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Abstract

We analyze data (length, weight and location) from a study done by the Army

Corps of Engineers along the Tennessee River basin in the summer of 1980. The

purpose is to predict the probability that a hypothetical channel catfish at a location

studied is toxic and contains 5 ppm or more DDT in its filet. We incorporate spatial

information and treate it separetely from other covariates. Ultimately, we want to

predict the probability that a catfish from the unobserved location is toxic.

In a preliminary analysis, we examine the data for observed locations using

frequentist logistic regression, Bayesian logistic regression, and Bayesian logistic re-

gression with random effects. Later we develop a parsimonious extension of Bayesian

logistic regression and the corresponding Gibbs sampler for that model to increase

computational feasibility and reduce model parameters. Furthermore, we develop

a Bayesian model to impute data for locations where catfish were not observed. A

comparison is made between results obtained fitting the model to only observed data

and data with missing values imputed. Lastly, a complete model is presented which

imputes data for missing locations and calculates the probability that a catfish from

the unobserved location is toxic at once.

We conclude that length and weight of the fish have negligible effect on toxicity.

Toxicity of these catfish are mostly explained by location and spatial effects. In

particular, the probability that a catfish is toxic decreases as one moves further

downstream from the source of pollution.
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Chapter 1

Introduction

1.1 Problem Description

In this paper, we present a sensible yet parsimonious approach to modeling binary

probabilities of success of events occuring in contiguous regions of space. In partic-

ular, we look at models of the form

yij ∼ Ber(p(xij, si)) (1.1)

in which the jth binary observation at location i has a probability of success p

which depends on the covariates as well as on a function of location (i.e., distance

from some source) si. Jank and Kannan (2005) discusses marketing applications of

such models in the frequentist settings. Cressie (1993) is a general exposition on

frequentist spatial statistics, whereas Banerjee, Carlin, Gelfand (2004) focuses on

recent methods in Bayesian spatial statistics.

Our focus, however, is on spatial structures that are equally-spaced, linear, and

ordered, the most important example of which are rivers with equally-spaced obser-
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vation points. The models then take the form

yij ∼ Ber(p(xij, i)). (1.2)

We propose a parsimonious model to handle this situation, present Markov Chain

Monte Carlo algorithms to infer model parameters, and offer a logically sound im-

putation method for missing observations. To motivate our approach to this class

of problems, we will apply the methodology to studying pollution in the Tennessee

River basin. Ultimately, we wish to estimate the proportion of fish at a given loca-

tion along the river that contains 5 ppm or more of DDT and is hence unsafe for

consumption according to law.

In this chapter, we describe the geography of the Tennessee River and the extent

of industrial pollution in the Tennessee River basin. We conclude with a rudimentary

Bayesian logistic regression model to study the effects of length, weight, and location

of channel catfish on whether or not the DDT content of the catfish is greater than

5 ppm.

1.2 Preliminary Analysis of Data

Data for Catfish consists of whether or not it contained 5 ppm or more of DDT in its

filet (yij), its length in centimeters, its weight in grams, and the location indicator

(an integer from between 0 and 13, which correspond to locations TRM275 and

TRM340, respectively).

As the first step, we consider frequentist logistic regression on the given infor-

mation. Here we begin by looking at the model
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yij ∼ Ber(logit−1(xij
′β)) (1.3)

where xij contains 1 (corresponding to the intercept term), centered length, and

centered weight. For a detailed exposition on frequentist logistic regresion, see

Lemeshow and Hosmer (1989).

Parameter Coef Std Coef Z P value
Constant 1.53 0.326 4.70 0.000
Length 0.291 0.370 0.78 0.432
Weight 0.386 0.437 0.88 0.377

Table 1.1: Logistic Regression on Centered Length, Weight

Method Chi-Square DF P value
Pearson 67.3 69 0.537
Deviance 67.1 69 0.542

Hosmer-Lemeshow 11.4 8 0.178

Table 1.2: Goodness of Fit Test for Regression on Centered Length and Centered
Weight

We see that only the constant term is significant at the 5 percent level. All three

goodness-of-fit tests suggest that the model is a reasonable description of the data.

Next, we consider introducing location as a covariate. We use the centered values

of distance from location 0 in units of 5 miles, as these values are equivalent to the

location indices.

Again, only the constant term is significant at the 5 percent level, with all three

goodness-of-fit tests supporting this conclusion.

Next, we consider simple models in the Bayesian paradigm. We assume basic

familiarity with Bayesian methods as presented in Box and Tiao (1973).
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Parameter Coef Std Coef Z P value
Constant 1.58 0.338 4.67 0.000
Length 0.350 0.394 0.89 0.375
Weight 0.197 0.492 0.40 0.689

Location -0.434 0.361 -1.20 0.229

Table 1.3: Logistic Regression on Centered Length, Weight, and Location

Method Chi-Square DF P value
Pearson 69.1 68 0.438
Deviance 65.6 68 0.559

Hosmer-Lemeshow 4.86 8 0.773

Table 1.4: Goodness of Fit Test for Regression on Centered Length, Centered
Weight, and Centered Location

The Bayesian equivalent of the previous frequentist models is

yij|β ∼ Ber(logit−1(xij
′β))

β ∼ N(θ, Σ) (1.4)

where

logit−1(xij
′β) =

exp xij
′β

1 + exp xij
′β

(1.5)

and the coefficient vector β has a normal prior distribution with mean θ given by

the frequentist maximum likelihood estimate and the covariance matrix Σ given as

100 times the frequentist estimate for the covariance matrix, 100 being the blow-up

factor making the prior distribution reasonably diffuse and noninformative.

Under this model, the posterior distribution of β is
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π(β|y) ∝ N(θ, Σ)

×
∏
ij

(logit−1(xij
′β))yij(1− logit−1(xij

′β))1−yij (1.6)

To sample from this posterior distribution, we construct an independence chain

Metropolis sampler with a multivariate student’s-t proposal density q with tunable

degrees of freedom κ:

q(β|y) ∝ (1 + κ−1(β − β0)
′Σ−1(β − β0))

−κ+p
2 , (1.7)

κ for this problem must be less than 2 so that the jump probabilities are between

0.25 and 0.50. See Gelman, Roberts and Gilks (1995) for reasons why jumping

probabilities of Metropolis samplers ought to fall in this range. We run a simulation

with 101000 iterations, discarding the first 1000 iterations and then taking every

100 iterations afterwards.

Parameter Mean Std. Dev. Num. SE 0.95 Cred. Int.
Constant -0.872 2.82 0.0887 -6.29 4.64
Length 0.110 0.089 0.00300 -0.0620 0.277
Weight 0.001 0.00177 0.000061 0.00467 0.00223

Location -0.246 0.0890 0.00225 -0.448 -0.0866

Table 1.5: Bayesian Logistic Regression with Length, Weight, and Location. Poste-
rior Estimates.

Here, the 95 percent credible intervals determine which components of β are

relevant to the model. Weight and location are significant because their respective

95 percent credible intervals do not contain zero. The Metropolis sampler converges,

albeit slowly. Below, we have the empirical autocorrelations of each parameter for
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lag 1 through 20.

Lag Constant ACF Length ACF Weight ACF Location ACF
1 0.0217 0.0440 0.0323 -0.0364
2 0.0206 -0.0115 0.0051 -0.0633
3 -0.0277 -0.0262 0.0173 0.0279
4 0.0003 -0.0292 -0.0440 -0.0239
5 -0.0211 0.0100 0.0448 -0.0355
6 0.0262 0.0338 -0.0289 -0.0233
7 -0.0042 0.0002 0.0060 -0.0110
8 -0.0046 0.0008 -0.0253 -0.0196
9 -0.0441 0.0084 -0.0129 0.0027
10 -0.0134 -0.0543 -0.0330 -0.0094
11 -0.0326 -0.0359 -0.0276 0.0037
12 -0.0336 -0.0317 -0.0071 -0.0691
13 -0.0298 -0.0355 -0.0105 -0.0043
14 0.0306 0.0148 -0.0247 -0.0308
15 -0.0279 -0.0140 0.0170 0.0478
16 0.0025 -0.0184 0.004 -0.0337
17 0.0333 -0.0304 -0.0972 0.0034
18 0.0355 0.0366 -0.0157 0.0179
19 0.0274 0.01955 -0.0129 -0.0250
20 0.0140 -0.0173 -0.0578 0.0212

Table 1.6: Bayesian Logistic Regression with Length, Weight, and Location. Em-
pirical Autocorrelations

To conclude this section, we consider a Bayesian logistic regression model with

uncorrelated spatial effects:

yij|β, νi, σ
2 ∼ Ber(logit−1(xij

′β + νi))

β ∼ N(θ, Σ)

νi|σ2 iid∼ N(θ, 100Σ)

σ2 ∼ 1

(1 + σ2)2
(1.8)

6



where the expectation of yij depends on the spatial random effect νi of location i

as well as the covariates. The prior distribution of σ2, the variance of the random

effects, is proper but does not have finite moments of any order. For other choices

of prior distributions for σ2, consult Gelman (2006).

