

GMS: 2

Yōkai no Kōgeki
A project report on the production and execution of a new

tower defense game

October 4th, 2018

Team Members

Jason Abel, jabel@wpi.edu

Adam Moran, asmoran@wpi.edu

Will Suriner, wesuriner@wpi.edu

WPI Advisors

Gillian Smith, gmsmith@wpi.edu

Collaborators

Toyonaka University; Takemura Labs; Cybermedia Department

Worcester Polytechnic Institute

This report is submitted to Worcester Polytechnic Institute faculty in partial fulfillment of

the Degree of Bachelor of Science.

The views and opinions expressed herein are those of the authors and do not necessarily

reflect the positions or opinions of Worcester Polytechnic Institute.

1

Abstract

Yōkai no Kōgeki is a VR tower defense game set in feudal Japan where the player takes

on the role of a commander preventing Yōkai from invading. Three objectives were identified

for experience goals. Users should feel immersed in the setting. Users should have a strategic

challenge while fending off Yōkai. Users should feel like a leader that is in control of his or her

territory. This report details the design process of creating a game that achieves these objectives.

The report goes over the design and gameplay of the game, the technical implementation, the art

direction, and the testing of the game. While the game could be improved, Yōkai no Kōgeki was

successful in fulfilling the objectives laid out prior to implementation.

2

Acknowledgements

We would like to thank Osaka University’s Takemura Labs for providing us with a space

to work and our peers to help test our game. It is thanks to everyone part of the lab and their

input and help that the project expanded to virtual reality.

Specifically, we would like to thank Takemura-sensei for providing WPI with the

opportunity to work at Takemura Labs. Additionally, we would like to thank Ae-sensei and

Jason-sensei for taking time out of their schedule to help get us acclimated to out new

environment in Japan, as well as their overall cordiality.

We would also like to thank our advisor, Professor Gillian Smith, for helping guide the

development of this project. We would like to thank the project center director, Professor

Jennifer DeWinter; without her forging connections with Osaka University and preparing us for

our time in Japan, this project would never have come to fruition.

Lastly, we would like to thank the other WPI students that came to Japan with us for

helping us out with our project and playtesting our game. Without their help we would not have

the finished product that we have now.

3

Table of Contents

Abstract 1

Acknowledgements 2

Table of Contents 3

List of Figures 6

List of Code Listings 8

Chapter 1: Introduction 9

Chapter 2: Background 12

2.1 Tower Defense 12

2.2 Japanese Influences 20

2.3 On-Site Location Research 23

Chapter 3: Design and Gameplay 27

3.1 Intended Player Experience 27

3.2 Gameplay Overview 28

3.2.1 Player Setup 28

3.2.2 Enemies 30

3.2.3 Map Staging 31

3.2.4 Player Interactions 33

3.2.5 Tower Defense in Virtual Reality 35

3.2.6 Sound 36

3.3 User Stories 36

3.3.1 Persona One 37

3.3.2 Persona Two 39

3.4 Paper Prototype 40

3.5 Map Design 43

Chapter 4: Implementation and Technology 45

4.1 Software and Hardware 45

4.2 Code Structure 47

4.2.1 General Relationships 47

4.2.2 Class Descriptions 52

4.3 Base Model 57

4.4 Virtual Reality Technical Implementation 59

4.4.1 Virtual Reality Toolkit 60

4.5 Tower Defense Design Changes 62

4

4.5.1 Enemies 63

4.5.2 Towers 66

4.5.3 Towers Properties 68

4.5.4 Placing Towers 71

4.5.5 UI Interactions 72

4.5.6 Skills 74

4.5.7 Stage Progression 75

4.5.8 Gameplay Speeds 75

4.5.9 Tutorial 76

4.5.10 Sound 78

4.5.11 Misc. 80

4.6 Website 81

4.6.1 Introduction 81

4.6.2 Server 82

4.6.3 Website Structure 82

4.6.4 Three.js 83

Chapter 5: Art 86

5.1 Background 86

5.2 Reference Art and Sketching 89

5.3 Modeling and Texturing 91

5.4 Animation 95

5.5 Implementation of Art Assets into Unity 97

5.6 Creating the Game Environment 99

5.6.1 Environment Building 99

5.6.2 Skybox 101

5.6.3 Particle Systems 102

Chapter 6: Testing 104

6.1 Overview 104

6.2 Survey 104

6.3 Testing Methodology 107

6.4 Results 108

6.5 Major Game Changes 112

6.5.1 Game Balancing 112

6.5.2 Gameplay Speed 114

6.5.3 Sound 114

6.5.4 Stages 115

6.5.5 Tutorials 115

6.5.6 Art/Environment 116

5

Chapter 7: Post Mortem 117

7.1 What Went Right 117

7.2 What went Wrong 117

7.3 What Was Learned 118

7.4 Future Developments 119

Chapter 8: Conclusion 121

References 123

Appendices 128

Appendix A: Informed Consent Agreement Form 128

Appendix B: Playtest Survey 130

Appendix C: Sound Effects and Licensing 133

6

List of Figures

Figure 2.1. Osaka Castle 24

Figure 2.2. Turret near Osaka Castle respectively 24

Figure 2.3. A Komainu at a shrine near Osaka Castle 24

Figure 2.4. Picture of waves inside the exhibit 26

Figure 3.1. Castle the players are put at the top of 28

Figure 3.2. The three enemy types of the game: boss Oni, Kamaitachi and Oni 30

Figure 3.3. Top down view of the overworld 31

Figure 3.4. Top down view of the underworld 31

Figure 3.5. Limited perspective view 32

Figure 3.6. Depiction of how much of the map the player actually sees 32

Figure 3.7. Overworld map stage 1 33

Figure 3.8. Overworld map stage 3 33

Figure 3.9. Underworld map stage 1 33

Figure 3.10. Underworld map stage 3 33

Figure 3.11. Bell towers, archer tower, and kunai tower 34

Figure 3.12. Skills menu UI 34

Figure 3.13. Paper prototype 41

Figure 3.14. Sketch of the two level map (before staging was even considered) 44

Figure 4.1. HTC Vive Controller 46

Figure 4.2 Overall relationships between classes 48

Figure 4.3 Game mechanics relationships 49

Figure 4.4 Wave spawning relationships 50

Figure 4.5 Gameplay speed relationships 51

Figure 4.6 Gameobjects that inherit VRTK_InteractableObject 51

Figure 4.7. Example placing turrets with a mouse 59

Figure 4.8. SteamVR gameobject hierarchy 60

Figure 4.9. Worldspace gameobjects respectively 60

Figure 4.10. VRTK SDK Manager 61

Figure 4.11. VRTK interactable object settings for interaction 62

Figure 4.12. Particle system Shape setting 68

Figure 4.13. Particle system Collision settings 68

Figure 4.14. Converting the Tower UI to be intractable with the laser pointer 73

Figure 4.15. UI canvas looking at the VR camera 80

Figure 4.16. Example close up 3D model viewing on the website 82

Figure 4.17. Multiple scene on one webpage 85

Figure 5.1. Example of Ukiyo-e woodblock print 87

Figure 5.2. In game title / menu screen 88

Figure 5.3. All towers featured in game with black outline 88

7

Figure 5.4. Bridge and torii models with black outline 89

Figure 5.5. Initial sketch for samurai warrior 90

Figure 5.6. Initial sketch for Nue enemy 90

Figure 5.7. Initial sketch of archer tower character 90

Figure 5.8. Initial sketch for kunai tower 91

Figure 5.9. Initial sketch for archer tower 91

Figure 5.10. Initial 3D model for torii gate 92

Figure 5.11. Initial 3D model for archer tower 92

Figure 5.12. Drafts for Kamaitachi model made in MudBox 92

Figure 5.13. Maya’s UV editing screen (UVs for 3D objects shown on right) 93

Figure 5.14. Texture for Kunai tower with UVs visible with green outline 94

Figure 5.15. Example of filters used to mimic textures like skin 94

Figure 5.16. Kunai tower texture after the 3D normal map filter is applied 95

Figure 5.17. Mixamo interface for animations 96

Figure 5.18. Kamaitachi model riding on top of a cloud 97

Figure 5.19. Material interface in Unity 98

Figure 5.20. Simple animator with one one animation for Oni 98

Figure 5.21. Animation implementation using an animator in the Unity Manual 99

Figure 5.22. Unity’s built in terrain interface 100

Figure 5.23. Tree brush interface for terrain 101

Figure 5.24. Skybox interface 101

Figure 5.25. Particle system interface in Unity with a particle system set up for the sun 102

Figure 5.26. Particle systems for lava 103

Figure 5.27. Particle systems for waterfalls 103

Figure 6.1. Results on how much people felt like a leader 109

Figure 6.2. Word cloud of how people felt at the top of the castle 109

Figure 6.3. Results on the two-level map design 110

Figure 6.4. Word cloud of how people described the art in the game 111

Figure 6.5. Word cloud of how people described their experience 111

Figure 6.6. Staging flow chart before and after testing 115

8

List of Code Listings

Code Listing 4.1. Pseudocode for creating a wave 63

Code Listing 4.2. Pseudocode for moving the enemy from waypoint to waypoint 64

Code Listing 4.3. Pseudocode for stunning enemies 65

Code Listing 4.4. Pseudocode for spawning enemies on the map 66

Code Listing 4.5. Pseudocode for finding enemies to target 67

Code Listing 4.6. Pseudocode for upgrading a tower and altering its stats 69

Code Listing 4.7. Pseudocode for Fire and Poison 70

Code Listing 4.8. Pseudocode for Multishot 70

Code Listing 4.9. Pseudocode for creating a line renderer representing the tower range 71

Code Listing 4.10. Pseudocode for making a tower follow the laser pointer 72

Code Listing 4.11. Pseudocode to change the color of the nodes 74

Code Listing 4.12. Pseudocode to pause gameobjects 76

Code Listing 4.13. Pseudocode for tutorial popup conditions 77

Code Listing 4.14. Pseudocode advancing through a tutorial 78

Code Listing 4.15. Pseudocode for loading an .fbx file 84

Code Listing 4.16. Pseudocode for changes made to the Cinematic Camera 84

9

Chapter 1: Introduction

 Yōkai no Kōgeki is a virtual reality tower defense game set in feudal Japan where the

player takes on the role of a commander in a castle to prevent Yōkai from invading said castle.

As the game goes on, the waves of enemies increase in number and become progressively

stronger while the map also becomes more complex, with more places for enemies to appear

from and alternate paths for them to take. The game features a dual world mechanic, with two

separate maps that the enemies can traverse and the player can set defenses in. This dual world

mechanic, combined with the inherently limiting view of a first-person perspective on a

battlefield, forces the player to always consider where they focus their attention. Due to the time

constraints of the project, only three types of towers and three types of enemies were developed;

however, this should provide more than enough challenge and strategic possibilities for the

player, especially as the map opens up as the game progresses.

 Through the decisions to make this tower defense game with a Japanese influence, three

objectives were identified for user experience goals. First, users should have a strategic challenge

while fighting against Yōkai. Users should have to think about what they are doing and why.

Throughout fighting Yōkai, they should experience unexpected changes to the battlefield and

enemy movement they may not have foreseen by the Yōkai. Second, users should feel immersed

in the setting while at the top of a castle looking at the entire battlefield. They should be able to

look out of the castle and see the entirety of the battlefield through which they can control their

units. This should get the user immersed in the scene and give the feeling like they are in a castle

commanding an army. Lastly, feeling like a commander in a Japanese castle should be the final

experience gained. User should fight against Yōkai by controlling their units to fight for them.

Additionally, through the strategic challenges provided, the user should get to understand the

10

difficulties of Japanese commanders who had to decide where to send units and how to prioritize

the development of fortifications.

This report serves to explain the design process of the game, including background

information, overall design and gameplay, software implementation, art development, the

process and results of testing, and a post-mortem. The background section discusses tower

defense as a gameplay genre, the Japanese influences that guided our development, and locations

in Japan that were visited to further guide our design. The design and gameplay section focuses

on explaining the intended player experience, the overview of the gameplay, a list of user stories

considered during the development of the game, the paper prototype that was developed to test

the game concept before implementation, and the design of the map. The implementation and

technology section explains the software used to develop the game, the base model that the game

was built off of, implementation of virtual reality, and all the changes made to the base model to

fit the intended design, as well as the development of the website to view the art assets.

Following these sections of the report, the art section provides information about the

background of the art style used and how it influenced the aesthetics of the game, the reference

art and sketching that served as the start of art asset development, the modelling and texture

work done for the art assets, and the animation of the assets to bring the game to life, the

implementation of art assets into the game engine, and the creation of the game environment.

The testing section documents the process of testing the project to ensure that it conforms to the

intended player experience, including what the team was looking to get out of the testing, a

description of the survey used after the playtesting, the methodology followed during testing, the

results of the testing, and the changes made to the project as a direct result of the testing. The

11

postmortem section concludes the report, providing information on what went right, what went

wrong, what the team learned, and future developments for the project.

12

Chapter 2: Background

 Chapter 2 goes into detail about the background of the project. It talks about the

background of tower defense games, the influences Japanese culture had on the game and it’s

background, and lastly, real world locations used as references for the game.

2.1 Tower Defense

In a tower defense game, the player’s goal is to defend territory, possession, or

destination from waves of enemies by obstructing said enemies with defensive installations that

the player places at key strategic locations. The defensive installations can serve many distinct

purposes, including blocking an enemy’s path, slowing the enemy’s progression down a path, or

outright attacking enemies; though some games include support installations to boost

effectiveness, most installations serve to impede the invading enemies in some way. Tower

defense games are considered a subcategory of strategy games. In strategy games, the player

commands units on a battlefield to take out an opposing force, be it a computer opponent or

another player; the key difference with tower defense is that the player cannot micromanage

units and can only build installations that automatically attack incoming enemies. Tower defense

games are typically played in real time, though some choose to break up the action by having

distinct ‘phases’ for building towers and letting the invasion unfold.

As described by other reports, tower defense games are seen as their own genre while

additionally being under the real-time strategy genre. Players are scored based on how many

“waves” the player can last before either the player finishes the round or the enemy “kills” the

player. The players are met with a predefined map which enemies travel along a path and towers

can be built. In the process, the player must strategize effectively; in order for the towers to

13

operate at peak performance, they must be placed in appropriate spots on the map. Knowing

when and where to place more towers or to upgrade the towers currently on the map is another

vital skill within the genre [28, 29].

While tower defense games share these properties, the possibilities presented by the

template are surprisingly varied; two games under the tower defense genre can vary dramatically.

Both Plants vs Zombies and Orcs Must Die are considered tower defense games, yet are

drastically different in terms of player perspective, map design, mechanics of the defenses, and

the power that the player has within the game world. Plants vs Zombies has simple one-way

maps with multiple lanes with which the player places turrets that shoot forward in some way;

the player sees the entire map from a fixed perspective and can only place defenses [11]. Orcs

Must Die has more complex maps with branching paths and multiple spawn points, with the

player placing traps that have specific ranges and specific behaviors, some of which are placed

on the ground and others which are placed on the walls or even the ceiling; the player controls a

hero in the game world that can also aid in the fight against the enemies though must interact

with the world mainly from a third-person perspective of the hero [10]. Structurally, these games

are very similar, involving sending stronger and more numerous waves of enemies as the game

progresses with the assumption that the player has been fortifying their defenses. Mechanically,

however, they are vastly different.

Within the context of this report, mechanics are defined as how the player interacts with

the game, including controls and the options the player’s avatar has to influence the game world,

while structure is defined as how the game or game world is organized to present its challenge.

In other words, the structure determines the overall genre that the game fits in regarding

progression, while mechanics determines the interface that the player directly commands to

14

interact with the game which can influence the genre the game is defined in; it is this difference

in mechanics that gives Orcs Must Die the more specific label of ‘action tower defense’ as the

mechanics are more action-oriented compared to a more typical tower defense game while the

structure itself is still that of a tower defense game. As a result, despite being a seemingly

specific genre, the definition remains general enough to encompass games that have entirely

different mechanics to achieve the same experience goal of defending some point from waves of

invading monsters by setting up defenses that cost resources.

Furthermore, many games mix structures and mechanics of different genres, sometimes

muddying the lines that define genres and sometimes outright creating new genres. Survival

games, usually involving zombies and usually played as a shooter, bear mechanics and structures

from tower defense games yet have more action-oriented mechanics and have changed the

enemies’ destination to the player themselves; due to their mechanics, survival games are

considered a subcategory of action games despite having the resource management and defense

crafting structure of strategy or tower defense games. There are also genre offshoots that use the

structure and mechanics of a preexisting genre to remix it in a novel way. An offshoot of tower

defense games exists where the player controls the enemy forces sent to attack defensive

installations, usually called ‘reverse tower defense’, ‘tower offense’, or ‘tower attack’,

referencing its origins as a tower defense game with inverted objectives, which was considered

as a possible asymmetrical multiplayer mode but never received any further focus. Examples of

reverse tower defense games include the Anomaly series and Ambush, both available on Android

devices [3, 4]. These games swaps the mechanics available to the player and the enemies typical

of tower defense games and inverts, yet ultimately maintains, the structure; as a result, while a

more specific subgenre, this offshoot is still considered part of the tower defense genre. While

15

the definition of tower defense as a genre given at the beginning of this section is the one used

for this report, it remains a generalization that groups a multitude of games based on their

structure while generally ignoring the widely varying mechanics that each use to realize similar

goals.

Tower defense games are likely popular because they feed off humans’ psychological

need to defend what they consider to be ‘theirs’ from some undefined ‘other’ or intrinsic fear

[43]. Young children are shown to perceive some notion of ownership principles and property

rights; furthermore, children between the ages of four and five are shown to value concepts of

property more than adults, with experiments showing that children believe that ultimate authority

to an object should go to its rightful owner as soon as possible excluding emergency situations

[26]. Moreover, similarly aged children have a consistent methodology of determining

ownership, primarily based on the principle of first possession, though this can be overridden

with higher-level historical reasoning and whether or not an individual has had prior contact

with an object in question [39]. This same principle of first possession is carried over in legal

systems as well. Modern Western society uses first possession based on precedent set by the

Institutes of Justinian in the 6th century. Ancient Jewish law and Inuit decision making regarding

ownership of a hunted animal also used first possession to determine ownership. Again, first

possession is trumped by higher-level reasoning such as what was necessary for possession (e.g.

if person B captures a hunted animal that person A was pursuing, would person A’s actions have

ensured possession of the animal if person B wasn’t there; if yes, then the animal belongs to

person A regardless of first possession, if no, then the animal belongs to person B since it was

person B’s actions that ensured possession) [38]. This suggests that concepts of ownership are

ingrained into the human psyche at a fundamental level. Human concepts of ownership and

16

property can be seen as an extension of common animal behaviors of claiming and defending

territory or fending off scavengers from successfully hunted prey. While it is possible that human

ownership and property concepts are an extension of animal territorialism, the possibility that

this behavior is a result of convergent evolution, creating similar behaviors with similar functions

though with different underlying mechanics or origins, cannot be ignored.

