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Abstract 
_____________________________________________________________________________ 

In this project, we applied the deep learning methods of autoencoder-Kalman filtering as well as 

the autoencoder preprocessing from Ciecierski [3] to improve clustering on action potentials by 

filtering noise. We used multiple types of clustering, including k-means clustering, mean-shift 

clustering, and agglomerative hierarchical clustering. We evaluated the performance of each 

clustering algorithm after using each filtering method, as well as no filtering, to analyze which of 

the filtering methods has the best effect on clustering action potentials.  
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Executive Summary 
_____________________________________________________________________________ 

In computational neuroscience, a useful task is clustering neuron action potentials. This 

can allow researchers to determine whether the action potentials have been affected by 

myelination, which is caused by some diseases and can slow down action potentials. action 

potentials are very noisy signals, and they are affected by several types of noise, including 

Gaussian noise, additive noise, and multiplicative noise. Reducing the noise in the signals should 

make the clustering more effective. There have been multiple types of methods that aim to 

reduce the noise in these signals. One such method is described in the paper Neural Spike Sorting 

Using Unsupervised Adversarial Learning by Konrad Ciecierski [3]. This method uses 

autoencoders with a custom loss function that is specific to action potential signals to filter the 

noise in the data before clustering. Another such method is the autoencoder-Kalman filter 

(AEKF), which is comprised of a Kalman filter to filter the noise, in between the encoder and 

decoder layers of the autoencoder neural network [21]. However, before this paper, there had not 

yet been any research done on which of these two methods results in better clustering 

performance.  

In this project, we applied autoencoder-Kalman filtering [21] preprocessing as well as the 

autoencoder preprocessing method from [3], attempting to improve clustering on hippocampal 

action potentials by filtering noise. We used multiple types of clustering, including k-means 

clustering, mean-shift clustering, and agglomerative hierarchical clustering. We evaluated the 

performance of each clustering algorithm after using each filtering method, as well as no 
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filtering, to analyze which of the filtering methods has the best effect on clustering action 

potentials. After performing both types of noise filtering, as well as a control group with no 

filtering, on the data, we used the clustering algorithms on the data and evaluated the 

performance of each. Our results showed that the autoencoder method described in Cieciersi’s 

paper [3] resulted in better clustering performance measures for most of the algorithms than the 

AEKF and no clustering, and the AEKFgenerally performed better than no filtering.  
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Chapter 1: Problem Description 
_____________________________________________________________________________ 

 

We have reason to believe that analysis of action potentials through clustering could 

show whether the individual is suffering from a disease that might be affecting the neuron 

performance (Therese M. Smith, Personal Communication, 16 September 2020). The action 

potentials in myelinated neurons are slowed down by demyelination caused by diseases like 

multiple sclerosis. For this reason, performing clustering on action potentials is a useful task. The 

recent papers by Weiss and Paffenroth [22] and Ciecierski [3] deal with clustering neuron action 

potentials using different methods for noise filtering and clustering. Weiss and Paffenroth use an 

Autoencoder-Kalman filter, and Ciecierski uses unsupervised adversarial learning, also using 

autoencoders. However, as far as we know, the computational neuroscience community has yet 

to do research on which of these methods performs best for clustering action potentials.  

To verify this research gap, we used a database of academic journals to find all the 

journals that might have relevant papers, including Brain Informatics, Brain-Computer 

Interfaces, Computational Intelligence and Neuroscience, i-Perception, Network Neuroscience, 

Neural Network World, Neural Networks, Neurocomputing, and Neuroinformatics. In each of 

these, we used various keywords such as “clustering,” “artificial intelligence,” “deep learning,” 

“Kalman filter,” et cetera to try to find some work that had already combined these two papers. 

We did not find any such work in this search. Another reason we believe that this research gap 

exists because the two papers are very recent.  

We are aiming to use autoencoder-Kalman noise filtering and clustering on hippocampus 

action potentials as well as Ciecierski’s method of unsupervised adversarial learning using 
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autoencoders to determine which of these methods is more successful at preparing action 

potentials to be clustered. The noise filtering in combination with the machine learning will serve 

to reduce the dimensionality of the data so it can more easily be clustered. We will perform the 

clustering on real data collected from hippocampi. This will reveal which of the two methods 

performs best, which will help in future research concerning clustering action potentials to find 

out whether they are affected by demyelination from diseases.  
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Chapter 2: Related Work  
_____________________________________________________________________________ 

 

In this chapter, we will discuss the background information about computational 

neuroscience, clustering, and noise filtering that this project is building upon.  

