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Abstract

Recent research in feature learning has been extended to sequence data,

where each instance consists of a sequence of heterogeneous items with

a variable length. However, in many real-world applications, the data

exists in the form of attributed sequences, which is composed of a set of

fixed-size attributes and variable-length sequences with dependencies

between them. In the attributed sequence context, feature learning re-

mains challenging due to the dependencies between sequences and their

associated attributes. In this dissertation, we focus on analyzing and

building deep learning models for four new problems on attributed se-

quences.

First, we propose a framework, called NAS, to produce feature repre-

sentations of attributed sequences in an unsupervised fashion. The NAS

is capable of producing task independent embeddings that can be used

in various mining tasks of attributed sequences.

Second, we study the problem of deep metric learning on attributed

sequences. The goal is to learn a distance metric based on pairwise user

feedback. In this task, we propose a framework, called MLAS, to learn a

distance metric that measures the similarity and dissimilarity between

attributed sequence feedback pairs.
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Third, we study the problem of one-shot learning on attributed se-

quences. This problem is important for a variety of real-world applica-

tions ranging from fraud prevention to network intrusion detection. We

design a deep learning framework OLAS to tackle this problem. Once

the OLAS is trained, we can then use it to make predictions for not only

the new data but also for entire previously unseen new classes.

Lastly, we investigate the problem of attributed sequence classifica-

tion with attention model. This is challenging that now we need to as-

sess the importance of each item in each sequence considering both the

sequence itself and the associated attributes. In this work, we propose

a framework, called AMAS, to classify attributed sequences using the

information from the sequences, metadata, and the computed attention.

Our extensive experiments on real-world datasets demonstrate that

the proposed solutions significantly improve the performance of each

task over the state-of-the-art methods on attributed sequences.
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1.1 The Prevalence of Attributed Sequences

Sequential data arises naturally in a wide range of applications [4, 44,

62, 66]. Examples of sequential data include clickstreams of web users,

purchase histories of online customers, and DNA sequences of genes.

Different from conventional multidimensional data [51] and time series

data [30], sequential data [75] are not represented as feature represen-

tations of continuous values, but as sequences of categorical items with

variable-lengths.

The sequential data in many real-world applications also often comes

with a set of data attributes depicting the context. In this work, we will

call this type of data, where each instance has both sequential data and

the attributes, attributed sequences.

For example, in online ticketing systems as shown in Figure 1.1, each

user transaction includes both a sequence of user actions (e.g., “login”,

“search” and “pick seats”) and a set of attributes (e.g., “user name”,

“browser” and “IP address”) indicating the context of the transaction.

In gene function analysis, each gene can be represented by both a DNA

sequence and a set of attributes indicating the expression levels of the

gene in different types of cells. In the area of web search, an attributed

sequence is composed of a static user profile (e.g., “geolocation”) and
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booksearch search searchlogin

: All possible user activities.

Fixed set of 
attributes. 

Variable-length 
sequences

Figure 1.1: An example of attributed sequences. Each attributed se-

quence represents a transaction in an online ticketing system, which in-

cludes a sequence of user actions (e.g., “login”, “search”, “pick seats”

and “confirm”) and a set of attributes for the transactional context.

the dynamic sequence of keywords searched (e.g., “snow storm” and

“temperature”).

Many real-world applications involve mining tasks over the sequen-

tial data. For example, in online ticketing systems, administrators are

interested in finding fraudulent sequences from the clickstreams of users [58,

66]. In user profiling systems, researchers are interested in grouping

purchase histories of customers into clusters [62]. Motivated by these

real-world applications, sequential data mining has received consider-

able attention in recent years [44, 4]. However, the attributes associated

with these sequential data in these real-world applications have been

overlooked despite their importance. Below, we highlight the importance

of using attributed sequences in two real-world applications.
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1.2 Applications using Attributed Sequences

J1

J2

J3

J4

J5

J1 J2 J3 J4 J5 J1 J2 J3 J4 J5

J1 J2 J3 J4 J5

Fraud

Figure 1.2: Dendrograms of feature representations learned from at-

tributed sequences for fraud detection tasks. J5 is a user committing

fraud. However, it is considered a normal user session by the feature

representation generated using either only attributes or only sequences.

J5 can only be caught as a fraud instance using the feature representa-

tion generated with regards to both attributes and sequences.

1. Airline Ticket Booking Fraud. In an airline ticketing system,

whether a sequence of user actions is fraudulent depends closely

upon the context of the transaction. A sequence of user actions, like

“apply business travel discount, then book a ticket”, will be normal
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for a business travel context, but could be fraudulent for a leisure

travel context. In Figure 1.2, we present an example of fraud de-

tection from a user privilege management system in Amadeus [2].

This system logs each user session as an attributed sequence (de-

noted as J1 ⇠ J5). Each attributed sequence consists of a sequence

of user’s activities and a set of attributes derived from metadata

values. The attributes (e.g., “IP”, “OS” and “Browser”) are recorded

when a user logs into the system and remain unchanged during

each user session. We use different shapes and colors to denote dif-

ferent user activities, e.g., “Reset password”, “Delete a user”.

An important step in this fraud detection system is to “red flag”

suspicious user sessions for potential security breaches. In Fig-

ure 1.2, we observe three groups of feature representations learned

from the Amadeus application logs. For each group, we use a den-

drogram to demonstrate the similarities between feature represen-

tations within that group. Neither of the feature representations

using only sequences or only attributes detects any outliers due

to not considering attribute-sequence dependencies. However, user

session J5 is discovered to be fraudulent using a learning algorithm

that incorporates all three types of dependencies.
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Class 3: Application-layer Attack

Class 2: Man-in-the-Middle AttackIncoming Network Traffic

Class 1: Sniffer Attack

<latexit sha1_base64="ZA6ie3WGgeMM3w6IAB3LXYr10PI=">AAACFnicbVC7TsMwFHV4lvAqMLJYVEidoqQLsFViYaNIhFZqqspxblqrthPZDqKq+hcs/AoLAyBWxMbf4D4GaLmSraNz7vPEOWfa+P63s7K6tr6xWdpyt3d29/bLB4d3OisUhZBmPFOtmGjgTEJomOHQyhUQEXNoxoPLid68B6VZJm/NMIeOID3JUkaJsVS37EUyYzIBaXBE7Q+KyZ57LQHDAxE5BxxFbg4KU0609rrliu/508DLIJiDCppHo1v+ipKMFsK2nnZoB35uOiOiDKMcxm5UaMgJHZAetC2URIDujKZ3jfGpZRKcZso+u+CU/V0xIkLroYhtpiCmrxe1Cfmf1i5Met4ZMZkXBiSdDUoLjk2GJybhhCmghg8tIFQxuyumfaIItf5o15oQLJ68DMKad+EFN7VKvTp3o4SO0QmqogCdoTq6Qg0UIooe0TN6RW/Ok/PivDsfs9QVZ15zhP6E8/kDZwKe6g==</latexit>

Figure 1.3: Network attack detection using one-shot learning on at-

tributed sequences. Each instance is composed of a user profile as the at-

tributes and a sequence of user actions (depicted using different shapes).

A system administrator is interested in finding out if the incoming net-

work traffic is malicious with only one sample per class.

2. Bot Traffic Detection. With the rapid advance in e-commerce,

more businesses than ever in history are using websites to adver-

tise their products and services. Attributed sequences exist natu-

rally on these websites: the activities of each visitor are recorded

in log files as sequences alongside the visitor’s profile as attributes.

Aside from the real traffic from potential customers on the web-

site, there is another type of traffic, namely, the bot traffic. Bot

traffic [69] is from a series of applications that run scripts over the

websites for various task. Many of those tasks are malicious to the
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websites, such as account hijacking with brute force, stealing web

contents, undercutting prices and probing for potential attack op-

portunities [78]. Since the differences in attributes and sequences

between bot and real traffic may not be significant, it is difficult to

distill bot traffic from real traffic using only either attribute data

or only sequence data. For instance, a real customer may have a

similar or even identical profile (e.g., “OS”, “IP”) as the bot scripts;

the tasks (e.g., search information, click menus) conducted

by real customers and bot scripts may also be similar.

Thus, a bot traffic system should be able to (1) Utilize attributed

sequences in the log files to infer the different patterns of real traf-

fic and bot traffic and (2) Generalize the patterns of both types of

traffic to prevent future bot traffic.

3. Network Intrusion Detection. Network traffic can be modeled

as attributed sequences. Namely, it consists of a sequence of pack-

ages being sent or received by the routers and a set of attributes

indicating the context of the network traffic (e.g., user privileges,

security settings, etc). To respond in a timely fashion to potential

network intrusion threats, one first has to determine what the in-

trusion type of incoming potentially malicious traffic even if only
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Embed

(a)Sequence embedding [57].

EmbedIP: 54.200.18.a
OS: Windows 7
Browser: Firefox
IP: 54.200.18.b
OS: Windows 7
Browser: Firefox
IP: 172.16.2.z
OS: macOS
Browser: Chrome

IP: 172.16.2.y
OS: macOS
Browser: Chrome

IP: 172.16.2.x
OS: macOS
Browser: Safari

(b)Attribute embedding[64].

time

value

Embed

(c)Time series embedding [30].

IP: 172.16.2.x
OS: macOS
Browser: Safari

IP: 172.16.2.y
OS: macOS
Browser: Chrome

IP: 54.200.18.a
OS: Windows 7
Browser: Firefox

IP: 54.200.18.b
OS: Windows 7
Browser: Firefox

IP: 172.16.2.z
OS: macOS
Browser: Chrome

Embed

(d) Attributed sequence embed-

ding.

Figure 1.4: Comparison of different embedding problems.

one or a few examples per known intrusion type have been seen

previously (as depicted in Figure 1.3).
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1.3 State-of-the-Art

1.3.1 Attributed Sequence Embedding

Sequential data usually requires a careful design of its feature represen-

tation before being fed to a learning algorithm. One of the feature learn-

ing problems on sequential data is called sequence embedding [12, 57],

where the goal is to transform a sequence into a fixed-length feature

representation. Similarly, the attributed sequence embedding problem

corresponds to transforming an attributed sequence into a fixed-length

feature representation with continuous values.

In the sequence context, conventional methods only focus on sequen-

tial data [57, 40, 12, 27, 46] to learn the dependencies between items

within variable-length sequences – neither support the attribute data

nor learn the dependencies between attributes and sequences.

On the other hand, the recent applications on image datasets using

multilayer deep neural networks [64, 1, 26, 56] focus on the problems

of pattern recognization in fixed-size images – they neither support the

variable-length sequences nor learn the attribute-sequence dependen-

cies. Here in Figure 1.4, we demonstrate the difference between our
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Figure 1.5: Distance metric learning on attributed sequences.

attributed sequence embedding problem and other embedding problems

in the state-of-the-art.

1.3.2 Deep Metric Learning on Attributed Sequences

Conventional approaches on distance metric learning [70, 14, 33, 43]

mainly focus on learning a Mahalanobis distance metric, which is equiv-

alent to learning a linear transformation on data attributes. Recent re-

search has extended distance metric learning to nonlinear settings [29,

26], where a nonlinear mapping function is first learned to project the

instances into a new space, and then the final metric becomes the Eu-

clidean distance metric in that space.
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Deep metric learning has been the method of choice in practice for

learning nonlinear mappings [63, 9, 29, 26]. Recent research on metric

learning has explored sequential data [46], where we have structural

information in the sequences, but no attributes are available. We use

Figure 1.5 to depict the differences in distance metrics learned from the

data.

label

(a) Classification on

data attributes [1].

label

(b) Sequence classification [71].

3
3

3

3 3
(c) Image classifi-

cation with atten-

tion [45].

0.3

book

0.2

search

0.2

search

0.2

search

0.1

login

label

(d) Sequence classi-

fication with atten-

tion [65].

0.2

book

0.1

search

0.1

search

0.1

search

0.5

login

label

(e) Sequence classification with attribute-guided at-

tention.

Figure 1.6: A comparison of related classification problems.
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1.3.3 One-shot Learning on Attributed Sequences

With the capacity of deep learning for generalizing the training exam-

ples, one-shot learning has attracted more interests recently when only

one training sample is available [54, 6, 59, 32]. Conventional approaches

to one-shot learning focus on using feature vectors as input in the learn-

ing process [32, 63, 71], in which each instance is represented as a fixed-

size vector (e.g., images). However, neither sequential data nor attributed

sequences has been studied in one-shot learning research.

1.3.4 Attention for Attributed Sequence Classification

In the areas of image processing, researchers designed a mechanism of

only letting the model learn from certain “useful” and “informative” re-

gions of image inputs [45]. This mechanism is called the attention net-

work. Attention network has gained more research interest in recent

years and has been generalized in various domains, e.g., image caption-

ing [72, 48] and generation [22], speech recognization [13], document

classification [76]. However, attention model has yet been studied for

attributed sequence classification. We use Figure 1.6 to depict different

classification problems on attributed sequences.
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1.4 Research Challenges

Here we summarize the research challenges of using attributed sequences

in data mining applications:

booksearch search searchlogin

Figure 1.7: The three types of dependencies in an attributed sequence:

item dependencies, attribute dependencies and attribute-sequence de-

pendencies.

1.4.1 Heterogeneous dependencies in attributed se-

quences

The bipartite structure of attributed sequences poses unique challenges

in feature learning. Contrary to a straightforward thinking that at-

tributes and sequences could first be learned separately then later re-

joined, various dependencies arise in attributed sequences. There exist

three types of dependencies in an attributed sequence: item dependen-

cies, attribute dependencies and attribute-sequence dependencies. Thus,

learning and capturing these attribute-sequence dependencies are criti-
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cal for attributed sequence embedding. For example, in a web search,

each user session is composed of a session profile as attributes (e.g.,

Device Type, OS, etc) as well as a sequence of search keywords. One

keyword may depend on previous search terms (e.g., temperature fol-

lowing snow storm) and the keywords searched may depend on the de-

vice type (e.g., Nearest restaurant on Cellphone). In the user be-

havior studies using web search histories, it would be impractical with-

out considering such dependencies. We illustrate these three types of

dependencies in Figure 1.7.

1.4.2 Lack of labeled data

With the continuously incoming volume of data and the high labor cost

of manually labeling data, it is rare to find attributed sequences from

many real-world applications with labels (e.g., fraud, normal) attached.

Without proper labels, it is challenging to learn an embedding function

that is capable of transforming attributed sequences into compact fea-

ture representations while capturing the three types of dependencies.
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1.4.3 Metric Learning on Attributed Sequences

Metric learning focuses on the problems of differentiating the instances

based on the similarities/dissimilarities in user feedback. One funda-

mental problem in metric learning on attributed sequences lies in the

sequential structure in each instance. Conventional approaches to dis-

tance metrics learning assume, explicitly or implicitly, that the data are

represented as features vectors (i.e., attributes) [70, 14, 33, 43]. How-

ever, in attributed sequence data, the sequence in each data record is

not represented as a feature vector, but rather as a variable-length se-

quence of discrete items. The information is encoded in the ordering of

the items. A distance metric on attributed sequences thus must be able

to capture structural similarities and dissimilarities between sequences.

1.4.4 Generalize from Only One Sample

This problem is different from previous one-shot learning work, as we

now need to extract feature vectors from not only the attributes but also

the structural information from the sequences and the dependencies be-

tween attributes and sequences. The key difficulty in one-shot learning

is to generalize beyond the single training example. It is more difficult

to generalize from a more complex data type [11], such as attributed
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sequence data, than from a simpler data type due to the larger search

space and slower convergence.

1.4.5 Attention in Attributes and Sequences

Recent sequence learning research [76] has used neural attention mod-

els to improve the performance of sequence learning, such as document

classification [76]. However, the attention mechanism focuses on learn-

ing the weight of certain time steps or sub-sequences in each sequential

instance, without regards to its associated attributes. With information

from the attributes, the weight of item or sub-sequence may be drasti-

cally different from the weight calculated by the attention mechanism

using only sequences, which would consequently have different classifi-

cation results.

1.5 Proposed Solutions

In this dissertation, we address the challenges listed in Section 1.4 by

extending the state-of-the-art deep learning models under various prob-

lem settings.
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1.5.1 Attributed Sequence Embedding

The goal of the first task is to generate fix-sized feature representations

(i.e., embeddings) of attributed sequences that can be used in down-

stream mining tasks (e.g., clustering and outlier detection). Many of

these machine learning tasks use vectors of real numbers as the inputs.

The embeddings, as mappings from attributed sequences to fixed-size

vectors of real numbers, are both important and valuable in these tasks.

Because the embeddings are the vectors mapped from inputs, the simi-

larities measured by distance functions in the embedding space can be

viewed as the similarities between the original inputs. This task offers

the following contributions:

• We study the problem of attributed sequence embedding, which

corresponds to a natural generalization of many real-world appli-

cations. We formally define the data model of attributed sequences,

which consists of a sequence of categorical items and a set of static

attributes.

• We propose an innovative framework to exploit the dependencies

among the attributed sequences. The NAS establishes the first at-

tributed sequence embedding framework, which employs a three-
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phase process to effectively produce feature representations for at-

tributed sequences.

• We evaluate the NAS framework on various real-world datasets

competing with state-of-the-art methods. We study the performance

of NAS using clustering and outlier detection tasks. We also show

that NAS is capable of producing feature representations in real-

time. We also evaluate NAS using real-world case studies of user

behaviors.

