
Jigsaw Puzzle Solver

A Major Qualifying Project

submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

degree of Bachelor of Science

Submitted by:

Matthew Aguiar

Jack Ayvazian

Jadon Laforest

Winnie Ly

Ryan Wheeler

Advised by:

Professor Jacob Whitehill

Date: March 4th, 2022

This report represents work of one or more WPI undergraduate students submitted to

the faculty as evidence of a degree requirement. WPI routinely publishes these reports

on its web site without editorial or peer review.



Jigsaw Puzzle Solver

1

Abstract

Solving jigsaw puzzles presents a unique challenge for artificial intelligence through

the application of computer vision. We explored different puzzle matching

techniques by considering piece edges, internal features, and color to design a

hybrid system that serves as a puzzle solving user aid. By uploading images of the

scattered pieces and the completed puzzle, the matching algorithm will attempt to

find the proper locations for each piece and provide visual cues to the user. The

application was tested on a sample of varied puzzles and sizes, where the accuracy

was dependent on the complexity of the puzzle features and declined linearly as the

puzzle was split into more pieces.
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1. Introduction

During the COVID-19 pandemic, classic at-home activities such as jigsaw

puzzles saw a surge in demand, with sales up 300% to 400% (Bodenheimer, 2020).

Jigsaw puzzles are a great mind exercise for all ages which require careful

observation and concentration. Depending on the puzzle size and difficulty, this

matching process can take numerous hours of trial and error. However, what if a

computer could analyze a picture of all the puzzle pieces and determine the matches

in seconds? While this may defeat the purpose of solving a puzzle, it could help in

alleviating moments of frustration when stuck on a certain part or provide a

starting point for a seemingly overwhelming task. Additionally, a user may be

curious about the capabilities of an Artificial Intelligence (AI) puzzle solver

compared to a human.

Puzzle piece matching presents a task for AI, made possible through applying

Computer Vision. The implicit way humans analyze puzzles would be mimicked and

broken down into three separate types of information: piece edges, internal

features, and color.

Figure 1: From left to right, puzzles that would be solved by-looking solely at piece

edges (Habicht), puzzle features (Lamamour), or colors (Signals)

When considering these types of information individually, matching accuracy

is limited and largely dependent on the puzzle; attempting to match pieces from a
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monochromatic puzzle solely based on features or color would be ineffective. That's

why the goal for this project was to combine these different types of information to

create a robust, hybrid matching algorithm for puzzles. While there are libraries

already in place which can extract points of interest (features) from images, there

are several other key components necessary to make a full scale jigsaw puzzle

solving application that is user-friendly. The envisioned product would allow a user

to simply input images of the puzzle pieces scattered and of the completed puzzle

usually provided on the box. The app would then output individual steps of

matching pieces to guide the user towards completion, similar to Figure 2 below.

Figure 2: Inspiration for our envisioned product, where the matching location

of a puzzle piece would be easy to visualize (github.com/whitcrrd).

In the following background section, the concepts behind edge detection,

matching algorithms, feature recognition, and color histograms will be explored to

gain a foundation of what is happening behind the scenes of these computer vision

techniques.
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2. Background

Jigsaw puzzles are a popular hobby for all ages. The first jigsaw puzzle was

created in 1762 when John Splisbury printed a map onto a piece of wood and carved

out the countries to help teach young children geography (The History of Jigsaw

Puzzles, 2019). Today jigsaw puzzles come in a variety of shapes and sizes, being

made out of different materials, most commonly wood and cardboard. Puzzles are

made to be solved by putting all the individual pieces that were cut out from a large

image back together, but what if assembling a puzzle required no thinking or puzzle

skills at all? We want to create a system that can do the solving work for a puzzle

builder, providing clear steps for putting the puzzle together.

Computer vision is a vital part of our project, allowing our program to

visualize the puzzle pieces in order to solve them. Computer vision is a field that

aims to imitate the human visual system by extracting meaningful information

from digital images or videos, which can be applied towards automating certain

tasks. Solving jigsaw puzzles presents a unique challenge for a computer vision

application, as high precision is required to model and match pieces. A hybrid of

color and shape information used to solve puzzles can be divided into two separate

computer vision processes: analyzing piece edges and their internal features. When

solving puzzles, a “relative” piece-to-piece matching approach is typically used,

however there is an alternative “absolute” approach where pieces are mapped to the

completed picture of the puzzle independently. Both of these computer vision puzzle

solving strategies will be explored in the following chapter.



Jigsaw Puzzle Solver

9

Figure 3: The top illustrates a piece-to-piece solving approach. The bottom shows an

absolute approach as pieces are matched left to right, top to bottom.

Edge Detection

Edge detection is an image analysis technique that uses changes in intensity

of pixels to determine the boundaries of objects in an image (MathWorks, n.d.). Edge

detection attempts to convert an image into only its edges, which can then be used

in a multitude of applications including machine learning, machine vision, and

image processing.

An edge is represented by an abrupt change in the intensity of local pixels.

This discontinuity in intensity is ideally represented by either step discontinuity or

line discontinuity (Jain, 1995). A step discontinuity is an abrupt change in the pixel

intensity from one side of the discontinuity to another. An example of this would be

a white puzzle piece against a black background.
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Figure 4: Example of a white puzzle piece and it’s edges.

The abrupt change between the white piece and black background would be

represented as an edge with step discontinuity. A line discontinuity is where the

intensity abruptly changes but then returns back to its original state within some

short distance. An example of this would be a thin black dotted line drawn on a

white piece of paper. These types of discontinuity are rare in real images because

the change in intensity is often not so drastic. The two more common types of

discontinuity are ramp edges and roof edges. Ramp edges are in place of step edges

where the intensity changes over a small, finite distance rather than immediately

from pixel to pixel. Roof edges are where the intensity changes then returns more

gradually than a line edge.

Figure 5: Types of edges (Jain, R., et al., 1995)
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A common edge detection algorithm used is Canny Edge Detection. This was

created by John F Canny in 1986 who concluded that this method of edge detection

had very good detection, being able to reduce the possibility of false positives and

negatives when detecting edges, as well as good localization. Good localization in

the algorithm uses guaranteed edges to make accurate and educated assumptions of

less obvious edges that are detected by the program. Canny Edge Detection runs in

four stages: noise reduction, calculating the intensity gradient, suppressing

non-maximum edge pixels, and hysteresis thresholding (HIPR, n.d).

The first step of Canny Edge Detection is to remove the noise of the image.

Noise in an image is caused by random variation in image intensity, which can be

seen as film grain and variations to the pixel level in digital images (Noise , n.d.).

This causes many undesirable effects in an image such as blurry objects and

unrealistic edges (Boyat, & Joshi, 2015). Noise degrades the effectiveness of the

edge detection, so a Gaussian filter is applied to reduce the noise of the image before

any edge detection is run. By applying a gaussian filter, the image is slightly

blurred, removing details and noise that would otherwise lead to more false

positives and negatives when detecting the edges. A 5x5 filter is most commonly

used for this step (OpenCV, n.d.).

The next step is to calculate the intensity gradient of the image. The image is

filtered to get the first derivative in both the horizontal [Gx] and vertical directions

[Gy]. These values then can be used to find the edge gradient, as well as the angle of

direction that the edge is going at a certain pixel with the formulas shown below.

Gradient direction (angle) is rounded to one of the four directions, either horizontal,

vertical and two diagonals (0, 45, 90, 135) (OpenCV, n.d.).

The third step in the process is suppressing non-maximum edge pixels. This

step is where all pixels are checked and ones that are guaranteed to not be edges
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are suppressed. Pixels are checked to see if it is a local maximum of the other pixels

that are in its neighborhood in the direction of the gradient (given by the previous

step). Local maximums are considered for the next step in the process (OpenCV,

n.d.).

The fourth and last step in the Canny Edge Detection process is hysteresis

thresholding. This step takes all the edges found through the previous step and

determines whether or not it is truly an edge using two threshold values, a max

threshold and min threshold. If an edge has an intensity gradient that is larger

than the max threshold, then it is considered a definite edge. In the same fashion,

edges that have an intensity gradient below the min threshold are not considered as

edges. If the intensity gradient of an edge falls between the two values, then what

determines if it will be counted as an edge are its neighbors. If the edge is connected

to a definite edge then it is also considered an edge, and if it is not connected to an

edge it is suppressed. This allows the algorithm to make assumptions about pixels

that other edge detection methods would otherwise not be able to make (OpenCV,

n.d.).

Representing Edges as Splines

Once edges of a puzzle piece are determined, the next step is to represent

them as splines. The edge points detected can be transformed into a spline to create

an accurate representation of a curve. A spline is a mathematical representation of

a sequence of points, displayed as complex curves and surfaces (12). Splines are a

polynomial curve with the general form y = a + bx + cx
2

+ dx
3

+ … . There are two

types of curves that a spline can have. There is an interpolating curve, in which the

line of the curve passes through the control points. The second type is an

approximating curve, where the line passes near the control points. In our puzzle

we will be using an interpolating curve for our spline and the control points are the

pixel x and y coordinates of the pixels along the puzzle piece edges.
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Because of the points along the edge of each puzzle piece, we have to

represent the edges as linear splines rather than cubic splines to simplify

calculations. Three points along the edge of a piece can be turned into two vectors,

which then the angle between the two can be calculated with the following formula

θ = arccos[(xa * xb + ya * yb) / (√(xa

2
+ ya

2
) * (√(xb

2
+ yb

2
))]

Figure 6: Three points along the edge of a piece turned into vectors / linear splines.

