

WORCESTER POLYTECHNIC INSTITUTE

Control Plane for Embedded
Digital Signal Processing

An Application of Networks-on-Chips for VLSI

Major Qualifying Project Report

Submitted to the Faculty of

Worcester Polytechnic Institute

In partial fulfillment of the requirements for the

Degree of Bachelor of Science

by

Richard Dennen

on October 22, 2012

i

Abstract

This project is sponsored by MITRE Corporation to develop a scalable and reusable

control plane architecture for VLSI design. The main goal of this project is to develop a

communication platform for a wide range of applications to reduce the development and testing

time associated with the design of a interconnect system. Thorough research has been conducted

in the area of network-on-chip designs that are suitable for these types of applications. The

necessary components are built and verified in hardware description language. The deliverable

components are packaged as reusable and parameterized SystemVerilog code.

ii

Acknowledgements

Al Conti and Paul Secinaro from MITRE Corporation for advising this project. Your

commitment and dedication to this project allowed to me to succeed in accomplishing the goals

of this project. I thank you both for everything you have taught me in my time at MITRE. I

appreciate that you committed so much time from your busy schedules to guide me through the

design of this project.

Prof. Xinming Huang from Worcester Polytechnic Institute for advising this project, taking the

time to ensure that my project was progressing well, offering feedback on the design and

opinions in important design decisions, as well as the detailed revisions and corrections made to

this report!

Prof. Sergey Makarov from Worcester Polytechnic Institute for introducing me to MITRE

Corporation and encouraging me to pursue a project at this new project center.

Joseph Chapman and Adam Woodbury from MITRE Corporation for arranging this new

partnership with WPI and for the advice you have offered over the course of the project.

Prof. Stephen Bitar for your advice, motivation, and support over the four years I have spent at

WPI.

Joseph DiChiara and Julian de Zulueta for being a part of this incredible experience and for

being great friends.

iii

Table of Contents

1 Introduction ... 1

1.1 Background .. 2

1.2 Problem Statement ... 2

2 Network-on-Chip ... 4

2.1 Topologies .. 5

2.1.1 Shared Bus .. 5

2.1.2 Ring Bus.. 6

2.1.3 Mesh Network ... 7

2.1.4 Star Network ... 7

2.1.5 Comparison of Topologies .. 8

2.2 Routing ... 10

2.2.1 Deterministic Routing ... 10

2.2.2 Adaptive Routing .. 11

2.2.3 Comparison of Routing ... 11

2.3 Switching .. 12

2.3.1 Circuit Switching .. 12

2.3.2 Packet Switching ... 12

2.3.3 Comparison of Switching ... 13

2.4 Flow Control .. 14

2.4.1 Stall-and-Go .. 14

2.4.2 ACK-NACK ... 15

2.4.3 Comparison of Flow Control .. 15

2.5 Complications of Networks-on-Chip ... 16

2.5.1 Deadlock ... 16

2.5.2 Livelock .. 19

2.5.3 Starvation .. 20

3 Requirements and Specifications ... 21

3.1 General Goals ... 21

3.2 Control Plane Specifications .. 22

iv

3.3 Project Deliverables ... 23

4 Methodology .. 24

4.1 Topology .. 24

4.2 Routing ... 24

4.2.1 Bridge .. 25

4.3 Switching .. 27

4.4 Flow Control .. 27

4.5 Network Interface ... 28

4.5.1 Packet Processor ... 29

4.5.2 Protocol Adapter ... 29

4.6 Packet Structure.. 30

5 Implementation and Design ... 32

5.1 Flow Control Buffer ... 32

5.2 Router ... 34

5.2.1 Architecture... 34

5.2.2 Interfaces ... 36

5.2.3 Router Inport ... 37

5.2.4 Router Outport .. 39

5.2.5 Router Switch.. 41

5.2.6 Separate Data Path Router .. 44

5.3 Bridge ... 44

5.4 Packet Processor ... 47

5.5 OCP Protocol Adapters .. 49

5.5.1 Packet Protocol ... 50

5.5.2 Implementation ... 52

6 Testing and Verification .. 54

6.1 Testing Methods ... 54

6.1.1 Queues... 55

6.1.2 Mailbox ... 55

6.1.3 Interfaces ... 56

v

6.2 Mesh Subsystem Tests ... 56

6.2.1 General Structure .. 56

6.2.2 Packet-based Tests .. 58

6.2.3 Request-based Tests .. 60

7 Conclusion ... 63

7.1 Summary of Project Contributions ... 63

7.2 Future Work and Improvements .. 64

References ... 66

vi

Table of Figures

Figure 1: An example network-on-chip including routers (gray), a bridge (blue), and many IP

cores (green).. 4

Figure 2: Shared bus topology. ... 5

Figure 3: A ring bus. ... 6

Figure 4: A mesh network... 7

Figure 5: A star network. .. 8

Figure 6: Routing paths by the XY algorithm for a request from A to B and from A to C. 10

Figure 7: An example of wormhole switching. .. 13

Figure 8: An example of Stall-and-Go flow control. .. 15

Figure 9: A classic example of deadlock [8]. ... 16

Figure 10: Allowed turns in XY routing [8]. .. 17

Figure 11: An example of dependencies between network messages. ... 18

Figure 12: Physically-separate request and response networks to break message-based deadlock.

... 19

Figure 13: An example of address translation for initiator requests across a bridge. 26

Figure 14: An example of address translation for endpoint responses across a bridge. 26

Figure 15: Composition of the Control Plane network interface (NI). ... 28

Figure 16: General packet structure for the MITRE control plane. .. 30

Figure 17: Block diagram of Flow Control Buffer. .. 32

Figure 18: State transition diagram for the Flow Control Buffer state machine. 33

Figure 19: Final block diagram of the Full Control Buffer. ... 34

Figure 20: Router component interconnects. .. 35

Figure 21: Routing interconnects and transmission paths. ... 36

Figure 22: Links between adjacent routers. .. 36

vii

Figure 23 : Block diagram of the router inport. .. 37

Figure 24: An example of a misuse of the target selector... 38

Figure 25: The result of the previous example. .. 39

Figure 26: Block diagram of a router outport. .. 39

Figure 27: Block diagram of a mask-based round-robin arbiter. .. 41

Figure 28: Flit bus multiplexer in the router switch. .. 42

Figure 29: Circuit equivalent of a multiplexer-based stall signal switching. 42

Figure 30: Circuit equivalent of the grant signal switching. ... 43

Figure 31: Outport request signal generation.. 43

Figure 32: Block diagram of the Bridge component. ... 45

Figure 33: Request data path for the Bridge component. ... 46

Figure 34: Response data path for the Bridge component. ... 46

Figure 35: Block diagram for the Packet Processor.. 47

Figure 36: Flow diagram of the Packet Processor transmit bus request cycle. 48

Figure 37: Flow diagram of the Packet Processor receive bus request cycle. 49

Figure 38: Layered structure of the Network Interface. ... 49

Figure 39: Control flow of request generation through endpoint Protocol Adapters. 50

Figure 40: Control flow of request generation though initiator Protocol Adapters. 50

Figure 41: Packet structure for the MITRE OCP Memory protocol adapters. 50

Figure 42: State-based packet request to OCP request translation in the Protocol Adapter. 52

Figure 43: Flow chart of the OCP Memory endpoint protocol adapter state machine. 53

Figure 44: General structure of a testbench. ... 54

Figure 45: General structure of a mesh subsystem test... 57

Figure 46: Packet fields according to network level and protocol depth. 58

viii

Figure 47: Mesh subsystem initiator BFM receive flowchart. ... 59

Figure 48: Flowchart of the mesh subsystem monitor's message processing system. 60

Figure 49: Flowchart of the mesh subsystem monitor's completion detection. 60

Table of Tables

Table 1: A comparison of common NoC topologies based on important parameters. 9

Table 2: Supported operations through the OCP Memory Protocol Adapter. 51

Table 3: Error codes supported in the OCP Memory Protocol Adapter. 51

Introduction

1

1 Introduction

In recent years there has been much motivation for the design of integrating many

capabilities on a single chip. Motives have included smaller package sizes for more portable

devices, reduced power consumption, and higher performance for real-time applications [1].

These chips incorporate the functionality of several devices into one die. They are thus called

systems-on-a-chip (SoC). The SoCs use a higher level of integration which reduces the need for

long wires and routing between many chips that often lead to long propagation delays and much

power dissipation.

A system-on-a-chip approach is often used in types of embedded digital signal

processing, where a system constitutes a potentially large number of interconnected devices.

Each processor includes a large number of different processing elements that operate on the

incoming signal data. Real-time processing performance is often a requirement of such devices,

warranting the SoC design paradigm [1]. More recently, such systems have also been composed

of predesigned logic blocks, called intellectual property cores, or IP cores. These are

distributable designs (in the form of synthesizable RTL) that can be inserted into a SoC [2]. This

greatly reduces design time for large devices and promotes reusability of designs.

Bus interfaces have been a traditional solution for control commands and the exchange of

information in digital systems. A typical microprocessor accesses memory and I/O devices

through a bus, often sharing these resources with other microprocessors in a multiprocessor

system. While bus systems are typically straightforward designs, they come at the cost of

performance and hardware resources. Busses demand a large number of wires to interconnect

devices they contain. In addition, central control (arbitration) is required to ensure that data

reaches its destination as well as a fairness of resource usage is enforced. Bus-based systems also

have a limited capability and bandwidth for simultaneous transfers [2].

 The need for alternative communication architecture became apparent as the number of

devices connected in such a system increased. A traditional bus system does not offer scalability

for systems in the size of potentially hundreds of connected devices. It was at this time that

system designers began implementing concepts of computer networking on silicon devices,

known commonly as network-on-chip (NoC) [2].

Introduction

2

1.1 Background

A network-on-chip is a tool for communication between processing elements and storage

devices in a system-on-chip. They are used to connect large numbers of devices that a traditional

shared bus cannot. Early NoC implementations were seen in supercomputers and

telecommunication devices [3]. Data moves through a NoC as it would move in a computer

network. Elements in the NoC are responsible for locating the destination of transmitted data and

assuring its delivery.

NoCs offer the advantages of greatly reducing wiring complexity and much improved

scalability. The comparable-sized shared bus implementation could easily result in poorly

scalable wiring, as the wire lengths to devices would increase with the devices’ distances apart.

This stands to be one of the greatest complications in making smaller chips [4]. NoC offer more

compact solutions that bring routing elements closer together, offering shorter and more scalable

interconnects. Excessive delays from long wires often exhibited in bus-based systems are likely

avoided. Also, a NoC implementation relies less on dedicated point-to-point interconnects

between devices and the bus. Process elements are connected via common switching and routing

elements, over which the devices share the link utilization. Ultimately, better resource utilization

is obtained [3].

1.2 Problem Statement

The MITRE Corporation sponsored this project to replace communication architecture

used in the existing embedded digital signal processing chips, called a control plane. It is a

separate data path reserved for command and control information, such as device configuration

and status messages. The control plane is used to configure these waveform devices through

writable registers or memories and reading information from these devices. Real-time signal is

not handled by the control plane. Such data is routed through dedicated high-performance point-

to-point interconnects outside of the control plane. These data paths handle constant data traffic,

whereas the control plane oversees infrequent control traffic.

The previous implementation of a control plane suffered from many limitations. The new

control plane must exhibit more flexibility, as the requirements having been expanding with each

new project. In the past, issues such as latency and throughput were sacrificed in favor of

Introduction

3

simplicity and faster development cycles. Future designs may require more scalable architectures

with respect to these parameters. The previous control plane was also an application of a

network-on-chip. However, its architecture suffered from many issues, such as high latency and

poor link utilization, with a large number of interconnected devices. As the MITRE design

engineers have experienced, the number of devices needed in these DSP applications will

continue to rise and the systems will become increasingly more complex.

Network-on-Chip

4

2 Network-on-Chip

Network-on-chip (NoC) is an emerging multiprocessor communication architecture in

VLSI design. This type of communication replaces a traditional shared bus between the many

processing elements on the chip. NoCs use routing elements and switches to pass messages

between one another rather than point-to-point connections characteristic of shared busses [2].

This area of VLSI design and research heavily depends upon the development of networking

technology. However, they are very distinct fields each containing distinct applications.

Network-on-chip for VLSI must take many parameters into consideration, such as chip area and

power consumption [4]. The diagram in Figure 1 shows an example of a network-on-chip based

design using routing elements to form interconnects between many processing elements.

Figure 1: An example network-on-chip including routers (gray), a bridge (blue), and many IP cores (green).

