

GARBAGE COLLECTION FOR JAVA DISTRIBUTED OBJECTS

by

Andrei A. Dãncus

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements of the

Degree of Master of Science

in

Computer Science

by

Andrei A. Dãncus

Date: May 2nd, 2001

Approved:

Dr. David Finkel, Advisor

Dr. Mark L . Claypool, Reader

Dr. Micha Hofr i, Head of Department

i

Abstract

We present a distributed garbage collection algorithm for Java distributed objects

using the object model provided by the Java Support for Distributed Objects (JSDA)

object model and using weak references in Java. The algorithm can also be used for any

other Java based distributed object models that use the stub-skeleton paradigm.

Furthermore, the solution could also be applied to any language that supports weak

references as a mean of interaction with the local garbage collector. We also give a

formal definition and a proof of correctness for the proposed algorithm.

ii

Acknowledgements

I would like to express my gratitude to my advisor Dr. David Finkel, for his

encouragement and guidance over the last two years. I also want to thank Dr. Mark

Claypool for being the reader of this thesis. Thanks to Radu Teodorescu, co-author of the

initial JSDA project, for reviewing portions of the JSDA Parser.

iii

Table of Contents

1. Introduction……………………………………………………………………………1

2. Background and Related Work………………………………………………………3

2.1 Distributed Programming. JSDA…………………………………………………….3

 2.2 Garbage Collection…………………………………………………………………13

 2.2.1 Terminology……………………………………………………………………..14

 2.2.2 Issues…………………………………………………………………………….16

 2.2.3 Approaches for Uniprocessor Garbage Collection……………………………...17

2.2.3.1 Reference Counting……………………………………………………...17

2.2.3.2 Mark And Sweep………………………………………………………...19

2.2.3.2 Copy Collectors………………………………………………………….20

2.2.3.2 Generational Collectors………………………………………………….22

 2.2.4 Distributed Garbage Collection ………………………………………………...23

 2.2.4.1 Why is Distributed Garbage Collection Different?……………………...23

 2.2.4.2 Distributed Reference Counting

 (Network Objects, Weighted Reference Counting, Java RMI)…………….…..26

 2.2.4.3 Distributed Mark and Sweep

 (Tracing with Timestamps, Tracing within Groups)……………………….…..32

 2.2.4.4 Object Migration……………………………………………………..…..36

 2.2.4.5 Back-tracing and partial tracing……………………………………..…...37

3. Garbage Collection for Java Distr ibuted Objects…………………………….……42

 3.1 The Distributed Object Model in JSDA……………………………………………43

iv

 3.2 The Need for Distributed Garbage Collection. The JSDA Runtime………………44

 3.3 Interaction with the Local Collector in Java……………………………………….48

 3.3.1 Identifying the Available Mechanisms…………………………………………48

 3.3.2 Reference Objects ……………………………………………………………...50

 3.4 Our Solution………………………………………………………………………..55

 3.4.1 Key-Ideas……………………………………………………………………….55

 3.4.2 New/Adapted Data Structures in the Kernel ……………………………………57

 3.4.3 The Object Table and Garbage Collection……………………………………...59

 3.4.4 The Algorithm – Formal Description and Proof………………………………..63

 3.4.4.1 Rules and Definitions…………………………………………………….63

 3.4.4.2 Proof of Correctness……….….…………………………………………67

 3.4.5 Race Conditions Avoidance………………………………………………….…69

 3.5 Development and Implementation…………………………………………………77

3.5.1 The Development Approach……………………………………………………77

 3.5.2 Implementation Aspects…….………...………………………………………...80

3.5.2.1 On-the-fly Stub Creation…………………………………………………80

3.5.2.2 Weak versus Soft References…………………………………………….83

3.5.2.3 Keeping the Distributed Thread Model Consistent……………………...84

3.6 Results…………………………………………………………………………….89

4. Conclusions and Future Work ……………………………………………………...90

References ………………………………………………………………………………91

1

1. Introduction

 Garbage collection – the automatic reclamation of heap-allocated data after its last

use in a program – is no longer considered a luxury feature of programming languages,

and Java is the best example. There are, of course, exceptions – some real-time

applications – but the myth of unacceptable overhead introduced by garbage collection is

not that strong nowadays.

 Like single-machine applications, distributed applications also need to be

supported by garbage collection. The Java language is well suited to the creation of

various distributed object models because of its orientation towards simplicity in network

access. JSDA (Java Support for Distributed Application – [DTH99]) is such a model.

 Our initial goal was to determine whether the Java language offers the necessary

mechanisms for building a distributed garbage collector. This was not obvious, since the

language provides a very limited degree of interaction with the local collector.

 The Reference Objects (java.lang.ref) API seemed to provide us with enough of

the functionality that we needed, so we started designing an algorithm using this new –

introduced by version 1.2 – Java features. We proved the correctness of this algorithm

and implemented it in JSDA.

 This document contains two main parts. Chapter 2 provides some background and

related work in the fields of distributed programming and garbage collection. Chapter 3

starts by putting the two concepts together and describing what the issues are; then we

present the Reference Objects API and describe how it can be used as a tool for building

our algorithm, for which a formal description and proof are given; sample scenarios are

2

also presented in order to show how our approach avoids race conditions and to explain

the rationale behind the rules that define the algorithm. We also describe why and how

particular design decisions were implemented.

 Chapter 4 summarizes presents the conclusions of our work – it summarizes our

achievements and it presents some possible directions for future work.

3

2. Background and Related Work

2.1 Distr ibuted Programming. JSDA

Distributed Programming is a relatively new field of Computer Science. The main

reason for that is that until about two decades ago, computer networks were very rare

even in the academic environments. Once building a network became cheaper, people

(both the research community and the industry) started to look for solutions for making

programming in a distributed environment easier.

One of the first few steps towards providing some abstraction at the programming

level in a distributed system was made by Andrew Birell and Bruce Nelson about 20

years ago. They proposed and implemented the RPC (Remote Procedure Calls) model,

which allows programmers to invoke procedures on remote machines as if they were

local [BN91]. The transparency of remote calls was made possible by the use of client

stubs. A stub is piece of code (automatically generated by a software tool) that is

responsible with marshalling the request (along with the parameters) and sending it over

the network. On the server side, a server stub will do the reverse process, it will invoke

the local procedure, and then it will send the results back to the caller.

4

This model proved to be successful and other companies created their own RPC

modules. Sun Microsystems implemented their own RPC library (SunRPC, in 1985)

[C91]; this is still in use today as an underlying mechanism for the NFS file system.

However, it became clear that – although useful – RPC was still a low-level tool

for distributed programming and that a more abstract approach was needed. At about the

same, research on distributed operating systems was trying to attack a similar problem –

how to distribute tasks in a network of computers running a single operating system

hiding the distribution aspects.

Emerald [BHJL86], Linda [Lin], Orca [Orc] are some of the languages that were

designed to meet the requirements of a distributed (and parallel – the last two mentioned)

programming languages. However, they illustrate very different approaches. Emerald was

developed for object-based systems, and allowed migration for some of its objects. Linda

is based on the very original (and elegant) idea of tuple-space. The tuple-space is

essentially an abstraction for shared memory; in Linda, processes interact by using the

tuple-space as a “bag” in/from which they can put/pick up tuples. Passive tuples only

contain data, while active data also contain operations that can generate new tuples. Orca

was developed for the Amoeba distributed operating system.

CORBA

None of these languages became popular but a new approach was proposed.

Instead of using a single language to write distributed applications, CORBA (Common

5

Object Request Broker Architecture) [Cor] was proposed as a standard for connecting

existing objects, written in any language. An IDL (Interface Definition Language) is used

in order to define wrappers around objects, so that they can interact in a standard way. A

client application can access a CORBA object via a local IDL stub that talks to an IDL

skeleton (on the server-side) via an ORB (Object Request Broker). Dynamic invocation

of objects is also possible – in this case stubs and skeletons are not needed; clients can

invoke requests on any object without having compile-time knowledge of the object’s

interface. Figure 2.1.2 shows how the components of CORBA work together. An

important component (on the server side) is the Object Adapter, whose responsibilities

include: object registration, reference generation, server process / object activation,

request demultiplexing, object upcalls.

Figure 2.1.2: The Object Request Broker Architecture

DCOM (Distributed Component Object Model Architecture) is Microsoft’s

technology [DCOM] for access to remote objects. Although it can be – in theory –

implemented on any platform, DCOM is almost exclusively used on Windows systems,

which is a serious drawback if cross-platform interoperability is required.

6

Java, Java RMI, and Java-based approaches

When Java was released in 1995, a revolution started. Although Java is not a true

distributed programming language, it makes distributed programming easy by

incorporating a lot of useful network-related libraries (packages) in its core API. It also

provides mechanisms for dynamic class loading and for dynamic discovery of objects’

capabilities (the “ reflection” package). These features along with its platform-

independence and simplicity made it the language in the heavily networked,

heterogeneous world of the 1990s.

 In addition to its low level packages (for socket programming), Java provides –

since version 1.2 (1997) – a mechanism for remote method invocation (RMI). The RMI

model [RMI98] provides a higher level of abstraction and gives Java the flavor of a

distributed language. It is suited for client-server architectures and uses the same idea (as

RPC, CORBA) of stubs and skeletons. Figure 2.1.2 illustrates the RMI mechanism:

Figure 2.1.2: Java Remote Method Invocation Architecture

7

 There are a lot of approaches that use Java for distributing computing, and –

naturally – many of them use RMI. Some are tools for implementing agent technologies

(Voyager [Vo], Odyssey), others propose a modified RMI mechanism (JavaParty, FarGo

[Far]) and there are also a couple approaches that use the idea of tuple spaces that was

introduced by Linda (JavaSpaces [JSp] , Tspaces).

 Although some of these have been used as tools for developing distributed

applications for specific fields (e.g. Voyager), none of them is widely used. We believe

that one of the main reasons for that is that they require the Java programmer to

understand a new programming model and to become familiar with (usually a lot of) new

classes; Voyager for example contains 19 packages. Moreover, they cannot be regarded

as an attempt to make Java a distributed language, since they do not propose extensions at

the language level.

 JSDA

 JSDA (Java Support for Distributed Application) [DTH99] is an approach for

distributed programming that tries to focus on simplicity and ease of use, without

affecting flexibility. Our primary goal when designing JSDA was to provide distribution

capabilities at the language level. This could be done either by rewriting the JVM (Java

Virtual Machine) – one such approach is used by [AFT99] – or by adding a pre-

processing step for parsing the applications written in a Java “distributed style” . JSDA

falls in the second category, which has the advantage of portability on any system that

8

has a standard JVM and the JSDA platform (which is entirely written in Java). The

remaining of this section provides a brief description of JSDA architecture and concepts.

JSDA consists of 2 main components: the Parser and the Kernel (the runtime):

Figure 2.1.3: The JSDA approach

The JSDA distributed object model

The distributed object model that JSDA relies on has similarities with RMI and

CORBA. The idea is that a distributed object consists of a master object (that resides on a

machine that we call the owner of that object) plus ambassador objects (stubs) that

provide access to the master object from any host in the distributed system.

