

Abstract

Too many traffic accidents are caused by drivers’ failure of noticing buildings, traf-

fic sign and other objects. Video based scene or object detection which can easily

enhance drivers’ judgment performance by automatically detecting scene and signs.

Two of the recent popular video detection algorithms are Background Differenti-

ation and Feature based object detection. The background Differentiation is an

efficient and fast way of observing a moving object in a relatively stationary back-

ground, which makes it easy to be implemented on a mobile platform and performs

a swift processing speed. The Feature based scene detection such like the Speeded

Up Robust Feature (SURF), is an appropriate way of detecting specific scene with

accuracy and rotation and illumination invariance. By comparison, SURF compu-

tational expense is much higher, which remains the algorithm limited in real time

mobile platform. In this thesis, I present two real time tracking algorithms, Differ-

entiation based and SURF based scene detection systems on FPGA platform. The

proposed hardware designs are able to process video of 800*600 resolution at 60

frames per second, the video clock rate is 40 MHz.

Acknowledgements

I would like to express my gratitude to my advisor, Professor Xinming Huang.

He gave me the opportunity to do the research and guided me in my research.

Thanks to the authors of Speeded up Robust Feature Herbert Bay, Andreas Ess,

Tinne Tuythlaars and Luc Van Gool for sharing the ideas of SURF with me. This

thesis would not exist without the SURF algorithm.

Thanks to the author of Opensurf matlab code author Dirk-Jan Kroon. His

matlab code inspired me a lot.

Last but not least, I’d like to thank all my friends and especially my project

partner Jin Zhao for giving me the courage and support

i

Contents

1 Introduction 1

2 Differentiation method 3

2.1 AVNET DVI I/O board video input output signal standard and input

video clock rate. 3

2.2 Video differentiation procedure . 5

2.3 Resource utilization . 8

3 Speeded Up Robust Feature (SURF) overview 10

3.1 Integral image . 11

3.2 Interest point localization . 12

3.3 Descriptor extraction . 13

3.4 Descriptor matching . 14

4 FPGA implementation of SURF 16

4.1 Overall system architecture . 17

4.2 Integral image module . 19

4.3 Interest points detector. 21

4.4 Interest point descriptor . 23

4.4.1 Haar wavelet transform . 24

ii

4.4.2 Wavelet response reconstructor 26

4.4.3 Gaussian mask LUT and Gaussian weight module 29

4.4.4 Gaussian scaling and length of region 33

4.5 Descriptor matching module . 35

4.6 Platform and results . 38

5 Conclusions 40

iii

List of Figures

2.1 The video standard of AVNET DVI I/O board 4

2.2 The main structure of differentiation tracking 5

2.3 Ping Pong buffer structure . 7

3.1 Integral image function . 11

3.2 Hessian mask . 12

3.3 Haar wavelet filters . 14

3.4 Descriptor mathing procedure . 15

4.1 Overview of SURF on FPGA . 18

4.2 Integral image architecture . 19

4.3 Intergal image procedure . 20

4.4 Integral image prcedure 2 . 21

4.5 Hessian response module . 22

4.6 Interest pointer descriptor main architecture 24

4.7 Haar wavelet procedure . 25

4.8 Wavelet response reconstructor . 27

4.9 Haar wavelet response outputs . 28

4.10 Gaussian LUT . 31

4.11 Multipliers multiplexing structure . 33

iv

4.12 Gaussian scale mask . 35

4.13 Matching module . 37

4.14 Matching result . 37

4.15 KC705 platform . 38

4.16 AVNET DVI FMC module . 38

v

List of Tables

2.1 Device utilization summary . 8

2.2 Device utilization summary with DDR3 MIG 8

4.1 Gaussian LUT . 30

4.2 Resource utilities in the design . 39

vi

Chapter 1

Introduction

Video-based traffic detection technologies are becoming requisite to an automatic-

drive car or a driver assistance system. The features of monitoring surrounding

traffic conditions and detecting blind spots for drivers enhance the driving safety

and driving experience for almost every possible driver. The current optional video-

based driver assistance component in high-end vehicle is the revers image system

which can help driver parks the car correctly and safely into parking place. The

video base algorithms which can be applied on those technologies are researched and

achieved marvelous results in this area. Driver assistance algorithms suck like object

detection, optical flow, Kalman filter, shape based detection and Hough transform.

In addition, researchers have been spent the same, if not more, attention to the

real-time application on embedded platform with limited resource and power.

In this thesis, we focus on object detection using Differentiation in stationary

background and feather detection algorithm Speeded up robust feature. The Dif-

ferentiation in stationary background is useful in video object detection in invariant

position monitoring such like surveillance camera which keeps the same position to

detect movements in front of it. The surrounding environment is relatively station-

1

ary for the moving objects, which makes it a algorithm of practical use. Also this

algorithm can be processed fast in real time, and less resource taken than other

complex algorithm in FPGA. We also would like to discuss the Speeded up Robust

Feature to be used on object detection in FPGA platform. SURF is an accurate

and higher rate of correct recognition video algorithm. Even so, like other feature

based algorithms (SIFT or FREAK) SURF takes long time in feature extraction,

descriptor calculation and library matching in low frame rate. In order to improve

the performance of SURF, we plan to apply it on FPGA platform due to the natural

properties image processing – parallelism.

FPGA structure makes the video processing possible to parallelize the calcula-

tion. The hardware structure divides the input video frame into small parts and

run in parallel pipelines independently and efficiently. Instead of using the expensive

CPU resource in PC platform, FPGA accelerate the process massively. We choose a

Xilinx Kintex 7 FPGA development board and AVNET DVI I/O FMC video board.

