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ABSTRACT 

In the healthy brain, excitation and inhibition (E/I balance) governs normal brain function by 

regulating the on/off state of neural circuits. A number of neurological diseases such as epilepsy, 

schizophrenia, and autism spectrum disorder (ASD) are correlated with an E/I imbalance, 

underscoring the clinical significance of E/I balance. Microglia, the resident macrophages of the 

central nervous system (CNS), are intricately involved in brain homeostasis through debris 

clearance, communication with neurons, and synapse remodeling. However, it is not yet known if 

or how microglia regulate E/I balance.  In this project, the role of microglia in the regulation of E/I 

balance was investigated using chemically induced seizures on two mouse models, one lacking 

microglia and one with abnormal microglia. If microglia are necessary for E/I balance, then we 

hypothesize that mice with defective microglia will have altered seizure severity. The results 

showed that both knockout models experienced an increase in seizure severity, suggesting that 

microglia play a role in modulating E/I balance. A better understanding of the mechanisms behind 

E/I balance is essential for future treatments of neuropsychiatric disorders.  
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INTRODUCTION 

 

E/I Balance 

Throughout the nervous system, neurons transmit information via electrochemical 

impulses in a process known as neurotransmission. Following sufficient stimulation, an electrical 

signal is generated, called an action potential, which travels down the neuron’s axon to its 

terminal branches where it forms synaptic connections with downstream cells. There, the action 

potential leads to release of neurotransmitters that bind to specific receptors on the post-synaptic 

cell, which can either activate (excitatory) or inactivate (inhibitory) it. Release of glutamate, the 

canonical excitatory neurotransmitter, into the synaptic junction, binds to ionotropic receptors on 

the postsynaptic neuron and excite it, continuing the spread of the signal. In this system, the 

excitatory neurons must be kept in check in order to prevent overstimulation. Inhibitory neurons 

function by regulating the level of stimulation from the excitatory neurons through the opposing 

neurotransmitter GABA, which hyperpolarizes the postsynaptic neuron, making it harder to 

generate an action potential.  

In the healthy brain, a balance between excitation and inhibition (E/I balance) is essential 

for maintaining appropriate neuronal activation and spreading of information (2). As such, the 

brain ensures precision through tight control over this “on/off switch”. Altered E/I balance, such 

as net hyperexcitabaility or hypoexcitability, can be caused by a variety of defects. Too many 

excitatory synaptic connections or too few inhibitory synaptic connections result in increased 

overall excitation whereas too few excitatory synapses or too many inhibitory synapses lead to 

increased inhibition (Fig. 1). The importance of E/I balance is underscored by disorders such as 

autism spectrum disorder (ASD), epilepsy, and schizophrenia that are correlated with disruptions 

in E/I balance (1,3). These disruptions are believed to give rise to the hallmark clinical features 
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of the conditions including seizures, hallucinations and impaired sociability. However, the 

mechanisms in which equilibrium is established and controlled are not well understood. One 

method of investigating E/I balance is to examine synaptic connectivity. Initially, excess 

synapses are formed and need to be remodeled by pruning to establish mature connections. 

Microglia play a significant role in pruning synapses during development (4,5).  

 

               Figure 1. Excitatory inhibitory balance is necessary for normal brain function 

 

Microglia 

Microglia, the resident immune cells of the CNS, are critical for maintaining normal 

brain homeostasis. Canonically, microglia have been known for their role in the injured or 

diseased brain, surveying tissues and phagocytosing pathogens and other cellular debris. More 

recent studies have demonstrated the diverse roles of microglia in the healthy brain as well. In 

2011, Paolicelli et al revealed that microglia are actively involved in pruning synapses during 

development (4). In 2012, Schafer et al went on to describe that microglial synapse elimination is 

directed by neuronal activity and executed by the complement system, an innate immune 

pathway for clearing material from tissue (5). Given the diverse roles of microglia in the healthy 
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and diseases brain, researchers have begun to investigate whether defects in microglial function 

contribute to the susceptibility and severity of neuropsychiatric disease. One study showed that a 

reduction in the number of microglia during early development leading to an expected reduction 

in synapse pruning resulted in decreased brain connectivity (6). Interestingly, deficits in social 

interaction and repetitive behaviors characteristic of ASD and other neuropsychiatric disorders 

were also observed (6,7). Altogether, this suggests that microglia may play a role in regulating 

E/I balance, however the underlying mechanisms remain unknown. If microglia are necessary for 

E/I balance, then we hypothesize that mice with defective microglia will have altered seizure 

severity. 

Experimental Design 

Two mouse models with defects in microglia were utilized in order to examine the role of 

microglia in E/I balance. In the first model, the Csf1r gene was knocked out (Fig. 2). The colony 

stimulating factor 1 receptor is necessary for microglial population of the brain (9). Knocking out 

the gene results in an absence of microglia. In the second model, the Irf8 gene was knocked out. 