One of the key differences between JSDA and RMI/CORBA is that master

objects are associated to physical machines at runtime in JSDA. This is a natural

consequence of the fact that JSDA tries to encourage and simplify distribution at the

9

language level. On the other hand, RMI/CORBA are better suited to the idea of server

objects that offer specific services on designated machines.

The association master object – physical machine is done in the initialization step

of the JSDA Kernel. Each machine/user that is eager to participate in a particular

distributed application “ logs on” to the server host – the host which contains the JSDA

configuration file and whose JSDA Kernel is responsible with the launch of the

distributed application. The login simply consists of a symbolic name that will be

associated by the JSDA Kernel with the client’s physical address. An example of how

this works is presented later in this section.

An ambassador object (stub) has several key-roles:

1. It provides read/write access to the fields of the master object

2. It can execute methods of the master object on the local machine

3. It can initiate the execution for methods of the master object on any other

machine

4. It provides synchronization features using the master object as a

synchronization object

A distributed object consists of the sum of all its stubs plus one master, all of

them having in common a globally unique ID.

Master/ambassador objects for a Java class are instances of the same (distributed

version of the) class. It depends on the way one instance of the class in constructed

whether that object becomes master or ambassador. A special field – named owner – in

each distributed class specifies the name of the machine where the master object was

built, making the difference between master and ambassador. This approach gave us the

10

possibility to deal with distributed objects in a homogenous way. This means that the

code generated by JSDA Parser does not distinguish between ambassadors and masters;

its kernel’s job to decide whether a remote access is necessary or not and to take the

necessary actions.

The JSDA directives

To keep the programming model as simple as possible, only two directives were

added to the standard Java; their meaning is to force the execution of the following

instruction (or block of instructions) on the specified host(s).

The two types of directives accepted are:

• on <machine_name> - this directive will force the execution of the following

instruction/block on machine <machine_name>

• foreach <machine_class_name> - this directive will force the execution of the

following instruction/block on all machines belonging to class

<machine_class_name>

For example, the following sequence will display a message on all the hosts that

belong to the class audi ence:

/ * #[f or each audi ence] # * /

 Syst em. out . pr i nt l n(“ hel l o”) ;

The following code will allocate a Cl assX object on host Host A

11

/ * #[on Host A] # * /

{ Syst em. out . pr i nt l n(“ Hel l o, I ’ l l eat some of your memor y”) ;

 Cl assX obj = new Cl assX(par ams) ;

 Syst em. out . pr i nt l n(“ I ’ m done. I ’ l l go home now” ;

}

Note that the JSDA directives are embedded in Java comments. The reason for

choosing this syntax was to give the programmer the means to run the code, without

modification, on a single machine for debugging purposes.

 A sample scenario for a distributed pool game (with players and spectators using

different machines) will require the following steps:

A. Create a configuration file containing the classes of machines and the name of the

class that contains the code for the game.

B. Run the JSDA Parser in order to generate the distributed application

C. Launch the JSDA Kernel

D. Every machine that wants to join the game logs onto the server (using JSDA Kernel)

submitting the machine class name

E. After the number of logged hosts in each class becomes equal with a minimum value

(specified in the configuration file for each class), the distributed application starts.

12

 Before the application starts, the JSDA Kernel creates TCP connections between each

machine and all the other machines. A decentralized system is created, allowing code

propagation between any two machines in the system. Figure 2.1.4 presents a scenario

(for the distributed pool game). Player 1 is the host that contains the configuration file; it

first runs the parser and then starts the distributed application.

 Configuration file

 TCP connection

Player1-3 Hosts belonging to
machine class Player

Spectator1 Host belonging to
machine class Spectator

 Figure 2.1.4: JSDA sample scenario

The JSDA Kernel implements mechanisms for multithreading in the distributed

system (we defined the term distributed thread), caching, synchronization. However,

there are aspects like garbage collection and load balancing that were not addressed in

[DTH99].

Player1

Spectator1

Player2

Player3

Pool
Player=3
Spectator=0

13

2.2 Garbage Collection

Garbage collection (GC) is the automatic reclamation of heap-allocated storage

after its last usage by a program.

In the languages that support dynamic data allocation, deallocation has been

traditionally done explicitly, at the language level (for instance, the freemem instruction is

used in the C language). Besides simplifying the programmer’s job, garbage collection

has several important advantages. Jones ([JL96]) gives 3 primary reasons in favor of

garbage collection:

• Language requirements. Functional languages (e.g. Lisp) have unpredictable

execution orders and explicit deallocation is often impossible; garbage collection is

mandatory.

• Problem requirements. A good example [BC92] is the following: suppose a general

stack data type is to be implemented in C as a linked list; if the data may be pushed

on two stacks, how should a Pop command behave in terms of deallocation? Since it

is possible to push pointers to the same data on both stacks, we cannot simply free the

memory every time a Pop is executed. Some convention is required for deallocation

even for such a simple abstraction. This will either complicate the interface of the

stack, reduce its applicability or force unnecessary copying.

• Software engineer ing issues. One common requirement for “good” software is

encapsulation. Complex object-oriented applications consist of components which

communicate through clearly defined interfaces. Programmer-controlled storage

management inhibits this modularity, and most modern OO languages (Smalltalk,

14

Eiffel, Java, Dylan) are supported by garbage collection. Garbage collectors have also

been written for uncooperative languages like C and C++.

One of the myths about garbage collection is that incurs unacceptable overhead.

There is obviously a certain amount of extra work required, but it has been proven that in

most of the cases this is acceptable. (There are, of course, some real-time applications for

which this is not acceptable.) Java is probably the most popular example, but is

noticeable that even languages used for systems programming such as Modula-2+ and

Modula-3 are supported by garbage collection. In general, the typical execution overhead

introduced by garbage collection ranges between a few percent to 20 percent according to

[JL96], with 10 percent being considered unreasonable for a well-implemented system

[W94].

2.2.1 Terminology

The values that a program can manipulate directly are those held in processor

registers, those on the program stack and held in global variables. Such locations

containing references to heap data form the roots of the computation.

An individually allocated piece of data in the heap is called object, cell or node.

An object in the heap is called live (or reachable) if its address is held in a root or there

is a pointer to it held in another live heap node.

Objects that become unreachable during execution are called garbage.

15

There are two main properties that ensure the correctness of a GC algorithm:

1. Liveness – All objects that are garbage will be collected eventually.

2. Safety – No live objects will be collected.

Usually there is a need to make a distinction between the garbage collector and

the part of the program that does ‘useful’ work. We will use the term mutator for the

user program (following Dijkstra’s terminology [DL+78]), since – as far as the collector

is concerned – its job is to change (or mutate) references among objects).

For distributed environments, we use the terms space, node or host to refer to

each individual application that runs in a separate memory space and is usually capable of

running its own local garbage collector.

An object (created on a machine called its owner) is accessible in a distributed

system via a stub, exit item, or surrogate (on a client node), and via an entry item or

skeleton (on the owner). When we talk about stubs/skeletons in RPC, CORBA, RMI etc.

we are primarily interested in marshalling/unmarshalling remote requests. In the case of

distributed garbage collection, the stub/skeletons are interesting from a different point of

view – they can be used for storing and/or propagating additional information about inter-

object references.

A cycle consists of a group of objects that refer each other, but none of them is

accessible from the application (they are all garbage). If the group spans over multiple

spaces, then we are dealing with a distr ibuted cycle.

16

A conservative garbage collector is one that does not enforce immediate

reclamation of unreachable data. This is usually done for performance reasons, but it

results in temporary floating garbage.

2.2.2 Issues in Garbage Collection

 Some desirable properties of an ideal garbage collector are:

• Completeness – all objects (ideally including components of cycles), that are

garbage at the start of a collection cycle should be reclaimed by its end

• Concurrency – neither mutator nor collector should be suspended; distinct

distributed collection processes should run concurrently. Concurrency is further

discussed in the next paragraph.

• Efficiency – time and space costs should be minimal

Depending on the technique used, some of these features will be hard (or even

impossible) to accomplish.

Depending on the degree of interaction between the mutator and the collector, we can

divide the garbage collection techniques in three categories:

• Sequential – stop-and-collect algorithms. The mutator has to stop whenever the

collector executes.

• Incremental – incremental collectors do not suspend the mutator while garbage

collector completes. However, an incremental collector will still pause the mutator

17

(but just for a small period of time) at each step of the collection algorithm. An

incremental collector can be called real-time collector if the worst-case pause-times

are bounded by problem-specific constants.

• Concurrent – these collectors have been developed in order to run on multiprocessor

architectures (but they can be easily adapted to serial machines). The mutator and the

collector run separate processes (and they still need to synchronize their actions).

2.2.3 Approaches for uniprocessor garbage collection

 This section presents the existing non-distributed garbage-collection techniques

([JL96], [W94]). Distributed collectors extend these mechanisms and augment them with

new features in order to make them suited to distributed environments.

2.2.3.1 Reference counting

 Reference counting algorithms are based on the following idea: each cell

maintains a counter, which represents the number of cells that reference this one. Each

time a reference to a cell is created its counter is incremented, and each time a reference

to it is deleted the counter is decremented. When the counter becomes zero, the object

may be safely reclaimed as garbage.

18

Consider the example in Figure 2.2.3.1 which shows the counter for each object.

Object D has its counter equal to 2 because there are 2 other objects holding references to

it, while the counter for object E is 0, therefore this object can be garbage collected.

 This approach is naturally incremental for all operations except for the deletion of

the last pointer to an object.

 A variant of reference counting (sometimes called reference listing) uses a

simple data structure (instead of a counter) to keep track of the references held to an

object and also to provide information about who keeps references to it. This approach is

more robust (especially in a distributed environment; for example duplicate messages

cannot result in premature collection of (live) objects).

 If reference listing will be used for the example above, then the node F will look

like in Figure 2.2.3.1b:

Figure 2.2.3.1b Reference listing - the counter is replaced by a list

D,E,G F

Figure 2.2.3.1 Reference Counting

19

 The main drawback of reference counting-based approaches is that they cannot

reclaim cycles – note that in the example presented before (Figure 2.2.3.1) B and C have

non-zero counters, therefore they will not be garbage collected although they are

unreachable! There has been some work in this direction ([Ch84]], [L92]), but the only

solution found so far is to periodically run a mark-sweep collector, whose only purpose is

to detect cycles of garbage. Mark-sweep collectors are described in the next subsection.

2.2.3.2 Mark and sweep

 Mark and sweep collectors run in two phases:

1. Mark Phase – distinguish the live objects from the garbage.

This is done by tracing – starting at the root and actually traversing the graph of

pointer relationships – usually by either a depth-first or breadth-first traversal. The

objects that are reached are marked in some way: either altering bits within the

objects or by recording them in a bitmap (or other data structure).

2. Sweep Phase – reclaim the garbage.

[JL96]

Figure 2.2.4.1 Mark and Sweep

20

Once the live objects have been made distinguishable from the garbage objects,

memory is swept, that is, exhaustively examined, to find all unmarked (garbage)

objects and reclaim their space.

