 

Anion-anion interactions were investigated for PDADMAC5PAA5 while cation-anion 

interactions were present for the other two samples. The adhesive strength of PDADMAC5PAA5 

showed that the interactions between identical charges were as great as oppositely charged 

surface interactions. We obtained that competitive adhesive strength at the fifth bilayer. It is well 

established that the adhesion forces vary with a further deposition layer and the strength is 

usually low at the first layer deposition layer.
52, 53

 Therefore, we believe that the adhesive 

strength at the first layer would be somewhat lower than 308.13 nN.  
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Table 5.1 Comparison of mean adhesion forces for the samples. 

Sample 

Adhesion Force (nN) 

mean stdev 

PEI-PGA-PAH 
220.93 124.09 

PDADMAC-PSS-PAH 
303.24 115.58 

PDADMAC5-PAA5 308.13 118.42 

 

 

5.3.2. Adhesive strength of thin films prepared by the grafting 

method 

 PGMA was anchored to the PET substrate to modify the surface with the epoxy 

functionalities that would serve as reactive sites for the subsequent polymer attachments with 

functional groups such as carboxy and amino.
63

 Burtovyy et al.
63

 studied the grafting parameters 

(annealing temperature, and time, etc.) for PAA and PEI and the same values were used in the 

present study. Lower annealing temperature with a longer time (80°C & 1 hour) was used for 

PEI grafting compared to PAA grafting (100°C & 40 minutes). The reasons for these chosen 

parameters were related to PEI‟s lower glass transition temperature (Tg ~13°C)
81

 and the 

different reactivity of amino and carboxy groups towards the epoxy functionality.  

 For the ease of discussion, the samples will be called in a series of PGMA 1-6. Samples 

called PGMA 1, PGMA 2, and PGMA 3 were prepared at PGMA grafting times of 30, 60, and 

90 minutes, respectively, with a subsequent PAA grafting. Similarly, PGMA 4, PGMA 5 and 
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PGMA 6 were prepared at an increased deposition time of PGMA and a further grafting of PEI 

(Table 5.2). 

 

Table 5.2 Grafted thin films prepared with a different choice of PGMA grafting time and a 

polyelectrolyte for the subsequent grafting. 

Sample 

Grafting time of PGMA 

anchoring layer (min) 

Polyelectrolyte for 

subsequent grafting 

PGMA 1 30 PAA 

PGMA 2 60 PAA 

PGMA 3 90 PAA 

PGMA 4 30 PEI 

PGMA 5 60 PEI 

PGMA 6 90 PEI 

 

 The adhesive strength of the samples was determined by their interactions with a 

functionalized colloidal probe via AFM. Subsequent polymer attachments to the modified PET 

substrate resulted in different functional groups at the outermost layer that interact with the 

probe. While identical charge interactions were investigated for PGMA 1 through 3, oppositely 

charged interactions took place at the investigations for PGMA 4 through 6. 

 The adhesive strength of the samples was quantified by the lowest point of the adhesion 

peaks from the retraction curves. For all samples, only one single peak was observed. However, 

the peaks were in a different behavior than our earlier observations for PEM thin films (Chapters 

I and II). For this reason, we chose a sample from the previous chapters that would represent the 
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typical adhesion peak behavior and compared with a typical retraction curve of PGMA series. 

The comparison of retraction curves from PGMA 1-6 series and PEM thin film can be seen in 

Figure 5.3. The common property of the adhesion peaks for LbL deposited PEM thin films was a 

single sharp peak (Figure 5.3 a). However, there were many problematic curves obtained for 

PGMA series. The most pronounced problem was twisting of the adhesion peak at the lowest 

point (Figure 5.3 b). We believe that this problem is related to AFM: Probably the limit of 

position sensitive photodetector was exceeded at some point and the deflection was collected as 

constant at these conditions. Furthermore, approach curves seemed to be different than those for 

PEM thin films; very huge indentations were observed for PGMA series. The reasons for such 

these differences are not known yet and need to be further investigated. However, one thing is 

clear that both retraction and approach curves of grafted films behaved differently than those 

LbL deposited PEM films so far (Chapters I and II). 

