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Abstract
Our project aimed to create the groundwork for a tool that identifies foodborne illness

cases from Twitter as the first steps in creating an unofficial warning system to slow the spread

of foodborne illness. We collected and stored historical tweets, created visualizations that can

display the trends of foodborne illness over time, compared Twitter data to official foodborne

illness data, and evaluated the machine learning model in order to set up the framework for this

early warning system.
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Executive Summary

The Centers for Disease Control explains that the foodborne illness outbreak detection

timeline is approximately a 3 to 4 week process dependent on the bacteria associated with the

illness. This process includes when an individual comes in contact with the bacteria, to the onset

of symptoms (anywhere between a matter of hours to weeks later), to running lab tests, to then

being able to attempt to associate the disease with other cases (CDC, 2022). The aim of this

project is to attempt to explore the viability of getting early warnings of foodborne illness from

Twitter. We attempted to start this process by creating an outline for a future tool for foodborne

illness detection and evaluating it against archive tweet data from Twitter and past foodborne

illness outbreaks to see if they lined up. With the outline, we can more easily update the tool as

needed or help us to understand if we should pursue another method.

Our first step was determining how to collect and store useful data by developing a

pipeline. Previous iterations of this project and similar projects used Twitter data, so we decided

to do the same. We chose to collect historical Twitter data so we could compare it to ground truth

data and past foodborne illness outbreaks, to be able to assess the viability of the tool. Using the

Tweetkit Python package we created a specific query to run on the Twitter archive in order to

obtain tweets that were most likely related to foodborne illness. The second step in creating our

pipeline was developing a system for storing our data to be easily queried later. We created a

PostgreSQL database with a simple schema to store our tweets and the attributes we deemed

necessary. We made sure to choose the appropriate data types for each attribute. Then we created

a pipeline that would perform the following tasks in sequence. First, the pipeline efficiently

retrieves tweets from the Twitter archive that may indicate a case of foodborne illness. These

tweets are passed through a refined BERTweet machine learning model, which will provide a
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prediction on whether or not the tweet indicates a foodborne illness case. The tweets and their

predictions are then stored in our database, including symptom and food entities identified by the

machine learning model. We set up a system that would collect tweets cyclically through a

specified time interval. We also performed the appropriate data cleaning before data was inserted

into our database.

We then sought to create effective visualizations that displayed the trends in foodborne

illness. We created dynamic histograms that displayed results for various symptoms and food

items over time, allowing us to track the difference in frequencies over time. We also plotted

geo-coordinates for each tweet with a discernible location on a heatmap, so that foodborne

illness discussion hotspots stood out immediately. Where possible, these visualizations were

served on a website using data directly from our database.

Our final step was to evaluate the usefulness of Twitter data in indicating foodborne

illness cases and outbreaks. In order to determine the validity of our Twitter data, we compared it

to ground truth data from the National Outbreak Reporting System [NORS], the Center for

Disease Control [CDC], and the Food and Drug Administration [FDA]. In comparing our

collected Twitter data to real outbreak data we were able to begin to assess whether this system

could work. We also evaluated the performance of the BERTweet machine learning model by

comparing the predictions to hand-labeled data, to determine if there could be improvements for

the machine learning model.

We created the foundations of a system that could be used in the future to analyze

discussions of foodborne illnesses on Twitter and Twitter-like websites. With access to more data

in the future, this system could help policymakers and public health analysts discover new
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foodborne illness events to investigate and warn the public of potential outbreaks before they are

officially declared.
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1. Introduction

1.1 Motivation

Foodborne illness is a widespread issue: approximately 1 in 6 Americans get sick every

year. The CDC outbreak detection process tends to take weeks and lab testing can be slow,

costly, and potentially inaccessible, so often the word does not get out until after many have

already gotten sick (CDC, n.d). An early warning system could slow the spread of foodborne

illness. The goal of this project is to continue developing an efficient framework to create and

evaluate a tool to warn of the early signs of foodborne illness outbreaks.

1.2 Objectives

Our first objective was to create an efficient pipeline that will collect the appropriate

foodborne illness related data. To do this, we created a suitable query made up of keywords that

will retrieve tweets from Twitter that are most likely related to foodborne illness. After retrieving

these tweets, we passed them through our machine learning to get predictions on whether or not

each tweet indicates a case of foodborne illness. This data was then cleaned and stored

appropriately so it could be easily retrieved for analysis.

Our second objective was to create a website that contains user-friendly visualizations.

We want to convey our results to both laypeople and those involved in public policy or public

health, and by displaying interactive results on an easily accessible webpage, we hope to make it

easy for users to understand what foods and symptoms commonly related to foodborne illness,

and for them to see which areas of the US are most impacted.

Our third objective was to explore the validity of our collected Twitter data in indicating

foodborne illness outbreaks. We compared the data we collected for our pipeline to ground truth
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data obtained directly through the CDC/NORS. By first preparing the data to be in comparable

formats, we performed analysis to see how closely our data collected relates to real foodborne

illness cases.

Our fourth objective was to evaluate the performance of our machine learning model on

the data that we collected. To do this, we hand-labeled data as ground truth data and compared it

to what the model predicted to see how accurate the predictions were.

2. Background

2.1 Food Science and Foodborne Illness

Food science is a discipline that covers a wide variety of topics related to food, from

nutrition to food safety to development. This project focuses on the food safety side of this

discipline as that is where foodborne illness falls. Foodborne illness, generally, is from bacteria

in food that causes different illnesses and infections. There are many causes of foodborne illness

such as lack of cleanliness, improper preparation, improper storage, etc. Foodborne illnesses can

be caused by many different bacterias, some of which are more harmful than others. (USDA,

n.d). Agencies like the CDC, FDA, and USDA focus on different aspects of food safety relating

to foodborne illness, from precautions put in place to prevent foodborne illnesses, to detecting

and reporting foodborne illnesses and processes that help stop them from spreading.

To identify an outbreak the Center for Disease Control (CDC) collects data such as

locations food was acquired (restaurants, grocery stores, farms, etc.), type of food, and specific

bacteria. (CDC, 2022) The CDC explains that the foodborne illness outbreak detection timeline

is approximately a 3 to 4 week process dependent on the bacteria associated with the illness. This

process includes when an individual comes in contact with the bacteria, to the onset of symptoms
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(anywhere between a matter of hours to weeks later), to running lab tests, to then being able to

attempt to associate the disease with other cases. The process is dependent on the individual

actually going to a doctor to get tested for an illness. If that is not the case, and the patient

doesn’t get tested, then there is less data to correlate to an outbreak. The end goal of identifying

an outbreak is to be able to respond accordingly, either by issuing recalls, warning the public, or

closing contaminated food facilities, which in turn will minimize the spread of the outbreak.

In 1996, the CDC coordinated PulseNet, a network of laboratory agencies with a

common set of practices with the goal of identifying clusters of illnesses. (Boxrud, et al., 2010)

They use pulsed-field gel electrophoresis to attempt to identify illnesses with similar origins. Due

to the standardized protocols across all laboratories, PulseNet can share results across state lines.

This creates quicker communication and a larger dataset to look at to potentially identify

multi-state illness outbreaks. PulseNet has many different programs to monitor different aspects

of foodborne illnesses. These programs include VetNet, testing for Salmonella and other diseases

animals can carry, FoodNet, performing active surveillance for foodborne illness, and

OutbreakNet, created to facilitate rapid communication during an outbreak. Due to a lack of

funding and resources, PulseNet cannot monitor and test every sample that comes to them, but

that means that there are possible missing data for potential outbreaks.

The improvements in technologies have created potential new avenues to examine

foodborne illnesses and their spread. Machine learning algorithms exist that can identify

common foodborne illnesses with pretty high accuracy. When creating a self-reporting platform

for foodborne illness Du and Guo described “Hence, a foodborne disease pathogen prediction

model using an extreme gradient boosting (XGBoost) model is designed to aid in the diagnosis

of foodborne pathogens [...] the model achieved a 69% accuracy on Salmonella, Norovirus,
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Escherichia coli, and Vibrio parahaemolyticus infection diagnosis”. (Du, Guo, 2022) These

technologies create an interesting possibility for an outbreak detection system that is based on

self-reporting illnesses. Models like these aren’t as accurate as lab testing would be, but they do

reduce the time and cost of reporting foodborne illness and the step of having to visit a doctor

could potentially be removed from the process. This project, similarly, sets out to attempt to

identify potential foodborne illness outbreaks through social media posts. Social media posts are

a form of self-reporting illness, in an indirect way.

2.2 Tweet FID

The Tweet-FID dataset is a dataset of tweets collected that are potentially related to

foodborne illness. (Hu et al. 2022) These tweets were gathered by searching for specific

keywords and hashtags that could be indicative of foodborne illness. This dataset was then taken

and crowd-source labeled, using MTurk, to identify 5 things: what [foods], symptoms, where

[location], and other related keywords, as well as whether or not the tweet indicated foodborne

illness. The labels were checked for quality of labeling and the procedure was adjusted to attempt

to minimize the amount of labels deemed low quality. Experts within the food science discipline

were then asked to label the same dataset of tweets to create a ground truth labels dataset to

compare the crowd-sourced dataset to. This data set was then used to train a machine-learning

model with different tasks, illustrated in Figure 2.1. The model is able to identify different

entities within a tweet allows us to use that information for analysis later in the process.
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Figure 2.1: Sample tweet with sample outputs from three different tasks Text Relevance

Classification (TFC), Entity Mention Detection (EMD), and Slot Filling (SF) (explained in more

detail in the next section), (Hu et al. 2022)

2.3 Machine Learning Model

Machine learning, which is a subfield of artificial intelligence, generally aims to replicate

intelligent human behavior (Brown 2021). Machine learning models can be used to generate

predictions based on given data. In order to train machine learning models, they must first be

trained on designated training data, and then tested against validation data. Only after this can the

models’ accuracy be evaluated on the remaining data, known as the test data. This process is

used in order to avoid data snooping, which can lead to a model that performs only well on our

selected data, and not necessarily in general (Halloway, 2019). In our case, we are interested in

using machine learning to classify social media posts to identify foodborne illness incidents and

different factors involving the incident. Training a machine learning model on labeled foodborne

illness tweets can result in a strong tool to identify cases of foodborne illness.