 

2.1 Prior Research on Brain-Computer Interfaces  

 In the field of computational neuroscience, research on brain-computer interfaces (BCI’s) 

in the past has shown the practical applications of BCI’s, as well as what the current technology 

is capable of. For example, BCI’s have been used for patients with nervous system injuries or 

diseases that affect the nervous system [2]. This is especially relevant when the BCI’s are being 

used to treat patients with diseases like multiple sclerosis. Multiple sclerosis is accompanied by 

demyelination of neurons [20]. Demyelination can be expected to slow the propagation of neuron 

signals from one neuron to another [19].  

 Another use of BCI’s has been for people with severe physical disabilities [12]. [12] 

developed a BCI that detects eye movements and determines whether they can be categorized as 

either voluntary or involuntary by examining the action potentials and classifying them. In 

another study, Khairullaha et al. developed a BCI that takes action potential data and creates 

human-readable writing from them [10]. And one of the most recent uses of a BCI has been 

Neutralink’s BCI that measures action potentials from a live pig and analyzes the action 

potentials when the pig is responding to a stimulus [14].  
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 There is also work that deals specifically with clustering in computational neuroscience. 

Shah et al. performed clustering on action potentials based on the action potential spikes, 

specifically from visual neurons [18]. Their work shows that clustering by the spikes is an 

effective way to cluster action potentials.  

Yet another example of clustering being used in computational neuroscience is Alashwal 

et al.’s work that looks into which clustering algorithms perform best on neural data for 

Alzheimer’s disease [1]. This study found that  k-Means, k-Means-Mode, multi-layer clustering, 

and hierarchical agglomerative clustering algorithms (discussed in section 2.2 below) have all 

been used successfully to perform clustering on neural data and draw conclusions about 

Alzheimer’s patients.  

 

2.1.1 Unsupervised Adversarial Learning: Clustering with 

Autoencoders 

One paper in computational neuroscience that will have a significant influence on the 

methodology in this project is Neural Spike Sorting Using Unsupervised Adversarial Learning 

by Konrad Ciecierski [3]. In this paper, Ciecierski constructs an autoencoder to eliminate noise 

and reduce the dimensionality of the action potential data and clusters the data based on action 

potential spike shape. This reveals information about the different types of spikes, separated by 

shapes, as well as how similar the spikes in that cluster are to the average spike in that cluster. 

This paper is also discussed further in Chapter 3, where we go into more detail about the 

methods that we replicated from Ciecierski’s work. 

Autoencoder neural networks can be used for clustering data with no attributes, such as 

signal data that only has time series data [3]. An autoencoder consists of an encoder that 
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compresses the data to reduce the dimensionality, and a decoder that transforms the encoded data 

back into its full form. The process of using an autoencoder reduces the noise in the data. The 

data should be similar when it comes out of the decoder to how it was when it was inputted into 

the encoder - these two states of the data can be compared using mean-squared error. Performing 

clustering between the two layers of the autoencoder is beneficial because the dimensionality of 

the data is reduced, which makes the clustering smoother and prevents overfitting of a model 

with too many dimensions. This is important for action potential time series data, which might 

have thousands of voltage measurements over time for each action potential.  

In Ciecierski’s paper, he uses adversarial learning to implement more effective clustering. 

The input (an N by 48 tensor) is inputted into a neural network that is an encoder. The encoder 

puts the input through two dense layers, and then outputs a categorical head (an N by 10 tensor - 

10 being the maximum number of classes that the model will find) and a Gaussian head (an N by 

3 tensor). The decoder does the reverse, also having two dense layers.  

We define the loss function as the mean-squared error (MSE) of the input that was fed 

into the encoder and the output that comes out of the decoder. This tells us how well the 

autoencoder has re-formed the data after encoding or compressing it.  

Once the autoencoders have been trained, there is an adversarial phase in which the 

discriminators are trained, because they use the categorical and Gaussian heads that were 

outputted from the encoder. The discriminators are also neural networks. There is one for each 

head - categorical and Gaussian.  

Finally, the generation phase is when the categorical head is made by the encoder into a 

categorical distribution and the Gaussian head is made into a normal distribution.   
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2.2 Clustering Algorithms  

There are a variety of clustering algorithms, each with some benefits and faults [17]. We 

researched several different clustering algorithms to determine which ones might be most 

appropriate for the data we are working with.  