Brief: (remember to fill them) Chapter 2 presents the video moving object tracking

using differentiation method under a relatively stationary background and the al-

gorithm implementation on FPGA platform. Chapter 3 introduces the Speeded Up

Robust Feature algorithm and the function blocks in SURF. Chapter 4 explains the

details of Speeded Up Robust Feature implementation on FPGA platform. Chapter

5 concludes the achievements and possible work in the future.

2

Chapter 2

Differentiation method

2.1 AVNET DVI I/O board video input output

signal standard and input video clock rate.

Video standard is the key of controlling a video playing. There are multiple kinds

of video standard; most of them are divided into control signals and data signals.

According to human eyes persistence of vision, fast switching still images give us

the impression of motion. Usually films playing rate is 25 frames per second, our

monitor refresh rate is about 60 frames per second. Due to the signal width, we

cannot transmit a whole frame to the monitor at the same time, so we transmit one

whole pixel to the monitor one time (one clock cycle), which lower the expense of

signal width. In the meantime, the control signals are also pushed to the monitor

aside with the pixel signals. Usually the control signals are vertical synchronization

signal, which is for frame switch, horizontal synchronization, which is for line switch,

and data enable, which is to help select the valid pixels. There might be a little

difference between video standards, but the logic is the same.

3

Figure 2.1: The video standard of AVNET DVI I/O board

4

Figure 2.2: The main structure of differentiation tracking

2.2 Video differentiation procedure

Video Differential object tracking is based on the relatively stationary background

and the moving object that can change parts of background pixel value. In this

method, video frames are buffered into FPGA local memory and compares with

each other to find the difference. This method is founded on the background pixels

value time invariance while the moving objects position in current frame is different

from the position in previous frame. With the previous 800 pixels width by 600

pixels height resolution frames be buffered in Local memory like block ram or DDR,

one frame size should be 800*600 pixels, each pixel is 24 bits since the pixel is

RGB standard (8 bits + 8 bits + 8 bits). We can calculate the difference between

the current frame and previous frame by storing one frame and comparing with the

previous frame at the same time. Fig 2.1 shows how the calculation being processed.

For every clock cycle, one pixel is pushed into the hardware structure through

DVI I/O board, aside with the video control signals. The first processing block

5

is the RGB to gray scale transfer block, this block use three efficient multipliers

transfer the RGB signal (24 bits) to gray scale signal (8 bits), which saves a large

amount of memory consuming. The RGB to Gray scale data transfer is calculated

according to:

Grayscale = R× 0.2989 +G× 0.5870 +B × 0.114 (2.1)

We use fixed point fraction instead of double fraction due to the calculation

complexity. The solution is to use FPGA block ram resource to store the video

frame. According to the video stream property, we need to store and read the pixel

at the same clock cycle, a dual-port RAM is needed to read and store pixels at the

same time. On the RAM address controlling block, the RAM is divided into two

independent parts in order to store action and read action will not affect each other.

In the first buffering period, input data is stored in part 1, in the second buffering

period, input data is stored in part 2 based on the store controlling block address

switching meanwhile output the data in part1. In the third buffering period, input

data is stored in part 1 again meanwhile output the data in part2. That is the basic

loop for the buffering procedure; two parts never affect each other. It is called Ping-

Pong buffering technology. The two buffers are treated as a unit. The buffered data

can be popped out without pausing. Ping Pong is often used in pipelined arithmetic

operation to complete buffering and processing data seamlessly.

The block ram resource in KC705 FPGA is 16020 Kbit according to the datasheet

while the whole frame is 800*600*8 bits = 3840 Kbits, since there are two parts in

the buffer, the total necessary memory is 7680 Kbits, KC705 block ram size is large

enough to build a ping pong buffer structure.

The compare block, is the block that detects the moving objects. Since object

6

Figure 2.3: Ping Pong buffer structure

position changing result the pixel value change. Due to the address control block,

the popped pixel from the buffer is exactly the same position as the current video

stream pixel. The buffered frame, which plays the role as the background, we need to

find the difference between the current frame and the previous frame by comparing

them one pixel by one pixel. The compare block is design for this, if the difference

of two pixels meets the threshold, this position will be highlighted to declare that

moving object is detected and this position is part of the moving object.

Considering the limitation of FPGA block ram size, we choose to transfer the

RGB standard to gray which makes the final display a gray scale video. In order to

improve the display experience, we introduced the on board DDR3 as data buffer.

The KC705 development board contains a DDR3 SODIMM Memory (1 GB) which is

large enough for buffering the whole frame. To drive the on-board DDR3, we choose

to use Xilinx IP Memory Interface Generator (MIG) to create a logic connection

7

with DDR3. Also we use two FIFOs as the pre-MIG FIFO and post-MIG FIFO

due to the unpredictable DDR Data output. The data procedure is the same only

replace the Dual-Port Block RAM with DDR3.

The total design is a video processing system in three stages pipeline driven by

video clock, which needs a clock global buffer, timing delay is 4 clock periods include

the signal syncing registers which is about 4/(40*10ˆ6) = 100 ns, makes it a real

time processing system.