Part of what makes possessions so important to individuals is the meaning that the

individuals give to their possessions; this meaning extends to how the possession represents or

serves as an extension of its owner in some way, as explained by symbolic consumption theory.

This theory can be extended to virtual objects, with individuals seeing their virtual

representation, or avatar, as either extensions of themselves or idealized versions of themselves.

Virtual products, owned by the avatars, are considered to be real entities, and users often render

special meaning to them. To many users, the avatar’s possessions are seen as more important to

who they want to present as in a virtual space than the avatar itself; the avatar serves as a social

entity for the user in the virtual world but also as an interface for the user to interact with their

virtual possessions [41]. For this project, the player’s castle is their possession and serves as an

extension of themselves within the virtual space just as much as their own presence in virtual

reality. As a result, defending a virtual abstraction of property from some outside force seeking

to either claim it or destroy it is a way to simulate the desire to enforce one’s natural rights

without the need of a real threat to one’s real possessions. This project seeks to create such a

simulation within a Japanese aesthetic; as such, the player’s property is a Japanese castle and the

invading force are Yōkai common in Japanese mythology and folklore.

 The modern form of the genre started in 1990 with an arcade game by Atari called

Rampart, which is considered a classic of what is now known as the tower defense genre [32]. In

17

it, a set of standards was developed for similar games to follow: players place defenses in spots

of their choosing that the game permits and must maintain the structural integrity of their

territory. Rampart split its gameplay up into three ‘phases’. In the first phase, the player chooses

where their castle shall be positioned on the map and then adds cannons to the walls of the castle.

In the second phase, the player has to defend their castle from incoming ships using the cannons

that they build. In the third phase, the player has a limited time to repair the damage done to their

castle and, if they still have time, build more cannons. While Rampart has the structure of a

modern tower defense game, it also has mechanics that tower defense, as a genre, has shifted

away from, mainly involving manually controlling the defenses; as a result, it is more accurate to

describe Rampart as a strategy game. Nonetheless, Rampart played a pivotal role in setting the

foundation for tower defense within the strategy genre. While tower defense games became more

mainstream with the widespread adoption of the computer mouse as an input device due to added

precision and freedom of movement (a trait that is shared with all strategy games), Adobe Flash,

browser-based gaming, and mobile phone app stores caused a considerable boom of tower

defense games due to easier development, greater accessibility, and a wider audience [8].

 While Rampart may have been the game to set the standards for the tower defense genre,

the subgenre can trace its roots back to Space Invaders in 1978 and Missile Command in 1980.

Both games involved defending territory from increasingly difficult waves of aliens and missiles

respectively. Missile Command has an extra strategic edge with resource management as the

player’s defensive missiles were finite and the number available decreases as each missile silo is

lost [1]. Furthermore, both of these games invoke the human desire to defend one’s possessions.

Space Invaders is more broad, as the property to defend is the Earth itself. Missile Command

opts for a more specific scope for what the player is defending; the cities that the player defends

18

in Missile Command were specifically thought of by developer Dave Theure as cities in his home

state of California, but he specifically chose not to explicitly name them as he knew players

would imprint their own cities onto the abstractions presented in the game. However, neither are

truly tower defense games. Both lack the ability for the player to create their own defensive

installations. Space Invaders and Missile Command are both considered shoot-em-up games,

making them not even in the umbrella genre of strategy games. Despite this, Missile Command is

sometimes cited as the progenitor of tower defense as a subgenre.

Other precursors to the tower defense subgenre include Game & Watch games such as

Vermin (1980), Fire Attack (1982), Green House (1982), and Safebuster (1988), which all

involve the player stopping some hazardous object from reaching and damaging its intended

destination, generally in increasingly difficult waves [6, 7, 14, 15, 21]. While there are other

Game & Watch games with similar structure and mechanics, these four games were chosen

specifically for the context of the mechanics and structure as actively defending something. The

Game & Watch series displayed set images on an LCD display, something that designer Gunpei

Yokoi specifically pushed for as the technology was widely available and cheap, leading the

games developed to focus on mechanics and the consoles to be portable and affordable compared

to contemporary devices that used LED displays and required larger batteries [27]. Game &

Watch consoles had rudimentary logic to control collision events, step time, and enemy behavior,

as well as an internal clock and alarm for general usability [9]. As a result, many games

ultimately boiled down to predicting the location and speed of incoming game objects and either

intercepting or avoiding it based on the context of the game; defending some area from incoming

threats was one such application of this rudimentary logic.

19

 Part of why tower defense is such a popular genre is the simplicity of its formula and the

innovations that the individual games can bring to the table. Its base mechanics of automated

defenses, enemies that find a path to their destination, and paths that can branch and criss-cross

are easily understood and recognizable. Part of what makes tower defense innovative is the wide

array of opportunities for the defenses, enemies, and paths to interact with one another. One

person can make a tower defense game where there is only one path but the enemies are

relentlessly powerful, requiring significant investment to keep the path secure. Another person

can make a tower defense game where the map is sprawling and labyrinthine, with weaker

enemies that specifically find the path of least resistance, requiring the player to spread

themselves thin to cover all of their bases. One more person can make a tower defense game

where there are certain enemies that can outright circumvent the paths and take a straight line to

the destination. Another person can make a tower defense game where there are multiple

territories to defend and enemies can arbitrarily choose which one to head to. The possibilities

are seemingly endless and cover a wide spectrum, as shown in the earlier examples of Plants vs

Zombies and Orcs Must Die. Tower defense games can be split up into distinct levels with

different maps or made into a single map that the player must constantly defend; perhaps there’s

a tower defense game that has a larger world that must stay defended but the player can only

defend one level at a time, requiring players to think ahead in a local and global sense. The

primary gameplay draw of tower defense games is that of strategic challenge. This mainly comes

in the form of resource management and thought-out placement of defenses against increasingly

numerous hordes of enemies. Further strategic challenge is presented by utilizing a collection of

unique enemies with differing movement speed, vitality, and even movement gimmicks such as

ignoring barriers.

20

 Looking at some more modern types of tower defense games, sometimes they do not

have to be completely virtual. For example, Art of Defense is a type of tower defense game that

incorporates both virtual and physical. It is a cooperative tabletop board game, allowing for more

social interactions between people allowing form more social play rather than a single player

tower defense game. This game also incorporates Augmented Reality to allow for a more

interesting experience for the players. This just goes to show that tower defense games are

always trying to be unique while still retaining their general forms [28].

 As seen from the past examples of tower defense games, there are many ways to define

what a tower defense game is in its entirety because of the many variations and uniqueness of

each game. Thus, this project decided to keep the general goal of having the player protect their

territory from incoming invaders. The player can buy, upgrade, and sell units to prevent the

incoming enemies from getting to their desired destination. Where this definition will differ

slightly from others is through the lore of the game, influencing the types of enemies and their

properties, and the defending units and their abilities. Additionally, since one of the main goals is

to provide strategic challenges, some of the game elements will differ from others.

2.2 Japanese Influences

While in Japan, one may notice that the country is home to a very large amount of ancient

shrines, castles, and temples dedicated to ancient Shinto gods. Architecture of the historic

buildings inspired the unique level design innovations to portray Japanese culture through the

towers and enemies. This project attempts to make a different version of this subgenre with a

unique spin on the setting, including a unique perspective for gameplay as well as new strategic

challenges specific to this new perspective.

21

 Since 300 BCE, the Shinto religion was a common practice in Japan, and many buildings

and shrines were built both for worship to the gods, and prevention from the demons, known as

Yōkai [33]. This tower defense game is influenced by the Shinto religion, as well as ancient

architecture, and has a clear Japanese aesthetic in terms of visual design. The maps, towers, and

enemies have a noticeable basis in either Japanese history or mythology. This extends to even the

art style of the games, taking inspiration primarily from Ukiyo-e woodblock prints and paintings,

which typically emphasized the rising pleasure sectors of the post-Sengoku period Shogunate

Japan [19]. Likewise, the games setting is of that time period, either taking place at the end of the

Sengoku period or shortly afterwards. Fitting with the time period, a contemporary currency,

mon, was used for the in-game money system [35]. The maps themselves take heavy inspiration

from Japanese temples and castles, and the towers are styled like the turrets of a Japanese castle.

While the setting itself is not a direct copy of a preexisting location, it still takes heavy influence

from the temples and castles of Japan.

Furthermore, the enemies that spawn to attack the castle are based off of the Yōkai found

in Japanese mythology. This game features three enemy variants: the standard enemy, a fast but

fragile enemy, and a slow but durable enemy. To fit the Japanese aesthetic of the game, these

three classes of enemies are assigned their own Yōkai to represent them. The oni, a large and

brutish demon with horns and fangs that typically represents wrath and destruction, serves as the

standard enemy of the game. The Oni is also depicted to have an unusual number of eyes or

fingers/toes. Some say that the oni can be of any color, but red and blue seem to be the most

common among them. Other sources report that the Oni is the cause of some environmental

disasters such as thunderstorms, and earthquakes. It is noted that there are many representations

of Oni depending on where one is looking for said information [18, 25, 34, 36]. This project

22

decided to focus on aspects such as horns, fangs, skin color with red and blue used as the main

colors, and a humanoid body for the Oni’s appearance. While Oni are typically depicted as the

‘slow but durable’ type of enemy in other games with a Japanese aesthetic, such as the Red and

Blue Ogres (Aka-oni and Ao-oni in Japanese) in Ōkami (2006) and the larger oni enemies in

Muramasa: The Demon Blade (2009), both of which are effectively hard-hitting minibosses

when encountered, it was decided that the oni is an easily recognizable Yōkai and that there is a

better candidate to serve as the ‘slow and durable’ type of enemy [5, 13, 44]. The kamaitachi, a

magical weasel with scythes for forelimbs that rides in tornadoes, was an obvious choice for a

fast yet fragile enemy. However, the kamaitachi may not necessarily ride tornadoes but just

strong winds. It is said that since kamaitachi move so fast, a lot of their destruction is blamed on

the wind rather than the mythical creature. They are invisible to human perception due to how

fast they can move. Some say that kamaitachis use magic to allow it to move incredibly fast with

the wind; even without riding a tornado, the kamaitachi is still a weasel, which has a higher top

speed to body size ratio than humans [17, 25, 34]. Likewise, a small mammal like a weasel

would probably take less to kill than a human, much less an oni. For this project, the kamaitachi

is defined similarly to many of the traditional descriptions; it is a weasel with scythes for

forelimbs that can move faster than most normal creatures. There is only one slight difference in

the context of this project: the kamaitachi uses its magic to ride a cloud rather than the wind to

go fast. Ultimately, the nue, the Japanese equivalent to the chimaera with the head of a monkey,

the body of a tanuki, the tail of a snake, and the limbs of a tiger, was chosen to be the ‘slow and

durable’ enemy due to the destructive power that it possessed and generally being rarer in

Japanese mythology than the oni [25, 34]. Unfortunately, fully implementing the art assets for

23

the nue was not viable in the time that the team had; its purpose was instead fulfilled by a larger

recolored oni.

2.3 On-Site Location Research

While the team was in Japan, three sites were visited to provide more reference for the

tower defense game. Osaka Castle was chosen because it is a great depiction of the type of castle

and towers the team wanted in the game. Many Temples were visited to help the team get an

understanding of traditional Torii gates as well as bell towers. Finally, a visual arts exhibit was

visited to provide another potential way to implement the art in the game. Each of these locations

gave a different perspective on what the game could look like as well as potential gameplay

designs.

Osaka Castle was built in 1583 by Hideyoshi Toyotomi. To this day, Osaka Castle

represents the power and wealth obtained by Hideyoshi. In 1615, the castle was destroyed

through the Summer War of Osaka during Ieyasu Tokugawa’s rein over the country. After this

incident, the castle was rebuilt and destroyed multiple times. The final reconstruction of Osaka

Castle was built in 1931 where it still stands today [16]. Osaka Castle and its surroundings have

had a significant impact to the tower defense game. For starters, it is a perfect representation of

the kind of castle the players defend in the game, though the final model was smaller and more

simplified. Additionally, Osaka Castle has turrets nearby that were good references for potential

tower styles used in the game.

24

Figure 2.1 (L) and 2.2 (R). Osaka Castle and turret near Osaka Castle respectively

There are many shrines and temples throughout Japan. Unlike the places of worship in

the United States, the shrines and temples that dot Japan's otherwise modern cities are mainly

outdoors. They are all preceded by a torii gate, either made of wood or stone. They typically

have a small purification pool for visitors to cleanse themselves. Then, there is the main

building; prayers are typically shown on cards placed on the outside of the main building.

Specific shrines and temples had differing structures within them. One of the temples in Kyoto

possessed a large bell; a temple near Osaka Castle was guarded by komainu, the eastern

equivalent of the gargoyle.

Figure 2.3. A Komainu at a shrine near Osaka Castle

25

 Another temple in Kyoto was primarily indoors and featured a large statue of the Buddha

and many candles illuminating the statue. While the designs in the game don't directly take from

preexisting locations, they do take heavy inspiration from the shrines and temples in Japan. One

such inspiration was a large bell found at a temple. The design of the bell and the structure that

held it served as the basis for one of the three towers in the final game. The ringing of the bell

served to stun all Yōkai in its range, providing other towers more time to target the given enemy.

Other inspiration that was considered but ultimately not implemented included komainu statues

that come to life when sufficiently leveled up and purification pools that strengthen all offensive

towers within a certain radius. Additionally, the bell tower would have done extra damage to

enemies that were susceptible to loud noises, but no such enemy was implemented.

 Visual Art exhibits initially might not be considered to be an initial influence in the

making of a Japanese style tower defense game. One specific art exhibit is called “Dark Waves”

located at the Dojima River Forum in Fukushima, Osaka. The exhibit is a collaboration between

Hiroshi Senju and teamLab. The exhibit is inside of the building, covered in mirrors and

projectors. The projections are playing a loop of waves crashing in a body of water. There is no

light in the exhibit except for the projections and a light blue light with a spiral of sheets near the

end of the room. When analysing the exhibit one can see the specific drawing style of the

animation. It has thick strokes of color and the planar animation is projected in a way to make

the animation absolutely seamless and never ending. This exhibit had an influence on the type of

art in the game because the art should reflect the intended setting of the game to offer a sense of

flow and connection between all facets of the aesthetics in the game. Finally, the exhibit also got

the team immersed in Japanese art styles, helping decide on a type of Japanese art style to

implement in the game.

26

Figure 2.4. Picture of waves inside the exhibit

27

Chapter 3: Design and Gameplay

 Chapter 3 goes into detail about the design of the project as well as the intended

gameplay that is trying to be achieved by the project. Specifically, this chapter talks about the

intended player experience, a gameplay overview, as well as user stories to give examples of

what some users might do while playing the game. Lastly, the paper prototype design of the

game as well as the map design for the game is described.

3.1 Intended Player Experience

Players should experience four main things when interacting with the game. First, players

should notice that the tower defense game is a unique take on the genre for those familiar with

tower defense games. Implementing a second layer to the map that shows another path the

enemies can follow is one feature that makes this game unique. This second map provides a new

level of difficulty for players when setting up towers or defensive units. Moreover, the second

map becomes a novel mechanic to even a completely inexperienced player as they would have

had ten waves to get accustomed to just a single map and likely wouldn’t be expecting to juggle

two separate maps at once. Next, players should recognize the Japanese influence on the game

visually via the design of the towers and the enemies. The art style was inspired from different

Japanese sources that were research throughout working on the project. The game should also be

very easy to learn how to play such that it is simple to understand at its most basic level, but

difficult to master. One such example is implementing a tutorial for the game that shows all of

the basic instructions on how to play, but the difficulty as the game progresses gets harder to

beat. Lastly, the game should be enjoyable to play such that the players are entertained while

playing. This is the most important part of our intended player experience. Enjoyability is

28

heavily related to game flow, which is related to perceived game difficulty. For the game to be

fun, it must tread a fine line between overly easy and, therefore, boring and overly difficult and,

therefore, frustrating. A difficulty curve allows the early parts of the game to remain easy for

inexperienced players to learn the mechanics, while allowing the later parts to escalate the

difficulty to provide a challenge for whoever reaches that point. If the game is not fun to play on

either end of the difficulty curve, there is no reason for players to keep exploring the game to get

the entire intended experience.

3.2 Gameplay Overview

3.2.1 Player Setup

The game consists of defending a castle in the center of the map from invading Yōkai.

The player takes the role of a commander within the castle, observing the battlefield and ordering

the development of defensive towers. However, the player also takes the perspective of the

commander, literally looking down on the rest of the map from the central castle; this forces a

limited perspective of the map, turning the player’s attention into a resource to be managed.

Figure 3.1. Castle the players are put at the top of

29

Moreover, while the map itself is labyrinthine with multiple paths that the enemies can

take, enemies can also travel to a second map to take alternate routes. Fortunately, the player can

also transport themselves to the second map by striking a nearby gong. Again, the player’s

resources are split up as they must manage two maps at the same time while only having a

limited first-person perspective of only one of the maps at any given time. As the commander of

the castle, the player can select towers to build and drag them onto the map to build them

instantly, in exchange for in-game currency, serving to protect the castle from the invading

Yōkai. Furthermore, the towers can be upgraded to make them more powerful or to add extra

capabilities, such as greater range, fire, poison, increased fire rate, faster projectile speed, or

targeting every enemy in its range. Each enemy wave is larger than the last, and new enemies are

occasionally added to the waves to add variety, forcing the player to deal with faster or more

durable enemies along with the sheer number of enemies.

Just as the setting and art style are influenced by Japanese culture, so too are the in-game

elements that comprise the mechanics of the game. As mentioned prior, the towers are designed

like the turrets of a Japanese castle. Moreover, the weapons used by the towers are based on the

weapons traditionally used during the Sengoku period. The weapons used by the implemented

towers include yumi (Japanese bow), kunai, and a large bell. Other weapons that were

considered but not implemented were the katana (Japanese sword), naginata (Japanese equivalent

to a lance), and ono (Japanese axe), as well as more exotic weapons, such as the fukiya (blow

darts), bohiya (bomb launcher), horokubiya (bombs), shuriken (radial throwing knives), and

tetsubishi (caltrops) [42].

30

3.2.2 Enemies

The game features three types of enemies: the standard oni, the fast but fragile

kamaitachi, and the slow but durable boss oni. While more enemy types were considered, three

enemy types was seen as a base minimum that must be met. The standard enemy, the oni, is the

most common type of enemy. It isn’t particularly fast or durable, but they also are not slow or

fragile. They are also numerous and the first type of enemy that the player encounters. Every five

waves, the game spawns a boss oni, the second enemy type. The boss oni is a larger version of

the regular oni. As such, they are more durable, only dying after a minimum of about three times

the damage of an unscaled oni. The last enemy introduced, starting much later in stage 4, which

will be covered in further detail, is the kamaitachi. Based on a mythological interpretation of the

weasel, the kamaitachi is twice as fast as the standard oni. However, they also are much more

fragile, unable to take half the damage that the oni can.

