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Abstract 

A number of techniques for indoor and outdoor WiFi localization using received signal 

strength (RSS) signatures have been published. Little work has been performed to 

characterize the RSS signatures used by these WiFi localization techniques or to assess 

the accuracy of current channel models to represent the signatures. Without accurate 

characterization and models of the RSS signatures, a large amount of empirical data is 

needed to evaluate the performance of the WiFi localization techniques. The goal of this 

research is to characterize the RSS signatures, propose channel model improvements 

based on the characterization, and study the performance of channel models for use in 

WiFi localization simulations to eliminate the need for large amounts of empirical data 

measurements.  

In this thesis, we present our empirical database of RSS signatures measured on the 

Worcester Polytechnic Institute campus. We use the empirical database to characterize 

the RSS signatures used in WiFi localization, showing that they are composed of 

connective segments and influenced by the access point (AP) location within a building. 

From the characterization, we propose improving existing channel models by building 

partitioning the signal path-loss using site-specific information from Google Earth. We 

then evaluate the performance of the existing channel models and the building partitioned 

models against the empirical data. The results show that using site-specific information to 

building partition the signal path-loss a tighter fit to the empirical RSS signatures can be 

achieved.  
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Chapter 1:  Introduction 

1.1 Background 

WiFi localization using received signal strength (RSS) is attracting attention as a 

complement to the Global Positioning System (GPS) for indoor and outdoor urban areas 

where GPS does not perform satisfactorily [1][2]. The growth of WiFi access points (AP) 

and mobile WiFi devices have spawned many new applications, which use WiFi for both 

connectivity and localization. The idea of WiFi localization was first introduced by Bahl 

for indoor location [3]. Bahl’s concept took advantage of the growth of WiFi enabled 

devices and massive deployment of WiFi AP’s. Bahl set the ground work for Roos, who 

used a probabilistic approach to increase the accuracy of indoor location [4]. From these 

works, location-based services companies have successfully commercialized the idea for 

indoor WiFi localization [2]. 

WiFi localization became feasible for outdoor environments as the deployment of WiFi 

APs and WiFi enabled mobile devices became ubiquitous. For outdoor areas it is not 

feasible to collect large amounts of calibration data as done for indoor techniques. Place 

Lab overcame this barrier through the use of a probabilistic algorithm, which only 

required sparse calibration data [5]. The WiFi localization techniques used by outdoor 

localization algorithms are based on RSS signatures [5][6]. A RSS signature for a given 

AP comprises a series of signal detections over a specified measurement path. To provide 

localization, the RSS’s of the APs detected by a mobile device are compared with a large 

database of location-tagged RSS signatures using a variety of algorithms. The RSS 

signature database is collected through a costly and time-intensive process of war-driving 
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[7]. The war-driving process involves systematically driving through an entire area where 

WiFi localization is to be performed to collect location-tagged RSS measurements for 

each detected AP. 

1.2 Motivations 

To evaluate the performance of WiFi localization algorithms, a large database of RSS 

signatures is needed. The RSS database can be created empirically through measurements 

or theoretically through channel models. Collecting large amounts of empirical data is 

costly, time intensive, the AP environment is inflexible, and the actual locations of the 

AP’s are unknown. These limitations affect the types of research that can be performed 

using empirical measures. For example, it would be difficult to investigate the effects of 

AP density and distribution on localization algorithm performance. Each AP layout 

scenario would need to be setup and measured. On a large-scale this would not be 

feasible. 

Therefore theoretically building the RSS signature database using an accurate channel 

model is preferred, but it is important to use a model that accurately characterizes the 

channel. Accuracy is important as it has been shown that the effects of the physical layer 

characteristics impact the performance of algorithms and can even affect the ranking 

among algorithms in performance evaluations [8]. To date, no evaluation of the accuracy 

of WiFi channel models to simulate the RSS signatures used by outdoor WiFi 

localization algorithms has been performed. 
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1.3 Contributions of the Thesis 

The objective of this thesis is to characterize the RSS signatures used in WiFi localization 

for a campus environment and propose improvements to existing models based on the 

findings to allow for theoretical RSS signature database creation.  

We began our research by characterizing the RSS signatures on the WPI campus using a 

significant empirical RSS database. From this characterization we found the following. 

The RSS signatures were composed of connectivity segments whose length’s best fit a 

lognormal distribution. The detected mean RSS values were on the lower end of the WiFi 

receiver sensitivity limit. There was not a tight relationship between the distance from the 

AP to the measurement point and the RSS value. The RSS values of AP’s located on 

ground to third floors followed the same distribution. Finally, it was observed that the 

RSS signature behavior was affected by the location of the AP within the building in 

respect to the distance from the exterior wall. 

From the results of our RSS signature characterization we proposed a new building 

partitioned modeling method. The building partitioned method made use of site-specific 

information readily available from Google EarthTM to find the coordinates of the building 

footprint containing the AP. Using the building footprints the new models were able to 

account for the location of the AP relative to the exterior wall of the building. 

Lastly, we evaluated the performance of two existing models (JTC and 802.11) along 

with the proposed building partitioned models against the empirical data. The evaluation 

showed that by adding site-specific information to the channel models a 10% 

performance increase is gained.  
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The long term goal of this research is to allow for the development and evaluation of 

WiFi localization algorithms using a channel model and eliminate the need for large and 

costly empirical data collection. 

1.4 Thesis Organization 

This thesis is organized into six chapters. Chapter 1 gives an introduction to our research 

including background motivation and contributions. Chapter 2 explains the concept 

behind WiFi localization and the different methods of implementation. Chapter 3 we 

present our RSS signature database and discuss the work performed to characterize the 

RSS signatures in a campus environment. In Chapter 4, the current models used for RF 

channel modeling are presented and we propose improving these models by introducing a 

building partitioning method. In Chapter 5, we analyze the performance of each channel 

model against the empirical data using our defined performance criteria. Lastly in 

Chapter 6, we discuss the conclusions found during this research and future work. 
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Chapter 2: WiFi RSS Localization 

2.1 Introduction 

WiFi localization is broken in to three phases the data collection, offline, and real-time 

phases. The data collection and offline phases are performed before the real-time phase 

and provide the search space for the localization algorithms used in the real-time phase 

(see Figure 2-1).  

Data 

Collection 

Phase

OR

Model

Measure

RSS Signature 

Database

Localization 

Algorithm

Location Estimate

Offline

Phase

Real-Time 

Phase

AP’s 

Detections

 

Figure 2-1 WiFi Localization Process 

 

In the data collection phase an RSS database is created to provide a search space for the 

real-time phase. The RSS database is composed of location-tag RSS measurements from 

detectable AP’s in the area where localization is to be performed. The data collection can 

be done empirically by measuring the RSS of AP in a systematic fashion or theoretically 



 6 

computed using channel models. In the offline phase, the data from the data collection 

phase is transformed to minimize computation time during the real-time phase, reduce the 

size of the database and/or increase accuracy of the location estimate. In Section 2.2, the 

two options for performing the data collection phase are discussed. In Section 2.3, the 

localization algorithms used in the real-time phase are discussed. 

2.2 Data Collection Phase and RSS Database Creation 

In the data collection phase the goal is to create the RSS database to provide a search 

space for the real-time phase. The RSS database can be built either by empirically 

measuring AP’s RSS in a systematic fashion over the designated area for localization or 

by theoretically computing the AP’s RSS’s using a channel model. Both methods have 

advantages and disadvantages. Empirically collecting the RSS’s is costly and time 

consuming while computing the RSS database using channel models requires information 

about the location of the APs and the path-loss environment which may not be available. 

In Section 2.2.1, we describe the empirical data collection process and in Section 2.2.2 

we describe the 2.2.2 the theoretical data generation process using channel models. 

2.2.1 Empirical Data Collection 

Collecting the RSS database empirically is performed by war-walking or war-driving. 

The process entails systematically measuring RSS data from the detectable AP’s over the 

area where localization is to be performed. Each RSS measurement is tagged with a 

location reference and stored as tuples of the form {RSS, Location}. The process of 

measuring the RSS’s is time consuming and costly. Additionally, the process may need to 

be repeated as APs are moved. The process of empirically collecting the RSS database 
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differs from indoors to outdoors due to the increased scale of location data and location 

reference used. 

2.2.1.1 Indoor Data Collection Process 

When collecting the RSS data indoors a scale floor plan is needed for the location 

reference. The area to be surveyed is divided up into a grid defining the locations where 

RSS measurements will be taken (Figure 2-2). At each location several RSS 

measurements are taken by a mobile receiver and the location is recorded. It is 

recommended that the measurements are taken facing in each direction to mitigate 

shadow fading effects. Indoor surveys for data collections cost on the order of thousands 

of dollars and consist of on the order of tens of AP’s. This process is much easier to 

collect and update for indoor environments than outdoors [7].  

 

 

Figure 2-2 Indoor empirical RSS data collection notional diagram 
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2.2.1.2 Outdoor Data Collection Process 

For outdoor areas it is not feasible to collect large amounts of calibration data as done for 

indoor techniques. Place Lab over came this barrier by the use of a probabilistic 

algorithm, which only required sparse calibration data [5]. The WiFi localization 

technique used for outdoors is based on WiFi RSS signatures [5][6]. A WiFi RSS 

signature for a given AP is the series of signal detections over a specified measurement 

path. 

To collected empirical data outdoors latitude and longitude coordinates are used for 

location reference. The process of collecting this outdoor data as been dubbed war-

driving or war-walking and involves driving or walking on road ways and paths to collect 

RSS measurements (Figure 2-3).   

 

Figure 2-3 Outdoor empirical RSS data collection notional diagram 
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The two methods differ only by the means of travel. Both use GPS to obtain accurate 

latitude longitude coordinates. Given this, war-driving is not affective in areas where 

GPS does not work properly. War-driving produces a much larger database than indoors 

on order of millions of APs and is much more expensive to collect (~$5M per US 

survey). 

2.2.2 Theoretical Data Generation Using Channel Models 

An alternative to collecting empirical RSS measurements is to generate the data points 

theoretically using channel models. Equation (2-1) gives the equation for computing the 

RSS of a transmitter distance, d, in meters from the receiver.  

 )d(LP)d(RSS pt −=  (2-1) 

 
Where Pt is the transmit power 40dBm for the WiFi standard and Lp is the path-loss in dB 

over the signal path (Figure 2-4) [9].  
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Figure 2-4 Channel Modeling notional diagram 
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The first item to note about using a channel model to compute the RSS database is that 

the locations of the APs must be known to calculate d unlike the empirical method. This 

is not an issue if the APs are a part of a planned infrastructure where their locations have 

been documented. There are several methods to compute Lp each with their strengths and 

weaknesses. In this paper we chose to focus on two path-loss channel models the Joint 

Technical Committee (JTC) model and the Distance Partitioned 802.11 model. 

2.3 Localization Algorithms 

In the real-time phase the AP’s detected by the mobile receiver are matched to the RSS 

signature database to provide a location estimate. The performance of these algorithms is 

measured the difference in the estimated position from the actual position. In this Section 

we present several localization algorithms used in WiFi RSS localization. 

2.3.1 Centroid 

The centroid algorithm is a simple one, which reduces the size of the RSS database and 

therefore is used most for outdoors [10]. After the data collection phase during the offline 

phase the mean location for each AP RSS detection is calculated. The mean location 

serves at the AP location estimate. The estimate for each AP is then stored in a database. 

During the real-time phase the mobile device location is estimated by finding the centroid 

of all AP’s detected. 

2.3.2 Nearest Neighbor / Fingerprinting 

The nearest neighbor algorithm was first proposed for indoor localization in RADAR [3]. 

It was later used for outdoor localization, but at a much coarser measurement granularity 
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in reference [10] where it was defined as fingerprinting. The basic idea is that every 

location has a unique fingerprint based on the detected AP’s and RSS’s. The nearest 

neighbor or fingerprinting algorithms uses this idea to locate a mobile receiver by 

matching the AP RSS location fingerprint to a database of location tagged fingerprints 

collected in the data collection phase. The matching fingerprint if found by determining 

the Euclidean distance of each fingerprint. The location of the fingerprint that is the 

closest match to the detected fingerprint is estimated to be the current location of the 

mobile receiver. The distance error formula is given by 

 ( )[ ]∑
=

−=
n

i

iierr Pr'Prd
1

2
 (2-2) 

where n is the number of detected AP’s, and Pr is the RSS of detected by the mobile 

receiver and Pr’ is the fingerprint  AP RSS. 

2.3.2.1 Multiple Nearest Neighbor 

The multiple nearest neighbor algorithm expands of the nearest neighbor algorithm by 

using the closes k neighbors. The locations of the k neighbors are averaged to estimate the 

location of the mobile receiver. The idea is that there are usually multiple neighbors with 

relatively close computed distances given the inherent variation in the RSS’s and there is 

no reason to use only the nearest neighbor. 

2.3.2.2 Ranking 

The ranking algorithm is a variation of the nearest neighbor that uses relative RSS instead 

of absolute to overcome differences in WiFi cards [10]. The rankings are then compared 

using the Spearman rank-order correlation co-efficient 
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where R  and 'R  the means of the rank vectors for the i AP’s. 

2.3.3 Particle Filters 

In the past particle filters have been used in robotics to combine streams of sensor data 

into location estimates [11]. A particle filter is a probabilistic approximation algorithm 

for a Bayes filter [10]. In location estimation, Bayes filters probabilistically estimate a 

person’s or object’s location from noisy sensor observations [12]. Bayes filters represent 

the uncertainly of the location estimate at time t by a probability distribution of a random 

variable xt called a belief. Particle filters represent the beliefs by sets of samples or 

particles:  

 { }n,...,i|w,xS)x(Bel )i(

t

)i(

ttt 1==≈  (2-4) 

where xt
(i) is the location, and wt

(i) are the nonnegative weights called importance factors 

[12].  The importance factors represent the probability that a device will hear the 

observed scan if it were at the position of the particle and are trained using the 

measurements taken in the data collection phase [10]. 
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Chapter 3: Empirical WiFi RSS Signature 
Analysis 

3.1 Introduction 

This section details the efforts to characterize the RSS signatures in a campus 

environment. To perform the characterization, an empirical database of location-tagged 

RSS measurements was built using measurements made around Worcester Polytechnic 

Institute (WPI), in Worcester, Massachusetts. The WPI campus was chosen because the 

WiFi AP infrastructure was known. The RSS data was then characterized to understand 

the behavior of the RSS signatures in the environment where they were produced. From 

the characterization, modifications to the current channel models are proposed to add 

site-specific information for dynamic parameters. 

3.2 Description of the Empirical RSS Database  

To characterize the RSS signatures, an extensive database of empirical RSS 

measurements was built. The database consisted of location-tagged RSS measurements 

from APs over measurement paths at and around the WPI Campus. The data was 

collected using a standard off-the-shelf WiFi card for the RSS measurements, and a GPS 

for accurate position information. The measurements were taken on foot while walking at 

a steady pace.  

Figure 3-1 shows the paths taken during the data collection (indicated by the yellow 

lines) as well as the AP locations (indicated by the green balloon markers) and Table 3-1 

lists the main attributes of the empirical RSS database. 
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Figure 3-1 Empirical RSS database measurement paths indicated by the yellow lines and 

AP locations shown as green balloons 
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Table 3-1 Attributes of the empirical RSS signature database collected for characterization 

Attribute Value 

Buildings containing access points 13 

Number of access points 47 

Number of AP signal detections 21,732  

Number of measurement sample points 3,833 

Measurement path distance 6,452m 

Number of unique measurement paths 14 

Range of floors containing access points 0-3 

Range of RSS values detected -90dB to -55dB 

Sample rate of RSS measurements 1/s 

 
Figure 3-2 shows the distribution of the distances between the AP’s and measurement 

points. 
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Figure 3-2 Histogram of distance between AP and measurement point  

 
The WPI campus was chosen for several of reasons: it has a high concentration of APs, 

the locations of the APs were known, and it fit the scenario for a mobile WiFi user. The 



 16 

high concentration of APs was representative of urban areas where WiFi localization is 

most effective. It was a necessary to know the locations of the APs to use the channel 

models, which require the distance from the AP to the measurement point to be known. 