2.3 Resource utilization

Here is the utilization summary of Kintex7 FPGA of this design:

Resources Used Available Utilization

Number of Slices Registers 179 407600 ≤1%
Number of Slice LUTs 283 203800 ≤1%

Number of bonded IOBs 58 500 30%
Number of Block RAM/FIFO 257 445 57%

Number of BUFG/BUFGCTRLs 3 32 9%
Number of DSP48E1s 3 840 ≤1%

Table 2.1: Device utilization summary

Here is the utilization summary of Kintex7 FPGA with DDR3 as a data buffer:

Resources Used Available Utilization

Number of Slices Registers 6922 407600 1%
Number of Slice LUTs 10525 203800 51%

Number of bonded IOBs 171 500 34%
Number of Block RAM/FIFO 17 445 3%

Number of BUFG/BUFGCTRLs 3 32 9%
Number of DSP48E1s 6 840 ≤1%

Table 2.2: Device utilization summary with DDR3 MIG

8

We can see from the two tables that the increased Slices Registers and Slice

LUTs illustrated that MIG block used large amount of FPGA resource, while the

Block RAM/FIFO utilization is lower than the previous since we remove the Block

RAM and use DDR3 instead.

2.4 Summary

The Differentiation Object tracking is efficient in a stationary background situation,

while in real world, this is far from enough simply using only this method. More

situation should be considered in to object detection such like video signal noise.

9

Chapter 3

Speeded Up Robust Feature

(SURF) overview

Speeded Up Robust Feature (SURF) is one of the best feature based algorithms of

the past few years and has applied widely in computer vision realm. It is a scale and

rotation-invariant algorithm with relatively high acceleration comparing with other

feature based algorithms such like SIFT (Scale-invariant feature transform) since the

introduction of Integral image technology, highly boost the processing speed. Even

so, SURF is still computationally expensive, often results in a very low frame rate

when applying SURF in video processing. After analyzing each step of SURF, we

decided to use Field Programmable Gate Array (FPGA) due to SURF’s parallelism.

SURF algorithm consists of three main parts: Integral image generation, interest

point localization, and interest point description generation, with object detection,

one more step descriptor matching is also needed.

10

Figure 3.1: Integral image function

3.1 Integral image

Integral image is one of the main advantages of SURF, it allows for fast computation

of box type 2D filters.

I∑(X) =
i≤x∑
i=0

j≤y∑
j=0

I(i, j) (3.1)

Integral image I∑(X) in X = (x, y) represents the sum of all the pixels at the left

and top side of X as in (2). Integral image is used in both the subsequence interest

point detection and descriptor calculation. It only takes 3 additions/subtractions

to get the sum of the pixels inside the rectangle after integral image calculation (see

figure 3.1) which boosts the processing speed. The sum of the rectangle is denoted

simply as SUM = A − B − C + D. The other benefit is that the sum calculation

time is independent of the box size, which is a good news for FPGA pipeline design.

11

Figure 3.2: Hessian mask

3.2 Interest point localization

SURF detector locates features based on the Hessian matrix because of its good

performance and accuracy. The original definition of Hessian matrix is

H(x, σ) =

 Lxx(x, σ) Lxy(x, σ)

Lxy(x, σ) Lyy(x, σ)

 (3.2)

Where x is the point location (x, y) in an image I, Lxx(x, σ) denotes the con-

volution of Gaussian second order derivative in x direction with pixel x at scale σ,

and similarly for Lxy(x, σ), Lxy(x, σ) and Lyy(x, σ). To achieve the scale invariance,

SURF used approximated box filters for the Hessian matrix, in Figure 3.2 is the box

filters of different sizes:

Box filters with the integral image are used to calculate the second order Gaussian

partial derivation, and avoid less computation. Denoting the blob responses by Dxx,

Dyy, and Dxy, the determinant of the approximated Hessian matrix in SURF is

approximated as following function:

Det(Happrox) = Dxx ×Dyy–(0.9×Dxy)2

12

Where 0.9 is the relative weight of the filter response, which is to balance the

Hessian determinant. Box filters of different sizes construct the scale space, which

is divided into octaves. The local maxima larger than a pre-defined threshold in

image and scale space are selected as the interest point candidates.

3.3 Descriptor extraction

SURF builds descriptor around the neighborhood of each interest point based on sum

of Haar wavelet responses. First, a square region of 20s by 20s centered around the

interest point constructed along the dominant direction. The dominant directions

of interest points are set to be upright to make the calculation simpler. The region

is divided into 4 × 4 square smaller sub regions with each window size 5s by 5s.

For each of the sub region, Haar wavelet responses are computed at 5× 5 regularly

distributed sample points. We use dx to represent horizontal direction response and

dy to represent y vertical response, the sum of the absolute values of the response

|dx| and |dy| also need to be extracted. These responses are then first weighted by

a Gaussian function (σ = 3.3) centered at interest point. Each Gaussian Weighted

sub-region generates a 4−D descriptor vectors

v = (
∑

dx,
∑

dy,
∑
|dx|,

∑
|dy|) (3.3)

All sub-regions are then concatenated into one vector of length 64, also a scale

factor is needed to turn the descriptor into a unit vector, which is the final descriptor

vector for this interest point.

13

Figure 3.3: Haar wavelet filters

3.4 Descriptor matching

SURF descriptor vectors are all length of 64. By getting all descriptor in one image,

next step is the application of descriptor. Detection using SURF is for detecting

specific items, which means the item to tracking should be acquired before tracking.

The matching step is actually processing between two images’ descriptor vectors,

to find the difference of each vectors. The item descriptor vectors are pre-extracted

from item image using the same SURF procedure and stored as a library. This

makes the video tracking calculation simpler than looping calculate the same items

for each matching.

14

Figure 3.4: Descriptor mathing procedure

We call the descriptor vectors from video the test descriptors, and the descriptor

vectors from the pre-stored library the item descriptors. Each of the test descriptors

compares with item descriptor to find the differences of each entry of the vector. We

still need a result to represent the difference between two descriptors. The sum of

total 64 entries is the best way to illustrate the result. We use distance to describe

the result, the smaller the distance, the slighter difference between two descriptors.

Usually we select the smallest difference 30∼50 points to determine if the item is

successfully tracked in the current frame.