 

 

 

 

 

 

 



Chapter III                                                                        different techniques 
 

70 
 

 

 

 

 

Figure 5.3 Comparison of typical force-separation curves of a) PEM thin film [PEI(PSS5PAH5), 

1.0 M NaCl], with problematic curves observed for PGMA series, b) PGMA 2.  

 

-600

-400

-200

0

200

-100 -50 0 50 100 150 200
F

o
rc

e
 (

n
N

)

Separation (nm)

-800

-600

-400

-200

0

200

-100 -50 0 50 100 150 200

F
o

rc
e

 (
n

N
)

Separation (nm)

a) 

b) 

PEI(PSS5PAH5) 

PGMA 2 



Chapter III                                                                        different techniques 
 

71 
 

Adhesion Force, nN

0 500 1000 1500 2000 2500 3000

F
re

q
u

e
n

c
y
, 
%

0

20

40

60

80

100

PGMA 1

PGMA 2

PGMA 3

PGMA 4

PGMA 5

PGMA 6

 

Figure 5.4 Adhesion force distribution for samples PGMA 1 through PGMA 6. Fifty 

measurements were collected for each sample at 45% RH using AFM and functionalized 

colloidal silica probe. 

 Two parameters at the sample preparation conditions played an important role on the 

adhesive strength of the samples: PGMA grafting time and the choice of polyelectrolyte solution 

for the further grafting. PGMA grafting time had a pronounced effect for the samples prepared 

from PAA solution (Figure 5.4). Adhesion forces were distributed at closer values for PGMA 1 

and PGMA 2 while PGMA 3 exhibited very high adhesion forces, further from those samples‟ 

distribution. The adhesion forces of PGMA 3 were generally around 1000-1800 nN. Increasing 
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the grafting time did not help to improve the adhesive properties of films prepared from PEI 

solution. The distribution of adhesion forces for PGMA 5 and PGMA 6 was almost the same. On 

the other hand, PGMA 4 showed higher adhesion forces compared to PGMA 5 and PGMA 6. 

Some percentage of the adhesion forces of PGMA 4 was as great as 2000 nN. From the 

comparison of all the samples, one can see that the greatest adhesive forces were obtained mainly 

for PGMA 3 and partly for PGMA 4. 

 The mean adhesion forces were compared for all the samples (Table 5.3). PGMA grafting 

time of 90 minutes and PAA grafting (PGMA 3) exhibited the greatest adhesive strength. Then 

the second large adhesion force was obtained for PGMA 4 where a deposition time of 30 minutes 

and PEI grafting took place. Other than these samples, the rest showed pretty average adhesion 

forces. 

 

Table 5.3 Comparison of mean adhesion forces for PGMA series. 

Sample 

Adhesion Force (nN) 

mean stdev 

PGMA 1 
449.21 146.43 

PGMA 2 
398.83 209.06 

PGMA 3 
1358.64 378.28 

PGMA 4 
724.01 449.85 

PGMA 5 
255.12 111.73 

PGMA 6 
214.44 121.72 
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 The discrepancy on the adhesive strengths of PGMA 1-3 and PGMA 4-6 was noticed. 

The thin films prepared with a subsequent grafting of PAA exhibited much greater adhesive 

strength than those prepared with PEI subsequent grafting, except for PGMA 1 versus PGMA 4. 

These results can be attributed to the different reactivity of carboxy and amino groups towards 

the epoxy group of PGMA at the defined conditions. As a consequence, the films are resulted in 

different structures and properties.  