1.5.2 Incorporating Feedback of Attributed Sequences

Different from Task 1, now there is a limited amount of labeled feedback

from domain experts in some real-world applications, such as fraud de-

tection and user behavior analysis. The feedback is usually given as

pairwise examples, where each feedback instance is composed of two at-

tributed sequences and a label depicting whether they are similar or

dissimilar. The feedback from domain experts is important in these ap-

plications since the feedback provides human insights of the datasets.

For example, a domain expert can give feedback indicating a new on-

line transaction is similar to a known fraud transaction. To address the

above challenges, we propose a deep learning framework, called MLAS
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(Metric Learning on Attributed Sequences), to learn a distance metric

that can effectively measure the dissimilarity between attributed se-

quences. Our MLAS framework includes three sub-networks: AttNet

(an attribute network to encode the attribute information using nonlin-

ear transformations), SeqNet (a sequence network to encode structural

information using LSTM), and MetricNet (a metric network to produce

the distance metric). We further designed three MLAS models: bal-

anced, AttNet-centric and SeqNet-centric.We offer the following main

contributions in this task:

• We are the first to formulate and then study the problem of deep

metric learning of attributed sequences.

• We design three sub-networks: the AttNet to encode the attribute

information, SeqNet to encode the structural information, and a

metric network MetricNet to produce the distance metric. To-

gether with these sub-networks, MLAS effectively learns the non-

linear distance metric on attributed sequences.

• Our empirical results on real-world datasets demonstrate that our

proposed MLAS framework significantly improves the performance

of metrics learning on attributed sequences.
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1.5.3 Classify Attributed Sequences in One-shot

To address the challenges in Section ??, we propose an end-to-end one-

shot learning model, called OLAS, to accomplish one-shot learning for

attributed sequences. The OLAS model includes two main components:

a CoreNet to encode the information from attributes, sequences and

their dependencies and a PredictNet to learn the similarities and dif-

ferences between different attributed sequence classes. The proposed

OLAS model is beyond a simple concatenation of CoreNet and Predict-

Net. Instead, they are interconnected within one network architecture

and thus can be trained synchronously. Once the OLAS is trained, we

can then use it to make predictions for not only the new data but also for

entire previously unseen new classes. In this task, we offer the following

core contributions:

• We formulate and analyze the problem of one-shot learning for at-

tributed sequence classification.

• We develop a deep learning model that is capable of inferring class

labels for attributed sequences based on one instance per class.
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• We demonstrate that the OLAS network model trained on attributed

sequences significantly improves the accuracy of label prediction

compared to state-of-the-art.

1.5.4 Attention Model for Attributed Sequence Clas-

sification

When presented an image, humans are capable of only focusing on some

regions of the image and grasping the information that is deemed use-

ful. The attention models in deep learning are designed to fulfill similar

goals. Recently, the attention models have generated a lot of research in-

terests in various areas [45, 22, 13, 76]. For instance, attention has been

employed to improve the performance of natural language processing

tasks (e.g., document classification). Compared to treating every word

and sentence equally in the document classification tasks without atten-

tion, the capability of enhanced processing of certain words or sentences

using attention has demonstrated improvements in such tasks [76]. In

this task, I design two attention models for attributed sequence classifi-

cation. Specifically, this task offers the following contributions:

• We formulate the problem of attributed sequence classification.



34

• We design a deep learning framework, called AMAS, with two

attention-based models to exploit the information from attributes

and sequences.

• We demonstrate that the proposed models significantly improve

the performance of attributed sequence classification using perfor-

mance experiments and case studies.

1.6 Road Map

This rest of the dissertation is organized as follows. We introduce the at-

tributed sequence data model in Chapter 2. We start from the first task

of attributed sequence embedding in Chapter 3. Chapter 4 focuses on

the task of deep metric learning on attributed sequences. In Chapters 5

and 6, we present the tasks of one-shot learning and the attention net-

work for attributed sequence classification tasks, respectively. Related

work is discussed in Chapter 7. We conclude the findings and discuss

future works in Chapter 8.



Chapter 2

Background: Attributed

Sequence
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Definition 1 (Sequence.) Given a set of r categorical items I = {e1,· · · , er},

the k-th sequence in the dataset Sk = (↵(1)
k , · · · ,↵(lk)

k ) is an ordered list of

items, where ↵(t)
k 2 I, 8t = 1, · · · , lk.

Different sequences can have a varying number of items. For example,

the number of user click activities varies between different user sessions.

The meanings of items are different in different datasets. For example,

in user behavior analysis from clickstreams, each item represents one

action in user’s click stream (e.g., I = {search, select}, where r = 2).

Similarly in DNA sequencing, each item represents one canonical base

(e.g., I={A,T,G,C}, where r = 4). There are dependencies between items

in a sequence. Without loss of generality, we use the one-hot encoding

of Sk, denoted as Sk = (↵(1)
k , · · · ,↵(lk)

k ) 2 Rlk⇥r where each item ↵(t)
k 2 Rr

in Sk is a one-hot vector corresponding to the original item ↵(t)
k in the

sequence Sk.

In prior work [21], one common preprocessing step is to zero-pad each

sequence to the longest sequence in the dataset and then to one-hot en-

code it. Without loss of generality, we denote the length of the longest

sequence as T . For each k-th sequence Sk in the dataset, we denote its

equivalent one-hot encoded sequence as Sk =
⇣
↵(1)

k , · · · ,↵(Tk)
k

⌘
, where
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↵(t)
k 2 Rr corresponds to a vector represents the item ↵(t)

k with the l-th

entry in ↵(t)
k is “1” and all other entries are zeros if ↵(t)

k = el, el 2 I.

Definition 2 (Attributes.) The attribute values are concatenated into

a vector xk 2 Ru, where u is the number of attributes in xk.

The value of each attribute can be either categorical or numerical. u is

considered as a constant within any given datasets. For example, in a

dataset where each instance has two attributes “IP” and “OS”, u = 2.

Definition 3 (Attributed Sequence.) Given a vector of attribute values

xk and a sequence Sk, an attributed sequence Jk = (xk,Sk) is an ordered

pair of the attribute value vector xk and the sequence Sk.

Common practices of distance metric learning involve pairwise exam-

ples as the training dataset [60, 61, 77, 33, 26, 46]. We thus define the

feedback as a collection of similar (or dissimilar) attributed sequence

pairs.

Definition 4 (Similar and Dissimilar Feedback) Let J = {J1, · · · , Jn}

be a set of n attributed sequences. A feedback is a triplet (pi, pj, `ij) con-

sisting of two attributed sequences pi, pj 2 J and a label `ij 2 {0, 1}

indicating whether pi and pj are similar (`ij = 0) or dissimilar (`ij = 1).
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We define a similar feedback set S = {(pi, pj, `ij)|`ij = 0} and a dissimilar

feedback set D = {(pi, pj, `ij)|`ij = 1}.



Chapter 3

Unsupervised Attributed

Sequence Embedding
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3.1 Problem Definition

Using the previously defined notations in Chapter 2, we formulate our

attributed sequence embedding problem as follows.

Definition 5 (Attributed Sequence Embedding.) Given a dataset of

attributed sequences J = {J1, · · · , Jn}, the problem of attributed se-

quence embedding is to find a function � parameterized by ✓ that pro-

duces feature representations for Jk in the form of vectors. The problem

is formulated as

minimize
nX

k=1

lkX

t=1

� log Pr
�

⇣
↵(t)

k |�(t)
k ,xk

⌘
(3.1)

where �(t)
k = (↵(t�1)

k ,· · · ,↵(1)
k ), 8t = 2, · · · , lk represents the items prior to

↵(t)
k in the sequence.

Our problem can be interpreted as: we want to minimize the prediction

error of the ↵(t)
k in each attributed sequence given the attribute values

xk and all the items prior to ↵(t)
k .
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Embedding of

Attributed Sequence Ji

Sequence 
Network

Attribute 
Network

IP: 172.16.2.150
OS: Windows 7
Browser: Chrome

Attributed Sequence Ji

Figure 3.1: The process flow of the NAS framework from attributed

sequences to the final feature representations is displayed. For an

attributed sequence, the attribute feature representation from the at-

tribute network is shared with the sequence network. In the end, the

hidden layer states of the sequence network are saved as the feature

representation for this attributed sequence.

3.2 The NAS Framework

In this section, we introduce two main components in our proposed NAS

framework, i.e., attribute network and sequence network. We illustrate

how the two networks are integrated to serve the purpose of embedding

attributed sequences in Figure 3.1.

In many real-world applications, attributes are often available be-

fore the sequences. For example, in the online ticketing system, the at-

tributes that depict user profile are recorded when a user starts a ticket

booking session. However, the sequence of one’s actions on the webpage

would not be available until such booking session ends. Our design fol-

lows the same paradigm, that is, the attributes are available before the

respective sequence of items in each attributed sequence. In addition,
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the lengths of sequence in many real-world applications are short. For

example, one may only need tens of actions to finish a ticket booking

online.

3.2.1 Attribute Network

Fully connected neural network [38] is capable of modeling the depen-

dencies of the inputs and at the same time reduce the dimensionality. It

has been widely used [38, 39, 53] for unsupervised data representations

learning, including tasks such as dimensionality reduction and genera-

tive data modeling. With the high-dimensional sparse input attribute

values xk 2 Ru, it is ideal to use such a network to learn the attribute

dependencies. We design our attribute network as

V(1)
k = ⇢

⇣
W(1)

A xk + b(1)
A

⌘

...
V(M)

k = ⇢
⇣
W(M)

A V(M�1)
k + b(M)

A

⌘

V(M+1)
k = �

⇣
W(M+1)

A V(M)
k + b(M+1)

A

⌘

...
cxk = �

⇣
W(2M)

A V(2M�1)
k + b(2M)

A

⌘

(3.2)

where ⇢ is the encoder activation function and � is the decoder activation

function. In this attribute network, we use ReLU activation function [47],
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defined as

⇢(z) = max(0, z) (3.3)

and sigmoid activation function, defined as

�(z) =
1

1 + e�z
(3.4)

We denote the parameter set of attribute network as �A = {WA,bA},

where WA =
⇣
W(1)

A , · · · ,W(2M)
A

⌘
and bA =

⇣
b(1)
A , · · · ,b(2M)

A

⌘
.

The attribute network with 2M layers has two components, i.e., the

encoder, and the decoder. The encoder is composed of the first M layers,

and the next M layers work as the decoder. With dM hidden units in

the M -th layer, the input attribute vector xk 2 Ru is first transformed

to V(M)
k 2 RdM , dM ⌧ u by the encoder. Then the decoder attempts to

reconstruct the input and produce the reconstruction result cxk 2 Ru. An

ideal attribute network should be able to reconstruct the input from the

V(M)
k . The smallest attribute network is built with M = 1, where there

are one encoder and one decoder.
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3.2.2 Sequence Network

The proposed sequence network is a variation of the long short-term

memory model (LSTM). The sequence network takes advantage of LSTM

to learn the dependencies between items in sequences. Sequence net-

work also accepts the feature representations from the attribute net-

work to affect the learning process and thus learn the attribute-sequence

dependencies. We define our sequence network as

i(t)k = �
⇣
Wi↵

(t)
k +Uih

(t�1)
k + bi

⌘

f (t)k = �
⇣
Wf↵

(t)
k +Ufh

(t�1)
k + bf

⌘

o(t)
k = �

⇣
Wo↵

(t)
k +Uoh

(t�1)
k + bo

⌘

g(t)
k = �

⇣
Wg↵

(t)
k +Ugh

(t�1)
k + bg

⌘

c(t)k = f (t)k � c(t�1)
k + i(t)k � g(t)

k

h(t)
k = o(t)

k � tanh
⇣
c(t)k

⌘
+ 1(t = 1)�V(M)

k

y(t)
k = �

⇣
Wyh

(t)
k + by

⌘

(3.5)

where � is a sigmoid activation function, i(t)k , f (t)k ,o(t)
k and g(t)

k are the

internal gates. With d hidden units in the sequence network, c(t)k 2

Rd,h(t)
k 2 Rd are the cell states and hidden states of the sequence net-

work. y(t)
k 2 Rr is the predicted next item in sequence computed using
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softmax function. With the softmax activation function defined as

�(z) =
exp (zj)Pr
i=1 exp (zi)

, 8j = 1, · · · , r (3.6)

where the i-th element in z is denoted as zi, the y(t)
k can be interpreted

as the probability distribution over r items.

We integrate the attribute network by conditioning the hidden states

in the sequence network at the first time step (denoted as 1(t = 1) �

V(M)
k ). To do this, the attribute network and sequence network should

have the same number of hidden units, i.e., dM = d. After process-

ing the last time step for an attributed sequence Sk, the cell state of

sequence network, namely c(lk)k , is used as the feature representation

of Sk. We denote the set of parameters in sequence network as �S =

{WS,US,bS,Wy,by}, where WS = (Wi,Wf ,Wo,Wg), US = (Ui,Uf ,Uo,Ug)

and bS = (bi,bf ,bo,bg).

3.2.3 Attributed Sequence Learning

The attributed sequence embeddings would not be useful for downstream

mining tasks if the embedding space is detached from the inputs. Thus,

we choose two different learning objective functions for the attribute net-
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work and sequence network targeting at the different characteristics of

attribute and sequence data.

Attribute network aims at minimizing the differences between the in-

put and reconstructed attribute values. The learning objective function

of attribute network is defined as:

LA = kxk �cxkk22 (3.7)

Sequence network aims at minimizing log likelihood of the incor-

rect prediction of the next item at each time step. Thus, the sequence

network learning objective function can be formulated using categorical

cross-entropy as:

LS = �
lkX

t=1

↵(t)
k log y(t)

k (3.8)

Also, the learning processes are composed of a number of iterations,

and the parameters are updated during each iteration based on the gra-

dient computed. Without loss of generality, we denote L⌧
A and L⌧

B as the

⌧ -th iteration of attribute network and sequence network, respectively.

We further denote the maximum numbers of iterations for attribute net-

work and sequence network as TA and TB. TA and TB may not be equal as
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Algorithm 1 NAS Learning
INPUT: J = {J1, · · · , Jn}, attribute network layers 2M , learning rate �,

iteration number of attribute network TA and sequence network TS

and convergence error "A and "S.
OUTPUT: Parameter sets �A,�S.

1: Initialize �A and �S using uniform distribution.
2: for each Jk 2 J , k = 1, · · · , n do
3: for each ⌧ = 1, · · · , TA do
4: for each m = 1, · · · , 2M do
5: Compute forward propagation.
6: end for
7: for each m = 2M, · · · , 1 do
8: Compute the gradient of layer m.
9: end for

10: for each m = 1, · · · , 2M do
11: Update the parameter set �A

12: end for
13: Calculate L⌧

A

14: if ⌧ > 1 and |L⌧
A � L⌧�1

A |< "A then
15: Stop iterating.
16: end if
17: end for
18: for each ⌧ = 1, · · · , TS do
19: for each t = 1, · · · , lk do
20: Compute forward propagation and get yt

k.
21: Compute the gradients of sequence network �S.
22: Update the parameter set �S.
23: end for
24: Calculate L⌧

S

25: if ⌧ > 1 and |L⌧
S � L⌧�1

S |< "S then
26: Stop iterating.
27: end if
28: end for
29: end for

the number of iterations needed for the attribute network, and sequence

network may not be the same. Algorithm 1 summarizes the learning
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paradigm under our proposed NAS framework. After the attributed se-

quence learning process, we use the parameters in the attribute network

and sequence network to embed each attributed sequence.

In this section, we evaluate NAS framework using real-world appli-

cation logs from Amadeus and public datasets from Wikispeedia [67, 68].

We evaluate the quality of embeddings generated by different meth-

ods by measuring the performance of outlier detection and clustering

algorithms using different embeddings. Outlier detection and clustering

tasks are frequently being used for many applications, such as fraud de-

tection and user behavior analysis. We also include three methods not

using neural networks in outlier detection tasks. We also study four case

studies in the security management system in Amadeus to demonstrate

the embeddings produced by NAS is useful for real-world applications.

Lastly, we show that the NAS framework is capable of embedding at-

tributed sequences in real-time.



49

3.3 Experimental Setup

3.3.1 Data Collection

We use four datasets in our experiments: two from Amadeus applica-

tion log files and two from Wikispeedia1. The numbers of attributed

sequences in all four datasets vary between ⇠58k and ⇠106k.

• AMS-A: We extract ⇠58k instances from log files of an Amadeus

internal application. Each record is composed of a profile contain-

ing information ranging from system configurations to office name,

and a sequence of functions invoked by click activities on the web

interface. There are 288 distinct functions, 57,270 distinct profiles

in this dataset. The average length of the sequences is 18.

• AMS-B: We use ⇠106k instances from Amadeus internal applica-

tion log files with 573 distinct functions and 106,671 distinct pro-

files. The average length of the sequences is 22.

• Wiki-A: This dataset is sampled from Wikispeedia dataset2. Wik-

ispeedia dataset originated from a human-computation game, called

Wikispeedia [68]. In this game, each user is given two pages (i.e.,
1Personal identity information are not collected for privacy reasons.
2Download link: http://goo.gl/8Z9h9f
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source, and destination) from a subset of Wikipedia pages and asked

to navigate from the source to the destination page. We use a sub-

set of ⇠2k paths from Wikispeedia with the average length of the

path as 6. We also extract 11 sequence context (e.g., the category of

the source page, average time spent on each page) as attributes.

