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Abstract 

 
Depression is one of the most prevalent mental disorders in the world, which can worsen existing 

medical conditions and could lead to suicide if left untreated. . The goal of this project is to use 

features from facial, audio and GPS modalities that can be gathered from a smartphone to assess 

and track trajectories of depression.  Features were  extracted from the DAIC-WOZ and 

StudentLife datasets and the Naïve Bayes, random forest classifier, Support Vector Machine with 

stochastic gradient descent, and XGBoost classifiers were used to detect depression levels based 

on the PHQ score. The  best performing classifier used was the XGBoost algorithm, with a mean 

accuracy of 0.82 for 2 bin classification and 0.639 for 3 bin classification.  Features from the GPS 

modality had the highest metrics overall with a mean accuracy of 0.8875 for two 2-bin 

classification and 0.6625 for 3-bin classification.  
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1 Introduction 
 

Depression, or Major Depressive Disorder is a mood disorder that causes loss of interest and a 

persistent feeling of sadness [28]. About 17.3 million adults (7.1% of the adult population) in the 

United States have had a Major Depressive episode, defined as a period of a least two weeks where 

one suffers from symptoms of depression such as problems with concentration, eating, energy, 

self-worth, and sleep [27]. Other symptoms of depression include, but are not limited to: Persistent 

sad, anxiety, or “empty” mood, feelings of hopelessness, or pessimism, irritability, loss of interest 

or pleasure in hobbies and activities, moving or talking more slowly, and feeling restless or having 

trouble sitting still [40]. Risks of depression include the accentuation and worsening of already 

present illnesses in the body such as diabetes, cancer, and heart disease., as well as thoughts of 

death or suicide, or suicide attempts. According to the AFSP, suicide has claimed the lives of 

47,511 Americans, making it the 10th leading cause of death in the country [6]. One possible 

solution this issue is to detect symptoms early, which can be done through using data from smart 

devices that users carry with them almost all the time. 

 

Smartphones are the most popular electronic platform in the United States. As of 2021, 84% of 

Americans own a smartphone compared to 74% of Americans owning a computer, 45% owning a 

tablet, and about 21% of adults own a smartwatch or a fitness tracker [7]. Smartphones are heavily 

used, with 65.6% Americans claiming to check their phone at least 160 times or more in a day and 

47% of adults stating that they cannot live without their phones [1]. Smartphones can track a wide 

variety of data through their sensors, which can then be analyzed to detect various ailments and 

for tracking trajectories of depression based on distinct changes in behavior. For example, a person 

with depression is less likely to move [40], which can be detected using data from the 
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accelerometer and gyroscope to track a user’s step count and activities [34]. Other symptoms such 

as slow speech patterns and sad, anxious, or “empty” moods can be detected using a smartphone’s 

microphone and infrared sensor [36]. These methods have been utilized in the past with promisting 

results, for example Canzian et al had a mean absolute correlation of 0.432 and an average p-value 

of 0.068 when attempting to find a relationship between mobility metrics gathered from GPS data 

on a phone and depressive moods [8]. 

 

1.1 The Goal of this Major Qualifying Project (MQP) 
 

The goal of this MQP is to:  

• Use data from facial, audio and GPS modalities to track trajectories of depression using 

machine learning models.  

• Evaluate the models using various machine learning classification metrics such as 

accuracy, AUC-ROC, F1 score, and a confusion matrix to assess their performance.  

These modalities were chosen because they can easily be recorded from a mobile phone in a 

passive manner, which is important because it eliminates any possible bias that can arise when a 

user has to manually enter data. This MQP also aims to evaluate what modality would be the best 

at identifying depression. The features used from the facial modality will be 2D and 3D points on 

the face, Action Units, gaze of the eyes, and facial Poses. Features extracted from the audio 

modality will be the collection of features obtained from the COVAREP algorithm. The features 

extracted from GPS modality are Location Variance, Speed Mean, Total Distance and Transition 

time. The machine learning models that will be used are Support Vector Machine with Stochastic 

Gradient Descent, random forest classifier, Naïve Bayes, and XGBoost. These models will be 

trained using the DAIC-WOZ [35], and the StudentLife [42] dataset. Based on the results, experts 
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can have a foundation as to what algorithms to use to best identify a patient with depression as 

well as what symptoms to look out for. 

 

1.2 Prior Work 
 

There have been many MQPs in the past that have attempted to track trajectories of depression.  A 

project in 2018 created a mobile application that instantly collected as much data as possible from 

a subject's social media usage, GPS, calls and texts two weeks prior to whenever they initiated an 

assessment [12]. The information is then used to provide instant feedback on the severity of their 

depression to the doctor and the patient. MQP teams in 2019 and 2021 used that foundation to 

further build upon the app, surveying users on what data they were willing to share , as well as 

using different datasets to test their application, such as the Moodable dataset and the Amazon 

Mechanical Turk platform [34]. This MQP differs from their work because they looked to gather 

all features instantaneously, while this MQP will be detecting depression using datasets that were 

gathered over a long period of time. In addition to finding the best modality, this study also aims 

to find the best machine learning algorithm to identify depression severity as well. Another MQP 

conducted in 2020 aimed to identify depression using machine learning models with sub clip 

boosting, convolutional neural networks, and long-term short-term memory models on audio and 

text modalities [37]. The difference between this MQP and the 2020 study is that only machine 

learning models will be used on audio, facial, and GPS modalities.  
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2 Related Work 
 

Matteo et al looked to find the relationship between environmental audio and symptoms of 

depression and anxiety [27]. To do this an Android application was developed that was used to 

gather environmental audio and track the presence of English-speaking voices from 84 participants 

for two weeks.  This data was then analyzed using as ground truth self-reported Liebowitz Social 

Anxiety Scale (LSAS), the Generalized Anxiety Disorder seven-item scale, the Patient Health 

Questionnaire eight-item scale (PHQ-8), and the Sheehan Disability Scale (SDS). Based on the 

audio extracted and the reports on the four scales mentioned above, no statistically significant 

relationships were found between the collected environmental audio and severity of anxiety. 

However when it came the severity of depression, the inferred patterns of daily activity and 

inactivity from the environmental audio volume had a correlation (r=−0.37; P<.001). Sleep 

disturbance inferred from the environmental audio volume was also correlated with the severity of 

depression (r=0.23; P=.03). A measure of social interaction based on the detection of speaking 

voices in the environmental audio was also correlated with depression (r=−0.37; P<.001) and 

functional impairment (r=−0.29; P=.01) [27]. The approach taken by this MQP is similar to this 

study in the sense that audio and the PHQ will be used to track symptoms of depression. However, 

in contrast, this MQP will use multiple modalities such as GPS, facial images, and audio. In 

addition, features extracted from these modalities will only be used to track symptoms of 

depression, not anxiety which is a different ailment.  

