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ABSTRACT

In this Major Qualifying Project, we focus on the development of a visualization-enabled
anomaly detection system. We examine the 2011 VAST dataset challenge to efficiently
generate meaningful features and apply Robust Principal Component Analysis (RPCA) to

detect any data points estimated to be anomalous. This is done through an infrastructure that
promotes the closing of the loop from feature generation to anomaly detection through RPCA.
We enable our user to choose subsets of the data through a web application and learn through
visualization systems where problems are within their chosen local data slice. In this report, we
explore both feature engineering techniques along with optimizing RPCA which ultimately lead
to a generalized approach for detecting anomalies within a defined network architecture.
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1
INTRODUCTION

1.1 Introduction

It would be difficult to speak on the successes of technology in past years without discussing

the recent attacks on user data. The data explosion from technological growth has armed analysts

with new strategies for predicting or detecting malicious activity. Taking data from previous

attacks can help us prevent or stop future ones from emerging. This method of preventing attacks

can be summarized as finding outliers in a data set – or an anomaly. An anomaly is a data point

that veers away normal trends in a data set. From credit card fraud detection to cybersecurity at-

tacks, detecting anomalies has become vital in ensuring privacy. Nevertheless, due to differences

between data in these domains, a generalized solution for detecting out of the ordinary behavior

becomes challenging. In this paper, we will focus on anomaly detection in cybersecurity of the

2011 VAST dataset challenge.

Between the Internet of Things, the rapid advancement of technology and the lack of regula-

tion in the past years, security has become a primary concern for millions of users. In addition,

anomaly detection in networks has various layers of mathematical complexity. Deciding which

data points seem out of place requires precise analysis of data. This, coupled with the enormous

size of data sets, subtle correlation between data points, and potential long system waits for each

run cycle makes the process known as feature engineering non-trivial [9].

Security issues have been steadily present in software companies as technology continues to

grow in use and complexity. Considering how heavily embedded technology has become in every-

day life, cybersecurity is an issue of the highest priority. Damage costs alone from cyber attacks

are projected to reach $6 trillion by 2021 and breaches of personal information are occurring with

higher frequency as time progresses [48]. Over the past years, government records have been

victimized of cyber attacks, for example, the Free Application for Federal Student Aid (FAFSA)
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CHAPTER 1. INTRODUCTION

experienced a security breach within its IRS retrieval application. This led to roughly 100,000

taxpayers information being compromised [6]. As time and technology progresses, malicious

infiltrations such as the FAFSA breach become increasingly more difficult to predict or detect. To

protect user information, avoid denial of service attacks, along with other types of infiltration, it

is vital to detect what has gone wrong in the past regarding security. Determining the root cause

of these issues assist improving the security of critical information and user privacy.

Anomaly detection has been researched extensively for cybersecurity due to the complexities

that it entails. The University of Minnesota’s, Anomaly Detection: A survey, looked at using

network intrusions detection systems to find anomalies. However, detecting anomalous behavior

through network data comes with several challenges. This type of dataset is inherently high

dimensional and the domain continuously changes over time as intruders adapt and overcome

intrusion detections advancements [20].

In this Major Qualifying Project (MQP), we examined ways to diversify a dataset through

feature engineering and analyze its relationship with Robust Principal Component Analysis

(RPCA). Our contributions were the following:

• Created a user-friendly visualization system.

• Closed the loop between feature generation, mathematical analysis, and visualization.

• Improved overall experience of system administrators by creating a streamlined process

through careful construction of sound infrastructure in our code base.

This report explains in depth what anomaly detection is, its process, the different statistical

analysis methods that we will use or recommend to use, what feature engineering is, and the

impact that the original data set we used had on our project along with the assumptions made.

2
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2
VAST DATASET CHALLENGE

For this project, we used the 2011 VAST dataset [5]. This dataset included network architec-

ture descriptions, security policy issues, firewall logs, an intrusion detection system (IDS) log, and

a Nessus Network Vulnerability Scan Report [24] for the All Freight Corporation (AFC) [5]. The

goal of the challenge was to develop situation awareness interfaces that provide insight quickly,

clearly, and as efficiently as possible to help manage daily business operations while mitigating

network vulnerabilities. In this chapter, we will explain the structure of AFC’s network and the

associated dataset.

2.1 2011 VAST Dataset

Feature engineering refers to the process of using knowledge of data to create features that

can make machine learning algorithms function [47]. More specifically, this refers to attributes

that could contribute to the analysis of data to help with its prediction or analysis. Features are

characteristics of data that will help distinguish each row of data from each other. For example, a

feature would be whether or not a log entry is using a port that has a specific type of vulnerability.

This feature becomes relevant as we know that attacks are more likely to come from a computer

that might be vulnerable. In general, features surround the balance between finding as much

relevant data as possible to ensure that it is unique enough to make an impact in the prediction

models.

The dataset includes a folder of firewall logs for four separate days April 13 - 16 of 2011. Each

day has one corresponding log file. However, in the instance that the number of rows exceeds

Excel’s row limit multiple files are created. April 13 is such a case, where there exists more than

one log file. There are certain nodes within the dataset that are critical for AFC’s network to

function properly. It is to be noted that AFC uses virtual machines within their network. In

3



CHAPTER 2. VAST DATASET CHALLENGE

table 2.1, all nodes are described in the VAST dataset challenge; any node outside 172.x.x.x and

192.x.x.x is external to AFC’s network.