• Wiki-B: This dataset is also sampled from Wikispeedia dataset.

In Wiki-B, we use ⇠1.5k paths from Wikispeedia with the average

length of the path as 8. We also extract 11 sequence context as

attributes.

3.3.2 Compared Methods

To study NAS performance on attributed sequences in real-world appli-

cations, we use the compared methods in Table 3.1 in outlier detection

and clustering tasks.

• LEN [1]: The attributes are encoded and directly used in the mining

algorithm.

• MCC [5]: MCC uses the sequence component of attributed sequence

as input and produces log likelihood for each sequence.
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Table 3.1: Compared methods.

Methods Data Used Short Descriptions Related Publication

LEN Attributes The encoded attributes is
used.

[1]

MCC Sequences A markov chain based
method.

[5]

ATR Attributes An autoencoder for attribute
data.

[64]

SEQ Sequences Sequence embedding using
LSTM.

[57]

EML
Attributes Aggregation of the scores of [74]Sequences LEN and MCC methods.

CSA
Attributes Concatenation of embed-

dings [50]

Sequences generated by ATR and SEQ

methods.

NAS Attributes Attribute network is used to This WorkSequences condition sequence network.

• SEQ [57]: Only the sequence inputs are used by an LSTM to gener-

ate fixed-length embeddings.

• ATR [64]: A fully connected neural network with two layers is ap-

plied on only attributes to generate embeddings.

• EML[74]: The scores from MCC and LEN are aggregated.

• CSA [50]: The attribute embedding and the sequence embedding

are first generated by ATR and SEQ, respectively. Then the two

embeddings are concatenated together.
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• NAS: Our proposed NAS framework using both attributes and se-

quences to generate embeddings.

3.3.3 Network Parameters

Following the previous work in [20], we initialize weight matrices WA

and WS using the uniform distribution. The recurrent matrix US is

initialized using the orthogonal matrix as suggested by [55]. All the bias

vectors are initialized with zero vector 000. We use stochastic gradient

descent as optimizer with the learning rate of 0.01. We use a two-layer

encoder-decoder stack as our attribute network.

3.4 Outlier Detection Tasks

We first use outlier detection tasks to evaluate the quality of embeddings

produced by NAS. We select k-NN outlier detection algorithm as it has

only one important parameter (i.e., the k value). We use ROC AUC as

the metric in this set of experiments.

For each of the AMS-A and AMS-B datasets, we ask domain experts to

select two users as inlier and outlier. These two users have completely

different behaviors (i.e., sequences) and metadata (i.e., attributes). The
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Figure 3.2: The performance of k-NN outlier detection (k = 5). The meth-

ods not using embeddings are placed on the left. We vary the number of

dimensions on the right. The higher score is better. We observe that the

combinations of k-NN and NAS embeddings have the best performance

on the four datasets.
percentages of outliers in AMS-A and AMS-B are 1.5% and 2.5% of all at-

tributed sequences, respectively. For the Wiki-A and Wiki-B datasets,

each path is labeled based on the category of the source page. Similarly

to the previous two datasets, we select paths with two labels as inliers

and outliers where the percentage of outlier paths is 2%. The feature

used to label paths is excluded from the learning and embedding pro-

cess.
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Figure 3.3: Parameter sensitivity to different k values. It is shown that

the embeddings generated by NAS always have the best performance

under different k values.

3.4.1 Performance

The goal of this set of experiments is to demonstrate the performance

of outlier detection using all our compared methods. Each method is

trained with all the instances. For SEQ, ATR and NAS, the number of

learning epochs is set to 10 and we vary the number of embedding di-

mensions d from 15 to 30. We set k = 5 for outlier detection tasks for

LEN, SEQ, ATR, CSA and NAS. Choosing the optimal k value in the out-
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Figure 3.4: Performance comparisons using outlier detection tasks. The

embeddings generated by NAS can always achieve the best performance

compared to baseline methods when the number of training epochs in-

creases.

lier detection tasks is beyond the scope of this work, thus we omit its

discussions. We summarize the performance results in Figure 3.2.

Analysis. We find that the results based on the embeddings gener-

ated by NAS are superior to other methods. That is, NAS maximally

outperforms other state-of-the-art algorithms by 32.9%, 27.5%, 44.8%

and 48% on AMS-A, AMS-B, Wiki-A and Wiki-B datasets, respectively.
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It is worth mentioning that NAS outperforms a similar baseline method

CSA by incorporating the information of attribute-sequence dependen-

cies.

3.4.2 Parameter Study

There are two key parameters in our evaluations, i.e., k value for the

k-NN algorithm and the learning epochs.

In Figure 3.3, we first show that the embeddings (dimension d = 15)

generated by our NAS assist k-NN outlier detection algorithm to achieve

superior performance under a wide range of k values (k = 5, 10, 15, 20, 25).

We omit the detailed discussions of selecting the optimal k values due to

the scope of this work.

Next, we evaluate the performance changes as the number of train-

ing epochs increases. We do not use the early stopping in this set of

experiments as we want to fix the number of training epochs. Figure

3.4 presents the results when we fix k = 5, d = 15 and vary the number

of epochs in the learning phase. We notice that compared to its com-

petitor, the embeddings generated by NAS can achieve a higher AUC

even with a relatively fewer number of learning epochs. Compared to

other neural network-based methods (i.e., SEQ, ATR and CSA), NAS have
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a more stable performance. The NAS performance gain is not due to the

advantage of using both attributes and sequences, but because of tak-

ing the various dependencies into account, as the other two competitors

(i.e., CSA and EML) also utilize the information from both attributes and

sequences.

3.5 Clustering Tasks

We use clustering tasks to evaluate the quality of the embeddings gener-

ated by compared methods. We use the HDBSCAN clustering algorithm

from [8] since the results remain stable over different runs, which is

a fair and ideal choice for studying the performance of representation

learning algorithms. We use normalized mutual information (NMI) to

measure the quality of the clustering. The highest NMI score is 1.

3.5.1 Performance

In Figure 3.5 we report the result when the minimum cluster size is fixed

to 640, and we vary the number of embedding dimensionality d from 5 to

35. NAS is capable of taking advantage of using the information not only

from both attributes and sequences but also the attributed-sequence de-
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Figure 3.5: Performance of HDBSCAN clustering algorithm with the

minimum cluster size of 640. The higher score is better. By using the

embeddings produced by NAS, the clustering algorithm performs better

than using embeddings produced by other baseline methods.

pendencies when generating the embeddings. Specially, when compared

to the CSA method where the information from both attributes and se-

quences is used but without taking advantage of the attribute-sequence

dependencies, NAS outperforms CSA by 24.7%, 20.6%, 3.8%, 4.3% on

average on AMS-A, AMS-B, Wiki-A and Wiki-B datasets, respectively.
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Figure 3.6: Clustering algorithm using the embeddings generated by

NAS can achieve better performance than baselines under different

minimum cluster size parameter.

3.5.2 Parameter Study

In this set of experiments, we investigate the performance of NAS under

different parameter settings. We first vary the minimum size of clusters

for all three datasets. For each dataset, we evaluate on the same range of

the minimum cluster size. Figure 3.6 depicts the NMI of the HDBSCAN

clustering algorithm when the dimensionality of embedding is fixed to 5,
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and the number of learning epochs is set to 10. We observe that NAS is

always achieving the highest NMI among the four methods.
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Figure 3.7: The embeddings generated by NAS have better performance

than the baseline methods across different numbers of training epochs.

In Figure 3.7 we choose a fixed minimum cluster size of 40 and vary

the number of learning epochs from 10 to 90. We observe that NAS is

superior to its competitors across all parameter settings.
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Browser: IE 9
Browser Type: 
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Session 4
--Attributes--

Date: 2015/11/18
Office: Office_0
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Org: Org_1
Browser: Firefox 4
Browser Type: Gecko
OS: Windows 7

---Sequence---
<1>. Batch Import
<2>. Batch Import
<3>. Batch Import
<4>. Refresh
<5>. Show Details
<6>. Show Details
<7>. Show Details

Session 1
--Attributes--

Date: 2015/11/30
Office: Office_0
IP: IP_148
Org: Org_1
Browser: IE 11
Browser Type: 
Trident
OS: Windows 7

---Sequence---
<1>. Search A User

Session 2
--Attributes--

Date: 2015/11/30
Office: Office_0
IP: IP_19
Org: Org_1
Browser: IE 9
Browser Type: 
Trident
OS: Windows 7

---Sequence---
<1>. Search A User
<2>. Unlock A User

Session 8
--Attributes--

Date: 2015/11/26
Office: Office_1
IP: IP_4
Org: Org_1
Browser: IE 9
Browser Type: Trident
OS: Windows 7

---Sequence---
<1>. Choose An Org.
<2>. Search A User
<3>. Unlock A User
<4>. Display A User
<5>. Update User Details

Session 7
--Attributes--

Date: 2015/10/19
Office: Office_0
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Browser Type: Trident
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---Sequence---
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<2>. Unlock A User
<3>. Display A User
<4>. Update User Details

Session 6
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Browser: IE 9
Browser Type: Trident
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---Sequence---
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Session 5
--Attributes--

Date: 2015/11/06
Office: Office_1
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<3>. Click Another Tab
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<5>. Search A User

Figure 3.8: Clustering results for case studies. Each color represents one

cluster. Only major attributes are shown here. Actual attribute values

and item names in sequences are replaced for privacy reasons. (Better

view in color.)

3.5.3 Case Study: Security Management System

In this case study, we build HDBSCAN clusters on the AMS-A dataset.

Each point in Figure 3.8 is a user session in AMS-A dataset. We apply

t-SNE [41] on the embeddings to generate a 3D plot with each color for

one cluster. We ask domain experts to closely examine the similarities



62

and differences between the attributed sequences in each cluster. Based

on eight user sessions in Figure 3.8, we summarize four case studies as

follows:

• Case Study 1. The similarities and differences between the two

“nearby” points from the same cluster. Sessions 3 and 4 share the

same set of actions, and the order of each kind of action is the same.

Further, they both share the same attributes. In a more complex

case of Sessions 7 and 8, although they have different sets of ac-

tions (i.e., Session 8 has “Choose An Org.” which Session 7 does

not) and not all attributes are the same, they are clustered together

since both of them are “high-level administrative” sessions.

• Case Study 2. Differences between two “nearby” points that be-

long to different clusters. In Sessions 1 and 2, although they share

similar attributes (i.e., “IE”, “Windows 7”, “Office 0”, etc.) and

only one action is different, the Session 2 belongs to another clus-

ter since that action (“Unlock A User”) changes the type of the

session from “routine” to “administrative”.

• Case Study 3. Similarities between two “nearby” points that be-

long to different clusters. There are a number of differences be-
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tween Sessions 5 and 6, which cause them to be distant from each

other, such as Sessions 5 and 6 belong to different offices, have dif-

ferent IP addresses and have different sets of user actions in the

sequences. The similarities between them are obvious: first, they

both share a number of similar attributes (i.e., “browser”, “OS”,

and “organization”); second, the majority of actions remains the

same, and they share a subsequence of actions (i.e., “Search A

User” and “Display A User”). Thus, although they belong to dif-

ferent clusters, the distance between Sessions 5 and 6 is smaller

compared to sessions from other clusters.

• Case Study 4. A global view of the eight clusters. The NAS is

capable of differentiating user sessions despite that the 8 user ses-

sions have some similar or identical attribute values (e.g., six of

them are from the same office, all of them are using Windows 7),

and there are common user actions shared by user sessions.

The above four case studies conclude that the clustering results based

on the embeddings generated by NAS can be easily explained in real-

world cases.
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3.6 Scalability
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Figure 3.9: Runtime scalability

In this set of experiments, we evaluate the learning time and embed-

ding time of the proposed NAS framework. We implement the NAS

framework using Theano 0.8 [3] on Ubuntu 14.04. We conduct our ex-

periments on a machine with 24 E5-2690 v2 cores and 256GB memory.

The I/O time for reading datasets into memory and writing embeddings

to the disk is excluded. Each setting corresponds to 10 runs times and

averaged.

The embeddings of NAS come from the cell states in each artificial

neuron. An increase in the embedding dimensions increases the number

of artificial neurons in the model, which results in a larger model with

more parameters that needs longer time to train. However, the model
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learning process is designed to be an offline process. Thus, it does not

interfere with the real-time attributed sequence embedding process. Al-

though the learning time increases as the number of embedding dimen-

sions increases, the embedding time per attributed sequence remains

at the millisecond level. Thus, NAS is capable of transforming one at-

tributed sequence into one embedding in real-time that is sufficient for

real-world data mining tasks.



Chapter 4

Deep Metric Learning on

Attributed Sequences
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4.1 Problem Definition

Given a nonlinear transformation function ⇥ and two attributed se-

quences pi and pj as inputs, deep metric learning approaches [26] often

apply the Mahalanobis distance function to the d-dimensional outputs of

function ⇥ as

D⇥(pi, pj) =
q
(⇥(pi)�⇥(pj))>⇤⇤⇤(⇥(pi)�⇥(pj)) (4.1)

where⇤⇤⇤ 2 Rd⇥d is a symmetric, semi-definite, and positive matrix. When

⇤⇤⇤ = I, Eq. 5.3 is transformed to Euclidean distance [70] as:

D⇥(pi, pj) = k⇥(pi)�⇥(pj)k2. (4.2)

Given feedback sets S and D of attributed sequences as per Def. 4

and a distance function D⇥ as per Eq. 5.5, the goal of deep metric learn-

ing on attributed sequences is to find the transformation function ⇥ :

(Ru,RT⇥r) 7! Rd with a set of parameters ✓ that is capable of mapping

the attributed sequence inputs to a space that the distances between

each pair of attributed sequences in the similar feedback set S are mini-

mized while increasing the distances between attributed sequence pairs
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in the dissimilar feedback set D. Inspired by [70], we adopt the learning

objective as

minimize
✓

X

(pi,pj ,`ij)2S

D⇥ (pi, pj)

s.t.
X

(pi,pj ,`ij)2D

D⇥ (pi, pj) � g

(4.3)

where g is a group-based margin parameter that stipulates the distance

between two attributed sequences from dissimilar feedback set should

be larger than g. This prevents the dataset from being reduced to a

single point [70].

4.2 The MLAS Network

In this section, we first design two distinct networks, called AttNet and

SeqNet, to learn the attribute data and sequence data, respectively.

Next, we present several types of FusionNet designs to integrate the

two networks. Lastly, the existing network composition is augmented by

MetricNet to employ user feedback into the learning process.
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4.2.1 AttNet and SeqNet

AttNet, designed to learn the relationships within attribute data, uti-

lizes a fully connected neural network with multiple layers of nonlin-

ear transformations. In particular, for an AttNet with M layers, we

denote the weight and bias parameters of the m-th layer as W(m)
A and

b(m)
A , 8m = 1, · · · ,M . Given an attribute vector xk 2 Ru as the input, with

dm hidden units in the m-th layer of AttNet, the corresponding output

is V(m)
k 2 Rdm , 8m = 1, · · · ,M . The structure of AttNet is designed as

V(1)
k = �

⇣
W(1)

A xk + b(1)
A

⌘

V(2)
k = �

⇣
W(2)

A V(1)
k + b(2)

A

⌘

...

V(M)
k = �

⇣
W(M)

A V(M�1)
k + b(M)

A

⌘

(4.4)

where � : Rdm 7! Rdm is a nonlinear activation function. Possible choices

of � include sigmoid, ReLU [47] and tanh functions.

The mechanism of AttNet is that, given the attribute vector xk 2 Ru

as the input, the first layer uses the weight matrix W(1)
A 2 Rd1⇥u and bias

vector b(1)
A 2 Rd1 to map xk to the output V(1)

k 2 Rd1 with d1 < u. The V(1)
k

is subsequently used as the input to the next layer. For simplicity, with
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the dM hidden units in the M -th layer, we denote the AttNet as

⇥A : Ru 7! RdM (4.5)

⇥A is parameterized by WA and bA, where WA =
⇣
W(1)

A , · · · ,W(M)
A

⌘
and

bA =
⇣
b(1)
A , · · · ,b(M)

A

⌘
.

The SeqNet is designed to learn the dependencies between items in

the input sequences. SeqNet takes advantage of long short-term mem-

ory (LSTM) [25] network to learn both long and short-term dependencies

within the sequences.