The campus fit the mobile WiFi scenario because there are available measurement paths 

both along streets and sidewalks frequented by mobile WiFi users, and there is a high 

concentration of APs in the surrounding buildings.  

The empirical RSS database was broken into two sets of data: the location-tagged RSS 

measurements and the AP location information. The RSS measurements were formatted 

such that each measurement path was a separate ACSII text file. The RSS database 

consisted of 14 paths and therefore contained 14 path files. Each file consisted of the 

latitude and longitude (supplied by the GPS), Service Set Identifier (SSID), Media 

Access Control (MAC) address, timestamp, and RSS. The MAC addresses were used as 

unique identifiers for each AP since the SSID can be the same for multiple AP’s, as was 

the case for the AP’s on the WPI campus. The latitude and longitude coordinates where 

used to identify the unique measurement points. If multiple samples existed at the same 

coordinate on a path they where averaged to produce one RSS for each AP for each 

coordinate on a path. 

The AP location information was formatted with an entry for each AP on the WPI 

campus. The AP parameters stored in the database were the MAC address, name of the 

building it was located in, the floor it was on, the latitude and longitude, and SSID. Again 

the MAC addresses were used as unique identifiers for the AP’s. Seventeen AP’s were 

located on ground floors, seventeen on first floors, sixteen on second floors and ten on 

third floors in buildings on campus. 
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3.3 WiFi RSS Signature Characterization  

Using the RSS database, the behavior of the RSS measurements was investigated. To aid 

in the analysis of the RSS behavior the measurements were spatially grouped into RSS 

signatures. An RSS signature is the series of spatially related RSS measurements along 

the measurement path for a given AP also referred to as a network availability trace. The 

goal of this analysis is to understand the behavior of the signatures instead of the 

behavior of a specific measurement point. This allows for a more coarse characterization 

which is all that is necessary for the WiFi localization application. 

To reduce the complexity a subset of the database was used for the initially 

characterization. After the analysis was completed for the subset we then applied this to 

the entire database. The Atwater Kent Laboratory (AK) building was chosen for the 

subset as it contained seven AP’s over three floors and had measurement paths that 

covered three sides of the building. The AP’s are spread throughout the building to 

maximize coverage inside the building. AP’s 1-3 are located on the first floor AP 5 and 6 

are located on the second floor and AP’s 7 and 8 are on the third floor. Note that AP 4 

was removed from AK and therefore was not in the RSS database. Figure 3-3 shows the 

measurement path around the building and the locations of the AP’s. 



 18 

 

 

Figure 3-3 Measurement Path of RSS signatures in Atwater Kent 

 
We began our analysis by looking for a relationship between the RSS and the distance 

between the AP and the measurement point. In simple channel models the RSS is 

calculated as a function of the distance between the AP and the receive [5]. To 

understand if this relationship holds true for the indoor to outdoor RSS measurements, the 

RSS measurements were plotted versus the distance between the receiver and the AP as 

shown in Figure 3-4. 

Start 
End 
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Figure 3-4 Scatter plot of RSS for the AP’s located in AK versus the distance between the AP and the 

receiver showing that distance cannot be used as a sole predictor for RSS 

 
From the plot it can be seen that for a given distance up to about 110 meters the RSS’s 

range from -90dB to more than -75dB. Given this more than 25dB wide variation we can 

see that using the distance from the AP to the receiver as the sole predictor for RSS 

would not produce accurate results. Additionally, we observed that many of the RSS 

values were at -90dB. Figure 3-5 shows the distribution of the RSS’s and clearly shows 

that RSS values at -90dB are fifty percent more likely than any other value. 
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Figure 3-5 Histogram of RSS values for AK subset showing that RSS values of -90dB are measured 

fifty percent more than other values 

 
Another observation noted from both Figure 3-4 and Figure 3-5 is that the AP’s on floor 

ranging from the first to third show the same trend of RSS values. One possible theory is 

that the AP signal no matter what floor it is located on travels out through the exterior 

wall of the building and not down through the floors, which would reduce the RSS. If this 

theory is true the only difference for an AP located in the third floor from an AP located 

on the first would be the added vertical distance for an AP would not significantly affect 

its RSS. 

To understand the RSS value distribution relative to the measurement paths the RSS 

signatures for the seven AP in AK were then plotted in Figure 3-6.  
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Figure 3-6 Atwater Kent AP’s RSS signatures showing connectivity segments 
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From the plots it can be seen that the RSS signatures are composed of connectivity 

segments of varying length. Connectivity segments are defined as AP signal detections in 

adjacent samples along the measurement path. The location and length of the 

connectivity segments are the main characteristics that affect WiFi localization 

algorithms. From the plot it can be seen that the connectivity segments end in flat lines at 

-90dB, which accounts for the high rate of -90dB values noted previously. Given the 

location of these segments of -90dB being just before the AP signals become 

undetectable it can be assumed to be due to the sensitivity of the WiFi access card.  

The next step in our analysis was to co-locate the RSS signatures in the environment 

where they were measured to identify factors contributing to their behavior. Google 

EarthTM was used to plot the RSS signatures along the path they were measured. Since 

the RSS values were in negative decibels a value of 100 was added to each to make them 

positive. Figure 3-7 shows the relative RSS signature (in red) for AP 1 in AK on the 

measurement path around the building. From the figure it can be seen that the RSS 

signature is present on only one side of the building. The signature is present on the same 

side of the building as AP 1. This is to be expected because the signal should have less 

physical obstructions to penetrate the closer the AP is to the exterior of the building. 
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Figure 3-7 RSS signature of AP 1 in AK plotted on Google Map showing the location and length 

relative to the location of the AP in the building 

 
AP 1 was located on the first floor of AK, we then performed the same inspection for AP 

which was located on the second floor of AK to determine if AP to building location to 

RSS signature location relationship continued.  Figure 3-8 shows the RSS signature for 

AP 5 in AK for the path around the building. Again it can be seen that the RSS signature 

is present on the same side of the building as the AP is located. There is no signature on 

the left side of the building even though the measurement paths were about the same 

distance away from the AP. The difference between the two measurement points was the 
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amount of building the signal had to pass through before being received at the on the left 

side compared to the right, which was more than twice as much.   

 

Figure 3-8 RSS signature of AP 5 in AK plotted on Google Map showing the location and length 

relative to the location of the AP in the building 

 
To better understand this relationship the RSS signature was overlaid on the distance 

from the AP to the measurement point and the distance from the AP to the edge of the 

building. Figure 3-9 clearly shows that location of the AP from the edge of the building 

has a signification impact on if a signal is detected from an AP at a given measurement 

point.  
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Figure 3-9 RSS signature detections around AK for AP 5 overlaid on plots of the distance from the 

AP to the receiver and the distance from the AP to the edge of the building 

 
For example, at sample point 24 and 192 the measurement points were both 50 meters 

away from the AP at sample 24 there was signal detected by the AP, but at sample 192 

there was not. This was because at sample point 24 there was only 16 meters of building 

for the signal to pass through whereas at sample point 192 there was 37 meters of 

building to pass through. Given this observation, it would be very important for a channel 

model to account for the location of the AP relative to the building it is within for the 

model to be accurate. 

To understand how the RSS signatures may change over a given measurement path 

measured on separate occasions, a subset of the database was used for the analyzed. 
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Figure 3-10 shows the two measurement paths taken on Salisbury Street on two separate 

locations and the AP’s located in AK. 

 

Figure 3-10 Two measurement paths on Salisbury Street measure on separate locations to compare 

the change in RSS signature 

 
The RSS signatures were then plotted for each AP in AK in Figure 3-11. From the plot it 

can be observed that the RSS values at almost the same position can vary as much as 

20dB from one measurement path to the next. On the other hand, it was found that the 

two RSS signatures had ~90% overlap in connectivity segments.  
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Figure 3-11 AK AP RSS signatures plotted for the two measurement paths on Salisbury Street on 

separate occasions 

 
From the observations seen in the AK data subset we used the entire database to confirm 

that they held true. Figure 3-12 is a scatter plot confirming the observation seen in the 
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AK data subset that the distance between and AP and the receiver is not a good predictor 

of the RSS value at that point. Again the RSS values range from -90dB to less than -60dB 

for the same distance between the AP and receiver at difference measurement points. 
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Figure 3-12 Scatter plot of RSS for all AP’s versus the distance between the AP and the receiver 

showing that distance cannot be used as a sole predictor for RSS 

 
Figure 3-13 shows that the distribution of the RSS values for the entire database follows 

the same trend as the AK data subset. There is a high amount of values at -90dB which is 

the lower limit of the WiFi receiver detectable range. There is a more apparent trend in 

this figure that AP’s on the ground and third floors have more percentage of -90dB 

values.  
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Figure 3-13 Histogram of RSS value showing the distribution in RSS signature database 

 
To characterize the distribution of the RSS signature connectivity segment lengths, three 

distribution functions were fit to the RSS signature connectivity segment lengths CDF. 

The functions chosen were exponential, lognormal, and Rayleigh. The exponential 

distribution was chosen because it describes the distribution of random events. The 

lognormal distribution was chosen because it has been shown to describe large-scale 

variations in RSS measurements [13]. Lastly, the Rayleigh distribution was chosen 

because it has been shown to describe small-scale RSS measurement variations [13]. 

Table 3-2 gives the CDF formulas for each of the distributions. 
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Table 3-2 Formulas of distributions for characterization 

Definition 
Distribution 

CDF Parameters 

Exponential ( ) ( )( )xexpxF λ−−= 1  λ > 0 rate 

Lognormal ( ) 
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−+=
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2
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σ
µ)xln(

erfxF  

µ - mean   
σ2 - standard 
deviation 

Rayleigh ( ) 
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Figure 3-14 shows the three distributions functions fit to the empirical RSS signature 

connectivity segment lengths with the best fitting distribution being the lognormal 

distribution. For completeness, the remaining probabilistic distributions were fit to the 

data and are show in Appendix B. 
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Figure 3-14 CDF of RSS signature connectivity segments fit to probabilistic distributions 
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Table 3-3 gives the RSS signature attributes for the AP’s on the WPI campus. The table 

indicates that the mean RSS for each AP is relatively low (i.e. near the lower bound of 

the wireless card sensitivity limit of -90dB). This is to be expected as the measurement 

were all collected outdoors at distances ranging in the hundreds of meters away the AP’s 

located inside buildings. The mean RSS is also consistent across AP’s in difference 

buildings and floors with a standard deviation of 1.7dB. Additionally from the table it can 

be seen that an RSS signature on average has 24 connectivity segments (CS) with a mean 

length of 9 meters. 
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Table 3-3 AP RSS signature attribute table 

AP MAC Address Building Floor Smps 
Mean 
RSS 

STD 
RSS 

CS 
Mean 
CS 

Length 

Coverage 
Distance 

00 20 D8 2E 90 00 Atwater Kent First  263 -87.4 4.9 10 9.34 93.40 

00 20 D8 2E 97 40 Atwater Kent First  1322 -86.0 7.0 24 17.12 410.89 

00 20 D8 2E E6 C0 Atwater Kent First  790 -89.0 3.0 23 12.34 283.92 

00 20 D8 2E 8E 00 Atwater Kent Second 1201 -88.5 3.4 19 20.33 386.31 

00 20 D8 2E A9 00 Atwater Kent Second 915 -84.4 8.5 24 14.67 352.11 

00 20 D8 2E F5 40 Atwater Kent Third 156 -84.4 9.4 26 3.42 88.99 

00 20 D8 2E 88 80 Atwater Kent Third 669 -87.1 6.9 20 10.52 210.42 

00 16 CA 32 BD C0 Fuller Labs Ground 334 -87.1 6.7 20 8.10 162.03 

00 16 CA 32 91 40 Fuller Labs First 505 -85.9 6.9 22 9.38 206.41 

00 16 CA 32 BD 80 Fuller Labs Second 448 -87.4 6.6 22 8.91 195.99 

00 16 CA 32 8F 80 Fuller Labs Second 100 -85.9 8.4 16 3.82 61.10 

00 16 CA 32 8E 80 Fuller Labs Second 22 -87.7 5.8 3 3.59 10.78 

00 16 CA 32 82 C0 Fuller Labs Third 690 -86.4 6.6 117 3.75 438.40 

00 20 D8 2E 45 C0 Library First 28 -90.0 0.0 7 3.14 21.99 

00 20 D8 2E EB 40 Library First 837 -82.5 10.7 23 17.19 395.44 

00 20 D8 2E D3 00 Library Second 552 -89.0 3.0 46 6.67 306.96 

00 20 D8 2F 19 80 Library Second 904 -87.3 7.0 43 9.19 395.02 

00 20 D8 2E 51 C0 Library Third 841 -85.8 9.3 49 6.86 336.31 

00 20 D8 2E B8 40 Library Third 432 -88.1 5.3 42 5.68 238.76 

00 20 D8 25 52 80 Higgins Labs First 92 -86.9 5.4 10 5.36 53.64 

00 16 CA 3A 8A 80 Higgins Labs First 412 -87.3 6.4 20 8.24 164.80 

00 20 D8 25 1E 00 Higgins Labs Second 131 -90.0 0.0 7 6.69 46.84 

00 16 CA 38 3D 80 Higgins Labs Second 218 -86.8 7.0 18 5.74 103.25 

00 20 D8 24 37 40 Higgins Labs Third 465 -85.3 8.2 8 17.85 142.80 

00 20 D8 23 DD 80 Campus Center First 69 -85.1 8.6 2 11.30 22.60 

00 20 D8 23 C4 80 Campus Center Second 314 -83.9 8.7 5 17.26 86.32 

00 20 D8 2E CA 00 Campus Center Second 132 -86.9 6.4 10 6.98 69.81 

00 20 D8 23 C5 C0 Campus Center Third 156 -85.3 9.9 17 5.08 86.35 

00 20 D8 23 C6 80 Campus Center Third 293 -88.9 4.0 24 5.89 141.27 

00 16 CA 32 95 40 Olin Hall First 247 -83.8 7.8 17 6.08 103.32 

00 20 D8 25 BD 80 Kaven Hall Ground 374 -87.8 5.6 21 7.11 149.39 

00 20 D8 25 C1 00 Kaven Hall Ground 366 -87.9 4.8 34 4.69 159.32 

00 20 D8 25 B2 40 Kaven Hall First 745 -86.1 6.5 37 8.23 304.40 

00 20 D8 25 F3 80 Kaven Hall Second 481 -87.1 7.6 32 6.65 212.91 

00 15 E8 E6 A7 00 Stoddard Labs First 220 -82.4 9.5 7 12.26 85.81 

00 15 E8 E6 9D 80 Stoddard Labs Third 565 -86.4 7.4 45 5.99 269.33 

00 16 CA 32 BD 00 Stratton Hall Ground 303 -85.4 9.7 8 13.65 109.17 

00 16 CA 32 A3 80 Stratton Hall First 617 -86.9 6.2 18 11.88 213.79 

00 16 CA 32 9E 00 Stratton Hall First 595 -84.1 10.7 30 7.97 239.09 

00 16 CA 32 C3 C0 Stratton Hall Second 460 -88.2 4.3 19 9.05 171.93 

00 16 CA 32 A2 00 Stratton Hall Third 283 -86.2 7.5 20 7.19 143.89 

00 16 CA 32 B9 80 Boynton Hall First 560 -88.4 5.9 48 5.58 268.00 

00 16 CA 32 BA 80 Boynton Hall Second 402 -86.1 7.8 30 6.12 183.72 

00 20 D8 2E A0 40 Bartlett Center First 559 -85.9 7.5 16 12.51 200.09 

00 20 D8 2E B0 00 Bartlett Center First 407 -88.4 4.3 20 7.25 144.90 

00 20 D8 2E 97 80 Bartlett Center Second 637 -85.6 7.3 30 7.86 235.69 

00 20 D8 2E A5 C0 Bartlett Center Second 620 -87.7 4.7 23 9.62 221.35 
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Chapter 4: RF Channel Models 

4.1 Introduction 

In Chapter 4, we present two standard channel models and propose improvements based 

on the RSS signature characterization performed in Chapter 3. The first model is the 

single-gradient multi-floor (SGMF) model, which was the recommend for PCS band by 

the Joint Technical Committee (JTC). The second model is the distance partitioned multi-

gradient single-floor (MGSF) model path-loss model, which is the basis of the indoor 

channel model used for the 802.11 WiFi standard [15]. The proposed improvements to 

these models are to use site-specific information available from Google EarthTM to 

building partition the path-loss by adding a dynamic wall breakpoint and a path loss for 

the exterior wall of the building. 