15

Chapter 4

FPGA implementation of SURF

The surf introduced in chapter 3 is a robust, accurate and boosted object identifi-

cation algorithm to extract and generate descriptors of an image or a video frame.

Descriptors can be applied not only in object tracking but in image correction and

video stabilization. However, according to its computation complexity and high data

access frequency, SURF is difficult to be implemented as a real-time architecture.

On a quad-core 3.8 GHz processor, SURF simulation in Matlab usually takes 4.38

seconds to detect all 284 interest points, extract their descriptors from an image of

800*600, and finish the matching step to track the object. An FPGA architecture

was proposed and its processing rate of 10 fps on a Xilinx XC5VFX70 FPGA with

PowerPC-440 CPU. This is a solution of hardware/software cooperation. The Inte-

gral image generator and fast Hessian generator implemented by FPGA hardware

while the rest of interest points localization is implemented in PowerPC software.

However, the frame rate is still unsatisfactory for real-time systems like traffic object

detection.

This chapter describes a hardware-only architecture to implement the real-time

SURF algorithm for 800*600 video at frame rate 60 fps. Each function part will be

16

described in detail.

4.1 Overall system architecture

As we introduced before, SURF is an effective and accurate algorithm that can be

implemented in hardware architecture, while we still have to do several approxi-

mations for the hardware features because of the hardware pipeline structure and

resource limitation. Primarily, all the floating point calculations are replaced with

fixed point calculation not only because of the processing speed but also about the

floating point unit resource taken. An FPGA-only architecture does not allow too

many parallel floating point units exits. Floating point to fixed point data conver-

sion is carefully conducted with tiny loss of precision. Secondary, Objects usually

occupies small part of a frame, makes the first two octaves as the interest points

frequently being detected octaves. Based on this and the limitation of hardware

resource, Fast Hessian responses and the interest point detection are computes only

at the first two octaves. Thirdly, in order to achieve a higher identification rate

and to compensate the accuracy loss, we built a modified descriptor extractor using

larger neighbors from 20 × 20 size matrix to 24 × 24 size matrix. And overlapping

sub-region strategy from 5× 5 size matrix to 9× 9 size matrix to extract more de-

tails from the interest point neighbor area. Finally, the dominant direction of each

interest point is set to upright to simplify the calculation, which makes the rotation

angle less than 15.

17

Figure 4.1: Overview of SURF on FPGA

The Overview of FPGA-based SURF architecture is demonstrated in Figure 4.1,

consists of 5 main modules, Integral Image generator, Interest Point Detector, De-

scriptor and Memory Control Logic and Descriptor Matching Module (with Library

ROM). Integral Image Generator module accepts RGB pixel signal from AVNET

DVI I/O Module and convert RGB to gray scale data first. The pixel pushing clock

rate is 40MHz with the video control signals.

Integral image switches the gray scale data into integral image pixel stream

and transfers them to Interest Point Detector module and Memory Control Logic.

The Interest Point Detector module is used to search all the Fast Hessian Maxima

then exclude the pseudo extremes. The Memory Control Logic is designed for com-

municate with SDRAM and enhance the performance of Xilinx Memory interface

Solution. DDR3 SDRAM stores the integral images and transfer Interest points

Neighbors to Descriptor Extractor module according to the location and scales from

Interest Point Detector module. The Descriptor Matching Module accepts Descrip-

tors from both Descriptor Extractor module and Library ROM to determine the

searching results and output the results to AVNET DVI I/O board video output.

The details of each module are demonstrated below.

18

4.2 Integral image module

Integral image generation module is the entry gate of the whole system. The modules

are shown in Figure 4.2. The input video stream data type is RGB format, SURF

algorithm requires gray scale instead. The first step is to switch RGB pixel into

gray scale pixel from 24 bit width to 8 bit width. The RGB to Gray Scale module

is responsible for the translation. The row and column location is generated from

video control signals vsync, hsync and de. The location information is also treated

as the integral pixel’s DDR input address.

Figure 4.2: Integral image architecture

From the definition of integral image, any location (x, y), the value itself is the

sum of all the pixel values above and to the very left coordinate including the original

pixel value. As show in the picture, the sum of Integral image pixel A equals to

the sum of all pixels at the gray area. the accumulation process is illustrated in the

following figure.

19

Figure 4.3: Intergal image procedure

Based on the video stream input method, we can simplify the calculation pro-

cedure. Suppose the current location is a in Figure 4.4, integral pixel b, c, d are

pre-calculated integral pixels at a’s upper left, upper and left. A’s value can be

quickly acquired in fixed steps from Ia = Ib–Id–Ic + Pixela. According to this, two

lines integral pixels, upper line and current line, need to be buffered in FPGA to

help further calculation. The integral pixel DDR storing operation is processing at

the same time of accumulation to reduce register usage.

20

Figure 4.4: Integral image prcedure 2

The video of integral image has the same layout as the input video except the

RGB pixels are replaced with integral pixels from gray scale value. The whole

frame buffered in DDR to be used in later interest points detection and descriptor

generation.

4.3 Interest points detector.

This module is designed for calculate fast-Hessian responses of all sample points at

multi-scale and find the local maxima’s location and scale space as interest point

candidates. This part is done by my partner Jin Zhao. I will briefly introduce the

architectures.

The interest points detector is divided into 3 blocks: (1) Build Hessian Response,

(2) Is Extreme, (3) Interpolate Extremum. The diagram is shown in Figure 4.5.

21

Figure 4.5: Hessian response module

Build Hessian Response module aims at calculating Hessian matrix response.

