

CubeSat Evaluation and Design

Abhay Menon, Ananthakrishna Ayankalath Thekkepat, Dannel Jacob, Harun Gungør, Samantha Rosenberg

CubeSat Evaluation and Design

VETENSKAP

OCH KONST

Abhay Menon, Ananthakrishna Ayankalath Thekkepat, Dannel Jacob, Harun Gungør, Samantha Rosenberg

Contents

Introduction

- CubeSats are a class of 'Nano satellites'
- Compact & economic design lowers barrier of entry into space technology
- Extremely versatile
 - Design modularity
 - Ease of assembly & testing
 - Standardized sizes
 - Units can be coupled
- Space tribology is extremely important to ensure smooth operation of interacting components in space,
- Requires accurate and intensive testing of Tribological elements in the harsh environment of space

Project Description

Project Goals

- Evaluation of the existing CubeSat design
- Develop concepts for tribometers
- Redesign of theoretical space borne system
- Commission, calibrate and test the terrestrial design twin

Scope

- Prepare PDS and time plan.
- Concept development, evaluation and selection.
- Detailed design of components mechanical and electrical
- Manufacturing and assembly .
- Basic functional tests to commission the system.

CubeSat Tribometer – Requirements

Design Property	Parameter
Size	10×10×10 cm
Weight	1.33 kg
Power	10 W
Current	4 A
Voltage	2.5 V
Tribometers	Bearing & Pin-on-Disc
Load application	3 Presets
Measurement modules	Load & Temperature
Bearings	Preloaded
Redundancy	Yes
Modularity	Yes
Maximum load	1 N
Working torque	2-5 mNm

Project	Start	Concept		Ordering	y Parts	Assemb	ling
Start-up Project d Literature	meeting evelopment e survey	Concept C Concept E Concept S	Generation Valuation Gelection	Purchase key comp	of onents	Prototype	e assembly
•	Week 9 2023	•	Week 36 2023	•	Week 46 2023	•	Week 50 2023
Week 6 2023	•	Week 14 2023	•	Week 40 2023	•	Week 48 2023	•
	Design R	eview	Design		Manufac	turing	Testing
	Critical De Desing Eva	sign Review aluation	Mechanical Electrical D	Design esign	3D printin Machining	g 9	Calibration Testing

Design evaluation Concept Generation Concept Selection

Design Evaluation of CubeSat 2022

First floor: Control Board and Temperature Sensor

Second floor: Load Cells Amplifiers

Third floor: Pin-on-Disc and Ball Bearing tribometer setup

Fourth floor: Motor driver

Design Evaluation of CubeSat 2022

Ball Bearing Tribometer

VETENSKAP OCH KONST

- The inner ring is rotated by motor shaft and outside ring was free to rotate.
- Load was applied on the outer ring.
- Forces related to loading and defection of flexible arm was measured by load cell.
- Disadvantages include manufacturing, assembly and misalignment due to manufacturing tolerances
- Load cell was damaged due to overload.

Design Evaluation of CubeSat 2022

Pin-on-Disc Tribometer

- Contained a single pin loaded by screw.
- Forces of load application and deflection was measured via load cells.
- Deflection of pin was back calculated to measure friction torque.
- Misalignment of motor coupling screw led to no contact with Load cell therefore not collecting any data
- Unbalanced forces due to loading of pin caused wobble and error in measurements.

Concept: Pin-on-Disk Tribometers

KTH VETENSKAP OCH KONST

• Key takeaway was the requirement of a focused study and development of diametrically loaded pin system to mitigate previous issues with the Tribometer.

Concept: Ball Bearing Tribometers

• Takeaways included focus on updating shell for screw loading to optimize manufacturability and ease of applications of load.

Selected Tribometer Concepts

Ball Bearing Tribometer

• Updated tribometer removed one of the load cell related to application of load to prevent cross talk between load cells that could skew the readings.

Pin-on-Disc Tribometer

• Diametrically loaded pin system was adopted which allowed for rotation of loading arm to evaluate frictional force.

Design Iterations

Axial Loading – Iterations

Final Design Iteration

Pin-on-Disc Tribometer

- Spring loading mechanism with presets is introduced in the final design
- Removing the need of load cell (measuring of applied load)
- Two flanged bearings has been integrated into the U-shaped arm to facilitate free rotation of the arm

Ball Bearing Tribometer

- The final design axially preloads the bearing from the top.
- Spring based load mechanism with presets and cylindrical rod to account for buckling.

Final Design

<u>Top floor</u>

- Arduino and custom PCB
- Arduino seat
- Custom L brackets
 mounting

Floor 2

- Pin-on-disc load mechanism
- Encoder seat

Floor 1

- Pin-on-disc tribometer
- Ball bearing tribometer
- DC Motor mounting
- Cage for ball bearing tribometer, load cell arm for pin-on-disc tribometer

Base Floor

- Battery holder
- Motor support parts
- Custom L brackets mounting

- 2 floor assembly
- 2 mm sheet metal for floors and frames
- Custom L-brackets for mounting the frames
- Floors located in right position through 4 mm shafts with collars and 3D printed hollow cylindrical parts

Battery Seat

First Floor (Tribometers)

First Floor (Load Mechanism)

presets

Manufacturing of Parts

- Machined Parts
- PLA printed parts
- Resin printed parts
- Water jet cutted parts (open countersinks, sanding, after editing)
- Custom L bracket manufacturing
- ELAB, KTH Prototype center