The result of a Metropolis sampler simulation with 101000 iterations, 1000 burn-

in terms, and sampling of every 100 terms thereafter is given below:

Parameter Mean Std. Dev. Num. SE 0.95 Cred. Int.
Constant -0.963 2.70 0.0945 -6.16 4.30
Length 0.112 0.0871 0.00316 -0.0550 0.294
Weight 0.00105 0.00175 0.000058 0.00464 0.00220

Location -0.245 0.0915 0.00344 -0.415 -0.0821
Variance 0.0180 0.0665 0.00224 0.000358 0.179

Table 1.7: Bayesian Logistic Regression with Random Effects. Length, Weight,
Location, and Variance. Posterior Estimates.

As with the previous, simpler Bayesian model, only weight and location are

significant because their respective 95 percent credible intervals do not contain zero.

We now also have the variance parameter σ2 whose simulated values are not useful

on their own.

We monitor convergence of the Metropolis sampler by looking at the sample

path autocorrelations of each parameter. Again, convergence is slow because the

autocorrelations do not wash-out quickly as the lag increases.

1.3 Justification for AR(1) Spatial Effects

Below, we discuss the auto-correlations and cross-correlations of average catfish

length and weight, respectively, for each location. Shumway and Stoffer (2006)

define and provide interpretations of these concepts in the time series context.

The cross-covariance function of two series xt and yt of lag h is defined as
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Lag Const. ACF L ACF W ACF Loc ACF Var ACF
1 -0.0062 0.0014 -0.0218 0.0313 0.0913
2 0.0016 0.0173 0.0057 0.0421 -0.0106
3 -0.0112 -0.0255 -0.053 0.054 0.0235
4 -0.0253 -0.0034 0.0211 0.0014 0.0136
5 0.0601 0.0539 0.0085 0.1109 -0.0227
6 0.0697 0.0561 0.0247 0.0267 -0.0203
7 0.0068 0.011 0.0412 0 0.0245
8 0.022 -0.0146 -0.0571 0.0289 0.0786
9 -0.0154 -0.0118 0.0244 0.0127 0.0116
10 -0.0167 -0.0052 -0.0222 0.0205 0.0049
11 -0.0454 -0.014 0.0062 -0.0446 0.0206
12 -0.0116 -0.0144 0.017 -0.084 0.0594
13 0.0075 0.0418 0.0334 0.0624 -0.0115
14 -0.0102 -0.0309 0.0142 0.006 -0.0085
15 0.0446 0.0193 -0.0289 0.0016 -0.0144
16 0.05 0.0673 0.0398 0.0185 -0.0286
17 -0.032 -0.0438 -0.0001 -0.0098 -0.0071
18 0.0074 0.0298 0.0238 0.012 -0.0314
19 -0.0126 0.025 0.0104 0.0305 -0.0134
20 0.007 0.0026 0.0058 -0.0282 -0.0014

Table 1.8: Uncorrelated Spatial Effects Model. Length, Weight, Location, and
Variance. Empirical Autocorrelations

γxy(h) = E[(xt+h − µx)(yt − µy)]. (1.9)

The cross-correlation function of xt and yt of lag h is

ρxy(h) =
γxy(h)√

γxx(0)γyy(0)
(1.10)

and the auto-correlation function of lag h is
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ρx(h) = ρxx(h). (1.11)

The cross-correlation function also satisfieds

ρxy(h) = ρyx(−h). (1.12)

To estimate such quantities, replace expecations with sample means.

Catfish data for TRM 340 (location 14) was ignored because no catfish was

caught at TRM 335 (location 13). However, we are ultimately interested in analysis

involving locations 13 and 14. They are dealt in detail in later chapters.

Both autocorrelations peak at lag = 1, suggesting that unobserved random

spatial effects may be adequately described as an AR(1) process. Nonetheless, the

cross-correlation of lag 0 is fairly close to 1 and suggests that the average length and

average weight convey similar information.

1.4 Overview of Thesis

The purpose of the thesis is to predict the probability that a catfish is legally toxic

- containing 5 ppm or more DDT. In chapter 2, we discuss the geography of the

Tennessee river, the history of DDT polution along the river, and chemical properties

of DDT. In chapter 3, we introduce positive correlation amongst the spatial effects.

For each location, we calculate the probability a catfish is toxic, but we do not

account for missing observations. Chapter 4 covers the imputation procedure to be

used, and we apply it naively to predict probabilities. In chapter 5, we combine
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Lag Length AC Weight AC Length Weight CC
-6 NA NA -0.152
-5 NA NA -0.281
-4 NA NA -0.387
-3 NA NA -0.509
-2 NA NA -0.132
-1 NA NA 0.293
0 1 1 0.797
1 0.469 0.349 0.372
2 0.040 0.019 0.213
3 -0.247 -0.108 0.098
4 -0.437 -0.073 -0.018
5 -0.402 -0.218 -0.175
6 -0.151 -0.290 -0.152

Table 1.9: Auto-correlations and cross-correlation of average catfish length and
weight at each location

the models developed in chapters 3 and 4 into a single model which performs both

imputation of catfish data and prediction of probabilities. We end in chapter 6 by

summarizing our findings and indicating further issues of interest.
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Chapter 2

Tennessee River Basin and

Pollution

2.1 Geography of the Tennessee River

The Tennessee River is the largest tributary of the Ohio River. It is approximately

650 miles (1,046 km) long and is located in the southeastern United States in the

Tennessee Valley. The river was once popularly known as the Cherokee River, among

other names.

The Tennessee River is formed at the confluence of the Holston and French Broad

Rivers on the east side of Knoxville, Tennessee. From Knoxville, it flows south-

west through East Tennessee toward Chattanooga before crossing into Alabama. It

loops through northern Alabama and eventually forms a small part of the state’s

border with Mississippi, before returning to Tennessee. At this point, it defines the

boundary between Tennessee’s other two regions: Middle and West Tennessee. The

Tennessee-Tombigbee Waterway, a U.S. Army Corps of Engineers project providing

navigation on the Tombigbee River and a link to the Port of Mobile, enters Ten-
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nessee near the Tennessee-Alabama-Mississippi boundary. This waterway reduces

the navigation distance from Tennessee, north Alabama, and northern Mississippi

to the Gulf of Mexico by hundreds of miles. The final part of the Tennessee’s run is

in Kentucky, where it separates the Jackson Purchase from the rest of the state. It

then flows into the Ohio River at Paducah, Kentucky. It is one of a very few rivers

in the United States which leave a state and then re-enter it; the Cumberland River

is another such river.

The river has been dammed numerous times, primarily by Tennessee Valley Au-

thority (TVA) projects. The placement of TVA’s Kentucky Dam on the Tennessee

River and the Corps’ Barkley Dam on the Cumberland River directly led to the

creation of Land Between the Lakes. A navigation canal located at Grand Rivers,

Kentucky links Kentucky Lake and Lake Barkley. The canal allows for a shorter

trip for river traffic going from the Tennessee to most of the Ohio River, and for

traffic going down the Cumberland River toward the Mississippi.

12



Figure 2.1: Map of Tennessee River (US Army Corps of Engineers)
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2.2 Chemistry of the Tennessee River

Between 1947 and 1970, the Olin Corpororation manufactured dichloro-diphenyl-

tricholoroethane (DDT) within the Redstone Arsenal and released waste water into

the Huntsville Spring Branch of the river. Fish living in the branch were con-

taminated with DDT over the years by an estimated 408.8 tons of contaminants.

Following public concern, the State of Alabama, the U.S. Environmental Protec-

tion Agency (EPA) and Olin Corporation entered a Consent Decree (CD) on May

31, 1983 to reduce DDT content of fillets of channel catfish, largemouth bass, and

smallmouth buffallo fish to below 5 parts per million.