The definition of Hessian matrix is introduced in 3.1.2. Also the Hessian matrix

response is defined in 3.1.2. Due to the resource and processing speed, 2 octaves

rather than 5 octaves are used in this module. This block uses independent accessed

56 block RAMs, depth of 800 to buffer 56 integral image lines. Totally 600 lines of

integral image are stored into the Block RAMs for the concurrent access of incoming

pixels and Hessian response. A FIFO at 40 MHz incoming data and 100MHz output

data is used to buffer the integral image. After calculation, 6 Hessian determinants

are deserialzied and sent to Is Extreme module in parallel.

Is Extreme module is aimed at finding local maxima of Hessian-matrix deter-

minants as interest points candidates. Local maxima are detected on layers from

different filters. For each scale, Is Extreme uses 4 block RAMs of depth 400 or 200 to

store current Hessian-matrix determinant line and line buffering. Is Extreme mod-

ule also calculate the first and second order derivatives of Hessian-matrix responses.

The derivatives will stored into a FIFO with their coordinates and scales if it passes

22

the threshold check.

Interpolate Extremum module is to performa the matrix operation shown in the

following equation:

O = −H\D = −

Hxx Hxy Hxs

Hxy Hyy Hys

Hxs Hys Hss

\

Dx

Dy

Ds

 = − 1

det(H)

H∗

xx H∗
xy H∗

xs

H∗
xy H∗

yy H∗
ys

H∗
xs H∗

ys H∗
ss

•

Dx

Dy

Ds

(4.1)

The faction 1
det(H)

needs a divider which is a resource consumption component.

The maxima checking procedure is that if absolute value of O is less than 0.5, the

local maxima is considered as an interest point, also coming with the coordinate of

the interest point and the scale to be sent to the interest point descriptor module.

4.4 Interest point descriptor

SURF is originally a PC based algorithm. FPGA structure is different from CPU.

The main steps of SURF in FPGA are the same as in PC while there are still some

differences. Unlike the original SURF implementation, the FPGA based SURF gen-

erates descriptor from the neighbor region centered at interest point of size 24s×24s,

where s is the scale rather than SURF’s 20s by 20s, which contains more details

around. Like original SURF, FPGA SURF descriptor neighbor region also be split

into 16 sub-regions. Each sub-region edge size is 9*9 rather than original 5*5 with

overlaps region between each sub-region. The main structure is demonstrated in

Figure 4.5.

23

Figure 4.6: Interest pointer descriptor main architecture

4.4.1 Haar wavelet transform

The entry point of the interest point descriptor module is the Haar wavelet trans-

former. Integral pixels from DDR popped out according to the interest point. In-

stead of using a 20×20 matrix, we use 24×24 matrix centered at the interest point

in order to gain more details. Since we simplify the computation to make the orien-

tation as upright, the direction information is not important in current calculation.

As we show in Figure 3.3, Haar wavelet filters are used to compute the responses

in horizontal direction and vertical direction. The dark parts are for weight -1 and

the white parts are for weight 1. In order to follow the pixel input method and

construct a pipeline structure, we need to buffer three lines of serial input integral

pixels to help calculate the Haar wavelet response.

24

Figure 4.7: Haar wavelet procedure

Figure 4.7 demonstrates the Haar wavelet transform calculation procedure. The

9 points in left picture denotes the 9 pixels of the front three pixels of first line,

second line and third line in the integral buffer. The eight pixels on the edges are

divided into four groups which are upper group, lower group, left group, and right

group for the Haar wavelet response calculation. Based on the definition, suppose

the center pixel is the current location(x, y), it is easy to deduce the Up A location

is (x − 1, y − 1), Up B is (x + 1, y − 1), Up C or Down A is (x − 1, y) and so on.

Each group area sum defines as the following equations according to the integral

image’s feature mentioned in chapter 3.1.1 that the any area inside an image can be

quickly calculated using the related integral image in fixed step just add the current

location integral pixel and the upper left integral pixel then subtract the left and

up integral pixels.

Sb = I(x−1,y) + I(x+1,y+1) − I(x−1,y+1) − I(x+1,y) (4.2)

St = I(x−1,y−1) + I(x+1,y) − I(x+1,y−1) − I(x−1,y) (4.3)

Sl = I(x−1,y−1) + I(x,y+1) − I(x,y−1) − I(x−1,y+1) (4.4)

25

Sr = I(x,y−1) + I(x+1,y+1) − I(x,y+1) − I(x+1,y−1) (4.5)

Where Sb, St, Sl, Sr are for sum of bottom, sum of top, sum of left and sum of

right respectively and I represents the integral pixel in certain position. In Figure 3.3

we introduced the Haar wavelet filter masks, the black side represent -1 while white

side represent 1. The Haar wavelet response result in two directions, horizontal and

vertical. We can simply acquire dx from subtract sum left from sum right.

dx = Sl + Sr (4.6)

dy = Sd + Su (4.7)

Where dy and dx are for Haar response in Vertical direction and Horizontal

position respectively. The response popping out operation is also processed at the

same time with the integral pixels pushed into the buffer in order to save register

resource. A 24 × 24 size response matrix is generated after all neighbor integral

pixels are pushed into Haar wavelet module. The time delay in this module is two

lines plus 2 pixels for the buffer and two adders pipelines, totally is 26*2+2+2 = 56

clock periods.

4.4.2 Wavelet response reconstructor

The size of wavelet response matrix is 24s × 24s for both horizontal and vertical

directions, which is about to be split into smaller 16 sub-regions as mentioned before.

For reasons of accuracy, each sub-region is a 9 × 9 matrix which makes overlaps

between each sub-region. Based on the system processing speed and the pipeline

26

structure, the Haar wavelet response matrix needs to be re-ordered to ensure the

pipeline structure to be well maintained. The constructor procedure is demonstrated

in Figure 4.8.