A NoC implementation is defined by several parameters. These parameters are often

selected to fit the needs of a design. For instance, these selections may favor low-power

applications or favor high-performance systems. These parameters include (but are not limited

to) the following:

 Topology

 Routing

 Switching

 Flow Control

Network-on-Chip

5

Selections for each of these parameters carry its own advantages and disadvantages.

There is no single selection of parameters that is favorable to all systems. General-purpose

applications must consider the imposed limitations and the advantages gained by the selection of

these parameters.

2.1 Topologies

The arrangement and interconnects between network nodes greatly effects a NoC’s

performance metrics. Such arrangements may send data through many nodes before reaching its

destination. Other arrangements may provide more paths between nodes to minimize the number

of nodes data must traverse.

2.1.1 Shared Bus

A shared bus is a popular selection for on-chip communication [2]. This is perhaps the

simplest communication medium. In this method, the connected devices are divided into two

categories: masters and slaves. Masters are capable of initiating requests and slaves respond to

these requests. Data busses, often appearing as a collection of grouped wires, transmit data

between masters and slaves [2]. In this topology, only one device can drive its data or control

information at a given time, as this bus is a shared medium, as shown in Figure 2. Consequently,

only one transfer can occur and there is a need for central control to ensure that data and control

information are routing correctly.

Shared Bus

InitiatorsInitiators

EndpointsEndpoints

Figure 2: Shared bus topology.

 Shared busses create an issue of scalability. The two prevailing strategies for a shared bus

use either multiplexer-based control of the data bus or tri-states. With tri-state implementations

the amount of wiring is greatly reduced, as each driver of the bus is connected directly to a bus

lines through a small tri-state buffer. The buffer is high-impedance when the device is not

Network-on-Chip

6

selected to drive the bus. Consequences of a tri-state implementation include higher power

consumption and lower clock speeds from increased latency [2]. Multiplexer-based busses

multiplex the masters’ data and control lines out to global busses destined for the slaves. This

implementation requires more logic for many multiplexers as well as much more wiring from

each of the masters and slaves. This topology also suffers from degrading bandwidth when

adding more devices [1]. In terms of power consumption, shared busses tend to consume more

power since a bus master has to drive each of the lines connected to slave devices [4].

2.1.2 Ring Bus

A common communication topology is the ring bus [5]. In this topology routers are

connected in a circle; each router node is connected to the previous node as well as the following

node, as shown in Figure 3. Messages initiated on the ring are passed from node to node until the

message reaches the destination node. This greatly simplifies the decision logic for router nodes

resulting in smaller and faster logic.

Figure 3: A ring bus.

Ring busses have the advantage of having shorter interconnects between nodes. By

exploiting the nodes’ spatial locality, adjacent nodes do not need long wire to connect them.

Consequently, shorter wires contribute less latency resulting in higher communication speeds

[1].

By nature, the ring bus can be pipelined. Each node in the bus can be considered a stage

of the pipeline. This allows multiple messages to be inflight on the network at a given time. The

pipelining of ring bus allows for a potentially high throughput in the system but suffers greatly in

latency as the number of nodes increases.

Network-on-Chip

7

2.1.3 Mesh Network

Another common NoC topology is a mesh [5]. This type of topology places network

nodes in a grid-like configuration, like the network shown in Figure 4. Each node in a mesh is

connected to four other nodes and likely a processing block as well. Messages are passed from

node to node until reaching the node connected to the target device.

(0,0)

(1,0)

(0,1)

(1,1)

(0,2)

(1,2)

(2,0) (2,1) (2,2)

Figure 4: A mesh network.

Like the ring bus, a mesh network can have shorter connections between nodes. This

eases wiring routing and placement on silicon as well as controls latency and power consumption

through these links [5]. This again allows for higher operational clock speeds.

A particular advantage of the mesh topology is possibility for several messages to be

inflight on separate pathways unlike the ring bus with only a single path. While this can reduce

congestion and latency in delivery, it can also introduce other issues such as deadlock and out-of-

order data.

2.1.4 Star Network

The star network topology works quite differently from the ring and mesh topologies.

With the ring and the mesh, adjacent nodes are connected to one another to pass information

around the network. A star network contains a central node that is connected to each other node.

All network traffic must pass through this central node [6]. Figure 5 depicts the star network

topology.

Network-on-Chip

8

Figure 5: A star network.

Such a topology greatly simplifies routing. Peripheral nodes will always forward data to

the central node. Data will only come from the central node, which eliminates issues of

contention for that link. Routing in the central node requires minimal path-making decision, as it

is connected to all other nodes. Despite the simpler routing, performance is heavily dependent

upon traffic patterns. A busy and congested network will occupy the central node’s resources

needed by all inflight messages [6].

2.1.5 Comparison of Topologies

Each of the available topologies offers some advantage to NoC designers. For busses and

star networks, that advantage is simplicity. The advantage of a ring or mesh network is having a

better density (occupying less chip area). The chip area consumed by the NoC is a major factor

in the network’s scalability—how the network performs as the number of nodes increases. Due

to the shorter and more local interconnects on mesh and ring networks, they are amongst the

more scalable networks. Star and bus topologies quickly introduce wiring congestion in silicon

and thus are limited in scalability. Ring and mesh topologies have been popular NoC choices

because of the scalability [5]. However, chip area is not the only constraint on scalability. Table

1 lists the major differences between these common network topologies used in networks-on-

chip.

Network-on-Chip

9

 Complexity Scalability Wiring Routing Connection Latency

Shared Simple Not

scalable

Potentially

long

interconnects

Simple

routing

(arbitration)

Point-to-

point

Dependent on

load and

traffic

Ring Simple Not easily

scalable

Short

interconnects

Simple

routing;

one path

Packets;

forward to

destination

Grows

proportionally

with number

of nodes

Mesh More

complex

than ring

Fairly

scalable

Short

interconnects

More

complex

routing

than ring;

multiple

paths

Packets;

forward to

destination

Moderate;

faster paths

than rings

Star Simple Not easily

scalable

Interconnects

grow in

length and

number with

number of

nodes

Very

simple

routing

Packets;

forward to

destination

in two hops

Congestion at

the central

node can lead

to excessive

latency

Table 1: A comparison of common NoC topologies based on important parameters.

Other factors in network topology scalability include power consumption, wiring

complexity, cost, and latency [5]. The ring bus performs well in each of these categories but

latency. A ring bus use short links between nodes and has considerably few links between nodes.

This greatly simplifies wiring placement on-chip. Also, routing logic is nearly trivial on a ring

bus. However, latency suffers greatly as a result. In the worst case, a message must traverse

every node in the network.

The mesh topology reaches a fair compromise across these parameters for control planes

similar to the one requested by MITRE. It shares the shorter interconnects as in the ring bus.

Routing logic is more complex but not excessively taxing on hardware resources. Having many

links per node introduces path diversity, allowing for shorter worst-case routing paths than the

ring. Also, latency scales much better than a ring.

Network-on-Chip

10

2.2 Routing

Routing is how nodes decide where to forward data packets. Nodes responsible for routing

are typically called routers. Strategies for routing come in various degrees of algorithmic and

hardware complexity.

2.2.1 Deterministic Routing

A set of routing strategies called deterministic routing uses predetermined network paths

to route data through the NoC. That is, the path between any two nodes will always be the same.

Deterministic routing does not take the condition of the network into account in its decision-

making process. This is why it is sometimes called oblivious routing. With deterministic routing,

simpler algorithms can be developed that require less logic [2].

2.2.1.1 XY Routing

A common type of deterministic routing is XY routing. This routing strategy is specific to

2D mesh topologies. Nodes can be thought to have an XY coordinate corresponding to its row

and column in the mesh grid. Data is routed to adjacent nodes first in the X direction. That is,

data is moved to the right column before navigating to the destination row (the Y direction).

C

B

A

Figure 6: Routing paths by the XY algorithm for a request from A to B and from A to C.

Network-on-Chip

11

2.2.1.2 Source Routing

Another type of deterministic routing is called source routing. This method does not

require complex routing logic. Routing is determined by the initiator; each node transversal is

determined and encoded in the message. This is a computationally light routing protocol but it

suffers from increased message size from the overhead of routing bits [6].

2.2.2 Adaptive Routing

The other case of routing strategies is adaptive routing. In this class of algorithms, routers

analyze the current state of the network. This information is used to find a path to the destination

that is less congested than a direct path. The goal of this approach is to gain performance from

reducing latency due to network congestion [3].

While in deterministic routing messages can be easily routed to the shortest paths,

adaptive routing strategies do not necessarily make this guarantee. Messages can be routed along

longer paths on the way to the destination in order to avoid congestion and stalls. These

decisions are called misroutes and can have negative effects on performance.

A major issue that arises with adaptive routing is livelock. When livelock occurs, a

message is continually misrouted, never reaching its destination. In applications such as the

MITRE control plane, data loss is not acceptable and this issue would have to be resolved.

Measures must be taken in the routing algorithm to ensure that all messages are able to

eventually reach their destinations [3].

2.2.3 Comparison of Routing

The fundamental tradeoff between routing strategies is the trade of chip area and wire

routing for performance. With deterministic routing, messages typically follow minimal paths

but are susceptible to network congestion. Their routing logic is typically simpler than with

adaptive routing strategies. Adaptive routing can take measures to avoid network congestion but

requires more complex logic to ensure the prevention of error conditions such as livelock.

Ultimately, simple routing strategies like XY routing are favorable when hardware size is

a concern and performance is not a primary goal. Depending upon traffic patterns this strategy

Network-on-Chip

12

could still give good performance. In a latency-critical system a robust adaptive routing

algorithm is likely a good choice.

2.3 Switching

While routing determines where messages are sent within a router it does not dictate how

this data is sent. This is determined by the switching method. Two main types of switching

techniques are used: circuit switching and packet switching, described in the following sections.

2.3.1 Circuit Switching

The first major technique, circuit switching, creates a link between the sender node and

destination node. Before a message is transmitted, a request must be sent to allocate a physical

channel between nodes. The destination node sends a notification back to the sender signaling

the sender to transmit its data. The established path (or “circuit”) between the nodes remains

open until the message is received by the destination node. The intermediary nodes forming the

connection are blocked from use in other paths until the current transfer is complete and the

nodes along the path are released.

 Circuit switching offers high throughput when the channel is allocated. Aside from the

initial latency from the setup of the connection, there is no additional latency or stall when the

channel is established [2]. Such a method favors low, infrequent traffic, possibly containing large

amounts of data. This method would not be suitable for small messages, as the setup overhead

would become more significant [1].

2.3.2 Packet Switching

The alternative to circuit switching is known as packet switching. This method of

switching uses packets that carry the information necessary for routing. Rather than setting up

the connection prior to transmission, connections are instead made as a packet progresses

through the network. It is common that packets are subdivided into smaller units called flow-

control digits, or flits. A packet contains a head flit, potentially many body flits, and a tail flit.

The head flit is the beginning of the packet and contains the necessary routing information for

the packet. Head flits serve to allocate router channels for the remaining flits of the packet. The

final tail flit of a packet frees the router channel [3].

Network-on-Chip

13

Three main strategies are used in packet switching: store-and-forward, virtual cut-

through, and wormhole switching [2]. The simplest of these is store-and-forward (SAF). This

technique buffers the entire received packet before transmitting it to the next node. Virtual cut-

through (VCT) switching works in a similar manner. The VCT method allows flits to move to

the next node as soon as space becomes available. While space is not available, flits are buffer

locally.

The final method is wormhole switching (WH). In this method each flit moves one at a

time to the next node. This creates a string of nodes carrying individual flits of the packet, as

shown in Figure 7. By this method, flits do not accumulate at a single node when stalled. An

advantage of this is that each node is not burdened by large buffer requirements [2].

Figure 7: An example of wormhole switching.

2.3.3 Comparison of Switching

The main difference between circuit and packet switch methods is to how well they

address network traffic patterns. The overhead of establishing a channel in circuit switching can

be wasteful if many messages need to be sent often. This does not harm packet switching, as

each packet is capable of routing itself. In packet switching packets do not enjoy the same

guaranteed performance as in circuit switching. Since the link is allocated to the inflight transfer

in circuit switching, no other transactions can stall it. In packet switching many packets may be

contending for a common network resource.

Wormhole switching has the advantage of using less buffering, therefore reducing its

footprint on the network. SAF and VCT both require full packet buffers to store backed-up data.

Network-on-Chip

14

In wormhole switching, only a single flits need to be buffered. Wormhole and VCT switching

also offer better throughput and latency as the entire packet does not need to be buffered in each

node like in SAF. These two methods, however, have the potential to create more network

congestion, as their packets can span many nodes, like in the example in Figure 7. The orange

packet is attempting to allocate the North buffer of next router that is held by the blue packet.