RoBERTa, a pre-training method for language models, was created in order to improve

upon the pre-existing BERT training model. The name RoBERTa was chosen as the approach

can be described as Robustly optimized BERT (Liu et al., 2019). The four main objectives of the

RoBERTa model were to have the model trained longer with more batches, to remove the next
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sentence predictor, to train on longer text sequences, and to change the masking process. In order

to improve upon BERT more, further research was conducted on what data to use for pretraining

and the number of training batches. The evaluation of the RoBERTa model showed

improvements compared to BERT in terms of performance on GLUE, RACE, and SQuAD.

BERTweet is a pre-trained RoBERTa model using Twitter data that can be used for

downstream tasks: text classification and name-entity extraction. We used a fine-tuned

BERTweet model attempted to achieve the following tasks: first, classify if a tweet indicates a

foodborne illness incident. Second, determine critical entities related to the incident (food,

location, symptoms, etc.). This model, therefore, helps improve on past studies as, in addition to

binary classification (a tweet indicating foodborne illness or not), the model also provides insight

into the entities of tweets. The performance of BERTweet was then measured on the testing data

(Tao et al., 2021). BERTweet was able to achieve an accuracy of .87, which was much higher

than previous models. However, in the process of identifying critical entities, it was difficult to

collect location information due to the scarcity of geolocation data. Looking more into obtaining

accurate location data can help improve this model’s effectiveness in helping to provide warnings

of foodborne outbreaks.

As for the training and testing with the Tweet-FID dataset, once the labeled dataset

Tweet-FID was created, it was able to be used to train and test deep learning models utilizing

different methods of performing the same tasks as the human labelers. (Hu et al. 2022). The tasks

performed by the model were Text Relevance Classification (TFC), identifying whether or not

the tweet was related to foodborne illness, Entity Mention Detection (EMD), identifying all

mentions of target entities (any mention of foods, locations, symptoms, and keywords, not just

relevant mentions), and Slot Filling (SF), extracting text identified to fill a slot (what, symptoms,
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where, keyword). These tasks were then tested in different combinations using different deep

learning models to see what model and combination of tasks perform the best at labeling and

identifying the tweets. In order to train this model, 3000 tweets were broken up into a testing,

training and validation set. 2400 tweets were used in the training set, 300 in the validation set,

and 300 in the testing set.

2.4 Prior MQPWork

This project is a continuation of a previous year’s MQP project. The past group wanted to

identify, collect, and analyze data to create a display with relevant information about foodborne

illnesses. They also wanted to create a framework that allowed the collected data to predict a

foodborne illness outbreak. In order to do this they first decided on and created a database to

store this data. They chose to use PostgreSQL because it would be easy to maintain the data’s

integrity and consistency. They were very focused on determining geolocation for tweets using

various inference methods. The columns include location data along with the individual foods

and symptom tokens.

They used various sources for data collection. They wanted to expand the focus beyond

just tweets, but also data from other websites. The main websites they searched were

iWasPoisoned.com and the CDC. The first website allows users to report their own experiences

with food poisoning with the newest reports showing at the top of the site. Users are able to

report symptoms, locations, ingredients/foods, and a description. iWasPoisoned would publish

how long ago the report was created and then the team used a web crawler and used it to convert

the time since into a timestamp. From the CDC website, they had access to all official foodborne

illness outbreak reports and the web crawler was able to store relevant links the team could use
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and reference later. They also utilized the Twitter API. They searched Twitter for relevant

keywords and time periods. From this, they collected account IDs, time of posting, geo-tagging,

tweet ID, language, metrics, and text.

For the front end of the project, they decided to build the application using ReactJS along

with Bootstrap 4. On their website, they created four main pages which include the home page,

explore page, about page, and tracker page. On the homepage, their main goal was to inform the

user about the project. This included data visualizations and various infographics. The explore

page allows users to explore more of the data that was collected. A word cloud was created to

allow an outbreak to be selected so the common words used can be explored. The about page

includes information regarding the team, a timeline of the work progression, and the

sponsor/partner of the project. The last page, the tracker page, includes additional maps, charts,

and outbreak descriptions. This page is primarily used for more of the data to be observed from

the sources.

2.5 iWasPoisoned

iWasPoisoned.com is a website that was created in 2009 to crowdsource individual

foodborne illness cases from the public. Its tagline is “Report a food safety issue. Protect others.”

iWasPoisoned has the user input their location and symptoms as well as a rating of the restaurant

and a description/comments (iWasPoisoned.com, n.d). All of this is with the intention of

informally warning the public of foodborne illness without it having to travel through official

channels, like the CDC, or even hospitals. In 2017 iWasPoisoned created a secondary Twitter

account (secondary to their branded Twitter account, created in 2009) with the sole purpose of

posting every entry on their website onto Twitter. From our collections, it appears that
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iWasPoisoned did not start tweeting from this account until the start of 2020, but starting in 2020

a large portion of the positively identified tweets the machine learning model picked up on were

from iWasPoisoned.

3. Methodology

3.1 Data Collection

3.1.1 Data Source
Depending on the definition many websites can fall under the term “social media”, which

left us with many data sources to choose from. We considered using a platform such as Yelp or

Google Reviews, but Google Reviews has rate limits that would be hard to work around and

Yelp’s keyword search returns restaurants, not specific reviews so scraping for relevant reviews

would be difficult. There was also the potential issue of having to retrain the model on different

data since it was trained on tweets, so we decided to continue to use Twitter. (When we made this

decision there was free access to the Twitter API from any account, which was changed on

February 9th, 2023).

The tweet collection method we used was using the python package Tweetkit

(julianfssen, n.d). We chose to use Tweetkit because it was an already built system that

accomplished what we needed it to. We built upon the Tweetkit package to fit it into our pipeline

and customized it for what we did and did not want to collect. Using Tweetkit we could collect

all of the data associated with a tweet and the user associated with it. This includes attributes

such as tweet id, user id, user name, geo-location for the profile and the tweet if available, and

entities (hashtags, URLs, etc.) as well as much more information (“Tweet objects”, n.d). For each

tweet predicted by the machine learning model to be foodborne illness (positively predicted
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tweets) we chose to keep the tweet id, author id, tweet text, place name (either a city and state or

just a state, split into city and state columns in the database), and coordinates within our

database. On top of that, we also have a raw data storage system that keeps all of the predicted

tweets positive or negative. In this system, we save all of the same information, as well as the

full user (can include information like follower count, profile information, whether the account is

verified, as well as other things) and geo (can include information like place type, coordinates,

name, and full name, as well as other things) information (“User objects”, n.d) (“Geo objects”,

n.d). Using these data storage methods we can access and use our data in different ways.

The Tweetkit package is able to collect from the tweet archive, as well as the tweet

stream. For our project we decided to focus on the tweet archive because it takes time for the

CDC to declare an outbreak, so ground truth data would not exist for the data we collected and

therefore it could not be verified. For future implementations of this project, the goal would be to

use the streaming tweets and be able to real-time predict outbreaks as they happen. This would

require collecting and predicting tweets as they come in to attempt to identify an outbreak as it is

happening.

3.1.2 Specifics about our collection method
We decided to only collect tweets with location data because if an outbreak were to

happen the location of the outbreak would be important information to have to take preventative

measures. Collecting only tweets with geo also gives us the ability to filter out tweets from

outside of the United States, since our project is focused within the United States and our ground

truth data, which will be discussed later, is from only the United States. Hypothetically tweets

without geolocation could help identify an outbreak if the volume of tweets shows an outbreak,

but that may not be helpful in acting on an outbreak if its location is not known. We also only
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collected tweets that are written in English, since the machine learning model is trained on

English sentences.

The data collection works by setting a start date and an end date. The script then collects

tweets in 24-hour intervals, querying tweets that match the keywords: ‘#foodpoisoning',

'#stomachache', '"food poison"', '"food poisoning"', 'stomachache', 'vomit', 'puke', 'diarrhea', '"the

runs"', 'nausea', '"stomach cramp"', 'nauseous'. These keywords attempt to narrow down our

tweet collection to more relevant tweets. We chose these words as they are common symptoms

of foodborne illness. Foods and locations are not going to be as universally related (i.e adding

“chipotle” as a keyword would probably collect more tweets that are not relevant to foodborne

illness because not every tweet about chipotle is going to be about illness).

The tweet collection could be set to run for a certain amount of time, and that time frame

could be broken into smaller intervals. For example, it could run for a week-long time but collect

in hour-long intervals. We ended up collecting in week-long intervals, broken into

seven-day-long collection periods. This was done in case Twitter rate limits or system failures

caused issues for the collection, so at least parts of it would be saved. We did some trials to make

sure the collection remained consistent in the amount of tweets over longer periods of time, and

then the same interval broken up. We found that collecting in intervals produced the same

amount of tweets as the longer time frame, so collecting like that would not impact how much

data we were receiving, but it may mean more is saved in the case of something going wrong.

Each interval batch is saved as a data frame, then put in a queue for later analysis. The queues

are stored locally on the server that it is run on, to more easily retrieve it later.
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3.1.3 Choosing Ground Truth Data
Within the scope of this project there are two types of ground truth data, there is data that

is hand labeled by humans which we spoke about in our background section of the project about

the Tweet-FID data to train/test the machine learning model, and then there is also the data of

actual outbreaks. The ground truth data relating to real-world outbreaks can be used to see if the

trends in the Twitter data correlate to real-world data. We identified two potential places to

acquire that data from, both coming from the CDC. One of them is the CDC List of Multistate

Foodborne Outbreak Notices. This is a list of outbreaks/recalls identified by the CDC from 2006.