Given a sequence Sk 2 RT⇥r as the input, we have the parameters

within SeqNet for each time step t as

i(t)k = �
⇣
Wi↵

(t)
k +Uih

(t�1)
k + bi

⌘

f (t)k = �
⇣
Wf↵

(t)
k +Ufh

(t�1)
k + bf

⌘

o(t)
k = �

⇣
Wo↵

(t)
k +Uoh

(t�1)
k + bo

⌘

g(t)
k = tanh

⇣
Wc↵

(t)
k +Uch

(t�1)
k + bc

⌘

c(t)k = f (t)k � c(t�1)
k + i(t)k � g(t�1)

k

h(t)
k = o(t)

k � tanh
⇣
c(t)k

⌘

(4.6)
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where �(z) = 1
1+e�z is a sigmoid activation function, � is the bitwise

multiplication, i(t)k , f (t)k and o(t)
k are the internal gates of the LSTM, c(t)k

and h(t)
k are the cell and hidden states of the LSTM. For simplicity, we

denote the SeqNet with dS hidden units as

⇥S : RT⇥r 7! RdS (4.7)

⇥S is parameterized by bias vector set bS = (bi,bf ,bo,bc) and the set

of weight matrices WS = {W✓s ,U✓s}, where W✓s = (Wi,Wf ,Wo,Wc) 2

R4⇥dS⇥r and U✓s = (Ui,Uf ,Uo,Uc) 2 R4⇥dS⇥dS .

4.2.2 FusionNet

Next, we design the FusionNet to integrate AttNet and SeqNet into

one network. Here we propose three designs: (1) balanced, (2) AttNet-

centric and (3) SeqNet-centric.

• Balanced Design (Figure 4.1a). Both the attribute and sequence of

each attributed sequence are processed simultaneously, and the results

are concatenated together. The AttNet and SeqNet are first concate-

nated, followed by a fully connected layer with a nonlinear function over

the concatenation to capture the dependencies between attributes and
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(c) SeqNet-centric Design

Figure 4.1: Comparison of three different network designs.

sequences. The output of this fully connected layer corresponds to the

output of SeqNet after processing the last time step in the sequence

input. We denote the balanced design as

yk = V(M)
k � h(Tk)

k (4.8)

zk = �(Wzyk + bz) (4.9)

where � represents the concatenation operation, Wz 2 Rd⇥(dM+dS) and

bz 2 Rd denote the weight matrix and bias vector in this fully connected

layer, respectively.
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• AttNet-centric Design (Figure 4.1b). Here, the sequence is first

transformed by sequence network, i.e., the function ⇥S, and then used

as an input of the attribute network, i.e., the function ⇥A. Specifically,

we modify Eq. 5.7 to incorporate sequence representation as an input.

We use the output of SeqNet after processing the last time step in the

sequence input. The modified V(1)
k is written as

V(1)
k = �(W(1)

A (xk � h(Tk)
k ) + b(1)

A ) (4.10)

where the W(1)
A 2 Rd1⇥(u+dS) and b(1)

A 2 Rd1.

• SeqNet-centric Design (Figure 4.1c). The attribute vector is first

transformed by ⇥A and then used as an additional input for ⇥S. Specifi-

cally, we modify Eq. 6.3 to integrate attribute representations at the first

time step as an input. The modified h(t)
k is

h(1)
k = o(1)

k � tanh(c(1)k ) +V(M)
k (4.11)

In order to fuse AttNet and SeqNet using the SeqNet-centric design,

the dimension of V(M)
k has to be the same as o(1)

k and c(1)k . That is, dS =

dM .
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Without loss of generality, we summarize the above three designs as

⇥ : (Ru,RT⇥r) 7! Rd (4.12)

4.2.3 MetricNet

Without loss of generality, we present the MetricNet using the pro-

posed balanced design due to space limitations. In the balanced design

(as shown in Figure 4.1a), the explicit form of Eq. 4.12 can be written as

⇥(Jk) = ⇥A(⇥A(xk)�⇥S(Sk)) (4.13)

Given an attributed sequence feedback instance (pi, pj, `ij), where pi =

(xi,Si) and pj = (xj,Sj), `ij 2 {1, 0}. This input is transformed to ⇥(pi) 2

Rd and ⇥(pj) 2 Rd by the nonlinear transformation ⇥.

The MetricNet is designed using a contrastive loss function [23] so

that attributed sequences in each similar pair in S have a smaller dis-

tance compared to those in D after learning the distance metric. The

MetricNet computes the Euclidean distance between each pair using

the labels and back-propagates the gradients through all components in
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our network. The learning objective of MetricNet can be written as

L(pi, pj, lij) =
1

2
(1� `ij)(D⇥)

2 +
1

2
`ij{max(0, g �D⇥)}2 (4.14)

where g is the margin parameter, meaning that the pairs with a dis-

similar label (`ij = 1) contribute to the learning objective if and only if

when the Euclidean distance between them is smaller than g [23]. We

note that the MetricNet can augment all three designs in the same

way. Figure 5.1 illustrates the MetricNet with the proposed balanced

design.

4.3 Learning Feedback

In this section, we present the feedback learning mechanism of our MLAS

network. Given two attributed sequences pi and pj as inputs, with Eq. 4.13,

we have

rL ⌘


@L

@WA
,
@L

@bA
,

@L

@WS
,
@L

@bS

�
(4.15)

where the explicit form can be written as

rL =
@L

@D⇥

@D⇥

@⇥

"
@V(M)

k

@WA
,
@V(M)

k

@bA
,
@h(Tk)

k

@WS
,
@h(Tk)

k

@bS

#
(4.16)
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Figure 4.2: MLAS network with balanced design. Parameters in the

two FusionNet are identical. Gradient rL is used to update all layers.

where

@L

@D⇥
= (1� `ij)D⇥ � `ij max(0, g �D⇥) (4.17)

@D⇥

@⇥
=

⇣
⇥(pi)�⇥(pj)

⌘
·
⇣
1� (⇥(pi)�⇥(pj))

⌘
(4.18)

where 1 is a vector filled with ones with the same shape as ⇥(pi) and

⇥(pj).

For the m-th layer in AttNet, we employ the following update func-

tions

@V(m)
k

@W(m)
A

= V(m)
k

⇣
1�V(m)

k

⌘
V(m�1)

k

@V(m)
k

@b(m)
A

= V(m)
k

⇣
1�V(m)

k

⌘ (4.19)



77

With the learning rate �, the parameters WA,WS,bA and bS can be

updated by the following equations until convergence:

WA = WA � �
@L

@WA

bA = bA � �
@L

@bA

WS = WS � �
@L

@WS

bS = bA � �
@L

@bS

(4.20)

Algorithm 2 MLAS Learning
INPUT: A set of attributed sequences J = {J1, · · · , Jn}, a set of feedback

as pairwise attributed sequences C = {(pi, pj, `ij)|pi, pj 2 J , 8i, j =
1, · · · , n, i 6= j}, the number of layers M , learning rate �, number of
iterations # and convergence error ✏.

OUTPUT: Parameter sets {WA,bA,WS,bS}.
1: Initialize MLAS network ⇥.
2: for each #0 = 1, · · · ,# do
3: for each (pi, pj, `ij) 2 C do
4: //Forward propagation.
5: Calculate ⇥(pi) and ⇥(pj).
6: Calculate D⇥ using Eq. 5.5.
7: Calculate loss L#0(pi, pj, `ij) according to Eq. 4.14.
8: if |L#0(pi, pj, `ij)� L#0�1(pi, pj, `ij)|< ✏ then
9: break

10: end if
11: //Back-propagation.
12: Calculate @L

@⇥ according to Eq. 4.17, 4.18.
13: Calculate rL according to Eq. 5.14.
14: Use Eq. 5.24 to update network parameters.
15: end for
16: end for
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We summarize the algorithms for updating the MLAS network in

Algorithm 3.

4.4 Experiments

4.4.1 Datasets

We evaluate the proposed methods using four real-world datasets. Two

of them are derived from application log files1 at Amadeus [2] (denoted

as AMS-A and AMS-B). The other two datasets are derived from the

Wikispeedia [68] dataset (denoted as Wiki-A and Wiki-B).

• AMS-A: We extracted ⇠58k user sessions from log files of an inter-

nal application from our Amadeus. This internal application from

Amadeus has motivated this research. Each record is composed of

a user profile containing information ranging from system configu-

rations to office name, and a sequence of functions invoked by click

activities on the web interface. There are 288 distinct functions,

57,270 distinct user profiles in this dataset. The average length of

the sequences is 18. 100 attributed sequence feedback pairs were

selected by domain experts.
1Personal identity information is not collected.
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• AMS-B: There are ⇠106k user sessions derived from internal ap-

plication log files with 575 distinct functions and 106,671 distinct

user profile. The average length of the sequences is 22. 84 at-

tributed sequence feedback pairs were selected by domain experts.

• Wiki-A: This dataset is sampled from Wikispeedia dataset. Wik-

ispeedia dataset originated from an online computation game [68],

in which each user is given two pages (i.e., source, and destina-

tion) from a subset of Wikipedia pages and asked to navigate from

the source to the destination page. We use a subset of ⇠2k paths

from Wikispeedia with the average length of the path as 6. We

also extract 11 sequence context as attributes (e.g., the category of

the source page, average time spent on each page, etc). There are

200 feedback instances selected based on the criteria of frequent

subsequences and attribute value.

• Wiki-B: This dataset is also sampled from Wikispeedia dataset.

We use a subset of ⇠1.5k paths from Wikispeedia with the average

length of the path as 8. We also extract 11 sequence context (e.g.,

the category of the source page, average time spent on each page,
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Table 4.1: Summary of Compared Methods

Method Data Used Short Description Reference

ATT Attributes Only attribute feedback
is used in the model. [26]

SEQ Sequences Only sequence feedback
is used in the model. [46]

ASF
Attributes
Sequences

Feedback of attributes and
sequences are used to train
two models separatedly.

[26] + [46]

MLAS-B
Attributes
Sequences

Dependencies

Balanced design using attri-
-buted sequence feedback
to train one unified model.

This Work

MLAS-A
Attributes
Sequences

Dependencies

Attribute-centric design
using attributed sequence
feedback to train one
unified model.

This Work

MLAS-S
Attributes
Sequences

Dependencies

Sequence-centric design
using attributed sequence
feedback to train one
unified model.

This Work

etc) as attributes. 220 feedback instances have been selected based

on the criteria of frequent subsequences and attribute value.

4.4.2 Compared Methods

We validate the effectiveness of our proposed MLAS solution compared

with state-of-the-art baseline methods. To well understand the advance-

ments of the proposed methods, we use baselines that are working on
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only attributes (denoted as ATT) or sequences (denoted as SEQ), as well

as methods without exploiting the dependencies between attributes and

sequences (denoted as ASF). We summarize the compared methods and

references in Table 4.1.

• Attribute-only Feedback (ATT) [26]: Only attribute feedback is used

in this model. This model first transforms fixed-size input data

into feature vectors, then learns the similarities between these two

inputs.

• Sequence-only Feedback (SEQ) [46]: Only sequence feedback is used

in this model. This model utilizes a long short-term memory (LSTM)

to learn the similarities between two sequences.

• Attribute and Sequence Feedback (ASF) [26] + [46]: This method

is a combination of the ATT and SEQ methods as above, where the

two networks are trained separately using attribute feedback and

sequence feedback, respectively. The feature vectors generated by

the two models are then concatenated.

• Balanced Network Design with Attributed Sequence Feedback (MLAS-B):

The balanced design model using attributed sequence feedback to

train a unified model.
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• AttNet-centric Network Design with Attributed Sequence Feed-

back (MLAS-A): The AttNet-centric design using attributed se-

quence feedback to train a unified model.

• SeqNet-centric Network Design with Attributed Sequence Feed-

back (MLAS-S): The SeqNet-centric design using attributed se-

quence feedback to train a unified model.

4.4.3 Experimental Settings

4.4.3.1 Network Initialization and Training

Initializing the network parameters is important for models using gra-

dient descent based approaches [16]. The weight matrices WA in ⇥A

and the WS in ⇥S are initialized using the uniform distribution [20],

the biases bA and bS are initialized with zero vector 000 and the recurrent

matrix US is initialized using orthogonal matrix [55]. We use one hid-

den layer (M = 1) for AttNet and ATT in the experiments to make the

training process easier.

After that, we pre-train each compared method. Pre-training is an

important step to initialize the neural network-based models [16]. Our

pre-training uses the attributed sequences as the inputs for FusionNet,
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and use the generated feature representations to reconstruct the at-

tributed sequence inputs. We also pre-train the ATT and SEQ networks in

a similar fashion that reconstruct the respective attributes or sequences.

We utilize `2-regularization and early stopping strategy to avoid overfit-

ting. Twenty percents of feedback pairs are used in the validation set.

We choose ReLU activation function [47] in our AttNet to accelerate the

stochastic gradient descent convergence.

4.4.3.2 Performance Evaluation Setting.

We evaluate the performance by using the feature representations gen-

erated by each method for clustering tasks. The feature representations

are generated through a forward pass.

Clustering tasks have been widely used in distance metric learning

work [70, 60]. In this set of experiments, we use HDBSCAN [8] clus-

tering algorithm. HDBSCAN is a deterministic algorithm, which gives

identical output when using the same input. We measure the normal-

ized mutual information (NMI) [42] score. The maximum NMI score is

1. Specifically, we conduct the below two experiments:
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1. The effect of feedback. We compare the performance of the clus-

tering algorithm using the feature representations generated by

FusionNet before and after incorporating the feedback.

2. The effect of varying parameters in the clustering algorithm. After

the metric learning process, we evaluate the feature representa-

tions generated by all compared methods under various parame-

ters of the clustering algorithm.

4.4.3.3 Parameter Study Settings.

We first evaluate the effect of output dimensions (i.e., the dimension of

the hidden layer), which not only affect the model size but also affects

the performance of subsequent mining algorithms.

The other parameter we evaluate is the relative importance of at-

tribute data (denoted as !A) in the attributed sequences. The pre-training

phase is essential to gradient descent-based methods [16]. The relative

importance of attribute data and sequence data are represented by the

weights of ⇥A and ⇥S, denoted as !A and !S, where !A + !S = 1. The in-

tuition is that with one data type more important, the other one becomes

relatively less important.
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4.4.4 Results and Analysis

4.4.4.1 Effect of Feedback.

A77 6E4 A6F 0LA6-B 0LA6-A 0LA6-60.0

0.1

0.2

0.3

0.4

0.5

0.6

1
0

I

WLWhouW FeedEaFN
WLWh FeedEaFN

(a) AMS-A Dataset

A77 6E4 A6F 0LA6-B 0LA6-A 0LA6-60.0

0.1

0.2

0.3

0.4

0.5

0.6

1
0

I

WLWhouW FeedEaFN
WLWh FeedEaFN

(b) AMS-B Dataset

A77 6E4 A6F 0LA6-B 0LA6-A 0LA6-60.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1
0

I

WLWhouW FeedEaFN
WLWh FeedEaFN

(c) Wiki-A Dataset

A77 6E4 A6F 0LA6-B 0LA6-A 0LA6-60.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1
0

I

WLWhouW FeedEaFN
WLWh FeedEaFN

(d) Wiki-B Dataset

Figure 4.3: The effectiveness of using feedback. Using feedback could

boost performance of all methods. The three methods we proposed

(MLAS-B/A/S) are capable of exploiting the information of attributes,

sequences, and more importantly, the attribute-sequence dependencies

to outperform other methods.

We present the performance comparisons in clustering tasks using

feature representations generated using the parameters of all methods

in Figure 4.3. Two sets of feature representations are generated, the

first set is generated after the pre-training (denoted as without feed-
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back), the other set is generated after the metric learning step (denoted

as with feedback). We fix the output dimension to 10, minimum clus-

ter size to 100 and !A = 0.5 (for MLAS-B/A/S). We have observed that

the feedback can boost the performance of all methods, and the three

methods (MLAS-B/A/S) proposed in this work are capable of outper-

forming other methods. Also, we also observe that the proposed three

MLAS variations have better performance compared to the ASF, which

also uses the information from attributes and sequences but without us-

ing the attribute-sequence dependencies.

Based on the above observations, we can conclude that the perfor-

mance boost of our three architectures (MLAS-B/A/S) is a result of tak-

ing advantages of attribute data, sequence data, and more importantly,

the attribute-sequence dependencies.

4.4.4.2 Performance in Clustering Tasks.

The primary parameter in HDBSCAN is the minimum cluster size [8],

denoting the smallest set of instances to be considered as a group. Intu-

itively, while the minimum cluster size increases, each cluster may in-

clude instances that do not belong to it and the performance decreases.



87

90 100 110 120 130 140 150
0in. Cluster 6ize

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60
1

0
I

(a) AMS-A Dataset

90 100 110 120 130 140 150
0in. Cluster 6ize

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

1
0

I
(b) AMS-B Dataset

90 100 110 120 130 140 150
0in. Cluster 6ize

0.4

0.5

0.6

0.7

0.8

1
0

I

(c) Wiki-A Dataset

90 100 110 120 130 140 150
0in. Cluster 6ize

0.3

0.4

0.5

0.6

0.7

0.8

1
0

I

(d) Wiki-B Dataset

Figure 4.4: Performance with varying clustering parameters. Clustering

results using the feature representations produced by MLAS are the

best among the compared methods.

Figure 4.4 presents the results with the output dimension is 10 and

!A = 0.5.