4.2 Single-Gradient Multi-Floor (SGMF) Model 

The single-gradient multi-floor (SGMF) model is recommended for 1900MHz PCS bands 

by the Joint Technical Committee (JTC) to describe the path-loss in multistory buildings 

[9]. The idea behind this model is that if the AP and receiver are located on the same 

floor the path-loss is dictated by the distance from the AP to the receiver using a distance 

power-gradient. If the AP is located on a difference floor than the receiver a floor 

penetration loss is added to the distance dictated path-loss. The path-loss in the SGMF 

model is given by  
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 ( ) ( )dlognLLL fp α100 ++=  (4-1) 

 
where L0 is the path-loss over the first meter, Lf(n) is the attenuation attributed to each 

floor, n is the number of floors between the transmitter and receiver, α is the distance-

power gradient, and d is the distance between the transmitter and receiver. Table 4-1 

gives the set of parameters suggested for three different environments, where L0 has been 

adjusted to accommodate the 2.4GHz frequency used by WiFi devices. 

Table 4-1 JTC Suggest SGMF Model parameters for residential, office, and commercial 

environments 

NADistance between trans. and recv. (m)d

Lf(n)

α

Lo

Parameter

6+3(n-1)15+4(n-1)4nPath-loss of floors (dB)

Environment

3

40

Office

2.22.8Distance-power gradient

4040Path-loss over first meter (dB)

CommercialResidential
Description

NADistance between trans. and recv. (m)d

Lf(n)

α

Lo

Parameter

6+3(n-1)15+4(n-1)4nPath-loss of floors (dB)

Environment

3

40

Office

2.22.8Distance-power gradient

4040Path-loss over first meter (dB)

CommercialResidential
Description

 
 
 
Figure 4-1 shows an example for the SGMF model where the AP is located on the third 

floor of a building and the mobile receiver is located on the first floor. 

 

*

Tx

10m

Rx
 

Figure 4-1 JTC model notional diagram showing an AP located on the third floor of a building and 

the receiver on the first floor 
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In this example n would equal 2 and d would be 10m. The SGMF model assumes that the 

strongest signal path is through the floors between the AP and the receiver. This holds to 

for most cases when indoors. 

4.3 Multi-Gradient Single-Floor (MGSF) Model 

The Multi-Gradient Single-Floor (MGSF) model most recently has been used to model 

the WiFi propagation path-loss in indoor environments. The MGSF model makes use 

distance partitioning to allow for multiple distance-power gradients to describe the path-

loss. The MGSF is the recommend model for the 802.11 standard [9]. The basis for the 

use of distance partitioning is the assumption that the propagation path-loss from the AP 

to receiver does not follow a uniform gradient. Given this assumption, the propagation 

path is partitioned into two sections using a breakpoint distance parameter, dbp. Each 

section uses a separate distance-power gradient parameter, α1 and α2, to characterize the 

path-loss for each section. Equation (4-2) gives the formula for the distance partitioned 

MGSF model, 

 ( ) ( )
( ){ dp

dpdpbp

dd;dlog

dd;d/dlogdlogp LL
<
>++=                                    

    
1

21

10

10100

α
αα  (4-2) 

where Lp is the path-loss over distance d in dB, L0 is the path-loss over the first meter in 

dB, α1 and α2 are the distance-power gradients for the path sections one and two 

respectively, and dbp is the breakpoint distance in meters. Table 4-2 gives suggested 

parameter sets for three environments defined for 802.11 standard in reference [10]. 
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Table 4-2 Suggested 802.11 MGSF parameters for residential, office, and commercial environments 

 

NADistance between trans. and recv. (m)d

Breakpoint distance (m)

Distance-power gradient of section 2

Distance-power gradient of section 1

Path-loss over first meter (dB)

Description

20105dbp

3.53.53.5α2

Environment

2

40

Typical 

Office

22α1

4040Lo

CommercialResidential/ 

Small Office

Parameter

NADistance between trans. and recv. (m)d

Breakpoint distance (m)

Distance-power gradient of section 2

Distance-power gradient of section 1

Path-loss over first meter (dB)

Description

20105dbp

3.53.53.5α2

Environment

2

40

Typical 

Office

22α1

4040Lo

CommercialResidential/ 

Small Office

Parameter

 

The non-uniform path-loss assumption holds true for most indoor environments. When 

the receiver is close to the AP, it is likely that they are located in the same room, where 

the path-loss would be about the same as free space. As the receiver moves farther away 

from the AP, it becomes more and more likely that there will be structural partitions 

between the AP and the receiver, which would increase the path-loss. Figure 4-2 shows 

an example to illustrate the assumption behind the breakpoint in the distance partitioned 

MGSF model. 

Tx

dbp

*
*

Rx

 

Figure 4-2 Distance Partitioned MGSF Model notional diagram showing the placement of the 

breakpoint 
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The example idealizes the breakpoint assumption as the signal does not pass through any 

physical obstructions up to the breakpoint after which the signal passes through three 

walls. 

4.4 Proposed Site-Specific Channel Models using Google Earth 

The current channel models were intended for indoor-to-indoor channel modeling. To be 

useful for WiFi localization simulations, a channel model must represent the propagation 

path-loss from an AP inside a building to a receiver outside of a building. The path-loss 

environment outside a building is free space with trees, lamp posts, signs, and other 

buildings posing obstacles to the receiver. The small-scale obstacles cause scattering of 

the propagating wave while the large-scale obstacles like the surrounding buildings cause 

reflections of the propagating wave, which may interfere constructively or destructively 

at the receiver [14]. 

In Section 3.3, it was observed that RSS signatures are influenced by the location of the 

AP relative to the exterior wall of the building. Neither of the current channel models 

used any site-specific information to predict the RSS signatures. We hypothesized that 

adding site-specific information to the current channel models would improve their 

performance.  

Collecting site-specific information through a site survey would be just as costly and time 

consuming as collecting empirical RSS data. But with the advent of Google EarthTM site-

specific information has been become free and readily available. Figure 4-3 shows the 

aerial view of the WPI campus where the buildings on campus can be clearly seen as well 
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as the pathways and roads. Using Google EarthTM the footprint of each building on 

campus can be found as also shown in Figure 4-3. The footprints of each building are 

outlined and stored simply as the corner latitude and longitude coordinates that make up 

the polygon. 

 

Figure 4-3 Google Earth aerial view of the WPI campus with the building footprints outlined in 

yellow 

 
With the building footprint available, we propose a building partitioned method to model 

the path-loss from an AP inside a building to a receiver outside. The building partitioned 
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method is implemented with a dynamic wall breakpoint and exterior wall penetration 

loss.  

The dynamic wall breakpoint is defined by the distance from the AP to the exterior wall 

of the building. This dynamic parameter uses the building footprint information from 

Google Earth to calculate the distance for the breakpoint. Figure 4-4 shows a conceptual 

example of the wall breakpoint locations given the location of the AP, exterior wall, and 

sample measurement points, i to i+n. 

dwbp(i)

*
**

*
dwbp(i+1)

i i+1
i+2

i+n

dwbp(i+2)

dwbp(i+n)

 

Figure 4-4 Wall breakpoint notional diagram showing the wall breakpoint locations for the 

measurement location i to i + n 

 
To use the wall breakpoint model in a simulation the exterior walls of the building 

containing the AP’s are outlined in Google Earth to produce the building footprints. The 
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building footprints are used to find the line intersections of the signal path and building 

walls to define the dynamic breakpoint for each AP and sample. 

In addition to the dynamic wall breakpoint, a path-loss for the exterior wall was added to 

account for the penetration loss of the exterior walls of buildings. The building 

penetration loss equates to a one-time loss in signal strength. The wall path-loss 

parameter can be varied depending on the type of buildings in a simulation. Residential 

buildings have less path-loss than brick commercial buildings. The building penetration 

loss values can be found in previous research, like reference [13] states that the average 

path-loss at ground floor-level is 12.8dB at 2.3GHz. 

Both of the building partitioned parameters where incorporated in the SGMF and MGSF 

models. 

4.4.1 SGMF Building Partitioned Model 

As preciously discussed, the unmodified SGMF model is based on the assumption that 

the path-loss is solely a function of the distance from the AP to the receiver and the floors 

between. During the characterization of the RSS signatures it was shown that the location 

of the AP relative to the exterior of the building also influences the RSS signature, 

therefore two improved models are proposed. First we add a dynamic wall breakpoint to 

the SGMF to produce a model we denote SGMF+BP. The formula for the SGMF+BP 

model is given by 

 ( ) ( ) 
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where Lp is the path-loss over distance d in dB, L0 is the path-loss over the first meter in 

dB, Lf(n) is the attenuation attributed to each floor, n is the number of floors between the 

transmitter and receiver, α1, and αE are the distance-power gradients for the respective 

path sections, and dwbp is the dynamic AP specific wall breakpoint in meters. 

We then add the exterior wall penetration loss to the SGMF+BP to produce a model we 

denote as SGMF+BPWL. The SGMF+BPWL formula is given by 

 

( ) ( ) W

wbp

Ewbpfp L
d

d
logdlognLLL +










+++= αα 1010 10

 (4-4) 

where Lw is the path-loss for the exterior wall in dB. 

4.4.2 MGSF Building Partitioned Model 

The distance partitioned MGSF model is not ideal for modeling indoor-to-outdoor 

scenarios due to its basic assumption not holding true. The assumption holds true up to 

the exterior wall of the building, but after that the path-loss environment changes to free 

space with trees, lamp posts, signs, and other buildings posing obstacles to the receiver.  

The wall breakpoint model extends the distance partitioned MGSF model to allow for 

proper simulation of the path-loss environment outside of buildings. It was implemented 

by adding a second dynamic breakpoint, dwbp, with an associated distance-power gradient, 

αE, for the path section outside the exterior wall of the building. We denoted this 

improved model as MGSF+BP and its formula is given by 
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where Lp is the path-loss over distance d in dB, L0 is the path-loss over the first meter in 

dB, α1, α2, and αE are the distance-power gradients for the respective path sections, dbp is 

the static breakpoint distance in meters, and dwbp is the dynamic AP specific wall 

breakpoint in meters.  

We then add the exterior wall penetration loss to the MGSF+BP to produce a model we 

denote as MGSF +BPWL. The MGSF +BPWL formula is given by 
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where Lw is the path-loss for the exterior wall in dB. 
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Chapter 5: Channel Model Performance 
Analysis 

5.1 Introduction 

In Chapter 5, we evaluate performance of the channel models discussed in Chapter 4 to 

predict the WiFi RSS signatures characterized in Chapter 3. We begin by describing the 

framework used for channel model simulation and evaluation. We then define a criterion 

to measure the performance of each channel model and then use this criterion to optimize 

the parameters for the wall breakpoint models. Finally we evaluate the performance of 

each channel model. 

5.2 RSS Signature Simulator and Evaluator 

To evaluate the channel models to reproduce the RSS signatures an RSS signature 

simulator and evaluator was needed. MATLAB was used to create a simulation 

environment to implement the channel models and evaluate their performance. Figure 

5-1, shows the flow and components of the channel model simulator.  

The empirical RSS signature database described in Section 3.2, was used for the 

measurement path coordinates. It was important to use the coordinates where the 

empirical data was collected for in the performance evaluation of the channel models. 

The building footprint database was built from site-specific information exported from 

Google Earth as described in Section 4.4, was used to calculate the wall breakpoint 

distance.  The AP database was supplied by WPI and contained the AP latitude and 

longitude coordinates which were used to calculate the distances between the AP’s and 

the measurement points. Using the three databases the two distance parameters were 
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calculated and input into the channel model. The channel model RSS signatures output 

were stored in a model RSS signature database. 

d
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Figure 5-1 Model simulation flow diagram 

 
The RSS signature evaluator was created to implement the performance evaluation 

criteria, K, which is defined in the next section. Figure 5-2 shows the components and 

flow of the performance evaluator.  

Model RSS 
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Empirical RSS 
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Model 
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Figure 5-2 Performance evaluation flow diagram 
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Using the results of the RSS signature simulator and the empirical RSS signature 

database the evaluator computes the performance of the channel model. 

5.3 Definition of Performance Evaluation Criteria 

To evaluate the performance of the channel models, binary hypothesis testing was 

employed to measure their ability to accurately produce the empirical RSS signatures. To 

use binary hypothesis testing, the model results and empirical data were treated as two 

binary sets, D and H, in the sample space, S. The sample space consisted of the locations 

where RSS measurements were recorded. For each AP there was an empirical set 

consisting of the locations where a signal was detected, H. Similarly, for each AP the 

channel model produced a set consisting of the locations where a signal was predicted, D. 

In binary hypothesis testing, the empirical data are used to find the probabilities of the 

possible outcomes. There are four possible outcomes for each sample: the model predicts 

a detection and the empirical data shows a detection (D1, H1), the model predicts a 

detection and the empirical data does not show a detection (D1, H0), the model does not 

predict a detection and the empirical data does not show a detection (D0, H0), and last, the 

model does not predict a detection and the empirical data does show a detection (D0, H1). 

Given these four possible outcomes, Bayes’ theorem (4) was used to find the likelihood 

of correct model predictions [16]. 

  
)H(P

)HD(P

)H(P

)D(P)D|H(P
)H|D(P

∩
==   (4) 
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In Equation (5), the two correct model prediction likelihoods were averaged and used as 

the performance metric, K. The performance metric was use to evaluate each channel 

model’s ability to match the empirical RSS signatures. 

 
2

1100 )|HP(D)|HP(D
K

+
=   (5) 

5.4 Building Partitioned Modeling Parameter Optimization 

The distance-power gradient for the path section from the exterior wall to the receiver, 

αE, is unknown. We hypothesize that it should be greater than 2, which is the distance-

power gradient for free space and 3.5 which is the gradient used by 802.11 for the second 

path in the MGSF model. Before the performance of the building partitioned models was 

able to be evaluated these optimized value for the distance power-gradient needed to be 

found. The performance metric defined in Section 5.1, was calculated over a range of 2-

10 for the distance-power gradient for the building partitioned models. For the remaining 

parameters typical office environment values were used as defined in Chapter 4.  

The performance of the each model was plotted over the range of distance-power 

gradients (see Figure 5-3). 