Bezier Curves

A Bezier curve is used to draw curves that are defined by a set of control

points. In its most simple form, the linear bezier curve represented by points P0 and

P1 from 0 ≤ t ≤ 1 is given by

B(t) = (1-t)P0 + tP1

T represents the proportion of how far the point of the curve is from each

control point. For the linear bezier curve at t = 0.5 for example, the curve passes

through a point that is 50% along a line that is drawn between anchor points.

Higher order bezier curves can be found with the following formula
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with

This returns the bezier curve for N number of control points (Yu, et al., 2012).

For comparing two bezier curves we will have to utilize the arc length of

segments along the curve. By storing these in an array for each piece, the curves

will be comparable helping determine if two puzzle pieces are a good match. We

should also try using arc angles between these points to calculate the angle. These

could be stored in an array for each piece and compared similarly to the arc length

data.

To calculate the angle between two points along our edge the points a = (x1,y1)

and b = (x2,y2) can be represented as vectors A = [xa, ya] and B = [xb, yb]. The angle

can be calculated buy the following formula

θ = arccos[(xa * xb + ya * yb) / (√(xa

2
+ ya

2
) * (√(xb

2
+ yb

2
))]

Subsequence Matching

Sequence matching is a way to process and produce a pattern sequence from

the input data given. There are two categories for sequence matching, one of which

is whole sequence matching while the other one is subsequence matching. With

whole sequence matching, it requires the sequence entries to all be the same length

as the query length as it finds matches in the given dataset. For subsequence

matching, it finds all the subsequences that occur in a longer dataset that matches

the query regardless of its length pertaining to the query or to the dataset. Whole

sequence matching suffers in comparison to subsequence matching as it is

susceptible to non-Euclidean measures meaning that it is sensitive to irregular

changes in the dataset (Han et al., n.d.). In particular, computing the Longest

Common Subsequence (LCS) tends to be more robust than whole sequence

matching as it encounters noise in the dataset.
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The Longest Common Subsequence (LCS) is an algorithm in which given two

datasets, both with varying lengths, the resulting LCS would consist of a sequence

that was found in both datasets. LCS is effective for matching data types such as

strings, however when handling data that do not produce exact matches such as

user data, there needs to be an established threshold to handle variances in data.

With a threshold, it allows for matches to be true even if the matches are not exact,

as long as their difference is below the specified threshold (Bellogin et al., n.d.).

Figure 7: A puzzle piece outlined in linear splines.

Dynamic Time Warping

Dynamic Time Warping (DTW) is an algorithm that calculates and measures

the distance and similarity between two sequences that can either be of the same

length or different length as they vary in speed. When comparing the distances

between two sequences, DTW is more effective in calculating the distance as it

conducts one-to-many matches and there are no left-outs that would occur as

everything is mapped to each other. When implementing DTW, there are rules that

must be followed in order to calculate the similarity and distances between the two

sequences. These rules fall under the categories of: boundary, monotonicity, and

continuity constraints. The boundary constraint states that the start index of the

first sequence must match to the start index of the second sequence but it can be
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mapped to another index on the sequence. This constraint is also applied to the

ending index of both sequences. The monotonicity constraint states that the

mapping of the indices from the first sequence and second sequence must be

monotonically increasing and vice-versa. The continuity constraint states that when

the mapping of indices happens along with monotonicity, it eliminates the

possibility of cross matching and having no indices being left out (Zhang, 2020 &

Deriso, 2019).

Along with those three main constraints, there are others that can improve

the DTW algorithm further. The window constraint helps limit the number of

elements a sequence can match to on another sequence (Zhang, 2020).  The slope

constraint helps avoid extreme movements in one direction when calculating the

warping path (Alizadeh, 2020).

To get the DTW between two sequences, first take the cost which is calculated

from taking the absolute differences for each matched pair of indices. After

calculating the cost, it is then added to the minimum cost of arrays with varying

lengths: (i – 1, j), (i , j – 1), and  (i – 1, j – 1). Figure 8 demonstrates the

implementation of the algorithm as it would generate a matrix that would show the

cost calculated from each index on the two sequences, disregarding the window

constraint for now.

Figure 8: Implementation of DTW without Window Constraint (Zhang, 2020)
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The last result in the matrix is the calculated distance between the two sequences.

When adding in the window constraint shown in Figure 9, the implementation is

adjusted slightly as it is accommodating the range in which the elements match to

each other (Zhang, 2020).

Figure 9: Implementation of DTW with Window Constraint (Zhang, 2020)

SIFT

An alternative technique applicable to solving jigsaw puzzles with computer

vision is to locate and match internal areas of interest between images. In 2004,

David Lowe presented the Scale Invariant Feature Transform (SIFT) algorithm

which identifies features of an image (keypoints) and neighboring descriptors.
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Figure 10: Example of SIFT in action. Each red circle on the images represents an

individual keypoint. The green lines represent a match between the left and right

image’s respective keypoints (OpenCV, 2022).

An example of SIFT and the subsequent keypoint matching is shown above in

Figure 10. As the name suggests, this algorithm is invariant to the image scale and

orientation, and it operates in four major stages: Scale-space extrema detection,

keypoint localization, orientation assignment, and keypoint descriptor (Lowe, 2004).

Subsequently, keypoint matching is the final step to connect the filtered keypoints

between images.

The first stage of SIFT searches all image locations and scales to identify

potential points of interest. As the interpretation of real world objects depends on

their scale, a multi-scale representation is essential to extract meaningful

information about objects. The notion of scale-space addresses this concern, by

considering all scales simultaneously with the use of the Gaussian function. The

scale-space of an image can be described as a function produced from the

convolution of a Gaussian kernel with an input image:

𝐿(𝑥, 𝑦, σ) = 𝐺(𝑥, 𝑦, σ) *  𝐼(𝑥, 𝑦)

𝐺(𝑥, 𝑦, σ) = 1

2πσ2 𝑒−(𝑥2+𝑦2)/2σ2

Where is the scale-space, is the Gaussian Blur operator, and is the image, with𝐿 𝐺 𝐼

parameters and representing location coordinates and σ as the “scale”  (Lowe,𝑥 𝑦

2004 & Lindeberg, 1994). This convolution operation blurs the image, and the
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difference of Gaussian can be computed from the difference of two images𝐷

separated by a gaussian blurring factor :𝑘

𝐷(𝑥, 𝑦, σ) =  (𝐺(𝑥, 𝑦, 𝑘σ) − 𝐺(𝑥, 𝑦, σ)) *  𝐼(𝑥, 𝑦)

= 𝐿(𝑥, 𝑦, 𝑘σ) − 𝐿(𝑥, 𝑦, σ) 

Taking the D(x, y, ) calculated, each potential keypoint is compared to its eightσ

neighbor pixels, as well as the nine neighbors at the scale-space above and below it.

The pixel is considered a keypoint if it is the largest or smallest value of all these 26

neighbors. This short process typically eliminates a lot of the egregious potential

keypoints generated.

The second stage of SIFT, Keypoint Localization, where the potential points

from the first stage are filtered and refined to only the most accurate keypoints.

Keypoints with low contrast or ones located along the edge of the image are

typically the first ones eliminated. This process uses a Taylor expansion of the

scale-space function to fit a 3D quadratic function to the local points:

𝐷(𝑥) =  𝐷 +  ∂𝐷𝑇

∂𝑥 𝑥 + 1
2 𝑥𝑇 ∂2𝐷

∂𝑥2 𝑥 

In this equation, D and its derivatives are evaluated at the sample point and x = (x,

y, is the offset from this point. To find the extremum, the derivative of theσ)2

function is taken with respect to x and setting it to zero:

𝑥 =− ∂2𝐷−1

∂𝑥2
∂𝐷
∂𝑥

These equations determine the offset, which if determined to be less than some

threshold value (e.g., 0.3) in any direction indicates the location has low contrast,

and should not be used as a potential keypoint.

By nature of the Gaussian function used in SIFT’s first stage, points found

along the edge of an image are very common. Edge points are not well defined since

they have less neighbor points and therefore less to compare to, leading to more

keypoints than that of a typical “middle” point. Using more complex but lightweight

mathematical operations, SIFT naturally filters out edge points that are not likely

to be accurate.
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The third stage of SIFT, Orientation Assignment, makes the algorithm

rotation invariant by producing it at various different rotations and orientations.

When used in the matching step, it helps to account for varying positions of the

keypoint from source to destination. After the second stage, we are left with only the

most stable keypoints. For each of these keypoints, an orientation histogram is

created, with 36 bins covering 360 degrees. The gradient is taken from the keypoint

and all neighboring pixels. The magnitude of the gradient is then put into the bin of

the respective gradient direction (angle). The highest peak in the histogram is then

considered the main orientation and any peaks greater than 80% of the main peak

are also considered. All these orientations are then made into their own keypoints

with the exact same location and scale, but with different direction vectors (Tyagi,

2019).

Up until this point, each identified keypoint has a location, scale, and

orientation. The fourth phase of SIFT is where a Keypoint Descriptor is computed

which is how the keypoint is stored and displayed. This process is done in a specific

manner to ensure each keypoint is as invariant as possible to allow for matching

without regard for illumination, orientation, or 3D viewpoint. A 4x4 array of

histograms around each keypoint is created. Within each histogram is an 8 bin

orientation histogram. This comes together for a 128 dimensional vector that

represents the area around each keypoint.
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Figure 11: Keypoint with descriptors (Tyagi, D, 2020).

A quick vector normalization step eliminates the chance for illumination variance

and the keypoint is in its final form.