The typical problem with mark-sweep collection is that the cost of a collection is

proportional to the size of the heap, including both live and garbage objects. A

fundamental limitation is imposed on any possible improvement in efficiency.

 Another aspect that makes this approach different from reference counting is that

the straightforward version of the algorithm does not support any form of concurrency.

The problem is that the mutator might “alter” references that have been already traced by

the collector. The situation that can cause trouble is the following:

Cond1: the mutator creates a reference from a marked object to an unmarked object.

Cond2: this is the only reference (the original reference is destroyed).

 The solution is to use either read barriers (this prevents the mutator from seeing

an unmarked object) or write barriers (all the “dangerous” cases are recorded so that the

collector can (re)visit the nodes in question).

2.2.3.3 Copying Collection

The idea is to divide the heap space into two contiguous semispaces (called

FromSpace and ToSpace). The algorithm starts by flipping the semispaces (FromSpace

becames ToSpace and vice-versa). Then each object in FromSpace is copied into

21

ToSpace, along with all its descendants. In order to avoid multiple copying of the same

objects that can be reached my multiple paths, a forwarding pointer is installed in the old

version of the object. When the scanning process finds a pointer into FromSpace the

object it refers to is checked for a forwarding pointer. If it has one, it has already been

moved to ToSpace, so the pointer it has been reached by is simply updated to its new

location.

All live objects will be eventually copied into ToSpace and the nice side effect of

this approach is that it solves the memory fragmentation problem in a natural way.

The main drawback of copying collection is that it halves the effective amount of

available storage. Also, this is a stop-and-collect approach (although there are a few

incremental approaches written specifically for the ML language).

Figure 2.2.3.3 Copying Collection

22

2.2.3.4 Generational Garbage Collection

 Generational Collection is based on the observation that some objects live for a

shorter period of time than others, so it might be a good idea to collect the region of the

heap where these objects are located, rather than the whole heap. To the best of our

knowledge, this technique does not have a corresponding technique in the distributed

garbage collection field, so we are not going to present it.

23

2.2.4 Distr ibuted Garbage Collection

2.2.4.1 Why is Distr ibuted Garbage Collection Different?

The main differences between non-distributed and distributed garbage collectors are

caused by the main difference between local and distributed systems: the presence of

message passing mechanism in distributed systems.

Message-based communication (over potentially unreliable connections) results in the

following issues, which are specific to distributed collectors:

• How to avoid race conditions? The order of specific events is sometimes

important. It might be important that two consecutive requests sent by a node to

two different nodes be processed in the same order in which they were issued.

Note that this is a problem that will occur even if the communication is error-free.

A sample scenario showing how race condition can occur (affecting the safety

property, therefore the correctness of the collector) is presented later in this

section.

• A new type of overhead – message passing. The message passing mechanism

introduces a new type of overhead – the communication overhead, typical to

distributed collectors.

• Scalability. Any distributed collector should scale as the number of nodes in the

system increases.

• Fault tolerance – robustness against message delay, loss or replication, or process

(node) failure.

24

• Collaboration local - distributed collector. Some distributed garbage collectors

consist of slightly modified versions of uniprocessor collectors (one per host)

combined with one inter-space collector. Ideally, the two types of collectors

should be as decoupled as possible, since this would allow custom inter-space

space collectors to be implemented.

• Decoupling local GC – mutator. Some research [P96] suggested that in

environments that support object migration it is bad to use distributed collectors

that rely on the structures also used by the mutator (the object finder or the

forwarding pointers).

• Distributed cycles.

All issues have to be considered, but the first one mentioned above is particularly

important since the correctness of the distributed algorithm depends on it.

The following scenario shows how a race condition can occur in a distributed

garbage collection algorithm based on naïve reference counting.

1. Host A sends a copy of the object P (owned by Host C) to host B

2. A destroys its reference to P and notifies C

3. C (the owner of P) receives the message, and thinks that the last reference

to P has been deleted, and therefore destroys P

4. B receives the copy of P from A, and notifies C

5. C realizes that P was incorrectly deleted! (or, even worse, will think that a

new reference has been created to some other object Q that took P’s place)

Figure 2.2.4.1 illustrates the scenario described above (R represents the root node on each

machine).

25

Similar problems will occur in mark-and-sweep (tracing based) algorithms, where

there is a need for synchronization between the individual mark phase and the distributed

sweep phase. Reference counting based, mark-and-sweep and other types of distributed

garbage collected algorithms are discussed below.

In the remainder of this section we will discuss some approaches for distributed

garbage collection which were were either relevant to our work with JSDA (network

objects, Java RMI) or just classical approaches (weighted reference counting, Hughes’

algorithm). We are aware that there are approaches for distributed garbage collection

other than those discussed here, but, to the best of our knowledge, we did not omit any

well-known technique or any algorithm that could be suited to the JSDA framework.

Figure 2.2.4.1 Race condition in distributed garbage collection

26

2.2.4.2 Distr ibuted Reference Counting Collectors

Distributed reference counting is a simple extension of uniprocessor reference

counting. There is counter associated with each object, but it is usually used in a slightly

different way. Each object stores in its associated counter a value representing the

number of hosts (not objects!) holding references to it. When the counter value drops to

zero, the object is no longer remotely referenced and the problem is therefore reduced to

the uniprocessor case. Just like in the non-distributed case, the benefit of being able to

interleave small steps of the collection with the computation is preserved.

A new problem that has to be solved in the distributed architecture is the

prevention of object reclamation while references to it still exist. This may happen if

messages arrive in an order different from that expected. For instance, if a message

deleting the last reference to an object overtakes a copying message (the copy of a

reference to another node), the object will be reclaimed incorrectly. One way of dealing

with this is described later in this subsection.

Another problem with this approach is the way it deals with duplicate messages:

this will result in premature collection of objects. However, using reference listing can

solve this.

A third remark has to be made here: this type of collector is considered to be

better suited to loosely-coupled architectures, since any reference copy/deletion involves

a control message (increment/decrement) sent to owner of the object. There are

uniprocessor techniques (deferred reference counting) that do not send a message every

time. [DB76] describes such an algorithm (implemented later in Smalltalk), which treats

27

local variables and stack allocated temporaries differently – no reference count

bookkeeping is done when they are modified. However, it is not clear whether this kind

algorithm can be extended to distributed environments. On the other hand, it is also not

clear at all that tracing based algorithms perform better from this point of view (amount

of communication overhead), since tracing is based on the examination of all objects and

therefore a lot of messages are sent. It is hard to say which approach scales better in

general, and I believe that each algorithm needs to be evaluated separately. Another

reason that makes this comparison hard is that only a few of the surveyed algorithms

have been implemented, and there was no work at all in trying to compare them. This is

primarily because each approach is tailored to a specific system.

Network Objects

Birell ([BEN+93]) proposes a distributed reference listing collection algorithm to

support distributed object-oriented programming. The authors present an outline of their

method but do not give implementation details. Our distributed garbage collection

algorithm (Section 3.2) is a variant of their method.

28

Objects visible to other nodes are called network objects. Client processes may

hold references to the concrete object (the “ real” object) through a surrogate object that

communicates with the owner through remote procedure calls. The owner is the host

which contains the concrete object and it also contains the list of references to each object

(stored inside of the object, in a structure called dirtySet).

I am not going to discuss the approach in detail, but mention instead the new ideas

it brings and the mechanisms that it uses for race condition avoidance and fault-tolerance.

A new concept is weak reference. A weak reference is a special kind of reference

which (unlike a normal reference) allows the referred object to be eligible for garbage

collection. This concept was introduced later in Java at the API level in order to provide

some limited interaction with the local garbage collector. One important benefit is that

the local and global garbage collectors are decoupled, and any type of local collector can

be used as long as it provides the weak reference mechanism. Figure 2.2.4.2 shows how

the surrogate/concrete object is referenced in the client and in the server (w(o) represents

a unique identifier for object O in the distributed system).

Figure 2.2.4.2: Network Objects
Source: [BEN+93]

29

The possible race conditions are avoided using an acknowledgments-based

mechanism. The idea is to keep a reference to the object (either to the surrogate or to

keep a dirty entry in dirtySet) until the reference transmission is acknowledged. The

message overhead consists of only one extra-message, since network objects are

transmitted as arguments/results of remote procedure invocations. There is some CPU

overhead though.

A good degree of fault tolerance is achieved using diverse mechanisms. All types

of message failures are handled: lost messages, late messages (sequence numbers are

used), duplicate messages (this is a intrinsic property of reference-listing based

algorithms). Process failure (or termination) is detected by sending ping messages.

This approach does not give a solution for the collection of distributed cycles.

Weighted Reference Counting

Weighted Reference Counting (WRC) [B87] eliminates the increment messages.

Besides the benefit of reducing the communication overhead, this approach also

eliminates the potential race conditions (however, it has its own shortcomings that I will

discuss later).

The key idea is that each object has a weight (a large value) that is split when the

object is copied to another host. A part of the weight is sent along with the copy of the

object. Decrement messages are sent when remote references are collected and are also

accompanied by the former reference’s weight.

30

The problem with this approach is that after a reference is copied for a certain

number of times, the associated weight cannot be further divided (it will become 1).

Some improvements have been proposed ([G89]) to solve this problem; indirection cells

are created – these are proxies for the object, with their own tree of references.

However, there is still a big problem that has to do with the nature of this

approach: every message sent is “ important” , because if a part of the weight is lost then

there will be no way to recreate the weight and consequently the corresponding object

will never be garbage collected (the liveness condition is broken). Since there is no

additional mechanism to ensure message failure handling, this approach is not fault-

tolerant.

WRC does not collect cycles.

Garbage Collection in Java RMI

Java RMI (Remote Method Invocation – [Rmi98]) uses an interesting mechanism:

a reference to a remote object is leased for a period of time by the client holding the

reference. This means it is the client’s responsibility to renew the lease – by sending

dirty() messages - until it expires.

It is interesting to take a quick look at the DGC interface in the java.rmi package:

publ i c i nt er f ace DGC ext ends j ava. r mi . Remot e {

 Lease di r t y(Obj I D[] i ds, l ong sequenceNum, Lease l ease)
 t hr ows j ava. r mi . Remot eExcept i on;

31

Voi d cl ean(Obj I D[] i ds, l ong seqNum, VMI D, bool ean st r ong)

 t hr ows j ava. r mi . Remot eExcept i on;

 }

The Lease object contains VMI D (a virtual machine identifier – a unique identifier

for the process who own the object) and a dur at i on after which the lease expires unless

renewed by the client.

RMI uses a reference-listing mechanism. However, the clients do not need to send

messages to the RMI objects every time they create/delete a reference to it, because the

validity of the lease implicitly states that the client holds a reference.

There are a few characteristics of the RMI collector that are determined by the use

of leases (a plus sign denotes a strength while a minus denotes a weakness):

- It is conservative

- It has a relatively small message overhead (+)

- It is fault-tolerant (+)

- Cannot collect cycles (-). The RMI specification does not discuss

distributed cycles collection, and I believe that this problem is not solved

(unless some additional mechanism which was omitted from the

specification is used).

- Race conditions ?

