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Abstract 

Prediction of chip-breaking in machining is an important task for automated 

manufacturing. There are chip-breaking limits in machining chip-breaking chart, which 

determine the chip-breaking range. This thesis presents a study of the effect of 3-D 

groove insert parameters on chip breaking chart. Based on the chip-breaking criteria, the 

critical feed rate is formulated through an analysis of up-curl chip formation for 3-D 

grooves. 

Also in order to predict chip-breaking limits, for protruded insert grooves in finish 

machining, analytical models are established. In the analytical models, minimum and 

maximum depth of cut are identified for using different chip breaking models. As well 

insert nose radius effects on chip thickness for small depth of cut are studied. In the end, 

the analytical critical feed rate model is extended to finish machining with 3-D chip-

breaking grooves.  
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Nomenclature 
 

bch          Chip width (mm), (in) 

bγ1          Insert/chip restricted contact length (mm), (in) 

Ch          Cutting ratio (the ratio of the undeformed chip thickness to the chip thickness) 

d             Depth of cut (mm), (in) 

d0           The standard critical depth of cut under pre-defined standard cutting condition    

               (mm), (in) 

dmax        Maximum depth of cut in extra region of chip-breaking chart (mm), (in) 

dmin        Minimum depth of cut in extra region of chip-breaking chart (mm), (in) 

f             Feed rate (mm/rev), (in/rev) 

f0            The standard critical feed rate under pre-defined standard cutting condition  

              (mm/rev), (in/rev) 

fcr            The critical feed rate (mm/rev), (in/rev) 

fcr            The critical feed rate (mm/rev), (in/rev) 

h             Insert backwall height (mm), (in) 

hch          Chip thickness (mm), (in) 

Kdbr1      Modification coefficient of the cutting tool (insert) land length effect on the                       

              critical depth of cut 

Kdkr        Modification coefficient of the insert lead angle effect on the critical depth of  

               cut 

Kdm         Modification coefficient of the workpiece material effect on the critical depth of  

               cut 

Kdrε        Modification coefficient of the cutting tool (insert) nose radius effect on the   

              critical depth of cut 

KdT          Modification coefficient of the cutting tool (insert) effect on the critical depth of  

              cut 

KdV         Modification coefficient of the cutting speed effect on the critical depth of cut 

KdWn       Modification coefficient of the cutting tool (insert) chip-breaking groove width  

              effect on the critical depth of cut 

Kdγ0        Modification coefficient of the cutting tool (insert) rake angle effect on the  
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               critical depth of cut 

Kdγ01      Modification coefficient of the cutting tool (insert) land rake angle effect on the  

              critical depth of cut 

Kfbr1      Modification coefficient of the cutting tool (insert) land length effect on the  

              critical feed rate 

Kfh             Modification coefficient of the cutting tool (insert) backwall height effect on the  

               critical feed rate 

Kfh          Modification coefficient of the cutting tool (insert) backwall height effect on the  

              critical depth of cut 

Kfkr         Modification coefficient of the insert lead angle effect on the critical feed rate 

Kfm         Modification coefficient of the workpiece material effect on the critical feed rate       

Kfrε         Modification coefficient of the cutting tool (insert) nose radius effect on the  

              critical feed rate 

KfT          Modification coefficient of the cutting tool (insert) effect on the critical feed rate 

KfV          Modification coefficient of the cutting speed effect on the critical feed rate 

KfWn        Modification coefficient of the cutting tool (insert) chip-breaking groove width  

              effect on the critical feed rate 

Kfγ0        Modification coefficient of the cutting tool (insert) rake angle effect on the  

              critical feed rate 

 Kfγ01      Modification coefficient of the cutting tool (insert) land rake angle effect on the  

              critical feed rate 

KR          Coefficient related to the chip radius breaking 

lb            Backwall length (mm), (in) 

lf            Chip / insert contact length (mm), (in) 

ln            Rake face length (mm), (in)                                       

R0          Chip up-curl radius (mm), (in) 

RL          Chip-breaking radius (mm), (in) 

rp           Protruded nose radius (mm), (in) 

Rs           Side curl chip radius (mm), (in) 

rε            Insert nose radius (mm), (in) 

V            Cutting speed (sfpm)  
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w            The distance of center of protruded nose circle from insert nose radius center  

               along insert symmetrical line (mm), (in) 

Wn          Insert groove width (mm), (in) 

Wne         Inset equivalent groove width (mm), (in) 

α            Insert nose angle (deg) 

αch         Chip cross-section shape coefficient   

γb           Insert backwall angle (deg) (deg) 

γbe          Insert equivalent backwall angle (deg) 

γn                 Insert rake angle (deg) 

γne          Insert equivalent rake angle (deg) 

δ            Chip scroll angle in side-curl (deg) 

ε             Workpiece fracture strain (mm), (in) 

εB           Chip strain (mm), (in) 

κr           Insert lead angle (deg) 

η            Chip back flow angle (deg) 

λs               Insert inclination angle (deg) 

ψλ          Chip side flow angle (deg) 
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1 Introduction 

Machining chip-control has been overlooked in manufacturing process control for 

a long time. However, with the automation of manufacturing processes, chip-control 

becomes an essential issue in machining operations in order to carry out the 

manufacturing processes efficiently and smoothly, especially in today’s unmanned 

machining systems and finishing operations. 

On the three main areas of chip control study include chip formation, which 

covers chip flow and chip curl, and chip-breaking many experiments have been 

conducted. However given the complicated nature of chip formation, breaking and the 

progressive insert groove production, the results obtained from analysis do not match 

with industrial expectations. This chapter gives an overview in two categories; chip 

formation and chip breaking.  

1.1 Overview of Chip Formation 
 
After material is removed from the workpiece, it flows out in the form of chips. 

After flowing out, the chip curls either naturally or through contact with obstacles. 

The most logical approach in developing cutting models for machining with chip-

breaking is first to investigate and understand the direction of chip flow, since chip 

curling and the subsequent chip-breaking processes depend very heavily on the nature of 

chip flow and its direction. 

For chip flow study, the most important objective is to establish the model of the 

chip side-flow angle, which in most research is called the chip flow angle. Figure 1-1 

shows chip side flow angle. 
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Figure 1-1 Chip Side Flow Angle (Stabler 1964)     

 
Naturally a chip will curl after it flows out. Contact with the chip-breaking groove 

or chip breaker or other obstacles will also make a chip curl. There are three basic forms 

of chip curl, and combinations of these construct all chip shapes: 

• Chip up-curl 

• Chip side-curl 

• Chip lateral-curl that was found in recent studies 

The chip curl study requires the modeling of the chip up-curl and side-curl radii, 

both of which have very significant influences on chip-breaking. Figure 1-2 shows chip 

up-curl and side-curl. 

 
 

a) Chip Side-Curl                                       b) Chip Up-Curl  

Figure 1-2 Chip Side-Curl and Chip Up-Curl (Spaans 1971) 
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1.2 Overview of Chip Breaking 

In machining chips that vary in shape and length, short broken chips are desired 

because: 

• Operator’s safety (in manual operation) 

• Safety of machine tools and cutting tools 

• Maintaining good surface finish on the machined surface 

• Convenience of chip disposal 

• Reduction of cutting temperature 

• Increasing tool life and 

• Possible power reduction 

 Therefore the study of chip-breaking is very important for optimizing the 

machining process. This importance is more significant in ductile materials such as soft 

gummy low carbon, tough steels leaded or resulfurized steels, and other soft materials 

and light cuts with positive rake angle tools. 

Efficient chip-control will contribute to higher reliability of the machining 

process, a better-finished surface, and increased productivity. 

Chip-breaking for brittle and ductile materials happen in different ways. When 

brittle metal such as cast iron and hard bronze are cut discontinuously segmented chips 

are produced naturally. As the point of the cutting tool contacts the metal, some 

compression occurs, and the chip begins flowing along the chip-tool interface. As more 

stress is applied to the brittle metal by cutting action, the metal compresses until it 

reaches a point where rupture occurs and the chip separates from the unmachined portion. 

This cycle is repeated indefinitely during the cutting operation, with the rupture of each 
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segment occurring on the shear angle or plane. Generally, as a result of these successive 

ruptures, a poor surface is produced on the workpiece. 

 

 
Figure 1-3 Chip Breaking in Brittle Materials 

In each cycle of ductile materials chip breaking, a chip first flows out with some 

initial curling. Then the chip will keep on flowing out until it comes into contact with 

(simultaneously blocked by) obstacles like the work-piece surface or the cutting tool. 

The chip curl radius will then become larger and larger with the chip continuously 

flowing out. When the chip curl is tight enough to make the chip deformation exceed the 

chip material breaking strain, the old chip will break, and new chips will form, grow and 

flow out (see Figure 1-4). 

 
Figure 1-4 Chip-Breaking of Ductile Materials (Shinojukza, 2001) 

Therefore the chip will break when the actual chip fracture strain (ε) is smaller 

than the tensile strain of the chip (εB),  

The chip-breaking research includes many components and activities including: 

• Workpiece material 

• Tool geometry (including chip breaker features) 
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• Process parameters (built-up edge, vibration, force, heat, tool wear) 

• Cutting condition (feed rate, depth of cut, cutting speed) 

• Coolant             

 Figure 1-5 shows the main scope of chip-breaking study. Its goals are to: 

establish a chip-breaking model for prediction, design machining process, select tool, and 

design tool.  

 
Figure 1-5 Research Fields of Chip-Control (Zhou 2001) 

To break chips by mechanical obstacles there are two main chip-breaking modes: 

chip-breaking by chip/work-surface contact and chip-breaking by chip/tool flank-surface 

contact (Figure 1-6). In the first mode a chip may break by contact with the surface to be 

machined, which is caused by chip side-curl (Figure 1-6e). It can also, break by contact 

with the machined surface (shoulder of workpiece) caused by chip up-curl (Figure 1-6a, 
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1-6b). The second breaking mode chip breaks by contact with the flank-surface caused by 

both chip up (Figure 1-6c) and side curl (Figure 1-6d)  

 
Figure 1-6 Modes of Chip Breaking (Nakayama 1960) 

In this thesis the chip-breaking in up-curl chips is studied, and later on this type of 

chip formation and breaking will be analyzed in detail. 