 

A 2019 study by Ray et al aimed to create a multilevel neural network to predict depression from 

audio, visual, and text to predict depression [33]. The dataset used to train their network was the 

Distress Analysis Interview Corpus - Wizard of Oz (DAIC-WOZ). This dataset contains the 
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transcripts, as well as audio and video recordings of conversations conducted between participants 

and Ellie, a virtual interviewer. The Bi-LSTM and LSTM neural networks models were used for 

text and visual modalities, while a Deep Spectrum and VGG network was used to extract features 

from the audio modality. The audio-based models outperformed the base models by 9.3%, 6.6%, 

and 8.7% [30]. The models that classified visual features outperformed the four baseline models 

by 29.80%, 29.04%, 10.04%, and 14.46% [33]. This study uses audio and visual modalities which 

are some of the modalities that will be used in this MQP, however it will not use the text modality. 

This is due to the findings of 2020  study of what features users would be willing to share. They 

found that only 49%, 48%, and 45% of users were willing to give access to Twitter tweets, 

Facebook posts and data from Text Chat apps respectively [13], which are features that would be 

extracted from the text modality. Another area where this study differs from the goals of this MQP 

is that the models will classify various data types separately and not  fused them into a hybrid 

model or trained on only the DAIC-WOZ dataset. Instead, models will be trained using the 

StudentLife dataset in addition to the DAIC-WOZ dataset.  

 

Wang et al conducted a study in 2014 aimed to look at the changes in behavior and mental health 

of students at Dartmouth College over the course of a 10-week period. 48 students took a pre and 

post psychological survey (41 students completed the post psychological survey) that included 

depression questions and used a mobile application called Student Life to track sleep patterns, the 

number of conversations and the duration of each conversation per day. Physical activity, location, 

the number of people around a student through the day, outdoor and indoor mobility stress level 

through the day, eating habits, app usage, and in-situ comments on current events were also 

measured with the app [42]. 
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Figure 1: PHQ-9 depression scale and pre and post class outcomes [42]   

Figure 1 above shows the results of psychological surveys taken before and after a 10-week period. 

While more students fell into the “minimal” category of the PHQ-9 depression scale, one student 

fell into the moderately severe and severe category each. In figure 2 below the features collected 

are displayed with their associated r-scores, showing that there is a statistically significant 

correlation between sleep duration, conversation frequency, and number of co-locations and  

 

Figure 2 Correlation between depression severity and sensor data that was collected [37] 

depression severity. This is because people who sleep less, have less conversational interactions, 

conversate later in the day, and have fewer co-locations with other students are more likely to be 

depressed [37]. This MQP differs from the StudentLife study because it will go beyond seeing 
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how mental health changes over a certain length of time. It will use the GPS data gathered from 

this study and compare it with the audio and facial modality from another dataset to see which one 

is the best indicator for detecting depression.  

 

 Hatton et al investigated how useful machine learning can be in predicting the persistence of 

depressive symptoms in older adults. To do this, they used data from a previous trial consisting of 

284 patients who were at least 65 years old and met the criteria for depression. To meet the criteria, 

they had to screen positive for the Whooley questions, a two-question instrument used to determine 

depression in patients. They also had to meet sub threshold depressive symptoms according to the 

DSM-IV [18]. The study used a logistic regression model that used a backwards stepwise approach 

to select predictor variables. For their machine learning model, they used a form of Extreme 

Gradient Boosting (XGBoost) that was implemented in R [18]. When comparing the ability of the 

models to predict depressive symptoms (a PHQ-9 score over 10) they found that the AUC value 

was higher on the machine learning approach (0.72) compared to the logistic regression approach 

(0.67). This is significant because the AUC value is an overall metric of the potential utility as a 

screening method [18]. While the XGBoost model will be used in this MQP, it will be implemented 

in Python instead of R. Another difference between this MQP and the study conducted by Hatton 

et al is that different machine learning models will be compared to each other, instead of being 

compared to a logistic regression model. 

 

 Ringeval et al [35] compared the relative merits of the various approaches to depression and 

emotion recognition from real-life data. In the study they went over two sub challenges: the affect 

sub challenge, and the depression sub challenge [35]. The affect sub challenge uses the Sentiment 
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Analysis in the Wild (SEWA) database, which contains 64 subjects aged between 18 and 60 having 

a discussing an advertisement they watched. Annotators later give a label of either arousal, valence, 

or liking to the recordings.  The audio features extracted from the SEWA dataset were functionals, 

bag of audio words, Low level descriptors extracted every 10ms consisting of energy, spectral and 

cepstral features, pitch, voice quality, and micro prosodic features. The video features extracted 

were face orientation (Pitch, yaw, roll), pixel coordinates for 10 eye points (for both the x and y 

coordinate) and for 49 facial landmarks (for both the x and y coordinates). The Features are shown 

in figure 3 and 4 below 

 

Figure 3: 10 eye points 
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Figure 4: 49 facial landmarks 

The only text feature extracted was the bag of text words. The dataset was trained using a Support 

Vector Regressor and the metrics used for evaluation was the concordance correlation coefficient 

[35]. The results are shown in figure 5 below 
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Figure 5: Baseline results for emotion on the Development (D) and Test (T) partitions from 

audio, video, and text feature sets, and their early fusion (multimodal) [35]  

The Concordance Correlation Coefficient for the arousal and liking label was highest for the text 

partition at 0.375 and 0.246 respectively, while the valence label was highest when using the 

multimodal partition at 0.466. 

The Distress Analysis Interview Corpus – Wizard of Oz (DAIC-WOZ) dataset was used 

for the depression sub challenge, which consists of clinical interviews designed to support the 

diagnosis of psychological distress conditions [35]. The participants were labeled as depressed if 

they had a PHQ-8 score greater than 10. The audio features extracted from the DAIC-WOZ dataset 

were fundamental frequency, and voicing. Voice quality, normalized amplitude quotient (NAQ), 

quasi open quotient (QOQ), the difference in amplitude of the harmonics of the differentiated 

glottal source spectrum (H1H2) parabolic spectral parameter (PSP), maxima dispersion quotient 

(MDQ), spectral tilt/slope of wavelet responses (peak-slope), and shape parameter of the 

Liljencrants-Fant model of the global pulse dynamics (rd)  Mel cepstral coefficients (MCEP0-24), 
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harmonic model and phase distortion mean (HMPDM0-24) and deviations (HMPDD0-12). The 

video features extracted were 2D and 3D points on the face, Histogram of Oriented Gradients 

(HOG), gaze direction estimate for both eyes, 3D position and orientation of the head, and action 

units (AUs) [26]. DAIC-WOZ was trained using random forest regression and the metrics used to 

evaluate the regressors are the Root Mean Square Error (RMSE) and the Mean Absolute Error 

(MAE).  The baseline results are shown in figure 6 below 

 

Figure 6: Baseline results for depression severity estimation on the Development (D) and Test 

(T) partitions from audio video and audio-video modalities [35] 

The best performance was obtained using the video modality [35] with an RMSE of 6.97. Ringeval 

et al’s study differs from this MQP because it will go beyond just using audio and video modalities, 

it will also analyze features from the GPS modality. This MQP will also use classifiers instead of 

regressors to detect depression. One final difference is that this MQP focuses on detecting 

depression and will not look at emotion like this study has. 
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3 Methodology 
 

For this project, we will be training features from the audio and facial modalities from the DAIC 

WOZ dataset and  examining which features can best detect depression. In addition to DAIC-

WOZ, the Student Life dataset will also be used to extract features from the GPS modality. The 

datasets will be split randomly with an 80-20 ratio, where 80% of the dataset will be used for 

training the machine learning models, while 20% of the dataset will be used to test their 

performance.  