One of the simplest clustering algorithms is k-means clustering [17]. It is also one of the 

fastest, running in O(n) time. It is a centroid-based algorithm, so it approaches the clustering 

problem by searching for the best points to place the centroids for each cluster and assigning the 

data points to clusters based on which centroid they belong with. A description of the algorithm 

is below:  

1. Randomly place k centroids among the data points. 

2. Assign each data point to the centroid closest to it.  

3. Calculate the mean position of all the data points in each cluster and reposition the 

centroid to be at that mean.  

4. Repeat steps 2 and 3 until the centroids no longer move during the repositioning in step 3 

(or until they move very little).  

One disadvantage of k-means clustering is that it requires the user to select a value of k, the 

number of clusters. It could be run for multiple values of k to determine which value results in 

the best clusters, but this would increase the runtime. K-means clustering also is not completely 

repeatable since the standard implementation begins with randomly placed centroids. The most 

significant disadvantage is that this algorithm’s use of the mean as the centroid of each cluster is 

an over-simplified approach. This approach assumes that the clusters are close to circular, so it 

does not perform well with irregularly shaped clusters.  
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 Another clustering algorithm is mean-shift clustering [17]. Like k-means clustering, it is 

centroid-based. However, mean-shift clustering automatically determines how many clusters 

there are in the dataset, which is an advantage over k-means clustering. Rather than having to 

choose the number of clusters k, the user instead has to define the radius r of the “window” of 

points the algorithm considers at once. The algorithm of O(n2) time is described below:  

1. Place centroids among the data points, 2r apart from each other.  

2. Reposition each centroid at the densest point (the point with highest concentration of data 

points) inside the “window” of radius r around the centroid.  

3. Repeat step 2 until the centroids no longer move, so they are each at the densest area 

within radius r.  

The radius of the window directly affects how the clusters form, so it is an important decision.  

 Density-based spatial clustering of applications with noise (DBSCAN) is a clustering 

algorithm that finds clusters by considering the density of the data points relative to each other, 

rather than seeking the location of the centroid like k-means and mean-shift clustering [17]. This 

algorithm automatically determines the number of clusters in the data, and functions better than 

k-means and mean-shift clustering in situations where the clusters are irregularly shaped or 

different sizes. Unlike k-means clustering, it selects the number of clusters automatically. It does 

require an input of the radius ε within which two data points would be considered to be in the 

same cluster. This algorithm is as described below:  

1. Beginning with any data point, group this data point with any other points within distance 

ε from it.  

a. If there are not enough other points near this point, it is marked as noise and 

marked “visited.” 
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b. Otherwise, it is the considered beginning of a new cluster and marked as 

“visited.” 

2. Repeat step 1 for each point in the data set, finding the points closest to it and placing 

them in the same cluster of marking them as noise, until all the nodes are visited.  

One main advantage of DBSCAN is that it identifies data points that are noise and do not belong 

in any cluster. This is particularly relevant in computational neuroscience, where there is a 

significant amount of noise in data from real neurons. One fault of this algorithm is that it does 

not perform as well when clusters vary in density.  

OPTICS (Ordering Points To Identify Cluster Structure) clustering is similar to 

DBSCAN clustering, but it also adds the concepts of core distance and reachability distance [7]. 

Core distance is the minimum radius needed to classify a point as a “core point” of a cluster. 

Reachability distance is the distance between two core points. OPTICS clustering clusters the 

data based on the reachability distances between pints. 

 A fifth clustering algorithm is expectation–maximization clustering using Gaussian 

mixture models [17]. Where k-means clustering performs poorly with clusters that are not close 

to a circular shape, this algorithm expects clusters to have Gaussian distributions, so it tends to 

perform better than k-means clustering when the clusters are oblong rather than circular. This 

algorithm is O(n) time.  

Agglomerative hierarchical clustering is another O(n3) algorithm that does not require 

any user input other than the data itself [17]. Each data point starts as its own cluster and they 

iteratively combine clusters. The algorithm is described below:  

1. Begin by considering each data point as its own cluster.  

2. Combine the two clusters that are closest to each other into one cluster.  
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3. Repeat step 2 until the desired number of clusters is reached.  

This algorithm also does not require a user input of the number of clusters or “window’ radius. 

However, it does let the user select how many clusters to use, since the algorithm can stop 

combining clusters at any point.  

 Another technique is simulated annealing, where the data points are redistributed 

probabilistically so the clustering reveals the groups that would not exist with randomly 

distributed data points, therefore they are statistically significant [11]. This method can be used 

in combination with other clustering algorithms.  
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2.3 Clustering Performance Measures 

Once the chosen algorithm has formed some clusters, it is necessary to evaluate its 

performance on the data. One way to evaluate the algorithm is by analyzing its runtime. We also 

have to analyze the results of the algorithm. Ideally, good clusters should have a high density of 

data points within the clusters, and be spaced out between different clusters [23]. The number of 

clusters and overlap between clusters are also factors [5].  