Compared to the best baseline method ASF, MLAS-A achieves up to

18.3% and 25.4% increase of performance on AMS-A and AMS-B datasets,
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Figure 4.5: The effect of output dimensions (higher is better). Output

dimension is an important factor for (1) the size of model; and (2) the

cost of computations in downstream data mining tasks. Using the fea-

ture representations produced by MLAS can constantly achieve the best

performance among the compared methods.

respectively. On Wiki-A and Wiki-B datasets, MLAS-S is capable of

achieving up to 26.3% and 24.8% performance improvement compared to

ASF, respectively. We can further confirm that MLAS network is capable
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Figure 4.6: The effect of pre-training parameters in MLAS. The pre-

training parameter !A decides the relative importance of attributes in

the model. We observe that MLAS-A is capable of achieving the best

performance on AMS-A and AMS-B datasets while MLAS-S has the best

performance on Wiki-A and Wiki-B datasets.

of exploiting the attribute-sequence dependencies to improve the perfor-

mance of the clustering algorithm with various parameter settings.
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Figure 4.7: Plots of the feature representations. The MLAS is capable of

exploiting the feedback and separating the instances from two different

groups while keeping the instances from the same group together.

4.4.4.3 Output Dimensions

We evaluate MLAS under a wide range of output dimension choices.

The number of output dimensions relates to a variety of impacts, such

as the usability of feature representations in downstream data mining

tasks. In this set of experiments, we fix the minimum cluster size at 50,

!A = 0.5 and vary output dimensions from 10 to 100. From Figure 4.5 we
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conclude that our proposed approaches outperform the baseline methods

with various output dimensions.

In particular, compared to the baseline method with the best perfor-

mance, namely ASF, MLAS-A achieves 20.7% improvement on average

on AMS-A dataset and 19.4% improvement on average on the AMS-B

dataset. When evaluated using Wiki-A and Wiki-B datasets, MLAS-S

outperforms ASF by 20.8% and 10.6% on average, respectively.

4.4.4.4 Pre-training Parameters

We evaluate MLAS under different pre-training parameters in this set

of experiments. ATT and SEQ are not included in this set of experiments

since they only utilize one data type. Output dimension is set to 5. Min-

imum cluster size is set at 50. Figure 4.6 presents the results under dif-

ferent pre-training parameters. This confirms that our proposed MLAS

method is not sensitive to different pre-training parameters.

We notice the performance differences among the three MLAS archi-

tectures in the above experiments, where MLAS-A has the best perfor-

mance on AMS-A and AMS-B datasets, and MLAS-S has the best per-

formance on Wiki-A and Wiki-B datasets. We conclude this difference

may relate to the datasets.
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4.4.5 Case Studies

In Figure 4.7, we apply t-SNE [41] to the feature representations gener-

ated by all compared methods. The set of feature representations with-

out feedback is generated after the pre-training phase and before the

distance metric learning process.

Our goal is to demonstrate the differences in the feature space of each

method. We randomly select data points from both training and testing

sets with a ground truth of two groups. We have the following findings:

1. The methods using either attribute data (ATT) or sequence data

(SEQ) only cannot use the attributed sequence feedback.

2. The method using both attributes and sequences separately (ASF)

is capable of better separating the two groups than the methods

using single data type (ATT and SEQ).

3. Our methods using attributed sequence feedback as a unity to train

unified models (MLAS-B/A/S) are capable of separating the two

groups the furthest, and thus achieve the best results.

These observations confirm that all three designs of MLAS can effec-

tively learn the distance metric and result in better separation of two

groups of data points.



Chapter 5

One-shot Learning on

Attributed Sequences
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5.1 Problem Definition

Inspired by the work in [6], we formulate our problem as finding the

parameters ✓ of a predictor ⇥ that minimizes the loss Lone-shot. Given a

training set of g attributed sequences G = {(p1, c1), · · · , (pg, cg)}, where

each attributed sequence pi has a unique class label ci, we formulate the

objective for one-shot learning for attributed sequences as:

minimize
✓

X

(pi,ci)2G

Lone-shot (⇥ (pi; ✓) , ci) (5.1)

That is, we want to minimize the loss calculated using the label pre-

dicted using parameter ✓ and the true label. One-shot learning is known

as a hard problem [32] mainly as a result of unavoidable overfitting

caused by insufficient data. With a complex data type, such as attributed

sequences, the number of parameters that need to be trained is even

larger, which further complicates the problem.
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Table 5.1: Important Mathematical Notations

Notation Description
R The set of real numbers
r The number of possible items in sequences.
si A sequence of categorical items.
x(t)
i The t-th item in sequence si.

tmax The maximum length of sequences in a dataset.
si A one-hot encoded sequence in the form of a matrix si 2 Rtmax⇥r .

x(t)
i A one-hot encoded item at t-th time step in a sequence.
vi An attribute vector.
pi An attributed sequence. i.e., pi = (vi, si)
pi An n-dimensional feature vector of attributed sequence pi.
⌦ A function transforming each attributed sequence to a feature vector.
d A distance function. e.g., Mahalanobis distance, Manhattan distance.
� An activation function within fully connected neural networks.

Possible choices include ReLU and tanh.
� A logistic activation function within LSTM, i.e., �(z) = 1

1+e�z

5.2 The OLAS Model

5.2.1 Approach

In this work, we adopt an approach from the distance metric learn-

ing perspective. Distance metric learning methods are well known for

several important applications, such as face recognition, image classi-

fication, etc. Distance metric learning is capable of disseminating data

based on their dissimilarities using pairwise training samples. Recent

work [32] has empirically demonstrated the effectiveness of the distance

metric learning approach. In addition to the pairwise training samples,
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there are two key components in distance metric learning: a similar-

ity label depicting whether the training pair is similar and a distance

function d. The similar and dissimilar pairs can be randomly generated

using the class labels [32]. We define attributed sequence triplets in Def-

inition 6.

Definition 6 (Attributed Sequence Triplets) An attributed sequence

triplet (pi, pj, `ij) consists of two attributed sequences pi, pj, and a simi-

larity label `ij 2 {0, 1}. The similarity label indicates whether pi and pj

belong to the same class (`ij = 0) or different classes (`ij = 1). We denote

P = {(pi, pj, `ij)|`ij = 0} as the positive set and N = {(pi, pj, `ij)|`ij = 1} as

the negative set.

However, attributed sequences are not naturally represented as fea-

ture vectors. Therefore, we define a transformation function ⌦(pi;!)

parameterized by ! as a part of the predictor ⇥. ⌦ uses attributed se-

quences as the inputs and generates the corresponding feature vectors

as the outputs. With two attributed sequences pi and pj as inputs, the
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n-dimensional feature vectors of the respective attributed sequences are:

pi = ⌦(pi;!)

pj = ⌦(pj;!)

pi,pj 2 Rn

(5.2)

The other key component in distance metric learning approaches is

a distance function (e.g., Mahalanobis distance [26], Manhattan dis-

tance [6]). A distance function is applied to the feature vectors in dis-

tance metric learning.

Distance metric learning-based approaches often use the Mahalanobis

distance [26, 28], which can be equivalent to the Euclidean distance [26].

Using the two feature vectors of attributed sequences in Equation 5.2,

the Mahalanobis distance can be written as:

d!(pi,pj) =
q
(pi � pj)>⇤(pi � pj) (5.3)

where d! is a specific form of distance function d denoting the inputs

(i.e., pi,pj) are the results of transformations using parameter !. ⇤ 2

Rn⇥n is a symmetric, semi-definite, and positive matrix, and ⇤ can be
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decomposed as:

⇤ = �>�, (5.4)

where � 2 Rf⇥n, f  n. By [70], Equation 5.3 is equivalent to:

d!(pi,pj) =
q
(pi � pj)>�>�(pi � pj)

= k�pi � �pjk2.
(5.5)

Instead of directly minimizing the loss of the predictor function ⇥

predicting a label of each attributed sequence as in Equation 5.1, we can

now achieve the same training goal by minimizing the loss of predicting

whether a pair of attributed sequences belong to the same class using

distance metric learning-based methods. The overall objective can be

written as:

minimize
!

X

(pi,pj ,`ij)2P[N

L (d! (pi,pj) , `ij) (5.6)

In recent work on distance metric learning applications [6, 26], deep

neural networks are serve as the nonlinear transformation function ⌦.

Deep neural networks can effectively learn the features from input data

without requiring domain-specific knowledge [32], and also generalize

the knowledge for future predictions and inferences. These advantages

make neural networks become an ideal solution for one-shot learning.
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PredictNet

Figure 5.1: The network architecture of OLAS. The concatenation only

happens after the last time step of the sequence so the information of the

complete sequence is used.

5.2.2 OLAS Model Design

We next describe the design of the two key components of the OLAS

model. First, we design a CoreNet for the nonlinear transformation of

attributed sequences. Then, a PredictNet is designed to learn from the

contrast of attributed sequences with different class labels. The specific

parameters of the OLAS used in our experiments are detailed in Sec-

tion 5.3.

The two main networks in CoreNet, a fully connected neural net-

work with m layers and a long short-term memory (LSTM) network [25],

correspond to the tasks of encoding the information from attributes and

sequences in attributed sequences, respectively. By augmenting with

another layer of fully connected neural network on top of the concate-
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nation of the above networks, CoreNet is also capable of learning the

attribute-sequence dependencies.

Given the input of an attribute vector vk 2 Ru, we define a fully con-

nected neural network with m layers as:

↵↵↵1 = � (W1vi + b1)

↵↵↵2 = � (W2↵↵↵1 + b2)

...

↵↵↵m = � (Wm↵↵↵m�1 + bm)

(5.7)

where � is a nonlinear transformation function. Although we use hy-

perbolic tangent tanh in our model, other nonlinear functions such as

rectified linear unit (ReLu) [47] can also be used depending on the em-

pirical results. We denote the weights and bias parameters as:

WF = [W1, · · · ,Wm]
>,bF = [b1, · · · ,bm]

> (5.8)

Note that the choice of m is task-specific. Although neural networks with

more layers are better at learning hierarchical structure in the data, it

is also observed that such networks are challenging to train due to the
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multiple nonlinear mappings that prevent the information and gradient

passing along the computation graph [52].

WF and bF are used to transform the input of each layer to a lower di-

mension. This transformation is imperative given the often large num-

ber of dimensions of attribute vectors in real-world applications. Dif-

ferent from attribute vectors, the categorical items in the sequences in

attributed sequences obey temporal ordering. The information of se-

quences is not only in the item values, but more importantly, in the tem-

poral ordering of these items. In this vein, the CoreNet also utilizes

an LSTM network. LSTM is capable of handling not only the ordering

of items, but also the dependencies between different items in the se-

quences. Given a sequence si as the input, we use an LSTM [25] to
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process each item x(t)
k in this sequence as:

i(t) = �
⇣
Wix

(t)
k +Uih

(t�1) + bi

⌘

f (t) = �
⇣
Wfx

(t)
k +Ufh

(t�1) + bf

⌘

o(t) = �
⇣
Wox

(t)
k +Uoh

(t�1) + bo

⌘

g(t) = tanh
⇣
Wcx

(t)
k +Uch

(t�1) + bc

⌘

c(t) = f (t) � c(t�1) + i(t) � g(t)

h(t) = o(t) � tanh
�
c(t)

�

(5.9)

where � is a sigmoid activation function, � denotes the bitwise multipli-

cation, i(t), f (t) and o(t) are the internal gates of the LSTM, c(t) and h(t)

are the cell and hidden states of the LSTM. Without loss of generality,

we denote LSTM kernel parameters WL, recurrent parameters UL and

bias parameters bL as:

WL = [Wi,Wf,Wo,Wc]
>

UL = [Ui,Uf,Uo,Uc]
>

bb = [bi,bf,bo,bc]
>

(5.10)

The attribute vectors and sequences are processed simultaneously and

the outputs of both networks are concatenated together. Instead of using
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the outputs of the LSTM at every time step, we only concatenate the

last output from the LSTM to the output of the fully connected neural

network so that the complete sequence information is used. After that,

another layer of the fully connected neural network is used to capture

the dependencies between attributes and sequences. Given the output

dimensions of ↵↵↵m and h(t) as nm and nl, respectively, the concatenation

and the last fully connected layer of CoreNet can be written as:

pi = �
�
Wp

�
↵↵↵m � h(ti)

�
+ bp

�
(5.11)

where � represents the concatenation of two vectors, Wp 2 Rn⇥(nm+nl)

and bp 2 Rn denote the weight matrix and bias vector in this fully con-

nected layer for an n-dimensional output. In summary, the CoreNet can

be written as:

⌦ :
�
Ru,Rtmax⇥r

�
7! Rn (5.12)

The two outputs of CoreNet (pi and pj) are first generated. Then,

pi, pj and the similarity label `ij, are used by the PredictNet to learn the

similarities and differences between them. The PredictNet is designed

to utilize a contrastive loss function [23] so that attributed sequences

in different categories are disseminated. The contrastive loss function

is composed of two parts: a partial loss for the dissimilar pairs and a
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Algorithm 3 Training using attributed sequence triplets
INPUT: A positive set P and a negative set N of attributed sequence

triplets, the number of layers in fully connected neural networks m,
learning rate �, number of iterations � and convergence error ✏.

OUTPUT: Parameters of OLAS ({WF,bF,WL,UL,bL}).
1: Initialize OLAS network.
2: for each �0 = 1, · · · ,� do . � is the maximum number of training

epochs.
3: for each (pi, pj, `ij) 2 P [N do
4: pi  ⌦(pi;!).
5: pj  ⌦(pj;!).
6: Compute d!. . Equation 5.5.
7: Compute the loss L�0(pi,pj, `ij). . Equation 5.13.
8: if |L�0(pi,pj, `ij)� L�0�1(pi,pj, `ij)|< ✏ then
9: break . Early stopping to avoid overfitting.

10: else
11: Compute @L

@d!
, @d!@⌦ . . Equation 5.16, 5.17.

12: Compute rL. . Equation 5.14.
13: Update network parameters. . Equation 5.24.
14: end if
15: end for
16: end for

partial loss for similar pairs. The specific form of contrastive loss of

PredictNet can be written as:

L(pi,pj, `ij) =
1

2
`ij

h
max (0, ⇠� d!(pi,pj))

i2

| {z }
Partial loss for dissimilar pairs.

+
1

2
(1� `ij)d

2
!(pi,pj)

| {z }
Partial loss for similar pairs

(5.13)
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where ⇠ is a margin parameter used to prevent the dataset being re-

duced to a single point [70]. That is, the attributed sequences with `ij = 1

are only used to adjust the parameters in the transformation function ⌦

if the distance between them is larger than ⇠. The architecture of OLAS

is illustrated in Figure 5.1.

5.2.3 OLAS Model Training

With the contrastive loss L computed using Equation 5.13, we can now

calculate the gradient rL, which is used to adjust parameters in the

network as:

rL ⌘


@L
@WF

,
@L
@bF

,
@L
@WL

,
@L
@UL

,
@L
@bL

�
(5.14)

With the transformation function ⌦ and distance function d, the explicit

form of rL can be written as:

rL =
@L
@d!

@d!
@⌦


@↵↵↵m

@WF
,
@↵↵↵m

@bF
,
@h(ti)

@WL
,
@h(ti)

@UL
,
@h(ti)

@bL

�
(5.15)

where

@L
@d!

= �`ij max(0, ⇠�d!(pi,pj))

+ (1� `ij)d!(pi,pj)

(5.16)
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@d!
@⌦

= (pi � pj) · (1� (pi � pj)) (5.17)

where 1 is a vector filled with ones.

For the m-th layer in a fully connected neural network, we employ

the following update functions:

@↵↵↵m

@Wm
= ↵↵↵m (1�↵↵↵m)↵↵↵m�1

@↵↵↵m

@bm
= ↵↵↵m (1�↵↵↵m�1)

(5.18)

Here we use three steps to explain how OLAS back-propagates the

gradients. We use a �µ,⌫ function to simplify the equations with µ =

{i, f, o} and ⌫ = {i, f, o, c}:

�µ,⌫ =

8
>><

>>:

1, if µ = ⌫

0, otherwise
(5.19)
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First, we have the following equations for h(t) and c(t):

@h(t)

@W⌫
=

@o(t)

@W⌫
� tanh (c(t)) + o(t)

� (1� tanh2(c(t)))
@c(t)

@W⌫

@h(t)

@U⌫
=

@o(t)

@U⌫
� tanh(c(t)) + o(t)

� (1� tanh2(c(t)))
@c(t)

@U⌫

@h(t)

@b⌫
=

@o(t)

@b⌫
� tanh(c(t)) + o(t)

� (1� tanh2(c(t)))
@c(t)

@b⌫

(5.20)

@c(t)

@W⌫
=

@f (t)

@W⌫
� c(t�1) + f (t) � @c(t�1)

@W⌫
+

@i(t)

@W⌫
� g(t) + i(t) � @g(t)

@W⌫

@c(t)

@U⌫
=

@f (t)

@U⌫
� c(t�1) + f (t) � @c(t�1)

@U⌫
+

@i(t)

@U⌫
� g(t) + i(t) � @g(t)

@U⌫

@c(t)

@b⌫
=

@f (t)

@b⌫
� c(t�1) + f (t) � @c(t�1)

@b⌫
+

@i(t)

@b⌫
� g(t) + i(t) � @g(t)

@b⌫

(5.21)
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Then, we have the following equations for i(t), f (t) and o(t):

@�µ

@W⌫
= �µ(1��µ)↵

(t)�µ,⌫

@�µ

@U⌫
= �µ(1��µ)h

(t�1)�µ,⌫

@�µ

@b⌫
= �µ(1��µ)�µ,⌫

(5.22)

where �i = i(t), �f = f (t) and �o = o(t).