Figure 3.2. The three enemy types of the game: boss Oni, Kamaitachi and Oni respectively

In order to balance the game difficulty, every wave increases the number of enemies that

spawn, as well as increases their health. This forces players to continuously improve their

defenses, as the enemies also get stronger over time. Every time a new stage is introduced, the

31

enemies are given a significant increase in health; this continues after the final stage has been

introduced. After the final map expansion, enemy scaling significantly increases every five

waves to continue increasing the difficulty after the map has reached its maximum complexity.

Arguably, this may make the game more difficult as there are no more new nodes introduced for

the player to place towers on.

3.2.3 Map Staging

The game world consists of a sprawling maze with many paths for the invading enemies

to take. However, this also includes travel between two separate maps, giving enemies a

potential shortcut and the player a need to manage both in-game resources and his or her own

attention to set up defenses in both maps.

Figures 3.3 (L) and 3.4 (R). Top down view of the overworld and the underworld respectively

Moreover, since the game is in the perspective of a commander in the enemies’

destination, the player can only see a fraction of any given part of the current map. Since there

are two spawn points in each map, the player needs to be aware of where the enemies could be

coming from at any given time. This provides the game with a level of strategic difficulty via

limited perspective, turning the player’s own attention into a valuable commodity that must be

32

used tactically. The dual-world map and the first-person perspective help set the game apart from

others in its genre.

Figures 3.5 (L) and 3.6 (R). Limited perspective view and depiction of how much of the map the player actually sees respectively

Naturally, such a map would be overwhelming if the entirety of the map was open from

the start. Instead of showing the entire map to the player right from the start, stages were

implemented to ease the player into the complex map, with a new stage every five waves of

enemies. Stage one is comprised of one spawn point for enemies, two different paths enemies

can take, and one end goal. Starting stage two, a second spawn point is added to the game at the

opposite side of the first spawn point. Again, this new spawn point has two different paths that

enemies can take but converge with the paths of the first spawn point at given intersections.

Stage three is where the dual-world system is introduced; pits and ladders are added to the map

that allow the enemies to take even more paths to reach the end goal. At this point, the player can

switch between levels by hitting a nearby gong. Starting stage four, one additional spawn point is

added in the underworld to encourage setting up defenses in the second map. At stage five, only

a few more pits are added. Finally in stage six, one more ladder is introduced and another spawn

point is added in the underworld. While the map is complete by stage six, enemy vitality is

continuously scaled every time a new stage would have become active active, further increasing

the difficulty as the game goes on.

33

Figures 3.7 (L) and 3.8 (R). Overworld map stage 1 and overworld map stage 3 respectively

Figures 3.9 (L) and 3.10 (R). Underworld map stage 1 and underworld map stage 3 respectively

3.2.4 Player Interactions

Furthermore, there are options for how to spend the in-game resources that the player

obtains. In its current state, there are three types of towers that the player can build: an archer

tower that is weak but has long range, a kunai tower that is strong but has short range, and a

Shōrō (bell) tower that deals a small amount of damage and stuns enemies for a brief amount of

time. However, beyond that, there is the option to upgrade the towers that are already on the

map. As such it is no longer just a matter of placing as many towers as possible; quality is just as

important as quantity, especially when further upgrades expand the capabilities of the towers as

34

opposed to just increased power output. This adds an extra layer of strategy as it is no longer just

about having resources; it is also important to know how to spend the resources effectively.

Figure 3.11. Bell towers, archer tower, and kunai tower respectively

 To provide additional ways to become more powerful in the game, Skills are provided to

the user from the beginning of the game to upgrade, with the game acknowledging this ability at

the start of stage two, giving new players a way to ease into the mechanics and experienced

players the option to prioritize skills from the beginning. These skills provide a variety of

benefits and can be levelled up to improve the benefits. So far, the game has only one skill which

gives the player extra money per enemy killed.

Figure 3.12. Skills menu UI

To help with the early portions of the game, the user interface gives hints about the

behaviors of the different towers. Specifically, if the player hovers their pointer over a tower

35

spawner, it gives information about the initial stats of the tower, including the name, cost, power

and range of the tower. When the player picks the tower up to place it somewhere, its range

within the map is displayed as it is moved by the player to his or her desired position. This gives

the player a clear representation of the tower’s defensive screen as opposed to just an abstract

number that only serves as a comparative scale between the tower information. This serves to

help the player learn the mechanics of the game naturally, making it easier to pick up, which

allows the game to progressively get more difficult as the waves of enemies continue their

onslaught.

3.2.5 Tower Defense in Virtual Reality

During the planning phase of the game, it was difficult to find unique and novel

mechanics to add to the game besides the dual world mechanic. At the end of a game pitch

presentation, one of the peers at Takemura Labs suggested that the game should be implemented

in virtual reality, followed by others supporting this suggestion. Moreover, the lab had access to

virtual reality headsets with which to test our game, with many in Takemura Labs having

experience in using VR. Ultimately, the suggestion ended up changing the design on the game by

adding the inherent limited view from a first person perspective in the middle of the map as an

intended goal of the design.

As a result of this shift in perspective, parts of the design had to be re-thought, primarily

with player input. Most tower defense games, being a subset of real-time strategy games, rely on

a computer mouse for input due to the precision and freedom of movement offered by it.

Furthermore, some such devices have extra buttons that can be assigned functions or macros,

giving RTS players more options that are a simple button press. Luckily using the VR controllers

36

as pointers offers a similar user experience as a computer mouse with only a minor loss in

precision due to a lack of surface providing friction.

3.2.6 Sound

While the main element that was considered during the design process was gameplay and

aesthetics, sound design is also important in creating context and reinforcing either the gameplay

or the aesthetics. Unfortunately, since most of the time was focused on the gameplay, creating

original sounds was only briefly considered. It was decided to use freesound.org to collect

suitable sound effects for the game. These sound effects included enemy sound effects, tower

sound effects, and notification sounds. These serve not only to reinforce the aesthetics of the

game but to inform the player of events in the game, even if it's just audio confirmation.

3.3 User Stories

To better serve the experience goals, user stories were developed to guide the planned

interactions between the player and the game. For the sake of covering every possible

interaction, even the most mundane of interactions was accounted for. The events range from

opening and closing the application, player-controlled events such as building towers and

backend events hidden to the player such as the effects of the enemy wave number on how

enemies spawn and behave. Below are two examples of player personas, and a description of

how they might play the tower defense game. The first persona depicts a player who is

completely new to tower defense games while the second persona is an experienced tower

defense player.

37

3.3.1 Persona One

Isaac is accustomed to action games and is new to tower defense games but has an

interest in VR; upon starting the game and pressing play on the main menu, he is transported to

the top of a Japanese castle overlooking a path from a torii gate that splits into two and merges

shortly before arriving at the castle’s entrance. As he gets his bearings, he notices that the left

controller has a text box floating in front of it. It explains the general controls, specifically

activating the laser pointer by clicking the right touch pad and selecting the text box with the

right trigger as it is being pointed to in order to advance the tutorial. In the next tutorial, the text

explains that pointing at objects and selecting them with the trigger is how the majority of the

game operates. Clearing this tutorial gives an explanation of the game itself, with a line

explaining the premise of the game, what is needed to do to deal with the incoming enemies, and

an explanation of where to find the defensive options, as well as what each one does. Feeling

confident that he understands the game, he proceeds.

As Isaac clears this tutorial, the countdown starts, giving him the chance to point at the

three tower models near him to get information on each via the UI that pops up when a tower

model is pointed at that explains the tower’s numerical stars, including power, range, and cost.

Understanding what each one does, he begins setting up his defenses, prioritizing the archer

towers upon seeing their range visualized as a circle on the map as he decides where to build his

towers. After setting up the first tower, the game explains that he can upgrade or sell towers by

selecting them after they have been placed. Once the countdown reaches zero, the first enemy, a

single oni, spawns. The oni is defeated by Isaac’s defenses, with the game congratulating him

and explaining that every enemy defeated rewards the player with money to be used on further

fortifications. The countdown to the next wave starts, giving Isaac fifteen in-game seconds to

38

strengthen his defenses. Once the next wave starts, three oni spawn; however, not all of them go

down the path that Isaac has fortified. While the onis go through the range of one well-placed

archer tower, the other towers are barely out of range. As a result, he needs to sell one or more of

his towers to set up a tower on the other path. While he defeats two oni, one slipped through his

defenses, prompting a message explaining that he has taken damage; if nineteen more enemies

slip through his defenses, it is game over. Rethinking his strategy, Isaac begins setting up

defenses upon the parts of the path that all the enemies go down: the initial enemy spawn point

and the path right before the castle after the paths have merged.

After four waves, the game informs him of a new enemy type: the boss oni, which is

slower but more durable than its smaller brethren. As the fifth wave starts, he gets a tutorial

explaining that the map has expanded and that enemies will begin moving in from a second

spawn point on the opposite side of the current spawn point. The game also explains the skill

system; however, Isaac doesn’t have the money to invest in skills and instead focuses on building

more towers. Isaac has begun setting up defenses near the second spawn point. He is mostly

successful in repelling the enemy. After the ninth wave, he gets a new tutorial about how

enemies will begin traveling in a second map to get around his defenses, and that he can use the

newly spawned gong to travel to the other map to set up defenses there. While marginally

successful, he is overwhelmed by the increasing size and power of the enemy waves and having

to juggle two separate maps. While he can pause the game to plan things out, he does not have

the money to set up the towers that he wants or the in-game time to set them up before the

enemies reach the castle. At wave twelve, Isaac loses all of his lives and gets a game over.

39

3.3.2 Persona Two

Morgan is a fan of tower defense games, but has only played them on IPhone; she wants

to try out VR in a genre that she is already familiar with. After she takes some time in the main

menu to get used to VR, she starts the game. She reads the tutorials about the game’s controls

and how to build towers. After reading the tutorials on each tower, she begins setting up her

defenses close to the castle because she noticed that the path right before is a chokepoint as all

enemies can only get to the castle itself from a single path. She sets up two short-range kunai

towers with a bell tower between them to keep the enemies in their range. As the enemies need

to make their way to her defenses, she presses the fast forward button to speed up game time to

move on to the next waves. Instead of focusing on quantity of towers, she focuses on upgrading

the ones that she has since they are on a chokepoint that has limited space for more towers.

While she only has three towers set up, she continues upgrading them to make her choke point

impenetrable.

While the map expands and a new enemy type is introduced, she isn’t worried because

they still have to funnel into her choke point; with money to spare, she invests in a skill that

increases the amount of money that enemies drop on death. However, things get interesting when

she is introduced to the dual-world mechanic, especially when it opens up a path past parts of her

chokepoint. She uses the gong to see the second map and sets up a defensive screen at the ladder

right before the part that links behind her previously built defenses, making use of the left trigger

to hide the game objects in the castle to get a better view of the map and where she’s placing her

towers. As she stops each wave of enemies and realizes that each wave is more numerous than

the last, she decides to hold off on upgrading her towers as they can handle the enemies just fine.

She instead invests in her skills, letting her gain much more money on enemy death, which, in

40

turn, gives her more freedom to set up towers where she wants and upgrading the towers

whenever she wants. While the map further expands with spawn points in the second map and a

third enemy, the kamaitachi, is introduced, she has already set up powerful fortifications to stop

any invaders from entering her castle. With the money to spare, Morgan sets up towers near all

of the spawns to soften the enemies before they reach her main defenses. As the game continues

past wave 50, she notices that the enemies have become substantially harder to kill despite

investing in upgrades. As a result, she once again focuses on upgrading towers, as well as adding

bell towers in strategic spots on the map to maximize how long the enemies stay within the range

of the weaker towers along the branching paths. With most of the chokepoint towers

significantly upgraded, she focuses more on quantity of towers to ensure that the enemies are

damaged enough by the time that they reach the chokepoint. Despite her best efforts, enemies

still find a way through her defenses. At wave 67, enough enemies made it through her defenses,

and she gets a game over.

3.4 Paper Prototype

The paper prototype consisted of two maps drawn on two sheets of graph paper, with

towers and enemies represented by square pieces with distinct markings on them. The player is

allowed to place towers between enemy phases and the enemy waves are only active when they

are specifically allowed to attack. The player is allowed to pause the game and place extra towers

if need be, as well as switch to the other map and set up towers there. While the paper prototype

served as a great starting point for the development of the full game, even the first digital build

of the game varied drastically from the paper prototype. The paper prototype only had two paths

that the enemies could travel, with specific points where they can arbitrarily switch paths; the

41

enemies spawn at one side of either path and their destination is on the other side and is

accessible from either path.

Figure 3.13. Paper prototype

While testing the paper prototype, many things were found that the team wished to

change from the initial design. The most noteworthy change was the map. The prototype only

had a single path on two maps, with spots on the maps where they can arbitrarily transfer over.

While this system was simple, it was decidedly too simple; all that it would take to ensure that

the enemy is damaged are two identical towers at the respective spots on each map. The world is,

then, effectively, two dimensional, as, excluding radial tower ranges hitting two discrete parts of

the path, the path is a straight line with a second line running parallel. Having more than one path

on each map justified the two map system. In order to further increase the number of possible

paths that enemies could take, the end point of the paths was placed in the center of the map,

meaning that the choice of spawn point for the enemies could be at any point on the edge of the

map; properly spread out, the spawn points allowed for more paths for the enemies to take. The

paper prototype also only had two tower types to place and two enemy types to stop; it was

determined that three of each would be the minimum for a complete game. Moreover, testing

42

enemy movement speed, enemy health, the paths enemies chose, and the damage dealt by each

tower was inconsistent as it was all done on the spot. Actually testing in-engine provided greater

consistency for more robust testing. However, since the primary point of the paper prototype was

to test the underlying nature of the game, with the map being the only specific thing that could be

tested, the paper prototype served its purpose successfully.

In the full game, the two paths are expanded into two sets of maze-like maps; each map

has two enemy spawners, and the enemies can arbitrarily choose paths from forks in the road.

There are still spots on each map that enemies can go to in order to switch over to the other map;

however, these are one way, with distinct entrances and exits on each map. The enemies’

destination has been moved to the center of the map and can only be entered from a single map,

though there is a nearby spot that enemies in the other map can use to pop up incredibly close to

their destination. Regardless of the paths that the enemies choose, they always head towards their

end goal. The distinct phases were also removed, with a very quick timer separating each phase

once the last enemy in a wave has been despawned either by its destruction or from it reaching

its destination; towers are placed in real time, with time itself serving as a resource to be

managed. The full game is also more controlled than the paper prototype, with the towers

launching their projectiles at a fixed rate and the enemies moving at a constant speed and having

a clear amount of health to be depleted. Furthermore, the first-person perspective could not be

implemented in the paper prototype and can only be experimented with in a digital environment.

The specifics of certain towers and enemies were also changed; tweaking of such values is easy

to quickly test in a controlled way in a digital environment.

43

3.5 Map Design

 In order to give the feeling of protecting a castle, the map need to be similar to the layout

of a castle in Japan. To do this, the player is placed at the center of the map so that they have a

360 degree view of the surrounding area. Furthermore, the roads that lead to a castle entrance

were designed to be placed all around the center castle to further add to the layout of the castle.

 One of the unique aspects to our map design is a two level map. For this project, one

level is considered to be the overworld which is where the castle is. The other level in this

project is the underworld which is supposed to represent where the Yōkai come from. The

underworld is conceptually placed directly below the overworld so that certain points on both

maps lineup so enemies can travel back and forth between both levels. As such, enemies are able

to advance towards the end destination through numerous paths due to this ‘layered’ level

design. Enemies are able to access the underworld from the overworld by going into pits located

at certain spots along the path. On the flip side, enemies can go from the underworld to the

overworld through specified location on the map through the use of ladders. This provides the

user with a strategic challenge when placing towers since they can place towers in either the

overworld or the underworld. In Figure 3.2 below, the initial rough draft of what the map looks

like is shown. The solid black lines and spawn boxes represent the overworld, the dotted lines

and blue spawn boxes represent the underworld, and the circles on the map represent the pits and

ladders where enemies can travel between the overworld and the underworld.

44

Figure 3.14. Sketch of the two level map (before staging was even considered)

 The map is broken up into stages to ease the player into the game as mentioned prior.

Once the second map is unlocked at stage three, the player is able to access both levels of the

map through a gong located near the player. If the player points the laser pointer at the gong and

clicks the trigger, they are teleported to the underworld area where they can place additional

towers. This was done by changing the location of the steamVR entity to a specified empty

object on the map. In the underworld, the player still had a 360 degree view of a map different

from the overworld with the same layout of tower spawners. To get back to the overworld, the

player need only click on the gong in the underworld.

45

Chapter 4: Implementation and Technology

 In Chapter 4, implementation of the game is described from a technical perspective. The

chapter goes over the software and hardware used for the project, the code structure of the

finished project and initial VR implementation. Additionally, the base model used for the initial

design and changes made to this simplistic design to achieve the desired product are explained.

Finally, the implementation of the website for the models made in the game is described.

4.1 Software and Hardware

 There were many game engine software that could have been used to create a tower

defense game. However, since this tower defense game was going to be in Virtual Reality (VR),

either Unity or Unreal needed to be used. Unity is a content-creation engine for many platforms

such as PC and smartphones that provides users with computer graphics tools and resources such

as art and design tools, team collaborations, assets, and Virtual and Augmented Reality tools [12,

40]. Just like Unity, Unreal is a creation engine providing much of the same tools and resources

that Unity does just provided differently to the user. This project used Unity because of it was

better for beginners since there is a large community. It is user friendly when creating a 3D

world and very intuitive creating objects and scripts needed to make the game work. Moreover,

even though Unreal supports the same CAD software, they have limitations on importing and

exporting the models that Unity doesn’t have, making it slightly more artist friendly [40]. In

terms of team experience, most team members had more experience working in Unity. Finally,

Unity provides a much simpler collaboration tool to allow team members to work on the project

together.

46

To allow for easy collaboration between team members, Unity Collaboration was used.

Unity Collaboration is similar to Github in that team members can push and pull code. Unity

Collaboration is part of the Unity UI as a function for collaborators to use. Since it uses a cloud

platform to store the game for collaboration, it is simple to use which was convenient for the

team [20]. Unity Collaboration was used over other collaboration services like Github because

Unity projects can be difficult to work with when fixing scene conflicts.

 The HTC Vive is a VR system allowing users to experience virtual worlds in the first

person. The HTC Vive comes with a headset, two controllers, and two base stations. The headset

contains 1080x1200 pixel screens for each eye, giving the user a 110 degree field of vision.

Additionally, it contains multiple sensors like gyroscope and SteamVR tracking in order for the

headset to accurately provided correct vision in the virtual world. The controllers contain six

inputs including a trackpad, two grip buttons, a trigger button, a system button, and a menu

button. Both the headset and the controllers interact with the base stations in order to give proper

feedback to the system. The HTC Vive uses SteamVR in order to give players the ability to enter

virtual worlds [22].