The deadline for achieving the performance standard is December 31, 2002, for

channel catfish, and Dec. 31, 2007, for smallmouth buffalo. The review pannel

for assesing performance consists of EPA, TVA, U.S. Fish and Wildlife Service,

Department of the Army, the State of Alabama, and nonvoting participants from

the town of Triana, Alabama and from Olin. As part of the review process, the U.S.

Army Corps of Engineers collected fish specimens along the Tennessee River and its

three tributaries in the summer of 1980. They recorded the length (in centimeters),

weight (in grams), and the DDT concentration (parts per million, ppm) in the fillet

of the fish. See appendix A for this data.

2.3 DDT and its Toxicity

DDT was the first modern pesticide and is arguably the best known organic pes-

ticide. It is a highly hydrophobic colorless solid with a weak, chemical odor that

is nearly insoluble in water but has a good solubility in most organic solvents, fat,

and oils. DDT is also known under the chemical names 1,1,1-trichloro-2,2-bis(p-

chlorophenyl)ethane and dichloro-diphenyl-trichloroethane (from which the abbre-
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viation was derived).

DDT was developed as the first of the modern insecticides early in World War

II. It was initially used with great effect to combat mosquitoes spreading malaria,

typhus, and other insect-borne human diseases among both military and civilian

populations, and as an agricultural insecticide. Paul Hermann Muller, a Swiss

chemist of Geigy Pharmaceutical, was awarded the Nobel Prize in Physiology or

Medicine in 1948 “for his discovery of the high efficiency of DDT as a contact

poison against several arthropods.”

DDT has potent insecticidal properties; it kills by opening sodium ion channels

in insect neurons, causing the neuron to fire spontaneously. This leads to spasms

and eventual death. Insects with certain mutations in their sodium channel gene

may be resistant to DDT and other similar insecticides.

The 1970s ban in the U.S. took place amid a climate of public mistrust of the

scientific and industrial community, following such fiascoes as Agent Orange and

use of the hormone diethylstilbestrol (DES). In addition, the placement of the bald

eagle on the endangered species list was also a strong factor leading to its being

banned in the United States. The overuse of DDT was claimed to be a major factor

in the bald eagle population decline - a claim that has fallen into dispute.

DDT is a persistent organic pollutant with a reported half life of between 2-15

years, and is immobile in most soils. Its half life is 56 days in lake water and ap-

proximately 28 days in river water. Routes of loss and degradation include runoff,

volatilization, photolysis and biodegradation (aerobic and anaerobic). These pro-

cesses generally occur slowly. Breakdown products in the soil environment are DDE

(1,1-dichloro-2,2-bis(p-dichlorodiphenyl)ethylene) and DDD (1,1-dichloro-2,2-bis(p-

chlorophenyl)ethane), which are also highly persistent and have similar chemical

and physical properties. These products together are known as total DDT.
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DDT is an organochlorine. Some organochlorines have been shown to have weak

estrogenic activity; that is, they are chemically similar enough to estrogen to trigger

hormonal responses in contaminated animals. This hormonal-mimicking activity

has been observed when DDT is used in laboratory studies involving mice and rats

as test subjects, but available epidemiological evidence does not indicate that these

effects have occurred in humans as a result of DDT exposure.

DDT in small quantities has very little effect on birds; its primary metabolite,

DDE, has a much greater impact. DDT and DDE have little impact on some

other birds, such as the chicken. DDT is highly toxic to aquatic life, including

crayfish, daphnids, sea shrimp and many species of fish. DDT may be moderately

toxic to some amphibian species, especially in the larval stages. In addition to acute

toxic effects, DDT may bioaccumulate significantly in fish and other aquatic species,

leading to long-term exposure to high concentrations.

There are no substantial scientific studies which prove that DDT is particularly

toxic to humans or other primates, compared to other widely-used pesticides. DDT

can be applied directly to clothes and used in soap, with no demonstrated ill effects.

There is no convincing evidence that DDT or its metabolite DDE increase human

cancer risk. Mainly on the basis of animal data, DDT is classified as a possible car-

cinogen (class 2B) by the International Agency for Research on Cancer (IARC) and

as class B2, reasonably anticipated human carcinogen by the US National Toxicology

Program. This group also contains substances such as coffee and gasoline.
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Chapter 3

Incorporating Spatial Effects

In this chapter, we develop a model to explain pollution of catfish in the Tennessee

River basin that incorporates spatial information, i.e., distance from the the mouth

of the river, differently from the other covariates (length and weight). Procedures

to sample from the posterior distribution will be explored, along with a discussion

of the computational and theoretical technicalities involved.

3.1 Hierarchical Bayesian Spatial Model

We develop a hierarchical Bayesian model to explain whether or not a catfish of

certain length and weight found at a certain location along the river will have more

than 5 ppm of DDT or less. This model extends the Bayesian logistic random effects

model discussed in chapter 1 and introduces correlation between random effects of

adjacent regions so that,
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yi|νi, β, ni ∼ Bin(ni, logit−1(xi
′β + νi)), i = 1, ..., L (3.1)

νi|νi−1, γ, σ2 ∼ N(γνi−1, σ
2), i = 1, ..., L, ν0|γ, τ ∼ N(0,

σ2

1− γ2
) (3.2)

β ∼ N(θ, Σ) (3.3)

γ, ρ
iid∼ U(0, 1) (3.4)

π(σ2) ∝ 1

(1 + σ2)2
. (3.5)

Here, yi represents the number of toxic catfish observed out of ni catfish caught at

location i, xi is the average of the vector of covariates of fish observed at location

i, with xi1 = 1, xi2 = length, xi3 = weight, and xi4 = location. Given all other

parameters, logit−1(xi
′β + νi) is the probability that a catfish at location i is toxic.

Observe that yi depends on non-spatial covariates and location in different ways.

The effects of weight and height on yi determined by β through the linear function

xi
′β. There are however spatial effects ν. Such spatial effects are unobserved, and

offers some insight into why straightforward logistic regression that treats spatial

information on equal grounds with other covariates can be misleading.

The unobserved spatial effects, ν, are assumed to arise from an AR(1) process.

Spatial correlation γ between νi and νi−1 (adjacent regions), is taken to be positive

but strictly less than 1 to assure second-order stationarity. These assumptions are

equivalent to the spatial correlation falling off with distance, and excludes hypo-

thetical situations under which the effect of pollution fails to die off with distance

for rivers of arbitrary length.

As in other Bayesian models discussed so far, the coefficient vector β has a normal

prior distribution with mean θ equal to the frequentist MLE and the covariance

matrix Σ given as a blow-up factor (100) times the frequentist estimate for the
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covariance matrix so that the prior is diffuse.

3.2 Full Posterior Density for Hierarchical Model

To simplify the algebra and computations, we make the transformations

φi = xi
′β + νi, i = 0, . . . , L (3.6)

τ =
1

σ2
(3.7)

where x0 = x1 for convenience, as index i = 0 corresponds to a location along

the river where catfish may actually be observed. The poseterior density of the

transformed model, including the Jacobian of transformation, is then

π(β, φ, γ, τ |y) ∝
L∏

i=1

Binyi
(ni, logit−1(xi

′β))

×
L∏

i=1

τ
1
2 exp(−τ

2
((φi − xi

′β)− (φi−1 − xi−1
′β))2)

×((1− γ2)τ)
1
2 exp(−(1− γ2)τ

2
((φ0 − x0

′β)2))

×Nβ(θ, Σ)
1

(1 + τ)2
Uγ(0, 1)Uρ(0, 1) (3.8)

3.3 Gibbs Sampler for Hierarchical Model

The above hierarchical model leads to the following conditional posterior densities

for parameters, all of which are used to construct a Markov chain using the Gibbs

sampler technique.
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π(β|φ, γ, τ, y)

= N((Σ−1 + τ
∑

(xi − γxi−1)⊗ (xi − γxi−1)),

(Σ−1 + τ
∑

(xi − γxi−1)⊗ (xi − γxi−1))

(Σ−1θ + τ
∑

(φi − γφi−1)(xi − γxi−1))) (3.9)

π(τ |β, φ, γ, y) = Ga(
L + 3

2
,
s2

2
),

s2 =
∑

(νi − γνi−1)
2 + (1− γ2)ν2

0 (3.10)

π(φ0|β, φ−0, γ, y) = N(γφ1, τ
−1) (3.11)

π(φi|β, φ−i, γ, y) ∝

Binyi
(ni, logit−1(xi

′β))