For each outbreak, it lists what food it is associated with, what illness/bacteria, how many

cases/hospitalizations/deaths, recall status, general information, as well as a map and a timeline

(“List of Multistate Foodborne Outbreak Notices”, n.d). Exploring this data, it has a few

drawbacks. First, it only lists multistate outbreaks, so smaller outbreaks won’t be reported on this

dashboard. The other potential issue is that the data for when cases are from is not readily

available. The data from 2021-2022 is available to download for individual outbreaks, but prior

to 2021 that data is only available on an image of a bar graph, so it cannot be scraped, nor can it

even be collected by hand, especially not for larger outbreaks. Another issue with this data is that

due to how recent the data is combined with how long outbreaks last sometimes, the data seems

incomplete. In Figure 3.1 it can be seen that there is a spike in the July 2021 - October 2021

which seems to be due to the fact that the data for January 2021 - June 2021 may be associated

with earlier outbreaks, and the data from November 2021 - December 2022 will end up being

associated with later outbreaks. That is all data we do not have access to, and therefore we

decided not to use the CDC for the number of cases, but rather just the timing of outbreaks.
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Figure 3.1: Graph of CDC data available for 2021-2022

The other option we have for ground truth data is the National Outbreak Reporting

Service [NORS]. NORS is a reporting system for state/city/local officials to report outbreaks.

This is for any outbreaks of foodborne, waterborne, animal, environmental, and person-to-person

illnesses. The data that is available for each outbreak is Year, Month, State, Primary Mode,

Etiology, Serotype or Genotype, Etiology Status, Setting, Illnesses, Hospitalizations, and Deaths.

We can then filter by foodborne illness and get all reported outbreaks, confirmed and suspected

for a certain timeframe (NORS, n.d). One of the downsides to the NORS data is that it is only

available for years before 2021. We had originally collected tweets from 2018-2022, but we soon

realized that it did not line up with the ground truth data that we had access to. So we went back

and collected the tweets from 2017 and requested data from NORS for 2021, to maintain our

5-year timeframe. One issue that we ran into with the NORS data was that there was only a start

date for the illnesses and not an end date so that means our data is skewed to the left of what the

actual time frame of the illnesses is. We were later able to acquire end dates for the illnesses as
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well, but we still do not know the spread of the number of cases across the time frame to get an

accurate day-to-day case count. In the following graphs the cases are binned by month based on

the date first ill. Approximately 20% of outbreaks start and end in different months, but due to

time constraints and lack of information on day-to-day case numbers, we chose to keep the dates

based on the date first ill for consistency. An alternative for further use of this data could be

averaging case numbers over the illness time frame to estimate day-to-day totals for a more

accurate idea of case numbers over time.

Figure 3.2: Graph of NORS data 2017-2021

3.2 Database

In order to store a large amount of data that could be easily and quickly accessed, we

decided to create a database. By doing this, we are able to store large amounts of Twitter data

that can be easily queried for our front-end visualizations. The previous iteration of this project

used a different database schema design, with a different table for location-specific data. In order

to ensure our queries would run easily and simply, we opted for a more simple approach. We

used the pre-existing MQP server to create a new PostgreSQL database called “MQP22”. Within
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this database, we created one table which we named “final_tweets''. The following diagram

summarizes this setup:

Figure 3.3: Diagram that displays database setup and table attributes

We chose to use a PostgreSQL database as opposed to MySQL or others, as PostgreSQL

has more complex data types. Specifically, PostgreSQL has the array data type, which is useful

for storing multiple values (of any specified type) in one singular column. We wanted to use this

data type to store our ‘symptoms’, ‘locations’, ‘foods’, and ‘others’ values, as these all contain

multiple token words per tweet. Storing these values in an array allows for easy querying later, as

we can unpack these arrays and get counts of tweets that contain specific food or symptom

entities. For example, if we wanted to look at the number of tweets that contained the symptom
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“nausea”, we could unpack our ‘symptoms’ arrays and then get the count of tweets that

contained this symptom. This proves particularly useful for our planned visualizations on our

website, as well as a general analysis of popular keywords contained in our collected tweets.

As mentioned above, our schema consists of one table named ‘final_tweets’. This table

contains 13 fields, each of which we consider useful for querying on our front-end. For each of

these fields, we carefully chose the appropriate data type that would be most efficient for

front-end use, as well as database storage. The ‘id’ is the primary key of our final_tweets table,

as it uniquely identifies each individual tweet. Querying the count of ids can be used to get tweet

counts based on different factors. We stored the ‘id’ as the bigint type as the integer type is ideal

for storing ids in a database, and we found that the regular integer type was not large enough to

store some of our tweet ids. The ‘tweet_text’ column is of text type, as we found issues trying to

limit storage to a certain number of characters. The ‘created_at’ column stores tweet timestamps

as PostgreSQL timestamps so that we can easily query data over certain time intervals. The ‘city’

‘state’, and ‘username’ columns are both of type varchar(100), as to ensure that these values will

be stored without taking up too much space in our database. The ‘sentence_pred_prob’ is stored

as a numeric type, as it has a large number of digits past the decimal point that we want to

preserve for precision. As mentioned above, we stored our ‘foods’, ‘symptoms’, ‘locations’, and

‘others’ entities as text arrays. Lastly, ‘longitude’ and ‘latitude’ were both stored as numeric

types in order to account for precision.

We decided to only retain these 13 fields in our database in order to optimize queries for

our front-end. The columns here contain data that we need to display in front-end visualizations

or simple statistics. The data collected in this database is also only tweets that were predicted by

our ML model to be foodborne illness related. In order to perform analysis later of all of the
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tweets that ran through our collection process, we implemented raw data storage that contains all

of the fields we initially collected from Twitter.

3.3 Data Processing

We saved two sets of the same predicted output data, one set is strictly for the frontend

user interface, and the other set is raw unprocessed data used for in-depth analysis and backup in

case something goes awry in the pipeline. Before inserting the collected data into the database

for front-end use, there are a couple of data processing steps we performed.

Firstly, since the frontend interface will only examine the positively predicted presence of

foodborne illness in a tweet, we filtered the data so that we only keep tweets that have a sentence

prediction equal to 1.

Next, we created new columns based on the existing columns for more efficient database

querying. Longitude, latitude, city, state, and country code columns were created by extracting

information from the large “geo” column which was a dictionary data type. Some of the tweets

did not have specific location data, so sometimes this left some of the new columns blank. For

example, if the location was only listed as the state of Ohio, then there would be no city, state,

longitude, or latitude columns. We chose to not include longitude or latitude information of states

because certain states like Michigan, Florida, and California might produce a longitude and

latitude that is located in the ocean or a lake. This is due to the fact that the Twitter geo data

stores the coordinates in terms of a bounding box, so in order to get a single coordinate, we

calculate the center of this box. The other new column produced was the “username” column

which was extracted from the “user” column. The “user” column was of type dictionary, and we
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chose the much more simple username of type string because it will be much more efficient to

query and because we only need the username information in the frontend interface.

In the frontend interface, we will only be examining documented cases of foodborne

illness from the US, so we will use the newly created “country code” column to filter out any

countries that are not The United States.

The last step is to drop all the unneeded columns before inserting them into the database

to conserve memory. We dropped the following columns: author_id, geo, country_code, user,

tweet_token, token_prediction, and sentence_prediction.

3.4 Pipeline Setup

In order to effectively collect and store Twitter data from a specified timeframe, we

created a pipeline that can perform both of these tasks in sequence as well as in parallel. We

chose to use Python to build our pipeline, as this was the language we were all most familiar

with. Python also has quite a few useful packages for handling data such as pandas and NumPy.

We split up our pipeline into two main components: producer and consumer. The

“producer” focuses on handling the collection of Twitter data from the Twitter archive. The

“consumer” portion of our pipeline focuses on taking the collected tweets and appropriately

storing the ML model prediction data in our database and raw data storage. The following

diagram summarizes our pipeline setup and process:
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Figure 3.4: Diagram of our pipeline setup

We stored the code for our pipeline under the Data-collection folder on our server. We

chose to run this code on the server, due to the fact that the requirements for the machine

learning model were already established there. Also, this would allow the code to run for an

extended period of time without a local computer having to sustain it.

Under the Data-collection folder, we have multiple files that serve separate purposes in

our pipeline. Our ‘main_collection’ file carries out the consumer part of our pipeline. This file

runs a search query (based on foodborne illness identified keywords) and retrieves a batch of

tweets within a specified time interval. These tweets are then each appended into a queue. For

our project, we chose to export each of these queues into their own .pt files that we could access

later. Our ‘main_predict’ finishes our process by carrying out the producer portion. The tweet

queue is made into a data frame, which then gets appropriately preprocessed before being sent
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into the machine learning model. The machine learning model then runs on this batch of tweets,

and a new data frame is created, containing the raw tweet data as well as the prediction results.

This data frame goes through a data cleaning process and then is inserted into our database and

raw data storage respectively. We only inserted data we felt would be useful for the front end into

the database (explained in section 3.1.2) and stored all of the data in our raw data storage. We

have organized our pipeline files this way so that the components of our pipeline can be run and

tested separately if needed. Finally, our ‘main_multiprocess’ file is intended to run the entire

pipeline from start to finish. Because of time constraints, we do not plan to use this to process the

data for our project. However, we have created this file for an easier collection process to be used

in future projects.

3.5 Frontend

Data visualization is a key part of any research project, and thus, given both the internet

theme of our study and our plans to store data in a format that would be easy for applications to

interact with, we decided to create a website capable of displaying our results to a wide variety of

users. Regardless of what results we discovered, we wanted to ensure that our conclusion would

be clearly communicated to users with even minimal experience interacting with online

visualizations.