Figure 4.1. HTC Vive Controller

47

This VR product was used for this project because all of the team members had no

experience in VR prior to the project and the HTC Vive is considered to be one of the most user

friendly in the VR department. Its community is also vast with a large amount of support when it

comes to finding out how to do implement certain features which is helpful for beginners to learn

the software quickly [37]. Additionally, the lab where this project was made had a lot of

members who were very experience in the HTC Vive and SteamVR so if any problems arose,

there were people who could provide advice and assistance.

4.2 Code Structure

4.2.1 General Relationships

 Due to the time constraints set on the project, the code structure was not as organized as it

could have been. As seen in Figure 4.2, there are many connections between classes that could

have been minimized and refactored if there were more time on the project. As such, this section

will go into a brief description of the major relations between classes.

48

Figure 4.2 Overall relationships between classes

49

 The relationships shown in Figure 4.3 contains the major game mechanics in the game.

This ranges from placing towers on the map, towers shooting projectiles at enemies, and enemy

movement. The SpawnTower script creates drag towers based on the tower blueprints and tells

the BuildManager script what tower is being built. Then when the player selects a node, the

Node script gets the information it needs from the BuildManager script. Meanwhile, the

NodeUI script is gathering the information it needs from the Node script to display the tower

information. Additionally, the Node script contains either a Tower or a StunTower. The

Tower script creates either an arrow or kunai based on the tower. The StunTower script is

different from the Tower script because it creates shockwaves which are particle systems

instead of gameobjects. Finally, the arrow, kunai and shockwave all interact with the Enemy

script to deal damage and special effects to the enemy. The Enemy script then tells the

EnemyMovement script how to move on the map.

Figure 4.3 Game mechanics relationships

50

Figure 3.4. below shows the general relationship for spawning enemies. The

WaveSpawner script generates a wave of enemies based on the current game state in

GameManager. Those enemies then move throughout the map using the EnemyMovement

script which uses Routes to find where to go to next.

Figure 4.4 Wave spawning relationships

Figure 4.5 shows the general relationship for gameplay speed. Essentially, the

PauseMenu and GameplayTimer scripts tell the GameManager script when the game is

paused. Then all scripts that rely on movement or have some sort of countdown, base their

timing speed off of the current game speed in GameManager.

51

Figure 4.5 Gameplay speed relationships

Figure 4.6 shows all the scripts that inherit VRTK_InteractableObject. This

VRTK_InteractableObject allows gameobjects to interact with the laser pointer. So,

gameobjects like nodes that towers are placed on top of, the spawn towers, and the portal are all

objects with scripts that needed to be VRTK_InteractableObject. Finally the

Environment needed to also inherit VRTK_InteractableObject so that the player can

cancel their tower placement.

Figure 4.6 Gameobjects that inherit VRTK_InteractableObject

52

4.2.2 Class Descriptions

Below is the list of classes used in the project with brief descriptions about what each

class does and what other classes it interacts with.

Arrow.cs - Responsible for the movement of the arrow and contains the stats of the arrow like

damage, speed and fire. Moves the arrow towards the desired target as well as determines when

to deal damage to the target and when to put an enemy on fire. Interacts with Enemy.cs to find

out what world the enemy is in and to deal damage to the enemy and GameManager.cs to know

what the gamespeed is.

BuildManager.cs - Singleton that manages selection of nodes for building, selling, and

upgrading of towers. Used to determine if a player is building a tower, if the player has enough

money for a tower, selecting nodes and deselecting nodes. Interacts with NodeUI.cs to know

when to make the UI appear and when to make it disappear, Node.cs to know where the player is

is either selecting a tower or placing a tower as well as to pass on information about the tower

being built to the node, and TowerBlueprint.cs to know the details of the tower being built.

DragTower.cs - Creates a dummy tower of the tower being built as well as showing the radius

of that tower. The tower and radius follows the end laser pointer so that no matter where the laser

pointer is pointing on the map, the dummy tower and range are located at that point. This class

gets all of its information like the tower to create and the range of the tower from

SpawnTower.cs and TowerBlueprint.cs

EnemiesLeft.cs - Purely updates the player UI text field for showing the number of enemies left.

Interacts with WaveSpawner.cs to get the number of enemies left on the map.

Enemy.cs - Contains all the stats of an enemy like health, speed, if it’s stunned, immune, what

world it is in, etc. This class keeps track of the damage the enemy takes, how long the enemy is

53

slowed for, how long the enemy is on fire for, when the enemy is dead, and when the enemy gets

stunned. This class interacts with EnemyMovement.cs to set the speed of the enemy and when

the enemy is stunned. It also communicates with GameManager.cs to help determine health and

PlayerStats.cs to increase the amount of money when an enemy dies.

EnemyMovement.cs - Attached to enemies to make them progress through the map. Keeps

track of when an enemy should be moving, stunned, transferred to the other map, how long an

enemy is immune to stuns, and when an enemy has reached the end goal. This class interacts

with Enemy.cs for stunning, invulnerability, and speed. Additionally, it interacts with Routes.cs

to find out where the enemy must travel next and also GameManager.cs to find out what stage

the player is on.

Environment.cs - Attached to all gameobjects and terrain that the player does not interact with.

Acts as cancelling building a tower or getting rid of tower UI. Interacts with BuildManager.cs to

deselect nodes and towers set the tower to build to null.

FollowHeadset.cs - Attached to gameobjects that should always be facing the player. Simply has

the object always look at the main camera.

GameManager.cs - Singleton that keeps track of the staging progression throughout the game.

Sets gameobjects to be active and inactive based on the stage the player is on. Interacts with

WaveSpawner.cs to find out what wave the player is on to know when to go to the next stage.

Additionally, it interacts with PlayerStates.cs to know when the player has lost the game.

GameOver.cs - Manages the interactions made on the gameover menu screen like retry and quit.

GameplayTimer.cs - Keeps track of the game speed, specifically when the game speed is

paused, fast forwarded, or played at the normal speed. Interacts with GameManager.cs to set the

54

game speed variables and WaveSpawner.cs to know when to stop interactions with the player UI

pause button.

Kunai.cs - Responsible for the movement of the kunai and contains the stats of the kunai like

damage, speed and poison. Moves the kunai towards the desired target as well as determines

when to deal damage to the target and when to poison the target. Interacts with Enemy.cs to find

out what world the enemy is in and to deal damage to the enemy and GameManager.cs to know

what the gamespeed is.

LaserHover.cs - Keeps track of when the laser pointer hovers over an object. The script

determines when the laser hovers over a node, the upgrade button on the nodeUI, or a spawner

and acts accordingly.

LivesUI.cs - Updates the text for the number of lives the player has left on the player UI.

Interacts with PlayerStats.cs to get the number of lives left.

MainMenu.cs - Manages what happens in the main menu scene like when to play the game and

when to quit the game.

MoneyUI.cs - Updates the text for the amount of money the player has left on the player UI.

Interacts with PlayerStats.cs to get the amount of money left.

Node.cs - Keeps track of the tower currently at that node as well as all functionalities of the

tower like building, selling, upgrading, selecting. Specifically for upgrading, it sets the tower’s

upgrade stats. Interacts with BuildManager.cs to know what tower to build and what tower to

select, PlayerStats.cs for managing the money gained and lost, Tower.cs and StunTower.cs to

apply upgrades, and TowerBlueprint.cs to get the initial stats of the tower.

NodeUI.cs - Manages the tower UI that displays the tower’s stats and upgrade/sell buttons.

Keeps track of when to sell a tower and when to upgrade a tower as well as updating the tower

55

stats when the tower is upgraded. Interacts with Node.cs to sell and upgrade towers and to get

tower details.

NOSHADOW.cs - Gets rid of the controller shadows when the scene starts up

PauseMenu.cs - Controls interactions on the pause menu UI. Manages if the game is paused, if

the player would like to continue, quit or retry, and sound muting. Interacts with the

GameManager for pausing.

PlayerStats.cs - Keeps track of all the player stats like money, lives, and the number of rounds

the player has survived.

PopupUI.cs - Attached to the tutorials that pop up on the player’s left controller. Contains

multiple conditions for when to open a tutorial as well a process for proceeding through the rest

of a tutorial. Interacts with GameManager.cs to find out what stage the player is on,

PlayerStats.cs to find out how many lives the player has, and WaveSpawner.cs for the wave

number the player is currently on.

Portal.cs - Attached to gong objects that transport the player between the Overworld map and

Underworld map. Interacts with GameManager.cs as it only shows up once stage 2 is cleared and

must be visible and togglable in all subsequent stages.

RoundSurvived.cs - Attached to the Game Over screen to show the number of waves that the

player has survived upon game over. Interacts with PlayerStats.cs to get access to the number it

displays.

Routes.cs - Creates a list of all possible next waypoints that an enemy can move to and sets the

distance between each waypoint and the end point.

Shockwave.cs - Attached to the particle system generated by the bell towers. Interacts with

enemies that the particles collide with to stun them for a set time. Interacts with

56

GameManager.cs to check if the game is paused to stop the particles from continuing on their

path.

Skills.cs - Attached to the Skills UI to control the skills’ properties, including level, cost, and

function. Interacts with PlayerStats.cs for purchase.

SpawnTower.cs - Attached to the tower spawners to control the player’s ability to drag a drag

tower to nodes on the map. Interacts with BuildManager.cs to deselect nodes, delete ranges,

select tower to build, and display tower info. Interacts with GameManager.cs to prevent

interaction while the game is paused.

SpinningIcon.cs - Attached to the icons above the tower spawners to have them rotate

aesthetically.

StunTower.cs - Attached to the Bell Towers to control their behavior like creating shockwaves

and tracking enemies. Interacts with GameManager.cs to change time scale when fast forwarding

or paused. Generates shockwaves using Shockwave.cs.

Tower.cs - Attached to the Archer and Kunai Towers to control their behavior like creating

projectiles and tracking enemies. Interacts with GameManager.cs to change time scale when fast

forwarding or paused. Generates either arrows or kunai using Arrow.cs or Kunai.cs.

TowerBlueprint.cs - Attached to tower spawners to hold their cost, upgrade cost, max level,

range, and name. Can use cost to return the sell amount.

TowerCostUI.cs - Attached to the tower UI to display the cost of the given tower. Interacts with

BuildManager.cs to get the cost from the tower info.

TowerNameUI.cs - Attached to the tower UI to display the name of the given tower. Interacts

with BuildManager.cs to get the name from the tower info.

57

TowerPowerUI.cs - Attached to the tower UI to display the power of the given tower. Interacts

with BuildManager.cs to get the name from the tower info and display the appropriate number.

TowerRangeUI.cs - Attached to the tower UI to display the range of the given tower. Interacts

with BuildManager.cs to get the range from the tower info.

TutorialArrow.cs - Attached to the tutorial arrows generated by PopupUI.cs. Makes the tutorial

arrow move up and down aesthetically.

Wave.cs - Controls the enemies to be spawned and the rate at which they are spawned.

Generated by WaveSpawner.cs after the countdown timer after the last enemy of the previous

wave has been defeated.

WaveSpawner.cs - Generates a wave of enemies based on an internal index. Interacts with

GameManager.cs to get the game state and what stage is currently active for the sake of spawn

points and enemy variety and PlayerStats.cs to increment how many waves they have survived.

WaveUI.cs - Attached to the Player UI to display what wave the player is currently on. Interacts

with WaveSpawner.cs to get the wave index.

4.3 Base Model

Since some of the team members were not that experienced in Unity, the first few steps in

the project was to learn the game engine as well as finding out how to implement the tower

defense game. After thorough research on how to make tower defense games, the team found a

commendable tutorial1 on how to implement a 3D tower defense game in Unity, produced by

Brackeys. It was decided to use this tutorial as the base model for the game and change it to fit

the new tower defense game.

1
 Website link for tutorial on how to make a 3D tower defense game made by Brackeys:

https://www.youtube.com/watch?v=beuoNuK2tbk&list=PLPV2KyIb3jR4u5jX8za5iU1cqnQPmbzG0

https://www.youtube.com/watch?v=beuoNuK2tbk&list=PLPV2KyIb3jR4u5jX8za5iU1cqnQPmbzG0

58

The base model included many of the base functionalities that a tower defense game

needs. It included a small one-path map where enemies spawn at one point and travel to the end

destination by following waypoints placed at intersection points. Each enemy had a health bar to

indicate the health of the enemy. Additionally, the base game allowed the user to place three

types of towers at nodes on the map: a Standard Turret that shoots bullets dealing single target

damage, a Missile Turret that shoots missiles dealing area damage, and a Laser Turret dealing

damage over time and slowing the enemies. These placed towers were capable of tracking

enemies in their given attack range and would shoot a projectile at the enemy dealing damage

until either the enemy died or the enemy was out of range. Each tower was also capable of being

upgraded once, increasing damage and range as well as being sold for a portion of their buy cost.

Finally a game system was implemented to keep track of basic background information like

player lives, money, etc..

Even though this tutorial had a fairly complete version of a simple tower defense game, it

was still missing many aspects that were needed for a more developed version. The turrets

provided in the base model did not suit the Japanese aesthetic of the project, and the fact that

each turret had only a single upgrade and had their properties hardcoded into them only served to

restrict strategic (from the user side) and design (from the developer side) options. Some of the

biggest missing features in this base model that is need for our game is Virtual Reality, a more

complex map and a bunch of game preference changes.

From the code structure mentioned earlier, only some of the scripts were used from the

base model without changing while others were changed drastically. For instance, PlayerStats.cs,

Wave.cs, Round.cs, MainMenu.cs, and GameOver.cs were either hardly changed or not changed

at all. On the other hand, Tower.cs, PauseMenu.cs, NodeUI.cs, Node.cs, Arrow.cs, Kunai.cs,

59

GameManager.cs, EnemyMovement.cs, Enemy.cs and BuildManager.cs are all scripts that were

dramatically changed to fit what was needed for the project. StunTower.cs is a variation on

Tower.cs. Arrow.cs and Kunai.cs are variations of Bullet.cs which was removed from the

project. All other scripts not mentioned were all original scripts created for other elements of the

game.

4.4 Virtual Reality Technical Implementation

 Before the implementation of Virtual Reality, the game, like many other tower defense

games, had a static bird’s eye perspective. This provided the player a full view of the entire map

and limited ability to change the default perspective. Furthermore, the player was only able to

interact with the game through mouse input. Since the game was going to be VR, these

functionalities that the base model had were only good for initial testing of some aspects of the

game. Once VR was implemented, these functionalities were replaced with VR-friendly

equivalents, including a dynamic first-person perspective and VR controller support.

Figure 4.7. Example placing turrets with a mouse

 In order to convert the main camera from a 2D screen view to a VR camera view, the

SteamVR gameobject needs to be added. This gameobject includes the new main camera as well

60

as the left and right controllers. When this is put in the Unity scene, a transparent box appears

representing the actual real life space that the player is allowed to move in. Since this represents

the real world space, this also gives the creator the ability to scale the box to give different

perspectives of the game. For instance, if the entire tower defense map was placed inside the

box, the map would look tiny. If the box was only one square on the map, the map would look

huge to the player.

Figures 4.8 (L) and 4.9 (R). SteamVR gameobject hierarchy and worldspace gameobjects respectively

4.4.1 Virtual Reality Toolkit

 Virtual Reality Toolkit (VRTK) is a downloadable asset package that contains a variety

of scripts that help with building a VR game. VRTK contains solutions to common VR problems

such as interaction with gameobjects, interactions with User Interface (UI) elements, and

Software Development Kit (SDK) managers [23]. Additionally, it happens to be one of the three

official SDKs for the HTC Vive [2]. One of the useful aspects to VRTK is the VRTK_SDK

manager which detects which VR device you are using and appropriately uses the correct

gameobjects to allow the game to run. If there are no VR devices connected, then VRTK uses a

simulator which allows you to test the game on the computer through the keyboard and mouse.

61

Figure 4.10. VRTK SDK Manager

 Another unique feature of VRTK is the controller functionalities. VRTK allows for easy

set up of controller button events through the VRKT_ControllerEvents. Though this script,

you can set which button on the HTC Vive controller triggers which event right inside the

inspector. Additionally, VRTK has a laser pointer script that allows user to interact with the

scene using a laser pointer that comes out of the controller. In the inspector, you can control what

button on the controller activates the laser pointer, what button triggers events based on the

gameobject the laser is pointing at and various other functionalities.

The laser pointer interacts with gameobjects by creating

VRKT_InteractableObject instead of a MonoBehaviour. A MonoBehaviour is a

type of class specifically used for Unity that allows a gameobject to have specific in game

functionalities like having a gameobject constantly be updated and executing an action when the

object is initialized. When making the interactable object, many options appear in the inspector

to customize how the object can interact with the laser pointer. It allows you to customize grab

options, touch options, and use options. In order to make the object interactable with the laser

pointer, the “Is Usable” checkbox must be clicked. Additionally, the “Pointer Activates Use

Action” checkbox needs to be clicked to allow the object to know that it is being interacted with

and can run a method called StartUsing(). Finally, the Laser pointer is able to interact with

UI elements by using VRKT_UIPointer and VRTK_UICanvas. By adding the

62

VRTK_UIPointer to the controllers, it allows the user to decide which buttons on the

controller interact with the UI elements. The VRTK_UICanvas is applied to any canvas that

should interact with the laser pointer. This creates box colliders for buttons so that the laser

pointer can interact with them.

Figure 4.11. VRTK interactable object settings for interaction

The reason why the laser pointer is necessary is because the player is fairly stationary.

They do not have to move any more than a few feet and since the map is large relative to the

space the user is able to move in, the user needs some way to interact with game elements that

are far away. Moreover, since the player is up in a castle looking down at the map, they are not

able to walk right up to a spot to place a tower. By using a laser pointer, players can point at the

spot instead, giving them an easier time controlling where game elements go and being sure

which game elements they are interacting with.

4.5 Tower Defense Design Changes

 This section describes the major changes made to the functionality and design of the base

model. This mainly includes changes made to scripts and effects as well as additional scripts

added to the game to get the intended functionality. Included are topics about enemies, towers,

staging, tutorials, and much more.

63

4.5.1 Enemies

 Originally, enemies spawn at one point on the map and follow one path to reach the end

goal. Since our map design called for multiple spawn points, multiple paths, and two levels,

many changes needed to be made to the enemy scripts.

To solve the first problem, spawning enemies at multiple spawn points, a random number

is generated between zero and three. This number indicates which spawn point to instantiate the

enemy at. Once that number is decided, it spawns the enemy at the specified transform from the

spawnPoint list. Variety in enemies also needed to be introduced to the game and was done

by having each wave randomly select the order and type of enemies that spawn. As such, every

five waves, a new enemy is added to the assortment of enemies that can be spawned. From there,

the script randomly chooses an enemy from the variety of possible enemies and add it to the list

of enemies for that wave.