IP Address Node Name Node Type Description Priority

10.200.150.1 Firewall
Firewall interface to

the Internet
High

172.20.1.1 Firewall
Firewall interface to

External Web Server
High

172.20.1.5
External Web

Server

Web server which

hosts All Freight’s

external web site

High

192.168.1.16 Snort IDS
Snort Intrusion

Detection System

Snort IDS interface to

the network
High

192.168.1.1 Firewall

Firewall interface to

data center Virtual

Local Area Network

(VLAN)

High

192.168.2.1 Firewall
Firewall interface to of-

fice VLAN
High

192.168.1.2 DC01

Domain Con-

troller (DC) /

Domain Name

System (DNS)/

Dynamic Host

Configuration

Protocol (DHCP)

serve

Server running critical

network operations:

domain controller,

domain name server,

and dynamic host

configuration protocol

server

High

192.168.1.3 HRDB01
HR Database

Server

Server running the

database for employee

payroll and benefits

High

192.168.1.4 SRDB01

Shipping / Rout-

ing Database

Server

Server containing cus-

tomer data, including

shipping requests and

routing information

High

4



2.1. 2011 VAST DATASET

192.168.1.5 WEB01
Internal web

server

Server that hosts All

Freight’s corporate in-

tranet, including com-

pany news site and pol-

icy and procedure man-

uals

High

192.168.1.5 WEB01
Internal web

server

Server that hosts All

Freight’s corporate in-

tranet, including com-

pany news site and pol-

icy and procedure man-

uals

High

192.168.1.6 EX01 Mail server

Server that stores and

routes all email that

flows into, out of, or in-

ternal to All Freight

High

192.168.1.7 FS01 File Server

Server that holds

shared files used by

workers throughout

All Freight

High

192.168.1.14 DC2 DC / DNS server

Server running critical

network operations:

domain controller and

domain name server

High

192.168.1.50 Firewall log
Server that captures

system firewall logs
High

192.168.2.10

through

192.168.2.250

Office worksta-

tions

Individual worksta-

tion computers located

in offices or cubicles

throughout All Freight

Normal

Table 2.1: AFC registered network description. [5].

Important data flow descriptions are:

• Connections outside of the AFC network

– Web traffic enters with IP address 10.200.150.1 and through port 80.
– Firewall routes traffic to the external web server on 172.20.1.5 address and through

port 80.

5



CHAPTER 2. VAST DATASET CHALLENGE

• Email from outside AFC network

– Enter AFC’s network with IP address 10.200.150.1 through port 25.
– Firewall routes traffic to the mail server on IP address 192.168.1.6.

• All AFC staff members use IP addresses 192.168.2.10-250 to browse the internet.

All information above retrieved from VAST dataset challenge description. Fully understand-

ing the structure of a dataset and how data flows in AFC’s network is critical to the success of

this project and taken into consideration during its execution. In general, a company’s policy and

security contract should be taken into consideration when creating features.

2.2 Attacks in the VAST Dataset

In addition to the resources mentioned above, the VAST dataset also includes a solutions

manual. The answer guide reveals all attacks and steps that led to finding the security vulnera-

bilities in the VAST dataset. Below are summaries of each attack over the course of four days

according to the solution manual.

Type of Attack Date of Attack Description

Denial Of Service Attack

(DDoS)

04/13/2011 at 11:39 and ended

roughly an hour later at 12:51

A DDoS attack aims to dis-

rupt a user’s interaction with a

system. By using client/server

technology an attacker can

flood requests of a network,

rendering that network use-

less or experiencing delayed

speeds [56]. Throughout this

time period there was an at-

tempt to disrupt a corporate

web server, most likely to de-

lay network speeds.

6



2.3. AVOIDING DATA SNOOPING

Remote Desktop Connection 04/14/2011 at 13:31 Documented violation of cor-

porate policy within the fire-

wall logs. This is part of a so-

cially engineered attack that

suggests substantial security

risk such as a worm in AFC’s

network.

Undocumented Computer 04/14/2011 13:23 There was an addition of

an undocumented computer

in the company internal net-

work. The policy descriptions

for AFC said that the work-

station computers would be

in the range 192.168.2.25-250.

The particular IP address for

this computer is 192.168.2.251.

Although we do not have the

background for this computer,

the addition of it to the com-

pany network is concerning

enough that it should be no-

ticed.

Table 2.2: Attack Descriptions on VAST dataset [5]

2.3 Avoiding Data Snooping

Data snooping is when an algorithm can cheat through previous knowledge of the answers

rather than depend on how data presents itself normally. We used the context of the attacks

mentioned above to verify the validity of our features and assist with the iterative feature

engineering process. One of our primary concerns of having the answers was the possibility of

data snooping. Although we did take inspiration from knowing the attacks and previous MQPs,

we limited ourselves to not seeing the answers until we had our first iterations of features. After

observing the answers, we analyzed the problems in general to create features that would have

the capabilities to solve these issues in a generalized way. For example, when we noted the

Remote Desktop attack, we thought about all different types of protocols that could indicate

that a computer is being connected from a suspicious place and how ports can hint at suspicious

activity.
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2.4 Previous Work

In the previous year, there was an MQP that focused on an anomaly detection system.

After analysis of their work, we determined that their application was set up in a way that

created a disconnected loop of work between mathematicians and computer scientists. From the

computer science side, there were matrices of features developed and sent to mathematicians for

analysis. These matrices were derived from the 2011 VAST dataset challenge. It was important

to determine how their features were produced from this data.

After a code analysis, we determined that the VAST 2011 dataset was ingested into a Python

script and then the resulting feature matrix was inserted into a mySQL [10] database. The

mySQL tables were statically defined, meaning that the table schema was established during the

creation of the feature matrix with a predetermined set of columns. We believe that this posed

a problem for a generalized solution. Our initial thought was to research ways of dynamically

creating the table schema for the mySQL table. To do this, we chose to optimize the process of

running the project and feature matrix creation. Our Python script allowed the feature matrix

to be read for mathematical analysis and from here, rows were marked as anomalous or not.