To begin the process, we audited and assessed the work completed by a previous group of

students working on the same project. They had also created a website, with three key features: a

timeline, a map, and a word cloud. With these ideas as a basis, we decided to find ways to

improve upon the existing design, and came up with several actionable insights.
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First, we needed to connect our future website with the actual data from the project where

possible. In order to make sure that our visualizations would scale with whatever data we ended

up collecting, we needed to create a pipeline so that a Tweet could be collected, included in our

analysis, and most critically, sent to our frontend website, without any manual human interaction.

This would hopefully save us time in the long run, while also reducing opportunities for human

error. As far as we could tell, data for the existing website was mostly hardcoded in CSV files,

which added additional steps and complexity which we sought to reduce.

Second, we needed to add interactivity to the data we were displaying. Many of the

previous visualizations, such as the word cloud, did not allow for meaningful user interactions,

meaning that users were effectively just viewing images on the website, meaning that many of

the benefits of web apps for communicating trends were left untouched. We wanted to create

experiences where users could look at our study, come to their own conclusions, and then see

how those stacked up against the data trends we observed. Or, users could use our website as a

springboard to raise new questions about foodborne illnesses by playing around with the

different interactive options we presented them.

Finally, we needed to design our code in a way that is easy for future projects or

researchers to begin developing quickly. The previous project contained a large number of

unused files, obscuring the development process and adding unnecessary bloat. By streamlining

the final product, hopefully, the results of this study will be more useful for everyone.

For the final product, we chose a variety of modern development frameworks and tools to

help ensure that we could efficiently develop a web interface usable by our audience. Next.js, a

frontend web development framework (Next.js, 2023) based on the React (React, 2023) library,

was chosen as our frontend web framework, as it includes many utilities, such as file
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optimization and static asset bundling, which ease the process of deploying our app to a server.

An additional benefit of Next.js is that it leverages the React frontend library, which is widely

used across modern web applications, meaning that there are well-supported React resources

online, should a developer need help. D3.js (D3.js, 2023) was chosen as our visualization library

for our frequency graph, because, much like React, it is widely used and considered by many to

be an industry standard. Mapbox, a hosted GIS mapping service (Mapbox, 2023), was used to

power our live map - we were able to connect the tweets in our database to an interactive

Mapbox map, allowing users to interact with the tweets on a US map. Finally, Tailwind CSS

(Tailwind CSS, 2023) was chosen as our UI library, because it is small and efficient while also

providing significant flexibility to developers.

Figure 3.5: Screenshot of the frequencies diagram on the visualization webpage, which was

created with D3.js
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Figure 3.6: Screenshot of the map on the visualization webpage, which was created with

Mapbox

3.6 Forecasting Tweets
Forecasting takes previous information and uses it to predict future information. In this

scenario, forecasting allows us to infer the future amount of tweets based on the previous amount

of tweets. This would allow us to predict Twitter data sooner than it would actually occur. If one

was able to use daily Twitter data to predict foodborne illness, being able to forecast it would

allow an even earlier warning that the CDC is able to provide.

iWasPoisoned makes up a large portion of our collected Twitter data set. Since

iWasPoisoned tweets only exist from 2020-2022 in our Twitter dataset, it will impact the data

trends because there are more tweets in those years. Normalizing the data, such as looking at the
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percent of positively predicted tweets, would also have impacted the trends because there are

more positively predicted tweets from those years. There are more positively predicted tweets

because almost all of the iWasPoisoned tweets were predicted to be foodborne illness. For these

reasons, in this section, we decided to focus on the dataset without iWasPoisoned so that it would

not impact the scaling of our data, or the data trends.

3.7 Predicting NORS Cases
To test the viability of predicting NORS cases from tweets, we decided to test linear

regression and logistic regression on different combinations of past tweets and NORS cases. This

was done to determine what the ideal amount of tweets and NORS cases given to the model to

train for each prediction. Then use the model to predict with and determine what combination of

tweets and NORS cases would be necessary to get the best results when predicting and also to

see overall how well this model does at predicting.

The first thing that needs to be done is to create a training set X to train the model on. We

decided to use the first 200 weeks of NORS cases, and the first 1400 days of tweets to allow for

about one year's worth of NORS cases to be in the validation set. The set X would be created

with different amounts of tweets and previous NORS cases for each label. For example, X with n

tweets and m NORS cases prediction would look like this:

(1)𝑋
𝑁𝑂𝑅𝑆𝑇 = α

1
* 𝑋

𝑡𝑤𝑒𝑒𝑡7𝑇 +... + α
𝑛

* 𝑋
𝑡𝑤𝑒𝑒𝑡7𝑇+𝑛 + α

𝑛+1
 𝑋

𝑁𝑂𝑅𝑆𝑇−1 +... + α
𝑛+𝑚

 𝑋
𝑁𝑂𝑅𝑆𝑇−𝑚 
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The first few entries of a sample X-training, for 4 tweets and 2 NORS cases, would look

like:

Label 𝑋
1

𝑋
2

𝑋
3

𝑋
4

𝑋
5

𝑋
6

𝑁𝑂𝑅𝑆3 𝑡𝑤𝑒𝑒𝑡14 𝑡𝑤𝑒𝑒𝑡15 𝑡𝑤𝑒𝑒𝑡16 𝑡𝑤𝑒𝑒𝑡17 𝑁𝑂𝑅𝑆1 𝑁𝑂𝑅𝑆2

𝑁𝑂𝑅𝑆4 𝑡𝑤𝑒𝑒𝑡21 𝑡𝑤𝑒𝑒𝑡22 𝑡𝑤𝑒𝑒𝑡23 𝑡𝑤𝑒𝑒𝑡24 𝑁𝑂𝑅𝑆2 𝑁𝑂𝑅𝑆3

𝑁𝑂𝑅𝑆5 𝑡𝑤𝑒𝑒𝑡28 𝑡𝑤𝑒𝑒𝑡29 𝑡𝑤𝑒𝑒𝑡30 𝑡𝑤𝑒𝑒𝑡31 𝑁𝑂𝑅𝑆3 𝑁𝑂𝑅𝑆4

Figure 3.7: Sample entries of training set X, where tweetn refers to the number of tweets on day

n, and NORSm refers to the number of NORS cases in week m. Since week 5 contains days 28-35,

we use tweets within those days to train the model on for week 5

The next thing to do was to loop through different combinations of n tweets and m weeks

of NORS cases to see what yielded the best R-Squared and the best error. Tweets is in days

because we have access to that information, whereas NORS is in weeks because that is the

smallest bin we have access to. The regression models that we used is from the Python package

sklearn, as well as statsmodel to calculate the significance of the coefficients (Scikit-Learn, n.d.).

The pattern would loop through NORS cases and then increase by one tweet. As an example, it

would be (n tweets, m NORS), (n tweets, m+1 NORS), (n tweets, m+2 NORS), (n+1 tweet, m

NORS), (n+1 tweet, m+1 NORS), (the formula is 4*tweets+NORS to convert the numbers on the

X axis of the graph to the combination of model parameters used, since the method loops

through 4 different options for number of NORS cases before changing amount of tweets), and
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so on. From this, the R-Squared, RMSE, Adjusted R-Squared, and validation set RMSE would

be reported for further analysis.

4. Results

4.1 Twitter Data Collection

4.1.1 General Outcome
The tweet collection from the Twitter API collected ~600,000 tweets from the beginning

of 2016, to the end of 2022. The process of passing in the tweets through the model, cleaning,

then inserting them into the database took the longest amount of time, taking ~10.32 hours. The

database had ~110,000 tweets after processing. For the raw data saving process, the script didn’t

append all the separated queues into a single data frame during predicting runtime because this

would require a constant reading and writing of a large file, so instead it initially only saves the

individual data frames. The concatenation of these files took about a minute.

4.1.2 Tweet Locations

The following map in Figure 4.1 displays the number of positively predicted tweets by

state. From this, we see that most tweets are coming from California and Florida. This makes

sense because these states are the largest population-wise. More people tweeting in general

would likely lead to more foodborne illness tweets identified in these areas.
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Figure 4.1: Map of positively predicted tweets by state 2017-2022

This next graph, Figure 4.2 is the total number of tweets collected by state divided by the

population of the state (divided by 100,000 to create a per capita amount) (“State Population

Totals”, n.d). This shows different information than the previous map because it normalizes the

amount of tweets by the amount of people in the state. This fixes the issue of larger states having

a large number of foodborne illness related tweets because of their larger population. If a smaller

state had an outbreak, with a larger amount of tweets than it normally would have, it may be

overshadowed by larger states. Normalizing the data like this allows trends in smaller states to

appear more significant than they would without adjustment for population size. There are two

versions of the map, with the graph on the left including Washington DC, and the right without.

Since DC has the highest per capita amount of tweets (displayed better on the next graph), but

doesn’t show up on the map due to its size it changes the appearance of the map.
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Figure 4.2: Map of positively predicted tweets by state 2017-2022 corrected for population

based on the 2022 census estimates (left includes DC, right excludes DC)

The final tweet data by state graph, Figure 4.3, is one that compares the amount of tweets

by the state to the amount of tweets per capita. This displays the same information in a way that

combines the two maps. This visualization allows one to visually compare the difference

between the amount of positively predicted tweets from each state, compared to the per capita

amount of tweets by state. This also illustrates the importance of having the previous two maps

because both are important for different reasons.