Code Listing 4.1. Pseudocode for creating a wave

Due to spawning the enemies in different locations, it was not easy to set the initial node

that the enemy has to travel to. To fix this problem, the enemy movement script finds the closest

spawn waypoint and sets it as the next waypoint. From there, enemies now need to determine

which path to travel in order to reach the end goal. Each waypoint contains a list of waypoints

64

that the enemy can travel to next. Using that list, enemies randomly choose the path to travel

down. When an enemy wishes to travel to the other map, it can take pits or ladders. Once the

enemy reaches that pit or ladder, the enemy is moved immediately to the position of the

corresponding pit/ladder in the other level.

Code Listing 4.2. Pseudocode for moving the enemy from waypoint to waypoint

Furthermore, when the enemies decide which waypoint they are going to next, the enemy

rotates its body so that it is facing the next waypoint. This was done using the LookAt()

function. Additionally, each enemy’s health bar is programmed to always face the player using

the same function.

One of the game mechanics in the tower defense game is stunning enemies. As such,

additional code was needed to make sure that the enemies do not move when they are stunned

for the allotted amount of time. Thus, a countdown time was used to make the enemy do nothing

while the countdown was running. The enemy movement code would gather the stun information

from the enemy and set the countdown timer accordingly. Once the countdown reaches zero, the

65

enemy is made immune to stuns for half a second by setting a boolean variable to true, making it

so that the enemy can’t be stunned while that variable is true. Once the countdown for being

immune reaches zero, the enemy resumes its original movement.

Code Listing 4.3. Pseudocode for stunning enemies

The last enemy component that needed to be changed was spawning mechanics with

pausing. Due to the way pausing was implemented into the game (explained later in section

4.5.8), a spawning timer was needed to ensure that enemies do not spawn on the map while the

game is paused. At first, when the game was paused, all the enemies would keep spawning but

would not move. This caused all the enemies to be in the exact same position while walking

through the map, giving the player false information about how many enemies there are. To fix

this, a countdown timer was implemented to make sure that enemies aren’t spawned when the

game is paused.

66

Code Listing 4.4. Pseudocode for spawning enemies on the map

4.5.2 Towers

 The Archer Tower and Kunai Tower were not that hard to implement because it followed

the design of the Standard Turret of the base model. The tower looks for enemies within its range

and once it determines the closest enemy, it creates a projectile. Once the projectile is

instantiated, the projectile moves towards the target until it is within a certain range. At that

point, the projectile is destroyed and deals the appropriate amount of damage the the enemy.

67

Code Listing 4.5. Pseudocode for finding enemies to target

 The Bell Tower was fundamentally different from all the other towers. The Bell Tower

needed to send a shockwave from the bell to the enemies. Once the shockwave hits the enemy, it

stuns the enemy for a brief amount of time. The only similarity with this tower is that it waits for

an enemy to be in range before it sends a shockwave. Instead of a projectile prefab, the Bell

Tower creates a particle system. Almost all of the particle system settings are predefined except

for how long the particle system is active. In order to get the particle system to act like a

shockwave, there were two key components to the particle system that were used. The first

changing the shape to a circle and the radius of the shape to 1 in the shape settings. This makes it

so that the particles expand outwards from the center, making a circle. The second important

component is the collisions settings. The collisions settings must be activated with the type set to

world. This is the key component that allows the particle system to interact with enemies. Since

the particles now have colliders attached to them, the function OnParticleCollision

activates whenever the particle collider hits another collider. So whenever the particles hit an

enemy collider, the enemy gets stunned and takes a small amount of damage.

68

Figure 4.12. Particle system Shape setting

Figure 4.13. Particle system Collision settings

4.5.3 Towers Properties

To make tower upgrading better, more scalable upgrading and displaying the range of the

tower were implemented. The idea behind more scalable upgrading is to be able to upgrade the

towers higher than just two levels and at certain levels, the tower gains “special abilities” without

having to hard code elements and properties in Unity. For example, the max level of all towers is

level 10 and at level 5, archer towers get fire arrows dealing damage over time to the enemy.

Additionally, the kunai tower gains poison kunai at level 5, which slows enemy movement for a

limited time. At level 10, both of these towers start shooting multiple projectiles. In order to

accomplish this, each TowerBlueprint was given a maxLevel variable. Additionally, the

upgrade function now accesses the tower information and changes the values based on the tower.

Once this code was in place, upgrading towers became more dynamic and can be changed very

easily.

69

Code Listing 4.6. Pseudocode for upgrading a tower and altering its stats

To give the player an idea of what each upgrade to the tower does, upgrade details are

given in the tower UI. The tower UI provides the amount of damage that is added to the tower,

the increase in range, the increase in the speed of projectiles, and any other special effects that

may be added to the tower. In the game, there are four special upgrades. Fire arrows deal damage

over time by taking a percentage of the damage the archer tower normally deals and dealing that

amount of damage to the enemy every second a certain amount of times. Poison kunai slow the

enemies by setting their speed to a percentage of their original speed for a certain duration of

time. Once the duration is over, the speed is set back to normal. Multishot allows towers to target

multiple enemies at once. Instead of getting one target, the tower gets all targets within range and

create a projectile for each enemy. Finally, the faster wave upgrade for the bell tower increase

the speed at which the shockwave reaches the enemies.

70

Code Listing 4.7. Pseudocode for Fire and Poison

Code Listing 4.8. Pseudocode for Multishot

To allow the user to see the range of the tower, tower range consisted of a line renderer

and a translucent circle. The line renderer represented the outer radius of the tower’s range while

the translucent circle was used to fill in the circle to make it more aesthetically pleasing. When

the player clicks on a tower, the tower script creates a circle that is the size of the range of the

tower. The translucent circle is also instantiated and then scaled to fit the range of the tower.

When the user clicks off the tower or clicks on the tower again, the line renderer disappears and

the translucent circle is deleted.

71

Code Listing 4.9. Pseudocode for creating a line renderer representing the tower range

4.5.4 Placing Towers

Placing towers in the base model was nowhere near what was needed for the VR tower

defense game. The base model had the player select the tower to build though an overlay canvas

in screen space. Instead of this, towers are placed in world space. There are spawners located

near the player that the laser pointer can interact with. When the player clicks on the spawner, a

duplicated drag tower appears and notifies the build manager which tower is being built.

Additionally, the new tower displays the range of the tower though the same line renderer and

translucent circle approach mentioned above.

 Next, the newly instantiated tower follows the laser pointer. Wherever the end of the laser

pointer is pointing, the tower and its range follows, allowing the user to visually see where the

tower are placed as well as a general sense of how much area that tower can cover. This was

done by creating a plane normal to the laser pointer and using a ray to return distance along the

ray for where to reposition the tower.

72

Code Listing 4.10. Pseudocode for making a tower follow the laser pointer

 Finally, when the player has decided on a spot to put their tower, the tower that was being

dragged around and its range is destroyed. At the same time, the actual tower is spawned at the

point the user wanted and immediately starts attacking enemies once they are in range.

4.5.5 UI Interactions

 Many of the UI interactions in the base model of the game were done though screen

space. Information about the player’s lives, money, and wave information was displayed only to

the screen and could not be seen in the world. To start, the screen overlay containing the player

information was moved to world space so that the player can see the information in VR. Initially,

the canvas containing this information followed the player’s camera so that it was always at the

same spot relative to where the player was looking. To accomplish this, VRTK has a script called

VRTK_ObjectAlias which makes the canvas a child of the VR camera, thus following the

camera wherever it is looking.

After testing, it was determined that showing the UI information like this was not good

because it could not always be seen and would go through gameobjects. Instead of having the

canvas follow the camera, the canvas was put at a fixed location near the player. The UI canvas

would now always face the VR camera instead of follow the camera to provide optimal angles of

viewing.

73

From there, players also needed to be able to interact with the UI elements. Since VR

doesn’t work the same as a mouse and keyboard, changes needed to be made to the UI canvases.

For each UI button that needed to be interacted with, a canvas was needed with

VRTK_UICanvas attached as a component. This allowed the laser pointer to be able to “press”

UI buttons that are a child of the canvas. As a result, UI elements like upgrading and selling

towers needed to be altered in order for the player to be able to interact with it thought the laser

pointer in VR.

Figure 4.14. Converting the Tower UI to be intractable with the laser pointer

Furthermore, the Pause menu was also altered to allow for laser pointer interaction but it

also only appears when the menu button on the controller is pressed. This was done by creating

an event that listens for the buttonTwoPress on the controller. Once this event is triggered,

the Pause menu appears and the game stops.

 Additional information was also added to the player information. Originally, there was no

information about towers that allowed players to see how much damage a tower does or how

much it costs. To do this, whenever the laser pointer hovers over a spawner, the player

information UI displays the tower’s name, damage, range, and cost. In order to implement this

with a laser pointer, the VR controllers needed to be given specific events to listen for. In this

case, an event was added to the controllers for whenever the destination marker of the laser

pointer either enters or exits a collider. When this happens, the event triggers a function that

checks the tag of the object. If the object matches a spawner, it updates the player UI with the

correct tower information and position the UI so that it is right above the spawner.

74

 The laser pointer hover events also have one additional functionality. It checks if the laser

is hovering over a node. This enables the node to change colors to tell the user if they can place a

tower at that node or not. The color is white if nothing is happening, blue if the player has

enough money to place the tower at that location, and red if the player doesn’t have enough

money for that location.

Code Listing 4.11. Pseudocode to change the color of the nodes

4.5.6 Skills

 To implement skills into the game, a canvas was used to display all the information with

a button for each skill, allowing the user to upgrade each skill. The canvas is attached to the left

VR controller by having it follow the controller’s position and rotation. Additionally, the skill

canvas only shows when the left controller’s touchpad is pressed. This was done by using event

listeners like how the pause menu was implemented. Whenever the touchpad is pressed, the

function toggles the canvas to be active.

 Finally to implement the Money skill, all that was needed was a variable to hold the

money multiplier. This value is set to one initially so that before it is upgraded, enemies gives

their normal amount. After the skill is upgraded, whenever an enemy dies, they enemy gives its

base money multiplied by the money skill multiplier.

75

4.5.7 Stage Progression

 In order to implement this staging functionality, the game constantly looks at the current

wave the player is on. Every five waves starts a new stage by setting the corresponding stage

gameobjects to be active so that as soon as the player is getting used to the map, more challenges

appear. However, each stage was activated at the end of the wave right before the new stage in

order to let the player know that more game elements have been added and allow them time to

plan and adjust to the new elements. Finally, some minor changes were made to the enemy

movement scripts to make sure that enemies do not go to the underworld before they are allowed

to.

4.5.8 Gameplay Speeds

 Many tower defense games allow players to pause the game and speed up the game. As

such, pausing and fast forwarding the game was added to accommodate this. To increase the

game speed, when players click on the fast forward button, a static variable is set to true

indicating that the game is speed up. Then, for game elements that rely on time (ie. enemy

movement, projectile movement, countdown timers, etc.), everything having to do with either

movement or countdowns were multiplied by two to simulate the game is being fast forwarded.

 Unfortunately, pausing could not be implemented by setting the timescale to zero. This

interfered with other aspects of the game like the tower UI not showing when it’s supposed to

and the laser pointer not showing sometimes. To get around this, a three static booleans was used

to indicate if the game is paused or not. If the pause button is pressed, the pause menu is

activated, or the tutorial is open, the respective boolean variable is set to true. Then, in all aspects

of the game that relied on time as noted earlier, a small snippet of code is added at the beginning

of each update function. This small snippet of code checks to see if any of these booleans are

76

true. If any are true, the update function for scripts with the snippet of code immediately returns

without allowing the gameobject to do anything, thus stopping all of its functions.

Code Listing 4.12. Pseudocode to pause gameobjects

4.5.9 Tutorial

 The tutorials were primarily handled with a UI system that pauses the game to give the

player a chance to see information. In it, boolean variables are created to store information

regarding the tutorials, specifically if a given tutorial has been seen before, if the UI should be

cleared on the next interaction, if the player is pointing at tower spawners, if an enemy has been

killed, and many more tutorials explaining the game. Almost all of the variables are set to false,

meaning that the tutorial has not been seen yet or that the event has not occurred yet. This is to

ensure that the flags have the right values to start so that the tutorials activate when the right

conditions are met. The conditions vary on what the tutorial is meant to tell the player, with

different numbers of conditions to be met for different cases. While clearText is set to true,

this is irrelevant as clearText is set based on the current text.

 When a tutorial is opened, its respective boolean variable is set to true, indicating that

that tutorial has been seen and making it so that the tutorial isn’t continuously opened. Also set to

true is the tutorialOpen variable, which was created when testing revealed that meeting the

conditions to open another tutorial overrode the currently opened tutorial. Two string values are

also set to display the information to the player, and to set a tag used for the switch statement in

77

Advance(). Also set is the aforementioned clearText; it is false when there is more text to

be shown in the given tutorial and is true when the tutorial has reached its last chunk of text.

Finally for some of the tutorials, an arrow is created in the scene at the location of certain

gameobject in order to show what the tutorial is referring to.

Code Listing 4.13. Pseudocode for tutorial popup conditions

 The tutorial UI is actually a button; interacting with it runs the Advance function, which

checks if clearText is true and a switch statement that lets the tutorial text exist in separate

chunks. If clearText is true, it sets tutorialOpen to false and hides the button by running

a function called Hide(). In the Hide function, the tutorial UI deactivates, making the UI

disappear, and unpauses the game time allowing the game to resume and the next tutorial to open

once conditions are met. If clearText is false, then the code goes through a switch statement

based on the currentText tag. The switch statement replaces the current tutorial text with the

next chunk of text, as well as setting the currentText tag to reflect what is currently

displayed. Like the initial tutorial texts, it also sets clearText based on whether or not there is

still more text to be displayed. If clearText is false and Advance() is called again, it goes

through the switch statement again and, since currentText was changed in the previous

instance of the Advance function, it goes to the relevant case.

78

Code Listing 4.14. Pseudocode advancing through a tutorial

4.5.10 Sound

 In order for the game to feel complete from the user side, sound effects needed to be

added as an audible confirmation that something has happened, such as an enemy being defeated,

a tower being built or upgraded, selling a tower, transporting between maps, and taking damage.

As the game is 3D, objects that make sounds are given an Audio Source component, while the

camera is given an Audio Listener component; this system emulates 3D sound by making it seem

like sounds come from specific sources within the world when the player hears it. Sound effects

were gathered from freesound.org. The sound effects for player damage, skill upgrade, selling a

tower, the waterfall, and enemies dying are under the creative commons zero license, meaning

that they are completely free to use, no credit is needed, and they can be used in any project as

they are in the public domain. The sound effects for the gong, bell, lava, and constructing or

upgrading towers are under the attribution license, meaning that they are free to use as long as

credit is given, but they can be used in any project. The sound effects for tutorial notifications are

under the attribution noncommercial license, which is the same as the attribution license with the

exception that it can only be used for noncommercial projects. All sound effects under the

attribution license and links to the licenses themselves are included in the appendix section.

 While the sound effects gathered were a good start for the project, all of them required

editing to be considered usable in the game. Almost all of the sound effects were either too loud

79

or too long. Some sound effects had empty space before the desired sound played, making it

seem like the sound effect played late. As such, all of the sound effects were edited in Audacity

to better serve the project. All of the sound effects had their volume lessened. The kamaitachi

death sound effect was sampled from a much larger file of an audio recording of a shrieking

mustelid; as only one of the sounds in the file was needed, the rest of the file was removed as it

did not serve the game. The player damage sound was edited slightly, though the most important

change was to the file type so that all of the files were of the same type. The tower construction

sound was also shortened as it went on too long an only parts of it were needed; the sound also

got progressively louder, so a fade out effect was added to counteract this. The gong was made

quieter and repeated application of fade out shortened and softened the sound clip without

editing the speed of the sound or abruptly cutting it off. The oni death sound effect, the tower

destruction sound effect, and the tutorial notification sound effect were the most useable upon

acquisition; the oni death sound simply needed to have the empty space before the desired sound

played to be removed, while all of them were made softer. The tutorial notification sound effect

was not made as soft as the rest since it needs to get the player’s attention as opposed to being

background noise to help immerse the player.

 Finally to implement into the game, each object that needed sound was given an audio

source component with the desired audio. Then in the code, when one of the actions mentioned

earlier happens, the audio source is played. For some gameobjects, like enemies, where the

enemy needed to be destroyed, the game audio would never play since it was attached to the

gameobject that was destroyed. So instead, the entire gameobject is not destroyed at first and

only the parts of the gameobject needed to be destroyed were destroyed.

80

4.5.11 Misc.

 To give users the ability to tell what each tower is before hovering over the spawners to

find out what the tower is, icons were placed above each spawner. Each icon represented the

weapon that the tower uses. For example, the archer tower spawner has an arrow above it. To

add additional aesthetics to the icons, all the icons rotate around to give the player nice

perspectives of the weapons.

 Many of the UI elements in the game are 2D and can be hard to see at certain angles. To

relinquish this problem, a small script to have certain UI canvas follow the VR camera was put in

place. Inside this script, the given UI canvas transform is set to look at the VR camera using the

LookAt() function. Thus, no matter where the VR camera is, the UI canvases are always at an

ideal angle for the user to see.

Figure 4.15. UI canvas looking at the VR camera

 To allow users a slightly easier time placing towers, the option to hide the spawn towers

and the gong was added to the game. This makes it so that the spawn towers and gong do not

interfere with the laser pointer since they all have box colliders that the laser pointer can interact

with. This was implemented by creating a controller event for the left trigger click. When the

81

player clicks the left trigger, all the spawn tower and gongs are set to inactive, making them

disappear. When clicked again, all game objects reappear.

 If users ever got tired of the sound in the game, a mute system was implemented. All this

required was adding another button in the pause menu canvas and creating a static variable for

muting. When the mute variable is true, the game audio does not play and when it is false, the

game audio plays as normal.

4.6 Website

4.6.1 Introduction

 The Purpose of the website was to allow users another way to see the enemies, towers,

and other game objects closer. This would allow them to see details they could not see while

playing the game. For this website, Heroku was used as the platform to make the website live

and available to use by anyone. Heroku is cloud platform that allows users to take applications

and turn them into live websites [24]. Heroku was used for this website because the team

members were familiar with it and it does not cost any money to obtain a unique URL for the

website. Heroku works similar to GitHub in the sense that users push their code to a server. This

similarity made creating the website through Heroku easy.

82

Figure 4.16. Example close up 3D model viewing on the website

4.6.2 Server

 The server.js file is the file that the Heroku servers run to start the website. The server.js

file creates the server that the website runs off of and also maintains all requests made by

webpages. For example, the webpage might need to an image, so it makes a request to the server

and then server sends the image back to the webpage. So for this project, the server.js file

handles all request like going to new webpages, images, filmbox (.fbx) files, cascading style

sheets (.css), and other JavaScript(.js) files. Additionally, when working locally, the server.js file

allows you to run the website using localhost, which is a temporary network to run the website

off of. For production and testing of a website, this is very useful.