There are three major factors that affect chip breaking: 

• Change cutting conditions (feed rate, depth of cut, cutting speed) 

• Change cutting tool geometric features (nose radius, rake angle, lead 

angle) 
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• Design and use a chip breaker or chip-breaking groove (groove width, 

backwall height, backwall angle)  

Increasing the depth of cut or the feed rate can significantly improve chip 

breakability. However, in industry this is not practical in finish cutting due to the 

limitations of the machining process. Therefore, optimizing the design of the cutting 

tool’s geometric features and the chip breaker / chip-breaking groove is the most 

plausible and efficient way to break the chip. 
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2 Literature Review of Chip Formation and 
Breaking  

 
This chapter reviews both previous work done by researchers on fundamentals of 

chip-formation and breaking, and attempts to develop chip-breaking criteria. The 

Nakayama’s chip-breaking criterion, and Li’s work on chip-breaking limits are reviewed 

in detail. This is particularly important because the chip-breaking predictive models 

developed in this thesis are based on chip-breaking limits theory and on Nakayama’s 

work. Finally, existing problems in chip-control and formation models are also reviewed. 

2.1 Chip Flow 

Chip-breaking modes depend on the nature of chip flow and its direction. 

Understanding the chip flow mechanism is important for chip-control. Chip flow is 

determined by many factors and is usually described by the chip flow angle (ψλ). The 

chip-flow angle is the angle between the chip-flow direction on the cutting tool rake-face 

and the normal line of the cutting edge (see Figure 2-1). Establishing the model of the 

chip flow angle is the main objective of chip flow research. Due to the extreme 

complexity of the chip formation process, only limited success has been achieved in chip-

flow research, especially in three-dimensional conditions (three-dimensional groove, and 

three-dimensional cutting). 

A lot of work has been done on chip-flow angle research during the last few 

decades, and there are many methods for calculating the chip-flow angle. The 

investigation of chip flow began with modeling over plane rake face tools.  
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Figure 2-1 Chip Side Flow Angle (Jawahir, 1993) 

Merchant, Shaffer and Lee used the plasticity theory to attempt to obtain a unique 

relationship between the chip shear plane angle, the tool rake angle and the friction angle 

between the chip and the tool (Merchant, 1945; Lee, 1951). Shaw (1953) proposed a 

modification to the model presented by Lee and Shaffer. Palmer (1959) presented the 

shear zone theory by allowing for variation in the flow stress for a work-hardening 

material. Van Turkovich (1967) investigated the significance of work material properties 

and the cyclic nature of the chip-formation process in metal cutting. Slip line field theory 

is widely applied in chip-formation research and some slip-line field models are 

presented (Usui, 1963; Johnson, 1970; Fang, N. 2001). Being computationally successful, 

slip line field models do not agree well with experiment results due to lack of knowledge 

of the high strain rate and temperature flow properties of the chip material. 

Through studying the chip flow in free oblique cutting, Stabler presented a 

famous rule called the “Stabler Rule” (Stabler, 1951): 

                                                                                                               (2-1) rKκ=ψλ

where the ψλ is the chip side flow angle, the κr is the cutting-tool inclination angle, and K 

is a material constant. This rule is applicable for free oblique cutting. 
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Another chip flow model is presented with the assumption that the chip flow is 

perpendicular to the major axis of the projected area of cut. This model uses empirical 

substitutions to consider the effect of cutting forces (Colwell, 1954). i.e. 
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where d is depth of cut, κr is insert lead angle, f is feed rate, and rε is nose radius (see 

Figure 2-2). 

 
Figure 2-2 Chip Side Flow Angle According to Colwell Theory 

Later on the groove parameters will be defined along the side flow angle. Since 

Colwell’s equation does not consider the effect of the work-piece material, this model 

therefore will result in significant error under particular conditions. 

Okushima considered that chip flow is invariant with cutting speed and chip flow 

should be the summation of elemental flow angles over the entire length of the cutting 

edge (Okushima, 1959). 
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A chip flow model was presented by Young in 1987, assuming Stabler's flow rule, 

with validity for infinitesimal chip width, and the directions of elemental friction forces 

summed up to obtain the direction of chip flow (Young 1987). 

The above chip flow studies are shown in Figure 2-3.  

 
Figure 2-3 Chip Flow Models for Machining with a Flat-Faced Tool (Jawahir 1998) 

Jawahir et al (1988-a) found that a chip also has another form of flow angle, 

which he called chip back flow angle (η) show in Figure 2-4. However in real machining 

condition the chip flows in 3-D space with both side and back flow angles. 
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Figure 2-4 Chip Back Flow Angle 

2.2 Chip Curl 

Chip flow is only a part of chip space movement. To understand the chip 

movement mechanism, it is necessary to study chip curl. Chip curl has two basic modes: 

up-curl and side-curl. Recently the third chip curl mode called lateral curl was found 

(Fang, 2001). The chip up-curl is much simpler than the other two kinds of chip curl. 

Therefore, the greatest achievements have been in chip up-curl modeling. Chip side-curl 

is much more difficult than up-curl and currently there are no applicable models of the 

chip side-curl.  

2.2.1 Chip Up-Curl 

The up-curl chip is chip that curves in the plane which is defined by chip flow 

direction and perpendicular to the cutting edge. The up-curl curve is described with chip 

up-curl radius Ro. Nakayama considered that when there is a build-up edge on the cutting 

tool, the part of the chip that flows over the build-up edge would come in contact with the 

tool rake-face, which brings a bent moment to the chip (Nakayama, 1962-b). For the 

grooved tool, the chip-breaking groove can help chip curl (see Figure 2-5). 
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Figure 2-5 Chip Up-Curl Process with Grooved Cutting Tool (Li. Z 1990) 

 The following is the chip-up curl radius (R0) equation given by Jawahir et al 

(1988-e) 

R0 = R                                                                                                               (2-4)      

 

where R is the chip-breaking groove radius. In this equation it is assumed that the chip 

back flow angle η is very large or the restricted contact length is small so that the chip 

flows through the whole chip-breaking groove (Figure 2-6a). If the chip back flow angle 

(η) is small or the restricted contact length is long, the chip does not flow through the 

whole chip-breaking groove. In that case the up curl radius equation according to Jawahir 

et al is (1988-e):  

η
=

sin2
WKR n

ch0                                                                                           (2-5)        

where Kch is a constant determined by the chip material, Wn is groove width and η is chip 

back flow angle (Figure2-6b).  
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Figure 2-6 Chip Radii According to Jawahir (1988-e) Theory  

Based on chip-cutting tool geometric analysis, Li et al (1990) presented a chip up-

curl radius equation where the insert rake angle was considered as the chip flow entrance 

angle in the groove. Here the chip-tool contact length on the groove body is taken into 

account. 
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⎞
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⎝

⎛
γ−

γ
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f
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l21
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WR                                                                            (2-6)     

where lf  is the chip/tool contact length, and γn is the rake angle. It is noticeable that this 

equation is not affected by groove profiles, which are not necessarily a portion of the 

circle. Also this equation is for insert grooves in which the backwall height is zero. 

Zhou (2001-a) added the insert groove backwall height as shown in Figure 2-7 

and formulated this equation: 

( )
)sinhcosW(2

sinhcosWl2lhWR
nnn

nnnf
2

f
22

n
o γ+γ

γ+γ−+++
≈                                        (2-7) 

where h is backwall height. 
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Figure 2-7 Chip Up-curl Formation According to Zhou et al Theory (Zhou 2001-b) 

2.2.2     Chip Side-Curl 

Chip side-curl (Rs) is the chip curl in the direction of chip width. The side-curl 

axis is generally perpendicular to the chip bottom surface. The chip side-curl is caused by 

differences in the material flow speed along the chip width direction on the chips bottom 

surface (see Figure 2-8). 

 
Figure 2-8 Mechanism of Chip Side-Curl (Zhou 2001-b) 

The chip side-curl radius has a critical influence on side-curl-dominated chip-

breaking. The main objective of chip side-curl research is to establish the model of the 

chip side-curl radius. 
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Nakayama considered that the chip material had side flow, which leads to chip 

side-curl. He also considered that the thicker the chip, the greater the chip material side 

flow, therefore the greater the chip side-curl. He proposed the following side-curl radius 

equation,  

               
k
1

h
09.0

b
75.0

R
1

chchS
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=                                                                               (2-8) 

where bch is the chip width and hch is the chip thickness. (Nakayama 1990) 

2.2.3 Chip Lateral-Curl and Combination Chip Curl 

Chip lateral-curl was identified by Fang N. (2001). It may appear in a very special 

condition. There is no model built up for chip lateral-curl yet. In real cases, the chip curl 

form is a combination of the two basic curl forms: up-curl and side-curl. 

2.3 Chip-Breaking Criterion  

As discussed in Chapter 1, chip-breaking has two basic modes: chip-breaking by 

chip/work surface contact or chip-breaking by chip/tool flank surface contact. For chip-

breaking research, we need to set up the chip-breaking criteria; for industry application, 

we need to find efficient ways to break chips. 

The following is a summary of the two approaches of chip-breaking research: 

1. Material stress analysis – to find the chip-breaking strain εB. 

Research work by this approach includes: 

• Chip curl analysis (Nakayama, 1962; Li, 1990) 

• Finite Element Analysis or FEA (Kiamecki, 1973; Lajczok, 1980; Strenkowski, 1985; 

etc.) 

2. Experiment-based work 
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This approach uses the database system established by Fang and Jawahir which is 

based on fuzzy mathematical model for chip breakability assessments (Fang, 1990-a, 

Jawahir, 1989). 

This approach requires lots of time, money, and labor to establish the chip breaking 

prediction database. With new work-piece materials, new cutting tools / lathe, and new 

machining methods constantly coming out, it is difficult to establish and maintain a chip-

breaking database for prediction. 

Tool designers optimize their tool design based on many cutting tests. In the 

industry machining process, some special devices such as a rotating knife, a high-

pressure gas/fluid jet and a vibrating cutting tool are also designed to break the chip. 

However, the most efficient and most common way to break the chip is to use the chip-

breaking groove /chip breaker and optimize geometric features of the cutting tool. 

Presently, there has been only limited success in the chip-breaking criterion study. 

The theoretical achievements fall behind industry reality and requirements. 