One measure of the performance of a clustering algorithm is the Davies-Bouldin index 

[11, 23]: 

𝑫𝑩 =  
𝟏

𝒏
∑

𝒏

𝒊=𝟏

𝒎𝒂𝒙 (
𝝈𝒊 + 𝝈𝒋

𝒅(𝒄𝒊, 𝒄𝒋)
) 

n is the number of clusters and σi is the average distance of all the data points in cluster i from 

the centroid ci. This index considers all the clusters in the dataset and reflects how well spaced 

out from each other they are, as well as how dense the individual clusters are. A smaller value is 

better.  

 The Dunn index also considers how well spaced out the clusters are and how dense the 

individual clusters are [11, 23]. However, it does not equally consider all the clusters like the 

Davies-Bouldin index does. Instead it considers the “worst” clusters - the ones that are least 

dense and least spaced out from other clusters.  

𝑫 =
𝒎𝒊𝒏 𝟏 ≤ 𝒊 < 𝒊 ≤ 𝒏  𝒅(𝒊, 𝒋)

𝒎𝒂𝒙 𝟏 ≤ 𝒌 ≤ 𝒏  𝒅′(𝒌)
 

where i, j, and k are indices for clusters, d is the distance between points in the cluster, and d’ is 

the distance between clusters. A larger value of the Dunn index indicates better clusters. 
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However, we have chosen to use the Davies-Bouldin index over the Dunn index because they 

take into account the same characteristics of the clusters, so both are not necessary.  

 A third measure of cluster quality is the Silhouette index [23]. Rather than considering 

each cluster like the two indices above, the Silhouette coefficient reflects how well assigned each 

data point is. It ranges from -1, indicating that the data point should be in another cluster other 

than the one it is assigned to, to +1, indicating that the point is in the correct cluster.  

𝑆(𝑖)  =  
𝑏(𝑖)  −  𝑎(𝑖)

𝑚𝑎𝑥{𝑎(𝑖), 𝑏(𝑖)}
 

a(i) is the average distance between the data point i and all other points in that cluster, and b(i) is 

the smallest average distance between the data point i and all the points in another cluster. This 

equation must be repeated over each data point in the dataset.  

 Because each of these three indices measures the quality of the clustering differently, all 

of them are useful in combination for comparing the results from various clustering algorithms.  
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2.4 Existing Clustering Tools 

 Several tools already exist for Python that implement the clustering algorithms described 

above. Klusta is a program that takes for input a flat binary file that contains analog multi-

channel signals composed of neural spikes [15]. The program then detects neural spikes in the 

data and sorts them accordingly with a flood-fill algorithm and subsequently clusters them into 

groups stemming from the same neuron. This program is directly linked to our project and 

studying it is greatly valuable in aiding our understanding and design of our project, especially 

understanding the flood-fill algorithm.  

Klusters is a tool distributed under the GNU public license that sorts independent action 

potentials into clusters [8]. This tool is directly linked to our project as it is clustering 

independent action potentials which is a crucial part of our application. Studying this program 

will prove beneficial to our understanding and design of our own program.  

Sci-kit Learn is a Python library that implements many different clustering algorithms 

and other machine learning tools.  
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2.5 Noise Filtering 

Removing the noise in the action potential recording is essential when using the data in 

AI because it reduces the dimensionality of the data, which makes it easier to deal with using AI 

methods (Therese M. Smith, Personal Communication, 5 October 2020). Low-pass filtering has 

been used in the past to filter neuron action potential data. However, the Kalman filter is more 

effective than low-pass filtering for neuroscience data because while low-pass filtering uses a 

simplified approach that eliminates all frequencies above some threshold, Kalman filtering uses a 

more advanced approach [21]. Kalman filtering detects a larger variety of noise types, including 

Gaussian, bimodal, and Cauchy noise. Therefore, it is appropriate for very noisy data from 

neurons. Weiss et al. further improve the filtering by using autoencoder-Kalman filtering 

(AEKF), which uses an autoencoder before the Kalman filtering. Autoencoders serve to encode 

the data into a more compacted format, which reduces the dimensionality of the data and 

eliminates noise. The data can then be restored to a state similar to its original state, but with less 

noise.  