4.6.3 Website Structure

 The website had three main types of pages. The first is the home page where the user is

able to access the web pages with all the models of a specific type. This leads into the second

type of webpage where all the models of a specific type are displayed to the user. These models

are displayed in a boxed scene with a description of the model off to the side. If the user wants to

take a closer look at the model, they can then access web pages with just one model. This is the

83

last type of web page where there is only one scene and model in the webpage that the user can

interact with to control what they want to see specifically. Finally, the player is able to access

any of these web pages through the nav bar at the top of the each web page.

4.6.4 Three.js

Three.js is a JavaScript library that allows people to create 2D and 3D computer graphics

by using WebGL (another 3D computer graphics library) as its foundation. This library was used

for showing 3D models because it had good examples of how to implement the computer

graphics and knowing WebGL was not necessary in order to implement the complex 3D

applications [30]. In order to get the desired webpage, the loader/fbx example provided by the

Three.js library was used as the base code. For the web pages that only needed one model in the

scene, two things needed to be done. The first was change the .fbx file that the program loads to

the .fbx file of the model to be displayed. Since none of the models used had animations attached

to them, the second change made to the file was getting rid of the mixer portions of the script.

These mixers is what makes the animation for the model work and since the models didn’t have

animations, this would cause errors and not render the model. Some of the models also had

transparent textures when loaded in so the object’s material needed to set to false in order for the

model to work as intended.

The controls for these scenes also needed to be changed slightly. The scenes used orbital

controls which allows the user to get a 360 degree view of the model. Since some of the models

did not have textures on the bottom of the model, the orbital controls also needed to be changed

so that the user cannot rotate the camera below the floor. This was done by altering the

maxPolarAngle in OrbitalControls.js to be Pi/2. Finally, the lightings for each model needed

to be done individually to make sure the model and its textures are seen well.

84

Code Listing 4.15. Pseudocode for loading an .fbx file

For web pages that needed multiple scenes and models, the loader/fbx example was

altered to have arrays rather than single variables. For example, the container variable, camera

variable, etc. were made into arrays and the function that used them were altered to fit the new

arrays as well. Additionally, in all the scenes created in all web pages, the models were very

small. To alleviate this, the models were scaled up so they fit nicely in the scene. Finally for the

web pages with multiple scenes, the orbital controls were not used. Instead, the cinematic camera

was used to still allow the user to see all of the model. The cinematic camera used in one of the

examples in the Three.js library had the camera go through the floor to get a view from the

bottom of the models. This was not needed, so the cinematic camera was altered to never go past

the floor and the speed of the rotation was slowed down.

Code Listing 4.17. Pseudocode for changes made to the Cinematic Camera

85

Figure 4.16. Multiple scene on one webpage

86

Chapter 5: Art

 In this chapter, the art section of the project is covered. The chapter is broken up into six

sections covering the background research done for the art in the game. This chapter also

explains the process that it takes to create the art and implement it into the game engine. Lastly,

this chapter covers different Unity engine features that add particle systems, animations, and

terrain building for the game.

5.1 Background

 Japanese Art has many variants throughout its history. Whether it is their ancient

performance art, ceramics, or very recognizable architecture, Japanese Art has evolved over time

dramatically and has developed its own unique style. Before the Edo period (1600’s), not much

hand drawn art was available except for religious prints and scrolls. The medium of painting and

drawing on paper wasn’t introduced until a Chinese derived art style called Yamato-e was

introduced. One of the first novels ever, Tale of Genji, was written and drawn in this art style

around the 11th century. Some characteristics of Yamato-e style art include “Aerial perspectives,

precise detail, clear outlines, and flat colors.” This art style, while similar to a later derivation,

was only seen in castles and in the houses of feudal lords until the Edo period when the style

evolved from Yamato-e to Ukiyo-e style [19].

 Ukiyo-e art was introduced in the Edo period from 1604 until 1868, and continues to be

an easily recognizable art style in 2018. Ukiyo-e art, as stated before, is a direct variation of its

previous art style, Yamato-e. The differences between these two art styles is that Yamato-e

portrayed paintings depicting war, leadership and royalty, while Ukiyo-e portrayed leisurely

activities of middle class families, as well as the same subjects Yamato-e were painted about

87

[31]. Another difference between these two art styles is that Ukiyo-e was much easier to mass

produce and was a lot cheaper to purchase because of the use of wood block carvings to make

the paintings. These wood block carvings act like a stamp, the artist carves out the wood block

and paints the carved area, finally stamping it on the sheet of paper. There are usually multiple

blocks with different colors assigned to the areas and different designs to add more detail to the

painting. Since these paintings were easy to mass produce, they spread around the world when

Japan started to trade with other nations. This is the reason why this style of Japanese art is still

known around the world, and is why this project is taking influence from the style [19]. For this

project, artistic analysis was performed on Ukiyo-e paintings to find influence to design the

game around stylistic aspects of the medium. Like the figure pictured below (figure 5.1), many

other Ukiyo-e paintings looked very artistically similar to each other. Some containing more

detail or color, but most staying stylistically the same with a clear precise outline around all

objects.

Figure 5.1 Example of Ukiyo-e art, taken from UKIYO-E PRINT HISTORY [31]

 The implementation of this art style is shown in this game from the textures of the

models, the menu screens (shown below in figure 5.2), and the interfaces. The main

implementation into the game from Ukiyo-e style was the clear black outline of the objects. The

88

black lines are important to the game because it provides a unique look to the models without

sacrificing any detail from the texture. The shader used was a free Unity script called quick

outline. By applying this shader to materials, when the game is loaded, the shader creates a black

background on the object so that there is a black outline around the object (shown below in

figure 5.3). Most objects were able to have this shader applied to it but some could not have it

because the black background sometimes interfered with other object’s materials. For example,

figure 5.4 shows a bridge cross the river in the game that leads to the grid where the player is in

the game. The bridge and torii gate clearly have a black outline to them, but the nodes, rock wall,

and pathways do not. The reasoning behind that is because the shader shows through other

objects that have the same shader applied to them.

Figure 5.2 In game title / menu screen

Figure 5.3 All towers featured in game with black outline

89

Figure 5.4 Bridge and torii gate models with black outline

5.2 Reference Art and Sketching

 To implement this art style into the game through all of the assets that needed to be made,

a lot of work and research was needed to find relevant reference art, as well as to create initial

sketches for in game assets. When looking for reference art for assets in the beginning of this

project, research obtained from the background chapter helped find the ideas of what art

references to search for. When the research on the background was finished, all of the initial

ideas of what was going to be implemented into the game was established. These ideas of

implementation turned into initial assets for the game by the means of brainstorming and

research expeditions to local temples, castles, and parks for inspiration. With the brainstorming

and inspiration, the art style of the assets was initially drafted. These first drafts came in the form

of humans as the placeable towers, and Yōkai (shown below in figures 5.5 and 5.6).

90

Figure 5.5(L) and 5.6(R) Initial sketch for samurai warrior and Nue enemy respectively

 The process of finding exactly what to use for the enemies and towers was to look up

Yōkai and Japanese weapons. As already mentioned in chapter 2 section 2 of this report, after

getting an initial idea of Yōkai , the group talked about what Yōkai would be good for the game

and why.

Figure 5.7 Initial sketch of archer tower character

 The reason that the game does not have humanoid 3D models, like the one sketched in

figure 5.6, was due to time constraints. There was not enough time to make all the details from

scratch for all of the assets in the short amount of time to create this project. Since that idea was

shortly lived, concepts of the towers themselves were sketched to help create their initial 3D

91

models. The concepts sketched were inspired from personal travels to traditional Japanese towers

and turrets across Japan, which are sketched below in figures 5.8 and 5.9.

Figures 5.8 (L) and 5.9 (R). Initial sketch for the kunai tower and archer tower respectively

5.3 Modeling and Texturing

When creating the models for the VR game, a few programs were used for different

purposes. This project utilized Autodesk Maya because of the group’s familiarity with the

program and its easy availability for students. Autodesk Maya was used to make the initial assets

for the towers, projectiles, other simple non-organic shaped objects such as torii gates and the

player tower as shown below in figures 5.10 and 5.11.

92

Figures 5.10 (L) and 5.11 (R). Initial 3D models for the torii gate and archer tower respectively

For the organic shapes, a program called Autodesk Mudbox was used. This program was

used because it was a free sculpting tool that was fairly easy to pick up and learn. The initial plan

was to use Zbrush, but the software is very expensive and wasn’t readily available at the lab

where the game was worked on. Mudbox does not have nearly as many features as Zbrush, and

no one in the group knew how to use this program before this game. However, because it is from

the same company as Maya (Autodesk), there were some similarities with the interfaces and

wasn’t that difficult to understand. This program was used to create objects such as the enemy

character models below in Figure 5.12.

Figure 5.12. Drafts for Kamaitachi model made in MudBox

93

All of the objects made in Maya and Mudbox also have a UV map, which is basically a

2D representation of the 3D object. All of the UV maps are hand made through maya’s UV

editor and then exported to texture the object. A large amount of time and effort went into

making sure that the UVs were the right proportion to the object, as well as trying to hide the

seams in the objects. The reason that it is difficult to do this is because the way Maya makes UVs

sometimes messes with the proportions of the UVs compared to the object, as seen below in

figure 5.13.

Figure 5.13. Maya’s UV editing screen (UVs for 3D object shown on right)

 When the UVs were finished, they were exported as .tiff files. The program used to

texture these UV maps was Adobe Photoshop. Photoshop was used to texture these files because

of familiarity with the program, as well as its versatility with creating textures and attention to

detail and polish.

94

Figure 5.14. Texture for Kunai tower with UVs visible with green outline

 The process of making these textures had to do with reference images, and using

techniques to mimic the texture. For example, a texture for the Oni model (Figure 5.15 below)

utilized the “filter tool” by adding both a Gaussian Blur to the image and then adding a noise

filter to mimic a skin texture.

Figure 5.15. Example of filters used to mimic textures like skin

 Photoshop was also used because of its simple way of creating a normal map for the

object (example shown below in figure 5.16). A normal map is a texture that applies to the UVs

that gives the illusion of 3D bumps and textures while not taking up any more polygons than the

object has. Normal maps can be applied in both Maya as well as in Unity.

95

Figure 5.16. Kunai tower texture after the 3D normal map filter is applied

5.4 Animation

Animations are a staple part of any game. Giving objects the ability to move and to be

able to interact with the game adds to the realism and immersion into the environment of the

game. There are a couple of difference types of animation used in this project, the first one being

simple object animations in Unity. This game engine has a built in animation tool that creates

animations that you can directly assign to an object. Unity can do complex animations, however,

the group is more familiar with rigging in other programs such as Autodesk Maya. Unity's

animation tool has an option to transform, rotate, or scale the object for animating.

These simple transformative animations are applied to objects such as the gong, the icons above

the towers, and the bell on the bell tower.

 For more complex objects, such as the Yōkai models, a few different programs were

used. For the Oni model, a website called Mixamo2 was used that automatically animates

humanoid objects was used (Website interface is shown in figure 5.17). The reason that this

2
 Website link for Miximo: https://www.mixamo.com/#/

96

website was used was because of the time that was given to finish the project, and because of the

group’s experience with 3D animation and rigging was minimal. Using this website saved the

group days of working to rig and animate the Oni model. As useful as this site was for rigging

and animating humanoid objects, it couldn’t animate quadrupeds (being that walks on 4 legs).

Figure 5.17. Mixamo interface for animations

 Since the other two models used as enemies in the game were quadrupeds, they had to be

hand rigged and animated. The group has had little experience rigging and animating in 3D, and

no one had ever rigged and animated a quadruped. Both of these enemies are quadrupeds so the

rigging was very similar from one object to the other. Unfortunately, there was not enough time

to fully develop the Nue model and plans for including the Nue had to be scrapped and replaced

with a stronger Oni variant. Similarly, there was not enough time for the Kamaitachi model to be

rigged and animated. The model was changed to be floating on a cloud because of time

restraints, as shown below in figure 5.18. Choosing a cloud was because of the theme of the

Kamaitachi, that the Yōkai travels in storms and typhoons. For more information on the enemies,

refer back to Chapter 2.2: Japanese Influences.

97

Figure 5.18. Kamaitachi model riding on top of a cloud

5.5 Implementation of Art Assets into Unity

 When the Models, textures, normal maps, and animations were all finished for the modes,

they were then imported into Unity. The 3D models made in Maya and Mudbox can be exported

in many ways to fit into a Unity scene. For this project, the models were exported as .obj

and .fbx files. The models exported as .obj were models that did not have animations attached to

them, examples of this type of model would be all of the tower models. Objects were exported

as .fbx for two reasons: If it had an animation attached to it, or if the model was being used on

the website. The models needed to be exported as .fbx because it was the easiest way to

implement into the website. For other imports, such as textures and normals maps, it did not

matter what file type it was. For consistency, all of the textures and normal maps are .png files.

 Once all of the files are imported into the asset list, the 3D models all need to be assigned

a material in order to show the textures and normals maps made for them. Materials can be easily

made through Unity and the textures and normal maps can easily be dragged onto the material

through the material interface. The material interface in Unity is shown below in figure 5.19.

98

Figure 5.19. Material interface in Unity

Once the material has the normal map, texture, and whatever other file types are attached

to the material (specular maps, bump maps), it can now simply be dragged on to the 3D model

that uses those textures. Once applied, the settings on the material can be tweaked to change the

appearance of it. Settings that can be changed include the intensity of the normal map, and the

metallic and smoothness of the texture. Importing models, textures, and normal maps is easy to

implement into a Unity scene.

Something a bit more difficult to apply to a Unity scene is animations. Animations in this

project were all imported as .fbx files, just for the sake of consistency. Animations when

imported need to have a rig be applied to them that already exists in order to work. This rig is the

avatar for the animation; it is expected that whatever game object the animation is attached to has

a similar rig as the avatar. Naturally, if the game object and the avatar use the same rig, there are

no problems. All animations for an entity are placed in an animator, which serves as a state

machine that controls when animations play.

Figure 5.20. Simple animator with only one animation for Oni

99

Figure 5.14 shows an example of an animator used with the Oni enemies. In this instance,

there is only one animation: walking. Walking is transitioned from Entry, which means that

Walking is played when the object enters the scene. More animations can be added to the

animator and are linked by transitions which use scripts to define the behavior of the transition,

such as when the transition should occur (e.g. pressing the jump button to transition the player

from a grounded state to the jump animation, which flows into a falling animation when the

jump ends, which continues until the player either lands and transitions back to a grounded state

or interacts with another object, such as a hangable ledge or an enemy). An animator component

is then added to the game object to be animated, using the state machine created as the controller

and the rig to be animated as the avatar.

Figure 5.21. Animation implementation using an animator in the Unity Manual

5.6 Creating the Game Environment

5.6.1 Environment Building

 As stated before, there were quite a few reasons why Unity was used as the game engine

for this project. One of those reasons was also because of Unity’s terrain building tools. This tool

allows one to build a level for a game with little to no experience in the engine. There are

100

different brushes to choose from which change the height and color of the map. The right side of

figure 5.22 below shows the interface for the terrain builder in Unity.

Figure 5.22. Unity’s built in terrain interface

 The environment for both levels of this game were made with the terrain assets provided.

The terrain made was one of the most important parts of the levels when it came to building the

environment. To texture the environment, the Unity standard assets, or a free set of game assets

provided for free by Unity, were used to texture the surface of the environment.

 Another aspect of the game that used Unity standard assets was the trees. Due to time

constraints, models provided for free by Unity were used to help build the environment. These

models are already textured and are optimized to fit into any scene. Trees in Unity can be applied

to the “Tree brush” in the terrain interface. Trees, and essentially any model, can be applied as a

brush and can be placed anywhere on the terrain. There are settings, as shown in figure 5.23

below, that this brush that can change the size of the brush, the height of the trees, as well as the

spread of them when used on the environment. The tree models automatically are applied to the

surface with little or no gap between the tree and the terrain.

101

Figure 5.23. Tree brush interface for terrain

5.6.2 Skybox

 To create the background of the game, an asset called a skybox is used. A skybox is a

cube that surrounds the entire scene and does not move or scale depending on your location. A

skybox is composed of six images, all of which cover the inside surface of a cube. A good way

to visualize what a skybox would look like is to imagine the game being inside of a very large

cube, the skybox being the cube itself. The images for the skybox itself were made an edited in

Photoshop and imported onto the skybox. The interface for the skybox is shown below in figure

5.24.

Figure 5.24. Skybox interface

102

5.6.3 Particle Systems

Particle systems used are tweaked to help them fit into the game and add more depth to

the design of the level. For example, one particle system in the level is the sun. There are over

20,000 particles appearing around a sphere to impersonate the way the sun acts. This particle

system uses many tools provided by Unity to make it look the way it does, as shown below in

figure 5.25. These tool were how long the particle stays on screen (random variation from 5 to 10

seconds) and the speed of the particle (from 0 Units to 1.5 Units). Some particles also randomly

rotate, and have different colors and alpha values. These particle system tools allow for a lot of

variation in particles the users can make. For example, a few more particle systems used in this

level are waterfalls, and lava (shown below in figures 5.26 and 5.27). The waterfall particle

system was made with the help of an online tutorial3 while the lava is a variation off of that

tutorial however, many of the values were changed to meet desired visuals. All of these particle

systems add a lot to the immersion of the player in the level.

Figure 5.25. Particle system interface in Unity with a particle system set up for the sun

3
 Online particle system tutorial for waterfall and lava particle systems: https://www.youtube.com/watch?v=XhSp8nFLUi4&t=407s

https://www.youtube.com/watch?v=XhSp8nFLUi4&t=407s

103

Figures 5.26 (L) and 5.27 (R). Particle systems for lava and waterfalls respectively

104

Chapter 6: Testing

 Chapter 6 talks about the testing process and analysis of the tower defense game. A brief

overview of what the goals for testing were are described along with a description of the survey

used and the process of how testing was done. Finally, an analysis of the testing is mentioned

along with the major changes that came along as a result of the research study.

6.1 Overview

 Naturally, all of the effort put into the project would mean nothing if there was no

confirmation that our experience goals were met. As such, testing had to be done; having people

who are not working on the project to test it and share their perspectives can either confirm or

deny that the experience goals were met. It is also important that context behind the individual

testers in terms of their experience with similar projects is also considered and recorded. This is

important because different experiences or a lack thereof serve as a lens with which the project is

seen: an individual with no experience with tower defense have vastly different responses to the

project than somebody who is a veteran tower defense player. Information that was deemed

pertinent included past experience with tower defense games, as well as how the project

compares to them in terms of difficulty and complexity, how well the controls were

implemented, the quality of the art, the strategic challenge presented by the game, and the

experience generated by the game.