This was done with the ground truth from the solution manual and served for cross validation

of attacks. The main problem with the previous MQP project was the disconnect between each

step in the iterative loop, this needed to be streamlined. With the past MQP’s structure of feature

generation and math analysis, we chose to close the loop that began with feature engineering,

passed to mathematical analysis, and resulted in visualization.
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3
ANOMALIES IN CYBER SECURITY

The exponential increase of technology in the past years has made malicious intrusions in

networks substantially harder to detect anomalies. The heavy integration of technology into our

lives has made detecting intrusions all the more important [21]. Anomaly detection involves

looking at previous data and searching for behavior that exists out of the norm. Anomaly detection

methods create the possibility to find unknown attacks on a system once a normality has been

defined. However, false positives are still possible due to the unpredictable nature of network use.

3.1 Anomaly detection methods

Anomaly detection is the process of finding data that is out of the ordinary and does not

conform to previous data trends [20]. The difficulty levels to find anomaly corresponds to the

layers of complexity a dataset provides.

In Figure 3.1, it is obvious to see that there are points that do not behave as the rest of the

data. It is important to note that in this example there are only two dimensions. In a real world

example there can be multiple dimensions. Each dimension adds another layer of complexity

and can affect or even hide anomalous behavior [20]. One example is network data and traffic.

Network data consists of communicating with multiple computers or nodes [40]. Figure 3.2 is an

example of how complex network traffic can look in comparison to the simple example above.

In Figure 3.2, we see multiple systems communicating with each other. Each node in this

diagram represents a layer of complexity in a network. Finding behavior that is out of the norm

with everything taken into consideration very quickly becomes a daunting task. With more data

ingested at a fast rate, data becomes noisy and harder to filter through. Regarding network data it

is vital to filter through this noise. “Network traffic anomalies reflect the anomalous or malicious
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Figure 3.1: Example of anomaly in two dimensional space [20].

Figure 3.2: Example of dimensionality in network traffic. Each node represents another layer of
complexity. This makes detecting anomalies a non-trivial task [20]

behaviors that appear in the network. Discovering exact/actual network traffic anomalies is

to effectively contain these anomalous or malicious behaviors that damage the network” [69].

These network traffic anomalies communicate a story of attacks in cyber security and it is the

responsibility of anomaly detection methods to ensure that they are caught and examined. The

question that many experts are posing is which anomaly detection methods are best and how can

we better prepare ourselves for unknown attacks [13].

Different project paradigms require different types of anomaly detection methods [20]. Testing

different types of anomaly detection methods can result in an increased chance of finding

anomalous behavior [13]. In recent years, the different types of anomaly detections methods have

skyrocketed. This stems from advancements in technology and an increase in targetable domains

[13]. The challenge lies in identifying the correct type of anomaly detection method (ADM) for a

10
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domain. Many anomaly detection methods have different requirements and prerequisites that can

makes the process even more difficult. Below is a general architecture for an anomaly detection

system.

Figure 3.3: General architecture of anomaly detection system from (Chandola et al., 2009) [20]

Although Figure 3.3 is a generalized example of an anomaly detection system, it accu-

rately describes the steps that are taken into consideration for examining a dataset. The actual

anomaly detection engine is what will normally vary. There are several examples of anomaly

detection methods. Monowar H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita’s [20] paper

mentioned above categorizes network intrusion methods into the following categories: statistical,

classification-based, clustering and outlier-based, soft computing, knowledge-based and combina-

tion learners. Most of these anomaly detection methods use some form of feature engineering to

optimize their anomaly detection algorithms. Bhuyan, Bhattacharyya, Kalita argue that “feature

selection reduces computational complexity, removes information redundancy, increases the

accuracy of the detection algorithm, facilitates data understanding and improves generalization”

[13]. It is therefore, important that the feature selection process is carefully chosen based on a

dataset.
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4
FEATURE ENGINEERING

Feature engineering is analyzing data to carefully separate data points in a useful way. The

goal is to diversify and create meaningful distances between data points. To be more specific,

when analysts first receive data, it might have what seems as redundant or not specific enough

information. As stated in chapter 3, feature selection enhances anomaly detection algorithms.

In order to choose which data points are anomalies, you have to select which details need to be

analyzed, and most importantly, how. One of the challenges about data mining is the different

perspective that a user or analyst can have in comparison with a developer. Looking at the

problem domain from two different perspectives can derive to a different set of features. [63].

4.1 Feature Engineering Process

The process of feature engineering is an iterative one that ceases when the end goal of a

project is met. The process is defined below by Dr. Jason Brownlee [17]:

1. Preprocess Data: Format it, clean it, sample it so you can work with it.

a) This may involve deleting certain columns after determining any irrelevancies.
b) Changing the format of certain columns, such as time-stamps or unwanted characters.

2. Transform Data: Feature selection happens here.

a) The feature library consists of several uniquely identifying characteristics of the data.

b) Features should not be made for the sake of creation. For example, a timestamp

feature would diversify your data; however, that might not help you achieve your goal.

3. Model Data: Create models, evaluate them and fine tune them.
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a) After receiving results from the feature selection, how will you visualization or present

your findings? How can the transformed data set be modeled to communicate a

message?

b) Ensure that your features tell a story within your modeling of data.

Through each iteration of this process more is revealed about a dataset and features are fine

tuned until a best fit is found. The best fit varies for each project. Overall, it is important to

consider if features are thoughtfully chosen and if through the modeling of features a story is

clearly communicated.

4.2 Feature Selection For a Dataset

What specifically defines a feature is what makes feature engineering both challenging, and

interesting. Intuitively, one may think of a feature as system functionality that helps characterize

the system in the perspective of a human. However, this definition tends to be perceived in

different ways, causing confusion and conflicting opinions [63]. Using the time entry of a data

point, for example, could be considered a feature because it makes each log entry into a separate

data point. Nevertheless, this does not necessarily describe the system or how it works. A separate

challenge with feature engineering is the limit of file sizes. Although in an ideal world, you could

create a feature for each uniquely identifying characteristic, it’s imperative to consider what is

possible with the current computational power, and prioritize which features may lead to solving

a problem. The selection of features is a task which requires an analytical approach. A dataset

must be examined to define which characteristics should be made unique. As mentioned above,

choosing the wrong features will not help in the modeling of a dataset and can hinder the problem

that feature engineering aims to solve. In the feature selection step is it vital to remove attributes

of data that may make a dataset “noisy” and skew any modeling while limiting the number of

features to those of higher importance [17].