If we model the noise with a normal probability distribution function, then with additive 

white Gaussian noise, the variance is constant and the mean is always 0, making it simple to 

eliminate (Therese M. Smith, Personal Communication, 27 October 2020). However, when the 

variance changes, this becomes multiplicative noise. Multiplicative noise is characterized by a 

normal probability distribution function - small amounts of noise happen often, while large 

amounts of noise happen more rarely. When the frequency of the action potential increases, the 

noise variance might also increase. Multiplicative noise must also be considered when dealing 

with action potential data. 
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There are several libraries and tools that exist for Python that are useful for implementing 

an AEKF for noise filtering, including the Python Keras library from Tensorflow, which includes 

tools for making neural networks and autoencoders.  

 

  



15 

 

 

2.6 How This Project Builds Upon Related Work 

This project is using existing clustering tools and clustering performance measures that 

are already established and accepted. We are replicating the use of the autoencoder by Ciecierski 

[3] and also working off the methodology by Wiess et al. [21] for the AEKF. We are improving 

upon what has been done before by using Kalman filtering on action potential data in 

combination with AI and clustering, which has never been done before.  
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Chapter 3: Methodology 
_____________________________________________________________________________ 

 

To reach our goal of using clustering on hippocampal neuron action potentials to 

compare the AEKF and unsupervised adversarial learning methods, we have several sub-

objectives: 

1. Explore and clean the data. 

2. Perform noise filtering using autoencoder-Kalman filtering (AEKF) as described by 

Weiss and Paffenroth. 

3. Perform autoencoder filtering as described by Ciecierski. 

4. Perform clustering using various algorithms on the AEKF output, the autoencoder output, 

and the original (unfiltered) data. 

5. Compare the results from each type of clustering for each dataset using clustering 

performance measures for unsupervised learning.  

This section is outlined according to these sub-objectives.  
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3.1 The Data 

 We used two datasets for this project: a dataset from Collaborative Research in 

Computational Neuroscience Data Sharing (CRCNS), and a dataset used by Konrad Ciecierski in 

Neural Spike Sorting Using Unsupervised Adversarial Learning.  

From CRCNS, we chose to use the dataset called hc-3. The data from CRCNS contains 

action potentials measured from the hippocampi of rats. More can be read about this data from 

CRCNS. This data contains many recordings over time of action potentials, each recording 

containing numerous spikes. Figure 3.1 shows a visualization of the action potential spikes in 

one file from the hc-3 dataset:  

 

http://crcns.org/data-sets/hc/hc-3
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Figure 3.1: Action Potential Spikes in Data from CRCNS 

 

These visualizations were produced using the MEA Tools software by Dan Bridges, available 

at https://github.com/dbridges/mea-tools.  

 

 The data we used to train the models is the same dataset used by Ciecierski in Neural 

Spike Sorting Using Unsupervised Adversarial Learning [3]. This dataset also contains 

recordings over time of action potentials, each recording containing multiple spikes. 

Visualizations of the recordings are shown in Figures 3.2 and 3.3: 

 

https://github.com/dbridges/mea-tools
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Figure 3.2: The Action Potential Spikes in Ciecierski Data: One Full Recording 
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Figure 3.3: The Action Potential Spikes in Ciecierski Data: A Partial Recording for Detail 

 

Before performing clustering on the data, we did preliminary data cleaning and data 

exploration to understand the data and put it into a format that makes it easier to cluster. 

Another step before clustering the data was to split the data into training, testing, and 

validation sets, in proportions of 80%, 16%, and 4%, respectively.  
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3.2 Autoencoder-Kalman Filtering  

 To filter the noise out of our action potential data before clustering, we implemented an 

autoencoder-Kalman filter (AEKF), referencing The Autoencoder-Kalman Filter: Theory and 

Practice by Weiss et al. from 2020 [21]. 

 The AEKF is essentially a Kalman filter inside of an autoencoder neural network. It 

consists of two layers of encoders, followed by the Kalman filter, followed by two layers of 

decoders. Performing the Kalman filtering inside the autoencoder is beneficial because the 

dimensionality of the data is reduced so the filtering can be more accurate and efficient.  

 We implemented this by using the Python library Keras for the autoencoder and writing 

the Kalman filter separately. The autoencoder is made up of the encoder and the decoder. The 

encoder is one Functional model in Keras with several layers [9]. For each Keras model we have 

created, we have generated a diagram to show the neural network layers using the Keras function 

“keras.utils.plot_model()”. Figure 3.4 shows the model for the autoencoder: 
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Figure 3.4: The Layers of the Encoder for the AEKF 

 

 The encoder takes an input and puts it through 2 neural network layers. Next, the data 

passes through the Kalman filter. We used [16] as a base for our Kalman filter implementation, 

as well as the method used by Weiss et al. each sample tuple of data is passed through the 

Kalman filter.  