They also run a greater risk of producing deadlocks [2].

2.4 Flow Control

Link-level flow control is the method by which the network ensures data integrity. It is at

this level data loss is prevented. This level of communication must respond appropriately to

network conditions such as stalls.

2.4.1 Stall-and-Go

In a Stall-and-Go flow control based system adjacent routers signal one another when

they are ready to receive data. There is a stall signal on each channel of the router directed at the

incoming data link (the “upstream” router) and another coming in from the outgoing link (the

“downstream” router). Routers produce a STALL signal when they are not ready to receive data

otherwise a GO signal is given. When a channel is given a downstream STALL signal, the router

must suspend transmission until given a GO signal.

In digital logic, such signals would be given as sequential outputs. That is, they are

updated on one clock edge by the sender and observed on the next active edge by the receiver. It

should be noted that this is not adequate time for the stalled node to pass on the STALL to other

downstream routers in the same cycle. For this, each channel requires a small flow control unit.

The input port to a router must have the capability of buffering two flits. In normal

operation (GO), only one register is needed. However, since stalls cannot be passed upstream

instantaneously the stall router must have a backup register to capture this transmission [2]. Once

the STALL signal is captured on an active edge, it can be simply repeated on that channel’s

upstream stall signal. That is, the incoming stall from the receiving end becomes the next

outgoing stall on the transmitting end. This prevents data loss over the link. Figure 8 contains can

example of this behavior.

Network-on-Chip

15

C B A

D C A

B

STALLSTALL

GOGO

GOGO

GOGO

GOGO

STALLGO

AA

AAEE

DD

E C

D

B

GOGOGOGO GOSTALL

BBFF

Figure 8: An example of Stall-and-Go flow control.

2.4.2 ACK-NACK

An alternative strategy to Stall-and-Go flow control is ACK-NACK flow control. This

method places the burden of buffering on the transmitter rather than the receiver. The

transmitting node must keep the flits that it transmits until receiving an acknowledgement (ACK)

from the receiver. If a negative acknowledgement (NACK) is received, all flits buffered that have

received an NACK must be retransmitted [2].

2.4.3 Comparison of Flow Control

The main difference between the two described methods is buffer overhead. Since these

flow control units must be a part of each link in the network it is important to reduce their

contribution to chip area and power dissipation. The Stall-and-Go method only requires two flit

buffers and a simple state machine to maintain data integrity. The ACK-NACK requires more

significant buffering requirements to retain several transmitted flits. Also, ACK-NACK

potentially retransmits flits that were not lost or corrupted thus adding to the delivery latency.

Stall-and-Go introduces no additional latency penalties from stall recovery [2].

Network-on-Chip

16

2.5 Complications of Networks-on-Chip

Each of the discussed strategies offers many strengths to a NoC but can also introduce

vulnerabilities and complications. Each of these shortcomings can have detrimental effects on

the functionality of the system or on the integrity of transmitted data. Measures must be taken to

address these issues in order for a NoC to be reliable.

2.5.1 Deadlock

A common threat to data integrity in a network-on-chip is deadlock. Deadlock occurs

when contending packets prevent one another from advancing indefinitely. One should consider

two cars facing one another on a narrow road. Neither car can continue until the other moves out

of the way. Deadlock can suspend the operation of large portions of the NoC and is thus

unacceptable in any NoC-based system. In general, a NoC designer must be acquainted with two

types of deadlock: routing-dependent deadlock and message-dependent deadlock [7].

2.5.1.1 Routing-dependent Deadlock

A routing-dependent deadlock condition is caused by contention of network resources as

a consequence of message routing [7]. Such deadlocks are purely a consequence of the routing

algorithm, network topology, or both. A popularly referenced example of deadlock is depicted in

Figure 9. In this example four packets form a square of adjacent nodes in a mesh network. Each

packet wants to cycle counterclockwise. However, the channels necessary to do so are already

allocated. They will not be available for the requesting device until the new channel is allocated.

This produces a deadlock as none of the packets will ever be able to advance.

Figure 9: A classic example of deadlock [8].

Network-on-Chip

17

The possibility of a deadlock on a mesh network can be predicted with the Turn Model.

This method relates the dimension of the mesh to the number of illegal turns (ie. North-East,

South-West). For an n-dimensional mesh, the number of illegal turns must be at least be n(n – 1).

The Turn Model proves that on a 2D mesh network is deadlock-free, as four of the eight possible

turns are illegal, as shown in Figure 10 [8]. Since packets must be routed in the X-direction first,

the turns South-East and North-West are not legal, for example.

Figure 10: Allowed turns in XY routing [8].

2.5.1.2 Message-dependent Deadlock

Message-dependent deadlock is the consequence of dependences in higher levels of the

NoC protocols [9]. In particular, this occurs from collisions between different types of messages

used by network devices [7]. One such example of message-based deadlock is called a request-

response dependency [9]. This issue arises from an endpoint’s response message being stalled in

the network by a request message. For instance, in the situation where an initiator is sending a

message to an endpoint while the endpoint is responding to a previous message. The endpoint

cannot consume—or take the message out of the network—until it has transmitted it response

message due to buffering requirements. The incoming request to this endpoint is now stalled in

the network. Switching implementations such as wormhole switching exacerbate this issue as

many routers and channels are blocked until this message can be consumed. In the situation

where a second device is sending a message that requires the channels occupied by the first

initiator’s request. Additionally, the first endpoint’s response requires the channel held by this

new message. Ultimately, the message from the other device blocks the first endpoint’s response.

The response message prevents the request from being consumed. The request message prevents

the other message from proceeding that is blocking the response [7]. This forms a circular

Network-on-Chip

18

dependency between the progresses of the three message, guaranteeing deadlock, as shown in

Figure 11.

Request

Other message Response

Figure 11: An example of dependencies between network messages.

Typically one of the four following solutions is used to avoid message-based deadlock:

physically separate networks, virtual networks, buffer-sizing, end-to-end flow control [7] [9].

The first two solutions approach the issue of message-based deadlock by dividing the data flow

of request and response messages. This is referred as strict ordering [9]. The last two solutions

attempt to use buffering to remove the possibility of deadlock.

The buffer sizing solution works on a principle known as the consumption assumption

[9]. The assumption states that an endpoint must consume all messages it receives. The ideal

solution to this problem is an infinitely large buffer to store all incoming messages. Removing

the messages from the network deallocate the link resources used by the message and therefore

avoid these messages from causing deadlocks with messages dependent upon these links [7]. No

such buffer is possible in a real-world application, however, so buffers can only be made

adequately large to store incoming messages before responding. This practice is very costly in

terms of chip area from the significant buffer requirement and is unknown in network-on-chip

applications [9].

End-to-end flow control is also based on the consumption assumption. In particular,

credit-based end-to-end flow control dictates that for each connection between a pair of devices a

number of credits are issued informing the sender of how many messages the receiver is capable

of receiving. As a result, more effective and practical buffer sizes can be attained. However, cost

associated with maintaining the credit system in is a burden on the network interface hardware

[9].

Using physically separate networks avoids the issue of these dependencies entirely [7].

Since requests and responses do not have to contend for the same resources there are no potential

Network-on-Chip

19

dependencies and thus no chance of deadlock. Of course, this comes at the expense of additional

hardware to construct the second network. A physically separate network resembles the network

in Figure 12.

Initiator

R
equest

R
esponse

Endpoint

R
equest

R
esponse

Figure 12: Physically-separate request and response networks to break message-based deadlock.

The other type of strict ordering uses separate virtual channels rather than separate

physical channels. In this system a physical channel is divided into several virtual channels. Each

virtual channel contains a buffer for storing a portion of a message (such as a flit). Each message

type is assigned a virtual channel. The virtual channels composing a physical channel are

multiplexed such that one virtual channel drives the physical transmission medium. This requires

additional arbitration logic to ensure that the virtual channels are fairly assigned to the physical

channel [6]. Like the physically separate network virtual channel cannot use the resources

associated with another channel, as they are strictly allocated for that particular resource.

Additionally, link utilization suffers from the inability of the channel to transmit simultaneously

[9].

2.5.2 Livelock

Livelock is an issue that arises in adaptive routing systems. A packet in livelock will be

continually routing along a path that will never reach its destination. This could be in response to

patterns of congestion in the path to the destination node.

Network-on-Chip

20

Livelock can be resolved in a number of ways. One simple way to avoid this complication is by

using a time-to-live (TTL) counter in packets. The counter is decremented at each node traversed.

When the counter reaches zero, the packet is discarded. This prevents the packet from wasting

network resources. Another solution to livelock is to introduce age-based priority rules. As the

packet circles it destination, it will eventually preempt the offending traffic and reach its

destination [6].

2.5.3 Starvation

In NoC and bus-based systems some devices may have the ability to initiate enough

requests to effectively block another device’s requests from being accepted. This is called

starvation. This is a great vulnerability in purely priority-based systems [6]. Starvation can be

avoided by algorithms that consider fairness, should as a round-robin system. In a round-robin

system, the last granted source is set to the lowest priority [2]. This prevents the same source

from dominating the request process.

Another way of preventing a starvation is time division multiple access (TDMA). This

method gives each source the chance to transmit for a certain fixed amount of time. Each source

transmits in a fixed order. This ensures that all sources have a chance to access network

resources [1]. A disadvantage of this system is that sources without data to send are still

allocated bandwidth. This reduces the link utilization of the given channel.

Requirements and Specifications

21

3 Requirements and Specifications

The previous MITRE CRB control plane is lack of many desirable features for reusable

IP. Such issues included a lack of documentation, lack of expandability, and strict limitations on

system parameters and characteristics. The sponsors from MITRE Corporation designed this

project to build a new IP package for a control plane to suit the needs of both current projects

was well as future projects.

3.1 General Goals

 A major requirement for this project is the development of significant documentation.

The CRB IP included minimal documentation. It had basic descriptions of the intent of the

written RTL code but was difficult for others to understand. No formal specification or user

guide was provided. Consequently, the new control plane was required to be thoroughly

documented in RTL in form of comments as well as in a formal specification sheet and user

guide to assist in deployment. This specification was to include detailed descriptions of

component design as well as detailed descriptions of the non-standard protocols and interfaces.

The MITRE Corporation is interested in a general-purpose control plane platform. This

new control plane is not intended for a specific application or project. It must be flexible for a

wide range of applications. For example, the control plane has to support both high-performance

applications as well as low-power applications. As a result, parameters such as power

dissipation, wiring delays and latency, and chip area had to be considered in the design.

Another limitation of the previous CRB design is that it only allowed for a single

initiator. Only one device could initiate requests onto the bus. The new MITRE control plane is

required to allow for not only multiple initiators but for a large number of initiators. The single

initiator limitation from the CRB could potentially be an issue in many future projects at MITRE.

The new control plane was required to support many initiators to remove this limitation on future

systems.

The sponsor’s vision of the new control plane includes a priority on the reuse of this IP

package. The aforementioned considerations each contributed to the reusability of the new

implementation. The control plane is required to be designed with the ability to add additional

interface protocols. The sponsor also requests a convenient and well-documented method for

Requirements and Specifications

22

adding other protocol layers over the NoC implementation. This is intended to reduce the design

and verification resource needed to modify existing IP (either in the control plane or

interconnected IP cores) to conform to new protocols used in future designs.

Another major requirement of the project is the verification of all IPs used in the control

plane package. This step is to ensure that any future project to include the control plane IP can be

assured that the IP behaves according to specification. This is intended to alleviate design

engineers who will be using this IP from the burden of verifying this interconnect logic in each

design. The control plane IP is intended to be distributed with detailed tests and test plans that

demonstrate its functionality and validation.

3.2 Control Plane Specifications

The design goals for the new control plane in Section 3.1 describe the general goals for

the new system and their motivations. These goals shaped a list of specific requirements that

guided the design methodology for this IP package. The following list enumerates these design

requirements.

 Scalability – The control plane must be adaptable for a wide range of applications

including but not limited to high-performance systems and low-power applications. The

design should allow for a multilayered system.

 Size – The system must support a large number of devices; up to 1024 endpoints and

initiators.

 Performance – Efforts to control congestion and excessive delays due to wiring must be

taken to ensure desirable performance and scalability.

 Reliability – Reliability is possible the most important aspect of this system. It is

imperative that no data is lost and all transactions complete. The system must not be

vulnerable to complications such as deadlock.