4.3 Time Series Feature Generation

Although features tend to describe characteristics of a specific dataset, anomaly searching can

require an introspective view of your specific domain. Network security has unique attributes that

are imperative towards understanding how the network itself is functioning. Osman Ramadan

[51], decided to use the number of distinct source and destination ports/IP’s and the sum of

bytes for each source over a period of time as features since he knew that this could describe a

change in the network’s normal behavior, like a DDoS attack [51]. Our dataset did not include

the exact number of bytes transferred within each request. However, in light of his findings we

decided to see if it would be possible to derive a similar concept. How could we analyze when a
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source/destination port/ip was experiencing a change in the network? Questions such as these

are key to help us derive rules for modeling data and create our anomaly detection system.

4.4 Feature Engineering Generation

In the following sections we will discuss the process of our feature generation on the VAST

dataset. The goal was to generate a set of features that increases uniqueness among the dataset in

preparation for mathematical analysis, such as RPCA. Over the course of the project’s completion

we followed the iterative process defined above. Below is an example of the loop that resulted

in our feature library. In this section, we also explain the workflow of the project. We will go in

depth for each step and the part it played in closing the loop in this MQP.

Figure 4.1: A goal of this project was to create a system that closes the loop between an anomaly
detecting system and visualization.

Once this cycle has converged as a result of an optimal feature set, the next step is visualiza-

tion. This step will be described in depth in chapter 7.

4.5 Feature Generation Infrastructure

In the following sections, the process of choosing our features for the VAST dataset will be

described. This section aims to explain the flow of work that led to the efficient generation of

our feature library. As described above, a challenge that lies in feature generation is the size of

the dataset. In the VAST dataset, with all 4 days of logs, there are roughly 12.5 million rows.

Through trial and error, it was determined that we could not feasibly automate and streamline
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the feature generation process with the entire dataset. Processing the data would require very

long system waits for feature generation. To mitigate this problem, a Python script functions as

a manager for all of the scripts that produce our feature library. Our backend is created using

Flask [53], a micro-web framework written in Python to build our web application. This manager

is used within our Flask backend explained in chapter 7, and our web application to obtain a

desired time slice for a specific log file. This makes it much more manageable to generate features

and test different slices.

Our manager also bears the responsibility of running mathematical analysis. It assists with

easy experimentation of our algorithm, as explained in chapter 4. It is to be noted that feature

generation occurs with Python 2.7 and math analysis uses Python 3.6. There are ways to translate

Python 2 to Python 3 with libraries such as Futurize [58] but with several moving components

in our code base and not anticipating this problem in the beginning of the project we decided to

not convert our code. One could imagine, that with time, a manager could be written entirely

in one Python version or one that utilizes the something such as the Futurize library. As with

many Python projects, we decided to develop from within a virtual environment using Python’s

VirtualEnv [14]. We took advantage of this decision and have two Python virtual environments,

one for Python 2.7 and one with Python 3.6. All dependencies are clearly defined within our code

repository readme [59]. Our manager begins feature generation code in the Python 2.7 virtual

environment and a bash script is started once feature generation is complete. This bash script

deactivates the Python 2.7 virtual environment, activates the Python 3.6 environment to run

our math algorithm on the feature matrix csv file. This process closes the gap between computer

science and mathematical analysis. What follows is the visualization step of the results for a

user, this is explained in more detail in Chapter 6. A user can use this manager and examine any

number of ranges for any log. Another advantage of having a manager script is that adding or

removing specific feature sets become infinitely easier.

Since the feature generation process is an iterative one that constantly aims to improve

in order to optimize the anomaly detection algorithm, creating a pipeline for this project was

necessary. This pipeline allowed us to test several different time slices and assisted with the best

fit convergence of our feature library.

4.6 Source and Destination IP Address Feature Sets

The goal output of our features is to create a hot encoded matrix in Excel, or a numerical

value to demonstrate if a characteristic applies to the data point [40]. It is difficult to apply

anomaly detection methods if the features are not chosen carefully. In our features, every IP

address was converted to an integer using Python’s struct library. In this section we will describe

the trials of deciding how to diversify the IP addresses within the dataset.
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4.6.1 Original Feature For Every Unique Source and Destination IP

We used a script in order to find every unique source and destination IP address and we

dynamically generated features from this. This script examined a user specified slice of the

dataset and generated all of the corresponding distinct IP addresses. From here our feature

manager starts another script that will create the feature matrix with respect to these distinct

IP addresses. All IP addresses are converted to integers as explained above. Source IP addresses

have the prefix "sip_" followed by the integer IP address and destination IP addresses have

the prefix "dip_" followed by the integer IP address. Below is an example of how the source IP

addresses may be displayed within this specific feature set.

sip_18091791 sip_18091792 sip_18091793 sip_32322361 sip_32322362

0 0 0 0 1

1 0 0 0 0

Table 4.1: Original IP Address feature example. In this feature set, there is a columns for every

distinct IP address.

This matrix is then inserted into a mySQL table for easy manipulation of data. For example,

join in each IP address to a vulnerability scan is one example that can be used in feature

generation that would require that flexibility. By having each unique source and destination IP

address be its own feature we diversify the dataset and widen our matrix. However, it is important

to note the impact that doing this could have on the math analysis and other overall infrastructure

of our project. If a user defines a very large time slice of the dataset, the dynamically created

features could number in the thousands. This makes it difficult to insert data into mySQL and

make queries on it since the table would become so large. For example, if we run our script to

generate features for every distinct source and destination IP address, along with our other

features, our table would have upwards of a thousand features. In addition, this feature set can

hurt the goal of anomaly detection if most of the used IP addresses are unique, since our math

algorithm could potentially flag each row as an anomaly. It can be argued that with smaller slices

this is a very feasible feature set and can help the diversification of the dataset.