Finally, we have the gradients for g(t) as:

@g(t)

@W⌫
= (1� (g(t))2)↵(t)�c,⌫

@g(t)

@U⌫
= (1� (g(t))2)h(t�1)�c,⌫

@g(t)

@b⌫
= (1� (g(t))2)�c,⌫

(5.23)
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With the learning rate �, the parameters WF,WL,UL,bF and bL can

be updated by the following equation until convergence is achieved:

WF = WF � �
@L
@WF

bF = bF � �
@L
@bF

WL = WL � �
@L
@WL

UL = UL � �
@L
@UL

bL = bL � �
@L
@bL

(5.24)

We summarize the algorithms for updating the OLAS network in Algo-

rithm 3.

5.2.4 Labeling Attributed Sequences

Once we have trained the OLAS network to recognize the similarities

and dissimilarities between exemplars of attributed sequence pairs. The

OLAS is then ready to be used to assign labels to unlabeled attributed

sequences in one-shot learning. Given a test attributed sequence pk from

a set K of unlabeled instances, a set G = {pg}Gg=1 of attributed sequences

with G categories, in which there is only one instance per category, and
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the goal is to classify pk into one of G categories. We can now use the

OLAS network with only one forward pass to calculate the distance be-

tween pk with each of the G attributed sequences and the label of the

instance that is closest to pk is then assigned as the label of pk. This

process can be defined using maximum similarity as:

bck = argmin
g

d!(pk,pg) (5.25)

where bck is the predicted label of pk.

5.3 Experiments

5.3.1 Datasets

Our solution has been motivated in part by use case scenarios observed

at Amadeus related to attributed sequences. For this reason, we now

work with the log files of an Amadeus [2] internal application. Also,

we apply our methodology to real-world, public available Wikispeedia

data [68]. We summarize the data descriptions as follows:

• Amadeus data (AMS1⇠AMS6). We sampled six datasets from

the log files of an internal application at Amadeus IT Group. Each
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attributed sequence is composed of a user profile containing infor-

mation (e.g., system configuration, office name) and a sequence of

function names invoked by web click activities (e.g., login, search)

ordered by time.

• Wikispeedia data (WS1⇠WS6). Wikispeedia is an online game

requiring participants to click through from a given start page to

an end page using fewest clicks [68]. We select the finished path

and extract several properties of each path (e.g., the category of

the start path, time spent per click). We also sample six datasets

from Wikispeedia. The Wikispeedia data is available through the

Stanford Network Analysis Project1 [37].

Following the protocols in recent work [32], we utilize the attributed

sequences associated with 60% of categories to generate attributed se-

quence triplets and use them in training.

The class labels used in training and one-shot learning are disjoint

sets. Similar to the strategy in [34], where the authors designed a 20-

way classification task that attempts to match an alphabet with one of

the twenty possible classes, we randomly select one instance in the one-

shot learning set and attempt to give it a correct label. We selected
1https://snap.stanford.edu/data/wikispeedia.html
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Table 5.2: Number of Classes in Datasets

Dataset Training One-shot Learning
AMS1, WS1 6 4
AMS2, WS2 12 8
AMS3, WS3 18 12
AMS4, WS4 24 16
AMS5, WS5 30 20
AMS6, WS6 36 24

Table 5.3: Compared Methods

Name Data Used Note
OLAS Attributed Sequences This Work

OLASEmb Attributed Sequence Embeddings This work + [79]
ATT Attributes Only [32]
SEQ Sequence Only [57] + [32]

2000 instances for each set used in one-shot learning and compute the

accuracy. We summarize the number of classes in Table 5.2.

5.3.2 Compared Methods

We focus on one-shot learning methods on different data types. We sum-

marize the compared methods in Table 6.2. Specifically, we compare the

performance of the following one-shot learning methods:

• OLAS: We first evaluate our proposed method using attributed se-

quences data.

• OLASEmb: Instead of using the attributed sequence instances as

input, we use the embeddings of attributed sequences as the input.
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Algorithm 4 One-shot learning for attributed sequences.
INPUT: Trained networks CoreNet ⌦ and PredictNet, a set of unlabeled

attributed sequences K, a set of labeled attributed sequence with one
example per class G and a distance function d.

OUTPUT: A set of labeleled attributed sequences K0.
1: K0  ;
2: for each pk 2 K do
3: " +1 . Set initial minimum distance to +1
4: pk  ⌦(pk;!)
5: for each (pg, cg) 2 G do
6: pg  ⌦(pg;!)
7: if d(pk,pg)  " then
8: " d!(pk,pg) . Using PredictNet.
9: bck  cg . Assign the same label of pg to pk.

10: end if
11: K0  (pk, bck)
12: end for
13: end for
14: return K

We want to find out whether a simpler heuristic combination of

state-of-the-art would achieve better performance.

• ATT: This is the state-of-the-art method [32] using only attributes

of the data.

• SEQ: We combine the state-of-the-art in one-shot learning [32] with

sequence-to-sequence learning [57] to be able to utilize sequences

in one-shot learning.
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(a) Dataset AMS1 (b) Dataset AMS2 (c) Dataset AMS3

(d) Dataset AMS4 (e) Dataset AMS5 (f) Dataset AMS6

Figure 5.2: Accuracy of the label prediction on AMS datasets using Eu-

clidean distance function.

5.3.3 Experiment Settings

5.3.3.1 Protocols

The goal of one-shot learning is to correctly assign class labels to each

instance. In order to compare with state-of-the-art work [32, 6], we

also use accuracy to evaluate the performance. A higher accuracy score

means a method could make more correct class label predictions. For

each experiment setting, we repeat ten times and report the median, 25

percentile and 75 percentile of the results using error bars. For each

training process using attributed sequence triplets, we hold out 20% of

the training data as the validation set. The holdout portion is not lim-
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(a) Dataset WS1 (b) Dataset WS2 (c) Dataset WS3

(d) Dataset WS4 (e) Dataset WS5 (f) Dataset WS6

Figure 5.3: Accuracy of the label prediction on Wikispeedia datasets us-

ing Euclidean distance function.

ited to the instances with certain labels, but instead, they are randomly

chosen from all possible classes.

5.3.3.2 Network Initialization and Settings

Gradient-based methods often require a careful initialization of the neu-

ral networks. In our experiments, we use normalized random distribu-

tion [20] to initialize weight matrices WF and WL, orthogonal matrix

is used to initialize recurrent matrices UL and biases are initialized to

zero vector 000. Specifically, the m-th layer of the fully connected neural

network is initialized as:

Wm ⇠ Uniform

"
�

p
6p

nm�1 + nm+1
,

p
6p

nm�1 + nm+1

#
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where nm is the output dimension of the m-th layer. There are three lay-

ers used in our experiments. Meanwhile, the weight matrices Wi,Wf,Wo,Wc

are initialized as:

Wi,Wf,Wo,Wc ⇠ Uniform

�
r

6

nl
,

r
6

nl

�

where nl is the dimension of the output. In our experiments, we use 50

dimensions for both nl and nm. We utilize `2-regularization with early

stopping to avoid overfitting. The validation set is composed of 20% of

the total amount of attributed sequence triplets in the training set.

5.3.3.3 Performance Studies

In this section, we present the performance studies of the proposed OLAS

network and compare it with techniques in the state-of-the-art.

5.3.3.4 Varying number of training triplets

Figure 5.2 and 5.3 present the results where each setting has a fixed

number of labels while the number of training triplets increases. Based

on the experiment result figures, we have the following observations:
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(a) Dataset AMS1 (b) Dataset AMS2 (c) Dataset AMS3

(d) Dataset AMS4 (e) Dataset AMS5 (f) Dataset AMS6

Figure 5.4: Accuracy of the label prediction on AMS datasets using Man-

hattan distance function.

• As more triplets being used in the training process, the accuracy

of one-shot learning keeps increasing with the trained OLAS net-

work. Intuitively, with more examples demonstrated to the OLAS,

it could better gain a better capability of generalization, even though

the data instances used in one-shot learning are previously unseen.

• Overfitting challenges the performance of all one-shot learning ap-

proaches. Although we use early stopping and `2-regularization in

all experiments, overfitting can still be challenging due to there is

only one example per class in one-shot learning.

• OLAS can achieve better performance than other baseline meth-

ods when there are more possible classes. While OLAS maintains
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(a) Dataset WS1 (b) Dataset WS2 (c) Dataset WS3

(d) Dataset WS4 (e) Dataset WS5 (f) Dataset WS6

Figure 5.5: Accuracy of the label prediction on Wikispeedia datasets us-

ing Manhattan distance function.

a stable performance outperforming state-of-the-art under various

parameter settings, OLAS can achieve a better performance when

the classification task become harder with more possible class la-

bels.

5.3.3.5 Observations using different datasets

Different from the synthetic datasets, the real-world applications often

consist of diverse and noisy data instances. It is also interesting to exam-

ine the results using different real-world datasets. We find that the per-

formance of OLAS remains superior when we use the twelve datasets

sampled from two real-world applications.



119

5.3.3.6 Advantage of the end-to-end model

Although it is possible to use attributed sequence embeddings [79] with

one-shot learning, the experiment results have proven that the perfor-

mance of the end-to-end solution in this work is far superior to and more

stable than OLASEmb. Specifically, the performance of our closest base-

line method OLASEmb has varied more compared to all other methods.

Building an end-to-end model allows the back-propagation of gradient

throughout all layers in the OLAS model. On the other hand, the two

gradients in OLASEmb, i.e., the gradient in the model for generating

attributed sequence embedding and the gradient in one-shot learning

model, are independent and thus the parameters within this method

cannot be better adjusted than our solution OLAS.

5.3.3.7 Effect of different distance functions.

Recent work [6] has observed significant differences in performance when

using different distance functions. Here, we substitute the Euclidean

distance function with the Manhattan distance function to see the per-

formance of all compared methods. We observe that the proposed OLAS

model is capable of achieving the best results despite which one of the

two distance functions are used.



Chapter 6

Attention Model for Attributed

Sequence Classification
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6.1 Problem Definition.

We formulate the attributed sequence classification problem as the prob-

lem of finding the parameters ✓ of a predictor ⇥ that minimizes the

prediction error of class labels. Intuitively, we want to maximize the

possibility of correctly predicting labels when given a training set P =

{p1, · · · , pk} of k attributed sequences. Thus, we formulate the training

process as an optimization process:

argmin
✓
�
X

i

Pr(li) log Pr (⇥ (pi)) (6.1)

Our goal is to find the parameters that minimize the categorical cross-

entropy loss between the predicted labels using parameters in function

⇥ and the true labels for all attributed sequences in the dataset.

6.2 Attributed Sequence Attention Mecha-

nism

The proposed AMAS model has three components, one AttNet for learn-

ing the attribute information, one SeqNet to learn the sequential infor-
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Table 6.1: Important Mathematical Notations
Notation Description

R The set of real numbers.
P A set of attributed sequences.
r The number of all possible items in sequences.
si A sequence of categorical items.
x(t)
i The t-th item in sequence si.

tmax The maximum length of sequences.
si A one-hot encoded sequence in the form of a matrix si 2

Rtmax⇥r .
x(t)
i A one-hot encoded item at t-th time step.
vi An attribute vector.
pi An attributed sequence. i.e., pi = (vi, si)
pppi A feature vector of attributed sequence pi.
µµµi Attention weights.
↵↵↵i Attention vector.

mation, and one Attention Block to learn the attention from both

attributes and sequences.

6.2.1 Network Components.

6.2.1.1 AttNet

We build AttNet using fully connected neural network denoted as:

f (A;Wr,br) = tanh(WrA+ br) (6.2)

where Wa and ba are two trainable parameters in the AttNet, denoting

the weight matrix and bias vector, respectively. We use the activation
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function tanh here in our AttNet based on our empirical studies. Other

choices, such as ReLu or sigmoid, may work equally well in other real-

world scenarios.

When given an attributed sequence pi = (vi, si), AttNet takes the

attributes as input and generates an attribute vector rrri = f(vi;Wr,br).

Different from previous work in [10, 64] using stacked fully connected

neural network as autoencoder, where the training goal is to minimize

the reconstruction error, our goal of AttNet is to work together with

other network components to maximize the possibility of predicting the

correct labels.

label

<latexit sha1_base64="ADKMcMXvsu2NNlos2DzQTmTH55M=">AAAB+nicbZC7TsMwFIadcivllsLIYlEhlaVKWGCsxNKxSPQitSFyXKe1ajuW7YCqkEdhYQAhVp6EjbfBbTNAyy9Z+vSfc3SO/0gyqo3nfTuljc2t7Z3ybmVv/+DwyK0ed3WSKkw6OGGJ6kdIE0YF6RhqGOlLRRCPGOlF05t5vfdAlKaJuDMzSQKOxoLGFCNjrdCtDiWPMpmH9D6rm5Be5KFb8xreQnAd/AJqoFA7dL+GowSnnAiDGdJ64HvSBBlShmJG8sow1UQiPEVjMrAoECc6yBan5/DcOiMYJ8o+YeDC/T2RIa71jEe2kyMz0au1uflfbZCa+DrIqJCpIQIvF8UpgyaB8xzgiCqCDZtZQFhReyvEE6QQNjatig3BX/3yOnQvG77lW6/WbBVxlMEpOAN14IMr0AQt0AYdgMEjeAav4M15cl6cd+dj2VpyipkT8EfO5w9QAJQF</latexit><latexit sha1_base64="vBafdyN+0zK7W+2Mnb7Mw66iwFo=">AAAB/nicbZDLSgMxFIYz9VbrbVRcuQkWoS4sM250WXDTZQV7gXYcMmmmDU0yIckIZRjwVdy4UMStz+HOtzFtZ6GtPwQ+/nMO5+SPJKPaeN63U1pb39jcKm9Xdnb39g/cw6OOTlKFSRsnLFG9CGnCqCBtQw0jPakI4hEj3WhyO6t3H4nSNBH3ZipJwNFI0JhiZKwVuicDyaNM5iF9yGompPAS+hd56Fa9ujcXXAW/gCoo1Ardr8EwwSknwmCGtO77njRBhpShmJG8Mkg1kQhP0Ij0LQrEiQ6y+fk5PLfOEMaJsk8YOHd/T2SIaz3lke3kyIz1cm1m/lfrpya+CTIqZGqIwItFccqgSeAsCzikimDDphYQVtTeCvEYKYSNTaxiQ/CXv7wKnau6b/nOqzaaRRxlcArOQA344Bo0QBO0QBtgkIFn8ArenCfnxXl3PhatJaeYOQZ/5Hz+AO5VlMs=</latexit>

<latexit sha1_base64="L7u7aA1n2MxZ5G7ot1dxzmoeIKg=">AAAB/nicbZDLSgMxFIYzXmu9jYorN8Ei1IVlphtdFtx0WcFeoB2HTJppQ5NMSDJCGQZ8FTcuFHHrc7jzbUzbWWjrD4GP/5zDOfkjyag2nvftrK1vbG5tl3bKu3v7B4fu0XFHJ6nCpI0TlqhehDRhVJC2oYaRnlQE8YiRbjS5ndW7j0Rpmoh7M5Uk4GgkaEwxMtYK3dOB5FEm85A+ZFUTUngF65d56Fa8mjcXXAW/gAoo1Ardr8EwwSknwmCGtO77njRBhpShmJG8PEg1kQhP0Ij0LQrEiQ6y+fk5vLDOEMaJsk8YOHd/T2SIaz3lke3kyIz1cm1m/lfrpya+CTIqZGqIwItFccqgSeAsCzikimDDphYQVtTeCvEYKYSNTaxsQ/CXv7wKnXrNt3znVRrNIo4SOAPnoAp8cA0aoAlaoA0wyMAzeAVvzpPz4rw7H4vWNaeYOQF/5Hz+AO/blMw=</latexit>

<latexit sha1_base64="xG38QQC07e6MA225THseZGyyqsY=">AAAB/nicbZDLSgMxFIYzXmu9jYorN8Ei1IVlRhe6LLjpsoK9QDsOmTTThiaZkGSEMgz4Km5cKOLW53Dn25i2s9DWHwIf/zmHc/JHklFtPO/bWVldW9/YLG2Vt3d29/bdg8O2TlKFSQsnLFHdCGnCqCAtQw0jXakI4hEjnWh8O613HonSNBH3ZiJJwNFQ0JhiZKwVusd9yaNM5iF9yKompPACXp3noVvxat5McBn8AiqgUDN0v/qDBKecCIMZ0rrne9IEGVKGYkbycj/VRCI8RkPSsygQJzrIZufn8Mw6Axgnyj5h4Mz9PZEhrvWER7aTIzPSi7Wp+V+tl5r4JsiokKkhAs8XxSmDJoHTLOCAKoINm1hAWFF7K8QjpBA2NrGyDcFf/PIytC9rvuU7r1JvFHGUwAk4BVXgg2tQBw3QBC2AQQaewSt4c56cF+fd+Zi3rjjFzBH4I+fzB/FhlM0=</latexit>