PHQ scores from participants in both datasets will be used as  ground truth labels. 

Participants in the DAIC-WOZ dataset took the PHQ-8 test while participants in the StudentLife 

dataset took a PHQ-9 test. To maintain consistency, the PHQ score for participants in the 

StudentLife dataset was recalculated to not include the final question about suicide ideation. 

Participants in the Studentlife dataset also took the PHQ both before and after the experiment. To 

discover  any bias that may come by picking one score over the other, both PHQ-8 scores were 

used as ground truth for depression classification separately. 

The machine learning models used on the dataset were XGBoost, random forest classifier, 

Support Vector Machines, and Naïve Bayes. Using the training dataset, the machine learning 

models had to classify the testing dataset into both two and three bins. In order to get the best 

performance out of the classifiers a grid search  was performed on them. The categories used for 

two bins were 0-10 (mild depression) and 11-21 (severe depression) while the categories for three 

bins were 0-7 (mild depression) 8-14 (moderate depression) and 15-21 (severe depression). 

The performance of the machine learning models  were measured by the following 

evaluation metrics: accuracy, confusion matrix, F1 score, and AUC-ROC. A diagram outlining 

this pipeline is shown in figure 7 below 
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Figure 7: Our Machine learning pipeline for classifying depression. 

3.1 Datasets 

DAIC-WOZ The Distress Analysis Interview Corpus – Wizard of Oz (DAIC-WOZ) is a dataset 

that was part of a larger effort aimed to create a computer agent that interviews people and 

identifies verbal and nonverbal indicators of mental illness in 2014. The dataset contains clinical 

interviews designed to support the diagnosis of psychological distress conditions such as anxiety, 

depression, and PTSD. Data collected include audio and video recordings and extensive 

questionnaire responses; and includes interviews of 189 patients conducted by an animated virtual 

interviewer called Ellie, controlled by a human interviewer in another room [35].  
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StudentLife The StudentLife dataset is from 48 undergrads and grad students at Dartmouth over 

a 10-week spring term [42]. This data was gathered to gauge how a student’s mental health could 

be impacted. The dataset is comprised of: 

• objective sensing data: sleep (bedtime, duration, wake up); conservation duration, 

conversation frequency; physical activity (stationary, walk, run). 

• location-based data: location, co-location, indoor and outdoor mobility. 

• other phone data: light, Bluetooth, audio, Wi-Fi, screen lock/unlock, phone charge, app 

usage. 

• self-reports: affect (PAM), stress, behavior, Boston bombing reaction, cancelled classes, 

class opinion, comment, Dartmouth now, Dimension incident, Dimension protest, dining 

halls, events, exercise, Green Key, lab, mood, loneliness, social and study spaces. 

• pre-post surveys: PHQ-9 depression scale, UCLA loneliness scale, Positive and Negative 

Affect Schedule (PANAS), perceived stress scale (PSS), big five personality, flourishing 

scale, Pittsburgh Sleep Quality Index (PSQI), veterans RAND 12 item health (VR12) 

• academic performance data: class information, deadlines, grades (grades, term GPA, 

cumulative GPA), piazza data 

• Dining data: meals data, location and time 

• Seating data: seating position of students in Android programming 

• Entry and exit surveys 

3.2 Pre-processing 
 

Before any classification or testing was done all the data was organized by modality, and then by 

feature type. Once complete, the data was normalized using a min-max scaler, which translates 

every feature to be within a range of zero and one. 
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3.3 Patient Health Questionnaire (PHQ) 
 

The Patient Health Questionnaire (PHQ) is a validated instrument used by clinicians to diagnose 

depression disorders and measure depression severity [23]. If contains 9 questions shown in figure 

8 below.  

 

Figure 8: PHQ 9 Questionnaire 

The PHQ is self-administered by the patient and assesses 8 diagnoses, divided into threshold 

disorders that correspond to specific DSM-IV diagnoses such as major depressive disorder, panic 

disorder, other anxiety disorder, and bulimia nervosa, as well as subthreshold disorders whose 

criteria encompass fewer symptoms than are required for any specific DSM-IV diagnoses such as 
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other depressive disorders, probable alcohol abuse/dependence, somatoform, and binge eating 

disorder. The PHQ-9 score can range from 0 to 27, since each of the 9 items can be scored from 0 

(not at all) to 3 (nearly every day). In this project however, the PHQ-8 questionnaire will be used, 

which does not include the final question of suicide ideation.  In this MQP, patients PHQ-9 scores 

generated from their answers to the 9 questions, were utilized as ground truth labels for machine 

learning prediction of their depression levels. 
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3.4 Features 
 

3.4.1 Facial Features 

Action Units Action Units refer to the facial action coding system, which are a set of facial 

movements used to determine the emotion of a participant [39]. The DAIC-WOZ dataset utilizes 

Action Units 1, 2, 4, 5, 6, 9, 10, 12, 14, 15, 17, 20, 23, 25, 26, 28, and 45. Each Action Unit value 

was either a regression output marked as “_r” or a binary label “_c” indicating whether the unit is 

present or not. Their representations are listed in table 1 below: 

Action Unit Image Description Regression or Binary? 

1 

 

Inner Brow Raiser Regression 

2 

 

Outer Brow Raiser 

(unilateral, right side) 

Regression 

4 

 

Brow Lowerer Both 

5 

 

Upper Lid Raiser Regression 

6 

 

Cheek Raiser Regression 

9 

 

Nose Wrinkler Regression 
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10 

 

Upper Lip Raiser Regression 

12 

 

Lip Corner Puller Both 

14 

 

Dimpler Regression 

15 

 

Lip Corner Depressor Both 

17 

 

Chin Raiser Regression 

20 

 

Lip Stretcher Regression 

23 

 

Lip Tightener Binary 

25 

 

Lips Part Regression 
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26 

 

Jaw Drop Regression 

28 

 

Lip Suck Binary 

45  Blink Binary 

Table 1: Action Units and their representations 

A study performed in 2009 aimed to incorporate  facial expressions and voice observations 

to  identify  mental disorders [9]. They used the manual facial action coding system (FACS), Active 

Appearance Modeling (AAM) and pitch extraction to measure facial and vocal expression. Using 

SVM classifiers for AAM and FACS and logistic regression for voice, they were able to accurately 

detect depression 88% of the time using FACS, and 79% of the time using AAM and voice [9]. 