4.6.2 Feature Engineering of the AFC Network IP Addresses

As mentioned in chapter 2, the VAST 2011 dataset challenge included a table of IP addresses

that describes the AFC company network architecture.

Figure 3.3, maps the overall transfer and communication of data within AFC’s network. All

of the IP addresses in this figure are referenced in chapter 2’s table. Our next IP address feature
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Figure 4.2: AFC Network Architecture. This outlines the workstation connections in AFC’s network
and which servers they communicate on. [5]
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set includes the thoughtful consideration of exclusively AFC’s network. For each IP address in

table 2.1 we have a source and destination feature. Similarly to the previous section’s feature

set, we prefix each IP address with "sip_" and "dip_" and convert each address to an integer.

In addition, there are two features responsible for characterizing any source or destination IP

addresses outside of AFC’s defined network called "sip_outside" and "dip_outside". Below is an

example of how these features look.

sip_outside sip_18091777 sip_18091793 sip_32322361 sip_32322362

0 0 0 0 1

1 0 0 0 0

Table 4.2: Individual Column features for each AFC network IP address. With this feature set,

there is a column for every IP address defined in AFC’s network and there are two columns for

source and destination IP addresses outside the defined network.

There may be several reasons for communication with an outside IP address, however, it

is important to mark these IP addresses as they could be the root of malicious activity. In a

real world setting, one could imagine speaking with a network analyst at any given company

and asking for a similar network architecture diagram or table. By doing this, someone could

use our software and place their own IP addresses in a simple table in our Python script and

run their own feature generation. This is where our goal of a more generalized solution for

anomaly detection is accomplished. In the previous section, the features change from each feature

generation run cycle, but in this situation the feature set for IP addresses stay the same. This

feature set encompasses the entire AFC network architecture.

By mapping out each IP address in AFC’s network as a feature we characterize their company

specific architecture. This could make identifying specific workstations or other terminals as a

problem quite simple. As for marking outside sources the outside features can alert any source

or destination IP address that is external to the AFC network. In the next section we aim to

generalize the IP addresses even further.

4.6.3 Examining AFC Network IP Addresses Inside and Outside

This IP address features is a slight variation of the previous section. We wanted to try

another version of examining AFC’s network architecture. This set includes four features in

total: "sip_outside", "sip_inside", "dip_outside", and "dip_inside". Rather than having a feature for
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each IP address, we use these features and simply marked whether an IP addresses is in a user

defined slice is inside or outside the AFC network. Below is an example of how these features

look.

sip_outside sip_inside dip_outside dip_inside

0 1 0 1

0 1 0 1

Table 4.3: Examining only inside and outside source and destination IP addresses according to

AFC’s network architecture.

It was important to test several variations for the IP address features because this attribute

in the firewall log can tell an interesting story when it comes to suspicious activity. For the

"sip_inside" and "dip_inside" features we still ingest the AFC network architecture similar to the

previous section. However, in this set we consolidate all of those features into these two columns.

So every IP address defined in AFC’s network will be placed within those two columns. The

"sip_outside" and "dip_outside" functions the same as the previous section where all IP addresses

that are outside of AFC’s network will be marked there.

4.7 Ports

Ports can reveal much about abnormalities in network data. For this reason we found it

necessary to incorporate them into this project’s feature library. We created features for the ports

and grouped them according to overall significance to possible malicious attacks. Port numbers

below 1024 are known as system or well-known ports. They are specifically meant to be used for

certain applications and the system expects them to perform certain tasks. On the other spectrum,

ports above 1024 are ports and they can be used by users or are registered. An example is how

the 8080 port is registered for websites. For our features, we grouped all port numbers. Unique

source ports below 1024 all have their own column with a prefix, "special_source_port_" followed

by the port number. All other source ports above 1024 are grouped into a separate column. For the

destination ports, we also had two different grouping. Normally, a destination port will be port

number 80. Port 80 is used for web servers and "listens" to a client. Since, there is a high chance

that port 80 would be used frequently for destination ports we created a column for rows that

used port 80. We then classified each destination port that is not 80 as a special destination port.

We created a separate column of those ports with prefix, "special_destination_port_" followed by

the port number.
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In addition,we investigated ports that usually served a program or signaled a type of danger.

For example, port 3389 corresponds to the TCP and UDP ports that are used for Microsoft’s remote

desktop, software that you would not necessarily expect in a non-tech company. In addition, we

looked at strategic ports used by hackers or malicious software to have a wider range of ports that

could signal an attack. In the table below is a list of the ports that is included in our features.

Port Description/Threat

3389 Remote Desktop Protocol (RDP) - Ports that

allows a user a graphical interface to connect

to another computer for Windows.

6783-6785 Remote Desktop Protocol (RDP) SplashTop

53 DNS Exit Strategy and port used to create

DDOS attacks.

4444 Trojan to listen in on information

31337 Back Orifice backdoor and some other mali-

cious software programs

6660 - 6669 Internet Relay Chart (IRC) Vulnerabilities &

DDoS

12345 Netbus Trojan Horse

514 Explotable Shell

Table 4.4: Examined ports for feature generation. These ports have been exploited in years past

and could indicate a threat [1], [2], [66].

It was important to tag these ports as they could be critical to alerting a system administrators

of possible malicious behavior.

4.8 Averages

An interesting detail about network traffic, is that it is comprised of several layers to make

itself efficient and secure. Though normally one would examine packages sent and received to

characterize a network flow, that information is not always readily available. The VAST Dataset

did not include this; therefore, we needed to emulate how a network would work with the data

that we had available.