<latexit sha1_base64="4stvxtR8vdPBr6FgmJp1Ow2TLuI=">AAACEnicbVDLSsNAFJ34rPUVHzs3g0Wom5K40WXBTZcV7APaGibTm3boZBJmJkIN+Qs/wK1+gjtx6w/4Bf6GkzYL23rgwuGce7mH48ecKe0439ba+sbm1nZpp7y7t39waB8dt1WUSAotGvFIdn2igDMBLc00h24sgYQ+h44/uc39ziNIxSJxr6cxDEIyEixglGgjefZpPyR67AfpOPPYQ1rVHrvMPLvi1JwZ8CpxC1JBBZqe/dMfRjQJQWjKiVI914n1ICVSM8ohK/cTBTGhEzKCnqGChKAG6Sx9hi+MMsRBJM0IjWfq34uUhEpNQ99s5lnVspeL/3m9RAc3g5SJONEg6PxRkHCsI5xXgYdMAtV8agihkpmsmI6JJFSbwha+JPFIAkyysmnGXe5hlbSvaq7hd06l3ig6KqEzdI6qyEXXqI4aqIlaiKIn9IJe0Zv1bL1bH9bnfHXNKm5O0AKsr18TaZ42</latexit>

<latexit sha1_base64="fIhE3XJKD6Ju2RQNMiQg1cqc+qw=">AAACFHicbVDLSsNAFJ3UV62vqODGTbAIdWFJ3Oiy4KbLCvYBbQyT6U07dDIJMxOhxPyGH+BWP8GduHXvF/gbTtosbOuBC4dz7uUejh8zKpVtfxultfWNza3ydmVnd2//wDw86sgoEQTaJGKR6PlYAqMc2ooqBr1YAA59Bl1/cpv73UcQkkb8Xk1jcEM84jSgBCsteebJIMRq7AfpOPPoQ1pTHr10LjLPrNp1ewZrlTgFqaICLc/8GQwjkoTAFWFYyr5jx8pNsVCUMMgqg0RCjMkEj6CvKcchSDed5c+sc60MrSASeriyZurfixSHUk5DX2/maeWyl4v/ef1EBTduSnmcKOBk/ihImKUiKy/DGlIBRLGpJpgIqrNaZIwFJkpXtvAliUcCYJJVdDPOcg+rpHNVdzS/s6uNZtFRGZ2iM1RDDrpGDdRELdRGBD2hF/SK3oxn4934MD7nqyWjuDlGCzC+fgEDc56o</latexit><latexit sha1_base64="Ke/PTVZ4ZdRKaS+UpAaqFP1C+2Q=">AAACFHicbVDLSsNAFJ34rPUVFdy4CRahLixJN7osuOmygn1AG8NketMOnUzCzEQoMb/hB7jVT3Anbt37Bf6GkzYL23rgwuGce7mH48eMSmXb38ba+sbm1nZpp7y7t39waB4dd2SUCAJtErFI9HwsgVEObUUVg14sAIc+g64/uc397iMISSN+r6YxuCEecRpQgpWWPPN0EGI19oN0nHn0Ia0qj17VLzPPrNg1ewZrlTgFqaACLc/8GQwjkoTAFWFYyr5jx8pNsVCUMMjKg0RCjMkEj6CvKcchSDed5c+sC60MrSASeriyZurfixSHUk5DX2/maeWyl4v/ef1EBTduSnmcKOBk/ihImKUiKy/DGlIBRLGpJpgIqrNaZIwFJkpXtvAliUcCYJKVdTPOcg+rpFOvOZrf2ZVGs+iohM7QOaoiB12jBmqiFmojgp7QC3pFb8az8W58GJ/z1TWjuDlBCzC+fgEFDp6p</latexit><latexit sha1_base64="gtMV6IvthKa+4HOrlS3TCoXpQLM=">AAACFHicbVDLSsNAFJ34rPUVFdy4GSxCXVgSXeiy4KbLCvYBbQyT6U07dPJgZiKUmN/wA9zqJ7gTt+79An/DSZuFbT1w4XDOvdzD8WLOpLKsb2NldW19Y7O0Vd7e2d3bNw8O2zJKBIUWjXgkuh6RwFkILcUUh24sgAQeh443vs39ziMIyaLwXk1icAIyDJnPKFFacs3jfkDUyPPTUeayh7SqXHZxdZ65ZsWqWVPgZWIXpIIKNF3zpz+IaBJAqCgnUvZsK1ZOSoRilENW7icSYkLHZAg9TUMSgHTSaf4Mn2llgP1I6AkVnqp/L1ISSDkJPL2Zp5WLXi7+5/US5d84KQvjREFIZ4/8hGMV4bwMPGACqOITTQgVTGfFdEQEoUpXNvcliYcCYJyVdTP2Yg/LpH1ZszW/syr1RtFRCZ2gU1RFNrpGddRATdRCFD2hF/SK3oxn4934MD5nqytGcXOE5mB8/QIGqZ6q</latexit>

<latexit sha1_base64="PpMKZZDOERBR3fzPSrAUq4Anq2E=">AAACF3icbZC7SgNBFIZnvcZ4W7USm8EgxMKwq4WWAZuUEcwFknWZnZwkQ2Z3h7kIYQk+hw9gq49gJ7aWPoGv4eRSmMQfBj7+cw7nzB8JzpT2vG9nZXVtfWMzt5Xf3tnd23cPDusqNZJCjaY8lc2IKOAsgZpmmkNTSCBxxKERDW7H9cYjSMXS5F4PBQQx6SWsyyjR1grd47aII9w2gnDRJyF7yIo6ZBdX56PQLXglbyK8DP4MCmimauj+tDspNTEkmnKiVMv3hA4yIjWjHEb5tlEgCB2QHrQsJiQGFWSTL4zwmXU6uJtK+xKNJ+7fiYzESg3jyHbGRPfVYm1s/ldrGd29CTKWCKMhodNFXcOxTvE4D9xhEqjmQwuESmZvxbRPJKHapja3xYieBBiM8jYZfzGHZahflnzLd16hXJlllEMn6BQVkY+uURlVUBXVEEVP6AW9ojfn2Xl3PpzPaeuKM5s5QnNyvn4B3lufnA==</latexit> <latexit sha1_base64="H6MicVZRsgm5uNpml8x+0mrWeYA=">AAACF3icbZC7SgNBFIZnvcZ4W7USm8EgxMKwm0bLgE3KCOYCSVxmJyfJkNndYS5CWBafwwew1UewE1tLn8DXcHIpTOIPAx//OYdz5g8FZ0p73reztr6xubWd28nv7u0fHLpHxw2VGEmhThOeyFZIFHAWQ10zzaElJJAo5NAMR7eTevMRpGJJfK/HAroRGcSszyjR1grc046IQtwxgnAxJAF7SIs6YFflyyxwC17Jmwqvgj+HApqrFrg/nV5CTQSxppwo1fY9obspkZpRDlm+YxQIQkdkAG2LMYlAddPpFzJ8YZ0e7ifSvljjqft3IiWRUuMotJ0R0UO1XJuY/9XaRvdvuimLhdEQ09mivuFYJ3iSB+4xCVTzsQVCJbO3YjokklBtU1vYYsRAAoyyvE3GX85hFRrlkm/5zitUqvOMcugMnaMi8tE1qqAqqqE6ougJvaBX9OY8O+/Oh/M5a11z5jMnaEHO1y/cwJ+b</latexit> <latexit sha1_base64="sGwEWObqlWop/xcIUUbIpJmyn+4=">AAACF3icbZDLSgMxFIYz9VbrrepK3ASLUBeWGTe6LLjpsoK9QKcOmfS0DU1mQpIRyjD4HD6AW30Ed+LWpU/ga5heFrb1h8DHf87hnPyh5Ewb1/12cmvrG5tb+e3Czu7e/kHx8Kip40RRaNCYx6odEg2cRdAwzHBoSwVEhBxa4eh2Um89gtIsju7NWEJXkEHE+owSY62geOJLEWI/kYTLIQnYQ1o2Abv0LrKgWHIr7lR4Fbw5lNBc9aD44/dimgiIDOVE647nStNNiTKMcsgKfqJBEjoiA+hYjIgA3U2nX8jwuXV6uB8r+yKDp+7fiZQIrccitJ2CmKFerk3M/2qdxPRvuimLZGIgorNF/YRjE+NJHrjHFFDDxxYIVczeiumQKEKNTW1hSyIHCmCUFWwy3nIOq9C8qniW79xStTbPKI9O0RkqIw9doyqqoTpqIIqe0At6RW/Os/PufDifs9acM585Rgtyvn4B2yWfmg==</latexit> <latexit sha1_base64="MnWrA8ArMV44XZwGxNStreia/FM=">AAACFXicbZC7TsMwFIadcivlFmBgYLGokMpSJSwwVmLpWCR6kdoQOe5Ja9VJLNtBqqI8Bw/ACo/AhliZeQJeA7fNQFt+ydKn/5yjc/wHgjOlHefbKm1sbm3vlHcre/sHh0f28UlHJamk0KYJT2QvIAo4i6GtmebQExJIFHDoBpO7Wb37BFKxJH7QUwFeREYxCxkl2li+fTYQUYAHqSBcjInPHrOa9tlV7ttVp+7MhdfBLaCKCrV8+2cwTGgaQawpJ0r1XUdoLyNSM8ohrwxSBYLQCRlB32BMIlBeNv9Aji+NM8RhIs2LNZ67fycyEik1jQLTGRE9Vqu1mflfrZ/q8NbLWCxSDTFdLApTjnWCZ2ngIZNANZ8aIFQycyumYyIJ1SazpS2pGEmASV4xybirOaxD57ruGr53qo1mkVEZnaMLVEMuukEN1EQt1EYU5egFvaI369l6tz6sz0VrySpmTtGSrK9f6WefKA==</latexit>

<latexit sha1_base64="+newLWYcyYdy8+Le/YujfRP7Bbk=">AAACBXicbZC7SgNBFIZnvcZ4i1raLAbBKuzaaBmwSRnBXCS7hNnJ2WTIzOwwFyEsqX0AW30EO7H1OXwCX8NJsoVJ/GHg4z/ncM78iWRUmyD49jY2t7Z3dkt75f2Dw6PjyslpW2dWEWiRjGWqm2ANjApoGWoYdKUCzBMGnWR8N6t3nkBpmokHM5EQczwUNKUEG2c9RpInEbd92q9Ug1owl78OYQFVVKjZr/xEg4xYDsIQhrXuhYE0cY6VoYTBtBxZDRKTMR5Cz6HAHHSczw+e+pfOGfhpptwTxp+7fydyzLWe8MR1cmxGerU2M/+r9axJb+OcCmkNCLJYlFrmm8yf/d4fUAXEsIkDTBR1t/pkhBUmxmW0tMXKoQIYT8sumXA1h3VoX9dCx/dBtd4oMiqhc3SBrlCIblAdNVATtRBBHL2gV/TmPXvv3of3uWjd8IqZM7Qk7+sXBHSZXw==</latexit>

<latexit sha1_base64="2ydsZNe4XjmBmh06scQwyESUH50=">AAACgHicbVHLSgMxFM2M7/qqulBwEyyCi6KTira4El3YpYpVoS1DJnOnhmYyQ5JRyjAb/9Iv0M8wbWeh1ssNHM4998FJkAqujed9OO7c/MLi0vJKZXVtfWOzurX9qJNMMeiwRCTqOaAaBJfQMdwIeE4V0DgQ8BQMr8f1p1dQmifywYxS6Md0IHnEGTWW8qvvvRAi2zuZlEt48xWERX5/c1XkpHVab7RsFrgyIwtEBqWucVYnxOqI959woABkqTxv1sm5V2+SotJL4wArP+eFX615x94k8CwgJaihMm796mcvTFgWgzRMUK27xEtNP6fKcCbAjs40pJQN6QC6Fkoag+7nk4sKfGiZEEeJsk8aPGF/duQ01noUB1YZU/Oi/9bG5H+1bmaiVj/nMs0MSDZdFGUCmwSPjcchV8CMGFlAmeL2VsxeqKLM2O/5tSVLx54Ni4p1hvz1YRY8No6JxXde7bJderSM9tEBOkIENdElaqNb1EEMfTkbzq6z57rukXvikqnUdcqeHfQr3ItvGufAXg==</latexit><latexit sha1_base64="2ydsZNe4XjmBmh06scQwyESUH50="></latexit><latexit sha1_base64="2ydsZNe4XjmBmh06scQwyESUH50="></latexit> <latexit sha1_base64="2ydsZNe4XjmBmh06scQwyESUH50="></latexit>

(a) Attributed Sequence Attention

(ASA).
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(b) Attributed Sequence Hybrid

Attention (ASHA).

Figure 6.1: Two types of attention for attributed sequence classification

in this task, where µµµi =
h
µµµ(1)
i , · · · ,µµµ(ti)

i

i
is the attention weights.
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6.2.1.2 SeqNet

Different from the attributes being unordered, items in our sequences

have a temporal ordering. The information about the sequences is in

both the item values and the ordering of items. The temporal order-

ings require a model that is capable of handling the dependencies be-

tween different items. There have been extensive studies on using recur-

rent neural networks (RNN) to handle temporal dependencies. However,

RNN suffers from the problem of exploding and vanishing gradient dur-

ing the training, where the gradient value becomes too large or too small

and thus the network becomes untrainable. Long Short-Term Memory

(LSTM) [25] is designed as one variation and expansion of the RNN to

handle such issues. LSTM is capable of “remembering” values over long

time intervals by introducing additional internal variables (i.e.various

“gates” and “cell states”). We use an LSTM to handle the dependencies.
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With a variable X(t) at time t, the SeqNet can be expressed as:

i(t) = �
�
WiX

(t) +Uih
(t�1) + bi

�

f (t) = �
�
WfX

(t) +Ufh
(t�1) + bf

�

o(t) = �
�
WoX

(t) +Uoh
(t�1) + bo

�

g(t) = tanh
�
WcX

(t) +Uch
(t�1) + bc

�

c(t) = f (t) � c(t�1) + i(t) � g(t)

h(t) = o(t) � tanh
�
c(t)

�

(6.3)

where � denotes the bitwise multiplication, � is a sigmoid activation

function, i(t), f (t) and o(t) are the internal gates of the LSTM, and c(t) and

h(t) are the cell and hidden states of the LSTM, respectively. We denote

the SeqNet as:

g(X(t);Ws,Us,bs) = h(t) (6.4)

where Ws = [Wi,Wf,Wo,Wc], Us = [Ui,Uf,Uo,Uc] and bs = [bi,bf,bo,bc].

With the sequence si =
h
x(1)
i , · · · ,x(ti)

i

i
as part of an attributed se-

quence pi, the hidden states for input x(t)
i are g

⇣
x(t)
i ;Ws,Us,bs

⌘
= h(t)

i .
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6.2.1.3 Attention Block

Recent work [45, 13] has identified that even LSTM-based solutions can-

not fully handle the sequence learning on long sequences that the in-

formation over a long time may be lost. One popular solution to this

problem is to incorporate the attention mechanism into the model. The

attention mechanism effectively summarizes the data with the aim to

leverage the importance of each item in the sequential input.

6.2.1.3.1 Attributed Sequence Attention (ASA). Different from the

common sequence attention models, we now need to incorporate the

attribute information into the learning process. Here, we design the

Attention Block as follows: First, we need to compute the attention

weight µµµ(t)
i at t-th time as:

g
⇣
x(t)
i

⌘
= h(t)

i

µµµ(t)
i =

exp
⇣
g
⇣
x(t)
i

⌘⌘

Pti
j=1 g

⇣
x(j)
i

⌘

Then, the attention weight is multiplied with the hidden state at each

time step:

↵↵↵(t)
i = µµµ(t)

i � g
⇣
x(t)
i

⌘
, t = 1, 2, · · · , ti (6.5)
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The attention weight µ(t)
i at t time is randomly initialized and incremen-

tally adjusted during the training process. The output at each time step

is then augmented with the outputs from AttNet as:

ppp(t)i = f(vi)�↵↵↵(t)
i

At the last time step ti, we denote pppi = ppp(ti)i to simply the notation.

6.2.1.3.2 Attributed Sequence Hybrid Attention (ASHA). Differ-

ent from the previous ASA approach, the outputs of AttNet and SeqNet

are augmented with the Attention Block. The attention weight is

written as:

d
⇣
vi,x

(t)
i

⌘
= f(vi)� g

⇣
x(t)
i

⌘

µµµ(t)
i =

exp
⇣
d
⇣
vi,x

(t)
i

⌘⌘

Pti
j=1 d

⇣
vi,x

(j)
i

⌘

Then, the vectors used for classification is:

↵↵↵(t)
i = µµµ(t)

i � d
⇣
vi,x

(t)
i

⌘
, t = 1, 2, · · · , ti (6.6)
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6.2.2 Attributed Sequence Classification

In the solution of attributed sequence classification without attention,

the AttNet and the SeqNet are first concatenated as:

pppi = d
⇣
vi,x

(ti)
i

⌘
= rrri � h(ti)

i (6.7)

Here, � denotes the concatenation and ti denotes the last item in si.