 Interfaces – The control plane must offer the capability to support at least the following

standard interfaces to ensure compatibility for commonly used devices:

o MITRE OpenCore Protocol (OCP) Memory
1

o Serial Peripheral Interface (SPI)

1
 MITRE implements a limited subset of the OCP Memory protocol, as described in [12].

Requirements and Specifications

23

o “SRAM” interface – providing a basic address-data interface

o AMBA 2.0 Advanced High-Performance Bus (AHB)

It should be noted that the Control Plane is not to be limited to neither a particular

interface nor overlying protocol.

 Error Reporting – A mechanism must be provided for endpoint devices to provide

detailed error reporting to requesting initiators.

 Documentation – The system is to be documented both in RTL code as well extensively

in a separate specifications document. This is intended to promote the reuse of the final

deliverable.

 Verification – Full and thorough verification of this system is greatly important.

Guaranteeing correctness of operation prior to deployment will significantly reduce

design time of future projects and reduce the required man-hours for adequate

verification. A set of tests must be provided with the system demonstrating its correct

operation as well as recovery from errors and rare or unforeseen corner cases.

3.3 Project Deliverables

The planned deliverables for the new control plane are the following:

 An IP package encapsulating the functionality of the control plane.

 A specification document describing the major functional components and their

interfaces.

 A detailed test plan and set of testbenches demonstrating the functionality and

correctness of the IP package.

 A user guide to facilitate using and extending the delivered IP package.

 A code repository of all files used to create and test these deliverables.

 A briefing to the MITRE E536 department on the development and use of this IP

package.

Methodology

24

4 Methodology

Careful consideration is taken to ensure that the specifications for the control plane would

be sufficient for MITRE’s applications and projects in the near future. Each design alternative

presented in Chapter 0 was considered for how well it may satisfy the sponsor’s needs. This is to

ensure finding a sufficient and adaptive solution for on-chip communication architecture.

4.1 Topology

Multiple topologies were made possible in this control plane to comply with the

sponsor’s requirements. The MITRE control plane was designed to support several local mesh

networks. The overall structure of the network—the global topology—was allowed to be

configured by connecting local meshes with a bridge component.

The mesh topology was selected because of its balanced parameters with respect to

scalability. This topology places routing elements relatively close together, reducing wiring

latencies and place-and-routing congestions in synthesis. The mesh topology also offers simpler

position-based routing algorithms that simplify hardware design and reduce chip area costs.

The use of a multi-layered topology allowed groups of related devices to be grouped

together in an efficient fashion. By dividing into many meshes, the dimensions can be configured

in a more efficient fashion. For example, without local meshes the whole NoC would be included

in a single mesh. Devices would have to be placed in a larger number of rows and columns,

potentially increasing message latencies. Additionally, unused locations in the mesh would be

wastefully allocated and synthesized. Hardware efficient can be gained by dividing the NoC into

several meshes of related devices hardware efficient can be gained. As these local meshes will

likely see infrequent traffic with devices in other groups (meshes) the need for a higher-

performance links between mesh routers is unnecessary. Therefore, the system could benefit

from connecting these meshes with lower-performance bridge components.

4.2 Routing

The XY routing algorithm was selected for routing within local meshes. Each node in the

NoC was decided to be assigned a unique identifier including the following information: the

mesh identifier, the x-coordinate, and the y-coordinate.

Methodology

25

The local mesh routing algorithm was selected to be simple and fast. The simplest of

routing algorithms come from the class of deterministic algorithms. XY routing offers a simple

routing strategy that can be efficiently mapped into hardware. Advantageously, XY routing

eliminates the possibility of routing-based deadlock.

Adaptive routing strategies have the potential to offer better latency from avoiding

congested network paths but introduce many complications. Network devices would have to be

concerned with out-of-order received packets, deadlock conditions, and also livelock. Additional

hardware in the routers and network interfaces would be needed to prevent or correct these

issues. Additional data such as sequence numbers and time-to-live fields would be necessary in

packets, increasing the message overhead.

The selection of XY routing greatly simplified the role of the router component. The

router routes packets based on a small target address field in the packet. For better latency and

buffer performance, this target address field was constrained to be contained in the head flit of

the packet. The address field contained the local mesh’s identifier number as well as the X and Y

locations of the target node. As this implies, the router was only responsible for routing within

the local mesh. The router component was effectively unaware of the rest of the NoC to which it

was connected. This system-level awareness was built into other NoC components.

4.2.1 Bridge

Since the router components could only route within their local meshes an additional

component was needed to route data globally. The bridge component was used as a channel

between two meshes. Packets entering the bridge from one mesh were passed to the mesh on the

other end of the bridge. These packets passing through the bridge were translated to into the

addresses known in new local mesh. As a consequence the bridge needed to be aware of the

overall system. The target address used in the local mesh addressed the bridge on that network.

Additional information, such as the original sender or the request address, was used to find the

next bridge to traverse or the destination device. Such routing could be easily achieved through

look-up tables (LUT). These look-up tables are generated at design time, likely by a software

deployment tool. The simplicity of this solution came at the expense of cost in terms of hardware

and chip area. The network diagram in Figure 13 shows an example of the request translation

process.

Methodology

26

Target: 3
Source: 0

Target: 3
Source: 0

Target: 3
Source: 0

Target: 3
Source: 0

Target: 5
Source: 0

Target: 5
Source: 0

IP
sends

request

IP
sends

request
1

3

0

2

5

7

4

6

9

11

8

10

B0

B1

Target: 5
Source: 0

Target: 5
Source: 0

Target: 11
Source: 0

Target: 11
Source: 0

IP sends
response

IP sends
response

Target: 11
Source: 0

Target: 11
Source: 0

Figure 13: An example of address translation for initiator requests across a bridge.

A concern for the architecture of a bridge component is the ability for a response packet

to return to the initiator device. In order for a packet to be able to return to the sender, the sender

must be known. This was decided to be encoded in the packet. A separate Source would be used

to encode the initiator’s address. Just as the bridge needed a lookup table to find the next target

for a request, it also needs a lookup table for responses. This lookup table, however, uses the

Source fields rather than the base address. The diagram in Figure 14 shows an example of this

response translation process.

Target: 0
Source: 0

Target: 0
Source: 0

Target: 0
Source: 0

Target: 0
Source: 0

Target: 6
Source: 0

Target: 6
Source: 0

IP
receives
response

IP
receives
response

1

3

0

2

5

7

4

6

9

11

8

10

B0

B1

Target: 6
Source: 0

Target: 6
Source: 0

Target: 8
Source: 0

Target: 8
Source: 0

IP
receives
request

IP
receives
request

Target: 8
Source: 0

Target: 8
Source: 0

Figure 14: An example of address translation for endpoint responses across a bridge.

Methodology

27

4.3 Switching

When the selection for the switching strategy was made the advantages of circuit and

packet switching were matched with the sponsor’s requirements. It is determined that traffic on

the NoC would be considerably infrequent and have potentially large messages. Such a traffic

pattern matched the advantages of circuit switching. This type of switching offers better

throughput to long messages as the channel is allocated prior to transmission. However, packet

switching is selected to simplify hardware. It was determined to be simpler to allow packets to

allocate network and channel resources as they progressed through the NoC rather than pre-

allocate them as in circuit switching.

The type of packet switching that was selected for the MITRE control plane was

wormhole switching. This type of switching was selected because it offered a low buffering cost

per router. As each channel of each router would require these packet buffers this buffering cost

could become quite significant in the chip area of the entire NoC. Wormhole switching also

allowed for better throughput than the SAF and VCT methods. The wormhole switching was

implemented without virtual channels. Virtual channels were not implemented in order to avoid

the additional complexities of virtual channel allocation. This was motivated by an effort to keep

the underlying NoC components simple.

4.4 Flow Control

The most appropriate method of link-level flow control for the control plane NoC was

determined to be the Stall-and-Go method. It was selected because of its low overhead

implementation and high degree of reliability. Stall-and-Go had the advantage of have low

buffering costs which was important in controlling the chip area consumed by the NoC. This was

an important consideration as the flow control buffering unit was used on each input link in the

NoC.

Additionally, Stall-and-Go offered good stall recovery. In Stall-and-Go, recovering for a

stall did not incur additional latency, allowing for fast stall recovery. Unlike the other flow

control option ACK-NACK, the Stall-and-Go method did not require the retransmission of

packets.

Methodology

28

4.5 Network Interface

IP cores needed a way to send and receive data on the NoC. This capability was built into

the network interface. IP cores connected to the NoC via dedicated links on the router

components called the local link. It was through this link that data entered and exited the NoC.

Each endpoint or initiator on the NoC was assigned a router on one of the local meshes. For

endpoint IP cores the addresses in the endpoint’s address range on the NoC would translate to the

address router to which the endpoint was connected. When a router received a packet destined

for its own address, the packet would be routed to the local port. This system differed from the

previous MITRE control plane that implemented the network interface inside the router

component. Such an implementation limited the flexibility of the router component as it needed

to be connected to an IP cores (consequently required the development of repeater component).

Also, only one protocol—OCP Memory—was implemented on the CRB.

A requirement of the new MITRE control plane was to allow for several standard

interfaces connected to IP cores as well as the easy integration of additional protocols in the

futures. This was facilitated by decoupling the network interface from the router component as

described previously. Additionally, the network interface was divided into two components: the

packet processor and the protocol adapter. The network is illustrated in Figure 15.

Figure 15: Composition of the Control Plane network interface (NI).

Methodology

29

4.5.1 Packet Processor

The objective when designing the network interface was to make the details of the NoC

transparent to the IP core. This was implemented in the packet processor layer. This layer of the

system provides two buffers: one for data entering the IP core from the NoC and another for data

exiting the IP entering the network. As seen in Figure 15, the packet processor connects to the

protocol-specific component called the protocol adapter by a simple shared bus. This bus offers

a wide data bus for passing the raw packet into the protocol adapter for further processing. A

simple handshaking mechanism was provided to allow the protocol adapter to stall incoming

data.

4.5.2 Protocol Adapter

The protocol adapter was the layer of the network interface that directly interfaced with

IP cores. It was at this level that data would ultimately be exchanged between the network and

the IP core. This functionality was isolated to this component to allow for easier and faster

integration of additional protocols to the control plane. Design engineers were intended to use

the packet processor component to connect to the NoC and follow a basic template for packet

generation. The design engineer is responsible for designing the IP interface protocol as well as

control logic for the packet processor bus.

As mentioned previously, the lower level packet processor removed many aspects of the

underlying network, such as flit headers and stall signals. Other aspects such as packet structure

and network node locations, however, were still known to the protocol adapter. Such knowledge

of the network was necessary in the packet generation process for initiator IP cores. Such

protocol adapters needed the capability to interpret a request address from the IP core and

produce a network address that routed the generated packet to the destination node.

The concept of a separate protocol adapter allowed the concept of custom packet

structures to become simpler to implement. The packet bits not used in routing were ignored by

the routers and bridges. This data was simply passed along to the next routing element. Similarly,

this data was not affected by the packet processor. Packet processors were given the potential to

process additional application-specific information.

Methodology

30

4.6 Packet Structure

The new MITRE control plane offers a flexible packet structure. In order for simple,

general-purpose routing elements to be designed, some restrictions had to be imposed, however.

Figure 16 illustrates the general packet structure of a packet used in the new NoC control plane.

It should be noted that the fields necessary to routing were positioned at the beginning of the

packet for minimizing routing buffer costs.

Target Source Type Base Local Address Application-specific Data

Figure 16: General packet structure for the MITRE control plane.

The first fixed field in the control plane packet is the Target field. This field is a mesh

address, meaning it contains a mesh identifier number, an X location, and a Y location. This

address identifies the node to which the packet is being routed on the current local mesh. This

field is positioned at the beginning of the packet so that routers only have to read the head flit in

order to allocate the correct channel on which to transmit the packet. The Source field identifies

the mesh address of the original sender of the packet. This field is used by endpoints and bridges

to generate the target address of a response message. The Type is used to identify the type of

network packet. This system implements two packet types: requests and responses.

The next two fields are the base address and local address. This system is very similar to

that used in the previous MITRE control plane implementation. Each unique base address

identifies a single endpoint IP core. The local address acts as the request address for the endpoint

device. This address field is required to be sized according to the largest device address space.

The motivation for such as scheme is for smaller decoder logic for the lookup tables for initiator

protocol adapters and bridges when determining the new network address from the request

address. This makes it necessary for these routing elements to only buffer the base address and

not the local address.

The remaining bits of the packet are left open for application-specific use. Bits that would

likely reside in these bits are operation codes, read and write data, and error values. By not

imposing requirements on these bits additional protocols and functions can be added in the

future. For example, a new command can be implemented to perform a write to the target device

without generating a response packet. Imposing such packet structure limitations would have

Methodology

31

hindered much future expansion and alternative use of the MITRE control plane. With reuse and

expandability at the forefront of the project requirements, such restrictions are avoided.