 Next, we made the decoder. This is also part of the neural network using Keras. The 

layers of the decoder are shown in Figure 3.5: 
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Figure 3.5: The Layers of the Decoder for the AEKF 

 

 The decoder is similar to the encoder and passes the input, which has just been filtered 

through the Kalman filter, through 3 layers of the neural network. The output from this decoder 

has been filtered, and it can then be passed into the clustering algorithms.  

 

  



24 

 

 

3.3 Unsupervised Adversarial Learning 

Autoencoder 

 First, we implement the autoencoder. Our implementation follows those of Ciecierski [3] 

and Weiss et al. [21]. We used the Python library keras for the layers of the autoencoder. The 

autoencoder consists of an encoder and a decoder. The encoder is a neural network into which 

we input a tensor (N, 48) and output a tensor (N, 13). We can then split that output into two into 

two tensors: a categorical head (N, 10) and a Gaussian head (N, 3). Inside the encoder, there are 

two dense layers (meaning all the neurons in each layer are connected to all the other neurons in 

that layer). Thus, the inputs are encoded and condensed.  

The decoder takes the tensors of dimensions (N, 10) and (N, 3) and outputs a tensor of 

dimensions (N, 48). The output is restored to an approximation of the original data, but with 

dimensionality reduced and noise eliminated.  
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Figure 3.6: The Autoencoder for Reducing Noise in Unsupervised Adversarial Learning 

 

 We also implemented the custom loss function to optimize the deep learning 

autoencoders:  
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        (Ciecierski 2020) 

 

This method is also described in Neural Spike Sorting Using Unsupervised Adversarial Learning 

by Ciecierski [3].   
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3.4 Clustering Algorithms  

 We used multiple clustering algorithms so we could compare the results from each one. 

First, we used k-means clustering, since it is simple and quick, so we can get some preliminary 

results. For k-means and any other algorithms that require an input of the number of clusters, we 

used a range of cluster numbers from 2 to 10, based on the results of Ciecierski [3] that showed 

that there were no more than 9 clusters in the dataset, as well as the fact that 2 is the minimum 

number of clusters that k-means can create. We also used mean-shift clustering because it 

determines the optimal number of clusters itself. Then, we used DBSCAN clustering, since this 

type of clustering is designed for applications with noise, which the neuron action potentials 

have. We also used hierarchical agglomerative clustering, since this has been shown to be 

effective in neuroscience clustering applications [1]. We used all of these clustering algorithms 

from the scikit-learn Python library.  
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3.5 Performance Evaluations and Visualizations 

 To evaluate the performance of each clustering algorithm for each type of filtering 

(autoencoder, AEKF, and no filtering), we used the performance measures of DB Score and 

Silhouette Index from the sklearn implementations. We also compared the filtering methods for 

each algorithm by making plots that compare the values - for example, a plot comparing the DB 

scores for each filtering method on the training and testing set, plotted along values of k for the 

k-means algorithm. In addition to the performance measures of the clustering algorithms, we also 

evaluated our implementations of the autoencoder and AEKF by visualizing the data at multiple 

steps in the filtering process - for example, so we can see what the data looks like when it has 

been encoded, and how it turns out after being decoded. We made the visualizations using the 

matplotlib library in Python.  
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Chapter 4: Results 
_____________________________________________________________________________ 

 

In this chapter, we will present and analyze the results of our research, which include the 

performance measures and visualizations. We will discuss the training of the autoencoder and 

AEKF on the data, and compare the performances of the three filtering methods (the 

autoencoder-Kalman filter (AEKF), the autoencoder, and no filtering) for each of the clustering 

types we used.  
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4.1 Autoencoder Training  

 The results of the autoencoder testing are shown in Figure 4.1. We used 32 training 

epochs with 2 stages per epoch. The loss function continued to decrease until the 32nd epoch but 

the difference per epoch became very small after 22 epochs.  

 

 

Figure 4.1: Autoencoder Loss Function Value Across Training Epochs 

 

This means that as the autoencoder was training, the custom loss function described in 

section 3.3 was successfully being minimized.  
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4.2 AEKF Training  

 The AEKF training phase resulted in the loss function values shown in Figure 4.3. The 

loss function value continued to decrease across the 32 epochs, but it decreased more slowly 

towards the end.  