The keypoint descriptors calculated from SIFT can be applied towards

matching keypoints between two images. Each keypoint of the “query” image is

matched to its nearest neighbor keypoint of the “training” image based on the

minimum Euclidean distance of their descriptors. However, many keypoints will not

have a correct match if they were not detected in the training image, or if they arose

from background noise in the image. To filter out these features, Lowe proposed

performing a “ratio-test”, which he found to eliminate 90% of false matches while

discarding 5% of correct matches (Lowe, 2004). This ratio test compares the

distance between the closest neighbor match to the second closest neighbor, and

rejects matches where the distance ratio is greater than 0.8. The logic behind this

test is that “good” matches have to be distinct and significantly closer than the

closest incorrect match. If the second closest match is in close proximity to the first,

then the feature is too ambiguous to yield a reliable match.
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Homography

The keypoint matches determined by the minimum Euclidean distance of

descriptors can help identify where the two processed images intersect. Locating

this image overlap can be especially useful for solving jigsaw puzzles, as the goal is

to find where images of individual pieces are located with respect to the whole

puzzle image. One method of transforming one image to another in this fashion is

using homography, which is a 3x3 matrix used to map points between images on the

same planar surface (Snavely, 2006). To determine the correct homography matrix

among a mix of accurate and inaccurate keypoints, estimation algorithms like

Random sample consensus (RANSAC) are utilized. RANSAC iterates through

random combinations of keypoint sets and computes the number of inliers for the

resulting homography matrix. In a least-squares approach, the homography

containing the most inliers is taken as the final result (Snavely, 2006).

Figure 12: Example of homography applied to SIFT keypoints. The white box

around the object on the right is the area with the most concentrated keypoint

match inliers. (OpenCV, 2022).

Color Histograms

Histograms in general are a type of bar graph that groups numeric data into

bins (MATLAB, n.d.). More specifically, color histograms are the distribution of
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colors in the RGB space. The earliest use of color histograms were modeled as a

gaussian cluster in a color space. This meant that an object could be modeled by a

certain color characteristic, and the more a pixel deviated from this characteristic,

the less likely it would be that object (Novak, 1992). Now histograms are able to

represent homogeneous objects in the three dimensional RGB space. This allows for

more complicated computer vision and deeper knowledge for analyzing images.

Typically, color histograms are split into their three distinct color channels before

doing individual analysis. An example of a few images’ color histograms are shown

below:

Figure 13: Two examples of normalized color histograms generated on different

images

Because color is such a vital part of not only solving puzzles, but computer

vision in general, color histograms can play a large role.

Prior Work on Jigsaw Puzzle Matching

The idea of using a computer to solve a jigsaw puzzle has been explored in

the past, all using a multitude of different strategies and techniques. Rather than
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the standard jigsaw puzzle, people have worked on irregular shapes and even

perfect square pieces to put a creative twist on this problem. Some used strictly

edge data, strictly image data, or a creative combination of both.

One jigsaw puzzle solver created by Travis Allen of Stanford University uses

a combination of piece category, side length, and the curve of a side to assign a score

to a match (Allen, 2016). It does not use the picture of the completed puzzle on the

box at all. This project was also created entirely in Matlab and created for potential

smartphone applications. Their algorithm utilized a Gaussian filter to blur the

image, as well as a green screen to create better edge detection. The green screen

acted as a solid background to more easily mask the pieces and distinguish them

from the background and one another. Then puzzle pieces were categorized, and the

sides of each piece are also categorized as either a flat side, a head, or a hole. The

creator of this project broke the assembly into a global and local, distinguishing the

edges from the inner pieces. Construction begins with an edge piece as a starting

piece, and once each match is given a score the algorithm moves to the best match

and calls that the new starting piece and continues. This method is used on pieces

categorized as edges to assemble the border of the puzzle. The middle is solved from

the open, uppermost left slot and solves left to right and downwards. This program

found success with 12 to 16 piece puzzles, but struggled with 24 piece puzzles. In a

few edge cases, color was found to not be helpful because the color drastically

changes along the edge of a match. While this program had many flaws with larger

puzzles, it was successfully able to solve smaller puzzles purely by looking at the

disassembled pieces with no reference to the final image (Allen, 2016).

Unlike the previous puzzle solver, one created by Cris Zanoci and Jim

Andress of Stanford University does not use edges at all, but rather attempts to

solve puzzles where the pieces are all square, using image data alone. Similar to the

other puzzle solver, this solver gives matches a score based on criteria that is then

used to assemble the puzzle. One of the criteria used is a dissimilarity metric, which

measures how similar the gradient distribution is between two puzzle piece edges.

Dissimilarity is calculated using the Mahalanobis distance, which measures the
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distance between a point and a probability distribution. The pieces were

reconstructed by organizing them in a graph, specifically a minimum spanning tree.

The accuracy of the program was measured with a direct comparison metric, which

measured the percent of pieces that were in the correct position in comparison with

the original image, and a neighbor comparison metric, which measured the percent

of edges with are adjacent to their neighbor in the original image (in other words,

pieces that fit together regardless of if they are in the right location). The

mahalanobis gradient compatibility was found to perform really well when

matching pieces based on image data alone. This algorithm was able to successfully

solve a 2856-piece puzzle. Their algorithm also had a drawback where if a mistake

was made there was no way to backtrack and correct the error. Overall the ability to

solve such a high piece puzzle makes their methods worth investigating further for

our own application (Zanoci & Andress, 2016).

This next puzzle solver was created by M. Makridis, N. Papamarkos, and

C.Chamzas of Democritus University of Thrace, Greece. Unlike the previous two

reviewed, this puzzle solver combines both shape and color information from the

pieces to solve the puzzle. This method consists of five stages: Corner detection,

color segmentation, comparing, iteration of previous stages, and a matching stage.

This solver also uses a green screen to easily separate the background from the

pieces. For comparison, this algorithm takes four points along one edge and

compares the angle with four points from another piece's edge. This was designed in

order to speed up the process and not check every single point. They also checked

the luminescence at these points and compared it to the luminescence of the

potential match. Then they compared the Euclidean distance between the connected

sequence of points from one piece to the second piece. This is repeated with a

different number of points in order to catch the errors that could have been missed

the first time around. This in turn kept the algorithm fast and attempted to

increase accuracy as well. The pieces were assembled using reference points and a

shift and rotation formula. The puzzles tested by this algorithm were between three

to ten pieces, all of which were cut into irregular shapes with multiple edges. This
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differed a bit from the standard four sides we are used to when we think of a puzzle

piece. (Makridis et al., 2005)

A different puzzle solving algorithm by Liang Liang and Zhongkai Liu

utilizes the completed puzzle image and performs feature detection to solve jigsaw

puzzles. The steps of this algorithm were to downsample the image and reduce

noise, patch segment extraction, feature detection with SURF (Speeded-Up Robust

Features), feature descriptor matching, geometric consistency check, and create the

image. They decided to use SURF because through their preliminary testing they

found that SURF was faster than SIFT. Note that SURF is still patented, so its use

requires payment and is not included in default OpenCV packages. The feature

points of a puzzle piece are generated using this algorithm and then are compared

with the template image. Its location is estimated based on this comparison. Then

its geometric consistency (i.e. location and rotation) is checked using a Matlab tool

called RANSAC, also known as random sample consensus. Finally the piece is

overlaid on the template image to see if the piece is in the correct location. This

algorithm heavily depended on the image of the puzzle. They were able to produce a

91.7% detection success rate for one 24 piece puzzle, but for different 24 piece

puzzles that had a cartoon image with large lines and large chunks of color they

only achieved a success of 13/24 pieces (Liang & Liu, n.d.).

Overall, the most promising solver was Cris Zanoci and Jim Andress’s- one

that used solely image data. This was able to produce successful solutions at high

piece counts. The solution by Liang and Liu seemed to produce somewhat promising

results and had a different approach to others, using feature detection via SURF.

Algorithms that were based on only edge data seemed to produce inconsistent

results at much lower piece counts. The three main approaches- feature detection,

image data, and edge data- were all potentially beneficial for detecting piece

matches and were worth investigating more as we began developing our own

algorithmic approaches.
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3. Methods

Overview

The goal of this project was to design an application to help users solve jigsaw

puzzles through three different matching approaches: edges, features, and color.

The methods to achieve this goal are as followed:

1. Apply techniques for splines with subsequence matching algorithms to match

one piece with another based on their respective shapes.

2. Match puzzle pieces based on their appearance or texture by utilizing SIFT

(Scale-Invariant Feature Transform).

3. Implement color histogram correlation matching by splitting the RGB

channels of puzzle pieces and sections of the puzzle image.

4. Create a suitable user interface (UI) for the application which follows a

logical workflow.

This chapter details the development process for each puzzle matching

approach and the user interface, as well as the procedures for testing the

application accuracy.

Splines and Edge Detection

One of the approaches the team took in matching puzzle pieces together is

through the combination of splines and edge detection. For initial edge detection, we

used Canny edge detection through Python’s OpenCV library. We determined that it

returned more quality results to that of Sobel edge detection. Canny edge detection

produced more and smoother edges because it used the non-maximum suppression

and hysteresis steps which Sobel edge detection does not have. As stated in the

background, a spline is a mathematical representation that follows a sequence of

points. Combining edge detection with this idea of splines, we were able to
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represent the individual splines surrounding each puzzle piece by using the points

found via edge detection.

Figure 14: Example of a puzzle piece spline

Representation

To begin using the spline and edge detection approach, getting the spline

representation of each individual jigsaw puzzle piece was the first step. To do this,

an image of a puzzle piece needs to be read into the program which was done

through OpenCV. That image is then converted to grayscale. This conversion of the

image to grayscale allows the edge detection to pick up on the edges more easily as

it detects the intensity of the pixels which is then used to calculate a gradient

threshold. This threshold is then used to determine whether the pixels belong to an

edge of the image or not. After the conversion of the image to grayscale, the image is

masked in white while keeping the background black which helps even further

when doing edge detection on the image. Most importantly, the mask makes sure

that few edges will be detected within the piece itself. Canny edge detection is then

performed on the masked image, giving the outline of the puzzle piece and ignoring

the contents or inside of the piece. The resulting image then becomes the basis of

the spline of the puzzle piece.