The permeability of PGMA anchored PET membranes with a subsequent grafting of 

either PAA or PEI were investigated in a study.
63

 The PGMA modified membrane with further 

polymer grafting had lower permeability due to the decreased size of pores. However, the test 

showed that the grafted polymers were present on the membrane surface and they did not block 

the pores. The adhesive strength of PGMA anchored PET membranes and unmodified PET 

membranes were compared using peel-off test.
63

 Higher adhesion strength (~20 N/m) was 

obtained for the membranes modified with PGMA anchoring layer than those for the unmodified 

membranes. Our results could not be compared directly to the adhesive strength obtained via 

peel-off test since the techniques are different and investigate the interactions at different scales. 

However, we also concluded that the sample prepared via „grafting to‟ method had a greater 

strength than those PEM thin films. 

 In summary, the greater adhesive strength was obtained for a grafted film (PGMA 3) 

rather than LbL film. This might be attributed to the existence of polymer brushes on the surface 

that interact with the probe.  
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5.4. Conclusions 

 In the present study, the adhesive strength of thin films was investigated using AFM and 

a functionalized colloidal probe. The films were prepared via either LbL deposition method or 

grafting. The mean adhesive strength of PEI-PGA-PAH, PDADMAC-PSS-PAH, and 

PDADMAC5PAA5 was pretty close and it was 220.93, 303.24, and 308.13 nN, respectively. 

From this first section, it was concluded that even one layer deposition could be enough for the 

desired adhesive strength by a right choice of PE combination. In addition, the adhesive strength 

of PDADMAC5PAA5 showed that the interactions between identical charges were as great as 

oppositely charged surface interactions.  

 Furthermore, grafting method was successfully applied on PET substrates with PGMA 

anchoring and further grafting of PAA or PEI. The adhesive strength of PGMA series was 

dependent on the PGMA grafting time and the choice of PE for the subsequent grafting. PGMA 

3 (PGMA grafting time of 90 minutes, PAA grafting) showed the highest adhesion force at 

1358.64 nN among the series.  

 Comparison of all the samples showed that the greatest adhesive strength was obtained 

for a grafted film. This was attributed to the existence of polymer brushes on the surface. 

Moreover, in this chapter, the scope of research on adhesion forces was expanded studying 

different samples and techniques.  
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6. Chapter IV: The Effect of Relative Humidity on the 

Adhesion Force Measurements 

 

6.1. Introduction 

  

 Atomic force microscopy (AFM) is a great tool to probe the interactions between a tip 

and a sample at high resolution and at various environments such as ambient condition, liquid, or 

vacuum, and etc. The magnitude of adhesive forces can be different for different working 

environments: Adhesion forces obtained in a liquid environment are typically 1 or 2 orders of 

magnitude less than the ones in air.
82

 Even the results obtained in air can differ due to capillary 

forces in very humid conditions. The control of humidity plays an important role when the 

molecular interactions are probed. There are several studies conducted on the effect of relative 

humidity (RH) on adhesion forces.
67, 83-85

  

 It is well established that capillary forces become significant at high RH values.  There is 

a disagreement on the dependence of adhesion forces on RH for the studies on mica.
84

 While 

some studies suggested that adhesion was affected by RH as low as 25-30%,
86

 others showed 

that this effect was significant at ~80%. 
87

 

 In the present study, we performed adhesion force measurements on clean glass slides at 

both low (24% RH) and high RH values (45% and 50% RH). We studied the effect of RH on the 

adhesion force measurements. The present study helped us to determine the best conditions to 

work at while conducting force measurements in air. Furthermore, a comparison was made for 

the adhesion forces of PEI(PSS/PAH) samples at 28% and 42% RH. 
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6.2. Experimental Section 

6.2.1. Preparation of Samples 

 Glass slides (Corning® Glass Microslides, precleaned) were cleaned according to this 

protocol: Slides were immersed in 3:1 (v/v) HCl/HNO3 solution for 30 minutes and rinsed with 

ultrapure water. Further, the slides were treated with piranha solution (7:3 (v/v) H2SO4/H2O2) for 

30 minutes. Prior to AFM force measurements, the clean glass slides were dried with a stream of 

N2 gas. HCl (12.1 M or N) and HNO3 (68% in aq) were purchased from EMD Chemicals Inc. 