Figure 4.8: Wavelet response reconstructor

The Haar response stream serially enters module wavelet response reconstructor.

Two counters act as the coordinates for the location of the response, to represent

the relative distance and position of each response. In order to construct 16 sub-

27

regions, we set 16 output ports to stand for the 16 sub-regions; also a state machine

is built to help determine the right direction for each Haar wavelet response. In

figure 4.8, A to P represent 16 sub-regions, each sub-region is a 9*9 matrix. There

are several overlap regions between adjacent sub-regions, we take advantage of the

overlap characteristics to design a high efficient state machine, as show in Figure

4.8, which help determine the right port for certain Haar wavelet response. For

illustrative purpose, we show 16 outputs ports of horizontal direction instead of 32

ports in both horizontal and vertical directions. Some response may be duplicated

and sent to different posts if they are in the overlap regions. One response can be

sent up to 4 ports such like the responses in the overlap area of sub-region A, sub-

region B, sub-region E and sub-region F. The advantage of the overlap is to make

the best effort to extract the details around the interest point, and be more precise

for the estimation of descriptor calculation. The reordered response dx and dy then

be transmitted to Gaussian weight module.

Figure 4.9: Haar wavelet response outputs

28

4.4.3 Gaussian mask LUT and Gaussian weight module

The responses dx and dy are first weighted with a 2D Gaussian mask centered at

the interest point. The task for this module is to generate a 2D Gaussian mask of

9*9 based on the given scale parameter. The function of 2D Gaussian is:

G(x) =
1√

2πσ2
e−

x2+y2

2σ2

Where σ is the standard deviation of normal distribution; and
√
x2 + y2 is the

blur radius. In 2D space, the surface contours generated from the formula are

concentric circles from the center. This is also called Gaussian blur, which is used

to enhance the performance of image in different scales. Also Gaussian can be

considered as a low pass filter for image since the Fourier transformation of Gaussian

function is another Gaussian function. The image pre-processing with Gaussian

function can reduce the fake high frequency information. Fortunately, according

to the former analysis and calculation, the minim value of scale (S) is 2 and the

maximum value of scale (S) is 5 since the octave setting in FPGA SURF is simplified

with 2 layers. Based on that fact, we build a Gaussian mask look up table for a

quick Gaussian value pick up compatibly with the re-ordered Haar wavelet response

output sequence. The Gaussian mask LUT consists of 4 units from σ = 2 to σ = 5,

each unit contains a 9×9 pre-calculated 2D Gaussian blur matrix, ready for output

according to the input scale value. The Gaussian is stored in FPGA local Block

RAM, with an address controller module to determine the correct output for the

next module.

The advantage of building a Gaussian blur matrix LUT is the acceleration of pro-

cessing and simplification of whole system design. In PC platform, we can calculate

Gaussian distribution using floating point or library functions, but it is difficult to

29

implement the square root and exponential operations in FPGA, which will occupy

large scale FPGA resources. In the same time, use square root module, exponential

module is oppose to the original design intention that processing SURF FPGA in

real time and is hard to consistent in pipeline structure. To follow the pipeline

structure’s requirements and compatible with other module’s time delay, a LUT is

necessary to be built. It only takes one clock cycle to determine the correct Gaus-

sian mask based on the input scale value. All the 2D Gaussian mask values are

represented in fixed point format with 32 bit data width.

06071530 091CA6A3 0C90D860 0FCEF973 12249FF2 12FED916 12249FF2 0FCEF973 0C90D860

091CA6A3 0DC63A25 12FED916 17E5BD57 1B6D3275 1CB714CD 1B6D3275 17E5BD57 12FED916

0C90D860 12FED916 1A321DDF 20F4AD33 25D2973C 27998497 25D2973C 20F4AD33 1A321DDF

0FCEF973 17E5BD57 20F4AD33 2975D1C5 2F95401B 31D1931F 2F95401B 2975D1C5 20F4AD33

12249FF2 1B6D3275 25D2973C 2F95401B 369C282F 392D004A 369C282F 2F95401B 25D2973C

12FED916 1CB714CD 27998497 31D1931F 392D004A 3BDCB4DC 392D004A 31D1931F 27998497

12249FF2 1B6D3275 25D2973C 2F95401B 369C282F 392D004A 369C282F 2F95401B 25D2973C

0FCEF973 17E5BD57 20F4AD33 2975D1C5 2F95401B 31D1931F 2F95401B 2975D1C5 20F4AD33

0C90D860 12FED916 1A321DDF 20F4AD33 25D2973C 27998497 25D2973C 20F4AD33 1A321DDF

Table 4.1: Gaussian LUT

30

Figure 4.10: Gaussian LUT

Table 4.1 is one of the four Gaussian LUTs represented in Hex format with scale

value of 2. Figure 4.10 is the image generated from Table 4.1.

The following module is the Gaussian weight module. We use Gaussian blur

mask from Gaussian LUT to weight Haar wavelet response from Wavelet module

in each sub-region simultaneously. 16 ports of Haar wavelet response stand for

16 sub-regions in interest point neighbor matrix. Each of the matrix needs to be

weighted by Gaussian blur mask. In order to accelerate the processing, we build

a parallel weight structure for the 16 matrix. Since the sequential input method

of Haar wavelet response, different sub-region matrix response may be pushed into

31

the Gaussian weight module at the same time especially at the overlap regions.

To ensure a parallel processing structure, independent multiplier is allocated in

Gaussian weight module for each Haar wavelet response matrix. After the analysis

of Haar wavelet response matrix entering order, a multipliers multiplexing method is

introduced for reducing the use of multipliers from DSP48 slice. The main structure

of multiplier multiplexing structure is shown in Figure 4.10.