Implementation and Design

32

5 Implementation and Design

This section provides a detailed view of the underlying architecture of the control plane.

The methodology developed in Section 4 is implemented with a bottom-up approach. The

fundamental components are built and tested first. After successful testing of one layer the next

layer is then built over it.

5.1 Flow Control Buffer

The Flow Control Buffer (FCB) is used to ensure that no data would is lost across data

links. The buffer uses the Stall-and-Go type flow control to control traffic through the buffer. In

this implementation, the buffer is designed with two flit registers. Under normal operation (no

stalls) the forward register receives flit transmitted across the input flit bus, or link. This register

is used as the output register of the block as well. The second register, the save register, holds

flits that would otherwise be lost in the stall. The block diagram in Figure 17 shows the

implementation of the Flow Control Buffer.

Forward

Save

Flit OutFlit Out

Link InLink In

Next FlitNext Flit

Figure 17: Block diagram of Flow Control Buffer.

The need for the component arose from the complications of passing the STALL signals

through sequential logic. When a router is signaled STALL from a downstream (receiving)

router, the STALL signal is not processed by the stalled router until it has transmitted its flit.

Consequently, the downstream router must have buffer space to receive this transmitted packet.

This is the purpose of the Save register. The Save register stores the value of the incoming flit

when the channel is initially stalled. The value in the Forward register is retained until a GO

Implementation and Design

33

signal is received, at which point the flit has been accepted and stored by the downstream router.

It is also at this point that the Save register is copied into the Forward register.

Aside from its buffer responsibilities the Full Control Buffer must also remember its stall

state as well as propagate stall information upstream. A simple state machine retains the stall

state of buffer. It contains a single input: the downstream stall signal from the router to which the

buffer’s output is connected. The state machine always progresses to the STALL state when the

input is STALL and always transitions to GO when the input value is GO. The state transition

diagram is shown in Figure 18.

Figure 18: State transition diagram for the Flow Control Buffer state machine.

Upstream stalls are an important part of the design of the Flow Control Buffer. When a

STALL is received from a downstream router, both registers in the buffer are now occupied and

the buffer cannot store any more data. Consequently, the buffer must indicate to the upstream

router that no more data can be accepted so a STALL signal is generated back. When the buffer

is given the GO signal the save register is now empty. The upstream router can now be signaled

that data can be transmitted again. Given these facts, the upstream stall signal can simply be the

downstream stall signal. Since it is a registered (sequential) output the downstream input value

will not appear on the upstream output at the next clock edge.

A special functionality is built into the Flow Control Buffer. An additional output is

provided for use in the router component. This is a combinatorial output supplying the next flit to

be transmitted. According to the stall values and current state, the next flit could be either the

current flit (in the Forward register), the flit in the Save register, or the flit on the input link. An

updated version of the Flow Control Buffer block diagram is shown in Figure 19 reflecting this

additional output and the stall state.

Implementation and Design

34

Forward

Save

Flit OutFlit Out

Link InLink In

Next FlitNext Flit

Register Stall InStall InStall OutStall Out

Figure 19: Final block diagram of the Full Control Buffer.

5.2 Router

The Router component is the fundamental building block of the Control Plane. This

component is responsible for transporting packets within local meshes. It is shown in Section 5.3

that this component can serve over utilities as well.

5.2.1 Architecture

Given a local mesh topology each router was designed to connect to four adjacent routers

as well as to connect to an IP core through a dedicated fifth link, as shown in Figure 20. Each

link was designed to support bidirectional traffic. That is, a router can simultaneously transmit

and receive on a link.

Implementation and Design

35

Router

NorthNorth

WestWest

SouthSouth

LocalLocal

EastEast

Figure 20: Router component interconnects.

The Router component is designed with five bi-directional ports. There is a total of five

input channels and five output channels. Each of these output channels is capable of establishing

a channel. It is the input channels’ role to request an output channel. An output channel accepts

the input channel’s request when it is available to make a connection. From here forth, the terms

inport and outport are used to describe router input channels and output channels, respectively.

Transmission channels within the Router are configured through the switch. The switch is

responsible for routing the appropriate data and control signals between connected inports and

outports. This component allows all five outport channels to have simultaneous transmissions.

The block diagram in Figure 21 illustrates the interconnection between inports and outports

through the switch.

Implementation and Design

36

Switch

Local

Outport

South

Outport

North

Outport

West

Outport

East

Outport

Local

Inport

South

Inport

North

Inport

West

Inport

East

Inport

Figure 21: Routing interconnects and transmission paths.

5.2.2 Interfaces

The Router component interfaces with other Routers through the flit bus links. Two types

of information are carried over these links. These are the flit busses and the stall signals. The flit

busses carry the divided packet bits for transmission. The stall signals are control signals that

indicate whether the receiving node is capable of receiving packet data. It should be noted that

these two different kinds of signals travel in opposite directions, as shown in Figure 22. For each

router port, the transmit link of one serves as the receive link of the adjacent router port.

Router PortRouter Port

Flit Bus

Stall Signal

Flit Bus

TX Flit

Stall In

RX Flit TX

Stall SignalStall In Stall Out

RX Flit

Stall Out

Figure 22: Links between adjacent routers.

Implementation and Design

37

5.2.3 Router Inport

A router inport is a port through which data enters the router. It consists of an input flit

link, an FCB, and a target decoder. The FCB is used to maintain data integrity across the link

input. The target decoder is used to determine through which outport the new packet should be

routed.

Input Link

Target
Decoder

Next
flit

FlitFlit

RequestRequest

Flow Control
Buffer

Flow Control
Buffer

Stall, GrantStall, GrantStall out

TargetTarget
Default TargetDefault Target

Stall

Figure 23 : Block diagram of the router inport.

The Router inport is designed to decode the target port with a single flit. This was done to

prevent additional buffering needing and avoid the additional latency associated with buffering

additional flits. The NextFlit output of the FCB is used to provide the routing information to the

target decoder. This allows two packets to be processed back-to-back, preventing a one-cycle

between requests. The target decoder produces a request vector, a target selector, and a default

target selector. The request vector produces five parallel bits, each one assigned to issue a

request to each of the five Router outports. The target selector is used to provide the switch with

the desired outport. The default target selector is used to override the target selector. Instead of a

routing an outports control signals (stalls and grants) back to the inport default signal values are

routed instead. This behavior is desired when no request is made (no packet has entered the

inport). Otherwise, an inport would receive control data from any outport. If that outport had an

Implementation and Design

38

established channel its signals would reach the inport despite having not requested it. This could

result in the propagation of unnecessary stalls in upstream routers and links.

It should be noted that the Request output is a combinational output. That is, it responds

immediately to a change in its inputs, such as the NextFlit value. This allows the request to be

generated in the same clock cycle, allowing the requested outport to have time to grant the

request on the next clock edge. The Target and DefaultTarget selector signals are registered

outputs, however. They will not be updated until the next active clock edge. The registers are

necessary to retain these values for the duration of the transmission. These registers are not

updated until the beginning of another transaction. This is indicated by the NextFlit being either

a HEAD flit or NULL flit. Additionally, the incoming Stall signal must be a GO value. This is

due to the fact that the Target output provides the Switch with routing information for the

outport’s control information. Updating this register preemptively routes incorrect control

information back to the inport. One can consider the case when the inport is stalled when the

next flit is a HEAD flit. It is connected to Outport 0 as shown in Figure 24. The next flit is bound

for Outport 3. If Outport 0 is driving STALL and Outport 3 is driving GO then the requesting

inport will receive the GO from the next request. This will tell the inport that its stored TAIL flit

has been accepted. Since Outport 0 is still stalled the TAIL flit is not accepted and data is lost.

This situation is demonstrated in Figure 25.

Input Link

TAIL

Target
Decoder

HEAD

0100001000

GO

DEFAULT=0DEFAULT=00

3

STALL

TAIL

0

Stall(3) = GOStall(3) = GO

Stall(0) = STALLStall(0) = STALL

Figure 24: An example of a misuse of the target selector.

Implementation and Design

39

Input Link

TAIL

Target
Decoder

HEAD

0100001000

STALL

DEFAULT=0DEFAULT=00

3

GO

TAIL

3

Stall(3) = GOStall(3) = GO

Stall(0) = STALLStall(0) = STALL

Figure 25: The result of the previous example.

5.2.4 Router Outport

The router outport is a port through which data exits the router. More importantly this

component controls channel allocations within a router. An outport consists of two

subcomponents: a round-robin arbiter and an output register, as shown in Figure 26. The output

register serves as a registered output of both the outport component and the router component.

Since these flit busses are used to connect to input links of other routers, the registered output

reduces the total combinatorial delays, allowing for higher clock frequencies. This is common

design practice in digital systems.

Flit
Register

RRA

Link Out

RequestRequest

GrantGrant

PointerPointer

FlitFlit

Ready

Stall OutStall Out Stall In

Figure 26: Block diagram of a router outport.

Implementation and Design

40

The round-robin arbiter component is the component responsible for channel allocation.

It implements a fair scheduling algorithm that services each requesting device in order. More

specifically, the requests of devices from the previously serviced devices are ignored in favor of

the current and future devices in the order. In particular, the next device in the order requesting

access will be granted [10]. A simpler implementation is a fixed-priority system where each

input is assigned a priority. In this situation, if a high priority device makes frequent requests to a

channel the lower priority devices can suffer starvation. The round-robin implementation ensures

all devices will eventually be serviced.

The arbiter component receives a request vector and a ready signal and produces a grant

vector, a group select signal, and a pointer. The request vector is generated in the Router switch.

Each bit in the vector corresponds to one of the requesting devices—in the instance of the Router

these are inports. The Ready signal determines when arbitration should occur. The Grant vector

generated contains one bit per requesting device. These bits serve as an acknowledgement to the

requesting device that it has been selected. The group select signal is used to indicate that no

devices were selected. This occurs when no devices are requesting the outport channel. The

Pointer signal acts as a selector in the Router switch to route data from the granted inport. The

group select acts as an override in the switch to provide default signals to the outport.

The round-robin arbiter in the router outport is implemented using a mask register and a

simple priority encoder, as seen in Figure 27. The mask register remembers the history of the

arbiter’s allocations. The register contains one bit for each requesting device (inport). If the bit is

set (equal to a logic 1) then the device’s request is acknowledged by the arbiter. If the bit is

cleared (equal to a logic 0) the device’s request is ignored. The mask register is updated after

each channel allocation. The device requested and the devices preceding it in the allocation order

are masked, or set to 0 in the mask register. An AND operation is performed between the

corresponding mask bits and request bits. When a bit in the mask register is zero, the resulting bit

will always be zero according to Boolean algebra. With these other devices removed from the

final request vector a simple priority encoder can be used to select the next device with a request.

If the final request vector has no requesting devices then the unmasked request vector (the

original input vector) is used instead.

Implementation and Design

41

= 0

RequestRequest

P
ri
o

ri
ty

E
n

c
o

d
e

r

Register

M
a

s
k

Grant

nGS

Pointer

Mask

ReadyReady

Figure 27: Block diagram of a mask-based round-robin arbiter.

The block diagram in Figure 27 shows that the outputs of the round-robin arbiter are also

registered. In addition to offering better timing performance the registered outputs retain the

values of the last arbitration. The Ready signal acts as clock enable to the registers. As the

masking logic and priority encoder are combinational, as new requests are issued their output

values will change. These changes should neither be used externally nor captured in the register.

Registering the new values on the Ready signal ensures that the correct information is driven in

the interacting components and that they remain stable for the duration of the transmission. The

Ready signal is asserted when a TAIL or NULL flit comes in on the flit input bus and when the

output link is not stalled.

5.2.5 Router Switch

The Router switch is used to produce arbitrary connection from outport to any inport.

This includes switching of signals from the inport to the outport as well as signals from the

outport to the inport. Between channels is maintained by the two kinds of selectors: Targets and

Pointers. Target selectors switch values from the five outports back to an inport. Pointer selectors

switch values from the five inports to an outport.

Flit data is multiplexed inside the switch. There a multiplexer for each outport that selects

between the flit busses supplied by each of the five inports. A sixth flit bus carrying a null flit (all

zeros) is included in the switch multiplexers. If the group select signal is active in the outport the

null flit is output from the multiplexer instead. Figure 28 shows the multiplexer equivalent of this

Implementation and Design

42

circuit. Since each outport has one of these multiplexer circuits five simultaneous transmissions

are possible.