It seems that RMI does not provide a way for avoiding race conditions in

the garbage collection algorithm. However, race condition situations are

not very likely to occur in practice because of the client-server architecture

promoted by RMI. A possible scenario in which RMI will probably fail is

the following:

32

1. Client A sends B a reference P to an RMI object to another client

2. A destroys the reference to P

3. The lease expires and the RMI server collects the object

4. B receives the message from A and tries to refer a collected object

2.2.4.3 Distr ibuted Mark-Sweep (Tracing-Based) Collectors

The standard approach is to combine independent, per-space collectors, with a

global inter-space collector. The two types of collectors interface to each other through

exit items and entry items.

The mark phase is complete when all the reachable objects have been marked and

there are neither marking nor acknowledgement messages in transit. Afterwards, each

space triggers independently a sweep phase on order to reclaim garbage objects.

Obviously, one of the problems with this approach is caused by messages in

transit. Another issue is fault tolerance.

33

Tracing with Timestamps

One of the first distributed

mark-and-sweep algorithms [H85]

used timestamps instead of mark bits.

The key idea is that a garbage

object’s timestamp remains constant

whereas a non-garbage object’s

timestamp increases monotonically. It

is safe to say that any entry item

whose timestamp is lower than a

global threshold is garbage.

Each local GC traces objects

from the local root and from the entry

items. An item reachable from the

local root is marked with the GC-time,

one reachable from an entry item

receives that item’s timestamp.

The threshold is equal to the lowest value of all redos (each space maintains a

local redo timestamp equal to the greatest timestamp propagated).

 One problem is that the threshold computation relies on a termination algorithm,

which is notoriously costly and not scalable.

Source: [PS95]

Figure 2.2.4.3A: Hughes’ Algorithm

34

 Moreover, the algorithm is not resilient to space failures. One good property (a

natural property of all tracing-based algorithms) is the ability to reclaim cycles of

garbage.

Acknowledgements are sent in order to preserve the safety property (to avoid race

conditions).

The algorithm is not tolerant to space failures.

Even a “slow space” (a space running a conservative collector) will seriously

affect the performance of such a collector. If one space does not propagate its

timestamps, this will prevent the update of the global threshold and therefore the

distributed collection will be stuck. This is true even if the slow space does not hold any

remote reference.

Tracing within Groups

A different and more scalable approach ([LQP92]) is to do tracing within

groups. A group is a dynamic collection of spaces that may overlap or include other

groups. The dynamic property of groups allows the removal of failed spaces (in order to

not block garbage collection).

The algorithm proceeds in several steps: group negotiation, initial marking

(distinguishes inter-group from intra-group references), followed by a global marking

(performs mark-and-sweep within the group).

35

Local marking (propagation):

- initially, all marks on exit items are reset to None

- a first tracing is done - from hard entry items and roots

- a second tracing is performed starting from entry soft items (exit items that are reached

are marked soft only if they have not already been marked hard)

- None items can be reclaimed

Figure 2.2.4.3B below shows the colors of the items after the local marking.

 Global marking (propagation):

Hard marks are propagated to the referenced entry item, whenever it belongs to

the group under consideration. This phase ends when the group stability condition holds

(this requires that no more hardening is possible). Essentially, this is a distributed

termination problem, therefore it will add some additional overhead to the system.

At the end, soft entry items belong to distributed cycles! They can be reclaimed.

This approach cannot deal with message failures.

Source: [Lan92]

Figure 2.2.4.3B: Tracing within groups

36

If a node fails to cooperate, the group it belongs is reorganized to exclude the

node, and collection continues.

2.2.4.4 Object Migration

 An interesting approach that does not fall in any of the categories mentioned

above is object migration ([Bi77]). The basic idea is very simple: instead of sending

messages among hosts, try to migrate objects in such way that distributed collection

(distributed cycles collection) would not be necessary. In other others, transform

distributed cycles in local cycles that can be removed by any tracing-based local

collector.

 A key question is how to choose a good heuristic in deciding which object is

suspected to be garbage and should be migrated.

However, there is a more serious problem with this approach – it does not

accommodate indirections well. This means that is possible that migrating an object

might result in the creation of new surrogate objects, complicating the reference chains.

Another aspect is that objects should be normally moved based on criteria like

load balancing rather then garbage collection. The garbage collector should interfere with

the mutator as little as possible.

37

2.2.4.5 Another Taxonomy and a “ new” type of DGC

 The classical taxonomy is to divide the DGC algorithms in: reference counting,

mark-sweep and maybe, hybrid approaches (use distributed reference counting and some

additional technique – e.g.: a mark-sweep collector or object migration – to reclaim

distributed cyclic structures).

 Jones [J00] proposes a new taxonomy: the DGC algorithms are divided in:

indirect and direct GC, and each category has the subcategories: tracing and non-tracing.

 The approaches mentioned earlier in this paper fall into this taxonomy as

following:

1. Indirect, non-tracing GC – [Rmi98]

2. Indirect, tracing GC – [LQP92] (partitioned), [H85] (autonomous)

3. Direct, non-tracing – [BEN+93]

4. Direct, tracing – ?

Figure 2.2.4.5i The Taxonomy Proposed by Jones and Lines

38

The purpose of this taxonomy is to highlight a category that potentially has the

benefits of tracing (completeness) and direct algorithms (scalability). This class of

algorithms is new (compared to the others). The following two approaches both represent

reference counting (listing) algorithms augmented with tracing techniques whose role is

to collect distributed cycles.

Back-tracing

One of the early papers that propose a back-tracing technique belongs to Fuchs

[F95]. It can be seen as an extension of [BEN+93] – it augments reference counting by

maintaining the distr ibuted inverse reference graph (IRG): each object maintains a list

of pointers to other spaces known to have references to it. The author is trying to show

that there is enough information in the IRG to collect cycles with a reasonable overhead.

The key idea is that if we start (back-)tracing from any object and we will

encounter a root at some point, then the object is alive. The root nodes are called PR

(Persistent Roots) to distinguish them from the Garbage Collection Roots – GCR.

Here are rules for the IRG traversal:

1. Initially all PRs are black, the GCR is grey, and all other nodes are white.

2. Grey tail, white head => grey head

3. Black tail, white head => grey head

4. Grey tail, black head => black tail

5. If none of 1.-4. can be applied to any edge, any remaining grey objects can be collected

39

Figure 2.2.4.5 depicts the coloring mechanism. In each case of the four scenarios,

the graph on the left shows the initial marking and the one on the right the final marking.

It looks like we are doing a tracing operation here. However, there are two key-

aspects that need to be considered:

1. In a tracing-based algorithm, all live nodes are traced! Here, the roots of the tracing are

chosen;

2. This approach is incremental.

 The collector has to identify the suspects – objects that are likely to be garbage.

Fuch does not provide details on how this is done. This would not be a big problem if the

algorithm supported a high degree of concurrency.

Adapted from [Fuch95]
Figure 2.2.4.5 Back Tracing

40

Unfortunately, overlapping traces cause problems. A primitive algorithm that

synchronizes several distributed collectors based on their ID-s (a unique number that

determines the priority) is presented, but it seems to incur big overheads.

A limited degree of fault tolerance is provided, since the algorithm assumes that

every message is received at least once.

Par tial Tracing

[R98] proposes a mechanism for augmenting the network objects model with

distributed cycles collection.

Like in back-tracing, only a partial-tracing is done and the roots of tracing are,

again, chosen among “suspects” . No reasonable mechanism for choosing the suspects is

described (the authors mentioned they chose as suspect any object that is not locally

referenced).

The algorithm operates in three phases:

1. Mark-red – Identifies a distributed subgraph that may be garbage: subsequent efforts

of the partial trace are confined to this graph alone; in this step, the (possibly incomplete)

transitive referential closure of suspect objects is marked red; for each object X traced, a

RedSet(X) is created. RedSet(X) contains all the sites that contain references to X.

2. Scan – determines whether members of this subgraph are actually garbage; this is done

by comparing ClientSet(X) to RedSet(X) for each of the objects marked red.

ClientSet(X) is the name used by authors for the X’s dirtySet (in Network Objects

41

terminology). If, as a result, an object is detected to be live, then it is marked green. In a

second step, all objects reachable from local roots or from green concrete objects are now

repainted green by a local-scan process.

This seems to be one of the drawbacks of this approach – a separate local tracing routine

has to be implemented by the DGC. The idea is that although the local collector might

use a tracing-based local collector, the DGC has no access to it because the network

objects model is used.

3. Sweep – all red objects are part of distributed cycles. Their entries in the ObjectTable

are removed and the Network Object system will take care of their collection.

The mark phase does not need to find the complete transitive referential closure of

suspect surrogates. Therefore this distributed garbage collector is conservative at the

(usual) price – efficiency (and scalability). It is – at some degree - similar with tracing

within groups (presented earlier) from this point of view.

Besides the problem mentioned at 2., the algorithm has another weakness: both

the scan phase and the sweep phase need to use distributed termination algorithms to

detect the end of the respective step.

 The authors claim that their algorithm is as fault-tolerant as the Network Objects

system. However, it is not clear at all whether their messaging system can be entirely

built on top of the messaging mechanism (dirty and clean calls) provided by Network

Objects.

 The approach has a higher degree of concurrency than back-tracing. However,

collectors that belong to different groups cannot interfere.

42

3. Garbage Collection for Java Distr ibuted Objects

 As mentioned in Section 2.1, JSDA uses a distributed object model that is based

on stubs and skeletons (skeletons are called master objects in JSDA) – an approach

similar to other popular architectures like CORBA and RMI.

 In fact, any distributed object model has to rely on such a mechanism or one that

will expose similar functionality – we need some data structures associated with each

object, both on the client(s) who use the object and on the server who owns it; these data

structures need to be decoupled from the object itself since their functionality is not

intrinsically related to the object they serve. As discussed before, the functionality of a

stub/skeleton is merely to marshall/unmarshall a remote request involving the object they

are associated to. Since they are all used in the same manner (no matter what object they

refer to), usually it is possible to generate them automatically. This is what most of

frameworks do (CORBA, RMI fall in this category) in order to simplify programming.

 We stressed the generality of this mechanism in order to highlight the fact that the

distributed garbage collection algorithm that we propose is applicable not only to JSDA.

It can be applied to any distributed object model which uses the stub/skeleton paradigm,

as long as a local collector is available for the language and at least a limited interaction

with the collector is possible (this last requirement will be further detailed in the

following sections).

43

 We chose JSDA because it is a framework for distributed applications that

employs a distributed object model and we were more than familiar with its design and

implementation.

3.1 The Distr ibuted Object Model in JSDA

 There are a few notations that will be used whenever a scenario involving

distributed objects is presented. Here is the description of these notations:

1. A distributed object is represented at an abstract level by a square drawn

around the object’s name. When we use such a notation we assume we are not aware of

the existence of stubs and skeletons. This will be the case when we want to depict

relationships among objects at a high-level. For instance, the user of JSDA (the

programmer) will probably think at this level while designing applications. If he/she

wants to – let’s say – create one object on host X, he will write his code like this

 / * [on host X] * / MyObj ect A = new MyObj ect (par ams) ;

and he/she will know that object A will be created on host X. That is all the user wants

and needs to know in regard to where the object resides.