×N(xi
′β +

γ

1 + γ2
(φi+1 + φi−1 − xi+1

′β − xi−1
′β, τ−1)), i = 1, . . . , L− 1 (3.12)

π(φL|β, φ−L, γ, y) ∝

Binyi
(nL, logit−1(xL

′β))N(γφL−1, τ
−1) (3.13)

π(γ|β, φ, τ, y) ∝
√

1− γ2Nγ(µ, s2)I(0,1)(γ),

µ =

∑L
i=1 νiνi−1∑L

i=1 ν2
i

,

s2 =
1

τ
∑L

i=1 ν2
i

(3.14)

To sample from the conditional posterior densities of γ we use the accept-reject

method.
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Sampling γ
(1) Sample U ∼ U(0, 1),

γ ∼ Nγ(µ, s2)I(0,1)(γ)

(2) Calculate prob =
√

1− γ2

(3) If U > prob
then return γ
else return to (1)

Figure 3.1: Sampling γ from conditional posterior density

To sample from φi, i = 1, . . . , L, we resort to a combination of griddy Gibbs

sampling and a transformation of variables. We first consider the transformation

ri = logit−1(φi), 0 < r < 1 (3.15)

Upon the transformation, we obtain the conditional posterior density

π(ri|φ−i, β, γ, τ, y) ∝ r−1
i (1− ri)

−1Binyi
(nL, ri)Nlogit(ri)(µi, τ

−1). (3.16)

We discretize the above density using 100 evenly spaced grid points and draw ri

from the discrete distribution just created. Then, φi = logit−1(ri) is a sample from

the conditional posterior distribution of φi.

3.4 Simulation Results

In this section, we examine a simulation run of the model discussed in this chapter,

and examine the scientific conclusions.

We run the Gibbs sampler defined in previous sections with 101000 iterations,
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1000 burn-in terms discarded, and sampling every 100 samples after burn-in as to

obtain 1000 samples from the full posterior distribution.

In Table 3.1 we examine posterior quantities of interest. We show posterior

quantities for p = logit−1(φ) rather than for φ because we are interested in the

probabilities. There are two major observations. First, the 95 percent credible

intervals of β all contain zero, so in particular the average length and weight of

catfish at each location in the study is irrelevant according to the model. Second,

the general trend for the p’s is to decrease as we move downstream (larger location

number). Locations where only 3 or 4 out of 6 catfish were toxic have 95 percent

credible intervals of p containing 0.50.

Mean Std. Dev. Num. Std. Err. 0.95 Cred. Int.
γ 0.633 0.292 0.00922 (0.0510, 0.995)
τ 1.24 0.857 0.0271 (0.300, 3.48)
β1 2.06 4.31 0.136 (-6.98, 11.4)
β2 0.249 1.62 0.0512 (-3.03, 3.42)
β3 1.50 1.53 0.0484 (-1.60, 4.49)
β4 -0.95 1.03 0.0326 (-2.37, -0.038)
φ0 2.82 1.49 0.0473 (-0.0418, 5.84)
p1 0.894 0.0977 0.00309 (0.615, 0.995)
p2 0.972 0.0443 0.00140 (0.845, 0.995)
p3 0.862 0.0922 0.00291 (0.645, 0.985)
p4 0.818 0.111 0.00351 (0.545, 0.975)
p5 0.882 0.0925 0.00293 (0.625, 0.985)
p6 0.947 0.0743 0.00235 (0.735, 0.995)
p7 0.822 0.118 0.00374 (0.545, 0.975)
p8 0.719 0.136 0.00429 (0.415, 0.925)
p9 0.714 0.145 0.00457 (0.385, 0.935)
p10 0.927 0.0763 0.00241 (0.705, 0.995)
p11 0.575 0.154 0.00488 (0.265, 0.855)
p12 0.691 0.140 0.00443 (0.395, 0.915)

Table 3.1: Gibbs Sampler Posterior Quantities after burn-in

To assess independence of the samples after burn in, we look at the lag 1 au-
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tocorrelations. It indicates that there is little autocorrelation between the samples

after burn-in. Hence, we may conclude that the samples obtained can be treated as

values from the full posterior density.

Parameter AC
γ 0.00634
τ -0.0301
β1 0.0314
β2 -0.0250
β3 -0.00429
β4 0.0421
φ0 -0.000676
p1 -0.0180
p2 0.0232
p3 -0.000324
p4 0.0529
p5 -0.0350
p6 -0.00526
p7 -0.0270
p8 0.0183
p9 0.00811
p10 -0.0139
p11 0.0220
p12 -0.0265

Table 3.2: Gibbs sampling autocorrelation after burn-in
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Chapter 4

Imputing Missing Catfish Data

In the study conducted by the Army Corps of Engineers on along the Tennessee

River, no catfish were observed at location TRM335. Ideally, we would fit the model

developed chapter 2 to all observation locations between TRM270 and TRM340 to

determine the effect of missing observations. To accomplish this goal, we develop a

simple hierarchical Bayesian model to impute length and weight of n13 = 6 hypo-

thetical catfish at TRM 335 (location 13).

4.1 Hierarchical Bayesian Model

Let zij denote the vector of the log-transformed length and weight of catfish j

at location i: zij,L is log-transformed length, and zij,W is log-transformed weight.

Furthermore, let µi = (µi,L, µi,W )′.

We examine the model

zij|µi, ρ, σ2
L, σ2

W ∼ N(µi, Σ) (4.1)
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µi,L|µi−1,L, γL, δ2
L ∼ N(γLνi−1,L, δ2

L), i = 1, ..., L,

µ0,L|γL, δ2
L ∼ N(0, δ2

L(1− γ2
L)−1) (4.2)

µi,W |µi−1,W , γW , δ2
W ∼ N(γW νi−1,W , δ2

W ), i = 1, ..., L,

µ0,W |γW , δ2
W ∼ N(0, δ2

W (1− γ2
W )−1) (4.3)

δ2
L =

1− εL

εL

σ2
L (4.4)

δ2
W =

1− εW

εW

σ2
W (4.5)

σ2
L, σ2

W
iid∼ (1 + σ2)−2I[0,∞)(σ

2) (4.6)

ρ, εL, εW , γL, γW
iid∼ U(0, 1) (4.7)

where

Σ =

 σ2
L ρσLσW

ρσLσW σ2
W

 (4.8)

There are several points to note. First, z13,j, j = 1, . . . , n13 = 6 unobserved param-

eters but are the same in every other respect as data for other catfish.
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4.2 Full Posterior Density for Hierarchical Model

To simplify derivations, we make the following transformation

τL = σ−2
L , τW = σ−2

W (4.9)

Then the full posterior density of the model is given by

π(µ, γ, τ , ρ, ε, z13|z−13) ∝∏
i,j

Nzij
(µi, Σ)

×
L∏

i=1

δ−1
L exp(− 1

2δ2
L

(µi,L − γLµi,L)2)

×((1− γ2
L)δ−2

L )
1
2 exp(−1− γ2

L

2δ2
L

µ2
0,L)

×
L∏

i=1

δ−1
W exp(− 1

2δ2
W

(µi,W − γW µi,W )2)

×((1− γ2
W )δ−2

W )
1
2 exp(−1− γ2

W

2δ2
W

µ2
0,W )

×(1 + σ2
L)−2I[0,∞)(σ

2
L)(1 + σ2

W )−2I[0,∞)(σ
2
W )

×Uρ(0, 1)UγL
(0, 1)UγW

(0, 1)UεL
(0, 1)UεW

(0, 1) (4.10)

4.3 Gibbs Sampler for Hierarchical Model

We now examine the conditional posterior densities of each parameter to construct

a Gibbs sampler for simulation.
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π(γL|µ, γW , τ , ρ, ε, z13, z−13) ∝√
1− γ2

LNγL
(θ, s2)I(0,1)(γL),

θ =

∑L
i=1 µi,Lµi−1,L∑L

i=1 µ2
i,L

,

s2 =
1

τL

∑L
i=1 µ2

i,L

(4.11)

π(γW |µ, γL, τ , ρ, ε, z13, z−13) ∝√
1− γ2

W NγW
(θ, s2)I(0,1)(γW ),

θ =

∑L
i=1 µi,W µi−1,W∑L

i=1 µ2
i,W

,

s2 =
1

τW

∑L
i=1 µ2

i,W

(4.12)