Nakayama (1962-b) presented the most common chip-breaking criteria for up-

curl-dominated chips. Presently most research on chip-breaking criteria are for two-

dimensional chip-breaking. The chip-breaking criteria for three-dimensional chip-

breaking needs further investigation. Three-dimensional chip-breaking criteria can not be 

established without a reasonable two-dimensional chip-breaking model. 

The finite element method has been applied in the chip-breaking process analysis 

for plane rake-face and grooved tools for orthogonal machining, and most recently for 

three-dimensional machining (Kiamecki, 1973; Lajczok, 1980; Strenkowski, 1985, 

                                                                                                                                              17



1990). These analyses are computationally successful, but their predictions do not agree 

with the experiments. 

Nakayama’s chip-breaking criterion is the most common. Therefore it is reviewed 

in detail. 

Nakayama considers that when the actual chip fracture strain (ε) is smaller than 

the tensile strain of the chip (εB), the chip will break. It is noted that the ε is proportional 

to the ratio of chip thickness and chip curl radius. i.e.  (Li. Z 1990) : 

               
0

ch
B R

h
∝ε                                                                                                     (2-8)              

where hch is the chip thickness, R0 is the chip up-curl radius. 

Nakayama considered that a chip flows out with up-curl radius R0, and then is 

blocked by the work-piece surface or the cutting tool. With the chip material 

continuously flowing out, the chip curl radius will be increasing continuously. When the 

chip reaches up-curl radius RL where the chip actual fracture strain ε is smaller than the 

chip strain εB, the chip will break 

 When the chip cross-section shape is a rectangle, εB can be calculated by the 

following equation (Li, 1990): 
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Otherwise, the above equation can be written as Nakayama (1962-b): 
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R
1h                                                                                                 (2-10) 

where αch is cross-section shape coefficient; and hch is the chip thickness.  
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2.4 Li’s Work on Chip-Breaking 

Developing a reasonable chip-breaking criterion is the prerequisite for 

establishing an applicable chip-breaking predictive model. However the extreme 

complexity of the chip-breaking process makes the theoretical analysis and modeling of 

chip-breaking very difficult. Based on Nakayama's work and chip-breaking limits theory, 

through chip curl analysis, Li (1990) presented a new semi-empirical chip-breaking 

prediction model.            

Since it is the basis of the chip-breaking prediction models developed in this 

research, it will be reviewed in detail in the following section. To better understand the 

model, first the chip-breaking chart is introduced.     

2.4.1 Chip Breaking Chart 

Below are the chip breaking curves and chip type classifications based on 

observations from previous study involving a large number of experiments (Figure 2-9). 

a)                                                                         b) 

Figure 2-9 Typical Chip Breaking Charts (Li, 1990) 
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The graph shows that there are critical feed rates and critical depth of cuts. When 

the depth of cut is greater than the critical depth of cut and the feed rate is greater than 

critical feed rate, the chip will break. Otherwise a long chip will be produced. For specific 

workpiece materials, cutting tools and cutting speed, the chip-breaking chart is consistent. 

Generally the chip-breaking curve can be divided into three typical parts (see Figure 2-

9a) up-curl dominated chip-breaking region AB, side-curl dominated chip-breaking 

region CD, and transitional region BC. Because of a complicated nature of chip in BC, 

the curve in CD and AB only is analyzed and the relevant equations are detailed in this 

chapter. 

Side Curl Dominant Region CD 

The region CD of the chip-breaking curve shown in Figure 2-9a includes side-curl 

dominated chip formation and breaking processes. Side curl chip is the chip curl in the 

direction of the chip width. The side curl axis is generally perpendicular to the chip’s 

bottom surface (see Figure 2-7). This region shows a complex 3-D chip curling. On each 

side of the limit, the broken area is mainly of side-curled spiral type continuous chips. 

Up-Curl Dominant Region AB 

In the region AB of the chip-breaking curve shown in Figure 2-9a, the lowest 

point, B, is the minimum or critical feed rate. This region is primarily a straight line with 

a slope and with regard to Figure 2-9, can be analyzed as a 3-D chip-up-curling dominant 

process. So the definition of up-curl chip is the chip curl in the chip thickness direction, 

the axis of chip curl approximately parallels the chip/cutting tool rake face detachment 

line.                                                                                                                                               
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Based on Nakayama's work and chip-breaking limits theory, through chip curl 

analysis, Li (1990) presented a new theoretical and semi-empirical chip-breaking model.                                 

Since it is the basis of the chip-breaking models developed in this research, they 

are reviewed in detail in the following parts. 

• Theoretical Analysis method 

• Semi-Empirical predictive method 

2.4.2 Theoretical Analysis of Critical Feed Rate and Depth of Cut 

As it was explained in chip-breaking chart: The chip will always break when the 

depth of cut is greater than the critical depth of cut (dcr), and the feed rate is greater than 

the critical feed rate (fcr). Otherwise, the chip will not break. 

In Nakayama's model (Equation (2-10)), for up-curl dominated chip-breaking 

region, the chip thickness (hch) can be calculated as: 

h

r
ch C

fh κsin
=                                                                                                (2-12) 

where κr is the insert lead angle, Ch is the cutting ratio. 

Substituting hch into Equation (2-10), the following equation is established for 

critical feed rate (fcr): 
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=                                                                        (2-13) 

where KR is the coefficient related to the chip radius breaking: 

 
                KR=RL / (RL-R0)                                                                                        (2-14) 
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When f > fcr, the chip will break. Similar to fcr, a critical depth of cut (dcr) can be 

defined for the side-curl-dominated chip-breaking region (see Figure 2-10). The equation 

of dcr for two-dimensional grooved inserts is as follows (Li, 1990): 

 

                                                                                                                                   (2-15)   
ε ≥⎜

⎛ −
π

−
δε

= rdfor
cos

d sB
cr

 

                                                                                                                                   (2-16) ⎞⎛ δcos57
εε

ε

ε

<−⎟⎟
⎠

⎜⎜
⎝ α

ε
=

⎟
⎠
⎞

⎝α

rdforr
r
R3.

cosd

r1
2

R

sB
cr 

 

where Rs is the radius of side curl chip (Equation (2-8)); α and δ are a chip’s cross 

sectional related parameters and rε is the insert nose radius. 

In critical depth of cut equations insert nose radius is the major parameter that 

affects critical depth of cut. 

 
Figure 2-10 Chip Flow of Side-Curl Dominated ε-Type Chips (Zhou 2001-b) 

Although in practical, the critical depth of cut is affected by groove parameters 

(Zhou 2001-b) but the groove parameters have no role in chip side curl formation and 
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chip radius dimension. In this study more concentration will be given on up-curl 

dominant chip formation, which explicitly affected by insert specifications. 

Equation (2-13) does not satisfy real machining conditions, which chip formation 

occurs in 3-D with 3-D groove. Therefore in this thesis critical feed rate equation 

(Equation (2-13)) will be improved to 3-D with 3-D groove. As well in conditions that 

the depth of cut is smaller than the nose radius (e.g. d<rε), critical feed rate (fcr) will be 

modified. 

2.4.3  Semi-Empirical Chip-Breaking Predictive Model 

The theoretical equations of dcr and fcr, shown above, cannot be used directly to 

predict chip-breaking limits because not all parameters in the equation can be calculated 

directly. Therefore a semi-empirical chip-breaking predictive model based on theoretical 

equations of dcr and fcr was presented (Li, 1990) for industry application. 

The chip-breaking limits are influenced by a lot of factors but are mainly 

determined by the work-piece material, cutting speed, and insert geometric features (see 

Figure 2-11). 

Applying the single-factor modeling method, Li presented the following chip-

breaking predictive model: 

⎩
⎨
⎧

=
=

dmdVdt0cr

fmfVft0cr

KKKdd
KKKff

                                                                                     (2-17)   

where f0 and d0 is the standard critical feed rate and the standard critical depth of cut 

under a predefined standard cutting condition. 

The predefined standard cutting condition can be defined with a certain workpiec 

material, groove parameters and surface speed. KfT and KdT are the cutting tool (inserts) 
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effect coefficients; KfV and KdV are the cutting speed effect coefficients; and Kfm and Kdm 

are the work-piece material effect coefficients. The empirical coefficients Kdm, KdV, KdT, 

Kfm, KfV, and KfT are developed through cutting tests. Once the empirical equations of 

Kdm, KdV, KdT, Kfm, KfV, and KfT have been set up, they can be calculated when the 

cutting condition is specified. Then the fcr and dcr can be figured out under any conditions 

by multiplying the f0 and d0 with Kdm, KdV, KdT, Kfm, KfV, and KfT, respectively. Therefore 

the chip-breaking can be predicted under any given cutting condition. 

 
Figure 2-11 Factors Influence Chip Breaking (Zhou 2001-b) 

Work-Piece Material Coefficients Kdm and Kfm

For estimating the work-piece material constant Equations (2-18) can be used.  

⎩
⎨
⎧

=
=

0crdm

0crfm

d/dK
f/fK

                                                                                             (2-18) 

First, conduct a group of cutting tests under predefined conditions with the given 

work-piece material to obtain a group of dcr and fcr. Dividing them by the d0 and f0, the 
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Kdm and Kfm can be estimated. Collecting all Kdm and Kfm for different work-piece 

materials, a work-piece material coefficients database can be set up. 

Cutting Speed Coefficients KdV and KfV

For set up the cutting speed empirical equations, Equations (2-19) can be used.  
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                                                                       (2-19) 

 First, conduct several groups of cutting tests under predefined conditions, except 

changing the cutting speed for several levels. Then we can get several groups of dcr and 

fcr; dividing them by the d0 and f0, we can then get several KdV and KfV. Then we can use 

curve-fit to develop the general empirical equations for the KdV and KfV. After the 

empirical equations are established we can estimate KdV and KfV for any cutting speed 

without conducting any extra cutting tests.                 

If the predefined standard condition is different, the above equations of the KdV 

and KfV should multiply by a constant respectively. 

Insert Geometric Coefficients KdT and KfT

Li (1990) set up the KdT and KfT models for two-dimensional grooved inserts as 

follows. The predefined standard condition is still the same as before. The KdT and KfT are 

developed as functions of the insert nose radius rε, the chip-breaking groove width Wn 

and the insert lead angle kr. 

                                                                                                    (2-20) fWnfkrfrfT KKKK ε=

where Kfrε is the nose radius effect coefficient, Kfkr is the rake angle effect coefficient, 

and KfWn  is the width of the chip-breaking groove effect coefficient. 