2. At a lower level (inside the JSDA kernel), a JSDA object consists of a master

object and several stubs. The master object will be represented by a double circle around

its name, whereas a stub will be drawn with just one circle around it.

3. A reference from one object to another will be shown as an arrow.

44

Figure 3.1 below shows how the links between objects (at an abstract level – the

top of the diagram) are represented inside the JSDA kernel (the bottom).

Figure 3.1 Distributed Objects – Abstract model vs. implementation (JSDA)

3.2 The Need for Distr ibuted Garbage Collection. The JSDA Runtime

 The bottom part of Figure 3.1 still represents a simplified view of the

relationships among objects in JSDA. For instance, the master object for E seems to be

unreferenced on host X, although object C holds a reference to it on host Y. This means it

could be reclaimed by a local collector. This is not the case though, since there are a lot

of artificial references to objects in JSDA. By artificial references, we mean references

created by the JSDA runtime; these references are totally unrelated to the semantics of

the distributed application and the user is not aware of them. Their existence results in a

45

big problem though – they prevent any object from being garbage collected! We will

describe now how exactly the artificial references occur in JSDA.

 As mentioned in section 2.1, the JSDA framework consists of two main

components – a parser and a kernel (runtime). The parser generates distributed versions

of all the Java classes required by the user’s application (this includes the classes written

by the user as well as the required classes that come with the Java platform). The JSDA

stubs and masters are instances of these distributed classes. The code generated by the

JSDA parser contains invocations of kernel methods. The engine consists of three main

modules:

1. The Engine – all the kernel invocations must conform to a certain API exposed

by the Engine (this API is used internally by the JSDA and its purpose is to

decouple the Parser and the Kernel). One of the most important roles of the

Engine is to ensure the consistency of the distributed object model or the

unification of address spaces. In other words, it has to ensure the stub for A on

host Y and the master for A on host X refer to the same distributed object. It must

keep track of all the existing distributed objects and must maintain – on each host

– a JSDA-wide unique identifier for each distributed object. (The master A on

host X and the stub for A on host Y both have the same ID.)

2. The Cache module – provides caching capabilities.

3. The DTC (Distributed Thread Controller) module - provides the entire

communication infrastructure along with a mechanism for ensuring that messages

only circulate among instances of the same distributed thread. A JSDA distributed

thread consists of one thread on each JSDA host.

46

Since the Engine manages the global ID’s for each object, it needs to store

information so that it can convert from global ID’s to local objects (stubs/masters) and

vice-versa.

All the invocations coming through the Engine API pass local objects as

parameters. If such objects need to be transmitted over the network as parameters of a

remote call, the actual values that will be transmitted will be the associated global ID’s

for each object rather then the objects themselves.

When a remote call is received from another host and passed to the Engine by

DTC, the reverse process has to take place – the parameters must be converted from

global ID’s to their local correspondents. If one parameter represents a stub for an object

whose value is needed in the current computation, then an additional remote call will be

issue in order to retrieve the primitive data from object’s owner.

JSDA
Kernel
(Runtime)

Figure 3.2.1. The JSDA Framework (revisited)

47

By storing the correspondence between global and local references we artificially

create references to each object in the system and therefore we will prevent them from

being garbage collected.

In the old version of JSDA this mappings (local to global and vice versa) are

implemented using two hash tables (see Figure 3.2.2 below). However, any type of data

structure trying to serve our purpose would generate the same undesired side effect

(artificial strong references).

Figure 3.2.2 Artificial references created by the JSDA Runtime on Host X

The third data structure (“Wrappers”) in the picture above is necessary in order to deal

with the cases when the Engine receives objects that are not in the distributed format

(objects whose classes have not been parsed). We are not going to describe here in detail

how this can happen in practice, since this aspect is JSDA-specific and it is not related to

garbage collection. We just want to mention that this situation can occur as a result of

having threads that are not initially controlled by the JSDA runtime – for instance the

Java AWT event handling thread (which will generate events as objects). JSDA needs to

create on-the-fly distributed versions (called Wrappers) of the objects created by these

48

threads. The Wrappers table stores pairs (object, wrapper) so that the Kernel will not

recreate the wrapper for the same object several times. Note that a wrapper is just a JSDA

object (either a stub or a master object). In Figure 3.2.2 we just assumed that B and D are

objects that need wrappers.

 In conclusion, there are data structures inside the JSDA Kernel that – unless

modified – will prevent any garbage collector (local or distributed) from reclaiming

JSDA objects.

3.3 Interaction with the Local Collector in Java

 Any Java platform comes with a built-in garbage collector, since the language

does not allow explicit deallocation.

In order to find a solution to the problem described above, we investigated the

tools provided by the Java language to allow the programmer to obtain information about

the garbage collection process.

3.3.1 Identifying the Available Mechanisms

 We looked for any means to discover what the current state of an object is (from

the local garbage collector’s point of view) and we also tried to identify ways of changing

that information ourselves.

49

 Finalization

 We started by examining the finalization mechanism provided by Java. The

finalize() method can be overriden by any Java class in order to provide the programmer

with the means of performing any resource deallocation. Finalize() is similar at some

degree with C++ destructors, one of the differences being that Java finalizers will release

resources like sockets and file descriptors rather than memory (since memory

management is done automatically).

 Java guarantees that if an object has a finalizer, it will be invoked right before the

garbage collector decides to collect it. (However, it does not guarantee that an object will

ever be garbage collected. In that case if the JVM exits, the memory will be freed by the

operating system). This allows us to detect the moment of garbage collection for any

object. However, this is not enough in order to implement a distributed garbage collector.

We will also like to be able to decide not to collect the object (for the simple reason that a

remote machine holds a reference to it!) even if the local collector decided the object is

not reachable locally. Of course, we don’ t have this problem in the JSDA, but this is

simply because no JSDA object will ever become eligible for collection (which is

obviously wrong since the liveness condition is broken).

It is possible to resurrect an object by creating a new pointer to this (the current

object) inside the finalize() method. However, the finalizer will be only executed once!

Therefore the finalization mechanism cannot provide us with the means to implement a

distributed collector.

50

Reference objects

Before Java platform version 1.2, finalization was the only way to interact with

the garbage collector. Version 1.2 came with a small new package (java.lang.ref) whose

only goal was to provide some hooks to the garbage collector, using reference objects.

Sun Microsystem’s documentation on Java reference specifies typical scenarios

for the use of the classes in this package (described in the next subsection), but

distributed garbage collection is not among them. I t was the central goal of our work to

determine whether this new feature of the Java language allowed us to build a

distr ibuted garbage collector for JSDA and – by extension – for any other

distr ibuted object models that uses a similar paradigm.

On short, a reference object is an object that does not prevent another object

referred by it – called the referent – from being garbage collected once the local

collector determined it is not reachable through normal references. Reference objects are

presented in the next section.

3.3.2 Reference Objects

 Besides reachable and unreachable objects, the Reference Objects API gives us

strengths of reachability. We can have softly, weakly and phantomly reachable objects

and gain a limited amount of interaction with the garbage collector according to the

strength of reachability.

51

The Reference Objects API consists of the classes shown in Figure 3.3.2.1 below:

Each reference-object type is implemented by a subclass of the abstract base

Reference. A reference object is an instance of one of these subclasses and encapsulates a

special kind of reference to another Java object. This reference is called strong, weak or

phantom reference depending on the reference object’s type (StrongReference,

WeakReference or PhantomReference respectively).

From strongest to weakest, the strengths of reachability are the following:

• Strongly reachable

An object is strongly reachable if it can be reached by some thread without traversing

any reference objects.

• Softly reachable

An object is softly reachable if it is not strongly reachable and there is a path to it

with no weak or phantom references, but one or more soft references

• Weakly reachable

Figure 3.3.2.1. The Class Hierarchy for package j ava. l ang. r ef

52

An object is weakly reachable if it is neither strongly nor softly reachable and there is

a path to it with no phantom references, but one or more weak references.

The javadoc documentation from Sun is ambiguous about the real difference between

soft and weak references. We discovered that this difference consists of the fact that

weakly reachable objects are immediately reclaimed once they have been traced by

the local collector, while softly reachable objects survive several garbage collection

cycles. More details about weak versus soft references are presented in Section 3.5.

• Phantomly reachable

An object is phantomly reachable when the collector does not find any strong, soft or

weak references to it, but at least one path to the object with a phantom reference.

Unlike weak/soft reference objects, phantom objects must be registered to a reference

queue (described below).

• Unreachable

When a (Soft/Weak/Phantom) Reference object is created, two things may be

specified:

1. The referent object (this is mandatory)

2. A ReferenceQueue object (optional for Soft/WeakReference objects, mandatory

for PhantomReference objects)

53

If a reference object is registered to ReferenceQueue, the local Java collector will

place the reference object in this queue when the reference field is cleared (is set to null).

The reference field is the field that stores the link to the referent.

Reference queues are used to find out when an object becomes softly, weakly or

phantomly reachable so the program can take some action based on that knowledge.

 The scenario in figure 3.3.2.2 illustrates the use of reference objects.

Step1: a reference object is created

Step2: the reference is no longer strongly reachable

Step3: the reference field is set to null (This happens automatically for Soft/Weak

Reference objects – this is the case in our example; Phantom references are not

automatically cleared).

Step4: The reference object is added to a reference queue (if is has registered to one).

Figure 3.3.2.2. How Reference Objects are Used

54

Unlike Soft/Weak reference objects, Phantom Reference objects do not have their

reference field cleared automatically once they are added to a reference queue. The

referent will continue to be phantomly reachable until the reference field is set to null.

(This is the reason the API enforces Phantom reference objects to be registered to a

queue).

There are typical usage scenarios that the authors if the Reference Objects API

had in mind while creating several types of reference objects. They are:

Type of Reference Object Typical (suggested) usage

SoftReference Implementation of memory-sensitive caches

WeakReference Implementation of canonicalizing mappings that do not

prevent their keys (or values) from being reclaimed

PhantomReference Scheduling pre-mortem cleanup actions in a more flexible

way than is possible with the Java finalization mechanism

Our goal is to use Reference Objects to implement distributed garbage collection.

The following sections describe our proposal for the solution of this problem.

In the rest of this document, we will usually call weakly reachable any object

which is neither strongly reachable nor unreachable, since the differences among soft –

weak – phantom references are not essential to our discussion.

55

3.4 Our Solution

3.4.1 Key Ideas

As shown in Section 3.2, there are data structures inside the kernel that prevent

JSDA objects from being garbage collected

We wanted to come up with a solution – based on the mechanisms introduced by

the Reference Objects – to modify/replace these structures so that the objects will have

reachability levels that could be controlled by the JSDA runtime.

One key idea is to use soft references instead of strong references whenever

ar tificial references are created in JSDA. This rule alone does not solve the problem

and by applying it – without additional mechanisms – we would just give away the safety

property in return for liveness. For instance, let us consider the scenario in Figure 3.4.1

below (where we only show strong references, and we assume the master objects A and

D are strongly reachable from the local roots):

Figure 3.4.1 E and D are unreachable on Host X, although they are reachable on Y!