 

 

Figure 4.2: AEKF Loss Function Value Across Training Epochs 

 

This indicates that the loss function for the AEKF was successfully being minimized. It 

might have become slightly smaller with more training epochs, but we determined that this 

number of training epochs was sufficient because function was decreasing slowly by the time it 

had trained on 32 epochs.  
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The following plots made in matplotlib show the difference in the data before and after it 

was processed through the AEKF. The AEKF made the data more comprehensible as well as 

eliminating the noise. It also made almost all of the values positive, compared to the 

approximately normal distribution of values before filtering with the mean centered around 0. It 

also got rid of some outliers which were likely affected by noise.  

(a)  

(b) 

Figure 4.3: A Sample of Action Potentials from Unfiltered (a) and 

AEKF (b) Data 
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 These visualizations show that the AEKF was filtering the data in a way that might make 

it easier to cluster.  
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4.3 Comparison of Filtering Methods for 

Clustering 

 For each clustering algorithm, we will provide visualizations of the performance 

measures to show visually the differences in performance of the different algorithms. As a 

reminder, for the performance measures of the Davies-Bouldin (DB) score, lower values (closer 

to 0) signify better clusters. The silhouette index ranges from -1 to 1, and higher values are 

better.  

 

4.3.1 k-Means Clustering 

 Figure 4.4 shows the DB scores and silhouette indices for training and testing data sets 

after using k-means clustering on the outputs from each of the filtering methods, plotted against 

k, the number of clusters used for the k-means clustering algorithm. In addition, Figure 4.5 

shows the same values plotted, but with each plot representing a different score rather than a 

different filtering method.  
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(a)  

(b)  
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(c)  

Figure 4.4: The DB Scores and Silhouette Indices for Training and 

Testing Data for Each Filtering Method Using k-Means Clustering 

 

(a)  
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(b)  

Figure 4.5: Comparisons of the DB Scores (a) and Silhouette 

Indices (b) for Each Filtering Method on Training and Testing 

datasets 

 

Overall for k-means clustering, the silhouette indices were highest (best) for the 

autoencoder method (testing and training), and worst for no filtering (testing) and the AEKF 

(training). The DB scores were lowest (best) for the autoencoder method (training and testing) 

and worst for no filtering (training and testing).  

 

4.3.2 Mean-Shift Clustering 

 Table 4.1 shows the DB scores and silhouette indices for mean-shift clustering: 

 

Table 4.1: Performance Measure for Each Filtering Method using Mean-Shift Clustering, for 

Training and Testing Datasets 

Filtering Method Dataset  k DB Score Silhouette Index 
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No Filtering Training  2 0.56811  0.544272 

Testing  2 0.219408   0.626561 

AEKF Training  3 0.775299 0.261609 

Testing  3 0.801855 0.249039 

Autoencoder  Training  5 0.441522 0.548717 

Testing  3 0.34275 0.705601 

 

These values show that the highest silhouette indices overall were for the autoencoder (testing) 

and no filtering (beating the autoencoder by a small margin in the training set), while the lowest 

were for the AEKF. The lowest DB scores were for the autoencoder (training) and no filtering 

(testing).  

 

4.3.3 Agglomerative Hierarchical Clustering 

 The plots here are equivalent to the plots showing performance measures for k-means 

clustering except that there is no testing or predicting in this type of clustering, so there is no test 

performance measure.  
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(a)  

(b)  
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(c)  

Figure 4.6: The DB Scores and Silhouette Indices for Each 

Filtering Method Using Agglomerative Hierarchical Clustering 

 

(a)  
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(b)  

Figure 4.7: Comparisons of the DB Scores (a) and Silhouette 

Indices (b) for Each Filtering Method and Agglomerative 

Hierarchical Clustering 

 

These results show that the autoencoder performed significantly better in both DB scores 

and silhouette indices using agglomerative hierarchical clustering.  

 

4.3.4 OPTICS Clustering 

 Table 4.2 shows the performance measure values for each filtering method using 

OPTICS clustering.  
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Table 4.2: Performance Measure for Each Filtering Method using OPTICS Clustering 

Filtering Type Number of Clusters DB Score Silhouette Index 

No Filtering 4 2.332557 0.122551 

AEKF 3 2.669474 0.052706 

Autoencoder  2 1.44418 -0.299292 

 

 The autoencoder has the best DB score and the unfiltered data has the best silhouette 

index. However, this table shows that the filtering methods all performed worse with OPTICS 

clustering compared to other types of clustering. This could indicate that OPTICS clustering is 

not well suited to the action potential data itself.  