                                                                                                    (2-21) dWndkrdrdT KKKK ε=
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where Kdrε is the nose radius effect coefficient, Kdkr is the insert lead angle effect 

coefficient, and KdWn is the width of the chip-breaking groove effect coefficient. In this 

research, an improved model based on Li’s model will be developed, which will be 

described in Chapter 5. 

2.4.4 Chip Breaking Chart for Inserts with Complicated Geometry 

The definition of critical feed rate and depth of cut offered by Li et al, with regard 

to Figure 2-12 (Zhou 2001-b), does not cover all types of inserts. There is area that 

although related depth of cut and feed rate is smaller than critical feed rate and depth of 

cut of normal region, the chip is broken.  

 

 
Figure 2-12 A Sample Chip Breaking Chart Produced by Complicated Groove 

Inserts (Zhou 2001-b) 

 
In this thesis for extra chip-breaking region the depth of cut at the beginning of 

the region called minimum depth of cut and the depth of cut at the end of the region 
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called maximum depth of cut (Figure 2-12). Therefore a new method should be defined 

and established to explain the phenomena that differ the chip-breaking chart in Figure 2-

12 from ordinary ones introduced in above section (see Figure 2-9). The next section will 

discuss the chip-breaking groove and the cutting tool classification. 

2.5 Chip-Breaking Groove & Cutting Tool Classification 

With regard to different application of inserts, related chip-breaking grooves vary 

greatly. To analyze the chip-breaking groove’s effects on metal cutting, the chip-breaking 

groove needs to be classified first. In Zhou dissertation (2001-b), different cutting tools 

are classified based on different types of chip-breaking features. He classified the cutting 

tool into five categories: flat rake face tools, tools with block type chip breaker, tools 

with two-dimensional chip-breaking groove, tools with 3-D chip-breaking groove, and 

tools with complicated geometry modifications. Figure 2-13 illustrates the five kinds of 

cutting tools. (Zhou 2001-b). 

In present research work inserts with 3-D groove type chip breakers are 

categorized in more detail. The inserts with three-dimensional grooves are divided into 

two types: simple and protruded insert groove; the simple grooves are grooves, which 

from top view show sides that are parallel with insert edges, as shown in Figure 2-14.  
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           (i) Straight Cutting Edge         (ii) Chamfered Cutting Edge      (iii) Rounded Cutting Edge 

(a) Flat Rake Face Tool (Jawahir, 1993) 
 

 
(b) Insert with Block Type Chip Breaker 

 
(c) Insert with Two-Dimensional Chip-Breaking Groove 

 
(d) Inserts with Three-Dimensional Chip-Breaking Groove 

 

 
(e) Inserts with Complicated Geometry Modifications 

Figure 2-13 Classification of Chip Breaker / Chip-Breaking Groove (Zhou 2001-b) 
 

In this type of grooves, the groove related parameters should be considered along 

a section perpendicular to the insert side edges. There are two set of parameters 
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associated with grooves namely V type groove section profile and a arc profile (see 

Figure 2-15).    

 
(i) CNMG432-91 NL92  (ii) TNMG 332-23 4035 

a) Inserts with Simple Groove 

 
 i) TNMP 332K KC850 ii) TNMG 332 QF 4025 

b) Inserts with Protruded Groove 

Figure 2-14 Inserts with Three-Dimensional Chip-Breaking Groove 

The parameters of the V type section include: groove width (Wn), rake angle (γn), 

backwall angle (γb) and backwall height (see Figure 2-15a) and similarly for a portion of 

circle section profile are groove width (Wn), insert/chip restricted contact length (bγ1), 

rake angle (γn) and groove radius (see Figure 2-15b).  
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                                             a)                                                b) 

Figure 2-15 Simple Groove Nominal Parameters and Profiles 

In Protruded type groove inserts, there are two subcategories: sharp protruded 

nose (Figure 2-14bi) and round protruded nose (Figure 2-14bii). 

For both of them the groove parameters should be considered along the symmetric 

line of the insert as shown in Figure 2-16.The parameters include: groove width (Wn), 

rake angle (γn), backwall angle (γb), backwall height (h) and insert/chip restricted contact 

length bγ1. 

 
Figure 2-16 Protruded Groove Nominal Parameters  

In this thesis, both the chip formation in different type groove profile section is 

and the chip breaking chart in protruded type grooves are analyzed.  
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2.6 Existing Problems 

For today’s unmanned manufacturing systems, chip-control needs to be 

considered as important as tool wear, cutting forces, surface finish, and machining 

accuracy. It is essential to develop an efficient chip-breaking prediction tool to optimize 

the machining processes. Presently, a big gap still exists between analytical work and 

practical requirements in the chip-control field. Two main problems exist in the chip-

breaking prediction research: 

1. In the chip-breaking, theoretical equation of fcr is for 2-D up-curl and does not cover 3-

D chip curl with side flow angle. 

Li and Zhou’s work on fcr theoretical equation model is for 2-D and the backwall 

angle and efficiency of groove width which can have significant influence on chip-

breaking, are not included in the model. 

2. Lack of precise chip-breaking prediction model for inserts with 3-D groove. 

3-D groove, especially the protruded type, inserts are the most popular inserts in 

finish cutting in industry. It is crucial for chip-control to establish an efficient and precise 

chip-breaking prediction model for three-dimensional grooved inserts. 
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3 Objectives and Scope of Work 

3.1 Objectives 

The objective of this research is to improve the chip-breaking predictive model 

for oblique turning with 3-D groove inserts. It contains two parts: 

1. Extending Zhou’s chip up-curl radius model for 2-D grooved inserts to include 

important geometric features of groove. 

The effects of the cutting tool's backwall length to rake land length ratio and 

backwall angle, which are important for chip-breaking but are not considered in Zhou’s 

model, are studied and included in the expanding model. 

2. Developing and detailing a chip-breaking predictive model for critical feed rate in 

3-D cutting with 3-D groove inserts. 

The chip-breaking problems mainly exist in the finish cutting, where the depth of 

cut is small. More than 70% of the industry inserts used in finish cutting are three-

dimensional grooved inserts. The particular significance of this work is that it presents a 

model for critical feed rate that covers real machining conditions in 3-D with 3-D groove. 

3.2 Approach 

Chip-control is very important to optimize the machining process. Developing an 

efficient chip-breaking predictive tool is essential to the machining industry. The tool 

should fulfill the following industrial requirements: 

1. Predict whether a chip breaks under given cutting conditions when the cutting tool 

is specified. 

2. Optimize cutting-tool and cutting condition designs to break a chip. 
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Presently, there is a big gap between the theoretical research and the stated above 

industrial requirements. Most industry cutting processes employ oblique cutting with 

three-dimensional grooved cutting tools, while most successful analytical models are for 

orthogonal cutting with simple grooved tools. For oblique cutting with three-dimensional 

grooved cutting tools, there is a lack of fully reasonable chip-breaking criterion. 

Presently database systems are used for chip-breaking prediction and a "try and see" 

method is used for tool design/selection in industry applications. However, methods are 

very costly. 

The semi-empirical chip-breaking model approach (Li, 1990), shown in the 

Chapter 2, is a practical way to bridge the gap, with great advantages including: 

1. It concentrates on the chip curl process instead of the chip formation process so it 

avoids the analyzing of the extremely complicated chip flow area. 

2. Supported by the chip-breaking limits theory, it only needs to consider the up-curl 

dominated chip-breaking process and the side-curl dominated chip-breaking process for 

chip-breaking analyzing. Thus the problem is greatly simplified. 

3. It does not fully rely on theoretical analysis. Instead, it uses limited cutting tests to 

develop the semi-empirical equations of chip-breaking limits. The number of cutting tests 

needed to develop the semi-empirical models is greatly reduced in comparison with 

present industry chip-breaking databases. 

4. The semi-empirical chip-breaking model is intended for oblique cutting with 

grooved cutting tools, which is an appealing solution for industry application. 

Given these advantages, the following steps are applied in this research. 
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1. The parameters that have influence on the chip formation are analyzed in detail on 

critical feed rate in 2-D groove first. 

2. Establishment of an equation for critical feed rate that includes side flow angle 

groove parameters associate with side flow angle. According to the chip-breaking chart 

axes, chip-breaking occurs in a certain feed rate in a range of depth of cut that result side 

flow angle. Along side flow angle, equivalent groove parameters are defined that can be 

replaced with 2-D equations of critical feed rate and formulate a 3-D equation.   

3. Analyzing chip breaking in precision machining. By the chip-breaking chart we 

can analyze extra chip breaking region that usually occurs in precision machining with 

protruded groove inserts. 

Therefore the approach of present study is: 

• Looking into details of relationship between chip-breaking chart and the insert 

groove parameters as well as cutting parameters 

• After analysis, use experimental results to validate chip flow angle and groove 

details on chip formation and breaking.  

3.3 Outline of Thesis 

This section provides an overview of how the rest of the dissertation is organized. 

Chapter 4 is formulation of influential parameters on 2-D and 3-D up-curl 

dominated chip. Through chip/insert geometric analysis, the original model of the chip-

breaking limits is extended to include the backwall angle and a criterion to recognize the 

groove width and backwall height effectiveness. Theoretical critical feed rate are 

extended from 2-D to 3-D and the groove functionality limits are analyzed in this chapter. 
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Experiments are conducted to confirm the equations that are established and the results 

are compared with Zhou (2001-b) equations for chip radius. 

Chapter 5 presents critical feed rate (fcr) equation analysis for protruded type 

grooves.  The chip-breaking limits (the maximum and minimum depth of cut) are first 

described and identified as functions of the insert geometric feature parameters. The 

effect of insert nose radius on chip thickness is also studied. The theoretical and semi-

empirical chip-breaking models for 3-D protruded grooved inserts are established. 

Cutting tests are conducted to confirm the equations. The experiment-based approach is 

used for developing a chip-breaking prediction model. 

Chapter 6 summarizes all work in this dissertation and describes the possible 

future directions in developing chip-breaking predictive models. 
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4 Influential Parameters on 2-D and 3-D Up-Curl 
Dominated Chip 

In this chapter the existing equations of chip up curl radius (R0) are first 

improved. Chip formation in 3-D groove studied and extended based on 2-D groove 

equations.  