 

Facial landmarks This feature consists of 68 2D and 3D points on the face, determined by video. 

These coordinates aim to identify facial features such as the chin, eyebrows, eyes, jaw, nose, and 

mouth. An image of the points on the face is shown in figure 9 below 
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Figure 9: Facial landmark coordinates on a subject's face 

A plethora of algorithms have been used to identify key points on the face. A study conducted 

in 2016 categorizes these algorithms into three major groups: holistic methods, Constrained Local 

Model (CLM) methods, and regression-based methods [43]. Holistic methods aim to build models 

to represent the entire facial appearance and shape information. A classic example of a holistic 

Method would be the Active Appearance Model (AAM) which fits facial images in accordance 

with a select number of coefficients, controlling both the facial appearance and shape variations 

[43]. Facial landmarks are found using the formula: 

𝑥 = 𝑐𝑅2𝑑(Θ)(𝑠0 +∑𝑝𝑛

𝐾𝑠

𝑛=1

∗ 𝑠𝑛) + 𝑡 

Where 𝑅2𝑑(Θ)is the rotation matrix, c and t are the scale and translation parameter respectively, 

𝑠𝑛  is the facial shape bases 𝑝𝑛 is the shape coefficient and 𝐾𝑠  is the number of bases [43]. 

CLMs estimate the landmark locations based on the global facial shape patterns [43]. This 

is done by minimizing the misalignments error subject to the shape patterns: 

𝑥  = 𝑎𝑟𝑔𝑥𝑚𝑖𝑛 𝑄(𝑥) +∑𝐷𝑑(𝑥𝑑 , ℐ)

𝐷

𝑑=1
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𝑥𝑑 represents the positions of different landmarks in x. 𝐷𝑑(𝑥𝑑 , ℐ) represents the local confidence 

score around 𝑥𝑑. 𝑄(𝑥) represents a regularization term to penalize the infeasible or anti-

anthropology face shapes in a global sense [43]. 

Regression-Based Methods skip the process of building a global face model and directly learn 

the mapping from image appearance to the landmark locations [43]. One type of method in 

particular, the cascaded regression method, performs an initial estimate of landmark locations 

before gradually upgrading. The formulas below are for the initial landmark locations and shape 

updates, respectively: 

𝛿𝐱̃ = 𝑎𝑟𝑔δxmin‖Φ(ℐ(𝑥
∗)) − Φ(ℐ(x0 + δx))‖2

2 

δx  = − 2𝐇f(𝐱0)
−1𝐉Φ

T (𝝓(ℐ(𝐱0)) − 𝝓(ℐ(𝐱∗))) 

2D and 3D features have been utilized to detect depression in patients many times before. For 

example, a study conducted in April 2021 used 2D and 3D points on a subject's face while they 

were doing emotional stimulus tasks to detect depression with an accuracy of 0.774 [15]. 

  

Poses This feature refers to a subject's 3D position and orientation of the head relative to the view 

of a camera. Examples of possible facial poses are shown in figure 10 below 
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Figure 10: Facial pose movements 

 A study conducted in 2008 found that there are eight categories that methods for head pose 

estimations fall into [30]. The first category is appearance template methods, where the image of 

a head is compared to various other archetypes and uses the pose of the most similar one [30]. The 

next category is the detector array methods which train groups of head detectors in a specific pose 

and assign a discrete pose to the detector with the greatest support [30]. There are nonlinear 

regression methods that develop a functional mapping from the image or feature data using 

nonlinear regression tools. Manifold embedding methods seek low-dimensional manifolds that 

model the continuous variation in head pose. New images can be embedded into these manifolds 

and then used for embedded template matching or regression. Flexible models fit a non-rigid model 

to the human facial structure  in the image plane. Head pose is estimated from feature-level 

comparisons or from the instantiation of the model parameters. Geometric methods use the 

location of features such as the eyes, mouth, and nose tip to determine pose from their relative 

configuration. Tracking methods recover the global pose change of the head from the observed 
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movement between video frames. Hybrid methods combine one or more of these methods to 

overcome the limitations inherent in any single approach. 

  Alghowinem  et al conducted a study with the goal of detecting depression using head 

poses and analyzing movement [3]. On average, they were able to recognize a subject with 

depression 71.3% of the time [3], showing that utilizing poses is effective in depression detection. 

 

Gaze This feature refers to the direction of a person’s eyes and has a close relation with facial 

poses as illustrated in figure 11 below 

 

Figure 11: Gaze direction 

Given a head pose a rough estimation of gaze can be determined if the eyes are obscured, but when 

the eyes are in view, head pose is required to accurately predict depression. This is because the 

orientation of the head dictates gaze direction [40].  

Just like the pose feature, gaze has been successfully used as an indicator of depression, 

with Alghowinem et al used a Gaussian Mixture Models and Support Vector Machine hybrid 
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classifier and achieved a 70% accuracy, and 75% accuracy when using only a Support Vector 

Machine classifier [2]. 

 

3.4.2 Audio Features 

Cooperative Voice Analysis Repository for Speech Technologies (COVAREP) Audio features 

were obtained using COVAREP, an open-source toolbox that uses feature extraction methods to 

capture voice quality and prosodic characteristics of the speaker [35]. The features used fall into 

three categories: prosodic, voice quality, and spectral.   

Prosodic features consist of fundamental frequency (F0) and voicing (VUV). Fundamental 

frequency refers to the lowest rate at which a waveform repeats itself. The formula used to find 

the F0 is f0 = v/4L where v is the speed of the wave and L is the tube length. Voicing refers to 

whether a signal was produced via vocal fold action, as this would make a periodic vibration.  

The voice quality features are made up of the Normalized Amplitude Quotient (NAQ), a 

method that parametrizes the glottal closing phase using two amplitude-domain measurements 

from waveforms estimated by inverse filtering [4]. The Quasi-Open Quotient (QOQ), which 

measures the amount of time that the pulse amplitude is above a certain limit [4]. The difference 

in amplitude of the first two harmonics of the differentiated glottal source spectrum (H1H2). The 

Parabolic Spectral Parameter (PSP), a method that generates a number that describes how the 

spectral decay of a given glottal flow performs in accordance with the theoretical limit 

corresponding with the maximal spectral decay [4]. The Maxima Dispersion Quotient (MDQ)  is 

a method that analyzes the Linear Prediction residual to quantify how impulse-like glottal 

excitation is. Finally, the spectral tilt/slope of wavelet responses (peak-slope), and shape parameter 

of the Liljencrants-Fant model of the glottal pulse dynamics (Rd) make up the voice quality 

features as well.  
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The spectral features used were the Mels cepstral coefficients (MCEP0-24), harmonic model and 

phase distortion mean (HMPDM0-24), and deviations (HMPDD0-12).   