The weighted matrix’s sum is the weighted response result as pre-descriptor

for the whole system. To get the sum of weighted response, an accumulator of

gathering all valid data is placed for each output port. There are two structures

like the multiplier multiplexing structure in Gaussian weight module since not only

horizontal response
∑
dxbut also vertical

∑
dy

We also extract the sum of the absolute values of responses, |dx| and |dy|, which

is accumulated through the Absolute -¿ Accumulator path shown in Figure 4.10, for

the information of the polarity of the intensity changes. Since the Absolute module

is combination logic, which does not affect the pipeline structure, there is no delay

between dx, dy and |dx|, |dy|. Each of dx, dy |dx| and |dy| is a vector of length 16;

The bit width of dx, dy |dx| and |dy| are 48 bits for a better accuracy in fixed point

format. [
∑
dx,

∑
dy,

∑ |dx|,∑ |dy|] consists of a vector of length 64, which is the

prototype of final interest point descriptor but needs several more processing steps.

The bit width output from this module is 48 bits.

32

Figure 4.11: Multipliers multiplexing structure

4.4.4 Gaussian scaling and length of region

Gaussian blur function is used widely in image processing, not only in previous

mentioned Haar wavelet sub-regions weight, but the sub-regions accumulation re-

sult vector’s blurring. The result of Haar wavelet sub-regions weight operation

successfully deduces 4 vectors of length 16 in the Gaussian weight module and accu-

33

mulation module, but we still need to weight the 4 vectors for the further accurate

result. A Gaussian blur function with σ = 1.5 and size of 4 × 4 is introduced to

weight the four vectors of length 16. The basic calculation procedure is illustrated

in Figure 4.12. We call this Gaussian blur mask a Gaussian scaling mask. Each of

the elements in Gaussian scaling mask weights the corresponding element in pre-

descriptor pred = [
∑
dx,

∑
dy,

∑ |dx|,∑ |dy|]. The wavelet responses are invariant to

scale factor, the weighted pre-descriptor needs to be turned into a unit vector. The

procedure of acquiring unit vector is show below:

Step 1: Calculate normal number of pre-descriptor by square rooting the sum of

all elements’ square in pred.

Step2: Divided pred by
∑
pred’s reciprocal.

Since the square root is difficult to implement in FPGA structure, we simply

the design by change the square operation into absolute operation. Step 1 can be

described in details:

Part1: Setup an absoluter for the absolute value of [
∑
dx,

∑
dy,

∑ |dx|,∑ |dy|]
Part2: Setup an accumulator for

∑
pred.

Also withdraw the square root operation in order to follow the pipeline structure.

In this module, a divider is needed to calculate
∑
pred’s reciprocal. We choose

to use Xilinx divider IP to fulfill this task. This IP divider is a pipeline structure

with over 50 clock cycles calculation period. After all the steps, we obtain the final

descriptor for one interest point. The descriptor can be represented as

D = [Dx,Dy, |Dx|, |Dy|]

with a length of 64, each of the elements bit widths is 48 bits, which stands for the

interest point and its neighbor matrix’ feature preciously. We will use the descriptors

34

Figure 4.12: Gaussian scale mask

in the following Matching module to determine the items in certain picture.

4.5 Descriptor matching module

After interest point descriptor calculation, it is first pushed into a FIFO. Based on

the interest point detection, the interest point does not appear continuously. The

descriptor extractor module may be idol for some time because there is no neighbor

matrix enters descriptor extraction module.

The matching module first fetches one descriptor from the FIFO, and then com-

putes the similarity of pre-built item library and current descriptor to determine

whether an object is detected. In this design we use traffic sign a stop sign as

the object to detect in the video. According to SURF algorithm, a given item or

a picture is needed for the matching operation in another picture. We choose a

standard stop sign picture as the reference. Actually, based on the rule of speed

and resources, another system of calculating the stop sign’s descriptors paralleling

35

with current system is a waste of resource. We choose to use matlab to extract the

interest points descriptors from a standard stop sign, and transfer the descriptor

from double format to 48bit width fixed point format. Also, all of the 128 descrip-

tors information is stored in ROMs built from FPGA local block RAM. The basic

matching procedure is shown in Figure 3.4.

When a descriptor enters the matching module, the reference descriptor in li-

brary ROM also be read by matching module. The entering descriptor needs to be

compared with every descriptor in the library ROM. The processing speed is unac-

ceptable if the matching operation for descriptor is completely serial. A structure

optimization of library is to divide the library ROM into 8 independent ROMs as a

tradeoff between resource and speed. According to the descriptor entering sequence,

totally 128 descriptors are distributively stored in the 8 library ROMs. The storing

order is to averagely break a descriptor of length 64 into 8 groups, so it will take 8

clock cycles to read all the descriptor out of the ROM rather than 64 clock cycles,

8 times faster than before. The architecture is shown in Figure 4.13.

A compare results 128 distance value after subtracting library descriptor from

current frame value. Each of the descriptors from current frames generates a distance

vector of length 128, which compares with the previous distance vector and keeps

the smaller elements in the distance vector. The smallest distance vector is then

sorted from small to large. The module selects the sum of the smallest 30 distances

to compare with the threshold. If the distance sum is less than the threshold, the

stop sign is detected. Just like the Figure 4.14 demonstrated.