4.1 Influential Parameters on 2-D Up-Curl Chip 
 

With regard to Equation (4-1) below the up-curl chip radius has a critical 

influence on the critical feed rate.  
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where αch is cross-section shape coefficient, εB is tensile strain of the chip, R0  is the chip 

up-curl radius, κr is the insert lead angle, Ch is the cutting ratio and KR is the coefficient 

related to the chip radius breaking. 

                KR=RL / (RL-R0)                                                                                        (2-14) 

Past studies have been done mostly on chip radius in the 2-D groove (Zhou, 2001-

b). In these papers, the backwall angle and backwall length to rake land length ratio are 

not considered. 

In addition, insert makers have not identified the groove specifications in their 

catalogues. It is therefore difficult to identify the groove specifications and follow a track 

to model the grooves in chip formation process. The main objective of critical feed rate 

study is to establish a model for the up-curl chip radius equation, which shows groove 

specifications effect on chip radius dimension. 
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As explained in chapter 2 Zhou (2001-b) introduced the latest equation of chip 

up-curl (R0). i.e. 
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where Wn is groove width, lf  is the chip/insert contact length, γn is the rake angle in 

normal direction, and h is backwall height. In Equation (4-2) above when the backwall 

length (lb) is longer than rake land length (ln) (see Figure 4-1), the chip will leave the tool 

surface before reaching the backwall end.  

Therefore, the overall length of the measured the backwall height and groove 

width cannot be substituted in Equation (4-2). 

 

Figure 4-1 Chip Formation in Long Backwall Groove 

However with regards to Figure 4-1 a new equation for R0 is formulated (see 

below) for this research: 
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where γb is backwall angle. Equation (4-3) is such arranged that the measured Wn and h 

can be substituted directly. Equation (4-3) is functional when the following condition 

which is called criterion equation, is fulfilled:  

                                                                                        sinl

b

n

fn

b >
β−γ
β+γ

                                                                                                                                              (4-4) sinll
=

−
( )
( ) 1

 

where the lb is rake face length, the ln is backwall length and β is:   
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It should be considered that chip has a circular shape and it is tangent to chip 

groove wall in initial and final contact points of chip formation.            

 

Figure 4-2 Chip Formation in Insert Without Backwall 

Equation (4-3) cannot be used under the condition that the groove has no 

backwall, since there is no groove width as shown in Figure 4-2. Therefore Equation (4-

6) is formulated to calculate the radius of chip curl as follows:  
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In this section it is found that the nominal groove width and backwall height that 

are usually referred to as criteria for chip breaking are not always trustable and should be 
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categorized to models (Equation (2-4), (4-2), (4-3)) with respect to groove dimensions 

and section profile. In these equations, except (2-4), the only parameter that should be 

estimated from data base is the chip/insert contact length (lf). It is, therefore 

recommended that instead of evaluating groove parameters individually, according to 

chip up-curl model the chip radii should be calculated and results compared.         

4.2 Influential Parameters on 3-D Up-Curl Dominated Chip 
 

According to the cutting tool classification defined in chapter 2, and with respect 

to Figure 4-3, the Equations (2-4), (4-3), (4-4) and (4-6) mentioned in chip radius 

modeling cannot be used in 3-D unless the groove specifications are considered along 

with the chip flow.        

4.2.1 Chip Side Flow Angle (ψλ) 

Rahman et al (1996) have studied chip formation in 3-D and formulated the 

groove specifications along chip flow. In this part his work is revised and chip formation 

equations are organized according to influential parameters including groove width, rake 

and backwall angle. 

The Chip flow angle is a key parameter that determines the groove designs in 3-

D. In this regard the chip side flow angles should be determined. The side flow angle 

depends on workpiece material, insert dimension specifications and machining conditions 

(Young 1987). This study takes account of the Colwell equations (Stabler 1964), because 

it covers all geometrical specifications of insert. Hence the chip side flow angle yl 

equation is: 
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where rε is nose radius, d is depth of cut, κr insert lead angle and f is feed rate. As it can 

be seen in Stabler equations i.e. (4-7) (4-8) the most important parameters of insert that 

have influence on side flow angle are represented. It should be noted that rε is insert 

feature, f and d are machining conditions, κr is insert orientation that can be studied 

separately.                                   

In orthogonal machining groove, nominal parameters were considered in the 

equations of chip formation because the chip flows perpendicular to groove on rake face. 

However in oblique machining in presence of side flow angle the groove nominal 

parameters will not be accurate and they should be considered along the chip flow 

direction. Therefore in order to calculate the chip up-curl accurately, it is required to 

consider groove parameters along side flow angle. The side flow angle equations for 

certain insert is also a function of machining conditions (depth of cut, feed rate) and it 

can be concluded that the groove parameters are a function of machining conditions and 

they change in different depths of cut and feed rates. The groove parameters along the 

chip flow are called equivalent parameters that are analyzed in detail in the next section.  

4.2.2 Equivalent Parameters 

With respect to side flow angle (ψλ), the groove parameters, influenced by side 

flow angle, as shown in Figure 4-3 are: 
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• gne: Equivalent Insert Rake Angle 

• gbe: Equivalent Groove Backwall Angle  

• Wne: Equivalent Groove Width 

 
Figure 4-3 Equivalent Parameters along Chip Formation 

Insert Equivalent Rake (gne) and Backwall Angles (gbe ) 

The rake and backwall angle are altered with respect to chip side flow angle. The 

equation of the equivalent rake and backwall angle, in this case is given as:

             
n

ne cot
cos

tanArc
γ
ψ

=γ λ                                                                                       (4-9) 

             
b

be cot
cos

tanArc
γ
ψ

=γ λ                                                                                      (4-10) 

Insert Equivalent Groove Width (Wne) 

In up curl dominated chip radius Equation (4-3), (4-4), and (4-6), the groove 

width is the most important parameter that affects chip radius dimension with respect to 

groove type, especially in simple grooves, can be significantly affected by chip side flow 

angle. In simple type of 3-D grooves Figure 4-4 the following equations govern the 

groove width dimension: 
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where bγ1 is insert/chip restricted contact length.  

 
Figure 4-4 Chip Side Flow Angle (ψλcr1) Indicates the Groove Width Equation Limit 

In these equations if the insert has no insert/chip restricted contact length the 

bγ1=0. 

Chip side flow angle (ψλcr1) that shows the limitation of Equation (4-11) and (4-

12) is based on minimum groove width along chip flow direction. This means that in the 

simple type 3-D grooves the chip is shaped in contact with the groove nose, Figure 4-4. 

Even when the depth of cut is greater than the insert nose radius, the minimum groove 

width along chip side flow angle is from groove nose to a point within insert nose radius, 

which can be calculated by Equation (4-13).  
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where α is insert nose angle. 

Since protruded grooves are usually used for finishing and the depth of cut is 

within insert nose radius, chip deals only with groove nose. Therefore the groove 

parameters are along the line that starts from groove nose to insert nose (see Fig 4-5).  

The groove width in protruded groove inserts is very small and the chip side flow 

angle does not change significantly because of small depth of cut. Thus the equivalent 

groove width (Wne) can be taken as equal to nominal groove width (Wn) i.e. 

                                                                                                                (4-14) nne WW =

 

 
Figure 4-5 Groove Dimensions in Protruded Groove Type Inserts 

Another limitation of chip side flow angle is angles that cause the chip does not 

reach the groove nose (see Figure 4-5).        
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Figure 4-6 Groove Side Flow Angle Related to Effectiveness of Groove 

For these cases the following equation is established as follow:  
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           (4-15) 

When the chip side flow angle is greater than critical side flow angle the chip is 

not curled by insert groove.    

As discussed early in this chapter the critical feed rate Equation (4-1) chip radius 

is one of parameters that has important role and should be analyzed accurately. Therefore 

in order to maintain a comprehensive chip up curl radius equation, the up-curl chip 

equation first was improved and chip curling in the grooves which backwall length (lb) is 

longer than rake land length (ln) and grooves without backwall were established 

(Equation (4-3) (4-6)). To identify that lb is longer than ln Equation (4-4) as a criterion 

was formulated. If Equation (4-4) is greater than 1 Equation (4-3) can be used. However 

the chip radius equations are based on groove parameters in 2-D and chip side flow angle 

during chip flow and 3D grooves are not considered. Consequently groove parameters 
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(groove width (Wn), rake angle (γn), backwall angle (γb)) were formulated along with side 

flow angle (Equation (4-9), (4-10), (4-11), (4-12)) and called equivalent parameters 

(groove width (Wne), rake angle (γne), backwall angle (γbe)). Also the side flow angles 

(ψλcr1) that identifies which equation of groove width should be implemented was 

established (Equation (4-13)). In Figure 4-15 the flow chart of calculation chip radius in 

3-D are shown. 

4.3 Experimental Validation 

In order to validate Equation (4-3) and (4-4) as the criterion equation derived in 

this research work and analysis, the side flow angle effects (4-9 to 4-12) on the chip curl 

radius, the following test methodology was conducted: 

• To measure chip diameter and compare it with estimated amounts. 

In this step the estimated chip radius equations were compared with practical 

values and the equation that has accurate prediction was indicated.  

• To determine the chip side flow angle effects on chip radius.  

In this step to validate, if the chip radius could be predicted by the equations of 

chip radius with equivalent parameters, the produced chip radii in different side flow 

angles were compared with the prediction.  

4.3.1 Experiment Design  

To achieve the follow up goals, a longitudinal dry-cutting test with a manual lathe 

machine in the following machining conditions was conducted:  
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Table 4-1 Test Parameters for Machining 

No. Insert Type W/P 
Material

Feed 
Rate 

(in/rev)

Depth of 
Cut (in) 

Surface 
Speed 
(Sfpm) 

1 TNMP 332K 
KC850 1010 0.0046 0.03 523 

2 CNMG432-
NL92 4150 0.011 

0.015 
0.03,0.05

0.06 169 

 

In this experimental work two kinds of inserts, shown in Figure 4-7, were 

implemented as 3-D type groove inserts.  

 
1)TNMP 332-KC850, 2)CNMG 432 NL92 

Figure 4-7 Inserts Implemented in Experimental Validation 

The measured parameters of these inserts were listed in Table (4-1). In this table 

the nose radius values were given by the inserts manufacturers. The CNMG432-NL92 

insert is scanned in Surface Metrology Laboratory by UBM-Microfocus scanning laser 

profiler (see Figure 4-8); the profile software was used to produce and measure the insert 

profile in the specified section, Figure 4-9. 