 

4.3.5 Spectral Clustering 

 Using spectral clustering, we tested values of k (numbers of clusters) from 2 to 9 and 

plotted the values as shown in Figure 4.8. In addition, Figure 4.9 shows the same data in a way 

that is easy to compare between filtering methods.  
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(a)  

(b)  

(c)  
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Figure 4.8: Performance Measure Scores for Each Filtering Method Across Values of k 

 

 

(a)  

(b)  

Figure 4.9: Silhouette Indices (a) and DB Scores (b) for Each Filtering Method Across Values 

of k 

 

The unfiltered data performed significantly worse in both DB scores and silhouette 

indices than both types of filtered data. The filtered data types performed very similarly in both 

performance measures.   
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Chapter 5: Conclusions 
_____________________________________________________________________________ 

 

In this section, we will summarize the analysis of our results and draw conclusions, as 

well as answering our research question of which filtering method for action potentials is most 

effective as preprocessing before clustering.  

 

5.1 Clustering Performance Measures 
In Table 5.1, we summarize which filtering methods had the best performance for each 

clustering algorithm.  

Table 5.1: The Best Performance Measures Values by Filtering Method for Each Clustering 

Algorithm  

Clustering Algorithm  

Filtering Method with Best Performance Overall  

DB Score - 

Training 

DB Score - 

Testing 

Silhouette 

Index - 

Training 

Silhouette 

Index - 

Testing 

k-Means Clustering Autoencoder  Autoencoder  Autoencoder  Autoencoder  

Mean Shift Clustering Autoencoder  No Filtering Autoencoder  Autoencoder  

Agglomerative 

Hierarchical Clustering 

Autoencoder  ---  Autoencoder  ---  

OPTICS Clustering Autoencoder --- No Filtering --- 

Spectral Clustering Autoencoder 

and AEKF 

--- Autoencoder 

and AEKF 

--- 

 

Overall, we can conclude from this table that the autoencoder method by Ciecierski 

(2020) performed best across multiple clustering algorithms. In addition, when evaluating these 
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results overall, we can place more importance on agglomerative hierarchical clustering than the 

other clustering methods because it is the most highly recommended clustering method for 

clustering action potentials (Seif, 2020). We can also place less emphasis on the OPTICS 

clustering because all of the filtering methods performed poorly with OPTICS clustering.  

 One factor that might give Ciecierski’s autoencoder method an advantage over other 

filtering methods is the custom loss function that is designed for action potential data that is 48 

data points wide. The custom loss function gives more emphasis to the most important data 

points of the action potentials, which are also the points that vary the most since they are 

centered around the center of the spike. This could cause this method to perform better when 

used as preprocessing before the various clustering algorithms.  
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5.2 Limitations 
One limitation of our research is that we did not use multiple datasets for our research. 

We also did not implement the domain randomization for training used in (Weiss et al. 2019). 

This means that our training and testing datasets were different, randomly selected subsets of the 

same dataset. It also means that it is possible that our results do not generalize to more datasets. 

For example, the autoencoder method could simply be more suited to this particular dataset, but 

not better overall when considering other datasets.  

A limitation of our comparison of the methods used by Ciecierski (2020) and Weiss et al. 

(2019) is that we implemented our own versions of the methods described in their papers. Our 

implementations are slightly different from theirs, although they implement the same noise 

filtering methods.  
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5.3 Recommendations for Future 

Research 
One additional task that we were not able to complete over the course of this project was 

to combine the unlabeled data we used for clustering with some labelled data to use as a check 

on the clustering. This would allow the researchers to better evaluate and compare the 

performance of the clustering methods, as well as indicating whether the clusters of action 

potentials correspond to groups of individuals who share particular characteristics such as 

diseases that cause demyelination of neurons and thereby slow down the action potentials.  

Another continuation of this study would be to conduct the study on different action 

potential datasets. For example, future researchers could use datasets with action potentials from 

different individuals and from different parts of the brain. This could reveal whether there is any 

variation in the performance of these methods based on the action potential data itself, or 

whether the different filtering methods are more specialized to particular types of action potential 

data.  

Another potential continuation of this study would be to use more clustering algorithms 

in addition to more data. Since different clustering algorithms are better suited to different 

datasets based on the types of clusters they contain, different algorithms might perform better or 

worse on the different datasets. There are also many clustering algorithms that we did not use in 

this study because we chose to use only a subset of the clustering algorithms that exist, so using 

more clustering algorithms could reveal some more insights.  

We also recommend for future research to build upon this project by running the code 

from each of these papers directly on the same dataset, if this is possible. In this project, we 

compared the methods based on our implementations of them. However, our implementations 
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might be slightly different from the ones used in the papers. One main reason for this is that we 

did not implement domain randomization, so the models were trained and tested on the data itself 

rather than on domain randomized data. This might have an effect on the performance of each 

filtering method.  
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