The COVAREP toolbox has previously been used to extract features to detect depression 

with great success. Yalamanchili et al used the DAIC-WOZ database to extract prosodic, spectral, 

and voice quality features. These features were then trained on a classification model which was 

then used within an app to detect depression on 50 subjects with 90% accuracy [44] 

 

3.4.3 GPS Features 

The GPS features were collected from a study conducted by Gerych et al to detect depression  

using low level features that can be detected using a smartphone [16]  some of the features used 

were: 

Location Variance The Location Variance is calculated by: 

𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = log(𝜎𝑙𝑎𝑡
2 + 𝜎𝑙𝑜𝑛𝑔

2 ) 

Where 𝜎𝑙𝑎𝑡
2  and 𝜎𝑙𝑜𝑛𝑔

2  are the variance of a user’s latitude and longitude, respectfully [16]. This 

feature could be useful for detecting depression because lack of movement is a symptom of 

depression [40].  

 

Speed Mean The Speed Mean is calculated by: 

𝑆𝑝𝑒𝑒𝑑 𝑚𝑒𝑎𝑛 =
1

𝑛
∑√(

𝑙𝑎𝑡𝑖 − 𝑙𝑎𝑡𝑖−1
𝑡𝑖 − 𝑡𝑖−1

)
2

+ (
𝑙𝑜𝑛𝑔𝑖 − 𝑙𝑜𝑛𝑔𝑖−1

𝑡𝑖 − 𝑡𝑖−1
)
2𝑛

𝑖

 

Where n is the number of timestamps, and 𝑙𝑎𝑡𝑖 and 𝑙𝑜𝑛𝑔𝑖 are the user’s latitude and longitude at 

time i [16]. The feature could be useful at detecting it. A lower speed mean indicates a lack of 

moment, could be an indicator of depression.   
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Total Distance A user’s total distance is calculated by: 

𝑇𝑜𝑡𝑎𝑙 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =∑√(𝑙𝑎𝑡𝑖 − 𝑙𝑎𝑡𝑖−1)2 + (𝑙𝑜𝑛𝑔𝑖 − 𝑙𝑜𝑛𝑔𝑖−1)2
𝑛

𝑖

 

Where n is the number of timestamps, and 𝑙𝑎𝑡𝑖 and 𝑙𝑜𝑛𝑔𝑖 are the user’s latitude and longitude at 

time i [16]. This feature could be helpful at detecting depression since a lack of movement is a 

symptom of depression [40]. If a user with depression is less likely to move then they will cover 

less distance, which can be captured by the feature. 

 

Transition Time A user’s transition time is calculated by: 

𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 =
𝑇𝑖𝑚𝑒 𝑀𝑜𝑣𝑖𝑛𝑔

𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒
  

 

If a user has a low transition time it could indicate that they don’t spend much time moving, which 

can be useful at detecting depression since lack of movement is a symptom of the disorder [40].  

A study that used the following GPS features were able to detect users with depression at high 

rate, earning an AUC-ROC score of 0.92 [16].   

 

3.5 Evaluation Metrics 
F1-score The F1 score measures a model’s accuracy on a dataset, used to evaluate binary 

classification systems [9]. The F1 score is derived from combining the precision and recall score: 

𝐹1 = 2 ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 =  

𝑇𝑃

𝑇𝑃 +
1
2 (𝐹𝑃 + 𝐹𝑁)

 

Where TP is the number of true positives, FP is the number of false positives, and FN is the number 

of false negatives 



   

 

 33 

 

Accuracy The accuracy metric measures how what percentage of predictions the model guesses 

correctly [9].  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
  

 

Confusion Matrix The Confusion Matrix is a 2x2 table that illustrated the performance of an 

algorithm [38]. The rows of the matrix represent the actual values while the columns represent the 

predicted values. Figure 12 below gives an example of what a matrix looks like for binary classes. 

 

Figure 12: Confusion Matrix 

A True Negative (TN) happens when the model prediction is negative, and the actual value is also 

negative. A False Negative (FP) occurs when the model prediction is negative, but the actual value 

is positive. A true positive (TP) happens when the model prediction is positive, and the actual 

value is also positive. A false positive (FP) occurs when the model prediction is positive, but the 

actual value is negative. Using these values, the True Positive Rate (TPR) True Negative Rate 

(TNR) False Positive Rate (FPR) and False Negative Rate (FNR) can be calculated [38]: 
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𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹𝑁𝑅 =
𝐹𝑁

𝑇𝑃 + 𝐹𝑁
 

𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

𝐹𝑃𝑅 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
 

 

AUC-ROC The ROC, or the receiver operating characteristic curve is a graph that visualizes the 

performance of a binary classifier.  It is plotted with the sensitivity against the 1-specificity, where 

the sensitivity is on the y-axis and 1-sensitivity is on the x-axis [9]. The AUC is the area under the 

ROC. The AUC measures how well the model can discriminate between classes [9]. The higher 

the AUC the better the performance. The formula for the AUC is [31] 

𝐴𝑈𝐶(𝑓) =
∑ ∑ 1⌈𝑓(𝑡0) < 𝑓(𝑡1)⌉𝑡1∈𝐷1𝑡0∈𝐷0

|𝐷0| ∙ |𝐷1|
 

Where 1⌈𝑓(𝑡0) < 𝑓(𝑡1)⌉ is an indicator function that returns 1 if and only if 𝑓(𝑡0) < 𝑓(𝑡1) 

otherwise, it returns 0. 𝐷0    is the set of negative examples and 𝐷1 is the set of positive examples. 

 

3.6 Classification Algorithms 
 

Support Vector Machines The Support Vector Machine is a method that is widely used for 

classification tasks. This is done by maximizing the distance between the data points of two 

separate classes in an N-dimensional space, where N is the number of features. The data points are 

classified using hyperplanes, which are boundaries that separate one class from another. The 

dimension of the hyperplane is dependent on the number of input features. For example, when 
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there are two input features the hyperplane is a line, and when there are three input features the 

hyperplane becomes a 2-D plane. The placement of the hyperplane is dependent on support 

vectors. A support vector is a data point that dictates the placement of the hyperplane [14]. SVMs 

maximize the distance between those data points and the hyperplane by calculating the hinge loss: 

𝑐(𝑥, 𝑦, 𝑓(𝑥)) = {1−𝑦∗𝑓(𝑥),   𝑒𝑙𝑠𝑒
0,   𝑖𝑓 𝑦 ∗ 𝑓(𝑥)≥1  

 

If the predicted value is the same sign as the actual value, then the cost is 0. If not the lose value 

is calculated. A regularization parameter is also added to the cost function. The regularization 

parameter is used to balance the margin maximization and loss. The cost function with the added 

regularization is [14]: 

min
𝑤

𝜆 ‖𝑤‖2 +∑(1 − 𝑦𝑖〈𝑥𝑖 , 𝑞〉)

𝑛

𝑖=1 +

 

The next step is to take partial derivatives with respect to the weights to find the gradients [14]. 