56

On host X, the master object E and the stub D will be prematurely collected (if we simply

replace the artificial strong references with weak references). Actually, we could recreate

the stubs on the fly (see Section 3.5.2), but we cannot do the same for master objects.

In conclusion, we will use reference objects as useful building blocks for some of

the new Kernel structures in the distributed garbage collection algorithm, but we will

create additional mechanisms to enforce the safety property.

Once we had a solution for eliminating the artificial strong references, we could

start thinking about building a distributed garbage collection algorithm.

Since we do not have the possibility of inspecting pointers inside Java objects, we

cannot perform any type of tracing; in fact, this is what the Java local collector does, but

it is hidden inside the virtual machine and the only API providing information about

garbage collection is the Reference Objects API.

Therefore we decided that the only choice was to build a distributed reference

counting based collector. Naturally, we chose to create a distr ibuted reference-listing

collector since they more robust (as discussed in Section 2.2.4.2).

Each master object will have an associated reference list (a bitmap) that will store

information about remote reachability for the object. More precisely, there will be one bit

for each host in the system, and each host holding a reference to (a stub for) the master

object will determine a corresponding bit in the reference list to be set to one. When a

stub for an object P is created on a host X, a dir ty message is sent to the owner of P in

order to set the corresponding bit (the bit for X) in X master’s reference list. Similarly, a

57

clean message will be send to P’s owner whenever JSDA detects that a local garbage

collector collected a stub for P.

3.4.2 New/Adapted Data Structures in the Kernel

 In this section we will outline the modifications made to the kernel structures of

JSDA that are responsible for artificial references to JSDA objects. We already described

in Section 3.2 the role of these structures inside the JSDSA Kernel.

 The diagram below (Figure 3.4.2) gives a high-level view of the changes made to

these data structures so that they can be used in a distributed garbage collection

algorithm. The thick lines delimitate the memory portions that were initially strongly

referenced.

58

Figure 3.4.2 Modifications of Kernel Data Structures

Here are some details about each of the modified data structures:

1. LocalToGlobal was initially the hash table used to obtain the global references

(identifiers) for any JSDA object (either stub or master objects). We replaced it

with a new hash table whose keys are weakly referenced. As a result, if an object

is not reachable in the JSDA application, this artificial reference will not prevent

is from being garbage collected.

59

2. Similarly, the GlobalToLocal hash table was used to translate between global and

local objects upon receipt of a remote message. We replaced it with a fixed-size

array called ObjectTable. This object table represents a key point in the new

JSDA runtime architecture. It does not hold just the stubs and the master objects

for the host it resides on, but also additional information that is used by garbage

collection. The following sections give details about this.

3. As described in Section 3.2, the Wrappers hash table holds pairs (object, wrapper)

for each object that is passed to the kernel in the non-distributed (non-parsed)

version. We replaced these occurrences of stubs/master objects by indices that

correspond to entries in the object table. These indices represent the object ID-s

(that are part of the global ID-s).

3.4.3 The Object Table and the Garbage Collector

 The Object Table is shown in Figure 3.4.3.

 Any entry in this table can store information about either a stub or a master object.

The corresponding Java types are EntryStub and EntryMaster (which both inherit the

abstract class ObjectTableEntry). The type field of an ObjectTableEntry object identifies

the type of the entry – it can be either LOCAL (for masters) or NON-LOCAL (for stubs).

 The meaning of the rest of the fields is outlined below and further described

afterwards:

60

 Stub entries

- object ID – the distributed ID (unique) for the JSDA object

- owner ID – the host ID for the machine who owns the object with the

corresponding object ID.

- (Object ID and owner ID together represent the global ID)

- Soft Ref – this field stores a soft reference to the stub

- Strong Ref – this field enables us to store a strong reference to the stub; this

reference needs to be set at certain moments, in order to ensure the correctness

of the algorithm (in order to avoid race conditions)

- Cnt – counter field; counts the number of on-going remote calls that passed

this stub as a parameter; it is used to determine whether the Strong Ref should

be set / reset and ensures that the algorithm is thread-safe.

Master entries

- WEAK/NOT WEAK – this field tells us whether the master object is softly or

strongly reachable via the Object Table; the JSDA Runtime will decide

whether a master object should be accessible via a soft or strong reference in

the object table, based on some criteria which are going to be discussed later

- Reference List – represents the reference list (a bitmap) corresponding to the

list of hosts that hold references to this stub.

61

Fi
gu

re
 3

.4
.3

 T
he

 O
bj

ec
t T

ab
le

62

 As explained before, the reference queues are useful in order to allow the

programmer to decide on specific actions once weakly referenced objects become eligible

for collection. Once a soft/weak reference object is added to a reference queue, the

reference field is automatically set to null. This implies that there is no way to know

which was the referent!

In JSDA, we need to know exactly what stub has been collected since we need to

send a clean message to its owner. In order to solve this, we decided that the reference

objects that we use inside Stub Entries (entries that encapsulate soft references to stubs)

must store additional information about the JSDA object.

This is the reason for the redundancy inside Stub Entries in the Object Table. The

redundancy consists of the object ID being stored as part of the soft reference object,

although it actually represents the index of the current entry in the table. Again, this

information is used when the object is removed from the reference queue and we need to

establish the JSDA object that it corresponded to.

63

3.4.4 The Algor ithm – Formal Descr iption and Proof

3.4.4.1 Rules

 Master Objects

RULE M1 – Master object insertion in Object Table after creation

 If the current machine is the JSDA server, then the master object M will be

initially stored in the Object Table via a weak reference. Otherwise, it will be stored via a

strong reference, and one bit in the Reference List field will be set to 1. The bit position

corresponds to the host ID of the machine who requested the creation on M.

RULE M2 – Dirty calls

If a dirty message is received for a master object M:

1. If the entry for M in the Object Table has the WEAK field set, the entry type

is changed to LOCAL & NOT_WEAK and a strong reference is created to M

2. The bit inside Reference List corresponding to the host ID information

contained in the dirty message is set to 1.

RULE M3 – Clean calls

If a clean message is received for a master object M:

1. The bit inside Reference List corresponding to the host ID information

contained in the dirty message is set to 0.

64

2. If the number of bits set to 1 inside the Reference List is 0, the entry type is

changed to LOCAL & WEAK and a soft reference is created to M

Stubs

RULE S1 – Stub creation

 When a process (host) receives a JSDA remote call that contains a global ID with

no corresponding local object, the JSDA runtime performs the following actions:

• It creates a stub S on the fly (see Stub Creation in Section 3.5)

• It obtains a global ID from the JSDA server

• It creates a StubSoftRef object SR and initializes its fields as following:

o Object id and owner ID are set according to the global ID

o It sets StrongRef to null and cnt to 0.

o It sets the referent to S and registers the SR object with a reference queue

• It sends a dirty message to S’s owner and awaits an ACK, if S’s owner is not

the sender of the remote call.

• It creates a new StubEntry object (type is NON-LOCAL) to hold SR, and it

stores it in the Object Table at position pointed by the object ID.

DEFINITION 1 – The DGC thread

The DGC thread is a JSDA thread whose sole purpose is to remove the reference

objects from the JSDA reference queue and to execute the actions required by garbage

collection of JSDA stubs (as specified by RULE S2).

65

NOTE: only stubs are registered to a reference queue. Master objects are not,

since there is no special action that needs to be executed once they are collected.

 RULE S2 – Stub collection

 When the DGC thread removes a StubSoftRef object SR from the queue, the

JSDA runtime sends a clean message to the host identified by host ID, for the object

identified by object ID. It then removes the entry that stores SR from the Object Table.

Remote Calls

DEFINITION 2 – Reference (object) copy

A reference (an object) – either a stub or a master object – is said to be copied to a

machine H if it is passed as parameter to a remote call sent to H.

DEFINITION 3 – Reference (object) in transit

A reference (an object) is said to be in transit at some moment in time t if tsent< t <

trecv, where tsend and trecv are the moments when the remote call was sent or received by

the DTC Kernel module on sender or receiver, respectively.

NOTE: as previously discussed, the JSDA runtime converts local objects to global

ID-s before sending them over the network (as parameters of a remote call). Similarly,

the receiver obtains the local objects based on the received global ID-s.

66

 RULE R1 – Sending remote calls

 When the JSDA runtime receives a request for a remote call to be executed on

destination machine D, it performs the following actions for each object O passed as a

parameter:

 If O is a stub, it sets the StrongRef field (in the corresponding stub entry in the

Object Table) to point to the stub and it increments the counter field.

 If O is a master this is treated as a dirty call from D – RULE M2 is applied.

 RULE R2 – Receiving remote calls

 When a remote call request is received from another JSDA host, each parameter

(global ID) is looked up in the WeakGlobalToLocal table, in order to find its local

instance O.

 a) If O is found, no special action is needed.

 b) If O is not found, a stub will be created as specified by RULE S1

 RULE R3 – Receiving results from remote calls

 Upon receiving the result from a remote call, the Kernel will perform the

following actions for each stub that was copied:

1. It will decrement the associated counter.

2. If the counter is zero, it will clear the strong reference to the stub from the

corresponding Object Table entry (the StrongRef field).

67

3.4.4.2 Proof of Correctness

 Liveness

 Goal – to prove that all garbage (except for distributed cycles) is eventually

collected.

 Proof by contradiction: We assume that there is some garbage that is never

collected. In other words, the JSDA maintains artificial references to some objects and

therefore they cannot be reclaimed. There are 2 cases:

 1. An artificial strong reference to a stub is stored by JSDA ⇒ the StrongRef field

holds a strong reference to the stub. (1)

According to RULE R1 and RULE R3 – which are the only ones that affect the

StrongRef field – a non-null value for StrongRef implies that at least one remote call that

copied the object is currently being executed. (2)

(1) & (2) ⇒ there is at least one remote call that is currently manipulating the

JSDA object that, consequently, cannot be garbage (contradiction).

2. An artificial strong reference to a master is stored by JSDA ⇒

The master is stored in a NOT-WEAK entry in Object Table ⇒

There is (at least) one bit that is set to 1 in the ReferenceList field ⇒

There is (at least) one stub S for this master object that is strongly reachable.

There are 2 cases:

68

(a) The stub is reachable through an artificial strong reference – this is case 1.,

which we already proved leads to a contradiction

(b) The stub is reachable through a non-artificial strong reference ⇔ the stub is

not garbage - contradiction

 Safety

 Goal – to prove that no master object will be prematurely collected (remember

that we allow stubs to be collected since JSDA has the ability to recreate them).

 Proof by contradiction: We assume there are master objects that could be

prematurely collected. In order to be prematurely collected, a master object M must be

collected although either:

(a) It is locally reachable or

(b) There is a stub for it on another machine or

(c) There is reference to it in transit

(a) leads to a contradiction immediately.

(b) implies – according to RULE S1 & RULE M2 – that JSDA has created an artificial

strong reference to the master – contradiction

(c) This case can be reduced to either (a) or (b), depending on who is the sender S of the

remote call. In both cases RULE R1 is applied.