 47 

2 3 4 5 6 7 8 9 10
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Distance-Power Gradient

P
e
rf

o
rm

a
n
c
e
 (

%
)

 

 

5

6

3

2

 

Figure 5-3 Building partitioned models parameter optimization 

 
From the above figure the optimal distance-power gradients were found. Table 5-1 shows 

the parameter values used for each model. 

Table 5-1 Building partitioned models parameters 

ID Model dbp dwbp α1 α2 αE Lf(n) LW 

1 SGMF (JTC)   3.0   15+4(n-1)  

2 SGMF+BP  Wall 3.0  3.0 15+4(n-1)  

3 SGMF+BPWL  Wall 3.0  2.0 15+4(n-1) 12.8 

4 MGSF (802.11) 5  2.0 3.5    

5 MGSF+BP 5 Wall 2.0 3.5 4.0   

6 MGSF+BPWL 5 Wall 2.0 3.5 2.8  12.8 

 
 
The optimal power-gradients range between 2.0 and 4.0 for the model variations. The 

optimal external path distance-power gradient for the SGMF+BP model was the same as 

the internal path. This indicates that adding a building partitioned distance-power 



 48 

gradient to the SGMF model will not improve its performance. The SGMF+BPWL 

however, had an optimal external distance-power gradient of 2 or free space, indicating 

that adding a path-loss for the exterior wall of the building has an effect of the power 

gradient.  

The MGSF+BP model’s distance-power gradient was larger than the internal path 

distance-power gradient, which does not fit with the known path-loss environment. The 

interior paths should have higher path-loss due to interior wall and other physical 

obstructions. Whereas the exterior path should be closer to free space path-loss as 

discussed in Section 4.4. The distance-power gradient for this model is most likely 

artificially high due to the absence of the exterior wall path-loss and should result in 

lower performance than the other model with the exterior wall path-loss. The 

MGSF+BPWL model which includes path-loss for the exterior wall of the building has a 

lower distance power gradient for the exterior path than the interior path. This was the 

expected case as discuss above and should show better overall performance. 

5.5 Performance Analysis Results 

Using the simulator and evaluator the performance of the existing and proposed models 

were evaluated. The parameters used for each model as the same as listed in Table 5-1. 

Each of the building partitioned models where compared back to their respective base 

model, either the SGMF (JTC) or the MGSF (802.11). Table 5-2 gives the results for 

each model. 
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Table 5-2 Channel model performance results 

Opt Metric 
ID Model 

Mean Max Min 

1 SGMF (JTC) 79.7% 98.4% 50.5% 

2 SGMF+BP 79.7% 98.4% 50.5% 

3 SGMF+BPWL 74.1% 96.2% 49.7% 

4 MGSF (802.11) 82.0% 88.3% 51.9% 

5 MGSF+BP 86.0% 91.9% 55.2% 

6 MGSF+BPWL 91.2% 96.3% 62.7% 

 

From the results it can be seen that both of the current base models have similar 

performance. The SGMF model had a higher peak performance but the MGSF model had 

a slightly higher mean performance.  

The SGMF+BP model, which added the wall breakpoint to the SGMF model, showed no 

improvement to performance. This was expected as the optimal value for the exterior 

distance-power gradient was found to be the same as the interior gradient. The 

SMGMF+BPWL, which added both a wall breakpoint and wall penetration loss to the 

SGMF model, showed a decrease in performance over the base model. It is hypothesized 

that the decrease in performance is because the floor path-loss included in the original 

SGMF model is not present for the indoor to outdoor signal path being modeled. This is 

because the assumption from the indoor to indoor scenario that the signal passes through 

the number of floors between the AP and receiver does not hold true for the indoor to 

outdoor scenario. If they are both indoors the strongest signal path is most likely through 

the floors between the AP and receiver, but if the receiver is outdoors then the strongest 

signal path is more likely to be through the exterior wall for example through a window. 

The floor path loss in the original model is most likely accounting for the wall path loss 

for the indoor to out door scenario and therefore with the addition of the wall penetration 
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loss parameter the wall path loss is being double counted. A solution to this problem 

could be to modify how the number of floors between the AP and receiver is calculated. 

For the WPI campus the floor of the AP is not a significant driver to the RSS values but 

for environments with building with more floors this parameter may become useful.  

Opposed to the SGMF base model, the MGSF base model showed improved performance 

when the building partitioning parameters were added. The addition of the wall 

breakpoint showed a 6% increase, but when the wall path-loss was added the 

performance increased by 10%. The results follow the expectation that the 

MGSF+BPWL model with path-loss for the exterior wall of the buildings would 

outperform the models without the wall path-loss. 

Given that the MSGF+BPWL model performance the best out of the building partitioned 

models it was used in the further analysis of the model predictions. Figure 5-4 is a plot 

showing the performance of the two base models and the best performing building 

portioned model, MGSF+BPWL over all of the AP’s in the database. 
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Figure 5-4 Channel model performance comparison over AP’s 

 
The figure shows that the building portioned model outperforms the base models for 38 

out of the 47 AP’s.  

To understand the models predicted RSS values in comparison to the empirical data the 

mean RSS for each AP was found. Figure 5-5 is a plot of the mean RSS for empirical 

measurement, the two base models, and the best performing building partitioned model, 

MGSF+BPWL, for each AP in the database. 



 52 

0 5 10 15 20 25 30 35 40 45
-95

-90

-85

-80

-75

Access Point

M
e
a
n
 R

S
S

 (
d
B

m
)

 

 

Empirical

MGSF+BPWL

MGSF (802.11)

SGMF (JTC)

 

Figure 5-5 Channel model mean RSS comparison over database AP’s 

 
The plot shows that the models on average over predicted the mean RSS for the AP’s. 

The empirical RSS mean values also show more variation between AP’s than the models. 

Table 5-3 gives the mean difference for the channel models from the empirical RSS 

measurements.  

Table 5-3 Mean RSS channel model difference from empirical measurements 

3.83.4SGMF (JTC)1

3.94.7MGSF (802.11)4

3.83.3MGSF+BPWL6

STDMeanModelID

Difference from 

Empirical (dB)

3.83.4SGMF (JTC)1

3.94.7MGSF (802.11)4

3.83.3MGSF+BPWL6

STDMeanModelID

Difference from 

Empirical (dB)
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The SGMF and MGSF+BLWL show similar performance to match the mean RSS of the 

empirical measurements. In general the difference from the empirical mean RSS’s are not 

significant given that the RSS variation from shadow fading is 5dB. 

An additional parameter for interest is the coverage distance predicted by each AP. The 

coverage distance is directly related to the RSS signature. Figure 5-6 show the coverage 

length of the each AP for the empirical measurements and the model predictions.  
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Figure 5-6 Coverage distance model prediction to empirical data comparison for each AP 

 
From the plot it can be seen that the all three of the models do not predict the AP 

coverage distance of the RSS signature accurately. The errors from the empirical distance 

are on the order of hundreds of meters as given in Table 5-4.  
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Table 5-4 Model coverage prediction difference from the empirical data 

590517SGMF (JTC)1

381890MGSF (802.11)4

328798MGSF+BPWL6

STDMeanModelID

Difference from 

Empirical (m)

590517SGMF (JTC)1

381890MGSF (802.11)4

328798MGSF+BPWL6

STDMeanModelID

Difference from 

Empirical (m)

 

The predication error is hypothesized to be due to the buildings surrounding the buildings 

containing the AP’s. These surrounding buildings serve as obstacles causing path-loss 

that are not accounted for in any of the models. The over predicted coverage could also 

be attributing to the higher mean RSS predicted by the models. To overcome this short 

fall the footprints of the surrounding building could be added to future models. 

The distribution of the connectivity segment lengths of the models was also compared to 

the empirical data. Figure 5-7 shows the CDF of the empirical, SGMF model, MGSF 

model and MGSF+BPWL model RSS signature connectivity segments. 
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Figure 5-7 CDF of empirical and model RSS signature connectivity segments 

 
From the plot it can be seen that the MGSF+BPWL model creates RSS signature 

connectivity segments which have a tighter fit to the distribution of the empirical data. 

To complete the evaluation of the models we used the AK data subset discussed in 

Section 3.3. Figure 5-8 is a plot of the empirical and model RSS signatures for 

compassion on the measurement path around AK for each AP. The first observation made 

was that the MGSF+BPWL model out performed the MGSF (802.11) for all of the AP’s. 

But this was not the case for the SGMF (JTC), the MGSF+BPWL model out performed 

the it for the first floor AP’s (1-3) but had the same performance for the 2nd floor AP’s (5-

6) and performed worse on the third floor AP’s (7-8).  
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Figure 5-8 Comparison of empirical and model RSS signatures for the AK AP’s on the database 

subset defined in Figure 3-3 
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Given this observation we see that MGSF+BPWL model has room for improvement. As 

an exercise we tried to optimize the MGSF+BPWL model parameters to see if we could 

improve it performance. We found that if we let α1 = 5 and αE = 2.8 we could improve the 

performance for the AK subset to ~90%. This RSS signature is denoted as OPT 

MGSF+BPWL in Figure 5-8. 
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Chapter 6: Conclusions and Future Work 

6.1 Summary and Conclusions 

WiFi localization algorithm development requires a large database of RSS signature 

information. There are two methods to build the RSS database: empirically through 

measurements or theoretically using channel models. The empirical method is not 

preferred for research and development of WiFi localization algorithms because it is 

costly, time consuming, and the environment scenarios are inflexible. Therefore the 

theoretical method using an accurate channel model is preferred. 

In support of using the theoretical method to build an RSS database we characterized the 

RSS signatures on the WPI campus using a significant empirical RSS database. From this 

characterization we found the following. The RSS signatures were composed of 

connectivity segments whose length’s best fit a lognormal distribution. The detected 

mean RSS values were on the lower sensitivity limit of the WiFi receiver. There was not 

a tight relationship between the distance from the AP to the measurement point and the 

RSS value. The RSS values of AP’s located on ground to third floors followed the same 

distribution. Finally it was observed that the RSS signature behavior was affected by the 

location of the AP within the building in respect to the distance from the exterior wall. 

From the results of our RSS signature characterization we proposed a new building 

partitioned modeling method. The building partitioned method made use of site-specific 

information readily available from Google Earth to find the coordinates of the building 
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footprint conation the AP. Using the building footprints the new models were able to 

account for the location of the AP relative to the exterior wall of the building. 

Lastly, we evaluated the performance of two existing models (JTC and 802.11) along 

with the proposed building partitioned models against the empirical data. The evaluation 

showed that by adding site-specific information to the channel models a 10% 

performance increase is gained.  

The work performed in this research is the first steps to allow researchers in WiFi 

localization to evaluate algorithm performance and study environmental and AP 

distribution effects without the need to collect vast amounts of empirical data. 

6.2 Future Work 

The research presented in this thesis leaves several areas for future work, including 

continued model improvements, environment characterization, AP density and 

distribution analysis, and algorithm performance evaluation. In the area of channel model 

improvements, more site-specific information is available that was not employed in this 

initial research like accounting for the neighboring buildings in the path-loss model. In 

the area of environment characterization, we only analyzed empirical RSS signatures in a 

campus environment. It is unknown whether these signatures behave significantly 

different in environments such as residential and urban canyon areas.  Based on these 

environment characterizations there may be further research needed to design and 

evaluate models for theses different environments. In the area of AP density and 

distribution, the channel models studied in this research can be used to simulate RSS 

signatures for varying AP densities and distributions (i.e. random and grid) to understand 
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the effects of localization algorithms. The last area of future work would be to use the 

channel models to evaluate the performance of different localization algorithms such as 

centroid, nearest-neighbor, and particle filter. The resulting locations could be compared 

back to the actual and empirical locations to understand the effect of using channel 

models on the localization algorithms. The goal would be to minimize the difference 

between the empirical and the model predicated locations. 
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Appendix A Exporting Building Footprints 
from Google Earth 

1. Click on “Add Polygon” 

 
 
2. Click on the  corners of the building to be outlined in consecutive order 
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3. Enter a name for the polygon and click “OK” 

 

4. Right click on the polygon in the “Places” area and click “Save Place As” 
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5. Save the polygon as a Kml type 
 

 
 

6. The Kml file containing the building footprint can now be read into MATLAB using 
the Google Earth Toolbox.
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AP Database 
 

AP MAC Address Building Floor Longitude Latitude SSID 

00 20 D8 2E 90 00 Atwater Kent First  
 
71°48'24.67"W 

 
42°16'30.54"N 

WPI 
Wireless 

00 20 D8 2E 97 40 Atwater Kent First  
 
71°48'25.57"W 

 
42°16'31.91"N 

WPI 
Wireless 

00 20 D8 2E E6 C0 Atwater Kent First  
 
71°48'25.91"W 

 
42°16'31.47"N 

WPI 
Wireless 

00 20 D8 2E 8E 00 Atwater Kent Second 
 
71°48'25.79"W 

 
42°16'31.64"N 

WPI 
Wireless 

00 20 D8 2E A9 00 Atwater Kent Second 
 
71°48'24.10"W 

 
42°16'30.99"N 

WPI 
Wireless 

00 20 D8 2E F5 40 Atwater Kent Third 
 
71°48'25.01"W 

 
42°16'31.01"N 

WPI 
Wireless 

00 20 D8 2E 88 80 Atwater Kent Third 
 
71°48'26.07"W 

 
42°16'30.93"N 

WPI 
Wireless 

00 16 CA 32 BD C0 Fuller Labs Ground 
 
71°48'22.41"W 

 
42°16'30.56"N 

WPI 
Wireless 

00 16 CA 32 91 40 Fuller Labs First 
 
71°48'22.31"W 

 
42°16'30.54"N 

WPI 
Wireless 

00 16 CA 32 BD 80 Fuller Labs Second 
 
71°48'22.31"W 

 
42°16'30.48"N 

WPI 
Wireless 

00 16 CA 32 8F 80 Fuller Labs Second 
 
71°48'22.89"W 

 
42°16'29.74"N 

WPI 
Wireless 

00 16 CA 32 8E 80 Fuller Labs Second 
 
71°48'23.13"W 

 
42°16'30.23"N 

WPI 
Wireless 

00 16 CA 32 82 C0 Fuller Labs Third 
 
71°48'22.97"W 

 
42°16'29.86"N 

WPI 
Wireless 

00 20 D8 2E 45 C0 Library First 
 
71°48'23.68"W 

 
42°16'27.68"N 

WPI 
Wireless 

00 20 D8 2E EB 40 Library First 
 
71°48'22.79"W 

 
42°16'26.58"N 

WPI 
Wireless 

00 20 D8 2E D3 00 Library Second 
 
71°48'22.89"W 

 
42°16'27.78"N 

WPI 
Wireless 

00 20 D8 2F 19 80 Library Second 
 
71°48'22.83"W 

 
42°16'26.75"N 

WPI 
Wireless 

00 20 D8 2E 51 C0 Library Third 
 
71°48'23.77"W 

 
42°16'27.03"N 

WPI 
Wireless 

00 20 D8 2E B8 40 Library Third 
 
71°48'22.67"W 

 
42°16'27.61"N 

WPI 
Wireless 

00 20 D8 25 52 80 Higgins Labs First 
 
71°48'29.64"W 

 
42°16'27.42"N 

WPI 
Wireless 

00 16 CA 3A 8A 80 Higgins Labs First 
 
71°48'29.94"W 

 
42°16'26.43"N 

WPI 
Wireless 

00 20 D8 25 1E 00 Higgins Labs Second 
 
71°48'30.04"W 

 
42°16'27.43"N 

WPI 
Wireless 

00 16 CA 38 3D 80 Higgins Labs Second 
 
71°48'30.01"W 

 
42°16'26.53"N 

WPI 
Wireless 

00 20 D8 24 37 40 Higgins Labs Third 
 
71°48'29.95"W 

 
42°16'26.86"N 

WPI 
Wireless 

00 20 D8 23 DD 80 
Campus 
Center First 

 
71°48'30.28"W 

 
42°16'30.00"N 

WPI 
Wireless 
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AP MAC Address Building Floor Longitude Latitude SSID 