From the resulting image that displays the edges of the puzzle piece, the next

step is to find the points that form the spline of the puzzle piece. This is done

through the OpenCV library in Python as it provides a function that finds the

contours of an image. The parameters of this function consists of an image, the
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contour retrieval mode, and the contour approximation method. The contour

retrieval mode parameter tells the function what mode to get the contours of the

image. In this project, the mode that was used was RETR_EXTERNAL which gets

the extreme outer contours of the image which in this case is the outline of the

puzzle piece. The other parameter, the contour approximation method, is getting the

approximation of the contours when looking at the image and for this approach,

CHAIN_APPROX_SIMPLE was used to get the contour approximation.

After finding the contours of a puzzle piece, the next step was calculating the

angle at every contour point to get the cumulative angle which was used to do the

spline matching. By using the dot product operation, it allowed the project team to

calculate the angle at every contour point by evaluating the vectors that were

produced from the given points. After getting the angle values at every contour

point and normalizing it, the project team calculated the cumulative angle over a

specified arc length (currently is set to 96 but is adjustable), which was used to do

the spline matching between puzzle pieces and declaring if they were matches or

not. Figure 15 shows a flow chart of the previously described procedure.

Figure 15: The procedure of using splines to do piece matching
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Visualization

When visualizing the splines on a puzzle piece, the factors that affect how the

spline is computed are the kernel size, the morphological operator, and the

parameters of the Canny Edge Detection function. After converting the image of the

puzzle piece into grayscale, the next step was to fill in the image with white so that

the contents of the puzzle would not show up when masking the image to get the

edges. Both the kernel size and the closing morphological operation helps remove

false positives, or other pixels in the contents of the image that are not white, that

are still present in the image and fill it with white pixels creating a mask of the

puzzle piece. Adjusting the kernel size affects the noise of the image as the bigger

the hyperparameter gets, the more the contents of the image would be filled with

white pixels. This causes parts of the puzzle piece to become part of the mask (i.e.,

the notches of the piece). Once a suitable kernel size was established, Canny Edge

Detection is applied to the image as it takes in the image, a minimum, and a

maximum as parameters and with this, detects which pixels in the image are a

“sure-edge”. The resulting image from applying the edge detection gives the edges

or the outline of the puzzle piece which is used for the spline representation.

After getting the spline representation of the puzzle piece, the next task was

to determine the direction of the spline when it is being traversed and the

associated angle. From the previous section, the dot product was used to find the

cumulative angle over a specified arc length. A challenge that first occurred when

getting the cumulative angle was how to normalize the angles. Without normalizing

the angles, the resulting cumulative angle that was calculated at the specified arc

length was a large positive value which does not give a lot of information or purpose

when performing spline matching. By taking the first vector that was calculated

and flattening it as the x-axis for the second vector, the angle given from the second

vector determines the sign and the direction the spline. For example, if the second

vector is above the x-axis, it gives a negative angle and the spline is making a left

turn. Each turn made by the spline is shown in a different color: red signifies that
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the angle is positive and the spline is making a right turn while blue signifies that

the angle is negative and the spline is making a left turn (See Figure 14). This

normalization of the angles allowed the cumulative angle that was calculated at the

specified arc length to be more accurate and meaningful when doing the spline

matching.

Subsequence Matching

After obtaining the splines and the visualization of them, to identify which

puzzle perfectly matches with another puzzle piece, subsequence matching was

used to take the cumulative angles of two pieces and check if there is a common

sequence of angles when comparing them with a given angle threshold and a

subsequence threshold. The angle threshold determines if the angles being

compared is common between the two puzzle pieces. The subsequence threshold is

used to determine if the number of common angles reaches to that threshold or

greater, then it is considered a match. As an example, if the list of cumulative

angles for the first puzzle piece is [300, 198, 209, 98, 100] and the list of cumulative

angles for the second puzzle piece is [300, 200, 198, 56, 98, 102] with an angle

threshold of 2 and a sequence threshold of 4, when comparing the two pieces by

their list of cumulative angles, then the two pieces are considered a match since

they have four common angles.

However, when running the program with subsequence matching on real-life

puzzle pieces, some of the cumulative angles were either opposites of each other or

were going in the reverse direction. For example, one puzzle piece has cumulative

angles [179, -91, 67, 203, -15] and the other puzzle piece has cumulative angles [-14,

-199, 68, 90, 177]. From this example, the angles of the second piece are going in the

reverse direction and the signs are sometimes switched. This was observed to be

happening to some of the puzzle pieces that were supposed to match to each other.

To reduce this occurrence, we added a way to check if the list of cumulative angles is

matching in one direction or in the reverse direction to ensure that potential

matches were not lost when doing subsequence matching. Checking if the angles
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were opposites of each other or not was also implemented to have less matches lost

when running the program (e.g., 15 and -15 is considered a match).

After revising the subsequence matching technique, when running the

program with an image of the puzzle pieces scattered evenly and segmenting each

piece, it produced a variety of results that were dependent on the values that were

set for the angle and subsequence thresholds. When increasing the angle threshold

and keeping the subsequence threshold constant, the number of matches increased

as well however it is not helpful data as it matches puzzle pieces that are not

supposed to match together. When tightening the subsequence threshold and

keeping the angle threshold constant, it reduced the total number of matches found

as the common sequences found from two puzzle pieces must reach that threshold to

be considered a match. From observing the changes in the results, the values of the

two thresholds were set to a standard that produces a reasonable amount of

matches. After getting the matches for each puzzle piece, each puzzle piece was

ranked by the number of matches that were found to know which puzzle piece

matches the other more than another piece. For example, if puzzle piece 0 matches

with puzzle piece 11 with a match count of 5 and puzzle piece 0 matches with puzzle

piece 5 with a match count of 2, when comparing the two pairs, puzzle piece 0 is

most likely a potential match with puzzle piece 11 than if it were to match with

puzzle piece 5. Figure 16 shows an example of the results with a 12-piece puzzle

ranked by the number of matches.
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Figure 16a: Ranked matches between puzzle pieces

Figure 16b: Example of a pair of pieces matching
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To test this matching, we ran our edge matching algorithm on the 12 piece

wooden farm puzzle. In order to check if this algorithm performs any better than

random matching we conducted a simulation, running 30 iterations of randomly

matching the pieces to each other. We chose to make 27 random matches since this

was the number of matches made by the edge detection.

To check for any bugs in the matching algorithm we set up two tests with

artificial “perfect” pieces to check if they came up as a match. Since the matching

algorithm had two parts, the cumulative angles and then subsequence matching we

ran tests for both. To see if the subsequence matching worked, we constructed two

arrays of perfect angle matches. Then we tested two series of points along an X,Y

axis that would produce the same cumulative angles and run matching on those.

This was to ensure that there was no error in the matching portion of our algorithm.

SIFT

As an alternative approach to matching puzzle pieces based on their edges,

the internal features of each individual piece can be independently compared with

those of the completed puzzle. By matching these features, the piece image can be

mapped to its proper location and orientation within the puzzle image. Python’s

OpenCV library provided many tools for this process, including the SIFT algorithm

for locating keypoints and corresponding descriptors. While SIFT formed the basis

of the system’s functionality, there were a number of necessary steps in between to

process the user input and resulting matches. See Figure 17 below for a flowchart
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depicting this process.

Figure 17: Flowchart for the SIFT puzzle piece matching process, including

segmentation, matching, and sorting

Segmentation

In order to analyze the features of each puzzle piece, they first need to be

separated out. While a user could upload individual images of each puzzle piece,

this is both inconvenient and impractical for larger puzzles. Instead, an image that

contains all of the pieces spread out can be processed to automatically separate the

pieces based on their edges. For best results, users are asked to lay the pieces out on
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a solid colored background with proper lighting and quality so the features can be

extracted precisely.

Piece segmentation relies on having an image with a solid colored

background in order to decipher the piece pixels from the background. Once the

image of pieces is inputted, the background color is taken as the most common color

value (blue, green, red) along the perimeter. While this approach carries an

assumption about the image, it was just as effective yet more lightweight than

having to find the most common value throughout the entire image.

After determining the background color, a binary mask of the image is

created to turn the pixel values into strictly black or white. Pixels within an

adjustable ± range of the background color would be considered the image

background, with everything outside the range as the pieces. It is expected that

some pieces have areas that match the background color, so a morphology closing

operation is performed to enclose the piece in solid white. This operation is

essentially a combination of dilation followed by erosion, which helps to fill in small

gaps in objects. Depending on the spacing of the pieces, the morphology kernel size

may need to be adjusted by the user. If the pieces are closer together, a smaller

kernel size would be needed to ensure that the closing operation does not connect

two pieces. A sample puzzle image with the resulting mask can be seen in Figure

18.

Figure 18: Sample puzzle image and corresponding mask
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Once the solid puzzle pieces are distinguished from the background, Canny

Edge Detection is applied to extract only the piece edges. The reason we could not

immediately perform edge detection on the input image is because the internal

features of a piece would also have been captured; creating the mask image first

helped eliminate the noise from piece features. With all of the piece contours

identified, the last remaining step is to bound each one separately and create new

files for them. While a simple bounding rectangle or circle could do the job, edges of

other pieces would often overlap this boundary depending on how far apart the

pieces were spread out in the image. To avoid this issue, a convex hull boundary was

used instead on the contours (which are concave) to bound them more tightly.