This is done to update the weights. 

𝛿

𝛿𝑤𝑘
𝜆‖𝑤‖2 = 2𝜆𝑤𝑘 

𝛿

𝛿𝑤𝑘

(1 − 𝑦𝑖〈𝑥𝑖 , 𝑤〉)+ = {−𝑦𝑖𝑥𝑖𝑘,   𝑒𝑙𝑠𝑒
0,   𝑖𝑓  𝑦𝑖〈𝑥𝑖,𝑤〉 ≥1 

 

When the model correctly predicts the class of a data point, only the regularization parameter is 

used to update the gradients [14]. 

𝑤 = 𝑤 − 𝛼 ⋅ (2𝜆𝑤) 

If the model makes a mistake on the prediction of the class of our data point, both the loss and the 

regularization parameter are used to update the gradients [13]. 

𝑤 = 𝑤 − 𝛼 ⋅ (𝑦𝑖 ∙ 𝑥𝑖 − 2𝜆𝑤) 
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In this project, the SVM will be implemented with stochastic gradient descent (SGD) due to its 

versatility with datasets both big and small. 

 

XGBOOST Extreme gradient boosting, or XGBoost for short, is a Machine Learning 

classification algorithm based on decision trees that uses an enhanced and more optimized version 

of the gradient boosting framework [26]. This optimization is done first by building sequential 

trees using parallelization, changing the way it iterates through the trees by doing a depth first 

search, and by optimizing the hardware by allocating internal buffers of each thread to store 

gradient statistics. The Algorithmic Enhancements of XGBoost are regularization to prevent 

overfitting, 'learning’ the best missing value based on the training loss, effectively finding the 

optimal split point using the distributed weighted quantile sketch algorithm and using a cross 

validation method at each iteration [29].  

 

NAIVE-BAYES The Naïve Baye’s classifier determines the class a data point belongs to using 

the value of features given. The classifier is based on Baye’s theorem which states that the 

probability of an event A given an event B is based on the probability of event A and B divided 

by the probability of event B [45]. Adjusting this formula for the classifier  gives us the formula 

is 

𝑝(𝑦𝑖|𝑥1, 𝑥2, . . . , 𝑥𝑛)  =  
𝑝(𝑥1, 𝑥2, . . . , 𝑥𝑛|𝑦𝑖) ∙ 𝑝(𝑦𝑖)

𝑝(𝑥1,𝑥2, . . . , 𝑥𝑛)
 

Where yi is a class and x1, x2, …,xn is the number of observations.  However, to overcome the 

potential issue of requiring large datasets to have an estimate on the probability distribution for 

every feature combination the Naïve Bayes algorithm assumes that every feature is independent 
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of one another [45]. This assumption removes the need of dividing the number of observations 

with class yi and reduced the formula to: 

𝑝(𝑥1, 𝑥2, . . . , 𝑥𝑛|𝑦𝑖)  =  𝑝(𝑥1|𝑦𝑖) ∙ 𝑝(𝑥2|𝑦𝑖) ∙. . .∙ 𝑝(𝑥𝑛|𝑦𝑖) 

Since the features used are continuous, this MQP will use the Gaussian Naïve Bayes. 

 

RANDOM FOREST CLASSIFIER The random forest classifier (RFC) is made up of a 

multitude of individual decision trees generated from different subsets of the dataset, which  work 

together to reach a consensus [46]. The RFC does this by having each decision tree predict what 

class a data point falls into, and the RFC picks whatever class is chosen the most as its final 

prediction [46]. To perform well the RFC needs an indicator in the features so that models built 

using said features have some foundation for their prediction and  are not randomly guessing [46]. 

An RFC also needs the predictions made by its individual trees to have as little correlation as 

possible with each other [46]. This low correlation happens by letting every single individual tree 

take a random sample from the dataset with replacement, resulting in different trees [46]. This 

process is known as bagging. An RFC also ensures low correlation by having each tree pick from 

a random subset of features, doing so allows for more diversification [46]. 

 

3.7 Grid Search 
 

To optimize the performance of deep learning models, grid search, a tuning technique was used to 

select optimal values for various hyperparameters. A hyperparameter is a parameter that is 

modified by the user, rather than learned by the model itself. A grid search gets the best 

performance out of a model by using every combination of hyperparameters possible and selects 

the best combination based on a given evaluation metric, such as accuracy or F1 score for example.  
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3.7.1 Hyperparameters  

The hyperparameters used are shown in tables 2 through 5 below:  

 

Rand

om 

Forest  

N_estima

tors 

Criteri

on 

max_de

pth 

min_samples

_leaf' 

min_samples

_split 

class_we

ight 

random_s

tate 

Audio 50, 100, 

200 

gini, 

entrop

y 

5 -- 2 balanced 1 

Facial 50, 100, 

200 

 

gini, 

entrop

y 

 

5 -- 2 balanced 1 

GPS 10, 50, 

100, 200 

500 

 

gini, 

entrop

y 

 

3 3 2 balanced 1 

 

Table 2: Hyperparameters used for random forest classifier  

 

Support 

Vector 

Machine 

loss penalty Max_iter tol Class_we

ight 

Random-

state 

Early_sto

pping 

Audio log l2 10000 1e-4 balanced 1 True 

Facial log l2 10000 1e-4 balanced 1 True 

GPS log l1, l2 10000 1e-4 balanced 1 True 

 

Table 3: Hyperparameters used for Support Vector Machine 

 

 

XGB

oost 

n_est

imato

rs 

Learn

ing_r

ate 

Use_l

abel_

ecode

r 

Max_

depth 

Min_

child

_wei

ght 

Rand

om_s

tate 

Gpu_

id 

Tree_

meth

od 

gam

ma 

subsa

mple 

Colsa

mple

_bytr

ee 

Audi

o 

50, 

100, 

200 

0.000

1, 

0.001

,0.01 

False 5 1 1 0 gpu_

hist 

-- -- -- 

Facia

l 

50, 

100, 

200 

0.000

1, 

0.001

,0.01 

False 5 1 1 0 gpu_

hist 

 

-- -- -- 

GPS 10, 0.000

1, 

-- 2 5 -- -- -- 5 0.8 0.8 
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50, 

100, 

200  

0.001

,0.01 

Table 4: Hyperparameters used for XGBoost 

 

Naïve Bayes Var_smoothing 

Audio 1e-9 

Facial 1e-9 

GPS 1e-9 

Table 5: Hyperparameters used for Naïve Bayes 
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4 Implementation 

This study utilized the Scikit learn package version 1.0.1 in Python version 3.10.0 to classify 

features and calculate the evaluation metrics. 
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5 Results 
 

Resultant values of various evaluation metrics for the machine learning models for 2-bin (0-10, 

11-21) classification for all three modalities are shown in tables 5 through 8 below. 