00 20 D8 23 C4 80 
Campus 
Center Second 

 
71°48'30.36"W 

 
42°16'28.92"N 

WPI 
Wireless 

00 20 D8 2E CA 00 
Campus 
Center Second 

 
71°48'30.13"W 

 
42°16'29.82"N 

WPI 
Wireless 

00 20 D8 23 C5 C0 
Campus 
Center Third 

 
71°48'30.44"W 

 
42°16'29.02"N 

WPI 
Wireless 

00 20 D8 23 C6 80 
Campus 
Center Third 

 
71°48'30.03"W 

 
42°16'29.77"N 

WPI 
Wireless 

00 16 CA 32 95 40 Olin Hall First 
 
71°48'28.87"W 

 
42°16'29.57"N 

WPI 
Wireless 

00 20 D8 25 BD 80 Kaven Hall Ground 
 
71°48'21.46"W 

 
42°16'29.98"N 

WPI 
Wireless 

00 20 D8 25 C1 00 Kaven Hall Ground 
 
71°48'20.82"W 

 
42°16'29.00"N 

WPI 
Wireless 

00 20 D8 25 B2 40 Kaven Hall First 
 
71°48'20.94"W 

 
42°16'29.32"N 

WPI 
Wireless 

00 20 D8 25 F3 80 Kaven Hall Second 
 
71°48'20.80"W 

 
42°16'29.53"N 

WPI 
Wireless 

00 15 E8 E6 A7 00 
Stoddard 
Labs First 

 
71°48'25.60"W 

 
42°16'26.46"N 

WPI 
Wireless 

00 15 E8 E6 9D 80 
Stoddard 
Labs Third 

 
71°48'25.47"W 

 
42°16'25.84"N 

WPI 
Wireless 

00 16 CA 32 BD 00 Stratton Hall Ground 
 
71°48'27.76"W 
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Appendix B RSS Signature Segment 
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Appendix C Plots of the Empirical and 
Model RSS Signatures 
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Appendix D MATLAB Code 

D.1. MATLAB Function to read Google Earth kml files 

The code following code was downloaded from MATLAB® Central File Exchange at 
http://www.mathworks.com/matlabcentral/fileexchange/13026 and was authored by Amy Farris 
 
function [lat,lon,z] = read_kml(fileName) 
%READ_KML reads a Google Earth kml file into Matlab 
% Reads in lat,lon,z from a simple path file. 
% 
%  All the data in the data file must EITHER be on one line, for 
example: 
%   -73.6513,40.4551,0 -73.3905,40.5214,0 -73.0589,40.5956,0 
% OR each point must be on its own line, for example: 
%   -73.237171, 40.627311, 0.0  
%   -73.242945, 40.626360, 0.0  
% 
%  I have tried to make this code as robust as possible, but it may 
still 
%  crash if there is a space in the wrong place in the data file. 
% 
% Example: 
%   [lat,lon,z] = read_kml('test.kml'); 
% 
% where test.kml looks like: 
% <?xml version="1.0" encoding="UTF-8"?> 
% <kml xmlns="http://earth.google.com/kml/2.1"> 
% <Placemark> 
%   <name>test_length</name> 
%   <description>junk</description> 
%   <LineString> 
%     <tessellate>1</tessellate> 
%     <coordinates> 
% -73.65138440596144,40.45517368645169,0 -
73.39056199144957,40.52146569128411,0 -
73.05890757388369,40.59561213913959,0 -
72.80519929505505,40.66961872411046,0 -
72.61180114704385,40.72997510603909,0 -
72.43718187249095,40.77509309196679,0 </coordinates> 
%   </LineString> 
% </Placemark> 
% </kml> 
% afarris@usgs.gov 2006 November 
  
%% open the data file and find the beginning of the data 
fid=fopen(fileName); 
if fid < 0 
    error('could not find file') 
end 
done=0; 
while done == 0 
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    junk = fgetl(fid); 
    f=findstr(junk,'<coordinates>'); 
    if isempty(f) == 0 
        done = 1; 
    end 
end 
ar = 1; 
% junk either ends with the word '<coordinates>' OR  
% some data follows the word '<coordinates>'   
if (f + 13) >= length(junk)   
    % no data on this line 
    % done2 is set to zero so the next loop will read the data 
    done2 = 0; 
else 
    % there is some data in this line following '<coordinates>' 
    clear f2 
    f2=findstr(junk,'</coordinates>'); 
    if isempty(f2) == 0 
        %all data is on this line 
        alldata{ar} = junk(f+13:f2-1); 
        % done2 is set to one because the next loop does not need to 
run 
        done2 = 1; 
    else 
        % only some data is on this line 
        alldata{ar} = junk(f+13:end); 
        ar = ar + 1; 
        % done2 is set to zero so the next loop will read the rest of 
the data 
        done2 = 0; 
    end 
end 
  
%% Read in the data 
while done2 == 0 
    % read in line from data file 
    junk = fgetl(fid); 
    f=findstr(junk,'</coordinates>'); 
    if isempty(f) == 1  
        % no ending signal, just add this data to the rest  
        alldata{ar} = junk; 
        ar = ar + 1; 
    else 
        % ending signal is present 
        if f < 20 
            % </coordinates> is in the begining of the line, ergo no 
data  
            % on this line; just end the loop 
            done2 = 1; 
        else  
            % the ending signal (</coordinates>) is present: remove it,  
            % add data to the rest and signal the end of the loop 
            f2 = strfind(junk,'</coordinates>'); 
            alldata{ar} = junk(1:f2-1); 
            ar = ar + 1; 
            done2 = 1; 
        end 
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    end 
end 
  
%% get the data into neat vectors 
% either all the data is on one line, or each point is on its own line 
f = strfind(alldata{1}(:)',','); 
if length(f) > 2 
    % more than one coordinate on each line, this is hard b/c there is 
no 
    % comma between points (just commans between lon and lat, and 
between  
    % lat and z)  ie;  -70.0000,42.0000,0 -70.1000,40.10000,0 -
70.2,.... 
    % 
    %  I have to divide the string into Latitude, Longitude and Z 
values  
    % using the locations of both commas and spaces. 
    %   
    % turn alldata into regular vector so it is easier to work with 
    data = cell2mat(alldata); 
    % now find all commas 
    fComma = strfind(data, ','); 
    % find all spaces 
    fSpace = strfind(data,' '); 
    a=1; 
    fC = 1; 
    % have to do first point seperately b/c line may not begin with a 
space 
    lon(a) = str2num(data(1:fComma(fC)-1)); 
    lat(a) = str2num(data(fComma(fC)+1:fComma(fC+1)-1)); 
    z(a) = str2num(data(fComma(fC+1)+1:fSpace(1)-1)); 
    a=a+1; 
    fS=1; 
    % go thru all the points in the line 
    for fC = 3: 2: length(fComma) 
        lon(a) = str2num(data(fSpace(fS)+1:fComma(fC)-1)); 
        lat(a) = str2num(data(fComma(fC)+1:fComma(fC+1)-1)); 
        if fS  < length(fSpace) 
            z(a) = str2num(data(fComma(fC+1)+1:fSpace(fS+1)-1 )); 
        else 
            % have to handle last point seperatly b/c line may not end 
with 
            % a space 
            z(a) = str2num(data(fComma(fC+1)+1:end )); 
        end 
        a=a+1; 
        fS=fS+1; 
    end 
 else 
    %each point is on its own line 
    for i = 1 : size(alldata,2) 
        fComma = strfind(alldata{i}(:)',','); 
        lon(i) = str2num(alldata{i}(1:fComma(1)-1)); 
        lat(i) = str2num(alldata{i}(fComma(1)+1:fComma(2)-1)); 
        z(i) = str2num(alldata{i}(fComma(2)*1:end)); 
    end 
 end 



 81 

  
fclose(fid); 
[a,b]=size(lat); 
lat=reshape(lat,max(a,b),min(a,b)); 
lon=reshape(lon,max(a,b),min(a,b)); 
z=reshape(z,max(a,b),min(a,b)); 
 

D.2. MATLAB ReadAPdatabase 

function [AP, AP_MAC, AP_lat, AP_lon, AP_fl] = readAPdb(filename, 
pathName) 
  
  
fid = fopen([pathName filename]); 
APdb = textscan(fid, '%s%s%s%s%s%s%s%s', 'delimiter', ','); 
fclose(fid); 
  
  
APfilename = APdb{2}; 
AP = APfilename(2:end); 
APfilename_char = char(APfilename(2:end)); 
AP_MAC(:, [1 2 4 5 7 8 10 11 13 14 16 17]) = ... 
  APfilename_char(:, [1 2 4 5 7 8 10 11 13 14 16 17]); 
AP_MAC(:, [3 6 9 12 15]) = ' '; 
  
AP_fl_cell = APdb{4}; 
AP_fl = -ones(length(AP_fl_cell)-1,1); 
AP_fl(strcmp('Ground', AP_fl_cell(2:end))) = 0; 
AP_fl(strcmp('First', AP_fl_cell(2:end))) = 1; 
AP_fl(strcmp('Second', AP_fl_cell(2:end))) = 2; 
AP_fl(strcmp('Third', AP_fl_cell(2:end))) = 3; 
  
if sum(AP_fl == -1) ~= 0 
  error('AP_fl') 
end 
  
AP_lon_cell = APdb{5}; 
AP_lon_char = char(AP_lon_cell); 
AP_lon = str2angle(AP_lon_char(2:end, 2:end-1)); 
  
AP_lat_cell = APdb{6}; 
AP_lat_char = char(AP_lat_cell); 
AP_lat = str2angle(AP_lat_char(2:end, 2:end-1)); 
 
 

D.3. MATLAB Empirical Data Pre-Process 

clc 
clear 
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close all 
format short 
  
%% Params 
src = 'SkyHook'; 
if strcmp(src, 'SkyHook') 
  header_len = 3 
else 
  header_len = 5 
end 
pathName = '..\Scanning_data\file_2_run1\' 
  
APrange = [1:3 5:8]; 
%% constants 
% FileName = 'APdatabaseOUT.csv'; 
PathName = '..\WirelessMon Data\'; 
outputPath = '..\GE_kmls\'; 
s_path = '..\MAT_data\'; 
%% 
md_i = 1; 
  
%% get data 
tic 
  
[AP, AP_MAC, AP_lat, AP_lon] = readAPdb('WPI - Access Points List.csv', 
'..\'); 
  
files = dir(pathName); 
  
RSSI_on_path = cell(max(APrange), length(files)-sum([files.isdir])); 
f_i = 1; 
for fnum = 1:length(files) 
  if ~files(fnum).isdir 
    files(fnum).name 
    files_out{f_i} = files(fnum); 
    %load data 
    [sampleInd t_stamp cell_MACaddr cell_RSSI la lo flr_num inout] = 
... 
      getAPdata(src, files(fnum).name, pathName); 
    num_samples = length(sampleInd)-header_len; 
  
    %format data 
    RSSI = str2double(cell_RSSI(header_len:end)); 
    lat = str2double(la(header_len:end)); 
    lon = str2double(lo(header_len:end)); 
    t_stamp = t_stamp(header_len:end); 
  
    %find uinque pts 
    uu_lat = lat(1); 
    uu_lon = lon(1); 
    num_upts = 1; 
    for ii = 2:length(lat) 
      if uu_lat(num_upts) ~= lat(ii) || uu_lon(num_upts) ~= lon(ii) 
        num_upts = num_upts+1; 
        uu_lat(num_upts) = lat(ii); 
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        uu_lon(num_upts) = lon(ii); 
      end 
    end 
  
    cell_MACaddr=cell_MACaddr(header_len:end); 
  
    for APsel = 1:length(AP_MAC)%APrange 
      %create mask for current AP 
      AP_mask = strncmpi(AP(APsel, :), cell_MACaddr, 17); 
      fprintf('AP %d sum_AP_Mask %d\n', APsel, sum(AP_mask)) 
       
      %Apply mask 
      AP_masked_RSSI = RSSI(AP_mask); 
       
      %mask the AP lat and lon 
      AP_masked_lat = lat(AP_mask); 
      AP_masked_lon = lon(AP_mask); 
  
      RSSI_on_path_t = nan(1, num_upts); 
  
      %if AP was detected in file 
      if ~isempty(AP_masked_lat) 
  
        %find AP unique points 
        APuLat = AP_masked_lat(1); 
        APuLon = AP_masked_lon(1); 
        uAPpts = 1; 
        num_uAPpts = 1; 
        for AP_masked_i = 2:length(AP_masked_lat) 
          if APuLat(num_uAPpts) ~= AP_masked_lat(AP_masked_i) || ... 
              APuLon(num_uAPpts) ~= AP_masked_lon(AP_masked_i) 
            num_uAPpts = num_uAPpts+1; 
            APuLat(num_uAPpts) = AP_masked_lat(AP_masked_i); 
            APuLon(num_uAPpts) = AP_masked_lon(AP_masked_i); 
            uAPpts(num_uAPpts) = AP_masked_i; 
          end 
        end 
         
        %avg RSS at same location 
        AP_masked_mRSSI = ones(num_uAPpts,1); 
        for APupts_i = 1:num_uAPpts 
          AP_masked_mRSSI(APupts_i) = mean(AP_masked_RSSI(AP_masked_lat 
== APuLat(APupts_i) & AP_masked_lon == APuLon(APupts_i))); 
        end 
         
         
        %create mask from unique Ap points and unique Lat Lon locations 
        pts_mask = false(num_upts,1); 
        for APupts_i = 1:num_uAPpts 
          for upts_i = 1:num_upts 
            if APuLat(APupts_i) == uu_lat(upts_i) && APuLon(APupts_i) 
== uu_lon(upts_i) 
              pts_mask(upts_i) = true; 
            else 
              pts_mask(upts_i) = pts_mask(upts_i) | false; 
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            end 
          end 
        end 
  
        if sum(pts_mask) == num_uAPpts 
          RSSI_on_path_t(pts_mask) = AP_masked_mRSSI; 
          display('found points') 
        else 
          error(''); 
        end 
      end 
      %store results 
      RSSI_on_path{APsel, f_i} = RSSI_on_path_t; 
       
%       if mod(APsel-1, 4) == 0 
%         figure 
%         ff= 1; 
%       else 
%         ff= ff+1; 
%       end 
%       subplot(2,2,ff); 
% %       stairs(AP_masked_RSSI); 
%       stairs(RSSI_on_path_t); 
%       title([files(fnum).name ' AP ' num2str(APsel)]); 
% %       axis([0 length(AP_masked_RSSI) -100 -50]) 
%       axis([0 length(RSSI_on_path_t) -100 -50]) 
       
    end%APs 
  
    unique_lat{f_i} = uu_lat; 
    unique_lon{f_i} = uu_lon; 
    f_i = f_i+1; 
  end%~dir 
end%files 
time_s = sprintf('%d-%02d-%02d_%02d%02d%02d', fix(clock)); 
filename = [s_path  'Emp3_' time_s]; 
save(filename, 'RSSI_on_path', 'unique_lat', 'unique_lon', 'files_out') 
toc 
 
 
 

D.4. MATLAB Wall Breakpoint Database Builder 

D.4.1. MATLAB runFindBreakPt 

clc 
clear 
close all 
format short 
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%% constants 
s_path = '..\MAT_data\'; 
  