Interferon regulatory factor 8 is a transcription factor necessary for microglia maturation and 

function (10). The knocked out gene results in defective microglia.  

 

                        Figure 2. Schematic showing knockout strategy for CSF1R deletion 
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           Figure 3: Schematic showing knockout approach for IRF8 deletion 

 

To test E/I balance on the mouse models, seizures were chemically induced using 

pentylenetetrazol (PTZ), a GABAA receptor antagonist. PTZ blocks the receptor and prevents 

inhibition (Fig. 4) resulting in an increase in excitatory signaling, neural overstimulation and the 

induction of seizures (11). Seizures were chosen as the method for examining E/I balance 

because they are easily inducible and produce a direct measurable outcome. Additionally, many 

neuropsychiatric disorders such as ASD are comorbid with seizures. 

 

Figure 4: Experimental paradigm 

Preliminary Data 

Preliminary results showed a clear increase in seizure severity in the CSF1R KO mice. 

However, the IRF8 KO mice did not display a significant difference in maximum seizure 
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severity compared to the wild type controls. They did experience more seizure events. More 

trials are required to gain a more accurate picture of the trends. Altogether, the results suggest a 

role of microglia in the regulation of E/I balance. Further research can begin to look at how 

microglia affect E/I balance, by examining structural connectivity of the synapses and neural 

plasticity. 
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MATERIALS AND METHODS 

Mice 

Experiments were performed with male and female mice in accordance to guidelines approved 

by the Institutional Animal Care and Use Committee (IACUC) of the University of 

Massachusetts Medical School. CSF1R and IRF8 strains from the Schafer colony were bred and 

maintained in house.  

PCR genotyping 

Polymerase chain reaction (PCR) genotyping was used to confirm the genotypes of the mice. Ear 

punches or tail clippings were taken from the mice and digested in 25mM NaOH/0.2mM EDTA 

buffer and heated in the thermocycler for 1 hour at 98˚C. To stop digestion, 40 mM Tris HCl was 

added to each sample and stored at 4˚C until use. PCR was conducted using the necessary 

primers and samples were separated via gel electrophoresis.   

PTZ injections 

To induce seizures in the IRF8 KO cohort, intraperitoneal (IP) injections of pentylenetetrazol 

(PTZ) were performed approximately every-other day for a total of 8 injections at 40 mg/kg 

PTZ. Two days after the last 40 mg/kg injection, the mice were given IP injections at 50 mg/kg 

PTZ. Six days later, more injections were administered at 60 mg/kg PTZ. The final injections 

were given four days later at the same dosage. The CSF1R KO cohort was given a one-time IP 

injection at 40 mg/kg.  

 

 



11 
 

Seizure Scoring 

Mice were scored at 5-minute intervals for one hour post-injection according to the following 

stages (8): 

Stage 1: hypoactivity 

Stage 2: partial clonus 

Stage 3: generalized clonus 

Stage 4: tonic-clonic seizure 

 

Preparation of tissue samples 

Mice were anesthetized with 2.5% Avertin (2,2,2- tribromomethanol) followed by perfusion with 

1xPBS through the left ventricle. Brains were fixed in 4% paraformaldehyde overnight and 

dehydrated in 30% sucrose solution. Brain tissues were then embedded in optimum cutting 

temperature compound (OCT), cut, and mounted onto slides in 14µm coronal sections using a 

cryostat. 

Immunohistochemical staining 

 Tissue slices were blocked for an hour in PBTGS (10% goat serum, 0.3% triton X, 89.7% 

phosphate buffer). The PBTGS was removed and the primary antibodies (for the desired stain) 

were added and left to incubate overnight. The primary antibody was removed and the slices 

were washed three times with phosphate buffer. The secondary antibodies were then added and 

left to incubate for one house. The secondary antibody was removed and the slices were washed 

three times again. The slices were then cover slipped using FluoroshieldTM. Images were taken 

using an SD confocal microscope.  
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RESULTS AND DISCUSSION 

In order to test whether microglia play a role in regulating E/I balance, seizures were chemically 

induced in two mouse models. It was hypothesized that if microglia play a role in modulating E/I 

balance, then mice with defective microglia will have altered seizure behavior. In the first model, 

the Csf1r gene was knocked out, yielding mice completely devoid of microglia. Immunostaining 

for the microglia marker IBA-1 confirms the complete loss of microglia in the brain (Fig. 5).  

   

Figure 5. Immunostaining for the microglia marker IBA-1 showing complete loss of microglia in CSF1R 

null mice 

 

For the CSF1R mice, PTZ was administered in a one-time intraperitoneal injection of 40 mg/kg. 