 
Figure 4-8 Scanned Picture of CNMG432-NL92 Insert 
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Figure 4-9 Dimensions of CNMG432-NL92 Insert along Section A-A 

    The rest of insert dimensions were extracted from Zhou’s dissertation (Zhou 

2001-b). 

Table 4-2 Insert Measurement Results 

No. Insert Type Manufacturer rε 
(mm)

Wn 
(mm)

bγ0 

(mm)
h 

(mm) γn(°) γb(°) κr(˚)

1 
TNMP 
332K 

KC850 
Kennametal 0.80 2.7 0.025 0.18 10 10.2 90 

2 CNMG432-
NL92 Kennametal 0.80 2.1 0.03 0.1 13.2 29.5 95 

 

To perform measurement of side flow angles and chips dimensions a digital Sony 

model MVC-FD91, with a shutter speed of 1/1000 second and flashlight was employed. 

Pictures were taken at a 1024*768 resolution with JPG extension files. 

A base was made and placed in machining position to support the camera during 

machining. The camera was leveled above the machining position. Three pictures were 

taken in each step.  

The pictures were transferred to AutoCAD software as a raster image to take 

measurements.  
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4.3.2 Experimental Results 

To verify Equation (4-2) and (4-3) TNMP 332K KC850 insert was selected. By 

this insert 1010 steel was machined with 0.03 in depth of cut and 0.0046 in/rev feed rate 

(see Figure 4-10).    

 
Figure 4-10 TNMP 332K KC850 Insert with 0.03 in. Depth of Cut 0.0046 in/rev 

Feed Rate  

 
As shown in Figure 4-10 the produced chip is up-curl dominant and the chip 

radius is 1.9 mm. The chip radius is therefore calculated with Equations (4-2) and (4-3) 

(see Table 4-3).  

Table 4-3 Calculated Results for TNMP 332K KC850 Insert 

Insert 
Machining 
Condition 

 

Wne
(mm)

Lf
(mm) Criterion R(Li) 

(mm) 

R 
(Avan.) 
(mm) 

R 
Measured 

(mm) 
TNMP 
332K 

KC850 

0.03 DOC (in.) 
 0.0046 FR (in/rev) 2.7 0.55 5.81 5.96 1.89 1.9 

 

In these equations all parameters were the same except lf, which was estimated 

based on measured chip radius. As it can be seen in Table (4-3) the criterion is 5.81 mm 

which is far greater than 1. Therefore Equation (4-3) named Avanessian model is 

functional. Chip radius by Li’s method was calculated and shows that the result was 
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greater than the measured radius. In Figure 4-11 the produced chip was modeled showing 

that the chip can not reach the groove end. With regard to dimensions it left before 

reaching groove backwall end.  

 
Figure 4-11 Produced Chip Situation on TNMP 332K KC850 Insert Groove 

In finding the chip radius, as stated above, from analytical equations the only 

unknown parameter was the chip insert contact length (lf). For example as it can be seen 

maximum contact length in Figure 4-11 is 0.87 mm. Therefore to prove that with 

different lfs which varies between zero and the rake land length, it is not possible to 

calculate measured chip radius by Zhou’s equation, the following graph was drawn (see 

Figure 4-12). 

 
Figure 4-12 Comparison between Avanessian and Zhou’s Models for Chip Radius 

Produced by TNMP 332K KC850 Insert  
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As it can be seen in Figure 4-12 the calculated chip radius with different lf s in 

Zhous’s model lie within 6 to 9mm which does not match with the measured chip radius 

i.e. 1.99. But in Avanessian’s model with different lfs, however, the radius of the chip 

was found at lf=0.55mm which agrees with the calculated value in Table 4-3. 

Chip Side Flow Angles Effects on Chip Formation  

 To analyze side flow angle effects on chip formation, as explained before, groove 

equivalent parameters (groove width (Wne), rake angle (γne), backwall angle (γbe)) should 

be first calculated. For this purpose CNMG432-NL92 insert was utilized and the 

following results were calculated as shown in Table 4-4.  

In this Table and according to Equations (4-9), (4-10), (4-11) and (4-12) to 

calculate equivalent parameters the side flow angle should be estimated. 

Insert 
Machining 
Condition 

(in) 
ψλ

(o) 
Wne

(mm)
gne 

(o) 
gbe

(o) 
Lf

(mm) Criterion R(Li)
(mm)

R 
(Avan.) 
(mm) 

R 
Measured

(mm) 
0.03DOC 
0.015 FR  45 2.82 9.4 21.8 0.8 1.04 4.96 3.60 3.65 

0.03DOC 
0.011 FR  38 2.77 10.4 24.0 1.2 1.69 1.63 2.31 2.3 

0.05 DOC 
0.011 FR  24 2.4 12.0 27.3 0.85 1.27 2.15 2.03 2.15 

CNMG432
-NL92 

0.06 DOC 
0.011 FR  12 2.20 12.9 28.5 0.62 1.05 2.38 1.98 2.22 

Table 4-4 Results of CNMG432-NL92 Inserts Machining 

During machining, under the conditions mentioned in Table 4-4 above, pictures 

were taken and then side flow angles (ψλ) measured as shown in Appendix A. The same 

method was also used to measure the produced chips as shown in Appendix B.  

Based on these measurements of side flow angles the groove equivalent 

parameters, including groove width (Wne), rake angle (γne) and backwall angle (γbe) were 
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calculated. As it can be seen in Table 4-4 the smaller the side flow angle the smaller the 

groove width. However, a smaller side flow angle gives greater insert rake and backwall 

angles. In the table lfs were estimated based on measured chip radii in table 4-4.  

Despite our anticipation that by altering the side flow angle the chip radius should 

change, nonetheless, the measured chips radii (except for the first one) are almost equal. 

By analysis of the criterion number it can be seen that the smaller the side flow angle the 

smaller the chip/insert contact length which means that the bigger effective groove width 

is involved in chip formation.  

Also it can be seen that because the criterion number is close to one there is not a 

big difference between Avanessian’s and Zhous’s models.  

 Chip/Tool Contact lenght vs Chip Radius 
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Figure 4-13 Comparison between Avanessian and Zhou’s Models for Chip Radius 
Produced by CNMG432-NL92 Insert 

 
In Figure 4-13 the chip radius was plotted against corresponding insert/chip 

contact length for the 38o side flow angle. As we can see unlike Figure 4-12 the predicted 

chip radius, at lf=1.2 mm, is very close. By subtle changes in the lf the required chip 

radius 2.3 mm can be obtained in both models. 
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Figure 4-14 Side Flow Angle in 0.015 in/rev Feed Rate and 0.017 in. Depth of Cut 

Figure 4-14 shows that the chip side flow angle is greater than the determinative 

angle. Consequently, the chip is formed without reaching insert groove backwall.  

The flow chart/algorithm (Figure 4-15) shows the process of calculating the chip 

radius.  
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Figure 4-15 Flow Chart of Influential Parameters on Up-Curl Chip  
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4.4 Summary 

In this chapter the theories and equations of chip formation in grooves were 

reviewed. Also chip formation in 2-D groove was improved and chip formation in 3-D 

groove is studied. At the end, some experiments were conducted to verify the theoretical 

equations. The work done in this section therefore includes three parts: 

1. Improvement of chip up curl radius for insert with long backwall. 

 According to the review the Equation (R0 = R) covers the cases that the section 

profile of groove was a portion of curve. In conditions that the chip does not follow the 

groove section profile or the section profile was V type the Zhou’s Equation (4-2) was 

implemented. But Zhou’s equation does not cover conditions that the backwall length is 

longer than the rake face length, so according to Nakayama et al assumption Equation (4-

3) was formulated. The Equation (4-3) was functional when Equation (4-4) was fulfilled. 

Equation (4-3) cannot be used under conditions that the groove has no backwall. 

Thus Equation (4-6) was established to calculate radius of chip curl. 

2. Improvement of up-curl chip radius from 2-D to 3-D. 

As mentioned in the beginning of this section all of these equations were 

formulated for orthogonal cutting in 2-D space that was not match with real machining 

circumstances, which the groove is 3-D.  Groove equivalent rake (gne) and backwall 

angles (gbe ) and width (Wne) were considered in 3-D formation of chip and formulated in 

Equation, (4-9) to (4-12). Also the side flow angle (ψλcr1) was indicated in Equation (4-

13) that identified which equation of groove width should be implemented was 

formulated.    
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          In protruded grooves the nominal groove width is the distance of insert nose to the 

middle of the groove nose. The equivalent groove width is equal to nominal groove width 

i.e.       nne WW =

From the above analysis of chip breaking critical feed rate equation the following 

conclusion can be made. 

3. Verification of the derived radius equations and side flow angles effects on chip 

radius. 

The experimental work for insert verified the Avanessian’s and Zhou’s models. 

Also, the side flow angle effects on chip radius shows that chip radius was constant and 

did not affect chip formation since a combination of effective chip groove width, 

chip/tool contact length and groove equivalent parameters were involved in chip 

formation. Groove width increases because of side flow angle, which could cause 

chip/insert contact length to increase. The effective groove width reduction caused the 

chip radius to remain constant in different side flow angles.      
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5 Critical Feed Rate Equation Analysis with 
Protruded Type Grooves   

In the previous chapter the side flow angle effects on chip formation were 

analyzed and a new concept was concluded about the insert parameters associated with 

the chip side flow angle. By this concept, protruded groove inserts and related extra chip-

breaking region, introduced in Chapter 1, can be studied. Therefore in this chapter the 

critical feed rate equation and constrains in protruded type inserts is analyzed. 

5.1 Limits of Extra Chip Breaking Region   
 

To find out the limits of critical feed rate within the extra chip-breaking region, 

the limits of depth of cut in the region should be identified. The estimation of the depth of 

cut limits including the minimum depth of cut where depth of cut greater than that the 

chip breaks at the beginning of extra chip-breaking region and maximum depth of cut 

where greater than that the chip does not break at the end of extra chip-breaking region 

are hereby investigated. 

5.1.1 Minimum Depth of Cut (dmin) 

In order to find the minimum depth of cut, hence the minimum chip curl, the 

minimum groove width is taken as principal.  