H2SO4 (96.9% in aq) and H2O2 (35% in aq) were purchased from Fischer Scientific Inc. and Alfa 

Aesar, respectively. 

 PEI(PSS/PAH) samples were prepared according to layer-by-layer deposition method, as 

discussed in previous chapters. Instead of PET substrate, glass slides were used for the 

fabrication of thin films. After a precursor layer of PEI, 20, 40, or 60 bilayers of PSS/PAH were 

deposited on the glass substrates, respectively. 

 

6.2.2. AFM Force Measurements 

 Atomic force microscopy, NanoScope IIIa (Dimension 3100, Veeco Metrology Inc., 

Santa Barbara, CA), was used to quantify the adhesion forces. For each sample, 25 force 

measurements were carried out at five different spots where 5 cycles were collected from each. 

Stiff cantilevers with a spring constant of 20-80 N/m (Veeco, TESPA) were used for the force 

measurements. The raw force curves were processed using MATLAB® and Microsoft Excel 

scripts.  
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In our AFM room, the humidity was usually around 25% or less and sometimes even 

higher. The variation of humidity was inevitable, so that we decided to test the effect of humidity 

on the adhesion forces. For this reason, we chose three different RH levels; one was the typical 

relative humidity obtained in the AFM room, 24% RH. Another humidity levels were chosen as 

45% and 50% RH. To adjust the humidity in the AFM room, a humidifier (Air O Swiss) was 

used. We conducted 3 sets of experiment at each determined RH and collected 25 force 

measurements from each. 

 

 

 

6.3. Results and Discussion 

6.3.1. Effect of humidity on the adhesion forces of clean glass 

slides 

 We performed force measurements on a clean glass slide at various relative humidity 

(RH) values. The adhesion forces obtained at 24% RH were at a considerably broad range, 400-

3000 nN (Figure 6.1). Even though the distribution of adhesion forces was almost at the same 

range, the percentages of those values differed between each set of experiment. Then we moved 

on the second humidity level, which was 45% RH. The distribution of adhesion forces was at a 

relatively lower range compared to the results from 24% RH (Figure 6.2). The adhesion forces 

varied between 200 nN and 900 nN. Except 20% of data in experiment 1, the adhesion forces in 

each experiment set were in a close proximity. 
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Figure 6.1 Adhesion force distribution for a clean glass slide at 24% RH. Twenty-five force 

measurements were collected per experiment. 
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Figure 6.2 Adhesion force distribution for a clean glass slide at 45% RH. Twenty-five force 

measurements were collected per experiment. 
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Figure 6.3 Adhesion force distribution for a clean glass slide at 50% RH. Twenty-five force 

measurements were collected per experiment. 

 

 However, the scenario was a little bit different for 50% RH. The adhesion force 

distribution for each set of experiments was in a different range with some overlapping on 

experiments 2 and 3. The adhesion forces obtained in experiment 1 were much higher than 

experiments 2 and 3. Furthermore, we continued to analyze the adhesion forces by comparing 

the retraction curves. We selected ten force measurements out of twenty-five in each set of 

experiment and compared them. We were interested in the behavior of adhesion peaks where the 

reproducibility of those peaks was the criteria. At 24% RH, the reproducibility of the adhesion 
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peaks was not good, since many variations were observed considering thirty force curves (Figure 

6.4). The variation was much less pronounced in 45% RH and 50% RH (Figures 6.5 and 6.6). 

Among high relative humidity results, 45% RH exhibited slightly better reproducibility (Figure 

6.5). Most of the force curves accumulated at one spot and the number of variations much lesser. 