Flit 0Flit 0

Flit 1Flit 1

Flit 2Flit 2

Flit 3Flit 3

Flit 4Flit 4

NULL FlitNULL Flit

Pointer xPointer x

nGS xnGS x

Flit Out xFlit Out x

Figure 28: Flit bus multiplexer in the router switch.

Stall signals are passed from the outports back to the inports in a similar way. Each inport

must have a means to read the incoming stall signals from the outport to able to suspend

transmission on a downstream stall. Stall signals are routed back using the Target selector from

the inport. The Default Target selector bypasses this value when active, providing the default GO

signal. This selector is asserted when the inport is not transmitting. The equivalent circuit is

shown in Figure 29.

Stall 0Stall 0

Stall 1Stall 1

Stall 2Stall 2

Stall 3Stall 3

Stall 4Stall 4

Target xTarget x

DefTarget xDefTarget x

Stall xStall x

Figure 29: Circuit equivalent of a multiplexer-based stall signal switching.

The Grant signals are switched in a slightly different manner. Each outport has a Grant

vector that is passed into the switch. It has one bit for each of the inports. From the perspective

of the inport only the one bit for itself is relevant. Therefore, the multiplexer for an inport takes

Implementation and Design

43

its respective bit from each of the outport grant vectors. When the inport is not making a request

or transmitting the Default Target selector select the inactive level of the grant signal

(nGRANT). The equivalent circuit is shown in Figure 30.

Grant0[x]Grant0[x]

Grant1[x]Grant1[x]

Grant2[x]Grant2[x]

Grant3[x]Grant3[x]

Grant4[x]Grant4[x]

nGRANTnGRANT

Target xTarget x

DefTarget xDefTarget x

Grant xGrant x

Figure 30: Circuit equivalent of the grant signal switching.

The request signal vectors are simply remapped before reaching the outports. Each inport

drives five request lines: one for each outport. Across the five inports there are twenty five

request lines. Only five of these lines are relevant to an outport. Those five lines of the requests

lines bound for that outport. An example of such is that Outport 3 would receive the Request(3)

bits from each of the inports. The position of the bit in the vector indicates to the Outport which

device is requesting. For example, Bit 1 of an outport’s request vector is sourced by Inport 1.

Figure 31 shows the circuit equivalent for this switching block.

Req0[x]Req0[x]

Req1[x]Req1[x]

Req2[x]Req2[x]

Req3[x]Req3[x]

Req4[x]Req4[x]

Request xRequest x

Figure 31: Outport request signal generation.

Implementation and Design

44

5.2.6 Separate Data Path Router

During the development of the Bridge test system, it was discovered that the Router-

based test meshes suffered from a fatal flaw. The test system exposed that mesh’s susceptibility

to message-base deadlock, as described in Section 2.5.1.2 Message-dependent Deadlock. This

flaw does not appear in the original Router test since the simulation models did not introduce the

concept of request and response messages since it was out of the purview of the Router

component. In order to correct this issue the data paths for requests and response had to be

separate to avoid dependencies [9].

Either separate physical networks or virtual channels in the router channels are used to

avoid message-based deadlock. The most common solution is the use of virtual channels [7].

Despite this fact, separate physical network were selected for the MITRE Control Plane. This is

an important design decision in the project. Physical-separate data paths are chosen to prevent

excessive project delays from redesigning and verifying the new virtual channel router

component.

A new component is used to break this message-based deadlock. The component called

the Separate Data Path Router, or SDP Router, was built to include two Router components.

Each of the five links of a mesh router is expanded to include the signals for both the request

router and the response router. This is done as an abstraction of underlying hardware.

Additionally, combining the data busses significantly reduces the already burdensome number of

ports in the RTL description of the SDP Router. From here further, the term Router describes the

SDP Router and the term Single Router describes the individual router component.

5.3 Bridge

The Bridge component acts as a gateway between adjacent local meshes. Messages from

one of the meshes enter the Bridge and are translated into the opposite mesh’s topology. It acts as

a target translator from one mesh to another. Additionally, Bridges can perform global routing

where Routers can only perform local routing. Bridges can determine paths from one mesh to

another mesh of any degree of separation. These components are designed to translate the target

mesh address to the nearest bridge, which in turn routes to the next nearest bridge. This continues

until the packet reaches the destination device within its local mesh.

Implementation and Design

45

In order for the Bridge component to work there has to be separate data paths similar the

Router. While this increases the hardware cost of the Bridge component it also simplifies the

target translation process. Due to the packet structure, translation is different in requests than in

responses.

The structure of a bridge consists of an input shift register with flow control, a loadable

output shift register, lookup tables and other decoding logic, as illustrated in Figure 32. Packet

data enters the Bridge through the input link and the FCB. The input shift register must be full

before translation occurs. The output shift register is loaded on the next cycle when the head of

packet is in the front of the shift register. At this point, the packet fields are used to produce the

target field. It should be noted that the output shift register includes an extra buffer position to

capture the next flit in the packet, which is contained in the FCB. The output shift register is

enabled to shift out at this time. It will stop shifting when a tail or null flit is detected at the front

of the register.

Link out ...

... FCB Link In

Target Decoding
and

Packet Translation

Input Shift Register

Output Shift Register

Figure 32: Block diagram of the Bridge component.

The request data path in the Bridge uses the base address field in the packet. The base

address acts as a unique identifier for the device. This address is a global address—it is

understood throughout the network. A lookup table is used to find the next bridge or router to

which to route the current packet. The base address is translated into the XY location of this

intermediary device which is concatenated with the mesh identifier of the output link’s mesh to

produce the new Target address. This address is loaded into the output shift register rather than

the previous. This process is shown in Figure 33.

Implementation and Design

46

Target Source Type Base Other

Target Source Type Base Other

LUT

MeshIDMeshID

Figure 33: Request data path for the Bridge component.

The response data path of the Bridge component routes uses the Source field of the

packet. This greatly reduces both the buffering requirements and the latency through the Bridge.

In particular, the mesh identifier of the Source field is usually sufficient. The mesh identifier is

compared with the output side’s mesh address. If the Source address is in this mesh, the Source

field is copied into the Target field of the output shift register. Otherwise, a software-generated
2

look-up table specific to the containing bridge is used to find a bridge that will route to this

mesh. Again, the output link’s mesh address is concatenated with the resulting XY location from

the lookup table. This functionality is shown in Figure 34.

Target Source Type Base Other

Target Source Type Base Other

LUT

MeshIDMeshID

=

Figure 34: Response data path for the Bridge component.

2
 These look-up tables should be generated by a deployment tool to ensure consistency with the overall network. The

deployment tool is planned as a long-term goal of the project.

Implementation and Design

47

5.4 Packet Processor

The Packet Processor (PP) is the first layer of the network interface (NI). Its primary

purpose is to form a layer of abstraction over the flit-based transmission architecture. The Packet

Processor interfaces between the bus protocol-specific level (which interfaces with the target IP)

and the NoC through a simple shared bus. As shown in Figure 35, the Packet Processor contains

an interface to a Protocol Adapter, an interface to the NoC, and two shift registers.

...
...

Packet TX

Bus

Packet RX

Bus

Flit TX

Bus

Flit RX

Bus

Control

Protocol Adapter

Router

Control
FCB

Figure 35: Block diagram for the Packet Processor.

The Packet Processor serves as a packet serializer and deserializer. That is, the receiving

side of the Packet Processor accepts a flat packet from the Protocol Adapter. The entire packet is

transmitted over this shared bus to Packet Processor block. Internally this path contains a shift

register buffer. The Packet Processor loads the packet data from the bus into its flit registers. The

flits are shifted into the connected Router’s Local port.

The transmitting side of the Packet Processor contains another shift register to collect the

packets coming in from the network. Once the front of the packet reaches the front of the shift

register,
3
 a request is generated on the transmit bus to the protocol adapter. The shift register is

preceded by a Flow Control Buffer. This is necessary since the Packet Processor needs to be able

to capture a flit inflight when the stall signal is asserted.

3
 The request generation uses sequential logic, so the flit register just before the front is checked. The request signal

will be generated at the same time that the front of the packet reaches the front of the shift register. This prevents a

dead cycle between the arrival of the packet and the request generation.

Implementation and Design

48

Despite the simplicity of this block, considerations are made in regards to flow control.

When the Packet Processor transmits an entire packet up to the next level, it must be sure that

there is buffer space available. The flow control is handled by the bus protocol between the two

layers. The bus carries three signals: the data bus, a request (REQ) line, and an acknowledge

(ACK) line. When the Packet Processor has an entire packet to transmit, it asserts the REQ line.

It must wait for the ACK line to be asserted by the Protocol Adapter. It may take many cycles for

the ACK to be sent so the data must be retained in the shift registers. Therefore, a stall is

introduced to incoming flit link. This stall is only generated when a request is active and the

ACK is not asserted. This prevents the NoC from transmitting a packet before the Packet

Processor has room to store it. Additionally, the shift register only shifts when a request is not

active. Once a request is generated, the register is suspended. The flow chart in Figure 36

describes the control flow of the transmission process.

Received

pakcet?

Assert REQ

Assert

STALL

Shift

No

Yes ACK?

No

Load Incoming Flit

Yes

Figure 36: Flow diagram of the Packet Processor transmit bus request cycle.

The Packet Processor’s receiving bus functions in a similar manner. This control flow is

documented in Figure 37. Data is passed from the Protocol Adapter to the Packet Processor

through another shared bus. When the Protocol Adapter sends data it similarly asserts its REQ

line and waits for an ACK from the Packet Processor. The Packet Processor will accept the

Protocol Adapter’s request when the output shift register (to the NoC) is empty. This prevents

data loss in the inflight packet. When the request is accepted, the output shift register is loaded

with the incoming packet.

Implementation and Design

49

REQ?

Buffer

Empty?

Yes

No

Load

Register
YesShift Stalled? NoNo

Yes

Figure 37: Flow diagram of the Packet Processor receive bus request cycle.

5.5 OCP Protocol Adapters

The Protocol Adapter (PA) layer completes the Control Plane’s Network Interface level.

The PA components connect the routers of the interconnect network to the IP cores. Each

Protocol Adapter implements a certain bus protocol, such as OCP or AHB. This side of the

Protocol Adapter connects to the IP core. The Protocol Adapters connect to routers through the

transmit and receive busses of Packet Processor layer. These connections are shown in Figure 38.

IP
 C

o
re

P
ro

to
c
o

l

A
d

a
p

te
r

P
a

c
k
e

t
P

ro
c
e

s
s
o

r

R
o

u
te

r

Protocol bus TX/RX bus
Flit

bus

Figure 38: Layered structure of the Network Interface.

Protocol Adapters are divided into two general categories of endpoint adapters and

initiator adapters. Endpoint adapters connect to endpoint IP cores, or slave devices on the

network. The endpoint adapters act locally as master devices to the connected IP core. Requests

coming in from the network are translated into the implemented bus protocol’s request type, as

shown in Figure 39.

Implementation and Design

50

PA receives a

network request

packet

PA generates

request to IP

IP core

responds to

request

PA produces

response packet

Figure 39: Control flow of request generation through endpoint Protocol Adapters.

Initiator adapters connect to initiator IP cores, or master devices on the network. These adapters

are locally slaves of their connected IP cores. The IP cores issues a request to these adapters and

the adapters generate a corresponding packet to transmit to the network, as illustrated in Figure

40.

IP cores

generates a

request.

PA receives

request.

PA generates a

network packet

PA receives a

response packet

PA responds to

the IP request.

Figure 40: Control flow of request generation though initiator Protocol Adapters.

It is important to note that the Protocol Adapter is actually responsible for defining two

distinct protocols. The first protocol defined is that of the bus interface it implements. This

protocol only dictates the transaction with the IP core. The second protocol is a packet protocol

that determines how this information is transmitted across the network to target devices. It is

likely that in particular system that all of the packet protocols will be compatible with one

another.

5.5.1 Packet Protocol

The MITRE Control Plane is currently built for a single overlying protocol. It supports

basic read, write, and no-operation (NOP) operations from initiator devices to endpoint devices.

The packet structure is extended to include a local address field, an operation field (OP), a

parameterized data field, and an error field, as shown in Figure 41. All requests generate

responses in protocol. The Error field allows the initiator to know if its request was successfully

serviced.

Target Source Type Base Local Address OP Data Error

Figure 41: Packet structure for the MITRE OCP Memory protocol adapters.

This packet protocol supports three basic operations: Read, Write, and No Operation, or

NOP. The read and write operations can be directly related to the OCP read and write operations.

The Write operation issues an address and data to store at the given address. The Read operation

Implementation and Design

51

requests the data at the given address. The encodings of the supported operations are found in

Table 2.