Figure 4.3: Graph of collected tweets compared to per capita tweets 2017-2022 corrected for

population based on the 2022 census estimates
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4.1.3 Author ID Analysis
One potential issue we considered that we may come across was repeated author id,

which could possibly mean a Twitter account dedicated to foodborne illnesses. This would not be

an issue if the tweets were relevant to what we were looking for (i.e the iWasPoisioned Twitter

account tweets about instances of foodborne illness, specifically what we are looking for), but if

there was a source of not relevant tweets that kept coming up we wanted to be able to filter that

out (i.e the CDC, FDA, or news sources tweeting about foodborne illnesses after the fact, or a

Twitter account dedicated to tweeting foodborne illness information, rather than instances of

foodborne illness). Luckily, in searching through samples of collected tweets searching for

repeated author IDs, the only one that did appear to come up often was the iWasPoisioned

Twitter account, so we deemed that not an issue since the iWasPoisoned Twitter account is most

likely cases of foodborne illness.

The following charts in Figure 4.4 show the amount of tweets collected that came from

iWasPoisoned vs the amount of only positively predicted tweets that came from iWasPoisoned.

Of over 56,000 tweets collected from iWasPoisoned, less than 0.5% (less than 300 tweets) were

predicted to not be foodborne illness. (Less than 56,000 tweets from iWasPoisoned ended up in

our database because we collected tweets from everywhere, but only included tweets from the

US in our database). The other Twitter accounts that came up multiple times, had significantly

fewer tweets that were predicted to be foodborne illness related so they did not impact our

dataset as much.
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Figure 4.4: Chart of all collected tweets by username, versus positively predicted tweets by

username

Looking at these charts, it is apparent that iWasPoisoned makes up a larger portion of our

collected data, and an even larger portion of our predicted data. This led us to wonder if

collecting iWasPoisoned tweets was impacting our collection. Figure 4.5 shows that this

potentially could be the case. The fact that our total number of tweets increases with the addition

of iWasPoisoned tweets, but the number of non-iWasPoisoned tweets begins to decrease seems to

suggest that iWasPoisoned may have an impact. In later iterations of this project, it may be

interesting to collect tweets while excluding iWasPoisoned to see if there are more of them.

iWasPoisoned is potentially interfering with how the spikes in tweets show up because people

are posting there first rather than on Twitter.

Figure 4.5: Graph of positively predicted tweets with and without iWasPoisoned
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4.2 Food Token Analysis and Comparison

4.2.1 Most Frequent Food Tokens

As mentioned before, our machine learning model identifies ‘food’ entities from a tweet.

These entities are identified words that most likely indicate a key food or ingredient. To evaluate

the validity of our collected tweets in indicating real foodborne illness cases, we chose to

compare the most frequent food entities with the real food names mentioned in NORS data. We

first explored the top 15 most frequent food tokens that appeared in tweets in our database from

2017 -2021. Below is a graph displaying the most frequent food tokens and their counts.

Figure 4.6: Graph displaying the 15 most frequent food tokens found in collected tweets from

2017-2021
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Chicken was identified as the most frequent food token, with a much greater count

compared to the rest of the food tokens. We also observed that ‘bowl’ appeared as a food token,

most likely because it was associated with other food terms such as ‘burrito bowl’. Also, the

word ‘food’ was identified as a food token, which is not very helpful in identifying specific

foods involved in outbreaks. Besides these terms, the other 13 tokens appear to be relevant.

As noted in earlier sections, we noticed that iWasPoisoned tweets made up a significant

portion of our tweet collection. In order to explore ‘genuine’ foodborne illness tweets that were

not outsourced ahead of time, we decided to run the same query, this time excluding the

iWasPoisoned username. By doing this, we received a different set of most frequent food tokens.

Figure 4.7: Graph displaying the most frequent food tokens from 2017-2021 excluding

iWasPoisoned tweets
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This time, the most frequent food token was ‘food’, as opposed to ‘chicken’ in the

previous graph. Is it also important to note that ‘puke’ was recognized as a food token by the

machine learning model, indicating that perhaps the model does not perform as well on tweets

that are not retrieved from the iWasPoisoned Twitter. There do appear to be some consistent

tokens, however, as 7/15 of the tokens were exact matches. Another important thing to note is,

out of the tokens that differ, the first graph displays more ‘specific’ described foods (such as

‘shrimp’, ‘beef’) while non-iWasPoisoned tweets contain more generically described foods

(‘meat, ‘burger’, ‘hot dog’). This could be due to iWasPoisoned requesting more information

about ingredients that may have made users ill.

We then chose to explore the top 15 most frequent food tokens mentioned in NORS

reports. To do this, we separated each word included in the ‘Food Name’ column of the NORS

report data and counted the frequency of each word. We then graphed the top 15 most frequent

food tokens from 2017-2021.
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Figure 4.8: Graph displaying the most frequent food tokens in NORS report data

We first noticed that some of the food tokens retrieved from NORS were not necessarily

food related. For example, ‘unspecified’ and ‘and’ appeared in the most frequent food names, as

they were used as descriptive words within the ‘Food Name’ column. To perform a more

accurate comparison in the future, it would be useful to identify these non-food related words

beforehand or perform word importance analysis. Otherwise, we see that ‘chicken’ also appears

as the most frequent food token in the NORS reports. In order to compare the counts of the food

tokens to our Twitter data, we performed further analysis.

To increase the chances of finding matching food tokens, we chose to identify the top 30

most frequent food tokens and compare these. We first began by comparing the top 30 most

frequent food tokens with tweets including iWasPoisoned data to the top 30 most common food
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tokens in NORS reports. To perform concrete comparison, we chose to only compare food

tokens that exactly matched. There were other words that could be associated (such as ‘beef’ and

‘hamburger’), but further analysis would need to be done to fairly compare these. Out of the top

30 food terms, 13/30 were exact matches. In order to compare the counts of these terms, we

normalized the counts by the maximum token count for both the Twitter and NORS data. After

doing so, we calculated the absolute value of the difference between these normalized counts.

Below is a graph displaying the differences in counts for the matching food terms.

Figure 4.9: Graph displaying the difference of normalized counts of matching food terms from

Twitter and NORS data

Because ‘chicken’ was the most frequent term for both datasets, there is a difference of 0.

However, we can see that there is a greater difference in the count of ‘fish’ and ‘beef’ terms.

Overall, the average normalized difference across all of the matching terms was .139225.

We then chose to perform the same comparison, this time without iWasPoisoned tweets

included. In this case, 12/30 terms matched. In order to see if these terms were more or less
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consistent, we graphed the difference between each matching term and calculated the average

difference overall.

Figure 4.10: Graph displaying the difference between normalized counts of matching food terms

from Tweet data (excluding iWasPoisoned) and NORS data

We observed a larger average difference in terms of the relative count of matching food

terms. This could suggest that the iWasPoisoned data had matching terms that differed less, on

average, to ground truth foodborne illness reports. Therefore, it appears that iWasPoisoned

tweets contribute to a more accurate depiction of real foodborne illness cases. When it comes to

predicting tweets that are not from iWasPoisoned, there appears to be a greater distinction. This

could be due to the machine learning model not performing as well on these types of tweets, or

that the tweets collected may not have as relevant food information.

4.2.2 Comparison to Ground Truth Outbreaks

During our exploratory analysis of our Twitter data, we explored the most popular food

keywords from 2017-2022. To our surprise, we found that ‘lucky’ and ‘charms’ were the second
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and third most frequent food entities that appeared within this timeframe. We found this

interesting, as these were the only food tokens within the top 15 recognized that contained a

specific brand name. It is also important to note that these were identified as two separate food

tokens when they should be identified as a single food entity. We chose to research this and see if

there were any official outbreaks related to Lucky Charms cereal.

Through our research, we discovered that there was a suspected foodborne illness

outbreak involving Lucky Charms starting at the end of 2021 and lasting until April 2022. As of

May 6, 2022, it was reported by iWasPoisoned that there were more than 7,300 reports of people

becoming sick from the cereal (Lee, 2022). Many complained about experiencing extreme

nausea and stomach aches after consuming Lucky Charms. The immense amount of reports and

complaints prompted the FDA to launch a 4-month long investigation. However, the FDA

reported that there was ‘no pathogen or cause’ found in causing these illness cases (Casey, 2022).

We were curious to see if the large number of tweets including the ‘lucky’ and ‘charms’

entities lined up with the timeline of this event. Therefore, we chose to graph the frequency of

these entities from the end of 2021 through 2022. We also included the frequency of the

‘chicken’ entity as a baseline, since this was the most frequent food entity in our Tweet

collection. Below is the graph showing the frequency of the entities over time:
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Figure 4.11: Figure displaying the counts of ‘lucky’, ‘charms’, and ‘chicken’ entities from the

end of 2021 through 2022

We observe an extremely large peak in the appearance of ‘lucky’ and ‘charms’ food

entities in April. Comparing these entities to ‘chicken’ proves that there is a significant

indistinguishable spike involving these specific entities. In order to look into the timing of these

tweets further, we chose to plot the frequency of the entities by day for March - May of 2022.
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Figure 4.12: Graph displaying the trend of tokens ‘lucky’ and ‘charms’ by day (March - May

2022)

From this graph, we can observe that there are strong peaks in the frequency of these

entities in the middle and end of April. This lines up with the ground truth, as it was reported that

the FDA began investigating the outbreak in April, and it was reported that by May there were

over 500 reported cases. Therefore, we are seeing proof that our machine learning model was

able to detect Tweets about these illnesses at about the same time that people were becoming

sick. It is however important to note that all of these tweets were obtained from iWasPoisoned

data. When attempting to create the same graphs without iWasPoisoned tweets, no usable data

was obtained. Therefore, this provides more proof that iWasPoisoned greatly contributed to

useful foodborne illness data.