 

 Combining the results from both adhesion force distribution and retraction curves, we 

concluded that it was more reliable to work at 45% RH. Thio et al.
58

 also briefly mentioned 

setting the relative humidity to a constant value while performing force measurements using 

AFM in air. They stated that a variation of typical relative humidity values (20-35%) in the lab 

conditions led to cases of unwanted electrostatic potential forces. For this reason, they performed 

AFM force measurements at room temperature, 45% RH. Higher humidity levels are risky since 

capillary force effects can be significant, however they tend to occur above 65% RH.
59
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Figure 6.4 Retraction curves of a clean glass slide at 24% RH. Ten out of twenty-five force 

measurements from each set of experiment were selected and compared by their retraction part. 

From one to ten, each force curve was represented with a different color. The order of 

representation of each color was same for each set of experiment, resulting the same color to be 

used three times. 
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Figure 6.5 Retraction curves of a clean glass slide at 45% RH. Ten out of twenty-five force 

measurements from each set of experiment were selected and compared by their retraction part. 

From one to ten, each force curve was represented with a different color. The order of 

representation of each color was same for each set of experiment, resulting the same color to be 

used three times. 
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Figure 6.6 Retraction curves of a clean glass slide at 50% RH. Ten out of twenty-five force 

measurements from each set of experiment were selected and compared by their retraction part. 

From one to ten, each force curve was represented with a different color. The order of 

representation of each color was same for each set of experiment, resulting the same color to be 

used three times. 
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6.3.2. Effect of humidity on the adhesion forces of 

PEI(PSS/PAH) 

 

 Another study on the effect of relative humidity was carried on PEI(PSSxPAHx) samples 

where x varied as  20, 40, and 60. AFM force measurements were performed at both 28% and 

42% RH. Adhesion force distribution of each sample can be seen in Figure 6.7. Except for 

PEI(PSS20PAH20) at 28% RH, the adhesion forces were low and accumulated at a very narrow 

range (Figure 6.7, a). While adhesion forces of 20 bilayers reached to ~900 nN, those were only 

around 200 nN for 40 and 60 bilayers. On the other hand, broader adhesion force distribution at a 

considerably larger adhesion values were obtained at 42% RH, for the same samples (Figure 6.7, 

b). This time, adhesion forces at as great as 600 nN could be obtained for 40 and 60 bilayers. It 

was also evident from the mean adhesion values that higher adhesion forces were obtained at 

42% RH (Table 6.1). The observed phenomenon shows that it is very important to control the 

humidity while performing force measurements in air. Even though we are confident that 

capillary forces are not significant at the studied RH values, variations on adhesion forces are 

inevitable at different humidity levels which can be a problem while determining the adhesive 

strength of samples. 
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Figure 6.7 Adhesion force distribution for PEI(PSS20PAH20), PEI(PSS40PAH40), and 

PEI(PSS60PAH60) at a)28% RH, and b)42% RH. Each color represents different sample. Twenty-

five measurements were obtained for each sample. 

 

Table 6.1 Mean adhesion forces for PEI(PSS/PAH) at different humidity levels. 

Number 

of bilayers 

Adhesion force (nN) at 

28% RH 

Adhesion force (nN) at 

 42% RH 

mean stdev mean stdev 

20 452.95 305.80 493.40 250.84 

40 154.47 27.36 364.52 166.59 

60 102.05 21.82 282.87 141.26 
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6.4. Conclusions 

 The effect of relative humidity on the adhesion forces was investigated using AFM in air 

at room temperature and various humidity levels. Force measurements were performed at both 

low and high relative humidity values and the adhesion forces were compared. First, clean glass 

slide was used on which 3 sets of force measurements were performed at 24%, 45%, and 50% 

RH. Both adhesion force distribution and retraction curves were analyzed in detail for better 

comparison. The reproducibility of adhesion forces was the criteria and the results from 45% RH 

exhibited the best case; there were not many variations on the retraction curves and the 

distribution of adhesion forces for each set of experiment was at a close proximity. 45% RH was 

also safe to work at since the capillary force becomes significant above 65% RH.
59