Assembled CubeSat- Design Twin

Simulations

Static Structural – Loading Mechanism VETENSKAP

Str Kt

Static Structural – Loading Arm

Maximum Allowable Deformation = $10 \ \mu m$

Maximum Deformation = 0.2 μm

Maximum Equivalent Stress = 0.25 MPa

Static Structural – Sensor Arm

Maximum Allowable Deformation =10 μm

Maximum Deformation = 5.7 μm

Maximum Equivalent Stress = 0.17 MPa

Static Structural – Bearing Shaft

Maximum Allowable Deformation = 5 μm

Maximum Deformation = $1.3 \ \mu m$

Maximum Equivalent Stress = 23.75 MPa

CubeSat – Assembly

Maximum Allowable Deformation = $10 \ \mu m$

Maximum Deformation = $6.3 \mu m$

Maximum Equivalent Stress = 23.75 MPa

Modal – Tribometers

Electronics & Data Acquisition

Electronics

Circuit Board

- Designed to fit on top of Arduino
- Reduces wire run length
- Reduces electrical component footprint to conserve space

• Sensors:

- LM35 Temp Sensor
- Loadcell (pin on disc)
- Encoder (bearing)

• Motors

- 2 motors connected to N channel mosfets
- Powered by a 9V battery

Calibration Setup for Loadcell

- Loadcell calibration
 - Using weights of known value, the calibration factor was computed calibration factor = $\frac{loadcell reading}{known weight}$
 - This value was implemented in the code to adjust loadcell readout
- Load mechanism calibration
 - Loadcell used to determine presets on load mechanism

Data Acquisition Pinon-Disc

- Friction force is measured directly on loadcell
- Axial loading has three presets
- Disc moves at a set speed
- Friction force is used to calculate coefficient of friction

Data Acquisition Bearing Tribometer

- Axial loading has three presents and radial loading has three presets
- An encoder tracks the change in RPM of the motor shaft
- Using the encoder measurement, the friction in the bearing is calculated and the coefficient of friction is calculated

Test Methodology& Results

Calculations Testing Procedure Results

-Ball Bearing Calculations:

- Friction Torque is the key parameter required to be calculated to be able to approximate values for the coefficient of friction of the entire system
- This torque value can be theoretically estimated using several models, such as the SKF model and Hysteresis model

-Pin on Disc Calculations:

• It involves direct measurement of the friction force using a load cell and calculating it against applied force to find kinetic coefficient of friction

SKF Model

$$\begin{split} M &= M_{rolling} + M_{sliding} \\ M_{rolling} &= \varphi_{ish} \varphi_{ors} G_{rr} (\vartheta n)^{0.64} \\ M_{sl} &= G_{sl} \mu_{sl} \end{split}$$

Reverse flow			
	Reverse flow		
	-	2	

Hysteresis Model

$$T_Z = \frac{MER * d_m}{d_b} + FR * d_m + MP - \frac{F_{ib} * d_m}{4}$$

SKF Model

- The SKF model for calculating the frictional moment closely follows the real behavior of the bearing as it considers all contact areas and design changes and improvements made to SKF bearings, including internal and external influences.
- SKF tool can be used to verify results obtained from code
- This adds another layer of robustness to the project

SKF Tool Calculations

Matlab Calculations

RPM	Total Friction Moment	Rolling Friction Moment	Sliding Friction Moment
30	3.4368	1.4048	1.9983

Viscosity of Lubricants used – [18, 200, 500] (mm²/s)

Test Methodology

- Calibration of sensors such as load cell, pressure sensor and encoder were performed
- Extensive testing required due to long life of lubricant
- Compounded by low radial force and speeds
- Intermittent testing
- 2-5 mins per iteration
- Measurement begins after constant speed is achieved, and continued till power is supplied to motor
- Pin on Disc system remains un-lubricated, and the value of friction force is measured via a load cell
- The RPM of the ball bearing system is measured using an optical encoder with a resolution of 24

Operating temperature [°C], scale depending on Grease Performance Factor

Diagram 1. Grease life in lubricated-for-life radial ball bearings running at low loads (C/P \ge 15). L_{so} as function of n x d_m, temperature and grease type (GPF = 1, 2, 4, respectively.)

Results: Pin-on-Disc

Discussions and Future Work

Discussions & Future Work

- Friction Models:
 - Pin-on-disc:
 - A theoretical friction model for this Tribometer needs to be constructed
 - A theoretical friction model that considers the effects of temperature on the system needs to be created
 - Ball-bearing tribometer:
 - A friction model that considers the effects of temperature on friction of the system should be created
 - The friction models should be compared to the SKF and Hysteresis models
- Result Accuracy:
 - The friction introduced by other components like the encoder and motor bearings need to be accounted for in the calculations
- Component Accuracy:
 - Calibration of select sensors should be revisited:
 - Calibrate encoder using resor method
 - More data points for other sensors can be added to calibration data to increase accuracy
 - Machined parts need to be examined for imperfections and re-machined until they are within specifications (consider outsourcing for higher accuracy and better tolerancing)

Acknowledgements

- Ian Sherrington (Stakeholder)
- Sergei Glavatskih (Advisor)
- Kjell Andersson (Advisor)
- Akepati Bhaskar Reddy (Advisor)
- Seshagopalan Thorappali Muralidharan (PCB design and ordering)
- Anton Boström (Manufacturing of parts)
- Lars Hässler (Manufacturing of parts)
- Thomas (Manufacturing of parts)
- Peter Carlsson (Ordering of parts)