In order to develop a feature that encompassed anomalous numbers of requests, we had to

develop a feature that could encapsulate what a “regular” amount of requests were, and what

we considered to be out of that range. We considered this for source IP addresses, destination

IP addresses, source ports, and destination ports. We will refer to these as network parameters

in this section. To do this, we calculated the average of the network parameter requests per
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second. This would be able to detect if a parameter was used more or less than normal during a

certain time period. Doing so is critical to detecting attacks such as a DDoS attack. Each second

has a certain number of requests per parameter. For example, if you have an IP address as the

parameter, 192.0.0.1, and it appears three times in a period of one second, that is three requests

per second. Below are the steps that our Python script completes to calculate this feature.

1. Individually examine each second in the dataset as a slice

2. Retrieve the requests per second for each network parameter

3. Calculate average based on the network parameter

4. For each second for a network parameter divide it by the average requests per second

For each of the parameters mentioned above, a mySQL table is defined with the schema

depicted in table 4.5.

Field Type Null Key

date_time varchar(34) No Primary

[parameter] varchar(34) No Primary

Appearance per Sec-

ond

varchar(34) Yes

Final_Feature varchar(34) Yes

Final_Work_Feature varchar(34) Yes

Table 4.5: Average feature set table schema. This feature attempts to emulate the amount of

requests each network parameter made.

Since the table would be nearly identical, except the network parameter, we created a template

for the table creation. Similarly to the working set mySQL table, explained in chapter 4 section 5,

these tables are defined each time that the feature manager is ran with a different time slice. It

is important to note that these slices are not representative of the global dataset, but rather, a

just the slice a user chooses. There were a few reasons why we decided to keep these features

local rather than global. The last average feature’s purpose is to capture a significant change in

the network. If we used the global data, a DDoS attack, for example, could skew the data since it

will completely change the total work done by a system. Examining the slices locally can imitate

a real world system by analyzing a fixed number of logs, and as they come in the last average

feature theoretically would be able to capture the change. Finally, there was also a memory

component in the generation of the features. If we decided to use global data, in a real time

system it would need to be periodically updated when new logs come in, and it would increasingly

need more memory. By maintaining the logs locally, we reduce the amount of memory needed

and have much more efficient process to creating the features.
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In addition, a second feature was generated that looked at the amount of work that a specific

address or port generated of the total amount of work done in the system during that time.

Although the process is similar to retrieve the current work for the address/port, the difference is

that instead of dividing by the average work done, we divide by the total. What this accomplishes

is that it contrasts what we consider an above average address/port for the system with what the

total work on the system is done. Table 4.6 shows how our features were represented.

Source IP LastAver-

age

Destination IP Las-

tAverage

Source Port LastAver-

age

Destination Port Las-

tAverage

1.00 1.28 1.00 0.20

1.83 4.16 1.00 1.00

2.45 2.83 1.00 2.28

Table 4.6: Average feature example.

4.9 Vulnerability Scan Analysis

The vulnerability scan used was generated from a Nessus scan [24]. Nessus is a vulnerability

scanning platform, used mainly by security analysts. The Nessus vulnerability scan offers

information regarding a system’s health and if there are areas that malicious hackers could

utilize to cause harm. A parser [35] was used on the Nessus scan provided in the VAST dataset

to extract information relevant to our feature generation. Among these relevancies are the note,

hole, and Common Vulnerability Scoring System (cvss) parameters. Notes represent a security

warning and are indicators of behavior that is slightly out of the norm. A hole is representative of

a larger security warning, often critical to system health [24]. The cvss value ranges from 0 to 10

and provides further insight into the severity of these health warning indicators. Below is an

example of the vulnerability scan used before parsing.

Count Note Count Hole Max Severity Note Max Severity Hole

1 0 1 0

1 0 1 0

51 209 2.6 9.3

Table 4.7: We use the Nessus scan [24] to validate features. Here we examine the amount of notes

and holes per IP address.

To efficiently query IP addresses that could potentially be the root of a critical vulnerability,

the parsed values were stored in a mySQL table. Table 4.8 shows the schema of this table in

mySQL:
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Field Type Null Key

id int(11) No Primary

ip varchar(15) Yes

count_note varchar(4) Yes

count_hole varchar(4) Yes

max_severity_note varchar(15) Yes

max_severity_hole varchar(15) Yes

Table 4.8: Nessus Scan table schema. We used this table to join firewall logs and vulnerability

scan information.

Once the table is populated with these values it is joined with the mySQL features table.

The join occurs according to the IP address. The result is the features table with the addition

of these four vulnerability scan features. With these features it is simple to see exactly which

IP addresses are causing problems and will allow us to validate the accuracy of the formerly

mentioned features.

Features themselves focus on describing the data set rather than finding anomalies [31]. To

find anomalies using features, we depend on learning algorithms, which are used as a part of

machine learning to process information and determine patterns for a given dataset [3]. In the

next chapter, we will discuss different learning algorithm techniques and how they can affect

anomaly detection [3].
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5
LEARNING ALGORITHMS

Once feature generation was completed, the data could be exported for mathematical analysis.

The extracted information was analyzed through statistical methods in an attempt to analytically

detect anomalies in the dataset. Various parameters were tested and produced results that

accurately detected anomalies when comparing the mathematical results to the ground truth

network data.