Operation

Name

Encoding Function

OP_NOP 00
Performs no operation. The endpoint device

produces a response packet with ERR_NONE.

OP_WRITE 01 Performs an OCP write to the target device.

OP_READ 10
Performs an OCP read from the target device.

Slave data is returned.

Table 2: Supported operations through the OCP Memory Protocol Adapter.

An error field is included in the packet protocol to satisfy the sponsor’s request for

descriptive error handling. This field gives the initiator information about the success of its

request. This is particularly important for read operations, where a failure can result in invalid

data returned. It is important that initiator receives this information so it may retry the operation

to receive valid data. With the limit error reporting the OCP protocol, the error reports in this

protocol are also limited. When an OCP request is made, the PA can only report error when an

error response is given (a response of SRESP_ERROR or SRESP_FAIL) [11]. However, no other

information is given regarding the error [12]. The more descriptive errors of this protocol

originate from the endpoint itself. These include timeout and misroute errors, as shown in Table

3.

Name Encoding Function

ERR_NONE 000 No error occurred; the operation was successful.

ERR_FAIL 001 The OCP IP responded with ERROR or FAIL.

ERR_TIMEOUT 010
The maximum duration of the OCP transfer

elapsed the transfer was terminated.

ERR_INVAL_OP 011
An unsupported operation or invalid operation

was issued.

ERR_INVAL_TAR 100
The request packet was misrouted to this

endpoint.

Table 3: Error codes supported in the OCP Memory Protocol Adapter.

Implementation and Design

52

5.5.2 Implementation

Only an OCP-based endpoint Protocol Adapter is built and tested due to time constraints

of the project. It was designed with a state machine to control the flow data and translate the

packet-based requests into OCP requests to the target IP core, as shown in Figure 42.

Control

State

OCP Master Interface

Bus Registers

Packet RX Register

RX Bus

Packet TX Register

TX Bus

Figure 42: State-based packet request to OCP request translation in the Protocol Adapter.

This Endpoint PA initially waits for an incoming packet from the attached Packet

Processor. It acknowledges the request upon receiving it and will buffer the incoming packet.

The packet is checked to determine if an OCP request is necessary for this packet. NOP packets

do not need to make an OCP request. In fact, NOP requests cannot be made on an OCP bus, as

no such OCP command exists on the OCP Memory profile [12]. Bad packets also do not

generate OCP requests. These include misrouted packets and invalid operations, as not all OCP

commands are supported on this protocol. For the packets that do not generate OCP requests, a

response packet is immediately generated and transmitted through the Packet Processor. Packets

that do initiate OCP requests to the IP must obey the OCP Memory protocol. A request is put on

the bus until accepted by the slave (IP). The command-accept terminates a write operation. Read

operations are not terminated until the slave gives a valid response [12]. Both of these phases are

capable of timing out, or reaching a maximum elapsed time for the transaction. Upon timeout,

the Protocol Adapter applies a reset to the slave IP core to correct a possible error that is stalling

the slave device. This prevents the endpoint from being permanently stalled and potentially

causing deadlock on the network. Its functionality is described by the flowchart in Figure 43.

Implementation and Design

53

Incoming

request?
Accept packetYes

Generate

request?

Generate OCP

Request
OCP accept?

Generate

response packet

Read? Response?Yes

Timeout?

No

Yes

No

Yes

No

Timeout?

No

Yes

Yes

No

No

Figure 43: Flow chart of the OCP Memory endpoint protocol adapter state machine.

Testing and Verification

54

6 Testing and Verification

Verification is a fundamental component of chip design. Since chip fabrication is a long

and expensive process, it is very important to thoroughly test RTL designs in simulations. The

intent is to greatly reduce the possibility of unforeseen errors by exhaustively testing the design

under as many different conditions as possible.

6.1 Testing Methods

Each of the Control Plane test systems, or testbenches, followed a similar style. Each test

system consisted of a device under test, or DUT, at least one bus functional model (BFM), and a

monitor, as shown in Figure 44. The component being tested is called the device under test, or

DUT. The DUT is connected to one or more bus functional models, or BFMs. The purpose of a

BFM is to generate stimulus for the DUT. A BFM is a simulation model used to model devices

that would interface with the DUT. Their designs are greatly simplified by not having to be

synthesizable. Additionally, they are only responsible for implementing a compatible interface to

the DUT component [13]. BFM components were designed to the produce large amounts of

randomized data. Randomization helps identify unforeseen scenarios that may expose flaws in

the hardware design.

DUTBFM BFM

Monitor

Figure 44: General structure of a testbench.

Monitor components were used determine the success or failure of the simulation. In the

earlier test systems, namely the router subcomponents and the FCB component, the monitor was

used to read the stimulus to the DUT from the BFMs and the outputs of the DUT. Consistency

checks were used to verify that the DUT was responding correctly to the BFM’s for these lower-

level designs. For higher-level designs the monitor had a much more passive role. In these types

of tests the DUT was composed of many interconnected network devices simulating a small

Testing and Verification

55

NoC. The BFMs were used to emulate real endpoints and initiators. At this level of testing the

monitor was not used for signal (bit) level testing and checking. Instead, BFMs issued messages

to the monitor via a mailbox, a common thread synchronization tool in software. These messages

were representative of the actual requests and responses being issued on the NoC interconnects

between the BFM devices. The monitor uses these status messages to determine whether a

message has been delivered successfully. Additionally, tests using test networks included an

inactivity timer to determine detect deadlock conditions. For each clock cycle that the monitor

does not receive a status message it increments the inactivity timer. If a status message is

received on that cycle the timer is reset to zero. This is similar in behavior to a “watchdog timer”

on microprocessors.

A desirable feature of such testbenches is their self-checking capabilities. RTL simulators

often produce output waveforms from the design simulation. It would be tedious and error-prone

to check the success and failure of the each transaction. This task is delegated to testing

components such as BFMs and monitors. This is especially useful for running long tests includes

potentially thousands to millions of iterations.

6.1.1 Queues

The Control Plane test systems utilized some of the higher-level simulation constructs

available in the SystemVerilog language. Many of these constructs offer quick solutions to

problems that would otherwise require additional design considerations. One such example is the

SystemVerilog queue. A queue is a dynamic array of either a specified or unspecified

(unbounded) size. Elements can be added and removed from a queue at any time, as it is

dynamic. Methods are provided in this type of queue to add and remove elements of the queue in

a particular order, such as removing from the front and adding to the back [13]. SystemVerilog

queues behave like hardware FIFO (First-in, First-out) queues [14]. Consequently, they serve as

a quick substitute in simulation models. The Control Plane tests utilize queues in a similar

capacity.

6.1.2 Mailbox

A fundamental element of the Control Plane verification systems is the mailbox. This

SystemVerilog construct allows communication between different threads. A mailbox is a FIFO

Testing and Verification

56

queue of messages that is capable of synchronizing accesses from multiple threads, ensuring data

integrity [15]. BFMs in the Control Plane test systems use mailboxes to communicate system

events such as sending packets, receiving packets, and errors. This allows the BFMs to generate

random stimulus independent of the rest of the testbench but also to allow the system to predict

the outcomes of its actions. Special event messages are transmitted to the mailbox in the monitor

from BFMs. The messages used in the mailbox can have any data type [13]. Since

SystemVerilog includes object-oriented extensions to Verilog, mailboxes can use classes that

contain system event information as the message data type. The monitor uses the mailbox to

predict and confirm the results high-level transactions in the system.

6.1.3 Interfaces

An interface is a SystemVerilog construct that bundles many signals into a single entity.

It is similar to a VHDL record and a structure and computer programming. Interfaces are used to

ease connecting devices together by grouping related signals into a single port of a module.

Unlike a VHDL record, interfaces can contain both inputs and outputs. The directions of these

signals can differ between different modules using modports [15]. For instance, a bus interface

could have master and slave modport where the address bus is an output in the master modport

and an input in the slave modport. Interfaces can also contain tasks and functions just like

modules [15].

6.2 Mesh Subsystem Tests

The mesh subsystems tests were incorporated at all levels of the Control Plane design.

These served as a practical test environment for each component. Ultimately, these tests were

important for ensuring that the newest level of RTL would interact correctly with the previous

level of RTL. As each level was added, new BFMs were adapted from previous ones to

implement the interface of the next level component.

6.2.1 General Structure

Each mesh subsystem test consists of a mesh subsystem (the DUT), several initiator and

endpoint BFMs, and a monitor. The block diagram in Figure 45 illustrates this configuration.

Testing and Verification

57

DUT

Network

Subsystem

Initiator BFM Endpoint BFM

Monitor

Endpoint BFM

Endpoint BFM

Endpoint BFM

Initiator BFM

Initiator BFM

Initiator BFM

Mailbox Receiver

Figure 45: General structure of a mesh subsystem test.

The structure of the testbench simplifies the role of the monitor. The monitor is not

responsible for implementing any particular interface to communicate with the BFMs and the

DUT components. Instead, the BFMs act as both transmitters and receivers (like the IP cores

would). The BFMs use a shared mailbox interface (as shown in Figure 45) to communicate

transaction events to the monitor. Such events include transmitting and receiving requests,

transmitting and receiving response, and error packets. In the case of the BFMs for the tests prior

to the Protocol Adapter layer, each response is generated at the packet level. Since the monitor

does not have to conform to a new interface from one test to the next the same monitor was each

for each of those tests.

The mailbox interface uses the SystemVerilog interface construct. The interface

defines a mailbox with a parameterized message type. Two modports are defined: send for

BFMs and receive for the monitor. Each modport implements the appropriate functions and

tasks to read from and post to the mailbox [14]. This implementation circumvents the restriction

in the SystemVerilog language that prohibits the use of mailboxes to as ports into a module or

program
4
. Interfaces, however, can be used as ports [15].

4
 The term program refers to the SystemVerilog construct called program.

Testing and Verification

58

6.2.2 Packet-based Tests

Before reaching the IP core level interface the subsystem test BFMs generated network

stimulus as packets. Packets are the message type processed in the components below the

Protocol Adapter level. Consequently, packets are generated at the BFM simulation model level

in these tests.

At these levels the Control Plane is protocol-agnostic. That is, the packet and message

structure defined at this level is used for routing and transport. For example, the Routers and

Bridges do not process the application-specific bits that the Protocol Adapters would use, as

shown in Figure 46. These bits were randomly generated for the purpose of transmitting more

unique packets. For this fact, it was simpler for the endpoint BFMs to echo the request to the

sender, or send back the same data packet. Using this scheme the initiator BFM can predict the

exact the response packet it should expect to receive from the target endpoint device BFM.

Target Source Type Base Local Address Application-specific Data

Router Bridge Protocol Adapter

Figure 46: Packet fields according to network level and protocol depth.

The initiator BFMs in these tests were designed to perform non-blocking requests. That

is, the BFM did not have wait for a response to the request before issuing the next request. This

was done to apply additional stress to the network DUT without requiring more BFMs and a

bigger network. Each time a packet was generated the initiator BFM both reported the

transmitted packet to monitor and also stored the expect response in an unbounded

SystemVerilog queue. The receiver portion of the initiator BFM searches the queue for the

incoming response packet. If a matching packet is found it is removed from the queue. If it is not

found, it is sent to the monitor as an error. The flowchart in Figure 47 reflects this functionality.

Testing and Verification

59

Start of cycle

End of cycle

Received?

No

Found in

queue?
Yes Report ERRORNo

Remove from

queue;

Report RX RSP

Yes

Figure 47: Mesh subsystem initiator BFM receive flowchart.

The monitor is responsible for reporting and maintaining the status of the system. This

component is responsible for receiving status messages from initiator and endpoint BFMs about

transmitted and received packets as well as detected errors. The monitor also maintains a count

of inflight packets for each initiator. When an initiator BFM reports a transmitted packet the

monitor increments the count. When the initiator BFM reports the correct response the monitor

decrements that BFM’s packet count. Once all initiators have report that they have finishing

transmitting their packet (with a DONE message) the monitor waits for the inflight counts to be

zero, indicating all packets were transmitted and received correctly. When this condition is met,

an output bit is set to signal the top-level testbench module that the simulation has ended

successfully, as shown in the flowcharts in Figure 48 and Figure 49. At the end of the simulation

the monitor prints simulation statistics to the terminal on which it executes.

Testing and Verification

60

Increment

inactivity counter
Message?

End simulation

Decrement BFM

packet counter

Increment BFM

packet counter

Increment BFM

done counter

Increment error

counter

DONE

ERROR

TX REQ

RX RSP

Deadlock

threshold

reached?