Matching

The next major step in the puzzle piece matching process uses SIFT to find

the main areas of interest in each piece, and compare them with features of the

whole puzzle. OpenCV provides a convenient method for creating a SIFT detector,

which can detect and compute the keypoints and descriptors of an image. Having

segmented all the pieces into separate files, the resulting descriptors of each piece

can be matched to the puzzle descriptors one at a time by iterating through a loop.

A brute force matcher is used to find the puzzle feature with the minimum

Euclidean distance to each piece feature. However, this approach often leaves an

abundance of ambiguous and false matches which dilutes the set of precise matches.

To mitigate this problem, for every keypoint in one image (the piece), the two closest

matches are calculated and Lowe’s Ratio Test is performed. If the two best matches

calculated are too close together (within the 0.75 threshold), then the match is

discarded entirely; the closer match would be deemed too ambiguous to confidently

say it is correct when the second best option is in its vicinity.

If at least four “good” matches are identified between the piece and the puzzle

after filtering through the ratio test (although more is preferred), then a

homography can be calculated to transform the piece to its location and orientation

within the puzzle. This homography function takes RANSAC as an approximation
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method parameter to find the transformation which contains the most inliers

matches. By extracting the piece contour in a similar fashion as the segmentation

process, the contour can be projected onto a copy of the puzzle image based on the

homography transformation. An arrow points from the piece’s original location in

the image taken by the user to the matching location found on the puzzle to provide

a clear visual cue for the user. A puzzle image copy is created for each piece to show

the respective matches individually, so the user can follow along one step at a time.

However, before outputting the results to the user, the matches need to be in a

presentable format with a sequential ordering. An example image showing a piece

match with the raw keypoint matching lines can be seen in Figure 19.

Figure 19: Puzzle piece match displayed by highlighting the location of the

piece from the user inputted image and the matching location on the puzzle. The

matching keypoints contributing to this match are connected with lines
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Sorting

With the “absolute” SIFT approach to matching, each piece was individually

compared to the puzzle with no knowledge of where the other pieces were matched

to. This could introduce trouble for the user when solving the puzzle if the matches

relative to the puzzle image are given in a random order, since there would be no

guarantee that consecutive matches would directly connect pieces together; the user

would have to approximate the piece positions on the surface they are solving the

puzzle. To make the puzzle solving more realistic, the matches would be presented

in a consecutive order allowing pieces to be connected every step. The ordering

chosen was to sort the matches starting in the top left corner of the puzzle, and

going across left to right, row by row, ending at the bottom right corner of the puzzle

as shown in Figure 20.
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Figure 20: A sequence of three consecutive matches, starting from the top left of the

puzzle

To generate a comparable value, points were taken from each projected

contour on the puzzle image after the homography transformation. These points

were defined as the center of the minimum enclosing circle of the contours.

However, since the projected contours were merely approximations, each row of
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points had variations in their x and y values; the collection of points reassembled an

unaligned grid (Figure 21). A sorting algorithm was created to handle the

misalignment of points to ultimately output the ordering from the top left of the

puzzle to bottom right.

Figure 21: Example of a misaligned grid of points representing the center

coordinate of each matching piece (Piece 2 was unmatched)

All the points were first sorted based on y value, which would group together

the points within the same row, but would not guarantee correct ordering going

across the row. Next, the difference in y values between each consecutive point was

analyzed to find where one row breaks to another. While there may be some

variance in y value between points in the same row, the start of a new row could be

identified by a large change. Because the jump to a new row is much greater than

the variance between points in the same row, any point greater than the average

difference in y value between points was designated as a new row. While there may

have been more robust methods of determining a threshold, this method was chosen

due to its simplicity and effectiveness. Each row could not be assumed to have the

same number of points, as pieces that did not have enough keypoints or could not be

accurately matched were excluded from the ordering. Once each row of points was
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identified, they were sorted individually by x value and recombined afterwards,

giving the final sorted ordering for the user to consecutively match pieces together

in a systematic fashion.

Limitations

One glaring limitation with SIFT matching is the dependence on having a

distinct puzzle image, as only the internal features of puzzle pieces are considered

without any regard to the edges. Many real puzzles created to be intentionally

difficult are ones that have a low amount of distinguishing features on the pieces.

Usually a person solving a puzzle would need to manually try connecting pieces that

look similar to see if the edges fit together perfectly. As an extreme example, using

SIFT on a monochromatic puzzle with no distinguishing features would be futile.

Color Histograms

Another approach to piece-to-puzzle matching is the use of color histograms.

The general idea is to compare the ratios of the present colors between each piece

and each spot on the full puzzle image. The higher the correlation between a piece

and a spot, the more likely it is to be a match. In theory, this approach would excel

in cases where the puzzle pieces resemble uniform colors without many features.

This is because all features of the puzzle piece are lost when extracting only the

RGB color concentrations. Introducing color histograms with SIFT would be

complementary as SIFT matching relies on an abundance of features and is

ineffective for pieces with blank space.

There is no way to already know which pieces go where before matching, so

some approximations do need to be made for generating the “spots” on the full

puzzle. To do this, a grid is first formed atop the puzzle (an example is shown in

Figure 22), splitting the full puzzle image into equally sized rectangles- the same

amount as the number of pieces. This grid is formed using the puzzle dimensions,

which is something that must be hard-coded, provided, or dynamically determined.
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In this case, hard-coded values provided the most consistent way to test this method

and were used throughout the process. Once the grid is formed, we have access to

an array of grid locations, which each correspond to a potential piece match

location. This is obviously a rough estimate of a match location since each puzzle

piece has unique cuts, holes, and extensions that don’t lock it into a perfect

rectangle. Nevertheless, these work well enough to generate some match results.

Figure 22: Example of a puzzle “grid” where it is divided into equal rectangles

based on the number of pieces in each row and column

Next, using OpenCV, color histograms are generated for each piece and each

grid location. For each piece and grid, three histograms are created- one for each of

the color channels (Red, Green, and Blue). Each individual histogram is then

normalized. This is done because in order to match pieces, we are more interested in

the ratios of colors, not the raw amount of colors that a histogram naturally

generates. In other words, for each color value, we rather know what percent of the

piece has that color, not the amount of pixels that have that color.
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With the normalized histograms for each piece and grid location, comparisons

must then be made. Each piece is compared to each grid location. The comparison

function used is OpenCV’s compareHist() and the type of comparison used is

correlation. The equation used will return a float between -1.0 and 1.0, where 1.0

would be returned for two identical histograms and -1.0 would be returned for two

completely opposite ones. The function used in the backend is as follows:

where N is the number of histogram bins, and for a given histogram (k = 1 or 2):𝐻
𝑘

Figure 23: OpenCV’s compareHist() correlation comparison equation

The red, green, and blue channels of the piece and grid location are compared

separately and are added together for a final correlation value that will be between

-3.0 and 3.0. Once all comparisons have been completed, the grid location with the

maximum correlation value is treated as a match.

Using color information to solve puzzles would not provide compelling results

in isolation, as although it may help find the general area for a piece it would be

difficult to pinpoint the precise location among adjacent pieces that have similar

concentrations of color. However, the major upside with the color histogram

approach is how there is always a maximum color correlation value between the

pieces and puzzle grid to declare as the best match; SIFT would be incapable of

producing any attempt at a complete match if there not enough keypoints were

detected (a minimum of four is required for a homography transformation). By

process of elimination, considering only the puzzle locations not matched by SIFT as

a starting point for other methods improves matching odds in any case. While color
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histograms were not the primary approach for matching, the hope was to fill in any

gaps from SIFT and guide the user towards a complete puzzle solution.

UI

Workflow

When envisioning how the AI application could help users solve puzzles, two

different approaches came to mind with varying degrees of involvement. On one

extreme, the app would perform all of the work in matching the puzzle together,

leaving the user with no control over the process. Because of the limitations with

image analysis and matching for certain puzzles, we could not put total faith in the

system to always report correct matches. Instead, the application’s intention would

be acting as a guidance tool to aid the user in completing the puzzle. A user should

not assume the claimed matches will be correct 100% of the time, as ultimately only

someone with the physical pieces can confirm if they match together.  Additionally,

there will often be puzzles with little to no matches found, in which case the user

may have to rely less on the system to complete the puzzle.

Our workflow design for the user interface needed to be both functional and

intuitive to use. The general use case path is outlined below:
1

1. The user will first be presented with two file upload buttons for the necessary

images of the puzzle they want solved. These images consist of an overhead of

the disassembled puzzle on a solid color background, and one for the

completed image usually provided on the puzzle box.

2. Once uploaded, the user will be prompted to submit the number of pieces the

puzzle contains. This will help the matching algorithms confirm the correct

number of piece contours are extracted.

3. A mask image of the disassembled puzzle will be displayed to the user to

confirm that the pieces are accurately separated from the background. Two

1
This user interface illustrating this workflow can be found in Appendix A.
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adjustable sliders will be provided for the background color threshold and the

morphology kernel size with default values. Depending on the image and

spacing of the pieces, these parameters may need to be changed by the user

to mask the pieces accurately. When either slider is changed, the mask image

can be refreshed by clicking “check mask”, to give the user visual feedback on

how the sliders affect the mask image. Once the user is satisfied with the

masked image, a button to “submit” will initiate the segmentation and

matching program.

4. A new image will display combining the user’s input images vertically with

the disassembled pieces on top and the completed puzzle on the bottom. One

piece from the top portion will be outlined, with its corresponding destination

to the completed puzzle also outlined. An arrow will be displayed connecting

these locations to give a clear cue for the user as to where the piece should go.