  

AUC-ROC Naïve Bayes  RFC  XGBoost  SVM  

Facial  0.517  0.557  0.517  0.433  

Audio  0.438  0.436  0.419  0.460  

GPS (before 
experiment)  

0.3333  
  

0.0  
  

0.0  
  

0.0  

GPS (after 
experiment)  

0.8571  0.7143  0.7143  
  

0.4286  

Table 5: AUC-ROC  for 2 bin classification  

  

Accuracy  Naïve 
Bayes  

RFC  XGBoost  SVM  

Facial  0.319  0.553  0.766  0.617  

Audio  0.3617  0.426  0.745  0.468  

GPS (before 
experiment)  

0.1  0.4  0.9  0.0  

GPS (after 
experiment)  

0.25  0.75  0.875  0.875  
  

Table 6: Accuracy for 2 bin classification  

  

F1-score  Naïve 

Bayes  

RFC  XGBoost  SVM  

Facial  0.385  0.40  0.154  0.182  

Audio  0.25  0.308  0.0  0.286  

GPS (before 
experiment)  

0.1818  
  

0.0  0.0  0.0  



   

 

 42 

GPS (after 
experiment)  

0.25  0.0  0.0  0.0  

Table 7: F1-score for 2 bin classification  

  

Confusion 
Matrix  

Naïve 
Bayes  

RFC  XGBoost  SVM  

Facial  [5 30]  

[2 10]  

[19 16]  

[5   7]  

[35 0]  

[11 1]  

[27 8]  

[10 2]  

Audio  [12 23]  
[7   5]  

[14 21]  
[6   6]  

[35 0]  

[12 0]  
[12 18]  
[7    5]  

GPS (before 

experiment)  

[0 9]  

[0 1]  
  

[4 5]  

[1 0]  
  

[9 0]  

[1 0]  
  

[0 9]  

[1 0]  
  

GPS (after 
experiment)  

[1 6]  
[0 1]  

[6 1]  
[1 0]  

[7 0]  
[1 0]  

[7 0]  
[1 0]  
  

Table 8: Confusion matrix for 2 bin classification  
 

The highest AUC-ROC for facial features was 0.557, achieved using the random forest classifier, 

while Support Vector Machines (SVM) was the best classifier type for audio features achieving 

0.460. Naïve Bayes had the best AUC-ROC for GPS features before and after the experiment with 

0.3333 and 0.8571 respectively. This drastic difference in scores could be attributed to the smaller 

dataset used in GPS features after the experiment. With a smaller dataset, it could be easier to get 

a higher score since the model does not have to discriminate between as often as it would in a 

larger dataset.  For accuracy metric, XGBoost was the best machine learning classifier for all three 

modalities, achieving 0.766, 0.745, 0.9, 0.875 respectively. It’s worth mentioning that the Support 

Vector Machine also had an accuracy of 0.875 for GPS features after the experiment as well. 

Random forest classifier had the highest F1-score for facial and audio features with scores of 0.40 

and 0.308 respectively. Naïve Bayes on the other hand had the best F1-score for GPS features 

taken before and after the experiment, with scores of 0.1818 and 0.25 respectively. As for the 

confusion matrix, the XGBoost had the best predictions for the facial features, audio features and 
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GPS features taken before the experiment while the Support Vector Machine and XGBoost 

performed the best for GPS features taken after the experiment.  

AUC-ROC Naïve 
Bayes  

RFC  XGBoost  SVM  

Facial  0.466  
  

0.543  
  

0.506  
  

0.575  
  

Audio  0.518  
  

0.521  
  

0.486  
  

0.552  
  

GPS (before 
experiment)  

0.1905  0.0952  
  

0.1429  
  

0.1429  
  

GPS (after 
experiment)  

0.5333  0.9333  0.9333  0.8  

Table 10: AUC-ROC for 3 bin classification  

  

Accuracy  Naïve 

Bayes  

RFC  XGBoost  
  

SVM  

Facial  0.170  
  

0.340  
  

0.638  
  

0.553  
  

Audio  0.340  0.277  
  

0.596  
  

0.596  
  

GPS (before 
experiment)  

0.0  0.3  0.7  
  

0.7  
  

GPS (after 
experiment)  

0.625  0.625  0.625  0.625  

Table 11: Accuracy for 3 bin classification  

  

F1-score  Naïve 
Bayes  

RFC  XGBoost  SVM  

Facial  0.138  
  

0.251  
  

0.390  
  

0.306  
  

Audio  0.293  
  

0.268  
  

0.249  
  

0.294  
  

GPS (before 
experiment  

0.0  0.1667  0.4118  
  

0.4118  
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GPS (after 
experiment)  

0.3846  0.4722  0.3846  0.3846  

Table 12: F1 score for 3 bin classification  

  

Confusion 
Matrix  

Naïve 
Bayes  

RFC  XGBoost  SVM  

Facial  [3  5  20]  
[0  0  12]  
[1  1  5]  

[13 5  10]  
[2  0  10]  
[4  0  3]  

[28 0  0]  
[11 1 0]  
[0  6  0]  

[24 4  0]  
[10 2  0]  
[7  0  0]  

Audio  [10 1  17]  

[3  1  8]  
[2  0  5]  

[7  7  14]  

[2  3  7]  
[3  1  3]  

[28 0  0]  

[12 0  0]  
[7  0  0]  

[27 1  0]  

[11 1  0]  
[6  1  0]  

GPS (before 
experiment)  

[0 0 7]  
[0 0 3]  

[0 0 0]  

[3 2 2]  
[2 0 1]  

[0 0 0]  

[7 0 0]  
[3 0 0]  

[0 0 0]  

[7 0 0]  
[3 0 0]  

[0 0 0]  

GPS (after 
experiment)  

[5 0 0]  
[3 0 0]  
[0 0 0]  

[3 1 1]  
[0 2 1]  
[0 0 0]  

[5 0 0]  
[3 0 0]  
[0 0 0]   

[5 0 0]  
[3 0 0]  
[0 0 0]  

Table 13: Confusion matrix for 3 bin classification 

 

The evaluation metrics for the machine learning models for 3-bin (0-7, 8-14, 15-21) classification 

for all three modalities are shown above in tables 10 through 13. The Support Vector Machine 

classifier had the highest AUC-ROC for facial and audio features with a score of 0.575 and 0.552 

respectfully. Naïve Bayes had the best AUC-ROC score for GPS features taken before the 

experiment at 0.1952, while random forest and XGBoost were tied at 0.9333 for the best score for 

GPS features taken after the experiment. The best machine learning classifier in terms of accuracy 

for the facial features was the XGBoost at 0.638 while both the Support Vector Machine classifier 

and  XGBoost had the best score for audio features as well as GPS features taken before the 

experiment at 0.596 and 0.7 respectively. As for the GPS features  extracted from data gathered 
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after the experiment, all four machine learning models were equally accurate with a score of 0.625. 