%% get data 
  
%Get AP data 
[AP, AP_MAC, AP_lat, AP_lon] = readAPdb('WPI - Access Points List.csv', 
'..\'); 
  
%Get Empirical data 
files = dir(s_path); 
datenum = 0; 
for file_i = 1:length(files) 
  if strncmp('Emp', files(file_i).name, 3) 
    if files(file_i).datenum > datenum 
      fname = files(file_i).name; 
    end 
  end 
end 
  
if ~exist('fname', 'var') 
  error('No processed empirical data run "runEmpData"'); 
end 
  
display(['Loading ' fname]); 
E_data = load([s_path fname]) 
  
%% 
wf_dir = '..\GE_kmls\walls\'; 
  
wall_files = dir(wf_dir); 
  
wLat_cell = cell(1); 
wLon_cell = cell(1); 
%  
% if ~exist('opt', 'var') 
%   opt = 0; 
% end 
  
build_i = 1; 
for wf_i = 1:length(wall_files) 
  % if not a dir 
  if ~wall_files(wf_i).isdir 
    %read AK Wall coordinates from file 
    [wlat, wlon, z] = read_kml([wf_dir wall_files(wf_i).name]); 
    wLat_cell{build_i} = wlat; 
    wLon_cell{build_i} = wlon; 
    build_i = build_i+1; 
  end%if not dir 
end%for files 
  
%% find breakpoints 
tic 
RSS_size = size(E_data.RSSI_on_path); 
short_dbp = cell(RSS_size); 
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walls = cell(RSS_size); 
mask = cell(RSS_size); 
% long_dbp = cell(length(AP), length(E_data.unique_lat)); 
for file_i = 1:RSS_size(2) 
  fprintf('file_i %d of %d\n', file_i, RSS_size(2)) 
  for AP_i = 1:RSS_size(1) 
    fprintf('AP %d of %d\n', AP_i, RSS_size(1)) 
    [short_dbp{AP_i, file_i} walls{AP_i, file_i} mask{AP_i, file_i}]= 
... 
      findBreakPt(E_data.unique_lat{file_i}, E_data.unique_lon{file_i}, 
AP_lat(AP_i), AP_lon(AP_i), wLat_cell, wLon_cell); 
%     long_dbp{AP_i, file_i} = findBreakPt(E_data.unique_lat{file_i}, 
E_data.unique_lon{file_i}, AP_lat(AP_i), AP_lon(AP_i), 1); 
  end 
end 
  
%% Save  
time_s = sprintf('%d-%02d-%02d_%02d%02d%02d', fix(clock)); 
filename = [s_path  'wallBps_' time_s]; 
save(filename, 'short_dbp', 'walls', 'mask');%, 'long_dbp'); 
toc 
 

D.4.2. MATLAB findBreakPt 

function [dbp walls mask] = findBreakPt(lat_masked, lon_masked, AP_lat, 
AP_lon, wLat_cell, wLon_cell) 
  
  
if ~exist('wLat_cell', 'var') 
  wf_dir = '..\GE_kmls\walls\'; 
  
  wall_files = dir(wf_dir); 
  
  wLat_cell = cell(1); 
  wLon_cell = cell(1); 
  % 
  % if ~exist('opt', 'var') 
  %   opt = 0; 
  % end 
  
  build_i = 1; 
  for wf_i = 1:length(wall_files) 
    % if not a dir 
    if ~wall_files(wf_i).isdir 
      %read AK Wall coordinates from file 
      [wlat, wlon, z] = read_kml([wf_dir wall_files(wf_i).name]); 
      wLat_cell{build_i} = wlat; 
      wLon_cell{build_i} = wlon; 
      build_i = build_i+1; 
    end%if not dir 
  end%for files 
end 
% if opt == 0 



 87 

  dbp = -1*ones(1, length(lat_masked)); 
% else 
%   dbp = zeros(1, length(lat_masked)); 
% end 
  
mask = ones(1, length(lat_masked)); 
walls = zeros(1, length(lat_masked)); 
  
%Find the shortest intersection point for each measurement coordinate 
for m_pts = 1:length(lat_masked) 
  bld_cnt = 0; 
  for bldg_i = 1:length(wLat_cell) 
    dbp_b = 0; 
    if ~isempty(wLat_cell{bldg_i}) 
      %find intersections 
      [lati, loni] = polyxpoly(wLat_cell{bldg_i}, wLon_cell{bldg_i}, 
... 
        [lat_masked(m_pts)  AP_lat], [lon_masked(m_pts)  AP_lon]); 
  
      %If find farthest intersection in building 
      for i_pts = 1:length(lati) 
        dbp_t = distdim(distance(AP_lat, AP_lon, lati(i_pts), ... 
          loni(i_pts)), 'deg','m'); 
        % find farthest wall 
        if dbp_t > dbp_b 
          dbp_b = dbp_t; 
          walls(m_pts) = length(lati); 
          %             kmlStr = ge_point(loni,lati,0); 
          %             ge_output('..\GE_kmls\i_points.kml', kmlStr) 
        end 
      end 
  
    end%if there are walls in bldg 
    %see if building intersection is shortest path 
    if(dbp_b ~= 0) 
      bld_cnt = bld_cnt+1; 
      if bld_cnt > 1 
        mask(m_pts) = 0; 
      end 
    end 
     
    if (dbp_b < dbp(m_pts)) || (dbp_b ~= 0) 
      dbp(m_pts) = dbp_t; 
      walls(m_pts) = length(lati); 
    end 
  end %for num buildings 
  
  %Check to see if no walls are found 
  if dbp(m_pts) == 0 
    display('No wall intersection found'); 
    dbp(m_pts) = distdim(distance(AP_lat, AP_lon, lat_masked(m_pts), 
... 
      lon_masked(m_pts)), 'deg','m'); 
  end 
end % for num of measurement points 
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D.5. MATLAB Find Performance findProbAgivenB Function 

function [OPm n] = findProbAgivenB_v2(A, B, AP, files, mask, opt) 
  
num_same = 0; 
t_sum_B = 0; 
t_length = 0; 
  
i = 1; 
AA = []; 
BB = []; 
if ~exist('opt', 'var') 
  for f = files 
    if 1%sum(mask{AP, f}) > 1 
      A_t  = A{AP, f}'; 
%       AA = [AA; A_t(logical(mask{AP, f}))]; 
AA = [AA; A_t]; 
    end 
    BB = [BB; B{AP, f}]; 
  end 
else 
  for f = files 
    for ap_i =AP 
      if 1%sum(mask{ap_i, f}) > 1 
        A_t  = A{ap_i, f}'; 
%         AA = [AA; A_t(logical(mask{ap_i, f}))]; 
        AA = [AA; A_t]; 
      end 
      %       AA = [AA; A{ap_i, f}']; 
      BB = [BB; B{ap_i, f}]; 
    end 
  end 
end 
  
  
  
%   AA = A'; 
%   BB = B; 
%   AA(AA<0) = 1; 
%   BB(BB<0) = 1; 
  AA(~isnan(AA)) = 1; 
  BB(~isnan(BB)) = 1; 
  AA(isnan(AA)) = 0; 
  BB(isnan(BB)) = 0; 
%   sum(AA) 
%   t_sum_B = t_sum_B+ sum(BB==1); 
  A1_i_B1 = AA==1 & BB==1; 
  A0_i_B0 = AA==0 & BB==0; 
  A_u_B = AA==1 | BB==1; 
  A_i_nB = AA==1 & BB==0; 
  A_e_B = AA==BB; 
%   t_length = t_length + length(n); 
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%   num_same = num_same + sum(n); 
  p_A1_i_B1 = sum(A1_i_B1)/length(A1_i_B1); 
  p_A0_i_B0 = sum(A0_i_B0)/length(A0_i_B0); 
  p_A_u_B = sum(A_u_B)/length(A_u_B); 
  p_A_e_B = sum(A_e_B)/length(A_e_B); 
  p_A_i_nB = sum(A_i_nB)/length(A_i_nB); 
  p_B = sum(BB)/length(BB);   
  p_A = sum(AA)/length(AA); 
  p_A_g_B = p_A1_i_B1/p_B; 
  p_B0_g_A0 = p_A0_i_B0/(1-p_A); 
  p_B1_g_A1 = p_A1_i_B1/p_A; 
  p_A_g_nB = p_A_i_nB/(1-p_B); 
  n =p_A/(1-p_A); 
  OPm(i) = (p_B0_g_A0+p_B1_g_A1)/2; 
  i = i+1; 
  
 

D.6. MATLAB Channel Model Parameter Optimizer 

D.6.1. MATLAB runOPChanModels 

clc 
clear 
close all 
format long 
  
%% Params 
models = ['Y']    % 
sigma1 = 5; 
smp_delta = 1; 
a1 = 5.6; 
a2 = 4.7; 
  
%% constants 
% FileName = 'APdatabaseOUT.csv'; 
PathName = '..\WirelessMon Data\'; 
outputPath = '..\GE_kmls\'; 
s_path = '..\MAT_data\'; 
  
%% get data 
  
%Get AP data 
[AP, AP_MAC, AP_lat, AP_lon, AP_fl] = readAPdb('WPI - Access Points 
List.csv', '..\'); 
  
%Get Empirical data 
files = dir(s_path); 
datenum = 0; 
emp_fn = 'Emp'; 
for file_i = 1:length(files) 
  if strncmp(emp_fn, files(file_i).name, length(emp_fn)) 
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    if files(file_i).datenum > datenum 
      fname = files(file_i).name; 
    end 
  end 
end 
  
if ~exist('fname', 'var') 
  error('No processed empirical data run "runEmpData"'); 
end 
  
display(['Loading ' fname]); 
E_data = load([s_path fname]) 
clear fname 
  
% Get Wall breakpoint data 
files = dir(s_path); 
datenum = 0; 
wb_fn = 'wallBps'; 
for file_i = 1:length(files) 
  if strncmp(wb_fn, files(file_i).name, length(wb_fn)) 
    if files(file_i).datenum > datenum 
      fname = files(file_i).name; 
    end 
  end 
end 
  
if ~exist('fname', 'var') 
  warning('No processed Wall breakpoint data run "findWallBPs"'); 
else 
  
  display(['Loading ' fname]); 
  Wbps_data = load([s_path fname]) 
  clear fname 
end 
  
%% build shadow fading 
% sf = makeSF(5, 1); 
sf = zeros(1000,1); 
%% Process Channel Models 
  
tic 
  
RSS_size = size(E_data.RSSI_on_path); 
for m = 1:length(models); 
  
  %   if models(m) == 'M' ||models(m) == 'U' 
  %     a1 = 2:0.1:5; 
  %     a2 = 2:0.1:5; 
  %   elseif models(m) == 'N' 
  %     a1 = 1; 
  %     a2 = 2:0.1:5; 
  %   elseif models(m) == 'O' 
  %     a1 = 1; 
  %     a2 = 25:1:50; 
  %   elseif models(m) == 'Q' ||models(m) == 'R' ||models(m) == 'P' 
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  %     a1 = 2:0.1:5; 
  %     a2 = 25:1:50; 
  %   end 
  M_data = struct('Lp', {}, 'a1', {}, 'a2', {}); 
  
  for fnum = 1:RSS_size(2) 
    fprintf('fnum %d of %d\n', fnum, RSS_size(2)) 
  
    for APsel = 1:RSS_size(1) 
      s = sprintf('AP %2d', APsel); 
      fprintf(s) 
      if 1%sum(Wbps_data.mask{APsel, fnum}) > 1 
        mask = logical(Wbps_data.mask{APsel, fnum}); 
        lat_masked = E_data.unique_lat{fnum}; 
        lon_masked = E_data.unique_lon{fnum}; 
%         lat_masked = lat_masked(mask); 
%         lon_masked = lon_masked(mask); 
        wbps = Wbps_data.short_dbp{APsel, fnum}; 
%         wbps = wbps(mask); 
  
  
        dist = zeros(length(lat_masked), 1); 
        for d_i = 1: length(lat_masked) 
          dist(d_i) = distdim(distance(AP_lat(APsel), AP_lon(APsel), 
lat_masked(d_i), ... 
            lon_masked(d_i)), 'deg','m'); 
        end 
  
  
        for a1_i = 1:length(a1) 
%           a1s = sprintf('a1 %d of %d', a1_i, length(a1)); 
%           fprintf(a1s) 
          for a2_i = 1:length(a2) 
  
            M_data(a1_i, a2_i).Lp{APsel, fnum} = chanModel(lat_masked, 
... 
              lon_masked, models(m), AP_lat(APsel), AP_lon(APsel), ... 
              AP_fl(APsel), wbps, dist, sf, a1(a1_i), a2(a2_i)); 
            M_data(a1_i, a2_i).a1 = a1(a1_i); 
            M_data(a1_i, a2_i).a2 = a2(a2_i); 
  
          end %a1 
%  
%           for i = 1:length(a1s) 
%             fprintf('\b') 
%           end 
        end%a2 
      end % if there are non-masked points 
  
      %clear line 
      for i = 1:length(s) 
        fprintf('\b') 
      end 
  
    end % for APS 
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%     fprintf('\n') 
  end %for files 
  
  %% Save 
  time_s = sprintf('%d-%02d-%02d_%02d%02d%02d', fix(clock)); 
  filename = [s_path  'OPM1_nomask_' time_s models(m)]; 
  save(filename, 'M_data', 'models'); 
end%for models 
toc 
  
 

D.6.2. MATLAB runOpProbs 

if exist('M', 'var') 
  keep('M') 
else 
  clear 
end 
clc 
format short 
%% 
  
s_path = '..\MAT_data\'; 
%% get data 
  
%Get AP data 
[AP, AP_MAC, AP_lat, AP_lon] = readAPdb('WPI - Access Points List.csv', 
'..\'); 
  
%Get Empirical data 
files = dir(s_path); 
datenum = 0; 
fn = 'Emp'; 
for file_i = 1:length(files) 
  if strncmp(fn, files(file_i).name, length(fn)) 
    if files(file_i).datenum > datenum 
      fname = files(file_i).name; 
    end 
  end 
end 
  
if ~exist('fname', 'var') 
  error('No processed empirical data run "runEmpData"'); 
end 
  
display(['Loading ' fname]); 
E_data = load([s_path fname]) 
clear fname 
  
%Get Model data 
if ~exist('M', 'var') 
  files = dir(s_path); 
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  datenum = 0; 
  fn = 'OPM1_'; 
  for file_i = 1:length(files) 
    if strncmp(fn, files(file_i).name, length(fn)) 
      if files(file_i).datenum > datenum 
        fname = files(file_i).name; 
      end 
    end 
  end 
  
  display(['Loading ' fname]); 
  M = load([s_path 'OPM1_nomask_2009-04-26_150537Y']) 
  clear fname 
end 
M_data = M.M_data; 
clear M 
%Get 802 Model data 
files = dir(s_path); 
datenum = 0; 
fn = '802M'; 
for file_i = 1:length(files) 
  if strncmp(fn, files(file_i).name, length(fn)) 
    if files(file_i).datenum > datenum 
      fname = files(file_i).name; 
    end 
  end 
end 
  
if ~exist('fname', 'var') 
  error('No processed 802.11 Model data run "runChanModels"'); 
end 
  
display(['Loading ' fname]); 
M802_data = load([s_path fname]) 
clear fname 
  
%Get Wall breakpoint data 
files = dir(s_path); 
datenum = 0; 
wb_fn = 'wallBps'; 
for file_i = 1:length(files) 
  if strncmp(wb_fn, files(file_i).name, length(wb_fn)) 
    if files(file_i).datenum > datenum 
      fname = files(file_i).name; 
    end 
  end 
end 
  
if ~exist('fname', 'var') 
  warning('No processed Wall breakpoint data run "findWallBPs"'); 
else 
  
  display(['Loading ' fname]); 
  Wbps_data = load([s_path fname]) 
  clear fname 
end 
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% JTC_data = load([s_path 'JTC_2009-03-01_152231']) 
%Get JTC data 
files = dir(s_path); 
datenum = 0; 
fn = 'JTC'; 
for file_i = 1:length(files) 
  if strncmp(fn, files(file_i).name, length(fn)) 
    if files(file_i).datenum > datenum 
      fname = files(file_i).name; 
    end 
  end 
end 
  
if ~exist('fname', 'var') 
  warning('No processed JTC_data'); 
else 
  
  display(['Loading ' fname]); 
  JTC_data = load([s_path fname]) 
  clear fname 
end 
  