We also explored if the trends of specific food entities aligned with reported outbreaks in

NORS data. In order to identify specific outbreaks to investigate, we first sorted the NORS

reports by the total number of estimated cases. The reasoning behind this was to compare
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foodborne illnesses outbreaks with the most cases, as this would most likely yield the greatest

amount of related tweets. We chose to identify the 30 NORS reports with the greatest number of

estimated cases and then explore the food names mentioned in each report. The report with the

greatest amount of estimated cases mentioned ‘red onion’ as the key food. As ‘onion’ is a rare

food entity in our Twitter database, we chose to not investigate this specific outbreak. The third

report with the most cases mentioned ‘salad’, and as this was quite a common food entity found

by our model, we chose to explore this specific outbreak. This outbreak took place from May to

June of 2020, and the food identified was salad mixes. As the NORS data includes both the first

and last day of illness, we explored the trend of the ‘salad’ entity around these dates. Here is a

graph of the ‘salad’ entity trend in 2020.

Figure 4.13: Graph displaying the trend of the ‘salad’ entity in 2020, with the first and last

illness of outbreak identified
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There appears to be an upward trend in the appearance of salad entities between the first

and last reported illness in this outbreak. The trend also reaches its peak right before the last

illness was reported, which could confirm that the Twitter data collected is somewhat consistent

with the ground truth case data.

We also explored another outbreak involving salad mixes that took place in 2018. This

time, we did not observe a clear correlation. Within the time frame, there actually appears to be a

dip in the amount of ‘salad’ food entities observed.

Figure 4.14: Graph displaying the trend of the ‘salad’ entity in 2018, with the first and last

illness of outbreak identified.

We also explored significant outbreaks that involved chicken, as ‘chicken’ was a very

frequent food entity found in our database. We identified an outbreak in 2021 that involved

chicken as a key food, however, the reported duration appeared to be very short (2/16/2021 -

2/17/2021). Therefore, once we graphed the trend of the entity, it was difficult to truly notice if
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the Twitter data had any indication of an outbreak between these days when plotting monthly.

Therefore, we chose to plot entity frequency by day for February 2021 to see if there was any

apparent spike.

Figure 4.15: Graph displaying the trend of the ‘chicken’ entity in Feb 2021, with the first and

last illness of outbreak identified by red bars.

There appears to be a spike in cases two days before the first reported illness, which

could indicate a possible correlation. However, the number of tweets greatly drops within the

specified interval of reported illnesses. This could either indicate that tweets involving the event

were created before patients reported being ill, or that our data appear inconsistent.

We then investigated another outbreak involving chicken, this time with a longer duration

for the chance of obtaining a greater volume of Twitter data. There was an outbreak involving

chicken wraps that took place from 4/2/2018 to 5/4/2018.
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Figure 4.16: Graph displaying the trend of ‘chicken’ token in 2018, with the first and last illness

of outbreak identified.

There does appear to be a peak in this time range, however, it does not appear as

significant as it was in previous months. However, this could be due to the fact that there was a

chicken salad foodborne illness outbreak that lasted from January to around March of the same

year.

There were many limitations in comparing our Twitter data to NORS report data. One

limitation was that most outbreaks in the report had a limited duration, which made it difficult to

compare to a significant number of tweets within the same time frame. Another limitation was

that key foods mentioned in certain reports were very rare to find in our tweet collection. This

could be both due to the fact that our machine learning model did not recognize the food word,

or simply because users chose not to tweet these specific foods/ingredients. Another issue was

that more significant outbreaks occurred before 2020, and the Twitter data obtained from this

time period did not generally line up well with the ground truth data. This could be due to the

fact that iWasPoisoned data was not prevalent during this time period.
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4.2.3 Comparison Using The CDC’s Food Categories

The CDC has a food labeling system call the IFSAC food categorization scheme which

generalizes foods into similar characteristics (Center for Disease Control and Prevention, 2023).

Because of the sheer number unique food tokens, compressing the foods into general categories

for analysis could provide valuable insight. Because there are no available resources to

automatically convert common foods into their corresponding categories, we hand labeled the

top ~250 common food tokens, from both the Twitter archive and the NORS dataset, into their

respective categories. These labels were put into a JSON dictionary which could be easily read to

convert tokens to categories.

The following figure shows the total percentage breakdown of each category once the

conversion took place.

Figure 4.17: Graph showing normalized volume of data between IFSAC categories by dataset.

The volume of food categories between the NORS dataset and the Twitter dataset were

relatively similar, which is promising for accuracy comparison. To further analyze this data, we

chose to view the volume of categories overtime in each food category.
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Before analysing and to make sure the two dataset are comparable, we first filtered the

datasets to be between the dates of 2016 and 2022, as there were missing datapoints outside this

domain. Then, we filtered out the iwaspoisoned twitter account as it was creating an artificial

spike of cases near the end of the twitter datatset. This issue is discussed more in depth in a

previous section. Once the data was cleaned, it was then normalized by the total number of cases

in the corresponding datasets to make comparable on the same graph.

Figure 4.18: Graph showing normalized volume of poultry overtime by dataset.

The last procedure we performed to analyze the food categories, was a cross correlation

between the two datasets with time lags. We are particularly interested in Tweets preceding

NORS cases because the Tweets then, could be used as an early indicator for foodborne illness

cases.

57



Figure 4.19: Figure showing cross-correlation of poultry volume overtime with respect to time

lags between datasets.

Because we are interested in a positive correlation where the Tweets precede the NORS

cases, in the graph about we will focus on the first quadrant (top-right quadrant). In the first

quadrant, the max correlation was 0.307 with a lag of 4 months. This shows a weak positive

correlation with a some lag, so this indicates that our positively predicted poultry Tweets could

possibly warn us of an outbreak, assuming NORS cases is an accurate ground truth measure.

Other food categories showed similar metrics, however, the smaller categories like the fish and

egg categories did not show great results as there was simply not enough data.
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4.3 Frontend Visualizations

We created a website, freely available to the public at

https://usda-foodpoisoning.wpi.edu/ to convey the results of our work to both policymakers and

ordinary people. There are three core data sections, each showing a different aspect of our data

collection.

First, on the homepage, the user is presented with a number of meaningful statistics about

the tweets we have collected. We display the number of tweets collected, the number of tweets

we are more than 90% confident were correctly identified by the algorithm, the number of tweets

with symptom tokens, the number of tweets with city information, and then rank the top five

states by tweet volume (in order, those are California, Texas, Florida, New York, and Ohio). The

purpose here is to provide quick insights into the sheer volume of tweets analyzed (Figure 7.8).

Second, we display a graph showing the top symptoms over time for key foodborne

illness-related keywords (Figure 3.5). This data is generated in real time from the backend

because users will be able to filter results from within our time range. A keyword spiking in

frequency could be an indication that a foodborne illness event is occurring.

Finally, we created an interactive map that displays the geocoordinates of every tweet

containing location data in a heatmap (Figure 3.6). Areas with the greatest number of tweets

about foodborne illness are dark shades of red, while areas with lower foodborne illness tweet

density are teal. The heatmap aspect of the map is crucial for accurate data display, as a result of

a limitation on the geodata we received - in almost all cases, the geolocation is simply a city or

neighborhood, as opposed to exact coordinates that match the location of the original user
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tweeted from. Thus, in many cases, several tweets have the exact same geocoordinates, which we

must then plot on the map - for example, there are over 700 tweets with the same coordinates in

different parts of New York City. Fortunately, with the heatmap’s properties, more tweets with

the same coordinates mean a darker shade of red, which should allow users to note that there is

significant tweet volume associated with a specific point.

Beyond zooming in and out, the map also supports click actions. If a user taps on a

location with tweet density, a popup will appear with the tweet’s text. This behavior is key in

validating our model’s results - users can see the raw text of a tweet we’ve predicted to relate to

foodborne illness and come to their own conclusion about whether our prediction was accurate.

In the case where there are multiple tweets stacked on top of each other, users are presented with

“Previous” and “Next” buttons, allowing them to cycle through the potentially hundreds of

tweets associated with a specific location.

To create an interactive dashboard, we used the python module Dash. This tool help us

develop a web based dashboard thats built on the React framework. This dashboard at the

moment is disconnected from the rest of the website, however, because it is built on the React

framework, we can merge the dashboard and the website relatively easily in future iterations of

this project.

This prototype emphasized interactivity, giving users the freedom to change date ranges,

to examine specific food groups, and filter out iwaspoisoned data points. This interactivity could

benefit both government officials and the general public to have a broader view of potential

foodborne illness outbreaks.
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4.4 Machine Learning Model Performance Evaluation
As tweets were run through our machine learning model, a prediction value was given to

show how confident the algorithm thought it was on each prediction. Overall the model had an

average probability of .963 over approximately 598,000 predicted tweets. We split the data into

predicted yes (positively predicted) having around 157,000 tweets and predicted no (negatively

predicted) having around 441,000 tweets. For predicted yes the average probability was .940 and

for predicted no the average was .972. This means that the model was more confident in

predicting not related than predicting relating to foodborne illness.

We wanted to further analyze the performance of the machine learning model. To do this

we hand-labeled around 1,000 tweets, this is a small portion of the tweets but will help give us an

idea of the performance. Half of these tweets were from predicted yes and the other to predicted

no. Tweets were selected at random but made sure to cover a distribution of varying probabilities

given by the machine learning model. When hand labeling the tweets we used our best judgment

to decide whether or not it was related to the foodborne illness. When we came across a tweet

that we could not discernibly label we would skip that tweet. There were thousands of tweets so

skipping tweets would not skew our data. We consider this new label for the data to be the

ground truth data because it is what we created as the correct label. In the figure below there are

4 tweets we labeled. The ones with prediction 0 are predicted no from the machine learning

model and then 1 is predicted yes. There is an example of when the model was correct and when

it was incorrect for both positively and negatively predicting tweets.