If S = M’s owner ⇒ this case can be reduced to (a)

If S ≠ M’s owner ⇒ this case can be reduced to (b)

69

 Basically, the safety property of the algorithm guarantees that no race conditions

could occur as a result of message delays in single- or multi-threaded environments.

 The next section discusses the safety property from this point of view, presents a

few scenarios and shows how race conditions are avoided using the mechanisms

presented above.

3.4.5 Race Conditions Avoidance

As shown in Section 2.2.4.1, race conditions can easily occur in distributed

garbage collection – resulting in premature reclamation of data – unless special attention

is paid to this aspect. We proved that the algorithm that we proposed takes care of this

potential problem since the safety condition is ensured. However, we did not fully

explain which are the rules that ensure race condition avoidance.

This section presents two examples that show two potential race conditions

situations and how the JSDA collector handles them. This should help the reader

understand the reason behind using the StrongRef and counter fields in the Object Table

and in the associated rules.

70

Scenar io 1

First, we are going to show how things could work if we did not use explicit

mechanisms for race condition avoidance in RULE S1 (the ACK) and RULE R1 (the

StrongRef field). Consider the following scenario – shown in Figure 3.4.5.1 – involving 3

hosts (X, Y and Z) and one JSDA object that is owned by Z and has a stub on X,

accessible from X’s root:

I. A remote call is sent by X to Y and initiates the copy of A.

II. The strong reference to A on host X is destroyed by the JSDA application

III. The remote call is received by Y, a stub is created and a dirty call is sent to

Z. Meanwhile, on host X A is identified as garbage and a clean message is

sent to Z.

IV. The clean message reaches Z before the dirty message sent by Y;

Z updates A’s reference list and incorrectly determines that A is garbage

and reclaims it.

71

 The solution to this problem is to ask the sender of the remote call to keep

artificial strong references to all stubs that are copied to remote machines as a result of

the remote call, until the result of the remote call is received. A second condition is that

the receiver is required to wait for the owner to receive the dirty message before sending

the result to the initiator of the remote call. This is the rationale before RULE R1 and

RULE S1. Note that RULE R1 also deals with the case of references to masters being

copied. In that case, the master is required to set a bit to 1, which will also result in a

strong artificial reference being created (if such a reference does not already exist).

Figure 3.4.5.1 Race Condition – Scenario 1

72

 Figure 3.4.5.2 shows the correct behavior, implemented by the Kernel:

I. The remote call is initiated ⇒ an artificial strong reference is created for A

II. The reference to A on host X is destroyed by the JSDA application

Y creates the stub A and sends a dirty message to Z.

III. X receives the result and clears the artificial strong reference. A becomes

garbage and a clean message is sent to Z.

IV. The master A is not collected since its reference list contains the correct

information.

Figure 3.4.5.2 Avoiding Race Condition in Scenario 1

73

Scenar io 2

The mechanisms used above are sufficient in a single-threaded application. The

following example will show that the algorithm would not be correct in a multi-threaded

environment without the use of the counter field inside Stub Entries.

I. The remote call is initiated ⇒ an artificial strong reference is created for A

(StrongRef is set to A, in A’s entry in the Object Table)

Y receives the remote call request, creates the stub and sends a dirty

message to W

II. The reference to A on host X is destroyed by the JSDA application.

Another remote call is initiated (by a different thread) – destination host is

Z ⇒ StrongRef is set to A again, in the Object Table

III. Z receives the remote call request, creates the stub and sends a dirty

message to W.

Y receives the ACK from A’s owner (W) and sends the result of the

remote call to X

IV. X receives the result from Y and clears the artificial strong reference ⇒ A

becomes unreachable therefore a clean message is sent to W

Meanwhile, the reference to A on host X is destroyed by the JSDA

application ⇒ A becomes garbage on Y and a clean message is sent to W

74

PROBLEM: if the clean messages from both X and Y reach W before the

dirty message from Z, W will incorrectly decide that the master object A is

garbage!

75

Figure 3.4.5.3 Race Condition - Scenario 2

76

Conclusion: in a multithreaded environment, it is not enough to keep artificial

strong references to all the stubs being copied until the remote call returns. The problem

is that a returning remote call will clear the StrongRef although another thread copying

the same stub(s) might be executing.

Our solution was to maintain a counter (the cnt field in the StubEntry) for each

stub, and to increment or decrement the counter every time a remote call copying the stub

is initiated or returns, respectively. The StrongRef field is set to null upon returning from

a remote call only if the counter is zero (there are zero threads copying that stub). This

policy is included in RULE R1 and RULE R3.

By applying these rules, step IV. above will change since the result from Y will

decrement the counter to 1 and the StrongRef field will not be set to null. The artificial

strong reference will only be destroyed when the result from Y will be received, as shown

in Figure 3.4.5.4 below.

Figure 3.4.5.4 Making the Algorithm Thread-Safe

77

3.5 Development and Implementation

3.5.1 The Development Approach

 We wanted to decouple all the changes and additions that were necessary to make

to JSDA, so that that the development process could be an incremental one, allowing us

to test new features as we implement them (rather than after the whole algorithm has

been implemented). We also tried to keep – as much as possible – a clear separation

between the separate Kernel modules. The new Distributed Garbage Collection (DGC)

module comprises most of the functionality that is specific to the distributed collector,

and it is implemented in a separate package – jsda.kernel.dgc.

 The initial approach was to create a separate Engine API that we could use in

order to be able to test various scenarios involving distributed garbage collection. By

doing this, we could skip the parsing step during testing and therefore speedup the

development process. We developed and tested this API in parallel with some Kernel

improvements (like on-the-fly stub creation). Then we merged the two versions and built

the DGC module. In the end, we tested the final version with simulated applications –

using the simplified API – first and then with real applications.

The development process can be summarized as following (this represents –

roughly – the approach that we followed):

78

Phase 1:

A. Develop an Engine API to be used for simulating JSDA applications in

order to test garbage collection

B. Make changes to the Kernel, which can be tested prior to the full

implementation of the distributed garbage collection algorithm.

- New global ID’s & on-the-fly stub creation

- Object Table (limited functionality could be tested at this stage)

Phase 2: Merge the versions resulting from Phase 1

Phase 3: Implement the DGC algorithm

- Clean and Control threads (DGC threads described in 3.5.2.3)

- The functionality associated with the Object Table which was note

implemented in Phase 1B

Phase 4: Test using:

A. Different scenarios using the modified API

B. JSDA applications

Figure 3.5.1 illustrates the development process.

79

Figure 3.5.1 The Development Process

80

3.5.2 Implementation Aspects

This section explains important decisions that we made during the development

process. They were mentioned earlier, but we considered them lower level aspects so that

we postponed their description until now.

On-the-fly stub creation is one of the main features implemented in Phase 1B. The

distributed collector needs this Kernel capability since our algorithm allows stubs to be

collected in order to ensure liveness.

 This section also discusses the differences between weak and strong references,

and explains why we decided to use soft references in some places and weak references

in others.

 The last aspect covered deals with the threads inside the DGC module (Phase 3),

and shows how they relate to the other – application and Kernel – threads in JSDA. We

describe what we had to do in order to keep the JSDA thread model consistent.

3.5.2.1 On-the-fly Stub Creation

 As mentioned in Section 3.4, we must not keep permanent strong references to

stubs, (or otherwise we break the liveness property of the algorithm). Because of this, the

Kernel needs to be able to (re)create stubs on-the-fly.

 In the initial version of JSDA, the stub creation was part of the distributed object

creation – when a master object was created, stubs were also created on all JSDA hosts.

81

The class name corresponding to the stub object was sent as part of a remoteConstructor

call that was broadcasted to all hosts.

 In the new version, just one stub is created when the distributed object is created,

on the machine that initiated the object construction (if this machine is the same with the

object’s owner, then no stub is created at all).

 This means that is often possible for a host to receive a remote call containing a

global ID that does not have an associated local object (either because the stub has been

collected or because it has never been created).

In this case, the Kernel must be able to create the stub on the fly, but the problem

is that it does not know what is the Java class that should be instantiated for this purpose.

Our solution to this problem was to include additional information in the global ID, so

that the JSDA Runtime could decide based on it the type of the object to be created.

We decided that including the whole class name in the global ID would be

wasteful (will highly increase the network overhead). Therefore we decided to use just a

numerical ID instead of the class name; this ID represents the host ID of the object’s

owner. A special message containing the object ID needs to be sent to the owner, who

will return the class name for the specified object.

This message can be piggybacked since a dirty call needs to be sent to the owner

upon stub creation anyway. Therefore, this change does not involve any additional

network traffic. The overall traffic is at most equal to the amount of data that we would

have used if the class name were sent as part of the initial request, since only the class

names that are needed are sent (as opposed to sending all the class names for the passed

82

parameters, as part of the initial call – there is no way to know in advance which one will

be needed on the destination host).

Figure 3.5.2.1 below shows the steps that need to be done – according to the rules

that we just mentioned – once a remote call packet is received:

Figure 3.5.2.1 Stub creation

The mechanism illustrated by the Figure 3.5.2.1 above was implemented and

tested during Phase 1B. However, the last version of JSDA is slightly modified – the

blocks in Figure 3.5.2.1 surrounded by a dashed line correspond to actions that will be

83

executed in a separate thread (the DGC Control thread – see Section 3.5.2.3 for more

details). This ensures that if n stubs need to be created, this will not be done in a serial

way – the current application thread will not have to block for each ACK packet it needs

to receive. Instead, the packets containing the ACKs and the class names are received by

another thread.

3.5.2.2 Weak versus Soft References

 We investigated the specific differences between soft and weak references (which

are not clearly specified in Sun’s javadoc documentation) and discovered that softly

reachable objects survive several garbage collection cycles while weak references are

collected immediately. (This was also confirmed by an article [M98] found on Sun’s

website, which said that “ the only real difference between a soft reference and a weak

reference is that the garbage collector uses algorithms to decide whether or not to reclaim

a softly reachable object, but always reclaim a weakly reachable object”)

We used this – apparently small – difference when we designed the DGC

algorithm. As mentioned earlier, we decided to use Soft/Weak references as following:

1. Weak References are used in:

a. the EntryMaster (WEAK) records in the Object Table

b. the WeakLocalToGlobal hash table

2. Soft References are used for stubs in the Object Table

84

The references to stubs are soft because we do not want the stubs to be

immediately collected. It is possible that future remote calls will want to reuse the stubs;

if the stub is still in the object table when an incoming remote call needs it, then we save

both CPU time and network traffic, since we do not need to send the dirty+getClassName

message to the object’s owner.

The same thing does not apply to master objects since we never recreate them;

therefore we would just waste memory by referring them via soft references.

The fact that stubs are reachable via weak references in the hash table and via soft

references in the Object Table has the following implication: if at some moment in time

the stub is no longer strongly reachable, it will first become unreachable in the hash table

and then it will become unreachable in the Object Table. Whenever a remote call packet

is received, we must ensure that if a stub is found locally then the corresponding entry in

the hash table is not empty (if it is, we re-insert the stub in the hash table to ensure

consistency).