With regard to Figure 5-1 and chapter two the minimum groove width in 

protruded groove inserts is along the symmetric line that goes through the insert nose. 

Thus the minimum depth of cut will be the point where the symmetric line meets the 

insert nose radius. The equation below summarizes the discussion on minimum depth of 

cut. 
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where α is insert nose angle and rε is nose radius.  

 

Figure 5-1 Minimum Depth of Cut  

5.1.2 Maximum Depth of Cut (dmax) 

The next phenomenon considered as ineffective groove or maximum depth of cut 

is the situation where the chip will not go through the groove properly. In this situation, 

as shown in Figure 5-2, initially the chip is separated from the workpiece in the insert  
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Figure 5-2 Machining Condition Where Groove is Ineffective 

nose but in point A and B it is still attached to the workpiece. The chip blades in A and B 

then slide on insert restricted rake face and in points A’ and B’ where all section of chip 

are to go into groove, the chip-middle reaches the groove nose making it impossible for 

the chip to enter in the groove. Only the groove nose makes a curve on the chip surface. 

 

Figure 5-3 Chip Section Curved Due to Groove Nose Radius (Li, 1996) 

This fact is more noticeable in grooves with zero or negligible backwall height.  
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Figure 5-4 Maximum Depth of Cut  

According to the above description and Figure 5-3, which shows influential 

parameters, the equation to estimate maximum depth of cut is established as follows: 
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rp is protruded nose radius                                       
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w is the distance of the center of the protruded nose circle from insert nose radius center 

along insert symmetrical line. Since feed rate is small with respect to depth of cut, 

Equation (5-2) is neglected. This phenomenon has a more significant role in protruded 

type inserts with big nose radius. 

For protruded groove where the groove nose sharp rp is zero in Equation (5-2).  

5.2 Nose Radius Effects on Chip Thickness 

In protruded type inserts that are used mostly for finishing, the depth of cut 

usually is small. Therefore the uncut chip thickness is considered along the nose radius as 

shown in Figure 5-4. Chip thickness varies with constant feed rate and decreases 

significantly with reduction of depth of cut especially in inserts with great nose radius. 

 

Figure 5-5 Uncut Chip Thickness in Small Depth of Cut  

Therefore the Equation that is used to estimate chip thickness in round inserts can 

be implemented to calculate the uncut chip thickness on condition that the depth of cut is 

small. 
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From the discussion above the chip thickness in different depth of cut can be 

calculated using the following equations, 
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where; 

κr is insert lead angle, Ch is ratio of uncut chip to chip thickness, rε is insert nose radius 

and f is feed rate. 

To better understand the influence of depth of cut on chip thickness in Figure 5-6 

three insert nose radii (0.047, 0.032, 0.015 in) were selected. These insert nose radii are 

standards in inserts dimensions and often implemented in machining.    
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Uncut Chip Thicknes vs. Depth of Cut Graph with 0.01 
(in/rev) Feed Rate
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Figure 5-6 Uncut Chip Thickness Produced by Insert with Different Nose Radii with 
Different Depths of Cut 

        

As it can be seen in Figure 5-6 the greater the nose radius the greater the effects of 

the depth of cut on the chip thickness.  

With regard to conducted analyses, the analytical and semi-empirical critical feed 

rate equations are reviewed in the next section. 

5.3   Analysis of Critical Feed Rate  

In the introduction of this research work the Li and Zhou’s works on chip 

breaking chart and critical feed rate, analytical and semi-empirical chip-breaking models 

were explained in detail (Zhou 2001-b). In this section the equations with new findings 

are improved and a new approach found for critical feed rate.   
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5.3.1  Theoretical Analysis of Critical Feed Rate  

In chapter 4 equivalent parameters of groove were discussed. Also in section 5.1 

both minimum and maximum depths of cut were discussed. Following these discussions 

and the nose radius effects on chip thickness, the equations below were formulated for 

critical feed rate in this research work:   

               )cos1(
r
d

r
d

r
d2

RKC
.f

2

maxmax

0Rh

ch

b
cr γ

ε

εε

κ−<

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

α
ε

=                             (5-6) 

                )cos1(
r
d

sin
RKC

.f
r

0Rh

ch

b
cr γ

ε

κ−<
κα

ε
=                            (5-7) 

          In these equations it should be considered that the R0, which is the up-curl chip 

radius can be substituted with any models of chip radius as explained in section 4.1. The 

model parameters can also be substituted for equivalent parameters as it was explained in 

chapter 4.  

           In protruded groove type inserts the minimum depth of cut stated in section 5.1.1 

can be considered as the critical depth of cut i.e. 

                  
)

2
cos(rrd rcr

α
+κ−= εε

                                                                            (5-8)
 

          Therefore we can say that the Equation (5-6) and (5-7) are theoretical critical feed 

rate equations in 3-D.            
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5.3.2 Semi-Empirical Chip-Breaking Predictive Model 

As explained in chapter 2 another method of prediction of chip breaking is the 

semi-empirical chip-breaking model, which is a useful method to avoid extreme 

complexity of the chip-breaking. The critical feed rate equation as stated in chapter 2 is: 

                                                                                                     (5-9) fmfVft0cr KKKff =

where f0  is the standard critical feed rate under a predefined standard cutting condition. 

The predefined standard cutting condition can be any cutting condition. KfT is the cutting 

tool (inserts) effect coefficient; KfV is the cutting speed effect coefficient; and Kfm is the 

work-piece material effect coefficient. 

In Zhou’s work for the cutting tool (inserts) effect coefficient (KfT ) a linear 

combination of tool parameters (groove width (Wne), rake angle (γne) and backwall angle 

(γbe)) are used (Zhou 2001-b). But with regard to Equations (5-6) and (5-7) all parameters 

that expose insert parameters can be considered as KfT and the rest Kfm. 

Therefore the semi empirical equation with new definition for depth of cut greater 

and less than nose radius is: 
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The only parameter that is unknown in R0 is lf which according to Zhou’s work in 

critical feed rate chip breaking point it can be substituted with a fraction of groove width. 
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Some experiments were conducted, as outlined in the following sections, in order 

to validate the equations discussed above.              

5.4 Experimental Validation 

In order to validate Equation (5-1), (5-2) and (5-5) for minimum and maximum 

depth of cut and chip thickness variation in small depth of cut derived in this research, 

work, respectively, chip-breaking charts were made by protruded groove inserts. In these 

charts, the minimum and maximum depth of cut were identified. Also chips thickness 

variations in constant feed rate with different depth of cuts were measured. Finally the 

results were compared with estimated values.    

5.4.1 Design of The Experiments 

To achieve the follow up goals a longitudinal dry-cutting test with a manual lathe 

machine in the following machining conditions was conducted:  

• Workpiece material: 1010 steel 

• Workpiece diameter: 3.850 in  

• Surface speed: 520 sfpm 

To carry out machining, four inserts with MTANR-12-3 tool holder were selected 

to be utilized as shown in Figure 5-7.  

 
1)TNMG 333 QF 2)TNMG 332 QF  3)TNMG 333 QF 4)TNMG 332K 

Figure 5-7 Protruded Grooves Inserts Implemented in Experiment 
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The inserts feature dimensions are listed in Table 5-1. Among all six parameters 

listed in Table 1-5, below, only the value of the insert nose radius was available from the 

insert manufacturers. The other parameters in the table were measured.  

Table 5-1 Insert Geometric Parameters 

  

No. Insert Type Manufacturer rε (in) rp (in) w (in) bγ0( in) γ0(°) γn(°) 

1 TNMG QF 
333 4025 Sandvik 0.047 0.008   0.019  0.004 15.0 14.7 

2 TNMG QF 
332 4025 Sandvik 0.031 0.007 0.01 0.008 16.6 19.3 

3 TNMG QF 
331 4025 Sandvik 0.015 0.003 0.006 0.007 11.9 20 

4 TNMG 332K
KC850 Kennametal 0.031 0.001 0.01 0.012 16.6 10.2 

5.4.2 Experimental Results 

The cutting tests results are listed in Table 5-2 from figures in Appendix C. In 

Table 5-2 the estimated amounts have enough accuracy to find the range of depth of cut 

where the groove is effective.  

Also in this table, as expected, the greater the nose radius the greater the 

minimum depth of cut. However the maximum depth of cut does not follow only the nose 

radius dimension. Other parameters have their influences and are to be considered. 

Although, for example, in TNMG 33X QF insert sets (X=1,2,3) the greater the nose 

radius the greater the maximum depth of cut. The TNMG 332 K (with nose radius equal 

to the TNMG 332QF insert) the maximum depth of cut is greater than TNMG 333QF. 
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Table 5-2 Cutting Test Result 

Minimum Depth of Cut (inch) Maximum Depth of Cut (inch) 
Insert 

Estimated Experimental  Estimated Experimental 

TNMG333QF 0.024 0.03 0.044 0.04 

TNMG332QF  0.016 0.02 0.035 0.03 

TNMG331QF 0.008 N/A 0.022 N/A 

TNMG332K 0.016 0.02 0.052 0.05 

 
In Figure 5-8 below the condition that the chip cannot enter into the groove is 

shown, including the position of the insert nose and the groove nose. In the time that the 

chip in point A and B was blocked by the insert blades the center of chip section that goes 

through A and B reached to the groove and has no room to enter into the groove. Only 

the curve as a mark made by the groove nose can be seen on the chip surface. 

 

                                              
Figure 5-8 Chip Formation in 0.05 in. Depth of Cut 0.0056 in/rev Feed Rate 

To better understand the differences between chip-breaking charts in simple 

groove insert and protruded groove insert, the chip-breaking chart of TNMG332 QF 

insert were studied in detail, Figure 5-9. 
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In the normal chip breaking-chart, the critical feed rate and depth of cut are 

unique. But as considered in chip breaking-charts of protruded grooves inserts, there is an 

extra area of broken chip. In Figure 5-9 the extra region of broken chip was identified by 

a boundary. As it can be seen this region does not follow the definition of critical feed 

rate and depth of cut, stated by Li (1990). Another difference between these charts is chip 

form. In the normal chip-breaking chart the chip in the critical depth of cut is side curl.  

 

 
 

Figure 5-9 Chip Form in Different conditions of Chip-Breaking Chart Produced by 
TNMG 332-QF 4025 Insert 

 
However, with respect to Figure 5-9 the chip that is magnified from 0.02 in depth 

of cut and 0.0025 in/rev feed rate point, the chip form is up-curl. In fact the region chips 
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that were supposed to be snarling chip formed as up-curl chip where there was a narrow 

groove. 