%% 
  
Lp_size = size(M802_data.Lp); 
  
LpC= cell(Lp_size(1), Lp_size(2)); 
LpD= cell(Lp_size(1), Lp_size(2)); 
LpE= cell(Lp_size(1), Lp_size(2)); 
LpF= cell(Lp_size(1), Lp_size(2)); 
LpJTC= cell(Lp_size(1), Lp_size(2)); 
M_size = size(M_data); 
  
for APsel = 1:Lp_size(1) 
  for fnum = 1:Lp_size(2) 
    LpC{APsel,fnum} = scale_LP(M802_data.Lp{APsel,fnum,1}); 
    LpD{APsel,fnum} = scale_LP(M802_data.Lp{APsel,fnum,2}); 
    LpE{APsel,fnum} = scale_LP(M802_data.Lp{APsel,fnum,3}); 
    LpF{APsel,fnum} = scale_LP(M802_data.Lp{APsel,fnum,4}); 
    LpJTC{APsel,fnum} = scale_LP(JTC_data.M_data.Lp{APsel,fnum}); 
    for a1_i = 1:M_size(1) 
      for a2_i = 1:M_size(2) 
        M_data(a1_i, a2_i).Lp{APsel, fnum} = scale_LP(M_data(a1_i, 
a2_i).Lp{APsel, fnum}); 
      end 
    end 
  end 
end 
  
  
%% 
  
opt_P = 0;%zeros(1, Lp_size(1)); 
fRange = 1:Lp_size(2) 
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APrange = [1:3 5:9 11 13:29 31:35 37:41 43 45:50 52 53 55:58]; 
ii = 1; 
for fnum = 1:1 
%   fprintf('fnum %d of %d\n', fnum, Lp_size(2)) 
  for APsel = 1:1 
%     fprintf('AP %2d of %d\n', APsel, Lp_size(1)); 
    if APsel == 4 
      for a_i = 1:961; 
        ii = ii+1; 
      end%alphas 
    else 
      for a1_i = 1:M_size(1) 
        for a2_i = 1:M_size(2) 
  
          P_M(a1_i, a2_i) = findProbAgivenB_v2(E_data.RSSI_on_path, 
M_data(a1_i, a2_i).Lp, APrange, fRange , Wbps_data.mask, true); 
  
  
          if P_M(a1_i, a2_i) > opt_P(APsel)%round(P_M(a1_i, a2_i)*100) 
> round(opt_P(APsel)*100) 
            opt_P(APsel) = P_M(a1_i, a2_i); 
            opt_a1(APsel) = M_data(a1_i, a2_i).a1; 
            opt_a2(APsel) = M_data(a1_i, a2_i).a2; 
            opt_a1_i = a1_i; 
            opt_a2_i = a2_i; 
          end 
  
        end 
      end%alphas 
  
      [P_EM_C(APsel) n] = findProbAgivenB_v2(E_data.RSSI_on_path, LpC, 
APrange, fRange, Wbps_data.mask, true); 
      P_EM_D(APsel) = findProbAgivenB_v2(E_data.RSSI_on_path, LpD, 
APrange, fRange, Wbps_data.mask, true); 
      P_EM_E(APsel) = findProbAgivenB_v2(E_data.RSSI_on_path, LpE, 
APrange, fRange, Wbps_data.mask, true); 
      P_EM_F(APsel) = findProbAgivenB_v2(E_data.RSSI_on_path, LpF, 
APrange, fRange, Wbps_data.mask, true); 
      P_EM_JTC(APsel) = findProbAgivenB_v2(E_data.RSSI_on_path, LpJTC, 
APrange, fRange, Wbps_data.mask, true); 
    end 
  end%AP 
  
end%files 
opt_a1 
opt_a2 
opt_a1_i 
opt_a2_i 
opt_P = opt_P' 
  
P_EM_C = P_EM_C' 
P_EM_D = P_EM_D' 
P_EM_E = P_EM_E' 
P_EM_F = P_EM_F' 
P_EM_JTC = P_EM_JTC' 
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opt_P/P_EM_C 
figure(1) 
hold on 
plot(2:0.1:10, P_M) 
ylabel('Performance (%)') 
xlabel('Distance-Power Gradient') 
grid on 
 
 
 

D.7. MATLAB Channel Model Simulator 

clc 
clear 
close all 
format long 
  
%% Params 
models = ['CDEF']    %802.11 model'C' 'D' 'E' 'F' 
  
%% constants 
% FileName = 'APdatabaseOUT.csv'; 
PathName = '..\WirelessMon Data\'; 
outputPath = '..\GE_kmls\'; 
s_path = '..\MAT_data\'; 
  
%% get data 
  
%Get AP data 
[AP, AP_MAC, AP_lat, AP_lon, AP_fl] = readAPdb('WPI - Access Points 
List.csv', '..\'); 
  
%Get Empirical data 
files = dir(s_path); 
datenum = 0; 
emp_fn = 'Emp3'; 
for file_i = 1:length(files) 
  if strncmp(emp_fn, files(file_i).name, length(emp_fn)) 
    if files(file_i).datenum > datenum 
      fname = files(file_i).name; 
    end 
  end 
end 
  
if ~exist('fname', 'var') 
  error('No processed empirical data run "runEmpData"'); 
end 
  
display(['Loading ' fname]); 
E_data = load([s_path fname]) 
clear fname 
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%Get Wall breakpoint data 
files = dir(s_path); 
datenum = 0; 
wb_fn = 'wallBps'; 
for file_i = 1:length(files) 
  if strncmp(wb_fn, files(file_i).name, length(wb_fn)) 
    if files(file_i).datenum > datenum 
      fname = files(file_i).name; 
    end 
  end 
end 
  
if ~exist('fname', 'var') 
  warning('No processed Wall breakpoint data run "findWallBPs"'); 
else 
  
  display(['Loading ' fname]); 
  Wbps_data = load([s_path fname]) 
  clear fname 
end 
%% 
% sf = zeros(1,1000); 
sf = makeSF(5, 1); 
%% Process Channel Models 
tic 
RSS_size = size(E_data.RSSI_on_path); 
Lp = cell(RSS_size(1), RSS_size(2),length(models)); 
  
for fnum = 1:RSS_size(2) 
  fprintf('fnum %d of %d\nAP ', fnum, RSS_size(2)) 
  
  for APsel = 1:RSS_size(1) 
    s = sprintf('%2d of %d ', APsel, RSS_size(1)); 
    fprintf(s) 
%     if sum(Wbps_data.mask{APsel, fnum}) > 1 
      mask = 
ones(size(E_data.unique_lat{fnum}));%logical(Wbps_data.mask{APsel, 
fnum}); 
      lat_masked = E_data.unique_lat{fnum}; 
      lon_masked = E_data.unique_lon{fnum}; 
%       lat_masked = lat_masked(mask); 
%       lon_masked = lon_masked(mask); 
      wbps = Wbps_data.short_dbp{APsel, fnum}; 
%       wbps = wbps(mask); 
%       y = zeros(length(lat_masked), 1); 
%        
%       for y_i = 1: length(lat_masked) 
%         if y_i == 1 
%           y(1) = distdim(distance(lat_masked(2), lon_masked(2), 
lat_masked(1), ... 
%             lon_masked(1)), 'deg','m'); 
%         else 
%           y(y_i) = distdim(distance(lat_masked(y_i), lon_masked(y_i), 
lat_masked(y_i-1), ... 
%             lon_masked(y_i-1)), 'deg','m'); 
%         end 
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%       end 
  
      dist = zeros(length(lat_masked), 1); 
      for d_i = 1: length(lat_masked) 
        dist(d_i) = distdim(distance(AP_lat(APsel), AP_lon(APsel), 
lat_masked(d_i), ... 
          lon_masked(d_i)), 'deg','m'); 
      end 
  
      for model_i = 1:length(models) 
        fprintf(models(model_i)) 
        Lp{APsel, fnum, model_i} = chanModel(lat_masked, ... 
          lon_masked, models(model_i), ... 
          AP_lat(APsel), AP_lon(APsel), AP_fl(APsel), wbps, dist, sf); 
      end 
      %clear line 
      for i = 1:length(models) 
        fprintf('\b') 
      end 
%     end % if there are non-masked points 
  
    %clear line 
    for i = 1:length(s) 
      fprintf('\b') 
    end 
  
  end % for APS 
  fprintf('\n') 
end %for files 
  
%% Save 
time_s = sprintf('%d-%02d-%02d_%02d%02d%02d', fix(clock)); 
if strcmp(models, 'CDEF') 
  filename = [s_path  '802M3_nomask_' time_s]; 
else 
  filename = [s_path  'newM_' time_s models]; 
end 
save(filename, 'Lp', 'models'); 
toc 
  
 
 

D.7.1. MATLAB ChanModel 

function Lp = chanModel(lat_masked, lon_masked, model, AP_lat, ... 
  AP_lon, AP_fl, Wbps_data, dist, sf, in_a1, in_a2) 
% flr_h =3; 
L0=40; 
walls = zeros(1, length(lat_masked)); 
wall_lp = 0; 
pts = length(lat_masked); 
closest_wall = 0; 
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farthest_wall = 1; 
model_type = 0; 
  
%define model types 
MT_802 = 1; 
MT_802_2bp = 2; 
MT_JTC = 3; 
MT_JTC_1bp = 4; 
MT_OJTC = 5; 
MT_OJTC_1bp = 6; 
dwbp = Wbps_data; 
switch model 
  case 'C' 
    model_type = MT_802; 
    dbp= 5*ones(1, pts); 
    a1 = 2; 
    a2 = 3.5; 
  case 'D' 
    model_type = MT_802; 
    dbp= 10*ones(1, pts); 
    a1 = 2; 
    a2=3.5; 
  case 'E' 
    model_type = MT_802; 
    dbp= 20*ones(1, pts); 
    a1 = 2; 
    a2=3.5; 
  case 'F' 
    model_type = MT_802; 
    dbp= 30*ones(1, pts); 
    a1 = 2; 
    a2=3.5; 
  case 'G' 
    model_type = MT_802; 
    if exist('Wbps_data', 'var') 
      dbp = Wbps_data; 
    else 
      warning('no stored wall breakpoints!!'); 
      dbp = findBreakPt(lat_masked, lon_masked, AP_lat, AP_lon, 
closest_wall); 
    end 
  
    a1 = 3.4; 
    a2 = 2; 
    wall_lp = 0; 
  case 'H' 
    model_type = MT_802; 
    if exist('Wbps_data', 'var') 
      dbp = Wbps_data; 
    else 
      warning('no stored wall breakpoints!!'); 
      dbp = findBreakPt(lat_masked, lon_masked, AP_lat, AP_lon, 
farthest_wall); 
    end 
    a1 = 3; 
    a2 = 2; 
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    wall_lp = 0; 
  case 'I' 
    model_type = MT_802; 
    if exist('Wbps_data', 'var') 
      dbp = Wbps_data; 
    else 
      warning('no stored wall breakpoints!!'); 
      dbp = findBreakPt(lat_masked, lon_masked, AP_lat, AP_lon, 
closest_wall); 
    end 
    a1 = 2; 
    a2 = 3.5; 
    wall_lp = 0; 
  case 'J' 
    model_type = MT_802_2bp; 
    if exist('Wbps_data', 'var') 
      dwbp = Wbps_data; 
    else 
      warning('no stored wall breakpoints!!'); 
      dwbp = findBreakPt(lat_masked, lon_masked, AP_lat, AP_lon, 
farthest_wall); 
    end 
    dbp = 10*ones(1, pts); 
    a1 = 2; 
    a2 = 3.5; 
    a3 = 3.3; 
    wall_lp = 20; 
  