π(ρ|µ, γ, τ , ε, z13, z−13) ∝

I[0,1](ρ)(1− ρ2)−
1
2

P
ni exp(−1

2

∑
ij

zij
′Σ−1zij) (4.13)

π(ε∗L|µ, γ, τ , ρ, εW , z13, z−13) ∝

(1 + ε∗L)−2I[0,∞)(ε
∗
L)×Ga(

L + 3

2
, s2),

s2 =
τL

2
(

L∑
i=1

(µi,L − γLµi−1,L)2 + (1− γ2
L)µ2

0,L),

εL =
ε∗L

1 + ε∗L
(4.14)
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π(ε∗W |µ, γ, τ , ρ, εL, z13, z−13) ∝

(1 + ε∗W )−2I[0,∞)(ε
∗
W )×Ga(

L + 3

2
, s2),

s2 =
τW

2
(

L∑
i=1

(µi,W − γW µi−1,W )2 + (1− γ2
W )µ2

0,W ),

εW =
ε∗W

1 + ε∗W
(4.15)

π(τL|µ, γ, τW , ρ, ε, z13, z−13) ∝

(1 + τL)−2I[0,∞)(τL) exp(−s2

2
τL)

× exp(
ρ

1− ρ2

∑
ij

ln(Lij) ln(Wij)τ
1
2
L ) (4.16)

π(τW |µ, γ, τL, ρ, ε, z13, z−13) ∝

(1 + τW )−2I[0,∞)(τW ) exp(−s2

2
τW )

× exp(
ρ

1− ρ2

∑
ij

ln(Lij) ln(Wij)τ
1
2
W ) (4.17)

π(µ0,L|µ−0, µ0,W , γ, τL, ρ, ε, z13, z−13) ∝ N(γLµ1,L, τ−1) (4.18)

π(µ0,W |µ−0, µ0,L, γ, τW , ρ, ε, z13, z−13) ∝ N(γW µ1,W , τ−1) (4.19)

28



π(µi,L|µ−i, µi,W , γ, τL, ρ, ε, z13, z−13) ∝ N(ηi,L, σ2
L(1 + ni(1− ρ2)−1 + γ2

L)−1),

ηi,L = (γL(µi+1,L + µi−1,L) + (1− ρ2)−1
∑

j

ln(Li,j)− ρ(1− ρ2)−1

×σLσ−1
W

∑
j

(ln(Wi,j)− µi,W ))

×σ2
L(1 + ni(1− ρ2)−1 + γ2

L)−1, 0 < i < L(4.20)

π(µi,W |µ−i, µi,L, γ, τW , ρ, ε, z13, z−13) ∝ N(ηi,W , σ2
W (1 + ni(1− ρ2)−1 + γ2

W )−1),

ηi,W = (γW (µi+1,W + µi−1,W ) + (1− ρ2)−1
∑

j

ln(Wi,j)− ρ(1− ρ2)−1

×σW σ−1
L

∑
j

(ln(Li,j)− µi,W ))

×σ2
W (1 + ni(1− ρ2)−1 + γ2

W )−1, 0 < i < L(4.21)

π(µL,L|µ−L, µL,L, γ, τL, ρ, ε, z13, z−13) ∝ N(ηL,L, σ2
L(1 + nL(1− ρ2)−1)−1),

ηL,L = (γLµL−1,L + (1− ρ2)−1
∑

j

ln(Li,j)− ρ(1− ρ2)−1σLσ−1
W

×
∑

j

(ln(WL,j)− µL,W ))

×σ2
L(1 + ni(1− ρ2)−1)−1, 0 < i < L (4.22)

π(µL,W |µ−L, µL,W , γ, τW , ρ, ε, z13, z−13) ∝ N(ηL,W , σ2
W (1 + nL(1− ρ2)−1)−1),

ηL,W = (γW µL−1,W + (1− ρ2)−1
∑

j

ln(Wi,j)− ρ(1− ρ2)−1σW σ−1
L

×
∑

j

(ln(LL,j)− µL,L))

×σ2
W (1 + ni(1− ρ2)−1)−1, 0 < i < L(4.23)
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4.4 Simulation Results

In this section, we look at a simulation run of the Gibbs sampler for the imputation

model, using 101000 iterations, 1000 burn-in terms, and sampling every 100 sam-

ples after burn-in (1000 samples total) to study the full posterior distribution, in

particular the posterior mean of unobserved catfish lengths and weights.

In table 4.1 we list posterior quantities for the simulation. Our main interest

here are the imputed (log-transformed) weights and lengths, so only these paramters

will be given. Lag 1 autocorrelations seen in Table 4.2 indicate that convergence is

a reasonable assumption.

Mean Std. Dev. Num. Std. Err. 0.95 Cred. Int.
lnL13,1 3.753 2.027 0.064 (3.638,3.942)
lnL13,2 3.885 1.771 0.056 (3.761,3.932)
lnL13,3 3.951 2.153 0.068 (3.882,3.988))
lnL13,4 3.777 2.261 0.071 (3.696,3.824)
lnL13,5 3.769 2.026 0.064 (3.761,3.811)
lnL13,6 3.683 1.903 0.060 (3.653,3.697)
lnW13,1 7.118 3.487 0.110 (6.659,7.244)
lnW13,2 6.340 3.612 0.114 (6.194,6.791)
lnW13,3 6.741 3.505 0.111 (6.397,6.908)
lnW13,4 6.833 4.110 0.129 (6.522,6.802)
lnW13,5 6.968 3.713 0.117 (5.991,7.783)
lnW13,6 6.592 3.100 0.098 (6.297,6.820)

Table 4.1: Gibbs Sampler Posterior Quantities after burn-in
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Parameter AC
ρ

ln L13,1 0.053
ln L13,2 0.041
ln L13,3 0.055
ln L13,4 -0.046
ln L13,5 0.050
ln L13,6 -0.047
ln W13,1 -0.062
ln W13,2 -0.058
ln W13,3 0.053
ln W13,4 -0.049
ln W13,5 0.057
ln W13,6 0.048

Table 4.2: Gibbs sampling autcorrelation after burn-in

4.5 Model Fitting with Completed Data

In this section, we use a naive prediction to fit the model discussed in chapter 2

(101000 iterates, 1000 burn-in, sampling every 100 after burn-in) to all locations

between location 1 (TRM275) and location 14 (TRM340), including the unobserved

location 14 (TRM335). Imputed lengths and weights of catfish for location 13

(TRM335) to compute the average length and weight of location 13. To determine

the proportion of toxic catfish at location 13, we simply take the average of the

proportions at location 12 and location 14, so that x13,2 = 45.02, x13,3 = 894.4

before standardization, and y13 = 3
6
. Again, we revert from φ’s to p = logit−1(φ).

The primary observation to make is that, as in chapter 2, locations with observed

proportions of toxic catfish less than 4
6

has 95 percent credible intervals which con-

tain zero, where as other locations have p > 0.5. This implies that catfish are

likely to be toxic when they are caught in regions of high observed proportions.
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Lag 1 autocorrelations indicate that the samples after burn-in are approximately

independent.

In chapter 5, we will do the prediction more optimally.

Mean Std. Dev. Num. Std. Err. 0.95 Cred. Int.
γ 0.526 0.275 0.0087 (0.072, 0.993)
τ 1.687 0.790 0.025 (0.373, 4.592)
β1 1.269 2.898 0.016 (-5.463, 8.795)
β2 0.436 4.137 0.131 (-4.506, 5.412)
β3 1.194 1.618 0.053 (-2.134, 4.439)
β4 -0.872 0.794 0.0251 (-2.137, 0.311)
φ0 2.552 1.429 0.045 (-0.033, 4.937)
p1 0.940 0.100 0.0032 (0.616, 0.995)
p2 0.984 0.045 0.0014 (0.935, 0.999)
p3 0.862 0.029 0.0009 (0.643, 0.982)
p4 0.808 0.110 0.0035 (0.448, 0.920)
p5 0.870 0.091 0.0029 (0.645, 0.966)
p6 0.933 0.073 0.0023 (0.497, 0.994)
p7 0.796 0.114 0.0036 (0.509, 0.937)
p8 0.778 0.147 0.0046 (0.474, 0.924)
p9 0.679 0.138 0.0044 (0.485, 0.870)
p10 0.940 0.077 0.0024 (0.630, 0.992)
p11 0.708 0.190 0.0060 (0.326, 0.909)
p12 0.666 0.140 0.0044 (0.358, 0.898)
p13 0.721 0.195 0.0062 (0.427, 0.871)
p14 0.691 0.180 0.0057 (0.414, 0.864)

Table 4.3: Gibbs Sampler Posterior Quantities after burn-in
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Parameter AC
γ 0.005
τ -0.026
β1 -0.043
β2 0.025
β3 -0.004
β4 0.0137
φ0 -0.078
p1 -0.011
p2 0.023
p3 -0.031
p4 0.055
p5 -0.036
p6 0.006
p7 -0.0270
p8 -0.0182
p9 0.00811
p10 -0.019
p11 -0.022
p12 0.024
p13 -0.028
p14 0.025

Table 4.4: Gibbs sampling autocorrelation after burn-in
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Chapter 5

Combined Model for Imputation

and Prediction

In this chapter, we combine results of chapters 3 and 4 to obtain a single model

which imputes missing data for unobserved location 13 and predict probabilities of

toxicity at once. The important simplifying assumption made here is that all catfish

from the same location are toxic with the same probability. This simplification

is justified because the preliminary models all suggest that weight and height are

not significant in determining such probabilities. Allowing the probability to differ

amongst catfish in a given location complicates implementation and analysis but

may better accomodate reality.