5. Using the interface as a guide, the user will try placing their puzzle piece in

the location recommended by the program to confirm the accuracy.

6. The user may continue to the next step in the puzzle order (going top left to

bottom right) by clicking the right arrow on the image carousel, and left to go

back one.

7. The user will repeat this process until all the matches are reviewed.

Rather than computing matches piece by piece on the fly, our system

computes matches for the entire puzzle initially to speed up navigation between

steps. Another design choice for the system was to not provide the user with

freedom to select pieces to match, where a predetermined order was used instead.

As the SIFT algorithm matches pieces based on the complete puzzle picture, there

would be no guarantee that user-selected pieces would link together; pieces placed

in relation to the puzzle image would form gaps if done in a random ordering.

Depending on the image, SIFT may find conflicting or a lack of keypoints to

match the piece. In this case, our system will move these pieces to the end of the

ordering and will be run through color histogram matching. The hope is that if
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there were only a few pieces that could not be matched, the majority of the puzzle

would already be solved. With any remaining puzzle gaps, the user should have an

easier time figuring out for themselves where the unmatched pieces should go with

help from the histogram matching. However, there would certainly be cases where

there are too many unmatched pieces, in which case our system is limited in how

much assistance it can provide the user.

Streamlit

The Streamlit framework was used to create the initial prototype for our user

interface (UI). Launched in 2019, this open-source python framework is primarily

intended for data science and machine learning web applications. While this was

not our area of focus, Streamlit was chosen because of its simplistic widgets,

abundant and clear documentation, modern looking design, and easy backend

integration.

Behind the scenes, Streamlit reruns the python script from top to bottom

after every change in state or when the screen needs to update. This concept

facilitated part of the workflow and removed duplicate code. For example, when the

image masking slider is adjusted by the user, the screen automatically refreshes

with a recomputed image based on the new parameters. Additionally, when clicking

the “next” or “back” buttons to navigate through the matching steps, the new step

will be displayed by simply incrementing the state of a counter variable; the change

in state will trigger a rerun of the script, and the code segment that displays the

image will use the updated variable value instead.

The Streamlit concept of rerunning the script upon any change also

introduced a few inconveniences to workaround. Normal variables would be reset to

their initial values unless a session state variable was used. Extra session variables

were also required to track when things were run for the first time in order to avoid

rerunning expensive operations like SIFT. Submit buttons that were intended to

only be clicked once throughout the duration of the app would be reset after a page

refresh, causing any subsequent logic to be unreachable without the use of
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additional variables to track progress. The major downside of using Streamlit for

displaying images was how the screen kept refreshing when going to the next step.

This was disorienting as the image would disappear and be replaced by a new one,

without a smooth transition. Because of these limitations, a different approach with

Flask was later pursued to allow for more flexibility.
2

Flask and Alternatives

We looked into multiple different Python UI frameworks when deciding on

how to display our results. Most simple frameworks like PyGUI and PySimpleGUI

provided nearly identical potential to Streamlit. They all worked with widgets to

help users build quick applications without having to start from scratch. Since we

had already run our initial tests in Streamlit, we decided that there was no need to

change to a different widget-based framework as they all came with similar

limitations.

Contrary to widget based frameworks, Flask provided a flexible alternative to

integrate the backend Python code with frontend HTML and CSS. This provided the

most amount of flexibility for the app design, but it was also more involved. Using

Flask required defining routes for POST requests coming from HTML forms, and

handling the redirects between pages. In addition, a lot more styling was required

to make the HTML look appealing. To mitigate the issues of having a page refresh

in between steps, a carousel was created with Bootstrap to seamlessly transition

between the images. While it may have taken longer to implement initially, using

Flask was beneficial in the long run because of the increased possibilities and

control over the design.

Experimentation

In designing both the backend and frontend of the application, only a select

few puzzles were used as sample input files. While these few 12 and 24 piece

2
Screenshots of the Streamlit design can be found in Appendix B.
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puzzles showcased a near perfect level of matching, this sample size was inadequate

to investigate the accuracy of the system. Therefore, a testing framework was

designed in order to consistently evaluate the system with a larger sample of puzzle

images and sizes. Quantitative data would be collected for the number of correct

pieces matched for a given set of images to allow for an objective comparison of

puzzles through statistical analysis. The results of this experimentation would help

uncover key properties about puzzles which affect the success of our system, and

point out areas for improvement.

Constraints

The quality of an image played an important role in our puzzle solver. By

following certain constraints when taking images of a puzzle, we were able to

produce better results from our program.

To begin, our program requires an image of the completed puzzle, which can

be provided by taking an image from the puzzle box. The user must also take a

top-down image of the scattered pieces. The pieces must not be touching any other

pieces and be placed on a solid color background, whose color is not common in the

puzzle. The user is also recommended to crop the images to remove any portion of

the picture that is not the solid color background or pieces. It is also recommended

to use a dark color background rather than a light one. Users should also attempt to

take pictures with minimal glare.

These constraints were derived after experimenting with different scenarios.

The first test was done on a white background, with a few of the pieces touching.

The masking missed a few pieces due to the light glare and the white background,

along with the touching pieces segmenting into one piece. Another test was

conducted on the white background and no pieces touching. No mask was able to be

created from this image. The third test was conducted on a black background and a

mask was able to be made, clearly distinguishing all the pieces from each other. All

tests were conducted under the same lighting conditions.
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Procedure

For the testing process, we selected a sample size of 50 puzzles; each project

team-member tested ten puzzles from an online puzzle simulator. We chose to test

on an online simulator for the abundance of available puzzles and to prevent factors

like glare and poor lighting. For each puzzle, we conducted the test on piece

numbers of 24, 60, and 96 to judge the performance of the puzzle solver as the

pieces contain less and less of a puzzle's image.

The team collectively selected the puzzles based on guiding categories to

ensure a diverse set was tested. The categories included puzzles that were

anticipated to have a higher matching rate (high color variation with many

distinguishing features), ones that would perform decently well (high color variation

with not many distinguishing features and low color variation with many

distinguishing features), and others that were expected to have a low matching rate

(low color variation with not many distinguishing features). Other puzzles that were

more unpredictable were chosen, such as ones with repeating patterns. By

comparing the matching accuracy of different puzzles, it would help us to observe

the characteristics which make an “ideal” puzzle and ones more difficult for the

application.

To get the images from the online puzzle simulator to use in our program we

followed this procedure:

1. Choose a puzzle from the selected sample

2. Spread out the pieces by dragging, making sure there is ample room in

between pieces

3. Take a single screenshot of the puzzle pieces together as zoomed in as

possible

4. Complete the puzzle and take another screenshot

5. Input the two images into the application and follow the steps entering piece

count and mask
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6. Record the number of claimed matches displayed out of the total number of

pieces and visually inspect the arrow and contour locations to subtract out

any incorrect matches to get a final number of “actual” matches.
3

After these steps we observed the number of correct matches made to get an

accuracy of our program on the puzzle. We then looked for similarities between high

accuracy puzzles and the differences between puzzles that score a high accuracy vs

a low accuracy. This also helps us determine the error of our program in order to

understand how it can work better.

3
The full data set collected can be found in Appendix C.
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4. Results and Analysis

In this section we will discuss the results of our testing, the accuracy of the

three methods explored for our puzzle solver, Edge detection, SIFT, and color

histogram. We tested each method to get an accuracy to determine the usefulness of

a particular strategy. This helped us decide on what to implement in our final

product as well as determine next steps for any future development.

Edge Detection

Edge detection was the most unsuccessful matching strategy that we

explored as it was not able to detect enough points along the edges of pieces.

Reasons for this included the image passed in was not the right size to detect points

(e.g., either too big or too small) or the real-world conditions affected the contents of

the puzzle piece when taking a picture of it (e.g., too much lighting gave glare on the

puzzle, the thickness of the piece, etc.). There were also instances where the points

that were detected would go in one direction and then stop at a certain point and

would loop backwards until it reaches the point that it previously stopped at due to

the thickness of a piece causing double edges. From this example, some of the points

detected were double counted and from our observation, this was most likely

because of the thickness of the piece as shown in Figure 24.
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Figure [24.a]: Spline points traversing counter-clockwise order, stopped near

the bottom-left

Figure [24.b]: Spline points traverse backwards from the stop point and end

at the same point

From our testing of the random matches vs. our edge detection, random

guesses made 6.93 matches on average, with a 25.6 average match percentage.

Some trials performed better than our matching, getting 11 out of 27 matches, while

others made 0 of 27 matches. When rounded to the nearest whole match, this

random guessing performed identically to the spline matching. This led us to

conclude that the spline matching we had implemented was not a sufficient strategy

to find matches.

Testing the subsequence matching on two perfect sequences returned the

expected true match. The test for calculating the cumulative angle of two perfect

matching pieces then running subsequence matching also returned in a match. This

led us to the conclusion that the detection of points along the edge was not sufficient

enough to accurately represent the pieces by their angles.

We decided not to run this testing on the online puzzles we used for SIFT.

This decision was made because the online puzzle pieces generated had the same
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edges so even if we detected every point along a piece, it would come up with many

false positives since the edge would match with numerous pieces who have the same

shape.

Due to the low accuracy caused by an insubstantial amount of edge points

detected, we decided to stop pursuing this approach to solving the puzzles. After

testing we have no reason to believe that our current implementation of this method

would produce any better results than random guessing, whose results were

identical to our spline matching. We believe that if the spline detection had

produced more data points along the edge of the pieces, then that would have been a

more viable approach to solving puzzles. However, with an inadequate amount of

points detected on the large 12 piece puzzle, the number of points would only

decrease as the puzzle piece count increased, so we determined spline matching was

not something we wanted to pursue further.