  case 'K' 
    model_type = MT_802; 
    if exist('Wbps_data', 'var') 
      dbp = Wbps_data; 
    else 
      warning('no stored wall breakpoints!!'); 
      dbp = findBreakPt(lat_masked, lon_masked, AP_lat, AP_lon, 
closest_wall); 
    end 
    a1 = 3.5; 
    a2 = 2; 
    wall_lp = 10; 
    walls= ones(1, pts); 
  case 'L' 
    model_type = MT_802; 
    if exist('Wbps_data', 'var') 
      dbp = Wbps_data; 
    else 
      warning('no stored wall breakpoints!!'); 
      dbp = findBreakPt(lat_masked, lon_masked, AP_lat, AP_lon, 
farthest_wall); 
    end 
    a1 = in_a1; 
    a2 = in_a2; 
    wall_lp = 0; 
  case 'M' 
    model_type = MT_802_2bp; 
    if exist('Wbps_data', 'var') 
      dwbp = Wbps_data; 
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    else 
      warning('no stored wall breakpoints!!'); 
      dwbp = findBreakPt(lat_masked, lon_masked, AP_lat, AP_lon, 
farthest_wall); 
    end 
    dbp = 5*ones(1, pts); 
    a1 = 2; 
    a2 = in_a1; 
    a3 = in_a2; 
    wall_lp = 0; 
  case 'N' 
    model_type = MT_802_2bp; 
    if exist('Wbps_data', 'var') 
      dwbp = Wbps_data; 
    else 
      warning('no stored wall breakpoints!!'); 
      dwbp = findBreakPt(lat_masked, lon_masked, AP_lat, AP_lon, 
farthest_wall); 
    end 
    dbp = 10*ones(1, pts); 
    a1 = 2; 
    a2 = 3.5; 
    a3 = in_a1; 
    wall_lp = 12.8; 
    walls = ones(1, length(lat_masked)); 
  case 'O' 
    model_type = MT_802_2bp; 
    if exist('Wbps_data', 'var') 
      dwbp = Wbps_data; 
    else 
      warning('no stored wall breakpoints!!'); 
      dwbp = findBreakPt(lat_masked, lon_masked, AP_lat, AP_lon, 
farthest_wall); 
    end 
    dbp = 10*ones(1, pts); 
    a1 = 2; 
    a2 = 3.5; 
    a3 = 2; 
    wall_lp = in_a2; 
    walls = ones(1, length(lat_masked)); 
  case 'P' 
    model_type = MT_802_2bp; 
    if exist('Wbps_data', 'var') 
      dwbp = Wbps_data; 
    else 
      warning('no stored wall breakpoints!!'); 
      dwbp = findBreakPt(lat_masked, lon_masked, AP_lat, AP_lon, 
farthest_wall); 
    end 
    dbp = 10*ones(1, pts); 
    a1 = 2; 
    a2 = 3.5; 
    a3 = in_a1; 
    wall_lp = 0; 
    walls = ones(1, length(lat_masked)); 
  case 'Q' 
    model_type = MT_802_2bp; 
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    if exist('Wbps_data', 'var') 
      dwbp = Wbps_data; 
    else 
      warning('no stored wall breakpoints!!'); 
      dwbp = findBreakPt(lat_masked, lon_masked, AP_lat, AP_lon, 
farthest_wall); 
    end 
    dbp = 5*ones(1, pts); 
    a1 = 2; 
    a2 = 3.5; 
    a3 = in_a1; 
    wall_lp = 0; 
    walls = ones(1, length(lat_masked)); 
  case 'R' 
    model_type = MT_802_2bp; 
    if exist('Wbps_data', 'var') 
      dwbp = Wbps_data; 
    else 
      warning('no stored wall breakpoints!!'); 
      dwbp = findBreakPt(lat_masked, lon_masked, AP_lat, AP_lon, 
farthest_wall); 
    end 
    dbp = 20*ones(1, pts); 
    a1 = 2; 
    a2 = 3.5; 
    a3 = in_a1; 
    wall_lp = in_a2; 
    walls = ones(1, length(lat_masked)); 
  case 'S' 
    model_type = MT_OJTC_1bp; 
    if exist('Wbps_data', 'var') 
      dwbp = Wbps_data; 
    else 
      warning('no stored wall breakpoints!!'); 
      dwbp = findBreakPt(lat_masked, lon_masked, AP_lat, AP_lon, 
farthest_wall); 
    end 
    a1 = 3; 
    a2 = in_a1; 
    num_fl = [0 0 1 2]; 
    wall_lp = 0; 
    walls = ones(1, length(lat_masked)); 
  case 'T' 
    model_type = MT_OJTC_1bp; 
    if exist('Wbps_data', 'var') 
      dwbp = Wbps_data; 
    else 
      warning('no stored wall breakpoints!!'); 
      dwbp = findBreakPt(lat_masked, lon_masked, AP_lat, AP_lon, 
farthest_wall); 
    end 
    a1 = 3; 
    a2 = in_a1; 
    num_fl = [0 0 1 2]; 
    wall_lp = 12.8; 
    walls = ones(1, length(lat_masked)); 
  case 'U' 
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    model_type = MT_JTC_1bp; 
    if exist('Wbps_data', 'var') 
      dwbp = Wbps_data; 
    else 
      warning('no stored wall breakpoints!!'); 
      dwbp = findBreakPt(lat_masked, lon_masked, AP_lat, AP_lon, 
farthest_wall); 
    end 
    a1 = 3; 
    a2 = in_a1; 
    num_fl = [0 0 0 0]; 
    AP_fl= ones(size(AP_fl)); 
    wall_lp = 0; 
    walls = ones(1, length(lat_masked)); 
  case 'V' 
    model_type = MT_JTC_1bp; 
    if exist('Wbps_data', 'var') 
      dwbp = Wbps_data; 
    else 
      warning('no stored wall breakpoints!!'); 
      dwbp = findBreakPt(lat_masked, lon_masked, AP_lat, AP_lon, 
farthest_wall); 
    end 
    a1 = 3; 
    a2 = in_a1; 
    num_fl = [1 0 1 2]; 
    wall_lp = 0; 
    walls = ones(1, length(lat_masked)); 
  case 'W' 
    model_type = MT_JTC_1bp; 
    if exist('Wbps_data', 'var') 
      dwbp = Wbps_data; 
    else 
      warning('no stored wall breakpoints!!'); 
      dwbp = findBreakPt(lat_masked, lon_masked, AP_lat, AP_lon, 
farthest_wall); 
    end 
    a1 = 3; 
    a2 = in_a1; 
    num_fl = [1 0 1 2]; 
    wall_lp = 12.8; 
    walls = ones(1, length(lat_masked)); 
  case 'X' 
    model_type = MT_802_2bp; 
    if exist('Wbps_data', 'var') 
      dwbp = Wbps_data; 
    else 
      warning('no stored wall breakpoints!!'); 
      dwbp = findBreakPt(lat_masked, lon_masked, AP_lat, AP_lon, 
farthest_wall); 
    end 
    dbp = 5*ones(1, pts); 
    a1 = 2; 
    a2 = 3.5; 
    a3 = in_a1; 
    wall_lp = 12.8; 
    walls = ones(1, length(lat_masked)); 
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  case 'A' %JTC frat 
    model_type = MT_JTC; 
    a1 = 3; 
    num_fl = [1 0 1 2]; 
  case 'Z' %JTC orginal 
    model_type = MT_OJTC; 
    a1 = 3; 
    num_fl = [0 0 1 2]; 
  case 'B' %JTC no floors 
    model_type = MT_JTC_1bp; 
    if exist('Wbps_data', 'var') 
      dwbp = Wbps_data; 
    else 
      warning('no stored wall breakpoints!!'); 
      dwbp = findBreakPt(lat_masked, lon_masked, AP_lat, AP_lon, 
farthest_wall); 
    end 
    a1 = 3; 
    a2 = in_a1; 
    num_fl = [0 0 0 0]; 
    AP_fl= ones(size(AP_fl)); 
    wall_lp = 12.8; 
    walls = ones(1, length(lat_masked)); 
  case 'Y'  
    model_type = MT_802_2bp; 
    if exist('Wbps_data', 'var') 
      dwbp = Wbps_data; 
    else 
      warning('no stored wall breakpoints!!'); 
      dwbp = findBreakPt(lat_masked, lon_masked, AP_lat, AP_lon, 
farthest_wall); 
    end 
    dbp = 5*ones(1, pts); 
    a1 = 2; 
    a2 = in_a2; 
    a3 = in_a1; 
    wall_lp = 12.8; 
    walls = ones(1, length(lat_masked)); 
end 
if ~exist('dist', 'var') 
  make_dist = true; 
  dist = zeros(pts, 1); 
else 
  make_dist = false; 
end 
  
% init path loss array 
Lp = zeros(pts, 1); 
  
%loop over sample points 
for i = 1:pts 
  
  if make_dist 
    dist(i) = distdim(distance(AP_lat, AP_lon, lat_masked(i), ... 
      lon_masked(i)), 'deg','m'); 
  end 
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  switch model_type 
    case 1 %802.11 
  
      if (dist(i) < dbp(i) || dbp(i) == 0) 
        Lp(i) = L0 + 10*a1*log10(dist(i))... 
          + walls(i)*wall_lp... 
          + sf(round(dist(i))); 
        %       keyboard 
      else 
        Lp(i) = L0 + 10*a1*log10(dbp(i))... 
          + 10*a2*log10(dist(i)/dbp(i))... 
          + walls(i)*wall_lp... 
          + sf(round(dist(i))); 
      end 
  
  
    case 2 %802.11 with wall breakpoint 
      %if AP is less than dbp meters from the measurement point and no 
wall 
      %intersection was found because path was close to building 
      if (dist(i) < dbp(i)) && dwbp(i) == 0 
        Lp(i)= L0 + 10*a1*log10(dist(i))... 
          + walls(i)*wall_lp... 
          + sf(round(dist(i))); 
  
        %if AP is less than dbp meters away from the wall use only dwbp 
      elseif (dbp(i) > dwbp(i)) && dwbp(i) ~= 0 
        Lp(i)= L0 + 10*a1*log10(dwbp(i))... 
          + 10*a3*log10(dist(i)/dwbp(i))... 
          + walls(i)*wall_lp... 
          + sf(round(dist(i))); 
  
        %if no wall intersect was found because path was close to 
building 
      elseif dwbp(i) == 0 
        Lp(i)= L0 + 10*a1*log10(dbp(i))... 
          + 10*a2*log10(dist(i)/dbp(i))... 
          + walls(i) * wall_lp... 
          + sf(round(dist(i))); 
  
        %normal case use both breakpoints in order 
      else 
        Lp(i)= L0 + 10*a1*log10(dbp(i))... 
          + 10*a2*log10(dwbp(i)/dbp(i))... 
          + 10*a3*log10(dist(i)/dwbp(i)) ... 
          + walls(i)*wall_lp... 
          + sf(round(dist(i))) ; 
      end 
    case 3 %JTC 
      fRat = dwbp(i)/(dist(i)-dwbp(i)); 
      if AP_fl == 1 || AP_fl == 0 
        Lp(i) = L0 + 10*a1*log10(dist(i))... 
          + sf(round(dist(i))); 
      elseif AP_fl == 2 
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        if fRat <= 1 
          Lp(i) = L0 + 10*a1*log10(dist(i))... 
            + sf(round(dist(i))); 
        else% 1 floor inbetween 
          Lp(i) = L0 + 15 ... 
            + 10*a1*log10(dist(i))... 
            + sf(round(dist(i))); 
        end 
      else 
        if fRat <= 0.5 
          Lp(i) = L0 + 10*a1*log10(dist(i))... 
            + sf(round(dist(i))); 
        elseif fRat <= 2 % 1 floor inbetween 
          Lp(i) = L0 + 15 ... 
            + 10*a1*log10(dist(i))... 
            + sf(round(dist(i))); 
        else %2 floors betwen 
          Lp(i) = L0 + 15+4*(2-1) ... 
            + 10*a1*log10(dist(i))... 
            + sf(round(dist(i))); 
        end 
      end 
  
    case 4 %JTC with wall breakpoint 
      fRat = dwbp(i)/(dist(i)-dwbp(i)); 
      if AP_fl == 1 || AP_fl == 0 
        if (dist(i) < dwbp(i) || dwbp(i) == 0) 
          Lp(i) = L0 + 10*a1*log10(dist(i))... 
            + walls(i)*wall_lp... 
            + sf(round(dist(i))); 
          keyboard 
        else 
          Lp(i) = L0 + 10*a1*log10(dwbp(i))... 
            + 10*a2*log10(dist(i)/dwbp(i))... 
            + walls(i)*wall_lp... 
            + sf(round(dist(i))); 
        end 
      elseif AP_fl == 2 
        if fRat <= 1 
          if (dist(i) < dwbp(i) || dwbp(i) == 0) 
            Lp(i) = L0 + 10*a1*log10(dist(i))... 
              + walls(i)*wall_lp... 
              + sf(round(dist(i))); 
            keyboard 
          else 
            Lp(i) = L0 + 10*a1*log10(dwbp(i))... 
              + 10*a2*log10(dist(i)/dwbp(i))... 
              + walls(i)*wall_lp... 
              + sf(round(dist(i))); 
          end 
        else 
          if (dist(i) < dwbp(i) || dwbp(i) == 0) 
            Lp(i) = L0 + 15+4*(num_fl(AP_fl+1)-1)... 
              + 10*a1*log10(dist(i))... 
              + walls(i)*wall_lp... 
              + sf(round(dist(i))); 
            keyboard 
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          else 
            Lp(i) = L0 + 15+4*(num_fl(AP_fl+1)-1)... 
              + 10*a1*log10(dwbp(i))... 
              + 10*a2*log10(dist(i)/dwbp(i))... 
              + walls(i)*wall_lp... 
              + sf(round(dist(i))); 
          end 
        end 
      else 
        if fRat <= 0.5 
          if (dist(i) < dwbp(i) || dwbp(i) == 0) 
            Lp(i) = L0 + 10*a1*log10(dist(i))... 
              + walls(i)*wall_lp... 
              + sf(round(dist(i))); 
            keyboard 
          else 
            Lp(i) = L0 + 10*a1*log10(dwbp(i))... 
              + 10*a2*log10(dist(i)/dwbp(i))... 
              + walls(i)*wall_lp... 
              + sf(round(dist(i))); 
          end 
        elseif fRat <= 2 
          if (dist(i) < dwbp(i) || dwbp(i) == 0) 
            Lp(i) = L0 + 15 ... 
              + 10*a1*log10(dist(i))... 
              + walls(i)*wall_lp... 
              + sf(round(dist(i))); 
            keyboard 
          else 
            Lp(i) = L0 + 15 ... 
              + 10*a1*log10(dwbp(i))... 
              + 10*a2*log10(dist(i)/dwbp(i))... 
              + walls(i)*wall_lp... 
              + sf(round(dist(i))); 
          end 
        else 
          if (dist(i) < dwbp(i) || dwbp(i) == 0) 
            Lp(i) = L0 + 15+4*(num_fl(AP_fl+1)-1)... 
              + 10*a1*log10(dist(i))... 
              + walls(i)*wall_lp... 
              + sf(round(dist(i))); 
            keyboard 
          else 
            Lp(i) = L0 + 15+4*(num_fl(AP_fl+1)-1)... 
              + 10*a1*log10(dwbp(i))... 
              + 10*a2*log10(dist(i)/dwbp(i))... 
              + walls(i)*wall_lp... 
              + sf(round(dist(i))); 
          end 
        end 
      end 
    case 5 %JTC 
      if AP_fl == 1 || AP_fl == 0 
        Lp(i) = L0 + 10*a1*log10(dist(i))... 
          + sf(round(dist(i))); 
      else 
        Lp(i) = L0 + 15+4*(num_fl(AP_fl+1)-1) ... 
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          + 10*a1*log10(dist(i))... 
          + sf(round(dist(i))); 
      end 
    case 6 %JTC + WB 
      if AP_fl == 1 || AP_fl == 0 
          if (dist(i) < dwbp(i) || dwbp(i) == 0) 
            Lp(i) = L0 + 10*a1*log10(dist(i))... 
              + walls(i)*wall_lp... 
              + sf(round(dist(i))); 
            keyboard 
          else 
            Lp(i) = L0 + 10*a1*log10(dwbp(i))... 
              + 10*a2*log10(dist(i)/dwbp(i))... 
              + walls(i)*wall_lp... 
              + sf(round(dist(i))); 
          end 
      else 
          if (dist(i) < dwbp(i) || dwbp(i) == 0) 
            Lp(i) = L0 + 15+4*(num_fl(AP_fl+1)-1) ... 
              + 10*a1*log10(dist(i))... 
              + walls(i)*wall_lp... 
              + sf(round(dist(i))); 
            keyboard 
          else 
            Lp(i) = L0 + 15+4*(num_fl(AP_fl+1)-1) ... 
              + 10*a1*log10(dwbp(i))... 
              + 10*a2*log10(dist(i)/dwbp(i))... 
              + walls(i)*wall_lp... 
              + sf(round(dist(i))); 
          end 
  
      end 
    otherwise 
      error('No model type selected') 
  end %switch 
end %for pts 
 
 

D.8. MATLAB Plot on Google Earth 

fnum = 1; 
for fnum = 1:2 
  AP = 1; 
  % files(fnum+3).name(1:end-4) 
  outputPath = '..\GE_kmls\'; 
  % files = dir('..\Scanning_data\file_2_run1'); 
  
  
%   RSS = 100+E_data.RSSI_on_path{AP,fnum}; 
  % RSS = 100-Mnew_data.Lp{AP,fnum}; 
  % RSS = 100+M_d(19, 21).Lp{AP,fnum}; 
  RSS = 100+LpM{AP,fnum}; 
  % RSS = 100+LpF{AP,fnum}; 
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  RSS(isnan(RSS)) = -1; 
  
  
  lat = E_data.unique_lat{fnum}; 
  % lat = lat(logical(Wbps_data.mask{AP,fnum})); 
  % lat = lat(RSS~=0); 
  lon = E_data.unique_lon{fnum}; 
  % lon = lon(logical(Wbps_data.mask{AP,fnum})); 
  % lon = lon(RSS~=0); 
  % RSS(logical(Wbps_data.mask{AP,fnum})) = 20; 
  % RSS(logical(~Wbps_data.mask{AP,fnum})) = -1; 
  kmlStr1 = ge_plot3(lon, lat, RSS); 
  % ge_output([outputPath files(fnum+3).name(1:end-4) '_path.kml'], 
kmlStr1) 
  ge_output([outputPath 'SigPath_ap' num2str(AP) 'f' num2str(fnum) 
'_dist.kml'], kmlStr1) 
end 
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