6.2 Survey

 In order to gauge player responses to the game after playtesting sessions, a survey was

developed. There were twelve questions in the survey addressing the game itself or the tester’s

105

past experience with similar games. The last two questions were open ended questions asking for

suggestions, comments, and giving the tester one last chance to ask the researchers questions

regarding the game. The first three questions were primarily about tower defense games in

general: ‘do you think tower defense games are hard?’, ‘how does this game compare to other

tower defenses in terms of difficulty and complexity?’, and ‘what do you find hard about playing

tower defense games?’. These questions served to gauge the tester’s own experience with tower

defense games and where the game that they just played falls with others in its genre in terms of

difficulty and complexity. This lets the researchers know the context of the rest of the data

gathered in the survey; it is expected that an individual with little experience with tower defense

games and believes them to be incredibly difficult gives vastly different responses to an

individual who is a master of tower defense games.

 The fourth question asks about the controls themselves, as they are the interface between

the player and the game. If the players believe that the controls are intuitive and makes sense,

then the game more easily opens up to them regardless of past experience with the mechanics. If

the player feels that they are fighting with the controls, then no amount of explaining the

mechanics helps as the controls are the foundation from which the mechanics are built. If

playtesters respond that the controls are unintuitive, that is a massive warning sign and steps

must be made immediately to rectify the problem as bad controls paint the rest of the experience

in a negative light regardless of how polished the rest of the game is.

 The fifth question asks the tester for how they would describe the art in the game. As the

art should create the Feudal Japan-styled backdrop of the game, the tester’s description of the art

should line up with the intended setting. Of course, art in this case refers to the models, textures,

106

and environment design as not every tester was able to play with sound as either sounds weren’t

implemented yet or the tester did not have headphones to connect to the VR headset.

 The sixth and seventh questions were pertinent to the gameplay itself; they both asked the

tester to reflect on the strategic challenge presented by the game. The sixth question asked what

some of the strategic challenges were while playing the game. This could be anything from the

number of enemies to deal with at a time, the management of resources, having to look around to

see the rest of the map, or figuring out where to place towers. The seventh question specifically

asks by how much the dual world system added to the difficulty and complexity of the game. As

the addition of a second map that needs to be managed at the same time as the initial map was a

core design element of the game, it should be expected that the dual world system adds to the

difficulty and complexity in a meaningful or significant way.

 The eighth, ninth, and tenth questions asked the testers to reflect on the experience as a

whole. The eighth question asked very simply how the tester felt defending their castle from

invading enemies. This provides a raw and unprocessed response from the tester in terms of how

they felt interacting with the mechanics of the game. The ninth question focused the experience

on one of the experience goals: ‘how much does the game make you feel like a leader’.

Naturally, as this is one of the experience goals of the game, a higher response means that the

game has successfully sculpted a scenario that places the player in command of a castle to be

defended from invaders. The tenth question asked the tester to use three words to describe the

experience of playing the game, specifically asking to avoid more generic and abstract terms

such as fun. Responses to this question are how the tester felt about the experience without any

descriptive fluff; they must reflect on their experience and describe it using three words. The

107

closer that the three words reflect the intended experience, the better a job the game does at

conveying systems and mechanics that should elicit such descriptions.

6.3 Testing Methodology

 The process of playtesting formally started by sending an invitation to playtest the game

via the Takemura Labs mailing list, letting everybody in the lab know that the game was ready

for formal testing. Individuals then schedule themselves by filling in cells in a Google Sheets

page with their name; which cell they chose determined the date and time of their playtest

session.

 The session begins by presenting the tester with an informed consent form, stating the

names and email address of the investigators, an introduction to the study, the purpose of the

study, the procedures that would be followed, risks and benefits from the study, confidentiality, a

reaffirmation of the voluntary participation in the study, how to withdraw from the study, and

contact information for more information about the project and the participants’ rights. Signing

the form states that the participant has read and understood the form and wishes to participate in

the study and is confirmed by one of the investigators signing the form as well.

 At the start of the playtest session, the tester is asked about their experience with tower

defense games and VR games which serves as context to the tester’s expectations for the game.

Afterwards, they put the VR headset on and are given the controllers; once they are ready, the

game starts and they are brought to the main menu, with options to either play the game or quit.

After pressing play, the tester starts to play the game, starting with tutorials explaining the

controls and the base mechanics of setting up towers. The tester plays the game for

approximately 5-10 minutes, though they are allowed to continue playing if they choose and

108

have the time to spare. After the tester has finished playing, they are taken aside to complete the

aforementioned survey. The survey ends with questions about demographic information about

the individual for more context about the individual tester’s experience. Once the survey is

completed, the session is complete.

6.4 Results

Since the game was edited throughout the playtesting period to fix the problems

encountered, the results of our research study improved as time went on. The analysis for this

study was performed in a before phase and an after phase to show how the major changes made

to the game affected our intended player experiences. The cutoff between the before and after

phases is represents by the game before and after adding in features like sound and finished art,

as well as game balancing and rearrangements of staging. There were a total of six playtesters

before the game changes and six playtesters after, providing an even split for the testing phases.

An example of one of the analyses, the game shouldn’t be too easy but it should also not be too

hard. At the beginning of the study, the game was noticeably too easy for playtesters. However,

after performing the game balances, the game became more difficult, thus giving a hard difficult

for those without tower defense experience and a medium difficulty for those with tower defense

experience.

 When looking at the success of our intended player experience, some of the experiences

were more successful than others. The least successful out of the intended player experiences

was getting the player to feel like a Japanese commander. Looking at figure 6.1, when playtesters

were asked if they felt like a leader on a scale from 1 to 5, there was an even split between

whether people felt like a leader or not in the early responses. However, after the addition of

109

sound and more changes to the environment, more of the later playtesters said to have felt like

more of a leader. Some of the playtesters even said they felt tall, powerful, and like a commander

when asked how they felt at the top of the castle. Figure 6.2 shows a word cloud of all most of

the words people responded with when asked that question.

Figure 6.1. Results on how much people felt like a leader

Figure 6.2. Word cloud of how people felt at the top of the castle

 For the strategic challenge presented to the players, this was a big success after the first

few playtesters. Initially, the stages presented in the game made it so that the player did not have

to worry about the underworld until later in the game because they could kill enemies before they

took pits to the underworld. After rearranging the stages and introducing an enemy spawn point

in the underworld sooner, many of the playtesters felt the two level design provided a nice

110

strategic challenge. As seen in figure 6.3, more playtesters felt the two level design was more

difficult after major changes were made to the game. When asked what some of the strategic

challenges they faced while playing, many of the later playtesters mentioned their management

between the overworld and the underworld. Additionally, the limited perspective view the

players had on the map provided a great strategic challenge for the players. Although it was not

asked specifically in the survey, many of the playtesters mentioned that it was hard to get a

visualization in their head of the entire map. Playtesters mentioned that they had to look around

constantly to make sure they are not missing something on the map and said it was difficult to

manage their attention for certain aspects of the game which is exactly what was intended by

using VR.

Figure 6.3. Results on the two-level map design

 Lastly, getting players to notice the influence of Japanese culture in the game was a huge

success all throughout the study. When asked how they would describe the art in the game, many

of them mentioned that they liked all the Japanese culture that was present in the game. As

shown in the word cloud in figure 6.4, most people wrote words like Japanese, traditional, and

beautiful which accurately describes what the intended player experience was aiming for.

Additionally, almost all of the playtesters thought that the scenery was very nice and fitting for

the game.

111

Figure 6.4. Word cloud of how people described the art in the game

 Overall, the research study could be considered a success due to the improvement on the

intended player experience throughout the study. While the experiences were not as present at

the beginning of playtesting, it was more prevalent in later stages. As proof that some of these

player experiences were achieved, figure 6.5 shows a word cloud of words people used when

players were asked to list three words that described their player experience. Some of the more

popular words used by playtesters were: strategic, beautiful, Japanese, busy, and historical.

These words can clearly be tied back to our intended player experiences which was a great

surprise.

Figure 6.5. Word cloud of how people described their experience

112

6.5 Major Game Changes

6.5.1 Game Balancing

Throughout playtesting, there were noticeable game balancing issues. Towers would deal

too much damage or too little damage. Upgrading towers were too overpowered at one point

during the playtesting period. The bell tower’s stun could stun enemies infinitely and enemy

strength was static at early stages of playtesting. This made it so that players never experienced

some aspects of the game and could never lose. However, throughout the playtesting period,

many game balancing changes helped fix these issues.

Initially, the kunai tower was far superior to the archer tower. The kunai tower dealt

double the damage for half the price compared to the archer tower. To alleviate this, both towers

were made to have the same price to build. Additionally, the initial damage of both towers were

heavily reduced and had similar values; the kunai tower having slightly more damage than the

kunai tower but less range. To compensate for this massive reduction in initial damage, the

damage upgrading system was also changed to scale better than it did before. Every level, the

damage of each tower would double as well as add an additional base amount. The equation used

for this was currentDamage + constant + (towerLevel * baseDamage) where

currentDamage is the tower’s current damage, constant is some fixed value added to the

damage, towerLevel is the tower’s current level and baseDamage is the initial damage of

the tower. This, however, made upgrading too powerful and made the game feel too easy for

some playtesters. One of the playtesters also noted that when the speed of the tower’s increases

at level 5 and level 10, it essentially doubles the strength of the tower in addition to already

doubling the damage.

113

Finally, the damage upgrading system was change to add a base amount of damage plus

an additional amount equal to the tower’s level multiplied by some constant. The equation used

for this was currentDamage + constant + (towerLevel * multiplier) where

currentDamage is the tower’s current damage, constant is a fixed value added to the

tower every level, towerLevel is the tower’s current level, and multiplier is a fixed

amount of damage for the tower. This made upgrading more reasonable in the large scale of

things and made playing difficult for newer players but still gave a slight challenge to

experienced players. The increase in speed of the towers at level 5 and level 10 were also

reduced to not give a tower too massive of a boost. Even though a decent upgrading system was

found, it could still be improved, however due to time constraints, further game balancing was

not pursued.

Another problem found during early stages of playtesting had to do with the bell tower.

Whenever an enemy got stunned, it another bell tower hit that enemy, it would reset the stun

time of the enemy. So, if there are many bell towers near each other, it could stun enemies

infinitely as seen from one of the playtesters. To fix this problem, the enemies become immune

to stun for a brief duration of time after getting stunned. This makes it so that the enemy has a

little bit of time to move before it can get stunned again, allowing progression and preventing

players from only creating bell towers.

Finally, the last game balancing done to the game had to do with the enemies. Initially,

the enemies had a static health value throughout the entirety of the game. For later stages of the

game, players would be able to one-shot enemies which made the game super easy even though

the number of enemies per wave increased. Instead of using static health values, each enemy’s

health now scales based on the current wave the player is on. The equation for determining

114

health of an enemy was initialHealth + (initialHealth * (waveNumber *

multiplier)) where initialHealth is the base health of the enemy, waveNumber is

the current wave the player is on and multiplier is the percentage to increase the health by.

As the stages went on, the multiplier changed to compensate for the increase in strength the

player had.

6.5.2 Gameplay Speed

It was initially thought that the game was going to be very hectic in the mid to late stages

of the game. So, pausing was allowed at any point in the game to give players the ability to

place, upgrade, and sell towers on the go. Contrary to initial thoughts, many playtesters

mentioned that pausing the game at any time made the game easy because they could pause the

game and go back and forth between the overworld and underworld to see what was happening

to make sure they were safe. Since part of our intended player experience was to use the limited

knowledge players have as a strategic challenge, it was decided to only allow the players to

pause the game in between waves. This made it so that while enemies are on the map, the player

would have to constantly check the overworld and underworld. While in between waves, players

could take a break and set up new towers to prepare for the new game elements added.

6.5.3 Sound

While users were playtesting, it was noted that playtesters did not always know when

they had a new tutorial or when they lost a life. Due to this, sound was implemented to help

notify the player that certain events are happening in the game. For example, tutorial notification

sound, enemy death sound, player damage sound, building tower sound, selling tower sound, and

more were added.

115

6.5.4 Stages

 Some of the playtesters early on mentioned that the underworld was underwhelming

since they could just kill enemies before they get to the pits. Therefore, the stages were

introduced in a different order. As seen in the figure 6.6. below, the third torii gate is introduced

one wave earlier right after in order to make sure that the player has to do something in the

underworld.

Figure 6.6. Staging flow chart before and after testing

6.5.5 Tutorials

While some of our playtesters were not as fluent in english as other playtesters, there was

still a lack in communication for the tutorials. Players would get confused easily about when the

game was starting and did not have a sense of where things were on the map. To help with this

issue, a tutorial arrow was added to the tutorials. This arrow would point to the relevant

gameobjects in the scene that the player is currently reading. For example, when the tutorial is

talking about the Yōkai coming towards the torii gate, the tutorial arrow appears above the torii

gate to clearly show what the tutorial is talking about. Additionally, some of the content of the

tutorials were changed to get rid of confusion about certain parts of the game. For instance, at

one point the tutorial says the game starts after one of the messages, however this is not true and

there were more tutorials to go through. This was changed to mention the game is starting later

on in the tutorial.

116

6.5.6 Art/Environment

 Throughout the research study, the art changed drastically. At the beginning, the bell

tower, kunai tower, and the player tower were not completely finished. However, after the first

few playtests, all three of these towers were finished with their final design and textures added to

the scene. This significantly helped the Japanese cultural experience goal because these were

major aspects to the Japanese culture design. Additionally, the environment was changed a lot to

make it feel a little more realistic. Particle systems were added to simulate waterfalls and lava.

The skybox was fixed to be seamless; trees and fog were added to the terrain to get nature to be

more prevalent in the scene. Textures were added to the tower spots and pathways. Finally, a

bridge was added to the environment so that enemies have to cross the bridge to reach the torii

game.

117

Chapter 7: Post Mortem

7.1 What Went Right

 Ultimately, this project succeeded in what it set out to do. A tower defense game was

successfully implemented in virtual reality, and the three tower types and three enemy types

were also implemented successfully. The dual-world mechanic succeeded to provide an extra

layer of complexity and strategy to the game, and the game was given a steady difficulty curve

with a slowly expanding world with increasingly powerful enemies. Measures were made to

create balance in the game so that any strategy is viable when executed skillfully yet no single

strategy overruled the rest. Finally, the art implemented successfully represented Japanese

culture and the art style the project aimed to achieve.

 The team was also able to operate efficiently together, with no real disagreements flaring

up between individual members. Clear roles and tasks were assigned to maintain overall

efficiency, with a dedicated lead programmer, secondary programmer, and artist. When a task

was given to any individual member, the individual saw to it that the task was completed on

time. When the technical implication was nearing completion, the team was able to assist the

artist in developing and polishing art assets.

7.2 What went Wrong

 While the project as a whole was a success, there were some flaws in the project that the

team would have liked to work on or polish further. The team was only able to work on the

project for about 80 days; the first week was spent on coming up with a game idea to work on

while the second week was spent planning out the development of the chosen game idea. As a

118

result, the team lacked the time to animate the kamaitachi model or to even develop a unique

model and animation for the third enemy type. There was also only time to develop one skill for

the player to unlock and upgrade. Time constraints were further pressed by the fact that one of

the team members was also taking another class remotely to satisfy diploma requirements and,

therefore, could not entirely focus on the project.

7.3 What Was Learned

 The main thing that the team learned during the project was first-hand experience with

game development as a small team, specifically while working in Unity, a mainstream game

engine. More specifically, the team learned about developing a virtual reality game using Virtual

Reality Tool Kit and the unique development challenges inherent to virtual reality. Additionally,

the team learned about the website library Three.js to help display 3D models on a website.

Lastly, the team further refined their skill in basic Unity developments.

 The development process was also informed by what the team had learned while

immersed in the Japanese culture and the lab culture at Takemura Labs. The team also learned

about the development process of making a game of this scale and how to take responsibility for

the task given to them. Finally, the team learned what components go into handling team

dynamics and how to work well together.

 The team also learned a lot about how to implement and work with art assets in Unity on

a large scale. The artist on the team increased his knowledge on the interfaces of all of the

programs used in this project, such as: Photoshop, Unity, Maya, and Mudbox. The artist also

learned how to understand the code behind the game and what it does.

119

7.4 Future Developments

 Due to time constraints, many ideas created during the planning phase of development

had to be scrapped. As mentioned in what was intended to be implemented but wasn’t, there was

the Nue. While the functionality for the Nue was complete, the art assets were unable to be

implemented. Having a separate model to immediately differentiate between types of enemies

would serve the player by the two enemy types looking completely different and would serve the

aesthetic of the game by providing more enemy variety.

 Furthermore, there were ideas that had to be scrapped early due to scoping issues. This

includes multiple enemy types, towers having health and having the ability to be destroyed by

enemies, and ground units to directly fight enemies and repair damaged towers. Ground units

would cost less than towers but would also require food to heal damage from Yōkai; food

production would likely be a constant, with a skill to increase production. There are many Yōkai

in Japanese mythology with very specific behaviors. Before the project became VR, there was an

idea to have the map illuminated by lanterns and an enemy type that specifically extinguishes the

lanterns to lower the player’s visibility. This enemy would have been based on the Abura Akago

Yōkai, which takes the form of a small child and licks up the oil from oil lamps. To counter food

production for the ground units, there would be a passive enemy based on Hiderigami which

causes droughts. A certain enemy type, based on Bakeneko, Nekomata, and Kitsune (ordered in

increasing threat level), would be able to disguise themselves as ground units and require the

player to manually target them. The presence of the Kitsune enemy would spawn Kitsunebi,

weak fireball enemies that attack towers but also alert the player to the Kitsune on the map.

 More tower types were initially planned before settling on the three used in the project.

One tower would behave differently from the others and would be placed on the path the Yōkai

120

travel on. The barricade prevents Yōkai from continuing down the path, requiring them to break

the barricade to proceed. This ‘tower’ would have been incredibly cheap to offset the fact that it

is destructible and does not damage enemies. However, the ultimate function of having an option

that impedes the Yōkai from moving was already handled by the bell tower. Moreover, on major

upgrades, the tower models would change to reflect the increased and functionality.

 One of the ideas thrown around early in development was to make the game multiplayer.

As this option was considered after the project shifted into virtual reality, multiplayer

functionality would have been asymmetrical; the player using the VR headset would play the

game as normal while the second player would command the invading Yōkai, choosing where

they spawn, what order they spawn in, and which paths to prioritize. Ultimately, it was found

that balancing the game for a single player was difficult enough on its own and that a solid single

player experience was more desirable than a messy multiplayer experience.

 Finally, if given more time, animations would have been implemented to give more life

to the kamaitachi. Instead of having the kamaitachi float on a cloud, the original intention was

for it to have a walking animation. But since this was not possible with the time constraints, the

cloud was put in and the whole enemy was moved up and down as it moves through the map.

121

Chapter 8: Conclusion

 Over the course of three months, this group made a VR tower defense game in Unity

game engine. The game had three main experience goals: have the player feel like a commander,

provide strategic challenges to the player throughout the game, and portray the Japanese

influence through the art and style of the game. In order to accomplish these player experiences,

the game was designed in such a way to accomplish this in the best way possible. The two level

design and large amount of routes to the castle made for a great strategic challenge. Putting the

player at the top the castle looking down at the towers and enemies helped make the player feel

like a commander. Finally, the Ukiyo-e art style and the traditional Japanese architecture and

mythological creatures helped portray the Japanese influence on the game.