SIFT

Of the three main puzzle piece facets explored in this project -- edges,

features, and colors, matching based on features with SIFT proved most effective.

The average matching accuracy over the 50 puzzles tested can be seen in Figure 25,

where the blue line represents matches from SIFT alone, with the red line including

matches from color histograms in addition to SIFT. The average percentage of

pieces matched with SIFT alone started at 91% with 24 piece puzzles and went

down to 73.4% and 54% at 60 and 96 pieces respectively. The standard deviation for

these averages increased as the puzzle size increased, starting from roughly 18% at

24 pieces going up to 26.6% at 96 pieces. These standard deviation values were

expected as the matching accuracy was largely dependent on the puzzle image; the

sample of 50 puzzles were hand selected by the team to guarantee a variety such

that some were predicted to perform well and others not so well.
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Figure 25: Line graph depicting the average matching accuracy for different

puzzles sizes for SIFT and SIFT + Color Histogram methods

Puzzle Image Analysis

One evident finding from the collected data is how much the matching

accuracy varied based on the puzzle image, ranging all the way from 0% to 100% at

96 pieces. This leads us to the question: what makes one puzzle yield a higher

accuracy than another? We can speculate by examining the puzzle images which

performed the best and worst and apply our knowledge of how SIFT works. The

effectiveness of SIFT matching heavily depends on the number of available

keypoints on an image, where more keypoint matches increases the odds for

outputting a match for the piece. Therefore, while we can’t perceive exactly what

the keypoints are, we can broadly judge the intricacy of an image to help predict

which puzzles will have the best matching accuracy.

Figure 26 shows the puzzle images in which SIFT matched no pieces for all

puzzle sizes (left) and matched all pieces across all sizes (right). The right image has
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hundreds of small flowers with all sorts of colors, extending to all four edges. The

unique arrangement and variation of colors in the image along with how there is no

particular spot that is missing features explains how sift was able to match

everything through 96 pieces. The puzzle that SIFT did not match any pieces is a

little more surprising as there is decent color variation which would suggest at least

some keypoints were detected. The soft edges of the triangles as well as the gradual

color gradient change between neighboring triangles likely led to little to no

keypoints being detected.

Figure 26: Puzzle images with the minimum and maximum SIFT matching

accuracy

Another outcome to examine from the data is how the accuracy declines in a

linear fashion for the same puzzle by increasing the puzzle size. Looking back at

Figure 25, we observe this decrease in accuracy from the negative sloping lines.

Naturally, as the number of pieces increases in a puzzle, the area of each piece

diminishes. With less “content” on each piece, there are fewer keypoints to detect by

SIFT, leading to a decrease in total matches. This average decline in matching,

found by subtracting consecutive accuracy values, was 17.6% between 24 and 60

pieces (SIFT only) and 19.4% between 60 and 96 pieces. It was no mistake that the

puzzle sizes chosen were equal increments of 36 from 24 to 60 and 60 to 96, because

it would allow us to make a more equal comparison between the groups. The
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roughly 2% difference in average decline between the two groups suggests mostly a

linear decline.

To further analyze the accuracy decline with increasing puzzle size, Figure 27

shows data for every individual puzzle tested. The tops of the yellow, red, and blue

bars in a single column represent the matching percentage at 24, 60, and 96 pieces

for a single puzzle respectively. Things to notice about this graph in particular are

the ranges of the yellow and red bars; the span of the yellow bar shows the decline

in accuracy from 24 pieces to 60, and the span of the red bar shows the decline from

60 to 96 pieces. The puzzles are sorted in ascending order of the 96 piece accuracy

percentage, which is represented by the blue bar.

Figure 27: Stacked bar chart showing the SIFT matching accuracy dropoff for all

puzzles tested when increasing puzzle size. The yellow bars show the decline in

accuracy from 24 pieces to 60, and the red bar shows the decline from 60 to 96

pieces
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There were a couple of outliers in the data from Figure 27, the first being the

7th bar over from the left, which has a total height much lower than the

surrounding values. The actual image corresponding to this entry is shown in

Figure 28 on the left side. This particular puzzle had a much lower initial accuracy

of 10/24 pieces and had a smaller decline as the puzzle size was increased; the red

bar portion from 60 to 96 pieces only saw a 4.8% decrease from 26.7% to 21.9%,

compared to the average which was 19.4% for this category. By examining the

puzzle image, one can notice the amount of empty sky that is occupying a large area

of the puzzle. The pieces occupying that space would have very few if any keypoints

as there are no distinguishing features. Therefore, even at 24 pieces the SIFT

matching percentage would be quite low compared to other puzzles which do not

have as much featureless space. As the puzzle size is increased beyond 24 pieces,

the amount of pieces which represent the foreground and airplane will stay roughly

proportional to those that represent the sky; Once a piece from a 24 piece puzzle

does not find a match, than surely a smaller piece from the same area would also

not find a match. This insight helps explain why there is a smaller decline in

matching accuracy for puzzles which have a low initial matching percentage at 24

pieces.

Figure 28: Puzzle images with notable jumps in accuracy between puzzle sizes

In the opposite direction, one puzzle which had a large decline in accuracy is

shown on the right side of Figure 28. This colorful umbrella picture had all 24/24
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matches in the first set, but then only matched 25/60 when the size was increased,

dropping a total of 58.3% between these two sizes compared to the average of 17.6%

for this category across all puzzles. With the puzzle split into 24 pieces, there are

many different colored umbrellas that are visible in each piece which would allow

SIFT to find complementary features in the same area. However, as the piece area

diminishes, fewer colored umbrellas will exist on the same piece. For this specific

image, we speculate the pronounced decrease in accuracy compared to other puzzles

is due to the repetition of colors and orientation of the umbrellas. For example,

upwards of eight pink umbrellas are present in this image, and there is not much

variation in how they are arranged. Therefore, if only one umbrella is visible on a

particular piece which is pink, SIFT may have a hard time distinguishing exactly

which one it is within the puzzle. If the keypoints match to all the pink umbrellas in

the image, there would be too many conflicting locations to output an actual match

for the piece. Although this puzzle example is very specific having a repeating

pattern, the same idea can be applied for other puzzles to a lesser degree; as pieces

get smaller, less of the puzzle image is represented which narrows the available

context of features to output a confident match.

Color Histograms

The color histogram results from puzzle testing did marginally increase

overall matching percentage approximately 4.5% at 24 pieces to 2.4% at 96 pieces as

seen in Figure 25, but it did not fully reach the level of accuracy hoped for. As the

matching from color histograms was performed only on the pieces leftover from

SIFT, the additional matches did not particularly follow the average consistently,

but rather an all-or-nothing result was observed. The accuracy of the histogram

matching did not decline in a linear fashion with piece count like the SIFT

matching, but was more sporadic in its level of accuracy. For example, when only a

few pieces were in contention, the color histogram matching did a good job of

completing the puzzle fully, whereas when there were lots of pieces leftover from
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SIFT the method had a hard time matching anything. Realistically, by the time a

user finished reviewing the SIFT matches, they would likely be able to complete the

puzzle themselves if there are only a few missing gaps with the help of the

histogram results or not.

For a majority of the puzzles tested, the color histogram method would match

to the same grid space for nearly all remaining pieces. This was an unfortunate

downside with the histogram matching as although it would basically guarantee a

single correct match to the particular grid space, sheer random guessing would have

been just as effective. Upon investigating the RGB channel correlation values for

many different pieces, the sum was in fact highest at the same particular grid

space. This occurrenced more frequently with puzzles having lots of color variation

and at higher piece counts. The concave and convex piece notches that were not

represented in the puzzle grid of rectangles may have also skewed these results

more than anticipated.

While the team considered excluding the histogram matching due to the high

number of false matches, certain puzzles showed a different story. For more subtle

color differences of a particular channel, the histogram matching performed

surprisingly well especially when there were only a few unmatched pieces from

SIFT that were considered. For example, one puzzle with a clear blue sky seemed to

have an undistinguishable difference in color to the naked eye, however the color

histogram was able to pinpoint the correct matches. With some positive results, we

determined that there was no harm to include the histogram matching after all;

there could only be additional matches added, as it would not detract from the

initial SIFT matches.

Despite the poor accuracy in certain puzzles, the promising results in others

indicates the potential this method may have if developed further. To increase

consistency with puzzles of high color contrast, different histogram comparison

parameters besides “cv.HISTCMP_CORREL” could be tested along with an HSV

color model instead of an RGB one. In addition, the puzzle grid could be improved

by considering the shape of the piece sides instead of having constant rectangles.
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5. Conclusion

In this section, we will summarize the results from each technique

implemented in our puzzle solver: edge detection, SIFT, and color histograms. Also,

this section will reflect on what could be improved for future work and the lessons

that our team has learned from doing this project.

We discovered that SIFT was a powerful tool to use in solving puzzles. With

SIFT alone, our average accuracy for puzzles of piece count 24, 60, and 96 was

91.00%, 73.00%, and 53.96%, respectively. We discovered that images with many

intricate details performed better than those with less features, as SIFT matching

relies on having an abundance of detected keypoints. We also implemented color

histogram matching for the remaining pieces not solved by SIFT, where the RGB

channel values of each piece was compared with the remaining grid locations of the

puzzle image. This increased the average accuracy of 24-piece puzzles by 4.58%,

60-piece puzzles by 3.86%, and 96-piece puzzles by 2.38%. In all piece counts, this

increase in average accuracy made color histograms a worthwhile addition to our

puzzle solver. The spline matching facet of the project was ultimately not included

in the final app design. While we were able to apply subsequence matching on

pseudo-pieces created, in real examples the splines of the pieces were too imprecise

due to a lack of detected edge points.