 Furthermore, 

the effect of relative humidity on the adhesion forces of PEI(PSSxPAHx) samples was compared, 

where x was 20, 40, and 60. Adhesion force distribution varied for 40 and 60 bilayers at different 

humidity levels (28% and 42% RH) while relatively close adhesion force values was obtained for 

20 bilayers. Comparison of mean adhesion forces showed that the adhesive strengths were higher 

at 42% RH. Evident from the first section, the discrepancy on adhesion forces at different RH 

values resulted from the change of the working environment. To conclude, controlling the 

relative humidity is very important while conducting force measurements under ambient 

conditions, since one can predict different adhesive strengths of the sample. 
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7. Conclusions and Future Work 

 

The adhesive strength and morphology of PEMs were investigated using AFM 

throughout this study. It was acknowledged that the properties of PEMs were governed by 

several parameters such as the choice of polycation/polyanion pair, the ionic strength of the PE 

solution, salt type used during the build-up process, etc.  We showed that not only the properties 

of the PEMs played an important role in the determination of their adhesive strength, but in 

addition, the properties of the environment where the interactions were being probed were also 

important. Since all experiments were conducted at room temperature in air, humidity was 

strictly controlled at all times. The choice of probe was also an important parameter in the 

determination of adhesive strength. We demonstrated the dependence of adhesion forces on 3 

different types of colloidal silica probes.  Ultimately, we attempted to show the effect of several 

different variables on the adhesion forces in order to substantiate understanding of the 

interactions between PEM-covered surfaces probed by this AFM and colloidal probe technique. 

A brief summary of the results discussed in each chapter follows. 

 In Chapter I, we studied the interactions between oppositely charged surfaces, comprised 

of a positively charged outermost layer of PEMs and a negatively charged colloidal probe, using 

AFM under ambient conditions at 45% relative humidity (RH). We investigated the effect of 

ionic strength and salt type on the adhesion forces, morphology, and roughness of 

PEI(PSS/PAH) PEMs at the 5
th

 and 10
th

 bilayers. The samples prepared from NaCl and NaF salts 

showed the greatest adhesive strength. The highest adhesion force was 489.12 nN which was for 

PEI(PSS10PAH10) sample prepared from 0.5 M NaF salt. On the other hand, the poorest adhesive 

strength was observed for the samples prepared from NaBr salt. We showed that by tuning the 
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salt type, concentration and deposition number, it was possible to fabricate PEM thin films with 

the desired adhesive strength and roughness.  

 In Chapter II, we studied the effect of probe on the adhesive strengths of PEM thin films 

using 3 different types of probes. The adhesive strengths of PEI(PAA5PAH5) were always 

greater than those of PEI(PSS6PAH6). The highest adhesive strength, 2209.76 mN/m, was 

obtained for PEI(PAA5PAH5) with a bare probe. On the other hand, the lowest adhesive 

strengths were obtained with functionalized probes.  In addition, we found a correlation between 

the pull-off force magnitude (nN) and range (nm).  Greater adhesive strengths were always 

obtained at larger pull-off forces. To conclude, we demonstrated the dependence of adhesive 

forces on the choice of probe as well as the properties of the sample. Considering the series of 

probes used in this study, we were able to show the interactions between two PEM-covered 

surfaces. 