The mice were observed for one hour and scored at 5-minute intervals using the 4 stage scoring 

system. First, animals were assessed for the maximum seizure stage experienced during the one-

hour trial (Figure 6A). While wild –type animals primarily had stage 2 partial clonus events, 

CSF1R KO animals all had stage 4 tonic-clonic seizures. The difference in seizure severity 

between the KO and control animals is statistically significant (p<0.05) Next, the animals were 

assessed for number of tonic-clonic episodes (Figure 6B). There is a trend of more episodes in the 

knockout mice compared to the control. The knockout mice experienced 1, 2,2, 3, and 5 seizures, 

Csf1r 
+/+

 Csf1r 
-/-

 

IBA-1 IBA-1 
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respectively, while the control mouse only seized once. It is important to note that the graph only 

displays the mice that reached a stage 4 seizure. Only one control mouse is shown because it is the 

only control that fully seized.  Lastly, the latency to seize was assessed., The knockout animals 

first seized at 4, 5, 6, 8, and 17 minutes, respectively, while the control seized at 4 minutes. This 

may be reflective of a difference between sexes. It has been observed that female mice generally 

seize earlier than males. There seems to be little difference in latency to seize between the knockout 

and control mice, although this is a tentative observation as only one control mouse experienced a 

stage 4 seizure.  

The CSF1R gene is essential for immune cells in the periphery, so the knockout animals are sickly. 

Therefore, while it provides evidence, a second model is needed to more precisely assess the 

functional role of microglia. 

 

Figure 6. Maximum seizure stage after 40mg/kg PTZ injection (left) latency to tonic clonic seizure (middle) 

number of tonic-clonic seizure events (right) * p<0.5 Mann-Whitney 
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Figure 7. Visualization of microglia cells with GFP showing altered microglia in IRF8 null mice 

 

In the second mouse model, the Irf8 gene was knocked out, resulting in defective microglia. These 

knockout microglia appear to be more amoeboid in morphology, with less processes and 

branching. The Irf8 null microglia were visualized with GFP driven from the CX3CR1 promoter 

(Fig. 7). For the IRF8 mice, PTZ was administered approximately once every two days for a total 

of 8 injections at 40 mg/kg. Due to a minimal reaction to the drug, the dosage was increased to 50 

mg/kg for one injection, then increased once more to 60 mg/kg for the final two injections. The 

data presented represents the final injection trial at 60 mg/kg (Figure 8). First, maximum seizure 

score was assessed for the one-hour trial (Figure 8A). The data does not show a difference in 

seizure severity between the knockouts and controls. Similarly, there is no difference between the 

knockouts and controls in seizure susceptibility, measured by latency to seize (Figure 8B). There 

is, however, a trend towards an increased number of seizure events (stage 3 or 4) in the mice with 

defective microglia compared to the wild type controls. The knockout mice experienced 3 and 13 

seizure events, respectively, compared to the 1 event experienced by each of the two controls 

(Figure 8C). The IRF8 data differed from the expected increase in seizure severity. However, this 

can be attributed to the relatively small cohort of mice, which can be improved upon be repeating 

Irf8
+/+

Cx3cr1
GFP

/WT Irf8
-/-

Cx3cr1
GFP

/WT 

GFP GFP 
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the experiment. Future experiments will also pay attention to sex distributions, as there is a 

suspected difference in severity and susceptibility between the sexes.  

 

Figure 8. Maximum seizure stage after 60 mg/kg PTZ injection (left) latency to tonic-clonic seizure 

(middle) number of seizure events (right) 
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CONCLUSION 

 

We hypothesized that if microglia play a role in regulating E/I balance, then there will be 

altered seizure activity in mice with defective microglia. Altogether, the data suggests that 

microglia do play a role in regulating E/I balance. When microglia were removed, the mice 

experienced a greater number of seizures and more severe seizures compared to wild type controls. 

Although the defective microglia did not show a difference in severity, there is a trend towards 

more seizure events. More trials are required and may produce a difference in severity. Overall, 

the hypothesis is supported because an alteration in seizure activity was observed. For future work, 

we turn to the question of: how do microglia regulate E/I balance? Once approach is to examine 

synaptic connectivity. Microglia prune synapses during development, and a lack of active 

microglia may lead to alterations in synapse density. This difference in wiring may have an effect 

on E/I balance. A second approach will examine differences in neuron-microglia communication. 

In the healthy brain, microglia communicate regularly with neurons. Absent or defective microglia 

may not communicate at the same level with neurons, influencing E/I balance.  

It is critical to investigate the role of microglia in regulating E/I balance because the 

regulatory mechanisms are not currently well understood, yet a number of neurological disorders 

such as ASD, schizophrenia, and epilepsy have been associated with alterations in E/I balance 

(12,13). A better understanding is critical for the future design of novel therapeutics for these 

disorders.  
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