36

Figure 4.13: Matching module

Figure 4.14: Matching result

37

Figure 4.15: KC705 platform

Figure 4.16: AVNET DVI FMC module

4.6 Platform and results

The Whole system is built on a Kintex 7 KC 705 Xilinx FPGA development board

shown in Figure 5.1. We use a desktop as the DVI video Frame source. The input

video resolution is 800*600. The video signals are transmitted through AVENT DVI

I/O FMC daughter board shown in Figure 5.2. The output video signals are also

sent through ANVET DVI I/O board to a monitor in resolution 800*600. FPGA

detects stop signs of every frame preciously.

38

Resources Used Available Utilization

Number of Slices Registers 108581 407600 26%
Number of Slice LUTs 179559 203800 88%

Number of bonded IOBs 173 500 34%
Number of Block RAM36s 182 445 40%

Number of RAM18s: 80 890 8%
Number of DSP48E1s 244 840 29%

Table 4.2: Resource utilities in the design

The FPGA SURF design tested in a frame rate of 60fps and resolution of

800*600, successfully detect the stop sign in real time, high-lighted the pixels rep-

resent the stop sign. SURF implemented on FPGA speeded up considerably com-

paring with the original CUP-based SURF, which will be a respectable help for the

future video industrial development.

39

Chapter 5

Conclusions

In this thesis, we describe two object detection algorithms, differentiation in sta-

tionary background and feather detection algorithm Speeded up robust feature. We

simulate and develop the FPGA structure of differentiation in stationary background

also the FPGA SURF implementation. To reduce the resources utilities and com-

putational complexity, also accelerate the processing speed, pipeline and parallel

architecture are introduced in these two designs. We do every effort to optimize the

structures to make a balance between processing speed and chip resource utilities.

A moving object can successfully be detected and the traffic sign detection using

SURF FPGA are able to process on an FPGA with real-time SVGA video at 60fps.

However, the detection is still limited for both of the two algorithms, for example,

the background of differentiation algorithm cannot be changed or the detection

performance will be unacceptable. Also the detection of FPGA SURF is still limited

for the item to detect since the library ROM size is not enough for more than two

items’ descriptor. That means Only one items can be detected during the process.

We also notice that the chip area usage may be further optimized for less area

with higher speeded up. For example, the bit width for the data in SURF may be

40

reduced for an acceptable accuracy loss.

We also glad to see the processing speed of SURF FPGA achieves a real time pro-

cessing speed in SVGA resolution in 60 fps, much faster than CPU based SURF, in-

clude the descriptor matching operation. The pipeline structure effectively achieves

high frame rate video processing.

In conclusion, video object detection algorithms based on FPGA are effective,

high performance methods that is well suitable for resource and power limited con-

dition, especially in automobile realm, which reduce the processing speed from 3 to

4 seconds per frame to real time processing.

41

Bibliography

[1] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust features,”
in Computer Vision–ECCV 2006. Springer, 2006, pp. 404–417.

[2] J. Zhao, S. Zhu, and X. Huang, “Real-time traffic sign detection using surf fea-
tures on fpga,” in High Performance Extreme Computing Conference (HPEC),
2013 IEEE. IEEE, 2013, pp. 1–6.

[3] Z. Zhang, C. Cao, R. Zhang, and J. Zou, “Video copy detection based on
speeded up robust features and locality sensitive hashing,” in Automation and
Logistics (ICAL), 2010 IEEE International Conference on. IEEE, 2010, pp.
13–18.

[4] M. Zhou and V. K. Asari, “Speeded-up robust features based moving object
detection on shaky video,” in Computer Networks and Intelligent Computing.
Springer, 2011, pp. 677–682.

[5] J. Svab, T. Krajńık, J. Faigl, and L. Preucil, “Fpga based speeded up robust
features,” in Technologies for Practical Robot Applications, 2009. TePRA 2009.
IEEE International Conference on. IEEE, 2009, pp. 35–41.

[6] A. Broggi, C. Caraffi, R. I. Fedriga, and P. Grisleri, “Obstacle detection with
stereo vision for off-road vehicle navigation,” in Computer Vision and Pat-
tern Recognition-Workshops, 2005. CVPR Workshops. IEEE Computer Society
Conference on. IEEE, 2005, pp. 65–65.

[7] K. Kluge and S. Lakshmanan, “A deformable-template approach to lane detec-
tion,” in Intelligent Vehicles’ 95 Symposium., Proceedings of the. IEEE, 1995,
pp. 54–59.

[8] R. Labayrade, D. Aubert, and J.-P. Tarel, “Real time obstacle detection in
stereovision on non flat road geometry through” v-disparity” representation,”
in Intelligent Vehicle Symposium, 2002. IEEE, vol. 2. IEEE, 2002, pp. 646–651.

[9] M. Bertozzi and A. Broggi, “Gold: A parallel real-time stereo vision system for
generic obstacle and lane detection,” Image Processing, IEEE Transactions on,
vol. 7, no. 1, pp. 62–81, 1998.

42

[10] L.-W. Tsai, J.-W. Hsieh, C.-H. Chuang, Y.-J. Tseng, K.-C. Fan, and C.-C. Lee,
“Road sign detection using eigen colour,” IET computer vision, vol. 2, no. 3,
pp. 164–177, 2008.

[11] A. De La Escalera, L. E. Moreno, M. A. Salichs, and J. M. Armingol, “Road
traffic sign detection and classification,” Industrial Electronics, IEEE Transac-
tions on, vol. 44, no. 6, pp. 848–859, 1997.

[12] Q. Zhu, M.-C. Yeh, K.-T. Cheng, and S. Avidan, “Fast human detection using
a cascade of histograms of oriented gradients,” in Computer Vision and Pattern
Recognition, 2006 IEEE Computer Society Conference on, vol. 2. IEEE, 2006,
pp. 1491–1498.

43