Figure 4.20: Labeled tweets
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To compare the machine learning labeled data to our ground truth data we made a

confusion matrix shown in Figure 4.18. From this we see that the number of correct values

predicted is 740 or 74%. From the matrix we see that there were 14 falsely identified as negative

when they should have been positive and there were 254 incorrectly identified as positive. The

overall accuracy for correctly predicting tweets is .732 with the accuracy of the negatively

predicted tweets to be .972 and the accuracy of the positively predicted tweets to be .492. The

precision for this model is that 49% of the predicted yes is actually yes while for predicted no is

no the precision is 97%. When looking at recall we find that all the instances that are actually yes

the model predicted correctly 95% of the time. However for all the actual instances of no the

model only correctly predicted 66% of them. The F1 score for predicted no is .78 and for yes is

.65. The overall F1 score is .73. Since the F1 score is on the higher end it shows that it is a good

model. There is still plenty of room for improvement but it is somewhat accurate.
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Figure 4.21: Graph displaying the confusion matrix

We wanted to compare the probabilities from the machine learning model to the ground

truth data. From Figure 4.19 we see that for the predicted no when the probability was closer to

.5 then there were more incorrectly predicted tweets then when the probability gets closer to 1.

This shows that the model is pretty confident in its predicting ability for the negative tweets.

However when we look at the predicted yes it is more split in half if it is correct or not. When

comparing it to the probabilities there are more correctly predicted tweets towards 1. Looking

closer to .5 probability there are more incorrectly predicted tweets. From this we can see that the
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model is good at predicting negative tweets but has trouble distinguishing between positive and

negative when it is closer to being related to foodborne illness.

Figure 4.22: Graph displaying the probability of the machine learning model vs ground truth

4.5 Forecasting Tweets Results

Figure 4.23: The autocorrelation graph of the collected Twitter dataset, the left is the full graph

and the right is zoomed in to the first 50 days of lag
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The above graphs in Figure 4.23 show the same thing, the autocorrelation of the Twitter

data versus the lag. These graphs were created using the Python package Pandas, with the

function autocorrelation_plot. They are the same graph, the one on the right is just zoomed in to

be easier to see. The autocorrelation is highest around the one-to-two-day mark, at approximately

0.37, and then hits its next peak at the seven-to-eight-day mark at approximately 0.35.

MachineLearningMastery.com suggested trying a lag with a higher autocorrelation as the lag for

the time series (Brownlee, 2017). The autocorrelation is not very high, but there is some amount

of correlation with the tweets around the same time frame evidenced by the fact that the

autocorrelation decreases as the lag increases.

The forecasting method we used is autoregressive integrated moving average, ARIMA,

model which uses previous data to predict future data (What Is ARIMA Modeling?, n.d.). The

ARIMA model is within the Python package statsmodels (Statsmodels, n.d.). ARIMA

forecasting is formatting ARIMA(p, d, q), where p is the number of autocorrelation terms, d is

the differences needed for stationarities, and q is number of lagged forecast errors (Introduction

to ARIMA Models, n.d.). For the preliminary testing we did we only varied the p value to change

the number of autocorrelation terms, changing the number of days used to predict. Te equation

with only varying p terms would look like:

Ŷt = Yt-1 +...+ Yt-p + ϕ1 (Yt-1 - Yt-2 ) - θ1et-1
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4.5.1 One-Day Prediction

Figure 4.24: Forecasting with one-day lag, ARIMA(1,1,1)

The graph in Figure 4.24 shows the forecasted and actual tweets for a one-day lag. The

one-day lag means that it is predicting today's tweets based on yesterday's tweets. The root mean

squared error, RMSE, for this prediction is 5.591. This means that each day was off by

approximately 5 tweets. Since some of the days only have 10 or so tweets, an error of 5 tweets

could make a significant difference.
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4.5.2 Seven-Day Prediction

Figure 4.25: Forecasting with a seven-day lag, ARIMA(7,1,1)

The next lag we decided to test from the autocorrelation graph was a seven-day lag. This

means that the ARIMA model is using a weeks-worth of tweets to predict the eighth day’s

tweets. The RMSE for a seven-day lag is 4.925. This is still a pretty large error compared to

some of the data points’ size, but it is an improvement. The difference between the one-day lag

and the seven-day lag is that the one-day lag could potentially be fitting the spikes better, but that

also leads to larger error if they predict a spike wrong, whereas the seven-day lag fits the trend

better so it has a larger error on the spikes but fits the general data well.
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4.5.3 General Prediction

Figure 4.26: RMSE versus lag in days

The graph in Figure 4.26 shows the RMSE of the predictions with different lags. It can be

seen that as the lag increases the RMSE decreases, but it stops decreasing as rapidly around the

six-day mark. As seen by comparing Figures 4.24 and 4.25 as the lag increases the predictions

seem to fit the trends of the data rather than trying to guess it exactly. This is because they have

more information to base the predictions on and therefore match the overall trends rather than

matching the previous day. So if there was a high amount the day prior, a one or two day lag

would predict a high amount, but if the overall week’s amounts were lower than that one day a

longer lag would predict with the trend of however long the lag is. Both have merit in certain

situations, but the longer lags do produce lower error.

Being able to predict tweets in advance would be helpful if there is a method to use

tweets to predict whether or not there is a foodborne illness outbreak, attempts of a prediction

methhod are detailed in the next section. Forecasting takes longer as the lag increases, so for the
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sake of time if this method is used it seems like a six-to-seven-day lag is good enough to

decrease the RMSE by a lot while also keeping the runtime shorter. Potential further

improvements for this project include trying to forecast tweets further than one day out. The

method that we are currently using only allows for tweets to be forecasted the day before, but if a

different model were to be trained to allow for further out predictions that would allow for

further out warning systems for foodborne illness.

4.6 Predicting NORS Cases

4.6.1 Linear Regression

To test the viability of the ability to predict NORS cases, the first method we tried was

Linear regression. Linear regression will train on a certain number of tweets and previous NORS

cases, with the process detailed in the previous paragraph. Thereafter, it then will predict a

number of NORS cases for the next week (one number for the week, as that is the bins we have

access to for the NORS data). The model will not have access to the current week’s worth of

NORS cases, only the previous week. It will have access to the tweets within the week it is

predicting for, because they could be measured daily. We then looked at different metrics of each

model, R-Squared, adjusted R-Squared, and RMSE, as well as the significance of the coefficents.

These metrics allow us to assess how well each model is performing to determine if linear

regression should be used.
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Figure 4.27: R-Squared versus the number of tweets and NORS data used to predict

Figure 4.27 is a graph of the R-Squared of the linear regression models with different

numbers of Tweets and NORS cases, to see what has the best results. Based on this graph it

seems like using 21 tweets and 3 weeks of NORS cases, yields an R-Squared of approximately

0.5. This means that the model can explain about half of the variation in the graph. For this

model, of the 24 coefficients that are used, 6 have a p-value of less than 0.05, making them

statistically significant. The rest of the coefficients have pretty high p-values, 16 of which have a

p-value over 0.5. This means that a lot of the coefficients are not statistically significant meaning

they support the null hypothesis and therefore they are not helping the prediction. The training

RMSE for the model with the highest R-Squared, using 21 tweets and 3 NORS, was 119.5.

When that model was applied to the validation set it had an RMSE of 93.1, meaning the model is

not overfitting the data.
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Figure 4.28: Regression report for highest R-Squared model

Figure 4.29: Adjusted R-Squared versus the number of tweets and NORS data used to predict
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Figure 4.29 is a graph of the adjusted R-Squared for the same method that loops through

different combinations of tweets and NORS cases. This gives us a different result than the

regular R-Squared graph. This R-Squared is adjusted to reflect whether the extra coefficient

actually makes a difference, or if it is just allowing the model to overfit. This shows that the

regular R-Squared is probably overfitting with extra data rather than each factor being

significant. For the adjusted R-Squared the best model uses 14 tweets and 3 weeks of NORS

cases, this yields an R-Squared of 0.45. Of the 17 coefficients, 5 of them have a p-value less than

0.05, making them statistically significant. 9 have a p-value over 0.5. The training RMSE for the

model with the highest adjusted R-Squared, with 14 tweets and 3 NORS, was 126.2. When that

model was applied to the validation set it had an RMSE of 74.1, meaning the model is not

overfitting the data, and performing with less error than expected.

Figure 4.30: Regression report for highest adjusted R-Squared model
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Figure 4.31: RMSE verse number of tweets and NORS cases used to predict

The root mean squared error is a metric that conveys the difference between the

model-predicted value and the actual value. This can be used to look at the average amount the

model will be off by. This graph shows the different amounts for all the different models tested.

This shows that the lowest error comes from the model that uses 10 tweets and 3 NORS cases.

The training RMSE for the model with the lowest RMSE, using 10 tweets and 3 NORS, was

106.5. When that model was applied to the validation set it had an RMSE of 77.6, meaning the

model is not overfitting the data.
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Figure 4.32: Regression report for lowest RMSE model

Figure 4.33: R-Squared verse number of tweets used to predict, no NORS data used

This is the increase in R-Squared without any NORS data graph, this graph shows how

the R-Squared increases with the addition of tweets, with 21 tweets having the highest
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R-Squared of 0.28. This model, however, is overfitting, in the next graph, the adjusted

R-Squared does not show the same levels of R-Square. This is increasing just because there is

more information given to the model, not that it is learning to fit better. It is learning to overfit.

Of the 21 coefficients, three have a p value less than 0.05, but 13 have a p value greater than 0.5.