Although all attributed sequences in the dataset are zero-padded to the

maximum length tmax, the padded zero values are masked and not used

in the computation. We model the process of predicting the label for each

attributed sequence as:

⇥(pi) =

8
>>><

>>>:

�(Wppppi + bp), ASA or No Attention

�
⇣
Wp↵↵↵

(ti)
i + bp

⌘
, ASHA

where � is a sigmoid activation function and l̂i = ⇥(pi) is the predicted

label. The Wp and bp are both trainable in our model.
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6.2.3 Training

6.2.3.1 Regularization

We adopt multiple strategies for different components in our AMAS net-

work. We empirically select the following regularization strategies in

our model based on: (1). For SeqNet, we apply `2-regularization to the

recurrent unit. (2). Dropout with a rate of 0.5 is used to regularize the

fully connected layer in AttNet. (3). Lastly, we use Dropout with a rate

of 0.2 in other fully connected layers in the model. Based on our obser-

vations, using regularization on Attention Block has no significant

impact on the performance of AMAS.

6.2.3.2 Optimizer

We use an optimizer that computes the adaptive learning rates for ev-

ery parameters, referred to as Adaptive Moment Estimation (Adam) [31].

The core idea is to keep (1). an exponentially decaying average of gradi-

ents in the past and (2). a squared past gradient. Adam counteracts the
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biases as:

d!(t) =
�1!(t�1) + (1� �1)m(t)

1� �t
1

c⌫(t) =
�2⌫(t�1) + (1� �2)

�
m(t)

�2

1� �t
2

where �1 and �2 are the decay rates, and m(t) is the gradient. We adopt

�1 = 0.9 and �2 = 0.999 as in [31]. Finally, the Adam updates the param-

eters as:

�(t+1) = �(t) � ⇢q
c⌫(t) + ✏

d!(t)

where ⇢ is a static learning rate and ✏ is a constant with a small value

to avoid division errors, such as division by zero. We empirically select

⇢ = 0.01.

6.3 Experiments

6.3.1 Datasets

Our solution has been motivated by use case scenarios observed at Amadeus

corporation. For this reason, we work with the log files of an Amadeus [2]

internal application. The log files contain user sessions in the form of at-
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Table 6.2: Compared Methods

Name Data Used Attention Note
BLA Attributes No [24]
BLS Sequences No [65]

BLAS Attributes No [80]Sequences
SOA Sequences Yes [76]

ASA Attributes Yes This paperSequences

ASHA Attributes Yes This paperSequences

tributed sequences. Also, we apply our methodology to real-world, pub-

licly available Wikispeedia data [68] and Reddit data [35]. For each type

of data, we sample two subsets and conduct experiments independently.

We summarize the data descriptions as follows:

• Amadeus data (AMS-1, AMS-2)1. We sampled six datasets from

the log files of an internal application at Amadeus IT Group. Each

attributed sequence is composed of a user profile containing infor-

mation (e.g.system configuration, office name) and a sequence of

function names invoked by web click activities (e.g.login, search)

ordered by time.

• Wikispeedia data (Wiki-1, Wiki-2). Wikispeedia is an online

game requiring participants to click through from a given start
1Personal information is not collected.
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(a) ASM-1, 83 classes (b) ASM-2, 83 classes

(c) Wiki-1, 64 classes (d) Wiki-2, 64 classes

(e) Reddit-1, 140 classes (f) Reddit-2, 140 classes

Figure 6.2: Performance comparison on all six datasets.

page to an end page using fewest clicks [68]. We select finished

paths and extract several properties of each path (e.g., the category

of the start path, time spent per click). We also sample six datasets
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(a) ASA model on AMS-1 dataset. (b) ASHA model on AMS-1 dataset.

(c) ASA model on Wiki-1 dataset. (d) ASHA model on Wiki-1 dataset.

(e) ASA model on Reddit-1 dataset. (f) ASHA on Reddit-1 dataset.

Figure 6.3: The performance comparison between non-adaptive and

adaptive sampling.

from Wikispeedia. The Wikispeedia data is available through the

Stanford Network Analysis Project2 [37].
2https://snap.stanford.edu/data/wikispeedia.html



134

• Reddit data (Reddit-1, Reddit-2). Reddit is an online forum.

Two datasets that contain the content of reddit submissions are

used. The Reddit data is available through the Stanford Network

Analysis Project3.

We use 60% of the instances in each dataset for the training and the

rest 40% for testing. In the training, we holdout 20% of the training

instances for validation.

6.3.2 Compared Methods

We evaluate our two approaches, namely ASA and ASHA and compare

them with the following baseline methods. We summarize all compared

methods used in this research in Table 6.2.

• BLA is built using a fully connected neural network to reduce the

dimensionality of the input data, and then classify each instance.

• BLS classifies sequences only data using an LSTM.

• BLAS utilizes the information from both attributes and sequences.

The resulting embeddings generated by BLAS are then used for

classification.
3https://snap.stanford.edu/data/web-Reddit.html
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• SOA builds attention on the sequence data for classification, while

the attribute data is not used.

6.3.3 Experimental Setting

Our paper focuses on the multi-class classification problem. We thus use

accuracy as the metric to evaluate the performance. A higher accuracy

score depicts more correct predictions of class labels. For each method,

we holdout 20% as the validation dataset randomly selected from the

training dataset. For each experimental setting, we report the top-1 ⇠

top-10 accuracy for each method.

We initialize our network using the following strategies: orthogonal

matrices are used to initialize the recurrent weights, normalized random

distribution [20] is used to initialize weight matrices in AttNet, and bias

vectors are initialized as zero vector 000.

6.3.4 Accuracy Results

In Figure 6.2, we compare the performance of our ASA and ASHA solu-

tions with the other state-of-the-art methods in Table 6.2. ASHA achieves

the best performance of top-1 accuracy on most datasets. In most cases,

ASHA outperforms other solutions significantly. We also observe a sig-
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nificant performance improvement by ASA compared to other methods.

That is, although the top-1 accuracy performance of ASA is beneath that

of ASHA, it still outperforms SOA with sequence-only attention and all

other methods without attention. The two closest competitors, the SOA

utilizing the attention mechanism and classifying each instance based

on only the sequential data, and BLAS using information from both at-

tributes and sequences, but without the help from an attention mecha-

nism, are outperformed by our proposed models.

6.3.5 Parameter Sensitivity Analysis

6.3.5.1 Adaptive Sampling Accuracy

As pointed out in recent work [10], adaptive sampling is capable of im-

proving the efficiency of the optimization processes by adapting the train-

ing sample size in each iteration (i.e.epoch). In this set of experiments,

we evaluate the two models with varying adaptive sampling rates. We

use the adaptive sampling function as:

N⌧ = N1�
(⌧�1)
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(a) train_loss of ASHA. (b) val_loss of ASHA.

(c) train_loss of ASA. (d) val_loss of ASA.

Figure 6.4: Comparison of the history of training and validation losses.

Here, ⌧ denotes the epoch number, N⌧ denotes the number of instances

used in the ⌧ -th epoch and � the rate of adaptive sampling. We choose

� = 1, 1.001, 1.005, and 1.01 in our experiments, where � = 1 means no

adaptive sampling. The results presented in Figure 6.3 shows that the

adaptive sampling with the above sampling rates can achieve similar

performance as the non-adaptive approach yet now with much less train-

ing data.
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(a) ASHA

(b) ASA

(c) SOA

Figure 6.5: Weights of words from 10 instances in Reddit-2. Higher

weights are darker.

6.3.5.2 Training with Adaptive Sampling

With the continuously increasing amount of training instances, we ex-

pect the history of training loss to be “jittery” when a model encounters

previously unseen new instances. Different from previous experiments,

where we use Early Stopping strategy to avoid overfitting, we now

set a fixed number of 144 epochs for the ASHA model and 97 epochs for

ASA model and collect the history of training and validation to study the
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adaptive training strategy. In Figure 6.4a, we observe the training with

adaptive sampling is more aggressive compared to the non-adaptive ap-

proach. From Figure 6.4b we conclude that with a higher adaptive rate,

the model more easily becomes overfitted. Similar conclusion can also be

made from Figure 6.4d. Selecting a higher adaptive sampling rate can

shorten the training time but risking a higher chance of overfitting.

6.3.5.3 Case Studies

Figure 6.5 demonstrates the weights of each word often instances from

the Reddit-2 dataset. Higher weights are represented with a darker

color, while lower weights are represented with a lighter color. Compar-

ing the three cases, we find that the SOA has the most polarized weights

among the three cases. This may be caused by the fact that the attention

produced by SOA is solely based on the sequences, while ASHA and ASA

have been influenced by attribute data.



Chapter 7

Related Work
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7.1 Deep Learning

Deep learning has received significant interests in various research ar-

eas in recent years. Deep learning models are capable of feature learn-

ing in varying granularities with hierarchical structures. Various deep

learning models and optimization techniques have been proposed in a

wide range of applications such as image recognition [28, 72] and se-

quence learning [12, 57, 73, 49]. Many of these applications involve the

learning of single data type [12, 57, 73, 49], as other applications involve

more than one data type [28, 72]. Several work [26, 46, 49] focuses on

deep metric learning using deep learning techniques. The application

of deep learning in sequence learning area has numerous work, one of

the most popular work, sequence-to-sequence [57], uses long short-term

memory model in machine translation. The hidden representations of

sentences in the source language are transferred to a decoder to recon-

struct in the target language. The idea is that the hidden representation

can be used as a compact representation to transfer sequence similari-

ties between two sequences. Multi-task learning [40] examines three

multi-task learning settings for sequence-to-sequence models that aim

at sharing either an encoder or decoder in an encoder-decoder model

setting. Although the above work is capable of learning the dependen-
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cies within a sequence, none of them focuses on learning the dependen-

cies between attributes and sequences. Multimodal deep neural net-

works [28, 50, 72] is designed for information sharing across multiple

neural networks, but none of these work focuses on our attributed se-

quence embedding problem.

7.2 One-shot Learning

One-shot learning has been known to be useful in various applications

with very few training data [6, 59, 32]. The common problem setting of

these tasks is to use one or few training examples to train a model that

is capable of generalizing from the training examples and being used to

predict the classes of previously unseen test data. The one-shot learning

work dates back to work in [17] and [18], where the authors use a vari-

ational Bayesian framework for one-shot learning to categorize images

by using few training examples. Recent work [6, 32] use discrimina-

tive network structure to train a learner for image classification tasks.

Specifically, instead of using the siamese network for verification tasks,

[32] uses the siamese network for classification tasks. Concerning the

overfitting issue, [6] proposes an asymmetric variation of the siamese
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network, named learnet, to further address the issues of using a few

training examples. Instead of using the siamese network, [59] focuses

on using popular memory network and image attention to perform im-

age classification tasks.

7.3 Attention Network

Attention network [45] has gained a lot research interest recently, the at-

tention network has been applied in various tasks, including image cap-

tioning [72, 48], image generation [22], speech recognition [13] and doc-

ument classification [76]. The goal of using attention network in these

tasks is to make the neural network focus on the “interesting” parts of

each input, such as, a small region of an image, or words that are help-

ful to classifying documents. There are different variations of attention

network, including hierarchical attention [76] and dual attentions [48].

7.4 Sequence Mining

Recent work in sequence mining area aims at finding the most frequent

subsequence pattern [44, 19]. Several recent work [4, 44] focus on find-

ing the most frequent subsequence that meets certain constraints. That



144

is, find the set of sequential patterns satisfying various linguistic con-

straints (e.g., syntactic, symbolic). Many sequence mining work focuses

on frequent sequence pattern mining. Recent work in [44] targets find-

ing subsequences of possible non-consecutive actions constrained by a

gap within sequences. [15] aims at solving pattern-based sequence clas-

sification problems using a parameter-free algorithm from the model

space. It defines rule pattern models and a prior distribution on the

model space. [19] builds a subsequence interleaving model for mining

the most relevant sequential patterns. However, none of them learns

sequence embeddings, nor do they support attribute data.

7.5 Clickstream Analysis

Recent studies [5, 36, 7] have studied clickstream analysis in various

applications. Recent work [5] uses stream mining algorithms to identify

frequent sequential patterns and then use the found patterns to build

statistical models as Markov chains and transition matrices to capture

frequent sequential patterns. In [7], the authors propose two frame-

works using sequences to represent behaviors of students and then uses

Markov chains to predict quiz performance. Targeting massive open on-
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line courses, [36] and [7] focus on learning online student behaviors and

performances based on clickstreams. [36] aims at finding the differences

between the designed learning paths and the learning paths of students

to improve the engagement and retention of students in online courses.

[36] handles missing transitions between clicks and predict whether a

sequence of clicks will result in an online purchasing. However, these

work only focus on the clickstreams without the attribute information,

nor do they generate embeddings.

7.6 Metric Learning

Distance metric learning, where the goal is to learn a distance metric

from pairs of similar and dissimilar examples, has been studied in var-

ious work [70, 77, 14, 61, 43, 33, 26, 46, 49]. The common objective

of these tasks is to learn a distance metric that the distance between

similar pairs is reduced while the distance between dissimilar pairs is

enlarged as much as possible. Distance metric learning has been used

in various tasks to improve the performance of mining tasks, such as

clustering [70, 77, 14]. Many applications in various domains also in-

volve distance metric learning, including patient similarity in health in-
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formatics [61], face verification in computer vision [43, 33, 26] and sen-

tence semantic similarity analysis [46, 49]. However, these works only

focus on the problem of metric learning on a single data type by using

either attribute data or sequential data. Most of them focuses on linear

transformation [61, 70, 77, 14].



Chapter 8

Conclusion and Future Work

8.1 Conclusion

The goal of this dissertation is to study the deep learning applications

on attributed sequences. This dissertation studies four problems on the

newly proposed attributed sequence data model, including attributed se-

quence embedding without labels, distance metric learning on attributed

sequences, one-shot learning, and using attention model to filter useful

information in the attributed sequence data. Here summarize the high-

lights of this dissertation:

First, we study the problem of unsupervised attributed sequences em-

bedding. This work presents the design of the attributed sequence data
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model and the design of the NAS framework. NAS is a novel deep

learning-based framework that generates attributed sequence embed-

dings in an unsupervised setting. Different from conventional feature

learning approaches, which work on either sequences or attributes with-

out considering the attribute-sequence dependencies, we identify the three

types of dependencies in attributed sequences. Our experiments on real-

world tasks demonstrate that the proposed NAS effectively boosts the

performance of outlier detection and clustering tasks compared to base-

line methods.

Second, we target at incorporating the pairwise feedback into the

embedding. In this work, we focus on the novel problem of distance

metric learning on attributed sequences. We propose one MLAS with

three solution variations to this problem using neural network models.

The proposed MLAS network effectively learns the nonlinear distance

metric from both attribute and sequence data, as well as the attribute-

sequence dependencies. In our experiments on real-world datasets, we

demonstrate the effectiveness of our MLAS network over other state-of-

the-art methods in both performance evaluations and case studies.

Third, we study this new problem of one-shot learning for attributed

sequences. We present the OLAS network design to tackle the chal-
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lenges of utilizing this new data type in one-shot learning. OLAS in-

corporates two sub-networks, CoreNet , and PredictNet, that integrated

into one structure together effectively learn the patterns hidden in this

data type using only one example per class. OLAS uses this trained

knowledge to generate labels for incoming unlabeled instances. Our ex-

periments on real-world datasets demonstrate that OLAS on attributed

sequences outperforms state-of-the-art one-shot learning methods.

Lastly, we propose a AMAS framework with two models for classify-

ing attributed sequences. Our ASHA and ASA models progressively inte-

grate the information from both attributes and sequences while weigh-

ing each item in the sequence to improve the classification accuracy.

Experimental results demonstrate that our models significantly outper-

form state-of-the-art methods.

8.2 Future Work

The prevalence of attributed sequence data and the broad spectrum of

real-world applications using attributed sequences motivate us to keep

exploring this new direction of research. Based on the work in this dis-
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sertation, there are several interesting research directions for future

work:

First, in the attributed sequence embedding tasks, we currently only

focus on using the information from attributes at the first time step.

However, the information from attributes could be lost when encoun-

tered long sequences. One straightforward solution is to use attribute

embedding to condition the sequence network at each step. Another in-

teresting problem is to answer the question “how will the embeddings

be updated?” That is, when the embedding model is updated, the em-

beddings before the update may be invalid. Other interesting directions

include investigating how to building and use the index of a large num-

ber of attributed sequence embeddings.

Second, we now assume the feedback from domain experts is triplets,

with two attributed sequences and one similarity label. However, feed-

back can be more complicated than pairwise attributed sequences. That

is, domain experts may specify if a group of attributed sequences are

similar or dissimilar. Another interesting direction would be using non-

binary similarity label, where the similarity label now depicting the de-

grees of similarity of attributed sequences. There are also different ap-
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proaches to build models for distance metric learning, such as matching

network, worth investigating.

Third, there is a strong assumption in the one-shot learning task.

That is, the unlabeled attributed sequence must belong to one of the

known categories. However, this assumption may not always stand in

real-world applications. For example, people will make fraud attempt

that is novel to the model, in which case, the unlabeled attributed se-

quence may not have a match category. One-shot learning also assumes

there is only one sample per category, and this problem can easily be

extended to with no samples per category in real-world applications. For

example, domain experts may know certain types of fraudulent trans-

actions, but without usable cases. It would be interesting to investigate

this direction as well.

Lastly, the goal of using the attention model in attributed sequence

classification is to identify and give higher weights to the relatively use-

ful items in the sequence. In addition to the two models proposed in

this dissertation, one can augment the attribute network and sequence

network with other layers to build attention model in various ways. It

would be interesting to see the differences among different ways of build-

ing attention models.
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