5.1 Supervised and Unsupervised Learning

There are many statistical methods that could be used as we are looking for relationships

between characteristics of network logs to find discrepancies and anomalies. Many statistical

methods were evaluated to help determine what would fit best for the network data being

analyzed, including different types of learning algorithms. Supervised learning includes statistical

approaches where possible results are already known, and the data being analyzed is labeled with

correct answers [28]. On the contrary, unsupervised learning algorithms can analyze data to find

patterns and relationships that might not have been known or examined before [27]. Principal

Component Analysis (PCA) is an unsupervised statistical approach used for data dimension

reduction and processing [72]. This is done by taking a data set of observations and converting

them to a set of linearly uncorrelated principal components for further analysis. By using a

Singular Value Decomposition (SVD), a given matrix M ∈Rm×n can be broken down as follows:

[23]

M =UΣV T

where U ∈Rm×n is a unitary matrix, Σ ∈Rn×n which is a positive definite diagonal matrix with

zeros elsewhere, and V ∈Rm×n, also a unitary matrix [23]. The diagonal entries σi ∈Σ are known
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as the singular values of M, are similar but not always the same as eigenvalues. Singular values

are only equivalent to eigenvalues when the given matrix is real, symmetric, square, positive

definite matrix. As stated, PCA can be used for dimension reduction and to project matrices

onto a lower dimensional subspace, which would work well for finding anomalies within network

data. PCA unfortunately suffers from each principal component being a linear combination of all

original observations, making it difficult to interpret results and susceptible to outliers.

5.2 Singular Values

For the first subset of network data that was analyzed after preprocessing what was done,

the resulting matrix of network data logs was M ∈R5034×34. There were initially four logs in the

matrix that returned undefined for the IP addresses, which resulted in these rows being deleted

from the matrix as to not interfere with the analysis. Then, for an SVD to be produced for this

matrix, the first four columns of the matrix had to be ignored. These columns were id, destination

IP, source IP, and time log, and were not of values that could be computed for the new matrices.

This resulted in the matrix being trimmed down to a size of 5034 by 34, at which point the matrix

was factorized as an SVD producing the results below.

The Σ matrix contained 30 unique singular values (σi ) [19], corresponding to the 30 columns

in our adjusted matrix . These σi values declined in weight as they were expected to, and only the

first 13 σi values returned coefficients above zero. This means that with the largest 13 singular

values, we have the ability to predict the other 17 singular values for any log we’re given, allowing

us to predict the remaining information and details of an individual log if we know less than half

of it’s information. The 30 σi values can also be seen below in descending order. After the results

were produced, more analysis was done on the logs and columns of the network data that were

being produced. The matrices of network data were of size 1000000 by 34 for the first 12 csv files

that were exported, and the 13th csv file contained slightly fewer logs of data, meaning there

were slightly less than 13 million logs of data to iterate through. The 13 unique network data csv

files were read and concatenated into a singular data matrix, with the first four columns being

ignored, which was then z-Transformed and processed into an SVD the same way our subset

sample of data had been. The z-Transformation process is described later in section 5.4 of this

paper.

Using the first two singular values of the Σ matrix, every log in the concatenated csv files

were plotted by using the first two singular values of the Σ matrix as the x and y axis. The

columns of the csv files were also plotted by the same convention, using the first two singular

values of the Σ as the axis for plotting. The first two singular values were selected above the rest

because the results of the Σ matrix are returned in descending order, so the first two singular

values represent the two values that scale the U and V T unitary matrices of the SVD to recreate

the original matrix.
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Figure 5.1: Visual representation of the singular values of the first time slice of data. Singular
values appear in descending order due to the construction of the SVD and Σ [19].

The first two singular values were then multiplied by the U unitary matrix, returning a

vector of slightly less than 12 million rows by 2 columns in size. This was also done to the V T

unitary matrix, of which the results were transposed to be in the same form as the other product.

The columns of the two products of U and V T respectively were then separated into arrays, the

values were sent to lists, and the lists were then zipped together to create the data points that

would be plotted. Once the values for the U and V T by the first two singular values plots were

generated, they were produced with the results below.

The singular values by U graph displayed all logs within the concatenated matrix of all 13

network data csv files, which displays a somewhat linear relationship between the data, with

individual data points falling above and below a general trend line. The singular values by V T

graph displayed the columns of the concatenated matrix of all 13 network csv files, with each

point in the plot representing a different column. These columns were expected to be less linearly

dependent on one another than the log data, because the columns of the matrices represent the

features of each individual data point, where there was clearly disparity between many of the

logs and respective features.
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Figure 5.2: Singular Values by U. This displays a loose linear relationship between all data
points. The first two singular values were chosen to be the axes because those are the two most
dominant values to help predict other features of an individual log [19].

5.3 Robust Principal Component Analysis

Robust Principal Component Analysis (RPCA) is an adjusted statistical approach of PCA

which works with corrupted observations and outliers [25]. While PCA is susceptible to outliers

as previously stated, RPCA can detect a more accurate low dimensional space to be recovered,

and that is why RPCA is necessary over standard PCA for anomaly detection in the network data.

RPCA works to recover a low-rank matrix L and a sparse matrix S from corrupted measurements,

which in the case of network data would be the anomalies of the data set. Robust PCA works in

conjunction with the Singular Value Decomposition (SVD) factorization method of separating

matrices into distinct unitary and diagonal matrices, giving an optimization problem as follows:

[25]

min(L,S)||L||∗+λ||S||1

subject to, |M− (L+S)| ≤ ε
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Figure 5.3: Singular Values by V T . The spareness of the plot shows how there is no apparent
linear relationship between the columns or features of the dataset [19]. This is logical because
features are linearly independent of each other. For example, IP addresses and ports do not depend
on each other.

In this equation, L is the low rank matrix which can be factorized as an SVD, ||L||∗ is the

nuclear norm of L (the sum of the singular values), λ is the coupling constant between L and S,

||S||1 is the sum of the entries S, and ε is the matrix of point-wise error constants that improve

the noise generated from real world data. Due to the nature of the network data, traditional PCA

would be too receptive to outliers and would prove to be ineffective and anomaly detection. As a

result, RPCA was the statistical method chosen for anomaly detection.

5.4 Z-Transform

Due to having various different types of information that were created through the feature

generation process, data normalization was necessary. Between the source and destination

ports, source and destination IP addresses, and averages that were calculated for when certain

IP addresses and ports came up throughout the dataset, a z-Transformation of the data was
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necessary as a preprocessing method before further analysis could be done. This was in each

column of the matrices that were generated, and was done by using the z-score statistical method.