The game started out as a simplistic tower defense design based off of a tutorial found

online. Since this design was far from the complexity required for this game, many changes were

made. First the game was changed so that it is playable in VR as well as enabling the user to

interact with towers. Additionally, a two level design allowing enemies to find new routes to the

castle was implemented. Finally, many more minor additions were added to the game in order to

polish the functionality of the game. In terms of art, it started off with sketches based on

background research of possible enemies and towers in the game. From those sketches, 3D

models were made, textured, and brought into Unity to implement the art assets. Once the art

assets were in Unity, other aspects were added to the scene like the environment, particle

systems, and shaders to add to the detail of the art in the game.

After implementing the game in Unity and testing over the course of the later half of

development, the game had sufficiently met the experience goals. Early testing showed that the

experience goals initially seemed unmet. A more complete version of the game with game

122

balancing, sound, improved environment, shaders, and models implemented, as well as other

technical tweaking, showed a noticeable increase in the success of the intended player

experience. As a result, the project succeeded in delivering the product that it had aimed to

deliver.

123

References

[1] Alex Rubens. 2013. The creation of Missile Command and the haunting of its creator, Dave

Theurer. (August 2013). Retrieved October 9, 2018 from

https://www.polygon.com/features/2013/8/15/4528228/missile-command-dave-theure

[2] Anon. 2018. Best virtual reality SDK for VR development in 2018. (July 2018). Retrieved

October 9, 2018 from https://thinkmobiles.com/blog/best-vr-sdk/

[3] Anon. Ambush! - Tower Offense - Apps on Google Play. Retrieved October 9, 2018 from

https://play.google.com/store/apps/details?id=air.funfactory.ambush&hl=en

[4] Anon. Anomaly games – Official site of strategy games franchise created by 11 bit studios.

Retrieved October 9, 2018 from http://www.anomalythegame.com/

[5] Anon. Blue Ogre. Retrieved October 9, 2018 from http://okami.wikia.com/wiki/Blue_Ogre

[6] Anon. Fire Attack. Retrieved October 9, 2018 from

http://www.intheattic.co.uk/fire_attack.htm

[7] Anon. Greenhouse. Retrieved October 9, 2018 from

http://www.intheattic.co.uk/greenhouse.htm

[8] Anon. Kiwi games industry booms. Retrieved October 9, 2018 from

http://www.gameplanet.co.nz/news/i138234/Kiwi-games-industry-booms/

[9] Anon. Main board of the original Game & Watch (Ball). Retrieved October 9, 2018 from

https://retrocomputing.stackexchange.com/questions/1613/main-board-of-the-original-game-

watch-ball

[10] Anon. Orcs Must Die! Unchained. Retrieved October 12, 2018 from

https://orcsmustdie.com/#!/en

https://www.polygon.com/features/2013/8/15/4528228/missile-command-dave-theure
https://thinkmobiles.com/blog/best-vr-sdk/
https://play.google.com/store/apps/details?id=air.funfactory.ambush&hl=en
http://www.anomalythegame.com/
http://okami.wikia.com/wiki/Blue_Ogre
http://www.intheattic.co.uk/fire_attack.htm
http://www.intheattic.co.uk/greenhouse.htm
http://www.gameplanet.co.nz/news/i138234/Kiwi-games-industry-booms/
https://retrocomputing.stackexchange.com/questions/1613/main-board-of-the-original-game-watch-ball
https://retrocomputing.stackexchange.com/questions/1613/main-board-of-the-original-game-watch-ball
https://orcsmustdie.com/#!/en

124

[11] Anon. Plants vs Zombies Video Games - PopCap Studios - Official EA Site. Retrieved

October 12, 2018 from https://www.ea.com/studios/popcap/plants-vs-zombies

[12] Anon. Products. Retrieved October 9, 2018 from

https://unity3d.com/unity?_ga=2.260461582.2094885780.1534904523-773745064.1532594833

[13] Anon. Red Ogre. Retrieved October 9, 2018 from http://okami.wikia.com/wiki/Red_Ogre

[14] Anon. Safebuster. Retrieved October 9, 2018 from

http://www.intheattic.co.uk/safebuster.htm

[15] Anon. The great Nintendo Handheld Games from the 80's ...! Retrieved October 9, 2018

from https://www.gameandwatch.ch/en/game-watch-information/all-60-games.html

[16] Anon. The Symbol of Osaka. Retrieved October 9, 2018 from

https://www.osakacastle.net/english/history/index.html

[17] Anon. The Ultimate Yōkai Guide. Retrieved October 27, 2018 from

https://www.wattpad.com/357572877-the-ultimate-yōkai-guide-kamaitachi

[18] Anon. The Ultimate Yōkai Guide. Retrieved October 27, 2018 from

https://www.wattpad.com/340886513-the-ultimate-yōkai-guide-oni

[19] Anon. Ukiyo-e Movement, Artists and Major Works. Retrieved October 9, 2018 from

https://www.theartstory.org/movement-ukiyo-e-japanese-woodblock-prints.htm

[20] Anon. Unity Services - Collaborate. Retrieved October 1, 2018 from

https://unity3d.com/unity/features/collaborate

[21] Anon.Vermin. Retrieved October 9, 2018 from http://www.intheattic.co.uk/vermin.htm

[22] Anon. VIVE Virtual Reality System. Retrieved October 9, 2018 from

https://www.vive.com/us/product/vive-virtual-reality-system/

https://www.ea.com/studios/popcap/plants-vs-zombies
https://unity3d.com/unity?_ga=2.260461582.2094885780.1534904523-773745064.1532594833
http://okami.wikia.com/wiki/Red_Ogre
http://www.intheattic.co.uk/safebuster.htm
https://www.gameandwatch.ch/en/game-watch-information/all-60-games.html
https://www.osakacastle.net/english/history/index.html
https://www.wattpad.com/357572877-the-ultimate-y%C5%8Dkai-guide-kamaitachi
https://www.wattpad.com/340886513-the-ultimate-y%C5%8Dkai-guide-oni
https://www.theartstory.org/movement-ukiyo-e-japanese-woodblock-prints.htm
https://unity3d.com/unity/features/collaborate
http://www.intheattic.co.uk/vermin.htm
https://www.vive.com/us/product/vive-virtual-reality-system/

125

[23] Anon. Welcome to VRTK · VRTK - Virtual Reality Toolkit. Retrieved October 9, 2018

from https://vrtoolkit.readme.io/docs

[24] Anon. What is Heroku | Heroku. Retrieved October 9, 2018 from

https://www.heroku.com/what

[25] Anon. Yokai.com. Retrieved October 9, 2018 from http://yokai.com/

[26] Bruce Bower. 2011. Humans: Kids perceive ownership principles: Concept of property

rights may come naturally to preschoolers. Science News179, 13 (July 2011), 17–17.

DOI:http://dx.doi.org/10.1002/scin.5591791317

[27] Damien McFerran. 2010. Feature: The History of the Nintendo Game & Watch. (February

2010). Retrieved October 9, 2018 from

http://www.nintendolife.com/news/2010/02/feature_the_history_of_the_nintendo_game_and_wa

tch

[28] Duy-Nguyen Ta Huynh, Karthik Raveendran, Yan Xu, Kimberly Spreen, and Blair

Macintyre. 2009. Art of defense. Proceedings of the 2009 ACM SIGGRAPH Symposium on

Video Games - Sandbox 09(2009). DOI:http://dx.doi.org/10.1145/1581073.1581095

[29] Ereny Bassilious et al.2011. Power defense: A video game for improving diabetes

numeracy. 2011 IEEE International Games Innovation Conference (IGIC)(2011).

DOI:http://dx.doi.org/10.1109/igic.2011.6115113

[30] Jos Dirksen. 2015. Learning Three.js - the JavaScript 3D Library for WebGL: create

stunning 3D graphics in your browser using the Three.js JavaScript library, Birmingham ;

Mumbai: Packt Publishing.

[31] Lawrence Bickford. 1993. UKIYO-E PRINT HISTORY. (July 1993). Retrieved October 9,

2018 from https://www.jstor.org/stable/42597774

https://vrtoolkit.readme.io/docs
https://www.heroku.com/what
http://yokai.com/
http://dx.doi.org/10.1002/scin.5591791317
http://www.nintendolife.com/news/2010/02/feature_the_history_of_the_nintendo_game_and_watch
http://www.nintendolife.com/news/2010/02/feature_the_history_of_the_nintendo_game_and_watch
http://dx.doi.org/10.1145/1581073.1581095
https://www.jstor.org/stable/42597774

126

[32] Luke Mitchell. 2008. Tower Defense: Bringing the genre back. (June 2008). Retrieved

October 9, 2018 from

https://web.archive.org/web/20140203062250/http://palgn.com.au/11898/tower-defense-

bringing-the-genre-back/

[33] Mark Cartwright. 2017. Shinto. (April 2017). Retrieved October 9, 2018 from

https://www.ancient.eu/Shinto/

[34] Michael Dylan Foster and Kijin Shinonome. 2015. The book of yokai: mysterious creatures

of Japanese folklore, Berkeley: University of California Press.

[35] Noriko Fujii. The history of Japanese copper coins: Illustrated from the collection of the

Currency Museum of the Bank of Japan. Journal of the Oriental Society of Australia, The

Volume 45 (2013), 77–92.

[36] Noriko Reider. 2013. Japanese demon lore: oni from ancient times to the present, Place of

publication not identified: Utah State Univ Press.

[37] Onix-Systems. 2017. What VR platforms are best for game development? – Onix-Systems –

Medium. (July 2017). Retrieved October 9, 2018 from

https://medium.com/@onix_systems/what-vr-platforms-are-best-for-game-development-

b5b65084a2c2

[38] Ori Friedman. 2010. Necessary for Possession: How People Reason About the Acquisition

of Ownership. (July 2010). Retrieved October 25, 2018 from

http://journals.sagepub.com/doi/abs/10.1177/0146167210378513

[39] Ori Friedman, Julia W. Van de Vondervoort, Margaret A. Defeyter, and Karen R. Neary.

2013. First Possession, History, and Young Children's Ownership Judgments. (March 2013).

Retrieved October 25, 2018 from https://onlinelibrary.wiley.com/doi/full/10.1111/cdev.12080

https://web.archive.org/web/20140203062250/http:/palgn.com.au/11898/tower-defense-bringing-the-genre-back/
https://web.archive.org/web/20140203062250/http:/palgn.com.au/11898/tower-defense-bringing-the-genre-back/
https://www.ancient.eu/Shinto/
https://medium.com/@onix_systems/what-vr-platforms-are-best-for-game-development-b5b65084a2c2
https://medium.com/@onix_systems/what-vr-platforms-are-best-for-game-development-b5b65084a2c2
http://journals.sagepub.com/doi/abs/10.1177/0146167210378513
https://onlinelibrary.wiley.com/doi/full/10.1111/cdev.12080

127

[40] Panagiotis Petridis, Ian Dunwell, Sara De Freitas, and David Panzoli. 2010. An Engine

Selection Methodology for High Fidelity Serious Games. 2010 Second International Conference

on Games and Virtual Worlds for Serious Applications(2010). DOI:http://dx.doi.org/10.1109/vs-

games.2010.26

[41] Peter Nagy and Bernadett Koles. 2014. “My Avatar and Her Beloved Possession”:

Characteristics of Attachment to Virtual Objects. (October 2014). Retrieved October 25, 2018

from https://onlinelibrary.wiley.com/doi/full/10.1002/mar.20759

[42] Rich. 2015. The Unique Weapons of Ancient Japan. (August 2015). Retrieved October 9,

2018 from https://www.tofugu.com/japan/ancient-japanese-weapons/

[43] Ryan Clements. 2012. Why We Love Tower Defense - IGN. (September 2012). Retrieved

October 9, 2018 from http://www.ign.com/articles/2012/09/24/why-we-love-tower-defense

[44] Spencer and Ishaan. 2013. How Muramasa: The Demon Blade Was Made To Feel

Convincing. (March 2013). Retrieved October 9, 2018 from

http://www.siliconera.com/2013/03/27/how-muramasa-the-demon-blade-was-made-to-feel-

convincing/

http://dx.doi.org/10.1109/vs-games.2010.26
http://dx.doi.org/10.1109/vs-games.2010.26
https://onlinelibrary.wiley.com/doi/full/10.1002/mar.20759
https://www.tofugu.com/japan/ancient-japanese-weapons/
http://www.ign.com/articles/2012/09/24/why-we-love-tower-defense
http://www.siliconera.com/2013/03/27/how-muramasa-the-demon-blade-was-made-to-feel-convincing/
http://www.siliconera.com/2013/03/27/how-muramasa-the-demon-blade-was-made-to-feel-convincing/

128

Appendices

Appendix A: Informed Consent Agreement Form

Informed Consent Agreement

Investigators: Jason Abel, jabel@wpi.edu; Adam Moran, asmoran@wpi.edu; Will Suriner,

wesuriner@wpi.edu

Introduction: You are being asked to participate in this research study on Toyonaka Tower

Defence. Before we begin with the study, we must make sure you are fully informed about the

purpose of the study, the procedures to be followed, and any benefits, risks or discomfort that

you may experience as a result of your participation before you agree to participate. This

informed consent agreement form provides all of this information so that you may make a fully

informed decision regarding your participation.

Purpose of the study: This study investigates gameplay of a Toyonaka Tower Defense (name

subject to change) by researching the different player experiences we hope to achieve through

the tower defense game such as: 1) immersion through Virtual Reality; 2) strategic challenges

through various level design choices; 3) Japanese culture through the story, art, and gameplay.

Obtaining this data through this study is needed in order to understand the experiences of users

without the influence of the creators. The data gathered from this study will help in revising the

gameplay experience of the user and to further improve the immersion and strategic challenges.

Procedures to be followed: You will first be asked about your experience with tower defense

games and VR games. Then you will play a game that combines VR and tower defense for

approximately 5-10 minutes. Finally, you will be asked questions regarding your thoughts

around the gameplay of the tower defense game as well as basic demographic information.

Risks to study participants: Long exposure to computer screen, potential motion sickness from

playing in VR. If at any point during the study you do not feel comfortable, please let an

administrator know and they will end the session.

Benefits to research participants and others: There are no direct benefits to participating in

this study besides your enjoyment of a videogame. The results of this study may enable us to

refine and polish our game.

129

Confidentiality: The information that you give will be handled anonymously and confidentially.

Your information will be assigned a ID number; however, your name will not be linked with

your participant number. Your name or identifying qualities will not be used in any publication

or presentation.

Voluntary participation: Your participation in this study is completely voluntary.

How to withdraw from the study: If you want to withdraw from the study, please tell the

researcher and leave the room. Your data will be destroyed. If you would like to withdraw after

your materials have been submitted, please contact us at jabel@wpi.edu

For more information about this research, contact:
Jason Abel, Adam Moran, Will Suriner. Email: jabel@wpi.edu

For more information about the rights of research participants contact:
WPI IRB Chair: Professor Kent Rissmiller, Tel. 508- 831-5019, Email: kjr@wpi.edu

WPI’s Human Protections Administrator: Gabriel Johnson, Tel. 508-831-4989, Email:

gjohnson@wpi.edi

 WPI Faculty Advisor: Gillian Smith, Tel. 508-831-6986, Email: gmsmith@wpi.edu

By signing below, you acknowledge that you have been informed about and consent to be a

participant in the study described above.

____________________________ Date: ____________

Study Participant Signature

Study Participant Name (Printed)

____________________________ Date: _____________

Administrator Signature

130

Appendix B: Playtest Survey

Participant ID Number: ________

__

Thank you for playing our game. We would now like to ask you some questions about your

experience while playing the game.

1) In general, do you think Tower Defense games are hard?

a) Extremely hard

b) Hard

c) Medium

d) Easy

e) Don’t know/No experience

2) If you have played other tower defense games before, how would you compare them to

this game in terms of difficulty, complexity, etc?

__

__

3) What do you find hard about playing tower defense games?

__

__

4) Did the controls seem intuitive?

a) Intuitive

b) Easy after a couple minutes

c) A little confusing

d) I never got the hang of it

5) How would you describe the art shown in the game?

__

__

131

6) What were some of the strategic challenges you face while playing the tower defense

game?

__

__

7) How difficult do you think the two-level design made the game?

a) Very Difficult

b) Hard

c) Medium

d) Easy, no problem at all

8) How did you feel fighting against the Yōkai at the top of the castle?

__

__

9) On a scale from 1 - 5, how much did you feel like a leader?

a) 5 (I felt like a leader)

b) 4

c) 3

d) 2

e) 1 (I didn’t feel like a leader at all)

10) What are 3 words that describe you experience playing the tower defense game? (Try not

to use general words like “Fun”)

a) ________________________

b) ________________________

c) ________________________

11) Do you have any suggestions on how to make the game better?

__

__

12) Do you have any questions?

__

__

132

Demographic Questions

1) What gender do you identify with, if any?

a) __________________________

b) Prefer not to disclose

2) What is your age?

a) 18 - 29

b) 30 -39

c) 40 - 49

d) 50+

3) Please note your ethnicity. Check all that apply.

a) Japanese

b) Chinese

c) Vietnamese

d) Korean

e) Hispanic

f) African

g) Indian

h) Caucasian

i) Other please specify _____________________________________

j) Prefer not to disclose

4) Please note your current occupation.

a) _________________________________

b) Prefer not to disclose

__

Thank you participating in our research. You have now finished participating. If you have any

questions after you leave or would like us to remove you survey data, please email us at

jabel@wpi.edu

mailto:jabel@wpi.edu

133

Appendix C: Sound Effects and Licensing

Attribution License:

https://creativecommons.org/licenses/by/3.0/legalcode

Hammering Nails, Close, A by InspectorJ

https://freesound.org/people/InspectorJ/sounds/406048/

Gong Hit by GowlerMusic

https://freesound.org/people/GowlerMusic/sounds/266566/

Lava Loop by Audionautics

https://freesound.org/people/Audionautics/sounds/133901/

Budda_large bell by Taira Komori

https://freesound.org/people/Taira%20Komori/sounds/212057/

Attribution Noncommercial License:

https://creativecommons.org/licenses/by-nc/3.0/legalcode

FlyffNotif by grey24

https://freesound.org/people/grey24/sounds/316798/

https://creativecommons.org/licenses/by/3.0/legalcode
https://freesound.org/people/InspectorJ/sounds/406048/
https://freesound.org/people/GowlerMusic/sounds/266566/
https://freesound.org/people/Audionautics/sounds/133901/
https://freesound.org/people/Taira%20Komori/sounds/212057/
https://creativecommons.org/licenses/by-nc/3.0/legalcode
https://freesound.org/people/grey24/sounds/316798/