5.1 Hierarchical Bayesian Model

Full specification of the model is given by
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yi|νi, β, ni ∼ Bin(ni, logit−1(xi
′β + νi)), i = 1, . . . , L (5.1)

νi|νi−1, γ, σ2 ∼ N(γνi−1, σ
2), i = 1, . . . , L, ν0|γ, τ ∼ N(0,

σ2

1− γ2
) (5.2)

β ∼ N(θ, Σ) (5.3)

γ, ρ
iid∼ U(0, 1) (5.4)

π(σ2) ∝ 1

(1 + σ2)2
. (5.5)

zij|µi, ρ, σ2
L, σ2

W ∼ N(µi, Σ) (5.6)

µi,L|µi−1,L, γL, δ2
L ∼ N(γLνi−1,L, δ2

L), i = 1, . . . , L,

µ0,L|γL, δ2
L ∼ N(0, δ2

L(1− γ2
L)−1) (5.7)

µi,W |µi−1,W , γW , δ2
W ∼ N(γW νi−1,W , δ2

W ), i = 1, . . . , L,

µ0,W |γW , δ2
W ∼ N(0, δ2

W (1− γ2
W )−1) (5.8)

δ2
L =

1− εL

εL

σ2
L (5.9)

δ2
W =

1− εW

εW

σ2
W (5.10)

σ2
L, σ2

W
iid∼ (1 + σ2)−2I[0,∞)(σ

2) (5.11)
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ρ, εL, εW , γL, γW
iid∼ U(0, 1) (5.12)

where

Σ =

 σ2
L ρσLσW

ρσLσW σ2
W

 (5.13)

and

x13 =
1

n13

n13∑
j=1

β1 + L13,jβ2 + W13,jβ3 + 13β4 (5.14)

5.2 Full Posterior Density for Hierarchical Model

τL = σ−2
L , τW = σ−2

W

φi = xi
′β + νi, i = 0, . . . , L

τ =
1

σ2
(5.15)

where x0 = x1 for convenience. The absolute value of the determinant of the Jaco-

bian for this transformation is 1.

Then the full posterior density of the model is given by
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π(β, φ, γ, τ, µ, γ, τ , ρ, ε, z13|z−13, y) ∝∏
i,j

Nzij
(µi, Σ)

×
L∏

i=1

δ−1
L exp(− 1

2δ2
L

(µi,L − γLµi,L)2)

×((1− γ2
L)δ−2

L )
1
2 exp(−1− γ2

L

2δ2
L

µ2
0,L)

×
L∏

i=1

δ−1
W exp(− 1

2δ2
W

(µi,W − γW µi,W )2)

×((1− γ2
W )δ−2

W )
1
2 exp(−1− γ2

W

2δ2
W

µ2
0,W )

×(1 + σ2
L)−2I[0,∞)(σ

2
L)(1 + σ2

W )−2I[0,∞)(σ
2
W )

×Uρ(0, 1)UγL
(0, 1)UγW

(0, 1)UεL
(0, 1)UεW

(0, 1)

×
L∏

i=1

Binyi
(ni, logit−1(xi

′β))

×
L∏

i=1

τ
1
2 exp(−τ

2
((φi − xi

′β)− (φi−1 − xi−1
′β))2)

×((1− γ2)τ)
1
2 exp(−(1− γ2)τ

2
((φ0 − x0

′β)2))

×Nβ(θ, Σ)
1

(1 + τ)2
Uγ(0, 1)Uρ(0, 1) (5.16)

5.3 Gibbs Sampler for Hierarchical Model

The Gibbs sampler for the complete model is then
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π(z13,j|β, φ, γ, τ, y, µ, γ, τ , ρ, ε, z−13)
iid∝ N(µ13, Σ)

×Biny13(
1

n13

n13∑
j=1

β1 + L13,jβ2 + W13,jβ3 + 13β4) (5.17)

π(y13|β, φ, γ, τ, y−13, µ, γ, τ , ρ, ε, z) ∝

Bin(
1

n13

n13∑
j=1

β1 + L13,jβ2 + W13,jβ3 + 13β4) (5.18)

π(β|φ, γ, τ, y, µ, γ, τ , ρ, ε, z13, z−13)

= N((Σ−1 + τ
∑

(xi − γxi−1)⊗ (xi − γxi−1)),

(Σ−1 + τ
∑

(xi − γxi−1)⊗ (xi − γxi−1))

(Σ−1θ + τ
∑

(φi − γφi−1)(xi − γxi−1))) (5.19)

π(τ |β, φ, γ, y, µ, γ, τ , ρ, ε, z13, z−13) = Ga(
L + 3

2
,
s2

2
),

s2 =
∑

(νi − γνi−1)
2 + (1− γ2)ν2

0 (5.20)

π(φ0|β, φ−0, γ, y, µ, γ, τ , ρ, ε, z13, z−13) = N(γφ1, τ
−1) (5.21)

π(φi|β, φ−i, γ, y, µ, γ, τ , ρ, ε, z13, z−13) ∝

Binyi
(ni, logit−1(xi

′β))

×N(xi
′β +

γ

1 + γ2
(φi+1 + φi−1 − xi+1

′β − xi−1
′β, τ−1)), i = 1, . . . , L− 1 (5.22)

π(φL|β, φ−L, γ, y, µ, γ, τ , ρ, ε, z13, z−13) ∝

Binyi
(nL, logit−1(xL

′β))N(γφL−1, τ
−1) (5.23)
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π(γ|β, φ, τ, y, µ, γ, τ , ρ, ε, z13, z−13) ∝
√

1− γ2Nγ(µ, s2)I(0,1)(γ),

µ =

∑L
i=1 νiνi−1∑L

i=1 ν2
i

,

s2 =
1

τ
∑L

i=1 ν2
i

(5.24)

π(γL|µ, γW , τ , ρ, ε, z13, z−13, β, φ, γ, τ, y) ∝√
1− γ2

LNγL
(θ, s2)I(0,1)(γL),

θ =

∑L
i=1 µi,Lµi−1,L∑L

i=1 µ2
i,L

,

s2 =
1

τL

∑L
i=1 µ2

i,L

(5.25)

π(γW |µ, γL, τ , ρ, ε, z13, z−13, β, φ, γ, τ, y) ∝√
1− γ2

W NγW
(θ, s2)I(0,1)(γW ),

θ =

∑L
i=1 µi,W µi−1,W∑L

i=1 µ2
i,W

,

s2 =
1

τW

∑L
i=1 µ2

i,W

(5.26)

π(ρ|µ, γ, τ , ε, z13, z−13, β, φ, γ, τ, y) ∝

I[0,1](ρ)(1− ρ2)−
1
2

P
ni exp(−1

2

∑
ij

zij
′Σ−1zij) (5.27)
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π(ε∗L|µ, γ, τ , ρ, εW , z13, z−13, β, φ, γ, τ, y) ∝

(1 + ε∗L)−2I[0,∞)(ε
∗
L)×Ga(

L + 3

2
, s2),

s2 =
τL

2
(

L∑
i=1

(µi,L − γLµi−1,L)2 + (1− γ2
L)µ2

0,L),

εL =
ε∗L

1 + ε∗L
(5.28)

