
Budapest, D08

Goal

 Deep Blue defeated Kasparov 10 years ago
 Since then:

 Standard workstation computer can now beat
chess grandmasters

 Problems still remain where computers are
not competitive vs. humans

 Computers must be able to deal with much
higher branching factors

 2 Players
 19 x 19 Board

 may be smaller for beginners / computers

 Place pieces in turn

 Goal

 Capture Territory

 Keep Pieces Alive

Image courtesy of Wikipedia (‘http://en.wikipedia.org/wiki/Go_(board_game)’)

 Motivation
 Game trees that are large can be hard to search

 Traditional Algorithms must search a
relatively high % of the tree
 Minimax, Alpha-Beta Pruning, Iterative

Deepening
 Monte-Carlo Search offers alternative
 Essentially random search from a point in the tree

 Do many random searches and combine the
outcomes

 Basic Monte Carlo Search
 Sample nodes randomly, select move based on mean

result
 Upper Confidence Bounds Applied to Trees

(UCT)
 Sample nodes based on the upper bound of a

confidence interval.

 Node with highest upper confidence bound is
sampled next

 Improves sample to look at nodes that have the
greatest potential for good results

 Balances exploration-
exploitation tradeoff

 Converges to correct
answer sooner

 Provides acceptable
results even after a
short time

UCT-DAG and Grouping

 Many game trees are actually graphs

 Game position may be arrived at from more than
one path.

 Directed Acyclic graph is a better approximation
of this than a Tree

 Game of Go expressly forbids cycles (ko,
superko)

 So, DAG is a perfect representation

 Previous Approach

 Treat DAG as Tree

 Problem: more nodes to explore, does not share
information

A

B C

D E1 F

`

Visits: 3 Visits: 2 Visits: 2

E2

Visits: 3

 Naïve Approach

 Keep visit count, value in each node.

 Problem when there are multiple paths to nodes,

A

B C

D E F

`

Visits: 3 Visits: 5 Visits: 2

 Current Solution

 Share values between nodes on DAG

 Keep individual counts for each parent

A

B C

D E F

`

Visits: 3 Visits: B->2, C->3 Visits: 2

 Add structure to the tree,
 Groups correlated with winning or losing moves

 Proposed by Saito et al.
 In this example:
 Equal chance of exploring winning move to

 Higher chance of exploring winning move

 However,
 Creates ~3x nodes

 Deeper Trees

A

Group 1 Ungrouped

B (Win) C (Lose) D (Lose) E (Lose)

 Generate artificial groupings similar to those
used in Go.

 Use existing trees

 Add n groups, biased by parameter α

 With higher α

▪ Winning moves more likely to be in groups

▪ Losing moves less likely to be in groups

Generate Move
Go To Node with

Best UCB
Is Leaf?

No

Perform Monte
Carlo Simulation

Yes

Update Nodes on
Path

Repeat until limit

No

Is Mature?

Expand Node

Yes

Generate Move
Go To Node with

Best UCB
Is Leaf?

No

Perform Monte
Carlo Simulation

Yes

Update Nodes on
Path

Repeat until limit

Transposition
Table

Retrieve Board Position Value

Update Board Position Value, Count

No

Is Mature?

Expand Node

Yes

Go To Node with
Best UCB

Is Leaf?

No

Yes Is Mature?

Create Groups

Yes

Group Managers

Get Active Groups

Expand Node

Check Group Membership

Group Name

Else Group

Border Group*

Manhattan Distance (Enemy)*

Manhattan Distance (Friendly)

Manhattan Distance (Total)

Friendly Saves

Enemy Kills

Many Liberties

Friendly Chainmaker

Enemy Chainmaker

Chain Group

* - Previously Implemented by Saito et. al

 Provides controlled environment to test UCT
modifications

 Run the experiments on exactly the same trees

 Small enough trees that the correct moves can be
calculated

 Quantify improvements

UCT-DAG can
improve performance
of UCT on complex
DAGs and performs
equally to UCT on
simple DAGs.

Highly correlated, complete groupings
dramatically improve performance of UCT on
trees with high branching factors.

Highly accurate,
complete groupings
with group overlap
dramatically improve
performance of UCT
on any trees.

Multiple less-accurate groups, with group
overlap, perform similarly to a single more-
accurate group.

 Using GnuGo as opponent
 TwoGTP as referee

Experiments Base No Groupings Groupings (4)

Board Size:
Play Time

9x9: 10s, 20s 13x13: 40s, 80s, 160s

Number of Games 1000 games split over 5 processors

Name Description

Base Original LibEGO algorithm

NoGroup Added 500,000 entry transposition table saved
between moves

ManGroup NoGroup with Manhattan Enemy and Friendly
Groupings

ManGroupSmall ManGroup except only 50,000 entries in the
transposition table

JamesGroup NoGroup with Manhattan Total Group, Enemy Captures
Group, Friendly Saves Group and Many Liberties Group

JamesGroupNoMan James Group without Manhattan Group.

Accurate groupings in conjunction with UCT
DAG improves performance of LibEGO vs
GnuGo on larger boards.

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

20.00%

22.00%

JamesGroupNoMan NoGroup Base JamesGroup ManGroupSmall ManGroup

W
in

 R
a

te
 v

s.
 G

n
u

G
o

LibEGO Configuration

The size of the UCT-DAG transposition table
may be sensitive to branching factor.

8.00%
10.00%
12.00%
14.00%
16.00%
18.00%
20.00%
22.00%

W
in

 R
a

te
 v

s.
 G

n
u

G
o

LibEGO Configuration

13x13 Board

30.00%

35.00%

40.00%

45.00%

50.00%

55.00%

W
in

 R
a

te
 v

s.
 G

n
u

G
o

LibEGO Configuration

9x9 Board

Future Research

Future Research

Future Research

Future Research

Future Research

 Advisor: Gábor Sárközy
 Co-Advisor: Stanley Selkow
 SZTAKI
 MLHCI Group

▪ Levente Kocsis, András György

▪ Petronella Hajdú

 Internet Applications Department

 Adam Kornafeld
 Worcester Polytechnic Institute

Questions or Comments?