Figure 4.34: Regression report for highest R-Squared, just tweets model
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Figure 4.35: Adjusted R-Squared graph, only tweets

Although the adjusted R-Squared for only tweets is not that high, the increase in adjusted

R-Squared as more tweets are added does show that more tweets does have an impact on the

prediction. The increase in tweets does allow the model to do slightly better at predicting the

NORS cases. Fifteen tweets has the best adjusted R-Squared, with an adjusted R-Squared of

0.21. Of 15 coefficients, three are statistically significant with a p-value less than 0.05. Eight of

these coefficients have a p-value greater than 0.5. The linear regression that trains using 15

tweets has an RMSE of 149.7, when tested on the validation set it had an RMSE of 98.6. This

means that the model fit well, and did not overfit for the error.
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Figure 4.36: Regression report for highest adjusted R-Squared, just tweets model

There are limitations to the data that we can assess in a certain timeframe that makes this

regression problem more difficult. The NORS data that we are using as the ground truth

realistically won’t be available to the public for about a year after it occurs. Even if we could

work closely with the CDC and NORS to get previous outbreak data, outbreaks may not be

reported as soon as they happen. To try to make this prediction more realistic, we decided to use

a three-week lag. This could potentially allow enough time for cases to be reported and

processed, so they can then be used to predict future cases.
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Figure 4.37: R-Squared and Adjusted R-Squared with a 3-week lag on the NORS Cases

These graphs show the R-Squared and adjusted R-Squared, respectively. Overall with a

three-week lag there is a decrease in the R-Squared levels we were seeing before, because now

on top of trying to predict something in advance we are trying to predict something with not the

most up to date data. The regular R-Squared maxes out at around 0.35, and the adjusted around

0.22. These are weak R-Squared, but we do still see an overall improvement in both with the use

of previous NORS cases, despite them being out of date.
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Figure 4.38: RMSE with a 3-week lag on the NORS Cases

This graph shows the training RMSE of the model with the three-week lag. The training

error did not increase by that much compared to the non-lagged graph. Both the model with the

highest R-Squared and the model with the highest adjusted R-Squared actually performed better

on the validation set than they did on the training set. The RMSE for the highest R-Squared was

133.1 and the validation RMSE was 86.2. The RMSE for the highest adjusted R-Squared was

129.2 and the validation RMSE was 80.1. These show that the model is fitting the data well and

not overfitting.

Overall, from the different test surrounding linear analysis, it does not seem to be the best

model to use to predict the number of NORS cases from tweets and previous NORS cases. The

models do perform well on on testing data, but even the best performing models are only

moderately correlated.
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4.6.2 Logistic Regression

In order to explore different methods to see what yields the best results for this prediction

method, we decided to look into logistic regression after linear regression. Doing logistic

regression on this dataset requires a shift in our goal because it is a classification method. Instead

of predicting the number of cases, we will instead be looking at binary classification. This binary

is created by establishing a certain threshold for “outbreak” - 1 or “not outbreak” - 0. For the

sake of our testing, we used 200 cases to be that threshold, but this could be changed and the

model could be retrained on that new binary threshold. This is useful to show days that have

more than a certain number of cases, to show when the higher risk times are.

The equation for this logistic regression would look similar to the equation for linear

regression, but it would produce a number between 0 and 1, and then whichever it is closer to

would be the predicted label.

Figure 4.39: Accuracy score of logistic regression with tweets and NORS cases, and with tweets

alone
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The accuracy score of a logistic model conveys how many predictions the model

predicted correctly. The highest accuracy score for a model with tweets and NORS came from

the model with 7 tweets, 2 NORS and produced an accuracy score of 0.77. This same model

when used on the validation set produced an accuracy score of 0.76. This shows that the model is

fitting the data well. Similarly, the model with just tweets, the best accuracy score came from the

model with 7 tweets, with an accuracy score of 0.75. When run through the validation set this

came back with an accuracy score of 0.78. The logistic regression model seems to be pretty

accuracy in determining whether or not the NORS cases will be above 200.

From this preliminary analysis, it seems like logistic regression may be a better model to

use to predict tweets. Although it would require more testing to establish how accurate it may be.

5. Future Work

5.1 Word Importance Analysis
In the context of natural language processing, the ability to attach explainable terms to

tokens is extremely important for both improving model performance and for explainability to

non-data scientists for decision making. One of the techniques that could be utilized to explain

the influence of the input tokens is a salience technique for examining the gradient changes

based on an input token (Bastings, 2020). From a model engineering perspective, this technique

could help create a subset of important keywords which could be utilized to update the query

search keywords for the twitter data collection step. This technique could also help understand

new keywords to be added to the keyword list. From an analysis/decision making perspective,

this technique could help us understand which foods, locations, or spoken words indicate a
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higher risk of foodborne illness, strictly in the twitter domain as the model is trained on only

twitter data.

5.2 Collaboration with iWasPoisoned
As noted in the earlier sections, the iWasPoisoned twitter account made up a large portion

of the collected tweets that were predicted positive. Due to this fact and the fact that

iWasPoisoned has a similar goal to our tool’s, we suggest a collaboration with representatives at

the iwaspoisoned.com. With more experience working in the information technology field and

with more niche knowledge about food poisoning, we believe that this project would benefit

from a collaboration. We would be collecting the iWasPoisoned data from the source, rather than

through Twitter. They currently do not have a map or timeline set up, so we could help them

create those. Their established reporting system could be used with our visualizations to show

trends in their data to create a warning system dashboard.

5.3 Streaming Tweet Collection
Currently, the working pipeline is set up so that the collection and processing steps need

to run individually and manually by a user. In the future, this process could be set up in a way

where the pipeline constantly collects new tweets on an interval, to be passed into the predictive

model, and updated in the database and server. Another alternative is to collect and update only

when there is a call from the front end user interface. This would save resources as we would

only make calls on a user need basis. Another update to the collection method would be to start

collecting tweets from streaming, or streaming from the archive with more real time tweets. This

will potentially allow more real time detection.
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5.4 Frontend User Interface
User interface development is an iterative process, and there are many improvements that

could be made to both improve the information conveyed to the user, and the accessibility of the

site. Future work could see an expansion of data visualization formats, but there are several ways

to improve the visualizations we are currently displaying:

First, the data from the homepage could be rearranged to include more statistics, and

research could be done to identify the most relevant statistics to display. The homepage data

could also include various interactivity options. For example, when a user clicks on a specific

data card, they could be presented with an explanation of why the piece of data is especially

relevant and significant.

Second, further filtering options could be added to the frequency graph. A robust filtering

system could be shared by both the frequency graph and the map, and in addition to just filtering

by time, users could also potentially filter by prediction confidence, as well as several other

factors we also kept track of. For the frequency graph specifically, future improvements could

also include the ability to filter out tweets by geolocation, so that if the user wanted to see the

symptoms over time for a specific city or state, they could do so using the graph.

Third, the map could be improved to convey more information about the specific tweets

themselves, such as the tweet poster’s username, specific keywords identified as relating to

foodborne illness, prediction confidence score, as well as a link to the tweet itself.

Finally, accessibility of the website could be improved by running the site through

various accessibility analytics tools, to make sure that it is easily usable by users leveraging tools

such as screen readers. User testing could identify problem areas in real-world usage of the site,

and plans could be made to mitigate or fix those specific problems.
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5.5 Forecasting and Predicting
There are a few improvements that need to be looked into for the future of the prediction

method. First, since the dataset is pretty small for NORS data, to get more accurate testing done

they should probably use bootstrapping, cross-validation, or a larger dataset. This would help

mitigate the potential error that comes from having a small dataset.

The next step in this process would be to connect the tweet forecasting method to the

NORS prediction method and see how that performs. This can then potentially be improved by

using forecasted NORS cases to forecast more NORS cases.
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7. Appendix

Figure 7.1: Top 28 reports from NORS data by count of estimated primary cases.
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Figure 7.2: Top 30 most frequent food terms for Twitter and NORS data (2017-2021).

Figure 7.3: Top 30 most frequent food terms for Twitter (excluding iWP) and NORS data (2017-2021).
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Resource 7.4: Copy of data_collection read_me

Description

This directory includes all scripts for data collection and prediction. You need to

put the model "pytorch_model.bin" into this directory. The path on the server is

/home/cgnoreika/pytorch_model.bin.

Data collection

main_collection.py is for data collection only . It will save the collected tweets

into *.pt files in the geo_tweets folder.

Run code below to start collecting. You need to change the start_time_iso and

end_time_iso.

python main_collection.py

It will save the log info into logs/datacollection.log

Tweet Prediction

main_predict.py is for prediction only. It will read all the *.pt files in the

geo_tweets folder and do the prediction.

❗To do: Connect to your database and save the prediction into tables

python main_predict.py

It will save the log info into logs/Predcition.log

Whole pipeline (Don't touch this until the database part is ready)

Run the code below for data collection and prediction parallelly.

python main_multiprocess.py

It will save the log info into logs/whole_pipeline.log

Send email

It will send us emails when the data collection/prediction is done or it occurs some

errors. You can change the receivers by editing the variable to_address in the

main_.py files.

Tasks

I will start the data collection for tweets with geo on the server. All the collected

tweets will be saved into folder home/rhu/geo_tweets

Complete the database part in 'main_prediction.py'

Run 'python main_prediction.py' on the server. (For now, it will take the files in

geo_tweets_test as input)
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Resource 7.5: GitHub organization link

https://github.com/wpi-foodborne-illness-monitoring

Resource 7.6: GitHub repository for backend code

https://github.com/wpi-foodborne-illness-monitoring/backend/blob/main/README.md

Resource 7.7: GitHub repository for frontend code

https://github.com/wpi-foodborne-illness-monitoring/frontend/blob/main/README.md

Figure 7.8: Screenshot of the homepage of the website
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Figure 7.9: Screenshot of the about section of the webpage

Resource 7.10: GitHub repository for frontend code

https://usda-foodpoisoning.wpi.edu/
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Resource 7.11: Forecasting model (i corresponds to the lag terms)

(What Is ARIMA Modeling?, n.d.)
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Resource 7.12: Creating the training and validation sets of X for regression
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Resource 7.13: Evaluate Linear Regression model
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Resource 7.14: Evaluate Logistic Regression model
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Figure 7.15: Screenshot of dashboard showcasing date range selector and interactive graph showing top 30 food

tokens from both datasets

Figure 7.16: Screenshot of dashboard showcasing interactive filtering and food selection to view volume of cases

overtime between the two datasets
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