π(ε∗W |µ, γ, τ , ρ, εL, z13, z−13, β, φ, γ, τ, y) ∝

(1 + ε∗W )−2I[0,∞)(ε
∗
W )×Ga(

L + 3

2
, s2),

s2 =
τW

2
(

L∑
i=1

(µi,W − γW µi−1,W )2 + (1− γ2
W )µ2

0,W ),

εW =
ε∗W

1 + ε∗W
(5.29)

π(τL|µ, γ, τW , ρ, ε, z13, z−13, β, φ, γ, τ, y) ∝

(1 + τL)−2I[0,∞)(τL) exp(−s2

2
τL)

× exp(
ρ

1− ρ2

∑
ij

ln(Lij) ln(Wij)τ
1
2
L ) (5.30)

π(τW |µ, γ, τL, ρ, ε, z13, z−13, β, φ, γ, τ, y) ∝

(1 + τW )−2I[0,∞)(τW ) exp(−s2

2
τW )

× exp(
ρ

1− ρ2

∑
ij

ln(Lij) ln(Wij)τ
1
2
W ) (5.31)

π(µ0,L|µ−0, µ0,W , γ, τL, ρ, ε, z13, z−13, β, φ, γ, τ, y) ∝ N(γLµ1,L, τ−1) (5.32)
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π(µ0,W |µ−0, µ0,L, γ, τW , ρ, ε, z13, z−13, β, φ, γ, τ, y) ∝ N(γW µ1,W , τ−1) (5.33)

π(µi,L|µ−i, µi,W , γ, τL, ρ, ε, z13, z−13, β, φ, γ, τ, y)

∝ N(ηi,L, σ2
L(1 + ni(1− ρ2)−1 + γ2

L)−1),

ηi,L = (γL(µi+1,L + µi−1,L) + (1− ρ2)−1
∑

j

ln(Li,j)− ρ(1− ρ2)−1

×σLσ−1
W

∑
j

(ln(Wi,j)− µi,W ))

×σ2
L(1 + ni(1− ρ2)−1 + γ2

L)−1, 0 < i < L (5.34)

π(µi,W |µ−i, µi,L, γ, τW , ρ, ε, z13, z−13, β, φ, γ, τ, y)

∝ N(ηi,W , σ2
W (1 + ni(1− ρ2)−1 + γ2

W )−1),

ηi,W = (γW (µi+1,W + µi−1,W ) + (1− ρ2)−1
∑

j

ln(Wi,j)− ρ(1− ρ2)−1

×σW σ−1
L

∑
j

(ln(Li,j)− µi,W ))

×σ2
W (1 + ni(1− ρ2)−1 + γ2

W )−1, 0 < i < L (5.35)

π(µL,L|µ−L, µL,L, γ, τL, ρ, ε, z13, z−13, β, φ, γ, τ, y)

∝ N(ηL,L, σ2
L(1 + nL(1− ρ2)−1)−1),

ηL,L = (γLµL−1,L + (1− ρ2)−1
∑

j

ln(Li,j)− ρ(1− ρ2)−1σLσ−1
W

×
∑

j

(ln(WL,j)− µL,W ))

×σ2
L(1 + ni(1− ρ2)−1)−1, 0 < i < L (5.36)
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π(µL,W |µ−L, µL,W , γ, τW , ρ, ε, z13, z−13, β, φ, γ, τ, y)

∝ N(ηL,W , σ2
W (1 + nL(1− ρ2)−1)−1),

ηL,W = (γW µL−1,W + (1− ρ2)−1
∑

j

ln(Wi,j)− ρ(1− ρ2)−1σW σ−1
L

×
∑

j

(ln(LL,j)− µL,L))

×σ2
W (1 + ni(1− ρ2)−1)−1, 0 < i < L (5.37)

5.4 Simulation Results

We now run the complete model with 101000 iterates, 1000 burn-in, sampling every

100 after burn-in. We list posterior quantities for the more important parameters,

especially p = logit−1(φ).

Once again, lag 1 autocorrelations show that the Gibbs sampler is converging,

albeit slowly. τ , τL, and τW can in theory be unbounded, and sampling such quanti-

ties may cause problems. However, the time series plots of the post-burn-in iterates

that are sampled show that those quantities behave reasonably well.
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Figure 5.1: Time Series Plot of Sampled Tau
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Figure 5.2: Time Series Plot of Sampled Tau L
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Figure 5.3: Time Series Plot of Sampled Tau W
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Mean Std. Dev. Num. Std. Err. 0.95 Cred. Int.
τ 1.24 0.857 0.0271 (0.300, 3.48)
β1 2.06 4.31 0.136 (-6.98, 11.4)
β2 0.249 1.62 0.0512 (-3.03, 3.42)
β3 1.50 1.53 0.0484 (-1.60, 4.49)
β4 -0.95 1.03 0.0326 (-2.37, -0.038)
p1 0.940 0.100 0.0032 (0.616, 0.995)
p2 0.984 0.045 0.0014 (0.935, 0.999)
p3 0.862 0.029 0.0009 (0.643, 0.982)
p4 0.808 0.110 0.0035 (0.448, 0.920)
p5 0.870 0.091 0.0029 (0.645, 0.966)
p6 0.933 0.073 0.0023 (0.497, 0.994)
p7 0.796 0.114 0.0036 (0.509, 0.937)
p8 0.778 0.147 0.0046 (0.474, 0.924)
p9 0.679 0.138 0.0044 (0.485, 0.870)
p10 0.940 0.077 0.0024 (0.630, 0.992)
p11 0.708 0.190 0.0060 (0.326, 0.909)
p12 0.666 0.140 0.0044 (0.358, 0.898)
p13 0.721 0.195 0.0062 (0.427, 0.871)
p14 0.691 0.180 0.0057 (0.414, 0.864)
τL 1.26 0.797 .0252 (0.423,5.933)

lnL13,1 3.753 2.027 0.064 (3.638,3.942)
lnL13,2 3.885 1.771 0.056 (3.761,3.932)
lnL13,3 3.951 2.153 0.068 (3.882,3.988))
lnL13,4 3.777 2.261 0.071 (3.696,3.824)
lnL13,5 3.769 2.026 0.064 (3.761,3.811)
lnL13,6 3.683 1.903 0.060 (3.653,3.697)

τW 1.22 0.814 .0257 (0.713,6.217)
lnW13,1 7.118 3.487 0.110 (6.659,7.244)
lnW13,2 6.340 3.612 0.114 (6.194,6.791)
lnW13,3 6.741 3.505 0.111 (6.397,6.908)
lnW13,4 6.833 4.110 0.129 (6.522,6.802)
lnW13,5 6.968 3.713 0.117 (5.991,7.783)
lnW13,6 6.592 3.100 0.098 (6.297,6.820)

Table 5.1: Gibbs Sampler Posterior Quantities after burn-in
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Parameter AC
τ 0.0411
β1 -0.0228
β2 0.0025
β3 -0.00398
β4 -0.0523
p1 -0.0086
p2 -0.0325
p3 -0.0067
p4 0.0291
p5 0.0451
p6 -0.103
p7 -0.0270
p8 0.0183
p9 -0.00811
p10 -0.0139
p11 -0.0157
p12 0.0304
p13 -0.095
p14 0.0082
τL -0.100

ln L13,1 -0.114
ln L13,2 0.0421
ln L13,3 0.0069
ln L13,4 -0.0053
ln L13,5 -0.0028
ln L13,6 0.0019

τW 0.0034
ln W13,1 -0.203
ln W13,2 -0.091
ln W13,3 -0.0072
ln W13,4 0.0036
ln W13,5 0.0012
ln W13,6 0.099

Table 5.2: Gibbs sampling autcorrelation after burn-in
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Chapter 6

Conclusions

In this paper, we have presented a parsimonious Bayesian logistic regression model

which incorporates spatial effects, following the spirit of generalized linear models.

The count of toxic catfish at each location is binomial given the parameters, where

the probability that a catfish is toxic depends, through the logistic link function,

on an affine combination of the covariates (average length and weight of catfish,

and its location) and on the spatial effect specific to the location. The spatial

effects are modeled by an AR(1) process with positive correlation. A Gibbs sampler

was constructed from the full posterior density specified by the model to estimate

posterior quantities of interest. This model offers the advantage that it is easier to

interpret than a frequentist logistic regression model and describes the data better

than a Bayesian logistic regression model with uncorrelated spatial random effects.