Beyond this boundary, the chip cannot enter the groove. In ordinary chip-breaking 

region, shown in Figure 5-9, the chip is side-curl and the groove nose just made a curve 

or mark on the body of chip and has no direct role in chip formation.  

To validate the effects of nose radius on chip thickness TNMG 333 QF insert was 

selected because of a big nose radius. As can be seen in Figure 5-10 chip thickness 

changes with depth of cut and becomes constant in depth of cut above the nose radius 

(nose radius for this insert is 0.047 in). Another phenomenon that was identified in Figure 

5-10 is the effect of nose radius, which is insignificant on small feed rate. 

Chip Thicknes vs. Depth of Cut Graph with Different 
Feed Rate (in/rev)
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Figure 5-10 Chip Thickness in Different Depths of Cut Produced by TNMG 333-QF 
Insert with Different Feed Rates 
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It can therefore be concluded that in small depth of cut, according to Nakayama 

chip breaking criterion, the chip thickness is one of the parameters that has role in chip 

breaking. So that with small depths of cut and corresponding chip thickness the chip is 

unlikely to break. 

In Figure 5-11 the chip thickness produced by inserts with different nose radius 

are compared. With respect to the curves, again the insert with greater nose radius has 

more effect on chip thickness in different depths of cut. But the inserts with 0.031 in and 

0.015 in radii, there is not a great difference. The reason can be the effect of groove nose 

radius on chip thickness, which scratches or makes a curve on the chip.         

 

Chip Thickness vs Depth of Cut with Different 
Insert Nose Radii
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Figure 5-11 Chip Thickness in Different Depth of Cut Produced by TNMG 33x-QF 
Set Inserts with 0.0056 in/rev Feed Rate 

 
5.5 Summary 
 

In this chapter the limits of chip breaking chart for protruded inserts and the 

nature of broken chip were analyzed. It includes four parts: 
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1. Formulation of minimum and maximum depth of cut. The chip breaking limits in 

protruded type inserts that include maximum and minimum depth of cut were formulated 

in Equation (5-1) and (5-2). In these equations the maximum and minimum depth of cut 

could be calculated by only using insert parameters. In Equation (5-2) if groove nose was 

sharp then rp is zero.     

           2. Chip thickness variations in small depth of cuts. When the depth of cut was 

small, the chip thickness varies, even though the feed rate was constant. In this chapter 

this variation was identified and formulated. The chip thickness could be calculated by 

Equation (5-5).   

           3. Critical feed rate improvement. Consequently the critical feed rate model was 

expanded to machining conditions where the depth of cut was small.                    

             Related to critical feed rate for protruded groove inserts critical depth of cut was 

formulated by using minimum depth of cut Equation (5-8). 

Also, a new approach was mapped out to predict chip breaking critical feed rate 

by semi empirical Equation (5-10) and (5-11) which were introduced for both greater and 

less than insert nose radii.                   

               4. Validation of minimum and maximum depth of cut and chip thickness 

variation in different depths of cut. In the chart-breaking chart made by protruded groove 

inserts, an extra chip-breaking region was identified where the chips were up-curl and 

broken because of narrow groove, unlike the normal chip-breaking chart in which the 

critical depth of cut of the broken chip had side-curl. Finally the chip thickness variation 

in small depth of cut was validated and it was found out that in small depth of cut 

increasing feed rate had subtle effects on chip thickness as shown in Figure 5-10.                  
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6 Conclusion and Future Work 

6.1 Summary of this Research 
 

Quality, productivity, cost, and environment are four main concerns in machining. 

Chip control has a very important role in achieving these concerns. To achieve the chip 

control goals in industry, developing and implementing chip-breaking predictive tools are 

crucial. The semi-empirical approach can be a powerful way to reach that goal. It bridges 

the existing gap between theoretical work on chip-breaking prediction and industrial 

requirements. The chip-breaking limits theory is the basis of the semi-empirical 

approach. 

However, before utilizing the predictive models of the chip-breaking, the 

theoretical equations should be improved and extended from 2-D to 3-D. Also the 

limitations of theory, which are considered in this research, should be identified.  

The main contributions in this research include: 

1. The parameters that have influence on the chip formation were first analyzed in 

detail on critical feed rate model in the 2-D groove. 

2. Establishment of an equation of critical feed rate that includes side flow angle and 

groove parameters associated with side flow angle.  

According to the chip-breaking chart, chip breaking occurs in certain range of 

feed rates and depths of cut that results in side flow angle. Along side flow angle, 

equivalent groove parameters are defined that can be substituted into 2-D equations of 

critical feed rate to produce a 3-D equation.   

3. For precision machining the chip-breaking chart was analyzed. 
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In the chip-breaking chart, the extra chip-breaking region that usually occurs in 

precision machining (small depth of cut and feed rate) with protruded groove inserts was 

analyzed.  The chip-breaking application range (the maximum and minimum depth of 

cut) are first described and identified as functions of the insert geometric feature 

parameters. The effect of insert nose radius on chip thickness was also studied. The 

theoretical and semi-empirical chip-breaking model for 3-D protruded groove inserts was 

then formulated. Cutting tests were conducted to validate the equations.  

6.2 Future Work 
 

The inserts can be classified into four categories: inserts with a 2-D chip-breaking 

groove, inserts with a simple 3-D chip-breaking groove, inserts with a block-type chip 

breaker, and inserts with complicated geometric modifications. The theoretical and semi-

empirical chip-breaking models extended in this research cover 3-D groove inserts 

especially insert with the protruded type groove. Future research may be conducted to 

develop chip-breaking predictive models for the other categories of inserts including a 

block-type chip breaker and those with complicated geometry modifications. 

6.2.1 Inserts with Block-Type Chip Breaker 

Inserts with a block-type chip breaker, especially cubic boron nitride (PCB) 

inserts, are widely applied in the soft-metal (e.g. copper, aluminum) cutting industry. For 

these inserts the process of developing a semi-empirical chip-breaking predictive model 

can be similar to the process for modeling 3-D grooved inserts. The first step in this 

process is the definition and measurement of insert / breaker geometric features. The 

second step is carrying out cutting tests, followed by modeling work and model 
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validation. Figure 6-1 shows the geometric features of inserts with a block-type chip 

breaker. 

 

 
Figure 6-1 Illustration of The Geometry of The Block-Type Chip Breaker 

The latest equation of chip up-curl (R0) for block type chip-breaker was 

formulated by Li (1990)i.e. 
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where W is rake face length, lf  is the chip/insert contact length, and βn is the backwall  

angle in normal direction. In the above equation when the backwall length (lb) is shorter 

than ln, the chip will curl on backwall end.  
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Base on these equations of R0 in 2-D, the 3-D equation can be formulated in the 

direction of side flow angle. The chip-breaking predictive model can be extracted from 

these theoretical equations in a similar manner to steps taken in this thesis for groove type 

chip breakers.  

6.2.2 Inserts with Complicated Geometric Modifications 

For inserts with complicated geometric modifications, the insert can be analyzed 

exactly like an insert with a protruded type groove. It means the insert parameters should 

be decomposed so that the groove is considered as a die that forms the chip; the nose 

radius and insert/chip restricted the contact length as the slot that control chip motion 

direction and amount.  

6.2.3 Study on Ti17 Steel Chip-Breaking Chart 

Titanium is a material that is commonly used within the medical, chemical and 

aerospace industries. It is used predominantly because of its excellent corrosion 

resistance and low weight-to-strength ratio. Titanium and its alloys are considered 

‘difficult-to-machine’ materials due to the very rapid rates of tool wear which are 

observed at all but relatively slow cutting speeds, e.g., V=0.25–1.0 m/s. The other notable 

characteristic of Ti and its alloys is the formation of shear localized ’ or ‘saw-tooth’ 

chips. This chip type is distinctly different to the ‘continuous’ or ‘uniform-shear’ chip, 

which is formed during the machining of the majority of materials under conventional 

cutting conditions and breaking the chip is a big problem in industry.    

                                                                                                                                              75



Although there are many studies on chip formation of Ti steels, the chip-breaking 

phenomenon is not considered particularly in the academic area. Therefore chip breaking 

and a chip-breaking predictive model in Ti steels can be considered in future work.            

Figure 6-5 shows a sample chip-breaking chart with inserts having protruded 

groove. 

 
CNMG432-91 NL92 Insert 

 
Figure 6-2 Ti17 Steel Chip-Breaking Chart  
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APPENDIX A. Measured Side Flow Angles 

Side Flow Angles measured in AutoCAD Software In shown depth of cut and 

feed rate by CNMG432-NL92 Insert. 

 
 

 
Figure A-1 Depth of Cut 0.03 in. Feed Rate 0.011 in/rev 

 

 
Figure A-2 Depth of Cut 0.05 in. Feed Rate 0.011 in/rev 
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Figure A-3 Depth of Cut 0.06 in. Feed Rate 0.011 in/rev 
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APPENDIX B. Measured Chips  

The following pictures are the measured chips produced by CNMG432-NL92 insert in 

AutoCAD software. The material of chips is 4150 steel and measurements unit are inches 

 
 

 
Figure B-1 Chip Dimensions Produced by 0.03 in. Depth of Cut and 0.011 in/rev 

Feed Rate  
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Figure B-2 Chip Dimensions Produced by 0.05 in. Depth of Cut and 0.011 in/rev 

Feed Rate  

 
Figure B-3 Chip Dimensions Produced by 0.06 in. Depth of Cut and 0.011 in/rev 

Feed Rate  
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APPENDIX C. Chip-Breaking Charts of Protruded 
Groove Inserts 
 

The chip-breaking charts shown next are from the study on chip-breaking limits 

of three-dimensional grooved inserts. The workpiece material used in the tests was 1010 

steel. The surface speed was VC = 523 sfpm. 
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Figure C-1 TNMG QF 333 4025 Insert Chip-Breaking Chart 
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Figure C-2 TNMG QF 332 4025 Insert Chip-Breaking Chart 
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Figure C-3 TNMG QF 332 4025 Insert Chip-Breaking Chart 
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Figure C-4 TNMG 332K KC850 Insert Chip-Breaking Chart 
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