The strategies of using image content, color, and shape to solve puzzles all

change in importance from puzzle to puzzle. This leads us to conclude that there is

no single method that would be ideal for every puzzle. A hybrid system can use all

the strategies in tandem to fill in for where one may be lacking. With the system

being so sensitive to the images passed in, we believed that it would be hard for

practical use without the constraints laid out for taking pictures being followed with

high precision.
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Future Work: Improving Practicality

Robust Masking

The puzzle masking approach taken in this project sufficiently helped

segment pieces, however the strict constraints were not quite practical for use

outside of the online puzzle testing environment. While the image background was

distinguished efficiently by considering just the outside border, it only holds for

uniform backgrounds of a single color. As many everyday tables and desks have

some surface variation, it may hinder user accessibility. In addition, it was difficult

to take images of the puzzle pieces with proper lighting conditions; glare not only

blurred the piece features, but it also interfered with the masking process. While

the background color threshold slider did help to some degree, the system would

need a more robust way of removing glare to expand its practicality.

Error Checking

As part of the experimentation procedure, the reported number of piece

matches outputted by the system needed to be verified in order to be considered as

actual matches. One observation from this process was how the piece contour

displaying the match location became distorted and less precise as the number of

pieces for a puzzle increased. For example, the piece contour would sometimes

become stretched thin or wide. This could be explained by the loss of puzzle mask

precision observed when having smaller pieces. Additionally, finding the

homography transformation for smaller pieces became more difficult with the

smaller sample size of keypoints available; it seemed the homography

transformation would shear when groups of keypoints were in multiple areas, as it

would try to account for both areas. While these distorted contours could oftentimes

still be verified to be in the right spot, it became increasingly difficult when they

were stretched over such a far region of the puzzle as shown in Figure 29.
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Figure 29: Matching piece contour becoming distorted with smaller pieces and less

precision in the mask

As a way of filtering out the matches with distorted contours, some error

checking was implemented after calculating the homography transformation. A

bounding box of the contour was taken, and if the area was almost zero or greater

than a certain amount, the match was rejected. An alternative criteria attempted

was examining the arclength of the contour for outlier values. This combination

worked well together as some counters that were stretched completely thin would

have an undetectable difference in it’s bounding box area, but the arc length would

be much greater than expected.

The major drawback to this error checking approach was how there was no

definitive threshold to set for outliers. Each puzzle seemed to have varying degrees
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of distortion in the contours for larger piece sizes, and there would likely be good

matches thrown out in any case. For the bounding box area threshold, we took the

pixel area of the puzzle image and divided it among how many pieces were in the

puzzle, giving a rough approximation of the area of a single piece’s contour. The

maximum threshold was then set at a conservative three times this calculated area

to account for larger pieces and extra space that may be present bordering the

puzzle image. A more robust threshold could be discovered with more rigorous

testing, but for our purposes this was sufficient.

While it was not a high priority, one functionality that was considered for the

final design was a button to signal an incorrect match. While the claimed matches

that SIFT produced were most often actual matches, there were occasional

mismatches. As there is no guarantee a match is correct until a user attempts it

with the actual puzzle, this proposed functionality would serve as a correction

mechanism. Due to the consistency of SIFT, rerunning the matching on a certain

piece would yield the same result; an alternative matching approach with edge

detection or color histograms could be applied for such cases.

Other Approaches

There are other possible approaches to solving jigsaw puzzles with computer

vision that were not included in our system. One such promising approach that was

briefly explored was with Machine Learning, however ultimately it fell outside the

project scope. Since matching pieces would have an overlapping region of common

features, they could potentially yield similar values with an object recognition

Machine Learning model. This method alone would probably struggle with similar

puzzles that SIFT did, as it would be difficult to match pieces lacking internal

features.
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Lessons Learned

Upon reflecting as a team, some lessons learned through the MQP process

was the importance of getting started with coding demos early on as it helped

jumpstart the process rather than strictly focusing on the literature. When making

design decisions for the application it was helpful to always keep the end user in

mind. We could have stuck with our initial user interface design with streamlit, but

we decided to start from scratch in a different direction with Flask in order to

provide a better user experience for transitioning from one match to another. Along

that note, it was important to keep an open mind to new ideas throughout the

project duration. For example, we had not begun implementing color histograms

until halfway through our MQP period. We also learned that while we may put time

and effort into researching certain background or methods, we ultimately may not

end up finding a use for them in our finished product. Examples of this were

background research such as Bezier curves and Dynamic Time Warping (DTW), and

more notably, spline detection and subsequence matching. Because we were

researching how to solve this problem we learned to deal with some of the research

providing no useful information in the end.
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Appendix

Appendix A: Flask User Interface Design

Workflow Steps:

1.

a. Upload image files for full puzzle solution and all pieces scattered

b. Input the number of pieces in the puzzle and click “submit”

2.

a. Adjust the mask threshold sliders and click “check mask” to generate a

new mask image

b. Once the user is satisfied with the mask, click “submit” to begin

matching

3. A carousel of image will display the matches for the pieces, where the left and

right arrows navigate between them
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Appendix B: Streamlit User Interface Design
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Appendix C: Puzzle Testing Data

Puzzle ID

24 Piece (%

Correct) SIFT

60 Piece (%

Correct) SIFT

96 Piece (%

Correct) SIFT

24 Piece (% Correct)

SIFT+Histo

60 Piece (% Correct)

SIFT+Histo

96 Piece (% Correct) SIFT

+ Histo

22 0.00% 0% 0% 25.00% 3.33% 2.08%

40 79.17% 31.67% 14.58% 100.00% 33.33% 15.63%

10 95.83% 45.00% 14.58% 100.00% 46.67% 16.67%

35 54.17% 35.00% 13.54% 79.17% 40.00% 16.67%

48 83.33% 38.33% 16.67% 87.50% 41.67% 17.71%

19 100.00% 41.67% 17.71% 100.00% 43.33% 19.79%

3 91.67% 43.33% 19.79% 100.00% 45.00% 22.92%

15 95.83% 56.67% 28.13% 100.00% 60.00% 29.17%

8 87.50% 51.67% 26.04% 100.00% 58.33% 31.25%

44 62.50% 45.00% 32.29% 70.83% 48.33% 33.33%

14 100.00% 76.67% 33.33% 100.00% 80.00% 34.38%

20 83.33% 56.67% 32.29% 91.67% 58.33% 35.42%

18 100.00% 75.00% 33.33% 100.00% 78.33% 36.46%

36 41.67% 26.67% 21.88% 62.50% 38.33% 36.46%

50 95.83% 56.67% 35.42% 100.00% 60.00% 39.58%

17 100.00% 65.00% 37.50% 100.00% 66.67% 40.63%

34 79.17% 53.33% 40.63% 83.33% 58.33% 42.71%

39 95.83% 66.67% 41.67% 100.00% 73.33% 42.71%

33 83.33% 60.00% 41.67% 95.83% 61.67% 43.75%

5 95.83% 80.00% 43.75% 100.00% 81.67% 44.79%

32 87.50% 60.00% 42.71% 91.67% 63.33% 45.83%

38 100.00% 81.67% 46.88% 100.00% 85.00% 48.96%

13 95.83% 73.33% 46.88% 100.00% 83.33% 50.00%

24 83.33% 58.33% 43.75% 95.83% 66.67% 52.08%

46 95.83% 81.67% 56.25% 100.00% 85.00% 57.29%

42 100.00% 93.33% 57.29% 100.00% 95.00% 59.38%

11 100.00% 93.33% 60.42% 100.00% 96.67% 60.42%

1 100.00% 90.00% 60% 100.00% 95.00% 61.46%

37 100.00% 91.67% 62.50% 100.00% 93.33% 63.54%

43 100.00% 86.67% 63.54% 100.00% 88.33% 64.58%

7 79.17% 76.67% 66.67% 100.00% 96.67% 67.71%

12 100.00% 90.00% 64.58% 100.00% 91.67% 67.71%

41 100.00% 96.67% 65.63% 100.00% 98.33% 68.75%

45 100.00% 81.67% 66.67% 100.00% 88.33% 68.75%

9 100.00% 90.00% 68.75% 100.00% 91.67% 70.83%

49 100.00% 85.00% 68.75% 100.00% 90.00% 70.83%

47 100.00% 91.67% 69.79% 100.00% 93.33% 71.88%

26 91.67% 80.00% 75.00% 95.83% 81.67% 76.04%

4 100.00% 93.33% 76.04% 100.00% 96.67% 77.08%

25 91.67% 81.67% 76.04% 100.00% 86.67% 77.08%

16 100.00% 100.00% 83.33% 100.00% 100.00% 86.46%

28 100.00% 100.00% 88.54% 100.00% 100.00% 89.58%

23 100.00% 93.33% 88.54% 100.00% 98.33% 90.63%

21 100.00% 96.67% 87.50% 100.00% 100.00% 92.71%

27 100.00% 100.00% 90.63% 100.00% 100.00% 92.71%

6 100.00% 98.33% 92.71% 100.00% 100.00% 93.75%

30 100.00% 98.33% 90.63% 100.00% 100.00% 93.75%

2 100.00% 100.00% 95.83% 100.00% 100.00% 96.88%

29 100.00% 100.00% 96.88% 100.00% 100.00% 97.92%

31 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Average: 91.00% 73% 53.96% 95.58% 76.83% 56.33%

Standard Dev: 18.02% 24.04% 26.55% 12.75% 23.39% 26.06%