None

Yes

End of cycle No

Clear inactivity

counter

Start of cycle

Figure 48: Flowchart of the mesh subsystem monitor's message processing system.

All BFMs

done?

Any inflight

packets?

End of cycle

No Yes

Yes Asert DONENoStart of cycle

Figure 49: Flowchart of the mesh subsystem monitor's completion detection.

These testbenches also incorporate a simulation timeout. Errors in the simulation can

cause the simulation to run indefinitely. The timeout imposes a maximum number of simulation

clock cycles before the simulation is terminated, even without finishing or having an indication

of an error. This is to prevent excessive waste of server time to run the simulation as well as

prevent a scarce simulation tool license from being used by the simulation. This is implemented

with two concurrent threads in the top level testbench. One thread suspends until the Done signal

from the monitor is asserted. The other waits for the maximum number of simulation clock

cycles to occur. The end of each thread ends the simulation.

6.2.3 Request-based Tests

The Protocol Adapter test introduces new level of complexity in the Control Plane test

systems. The previous components like the Router, Bridge, and Packet Processor all operate on

Testing and Verification

61

packets in the network. The BFMs used in these tests are able to generate packets when

simulation the request and response cycles of the connected IP cores. In many cases these

randomized packets are serialized into and out of the network in the component’s mesh test. The

Protocol Adapter test introduces a new stage of the request-response cycle that includes the OCP

Memory request process.

The OCP Memory BFM simulating the OCP-based IP core ultimately receives an OCP

request rather than a Control Plane network packet. In the previous tests the endpoint BFMs (the

IP core sink) receives a packet. The received packet is transmitted to the monitor through the

mail interface to report successfully receiving the request packet. Additionally, the expected

response packet is transmitted in order to verify the packet the initiator receives. Since the OCP

BFM does not receive a packet, it only receives certain information about the transfer, such as

the operation and data (for writes). Other packet information such as the source (initiator

identifier) and target (endpoint identifier) is not transmitted to the BFM. Another particular issue

is when the request packet does not generate an OCP request, such as packet including an invalid

operation or a NOP. The OCP BFM does not receive a request from such packets. Consequently,

they cannot report to the monitor the appropriate response packet.

Modifications to the mesh subsystem test architecture allow this structure to work for

such tests. These include modifications to the use of the monitor as well as to the BFMs. The

OCP BFM reports the results to all OCP transactions the monitor. This BFM is adapted from an

existing MITRE verification BFM for the CRB IP. It randomly chooses how to respond to

requests. It can choose to respond to the request successfully or with an error. Additionally, it

randomly decides whether to timeout the transfer. The OCP BFM reports the expected error field

to the monitor upon completion of the transfer. The monitor stores this error field in a location

associated with the sender BFM.

Two issues exist with this scheme: the OCP BFM is not aware of its sender’s identity and

request packets that do not form OCP requests are ignored. The first of these issues is addressed

by the modifying the initiator BFM. The initiator sends its BFM identifier, a parameter used to

identify the BFM in the monitor, in the Local Address field of the packet. This address is sent to

the OCP IP in all transactions. This guarantees that the OCP BFM can identify its sender. The

initiator BFM addresses the second issue by storing parameters such as the Operation field and

Testing and Verification

62

Target field. The initiator checks the operation generated for the OCP BFM for operations that

would not generate an OCP request. For these operations a special message is sent to the monitor

that indicates that the value stored in the associated Error field in the monitor is not valid for this

request. The initiator instead uses this information to predict the correct endpoint response value,

such as ERR_INVAL_OP for invalid operations and ERR_NONE for NOP operations. The BFM

transmits with this special message a Boolean value indicating success or failure to the monitor.

The regular response-receive message is sent to the monitor for all other operations, as the

expected response is transmitted to the monitor by the OCP BFM.

Conclusion

63

7 Conclusion

This project set out to develop a scalable and reusable control plane NoC architecture for

use by the MITRE Corporation’s VLSI design group. An emphasis was placed on the ability to

support a large number of devices to meet the growing demands of current embedded digital

signal processing chips.

7.1 Summary of Project Contributions

The work from this project provided the project sponsor with a developed network-on-

chip architecture for their Control Plane design. This architecture dictated the parameters of the

network such as routing strategies and switching techniques. These parameters were selected

mainly in accordance to design complexity, scalability to large numbers of devices, and chip

area. The architecture was also designed to avoid network vulnerabilities such as deadlock. This

was addressed at the architectural levels to avoid the need to address these concerns in higher-

level protocols.

The network elements were developed from the established network architecture. Each

component was built according to strict specifications determined by the network architecture.

These components were designed with a bottom-up approach. That is, the lowest levels of the

architecture were developed first. These layers included the link-level flow control buffers and

the router component. The design of low-level components established a specification of next

level.

The network interface level of the NoC was developed to provide a standard interface to

IP cores and external devices. This was an important step to maintaining compatibility with the

connected devices. This prevented hardware designers from having to develop custom hardware

to interface with Control Plane’s network. Ultimately, it preserved the reusability of the IP cores,

as they could use standard bus interfaces that could work in other systems. The reusability of the

network interface was maintained by dividing it into two layers. The lower layer of the network

interface, the Packet Processor, retained the link-level access to the network. The low-level

functionality of the Packet Processor was abstracted through a pair of point-to-point busses for

communication with the next layer. The Protocol Adapter, the higher level of the network

interface, implemented the target bus protocol for the IP cores to communicate. The details of the

Conclusion

64

NoC were mostly obscured in this layer. It was in this level that the higher level protocol, such as

request operations and data transfer, were implemented.

These details of the network were unknown to the lower levels of the network to achieve

simpler hardware as well as to maintain reusability. The routing elements were designed agnostic

to these protocols and served as only a transportation mechanism for network messages. By

decoupling specific protocols from the underlying communication interconnect (the system of

routing elements) the Control Plane was not limited to any particular message structure or

protocol. The underlying network components were generic to any network-on-chip based

application. These protocol-specific designs were encapsulated in the highest level the network

design so that new protocols could easily be introduced into the design without requiring the

redesign of the underlying network components.

Each of the network components were thoroughly tested using RTL simulators. Realistic

test systems were developed that simulated a network structure connected to simulation models

acting as the transacting IP cores. Exhaustive tests were performed to verify the integrity such

test systems. In particular, these test systems assured that all messages were delivered

successfully. Deadlock detection was also built into these tests to ensure that deadlock-freedom

was maintained by each successive level. These tests were performed to avoid the need to test

the network components in the future designs in which they will be deployed. One of the

motivations for the sponsorship of this project was to create a reusable tool that did not require

significant redesign and additional verification.

7.2 Future Work and Improvements

Development of the MITRE Control Plane is planned to continue after the conclusion of

this project. With the majority of the underlying network architecture a functional collection of

IP is now available. Using the specifications of the components, in particular the Packet

Processor, additional Protocol Adapters can be built to conform the Control Plane’s architecture

and provide support to additional bus protocols that have not been developed during the course

of this project. The existing OCP Memory Protocol Adapter serves as a reference to interfacing

with the Packet Processor’s busses to the network as well as the state-based approach to request

translation to the IP core protocol level.

Conclusion

65

The project sponsor also seeks the development of a deployment system for the Control

Plane. Deployment can be quite cumbersome for large NoCs. The deployment tool would likely

be a software tool or a set of scripts used to generate RTL for the system based a set of given

parameters, such as link bandwidth, number of mesh layers, IP cores, and their bus interfaces.

Such a tool would instantiate the network of routers, bridge, and respective interfaces to connect

the appropriate devices. This would greatly reduce development time associated with debugging

missing interconnects or incorrect routes between routers. The deployment tool should also

generate test code for verifying the resulting RTL. Just as a human can make errors in

deployment a computer program can as well. Verification of this generated RTL is also

important for reducing the potential errors for the system before fabrication.

A user guide is planned for after the deployment tool is completed. The sponsor wants the

user guide to give detailed instructions for using the Control Plane components and deploying a

network into a design. It is planned for the user guide to include both manual deployment as well

as automated deployment. This document should describe the parameters and interfaces used in

each component. The final section of the document should also describe the process of using the

software deployment tool.

A proposed feature of the Control Plane was to implement more compact address spaces

for target devices. With the current implementation, the request address from an IP core includes

the base address and the local address in the packet structure. As the number of endpoint devices

increases, more base address bits are needed to address them. When considering microprocessors

that only have a limited number of address lines (e.g. 32-bit) this greatly restricts the address

space of target devices. For instance, in a system with 100 endpoint devices, a base address of

seven bits is needed. If one endpoint device contains a 2GB (2
31

bytes) address space, thirty-one

address lines are required. This could exceed the physical address space limit of an initiator

device. Future protocol adapters will likely rectify this problem by including address decoders

that resolve initiator IP cores’ request address into the base and local address format used by the

Control Plane. This solution reduces such initiators’ restrictions from such an address space

while allowing the Control Plane to operate on a simpler address format to simplify routing and

request logic. Also, this localizes the additional chip area penalty from the address decoder to the

initiator Protocol Adapters and not repeated in the bridge and endpoint components.

References

66

References

[1] A. A. Jerraya and W. Wolf, Multiprocessor Systems-on-Chips, San Francisco, CA: Morgan

Kaufmann, 2005.

[2] S. Pasricha and N. Dutt, On-Chip Communication Architectures: System on Chip

Interconnect, Burlington, MA: Morgan Kaufmann, 2008.

[3] W. J. Dally and B. Towles, Principles and Practices of Interconnection Networks, San

Francisco, CA: Morgan Kaufmann, 2004.

[4] I. Cidon and I. Keidar, "Zooming in on Network-on-Chip Architectures".

[5] B. Grot and S. W. Keckler, "Scalable On-Chip Interconnect Topogies," in 2nd Workshop on

Chip Multiprocessor Memory Systems and Interconnects, 2008.

[6] V. Rantala, T. Lehtonen and J. Plosila, "Network on Chip Routing Algorithms," Turku,

Finland, 2006.

[7] S. Murali, P. Meloni, F. Angiolini, D. Atienza, S. Carta, G. De Micheli and L. Raffo,

"Designing Message-Dependent Deadlock Free Networks on Chips for Application-Specific

Systems on Chips," 2006.

[8] R. Holsmark, "Deadlock Free Routing in Mesh Networks on Chip with Regions,"

Linkoping, Sweden, 2009.

[9] A. Hansson, K. Goossens and A. Radulescu, "Avoiding Message-Dependent Deadlock in

Network-Based Systems on Chip," Hindawi Publishing Corporation, 2006.

[10] M. Weber, "Arbiters: Design Ideas and Coding Styles," Boston, 2001.

[11] OCP Internation Partnership, "Open Core Protocol Specification".

[12] E. C. Whitney, "Applied Common Interfacing Techniques using OCP," in SNUG, Boston,

2009.

References

67

[13] G. Tumbush and C. Spear, SystemVerilog for Verification, Springer, 2012.

[14] S. Sutherland, "Modeling FIFO Communication Channels Using SystemVerilog Interfaces,"

in SNUG, Boston, 2004.

[15] S. Sutherland, S. Davidmann and P. Flake, SystemVerilog for Design: A Guide to Using

SystemVerilog for Hardware Design and Modeling, New York: Spring Science+Businessm

Media, LLC, 2006.

Terms and Abbreviations

A-1

Appendix A Terms and Abbreviations

A.1 Field Terminology

ACK Acknowledge

AHB Advanced High-Performance Bus

AMBA Advanced Microcontroller Bus Architecture

BFM Bus Functional Model

DSP Digital Signal Processing

DUT Device Under Test

FIFO First-in, first-out

Flit Flow Control Unit

Head First flit in a packet

IP Intellectual Property core

LUT Look-up Table

NI Network Interface

NoC Network-on-chip

NOP
No-operation – an operation code that indicates that no action is

taken.

OCP OpenCore Protocol

RTL Register Transfer Language

SAF Store-and-forward switching

SDP Separate Data Path

SoC System-on-a-chip

SPI Serial Peripheral Interface

Tail Last Flit in a packet

VCT Virtual cut-through switching

VLSI Very-large Scale Integration

WH Wormhole switching

References

A-2

A.2 MITRE Control Plane Terms

CP Control Plane

CRB Control Ring Bus

FCB Flow Control Buffer

Inport A portion of the router that receives packet data.

Null flit A flit carrying no message-related data. Its header contains the

decimal value 0. These are transmitted on idle links.

Outport A portion of the router that transmits packet data.

PA Protocol Adapter

Pointer Switch selector for routing signals from an inport to an outport.

PP Packet Processor

SDP Separate Data Path

Target Switch selector for routing signals from an outport to an inport.