 In Chapter III, we studied the adhesive strengths of thin films prepared via the LbL 

deposition technique and „grafting to‟ method. Different PEs and PE combinations not studied in 

previous chapters were used. The measured adhesive strengths of LbL deposited samples, 

namely PEI-PGA-PAH, PDADMAC-PSS-PAH, and PDADMAC5PAA5, were in close 

proximity, 220.93, 303.24, and 308.13 nN, respectively. The results showed that even one layer 

deposition was good enough to obtain sufficient adhesive strength with the correct choice of PE 

combination. Furthermore, great adhesive strength (1358.64 nN) was obtained for PGMA 3 

prepared via the „grafting to‟ method. PGMA grafting time and the choice of PE for the 

subsequent grafting played an important role in the PGMA series. The high adhesive strength 

obtained via the „grafting to‟ method was attributed to the polymer brushes on the sample 

surface.  
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 In Chapter IV, we investigated the effect of relative humidity (RH) on the adhesion force 

measurements using AFM in air. For this reason, clean glass slides were used as substrates and 

force measurements were performed at 24%, 45%, and 50% RH settings in which 3 sets of 

experiments were carried out. From the comparisons of adhesion force distribution and retraction 

curves, it was concluded that 45% RH was the best setting: the distribution of each set of 

experiments were at a close proximity and there were not many variations on the retraction 

curves.  As a consequence of this uniformity the results at this humidity level were the most 

stable and reproducible.  Furthermore, the importance of relative humidity was reinforced by 

comparing adhesive strengths at 28%RH and 42%RH for the samples of PEI(PSS/PAH) at 20
th

, 

40
th

, and 60
th

 bilayers.  

To conclude, we succeeded in preparing PEM thin films with great adhesive strength: as 

high as ~2000 mN/m. For further research in this study, we suggest that the spray method be 

used instead of the dipping method for the fabrication of PEMs. We believe that the spray 

method would save substantial time in the preparations of samples. Even higher multilayer 

numbers can be achieved at more convenient times. 

In addition, it would be interesting to conduct experiments on polyanion-terminated 

samples and study the interactions between negatively charged surfaces systematically, as in 

Chapter II. For instance, the effect of different probe types on the adhesion force measurements 

in the case of PEI(PAA6PAH5) and/or PEI(PSS6PAH5) PEMs would give a strong basis of 

comparison with the results of Chapter II. With this comparison, one would be well equipped to 

determine the role of electrostatic interactions on the measured adhesive strengths. Moreover, a 

detailed study with an emphasis on the modeling of adhesion forces can help to determine the 

contribution of each type of forces and shed some more light on these results.  
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The current state of Polyelectrolyte Multilayer research is expanse and further 

development of the field appears promising. PEMs and LbL deposition technique are of great 

interest to polymer science and the field has been rapidly expanding in many application areas. 

For instance, interest in biodegradable polyelectrolytes such as poly(L-glutamic acid) (PGA), 

poly(L-lysine) (PLL), hyaluronan (HA) etc. has been increasing since these PEs were 

demonstrated to allow creation of biomimetic architectures.  Biodegradable polyelectrolytes are 

also strong candidates for various biomedical applications such as in drug delivery, tissue 

engineering, etc. Due to the flexibility of incorporation of any type of material to the fabrication 

of LbL deposited thin films, the field will continuously expand and more products will find their 

places in the market. 
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Appendices 

Appendix A: Support File for Chapter I 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 9.1 Typical force-separation curves for PEI(PSS5PAH5) prepared at 0.5 M NaBr ionic 

strength a) retraction curves, b) approach curves. 
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Figure 9.2 Force versus separation data for all the samples. 
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Appendix B: Support File for Chapter II 
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Figure 9.3 Force-separation curves for PEI(PAA5PAH5) prepared at 0.5 M NaCl. The 

measurements were collected at 45% RH with a colloidal silica probe functionalized with COOH 

surface chemistry. This figure is zoomed-in version of Figure 4.3.  Ten force curves, five being 

from the same spot, were represented upon retraction. 
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Figure 9.4 Force-separation curves for PEI(PSS6PAH6) prepared at 0.5 M NaCl. The 

measurements were collected at 45% RH with a colloidal silica probe functionalized with COOH 

surface chemistry. This figure is zoomed-in version of Figure 4.8.  Ten force curves, five being 

from the same spot, were represented upon retraction. 

 

 

 

 

 