To extend the utility of this model, we developed a model to impute length and

weight of catfish from locations where data was not collected. The imputation model

treats unobserved (log-transformed) lengths and weights as parameters on their own

right that are generated by the same process as observed lengths and weights. The

length and weight of a catfish of a given location is assumed to be from a bivari-
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ate normal distribution, and the mean value of log-transformed length and weight,

respectively, are treated as AR(1) processes, with the length- and weigh- means

independent of each other. This model is then used to impute weight and length

measurements for 6 unobserved fish from location TRM335. Using the imputed

values, we fit our Bayesian spatial effects to the augmented dataset.

Finally, we combined the models of chapter 3 and 4 so as to treat imputation

and prediction simultaneously and without any other ad hoc procedures. Using the

complete model, we have point and interval estimates for the probability that a

catfish at any location between TRM275 and TRM340 contains 5 ppm or more of

DDT in their filet.

Mean Std. Dev. Num. Std. Err. 0.95 Cred. Int.
p1 0.940 0.100 0.0032 (0.616, 0.995)
p2 0.984 0.045 0.0014 (0.935, 0.999)
p3 0.862 0.029 0.0009 (0.643, 0.982)
p4 0.808 0.110 0.0035 (0.448, 0.920)
p5 0.870 0.091 0.0029 (0.645, 0.966)
p6 0.933 0.073 0.0023 (0.497, 0.994)
p7 0.796 0.114 0.0036 (0.509, 0.937)
p8 0.778 0.147 0.0046 (0.474, 0.924)
p9 0.679 0.138 0.0044 (0.485, 0.870)
p10 0.940 0.077 0.0024 (0.630, 0.992)
p11 0.708 0.190 0.0060 (0.326, 0.909)
p12 0.666 0.140 0.0044 (0.358, 0.898)
p13 0.721 0.195 0.0062 (0.427, 0.871)
p14 0.691 0.180 0.0057 (0.414, 0.864)

Table 6.1: Posterior probabilities that a catfish from a location is toxic

The major finding is that including the imputed values does not alter the infer-

ence significantly. Under the Bayesian statistical models considered, the 95 percent

credible intervals of all components of the regression vector β besides location con-

tain zero and are not important. Even the frequentist logistic regression models gave

β confidence intervals containing zero. Thus, under all of these circumstances, cat-
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fish data indicates that only location is a significant factor in determining proportion

of toxic catfish.

Many opportunities exist to extend the results of this paper. We can explore the

behavior of catfish farther downstream. There may be ways to treat the spatial effect

of location zero, which corresponds to TRM270 (for which we have no data), from

the effects of catfish that actually live there. What happens when there is no longer

a unidirectional flow as in a river? Can these results be extended to model such

situations? As with any observational study, we may want to do sensitivity analysis

to determine if there are hidden covariates that might improve our understanding

of the data (Rosenbaum, 2002).
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Appendix A

Dataset

Table A.1 and A.2 contain information for each fish caught: toxic or not (5 ppm

or more of DDT in filet), length, and weight. The data was collected along the

Tennessee River, Alabama, during the summer of 1980.
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Location 1 2 3 4 5 6 7
y1 1 1 1 1 1 1 1
L1 48.0 48.0 44.0 41.0 36.0 36.0 35.0
W1 986 1048 936 961 980 847 613
y2 1 1 1 1 1 1 1
L2 45.0 51.0 42.0 44.0 47.5 37.0 51.0
W2 1023 1641 1058 886 1176 876 353
y3 1 1 1 1 0 0 1
L3 49.0 48.5 42.5 41.0 41.5 35.0 42.5
W3 1266 1331 800 678 989 844 909
y4 1 1 1 0 1 1 1
L4 50.0 51.0 45.5 42.0 49.5 36.0 38.0
W4 1086 1728 1087 1011 1084 908 886
y5 1 1 1 1 1 1 1
L5 46.0 44.0 48.0 42.5 46.0 48.0 41.0
W5 1044 917 1329 947 1115 1358 890
y6 1 1 0 1 1 1 1
L6 52.0 51.0 44.0 44.0 46.5 49.0 47.0
W6 1770 1398 897 989 724 1019 1031

Table A.1: Channel Catfish Data (Locations 1 through 7)
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Location 8 9 10 11 12 13 14
y1 1 1 1 1 1 1
L1 45.0 48.0 47.5 46.0 36.0 50.0
W1 1083 476 983 863 556 1207
y2 0 0 1 1 1 1
L2 45.5 29.5 51.5 40.0 42.0 45.0
W2 864 743 1251 549 659 911
y3 1 0 1 0 1 0
L3 45.0 42.0 49.5 43.5 40.5 49.0
W3 886 1128 1255 810 1229 1498
y4 0 1 1 0 0 0
L4 45.0 47.5 47.0 46.5 51.5 39.5
W4 965 848 1152 908 1050 1496
y5 1 1 1 0 1 0
L5 39.0 47.5 47.5 43.0 47.0 50.0
W5 537 1091 1085 804 952 1142
y6 1 1 1 1 0 0
L6 40.5 43.5 47.0 47.5 41.0 45.0
W6 630 715 1118 1179 826 879

Table A.2: Channel Catfish Data (Locations 8 through 14)
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Appendix B

Accept-Reject Sampling

The accept-reject sampling method allows one to draw samples from density func-

tions for which sampling procedure is not known (Casella and Berger (2002)).

Let fY (y) be the target density from which samples are to be drawn, and let fV (v)

have the same support as the target density and such that M = sup fY (y)
fV (y)

< ∞.

Drawing Y ∼ fY (y)
(1) Sample U ∼ U(0, 1), V ∼ fV .

(2) Calculate prob = 1
M

fY (V )
fV (V )

(3) If U > prob
then return V
else return to (1)

Figure B.1: Sampling with Accept-Reject method
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Appendix C

Gibbs Sampling

Geman and Geman (1984) made the Gibbs sampler widely known in the con-

text of image restoration, but the Gibbs sampler had been implemented in various

guises during the 1970s in fields including statistical mechanics and spatial statistics.

Gelfand and Smith (1990) caused an explosion in applications of Bayesian statistics

by demonstrating how the algorithm of Geman and Geman can be used to sam-

ple from the general continuous posterior distributions typically found in Bayesian

models.

Let θ = (θ1, . . . , θp) be the vector of parameters organized into p blocks. We

would like to draw from π(θ|y). The Gibbs sampler algorithm is given as follows

(Chen, Shao and Ibrahim (2000)):

Tierney (1994) develops the relationships between Markov chains and Monte

Carlo methods; See Cowles and Carlin (1996) for a comprehensive review of conver-

gence diagnostics of Gibbs samplers and other Markov chain Monte Carlo methods.
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Gibbs Sampling
(1) Set initial values θ0.
(2) For each i=1,2,. . . , repeat the following.

Sample θ1
(i) ∼ π(θ1

(i)|θ2
(i−1), θ2

(i−1), . . . , θp
(i−1), y)

θ2
(i) ∼ π(θ2

(i)|θ1
(i), θ3

(i−1), . . . , θp
(i−1), y)

θj
(i) ∼ π(θj

(i)|, . . . , θj−1
(i), θj+1

(i−1), . . . , θp
(i−1), y)

θp
(i) ∼ π(θp

(i)|θ1
(i), . . . , θp−1

(i), y)

(3) Record θ(i), i = N, N + 1, . . . for N large.

Figure C.1: Construction of Gibbs Samplers
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Appendix D

AR(1) Models

A discrete time stochastic process {yt}, t = 1, . . . , n is called an AR(1) process, AR

standing for autoregressive, if

yt = φyt−1 + εt, εt ∼ i.i.d.N(0, σ2), t = 1, . . . , n

y0 ∼ N(0,
σ2

1− φ2
), |φ| < 1. (D.1)

Because all stochastic processes are characterized by its finite-dimensional distribu-

tions according Kolmogorov’s theorem (see Billingsley (1994) for theory), one may

be interested in the joint density of (y0, . . . , yn), i.e., the joint density of y up through

time t = n. This density is multivariate normal, given by

f(y0, . . . , yn) = N(µ, Σ) (D.2)

where (Σij) = σ−2(1 + δi
jφ

2) (δ is Kronecker’s delta), and µ = φΣ−1(y1, . . . , yn, 0)′.

Under this model, given φ, Cor(ys, yt) = φ|s−t|.
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In the Bayesian setting, a prior distribution for φ and σ2, π(φ, σ2), needs to be

specified.
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