When it came to the F1-score, XGBoost was the best machine learning  classifier type for facial 

features, achieving a  score of 0.390. On the other hand, SVM was the best  classifier type for 

audio features  with an F1-Score of 0.294. Both of the aforementioned classifiers were tied at 

0.4118 for the best F1-score for GPS features taken before the experiment while the random forest 

classifier had the best F1-score for GPS features taken before the experiment at 0.4722. As for the 

confusion matrix the XGBoost had the best output for facial, audio, GPS both before and after the 

experiment. It is worth mentioning that  SVM performed  as well as XGBoost for GPS features 

before and after the experiment. 
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6 Discussion 
 

Best classifier type Overall, it appears that XGBoost was the best at detecting depression based 

on the results of the evaluation metrics. The classifier had the highest score 17 times, compared to 

the Support Vector Machine at 10 times, random forest classifier at 6, and Naïve Bayes at 5. Most 

of the success with XGBoost might be attributed to using more options per parameter when 

performing a grid search as well. Conversely the lack of parameters to grid search with might’ve 

been the reason why the Naïve Bayes and random Forest classifiers produced such lackluster 

results.  

Best data modality for depression classification The GPS features performed the best out of the 

modalities, the GPS metrics for predicting PHQ scores after the experiment were the highest 4 

times, while the metrics before the experiment and the facial features were the highest twice. While 

the GPS features were the most promising, they were the smallest dataset by far compared to the 

audio and facial modalities.  It is also worth noting that the number of instances in the GPS features 

for PHQ scores recorded after the experiment were less than before the experiment. It is possible 

that if more instances were available for the GPS modality the evaluation metrics would not be as 

high.   

 

6.2 Limitations 
Limitations to the study include the size of the datasets. While DAIC-WOZ and StudentLife 

dataset contained thousands of instances of data in their respective modalities, they did not have 

many participants in their studies. DAIC-WOZ had 192 participants while StudentLife had only 

48 participants, so when it came to detect depression using their PHQ scores, the machine learning 

models did not have  adequate data to work with. This can be seen in the confusion matrix, where 

even the best performing classifiers were not able to accurately predict the PHQ score of patients 
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who had higher scores compared to patients who had mild or even moderate scores. If the machine 

learning models had a bigger dataset they could have performed better when they received higher 

PHQ scores. To add to the relatively small datasets, the lack of features for the GPS modality poses 

as another limitation to this study. Due to time constraints, only 4 features could be extracted from 

the GPS modality, compared to the 5 features in the facial modality and 12 features that make up 

the audio modality. While it may seem that the number of facial features is only one more than the 

number of GPS features, each facial feature consists of more elements than the GPS features do. 

For example, the location variance at a given time is only one number, while the 3D points on the 

face consisted of 68 numbers.  

 

In addition to the GPS features consisted of fewer elements and were recorded less frequently than 

the audio and facial features were. The GPS features from the StudentLife dataset records raw data 

every 20 minutes while the facial and audio features from the DAIC-WOZ dataset were recorded 

every 10 milliseconds. Recording data more often gives the machine learning algorithms a wider 

range of numbers to work with, allowing for more accurate predictions. More features could have 

given more comprehensive results, would make up for the lack of data that was recorded in the 

StudentLife dataset. Another limitation was the hyperparameter selection during the grid search. 

As mentioned earlier the more hyperparameters used the better the machine learning model 

performed, a thorough grid search looking at even more hyperparameters could have possibly 

given a more optimized machine learning model with an even better performance.  

 

The most  significant limitation for this study was that it was conducted by only one person, which 

ultimately limited the amount of work accomplished. While I did receive assistance, having an 
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additional three to four group members also working on the study full time would have helped fix 

or at least mitigate all the other limitations previously mentioned. Having more group members 

would have enable more features to be   extracted, more classification models explored, more 

experiments conducted and more time finetuning the hyperparameters in the grid search, which 

could possibly lead to better evaluation metrics and a more conclusive result. 
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7 Conclusion 
 

In summary, Depression is one of the most prevalent mental disorders in the world. The goal of 

this MQP was to use data from facial, audio and GPS modalities to track trajectories of 

depression using machine learning models. This was done by extracting GPS features from the 

StudentLife dataset and audio and facial features from the DAIC-WOZ dataset. Using patient 

health questionnaire scores as the ground truth, the features were trained using XGBoost, random 

forest classifier, Support Vector Machines, and the Naïve Bayes classifier. The XGBoost 

classifier performed the best out of all the machine learning algorithms used, with an accuracy of 

0.82 for 2 bin classification and 0.639 for 3 bin classification. Much of this can be attributed to 

using a grid search to get the best performance possible. Overall, this study is a good baseline in 

comparing the performance of machine learning algorithms and what modalities and features 

were most useful for detecting depression.  

 

7.1 Future Work 
Future work in this study can expand on the features, data modalities, and classifiers used. More 

GPS features have been used to track trajectories of depression in the past with promising results. 

For example, Canzian et al had a mean absolute correlation of 0.432 and an average p-value of 

0.068 when attempting to find a relationship between mobility metrics gathered from GPS data 

and depressive moods [9]. Using the current features in addition to other GPS features  such as 

entropy, raw entropy, normalized entropy, percent of time at home, the routine index, the radius 

of gyration, the number of significant places visited, and more could have given the classifiers 

more data to use and predict depression with. Using other algorithms or perhaps building on 

existing classifiers could also be helpful in tracking trajectories of depression.  Future studies could 
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further implement other advanced algorithms such as Neural Networks, which prior work has 

found to produce more accurate results than traditional machine learning when adequate data is 

available. This could also be done to existing classifiers such as XGBoost as well. Lastly, other 

modalities could also be used to detect depression such as the text modality. Jacob et al used CNN 

and LSTM to detect depression using features from the text modality gathered from twitter and 

had an accuracy of 99.46% [17]. These promising results show that these features can be an 

indicator of depression and including them could provide even more insight into trajectories of 

depression. Future studies can also go beyond focusing on what individual features are best at 

detecting depression and instead look at what combinations of features are optimal for detecting 

depression. For instance, audio/facial or GPS/facial features could be combined.   
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