3.5.2.3 Keeping the Distr ibuted Thread Model Consistent

 The distributed thread model in JSDA is based on the following rules:

• A distributed thread in a JSDA environment with n hosts consists of n individual

threads (one running on each host)

• Out of these n local threads, at any moment in time, n-1 threads are in a passive

state (waiting for requests) and 1 thread is in an active state (executing).

85

• All local threads corresponding to a distributed thread share a globally unique

thread ID, maintained by the JSDA Kernel.

The two states of a local thread are illustrated if Figure 3.5.2.3A below:

Figure 3.5.2.3A The Two States of A Thread

 There are two types of threads in JSDA:

1. Application Threads

2. Kernel Threads

 According to the rules specified above, the JSDA Runtime must ensure that a

message sent by a remote call initiated by a local thread will be received by an instance

of the same distributed thread on the destination host. This was implemented successfully

in the first version of JSDA (as part of the DTC module). This section discusses the

86

changes that we made to the Kernel in order to ensure that the new threads introduced by

the DGC module do not corrupt the distributed thread model used for the application

threads.

 There are two threads created by the DGC:

1. The Cleaner – its role is to extract objects from the reference queue (stubs that

become softly reachable) and to send clean messages to their owners

2. The Control thread – its role it to receive messages sent by Cleaner and all other

messages that should not be sent to an application thread. The key idea here is that

an application thread that receives a packet that represents anything else than the

answer it expects from a remote call, will cause the JSDA Runtime to crash.

Every packet sent by the Kernel has the following structure:

Normally, the DTC module will set the thread ID to the value of the global thread

ID corresponding to the current local thread (the current local thread is the one who

initiated the request to send the packet). However, it may decide not to do that, in order to

preserve the correctness of the algorithm. The choice is made according to the rules

below:

Packet
Header

Packet
Data

Packet type

Thread ID

87

Packet Type Normal Cache Clean Dirty ACK

Sent by AppThreadX CacheWorkX Cleaner AppThreadX Control

Received by AppThreadX AppThreadX Control Control Control

Table 3.5.2.3B

Here are the reasons behind the new rules:

1. Garbage collection related packages should not be received by the application

threads since these threads only expect answers from their remote calls

2. We do not want to assign the Cleaner additional responsibilities, since this will

increase the response time and will decrease performance

Figure 3.5.2.3C shows the new structure of the JSDA Kernel, highlighting the

thread types used in JSDA:

Introduced by garbage collection

88

Figure 3.5.2.3C The DGC Threads

 When a host receives a remote call that requires the creation of several stubs, one

dirty message needs to be send to the owner of each stub and one ACK message must

then be received, before the result is sent to the caller.

 As Table 3.5.2.3B shows, dirty messages are sent by application threads (since

they are the ones who detect that stubs are needed) but received by the Control thread.

This implies that the Control thread must be able to notify the corresponding application

thread once all the ACKs have been received. We implemented this functionality by

creating an additional data structure inside the DGC module. Each record in this table

stores information about:

89

1. The application thread ID

2. The number of ACK-s required (the number of stubs newly created)

3. The current number of ACK-s received.

When the values in fields 2 and 3 become equal, the corresponding application

thread is notified to send the result to the caller.

3.6 Results

Both the proof and the implementation validated our design for the distributed

garbage collection algorithm. Therefore, we can safely say that we proved that the

functionality provided by the Reference Objects API is enough to build a distributed

collector.

 We did not run any performance measurements since the JSDA framework was a

prototype itself, and did not allow us to execute full testing against various types of

applications. However, our main goal was to investigate the possibility of building a

distributed collector (and then to build one) and we succeeded in attaining this goal.

90

4. Conclusions and Future Work

We designed a distributed garbage collection algorithm for Java. We proved its

correctness and also implemented it in a particular framework (JSDA).

 As a result of this, we showed that the limited interaction with the local collector

offered by the java.lang.ref package is sufficient to build a distributed garbage collector.

 As a generalization, we claim that the algorithm can be implemented for any

object-oriented language offering features similar to the Reference Objects API.

 We estimate that the algorithm is efficient in terms of network and CPU overhead.

We explained the decisions that we made in order to keep these overheads to a minimum.

 Accurate performance measurements will be desirable as a future step of the

evaluation of our approach. The fault tolerance of the algorithm would also be interesting

to investigate. Our algorithm does not collect cycles and we believe that this functionality

cannot be obtained in Java, which does not allow tracing since pointer references are not

accessible from outside the virtual machine.

91

References

[AFT99] Y.Aridor, M.Factor, A.Taperman – cJVM: a Single System Image of a JVM on
a Cluster. In Proceedings of the 1999 International Conference on Parallel Processing, 4-
11, Sep 1999

[B87] D.I.Bevan – Distributed garbage collection using reference counting. In PARLE
Parallel Architectures and Languages in Europe, vol.259 of Lecture Notes in Computer
Science, 176-186, June 1987

[Bi77] P.B.Bishop – Computer systems with a very large address space and garbage
collection. MIT Report LCS/TR-178, Laboratory for Computer Science, MIT, May 1977

[BC92] H. Boehm, D.R.Chase – A Proposal for Garbage-Collector-Safe C Compilation.
Journal of C Language Translation, 126-141, 1992

[BHJL86] A.Black, N.Hutchinson. E.Jul and H.Levy – Object Structure in the Emerald
System. OOSPLA ’86 Proceedings. Sep 1986

[BEN+93] A.Birell, D.Evers, G.Nelson, S.Owicki, E.Wobber – Distributed Garbage
Collection for Network Objects. TR116, Digital Systems Research Center, Palo Alto, CA,
Dec.1993

[BN84] A.D.Birrell and B.J.Nelson – Implementing remote procedure calls.
ACM Transactions on Computer Systems, 2(1):39-59, Feb 1984.

[Ch84] T.W.Christopher – Reference count garbage collection. Software Practice and
Experience, 14(6):503-507 Jun 1984

[Cor] http://www.corba.org

[Co91] J.R.Corbin – The Art of Distributed Applications. Programming Techniques for
Remote Procedure Calls. Springer-Verlag. 1991

[DB76] L.P.Deutch, D.G.Bobrow – An efficient incremental automatic garbage
collector. Communications of the ACM, 19(7), July 1976

[DCOM] Component Object Model (COM), DCOM and Related Capabilities.
http://www.sei.cmu.edu/str/descriptions/com_body.html

[DL+78] E.W.Dijkstra, L.Lamport, A.J.Martin, C.S.Scholten, E.F.M.Steffens – On-the-
fly Garbage Collection: An Exercise in Cooperation. Communications of the ACM,
21(11):965-975, Nov.1978

92

[DTH99] A.Dancus, R.Teodorescu, R.Handorean – Java Support for Distributed
Applications (JSDA). Graduation Thesis. Politehnica University of Bucharest (PUB).
Romania. July 1999

[Far] Distributed Systems Groups, Technion – Publications on Fargo.
http://www.dsg.technion.ac.il/ fargo/publications

[F95] M.Fuchs – Garbage Collection on an Open Network. International Workshop on
Memory Management, Kinross, UK, Sep. 1995

[G89] B.Goldberg – Generational Reference Counting: A reduced-communication
distributed storage reclamation scheme. ACM Proceedings of the SIGPLAN '89
Conference on Programming language design and implementation

[J00] R.Jones – Directions for Distributed Garbage Collection. Microsoft Research,
Cambridge, UK, Aug 2000

[JL96] R.Jones, R.Lins – Garbage Collection – Algorithms for Automatic Dynamic
Memory Management. Wiley 1996

[JSp] Sun Microsystems – JavaSpaces Technology.
http://java.sun.com/products/javaspaces/

[L92] R.D.Lins – Cyclic reference counting with lazy mark-scan. Information Processing
Letters, 44(4) :215-220, 1992

[Lin] http://www.cs.yale.edu/Linda/linda.html

[LQP92] B.Lang, C.Quenniac, J.Piquer – Garbage Collecting the World. ACM
Symposium on Principles of Programming, Albuquerque, 1992

[M98] M.Pawlan – Reference Objects and Garbage Collection, article available at
htpp://developer.java.sun.com, Aug. 1998

[Orc] http://www.cs.vu.nl/vakgroepen/cs/orca.html

[P96] J.M.Piquer – Indirect Distributed Garbage Collection: Handling Object Migration.
ACM Transactions on Programming Languages and Systems, Vol.13, No.3, Sep 96

[PS95] D.Plainfosse, M.Shapiro – A Survey of Distributed Garbage Collection
Techniques, International Workshop on Memory Management, Kinross, UK, Sep. 1995

[RMI98] Sun Microsystems – Java Remote Method Invocation Specification. Rev.1.50
Oct. 1998

93

[R98] H.Rodrigues, R.Jones – A Cyclic Distributed Garbage Collector for Network
Objects. International Workshop on Distributed Algorithms (WDAG), 1996

[Voy] Object Space – Voyager. http://www.objectspace.com/voyager

[W92] P.R.Wilson – Uniprocessor Garbage Collection Techniques. International
Workshop on Memory Management, St.Malo, France, Sep 1992

[W94] P.R.Wilson – Uniprocessor Garbage Collection Techniques. Technical Report,
University of Texas, Jan. 1994

	FRONT MATTER
	Abstract
	Acknowledgements
	Table of Contents

	1. Introduction
	2. Background and Related Work
	2.1 Distributed Programming. JSDA
	2.2 Garbage Collection
	2.2.1 Terminology
	2.2.2 Issues in Garbage Collection
	2.2.3 Approaches for uniprocessor garbage collection
	2.2.3.1 Reference counting
	2.2.3.2 Mark and sweep
	2.2.3.3 Copying Collection
	2.2.3.4 Generational Garbage Collection

	2.2.4 Distributed Garbage Collection
	2.2.4.1 Why is Distributed Garbage Collection Different?
	2.2.4.2 Distributed Reference Counting Collectors
	2.2.4.3 Distributed Mark-Sweep (Tracing-Based) Collectors
	2.2.4.4 Object Migration
	2.2.4.5 Another Taxonomy and a “new” type of DGC

	3. Garbage Collection for Java Distributed Objects
	3.1 The Distributed Object Model in JSDA
	3.2 The Need for Distributed Garbage Collection. The JSDA Runtime
	3.3 Interaction with the Local Collector in Java
	3.3.1 Identifying the Available Mechanisms
	3.3.2 Reference Objects

	3.4 Our Solution
	3.4.1 Key Ideas
	3.4.2 New/Adapted Data Structures in the Kernel
	3.4.3 The Object Table and the Garbage Collector
	3.4.4 The Algorithm – Formal Description and Proof
	3.4.4.1 Rules
	3.4.4.2 Proof of Correctness

	3.4.5 Race Conditions Avoidance

	3.5 Development and Implementation
	3.5.1 The Development Approach
	3.5.2 Implementation Aspects
	3.5.2.1 On-the-fly Stub Creation
	3.5.2.2 Weak versus Soft References
	3.5.2.3 Keeping the Distributed Thread Model Consistent

	3.6 Results

	4. Conclusions and Future Work
	References