[46]

z = (x−µ)
σ

For each column in the data set, the mean µ and standard deviations σ of a given column

were calculated. If the σ of a given column was not zero, each individual data point in the column

was taken, had the µ of the column subtracted from the given point, and that sum was then

divided by the σ of the total column. If the σ of a given column was zero, this would have resulted

in division by zero for all points in the column and would have produced NaNs (not a number),

denoting infinities and numbers that could not be read for further analysis. This was done for all

columns of data in the matrices that were generated, and these new z-Transformed matrices were

exported as new pandas dataframes for future use. After the z-Transformation was completed,

the new data matrix was evaluated as a numpy SVD (Singular Value Decomposition) to generate

the singular values of the z-Transformed data of the original given matrix.

5.5 λ

One of the most crucial variables to RPCA is λ, the coupling constant between the low

dimension L and S matrices, where L and S sum together to create the original matrix used for

analysis [25]. The L matrix in this case is an SVD of the non-anomalous data, and the S matrix is

a sparse matrix that represents the data points from the original matrix that are found by RPCA

to be anomalous. λ is the variable that differentiates what is considered anomalous, what is not,

and controls what is allowed into the S matrix. If λ is small, more data points will be allowed to

move from the L matrix to the S matrix, and as λ increases fewer data points will be considered

anomalous. The theoretical value of λ is equal to the following:

[42]

λ= 1√
max[m,n]

where m and n represent the rows and columns of the original matrix. For this project, λ

was altered from the default value in an attempt to improve the capabilities of RPCA in finding

anomalous entries within network data. This was done by changing the numerator value of one

to a integer variable, and then changing the variable many times to see the differences between

the L and S matrices as lambda was changed. This was done on a chosen small slice of data from

the network data set and was analyzed as a 5000 by 30 matrix. This equation can be seen below,

where H is the integer variable in change λ:

[42]

λ= H√
max[m,n]
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Figure 5.4: imShow visualizations. These four plots depict sparse S (anomaly) matrices that
change as the value of λ increases. This shows how the coupling constant alters which data points
are classified as anomaly and which are normal. As λ is increased the sparse matrices lose entries
in their matrices, thus the plots appear to have less data [42].

By using the matplotlib [26] imShow function, the following plots were produced to provide

visuals of how the entries in S were changing as λ was altered. A few examples of the imShow

plots can be seen below, where it can be seen that fewer entries appear in the S Matrix imShow

plots as the value of λ is increased.

5.6 µ and ρ

Two other variables used in RPCA are mu µ and rho ρ, which are used in the augmented

Lagrangian parameter that are used for convergence testing. The theoretical µ and ρ are taken

from The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank

Matrices [41] and are used in conjunction with given epsilon ε values to act as the stopping

criterion to help determine whether the RPCA code is converging based on the matrix it was

given. The default µ and ρ are respectively:

[41]

µ= 1
||D||2

ρ = 1.2172+1.858ρs
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where, ρs = |Ω|
mn

Where ||D||2 represents the spectral norm (largest singular value) of the given matrix D,

and ρs acts as the sampling density between ρ and ρs. For this project, µ and ρ were altered

from their default value in an attempt to improve the capabilities of RPCA and improve the

convergence rate of given matrices being tested. Two time slices were chosen from the network

data of size 5000 by 30 and 50000 by 526 respectively after features generation. The tables below

show how the convergence rate of a given matrix was changed after µ and ρ were changed, using

the theoretical λ value for all tests run. As seen in Figure 5.5 and 5.6, the µ and ρ values of 0.05

and 1.05 respectively greatly improved the number of iterations needed for RPCA to meet it’s

given stopping criterion. These values were deemed to be an improvement over the theoretical

values [41] as a result.

Figure 5.5: Initial µ and ρ testing

Figure 5.6: µ and ρ testing after feature generation
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5.7 Implementing RPCA

After tests were done on the first subset of data, a larger subset of data was chosen to test on.

The second subset of data contained network logs from the DDoS attack, and after ignoring the

non-discrete columns of the matrix the size was 50000 by 526. This matrix was z-Transformed

and factorized as an SVD, and its singular values were calculated accordingly [25]. However,

this matrix was also run through RPCA, which produced different singular values due to the

matrix being projected to a lower dimensional space. The matrix was decomposed into the form

M = L+S , where L =UΣV T is factorized as an SVD and S represents the sparse anomaly matrix

of the given matrix M [25]. The plots of the original singular values, the RPCA singular values,

and the imshow plot of the sparse anomaly S matrix, which depicts what cells are regarded as

anomalous, are shown in Figures 5.7. 5.8, and 5.9.

Figure 5.7: Singular values of new time slice [19].
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Figure 5.8: Singular values of S matrix from RPCA [19]. This plot has a steep downward trend
which is due to the S matrix being sparse and therefore having few entries greater than 0. The
result of this is a matrix that has very few dominant singular values which influences the data
points in the anomaly matrix [25].
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Figure 5.9: S matrix imShow plot after RPCA. Visualize representation of anomaly S matrix.
The spareness of this results in few data points being represented in this plot [25].

After the manager, described in section 4.5 (Feature Infrastructure) was fully set up, mathe-

matical analysis tests became much easier to run for different feature sets and time slices from

the network data, as well as λ, µ, and ρ value tests for RPCA. This manager allowed editing

capabilities in the terminal using the nano command for parameters in RPCA, changing the

range of network log data to be analyzed, and streamlined the process for joining the results of

an anomalous S matrix with the ground truth of the network data. However, before the results

of these S matrices could be compared with the ground truth information, the entries of the S

matrix needed to be reverse z-Transformed to de-normalize the data back to the original relative

scales it entered with. This process was the reverse of the normalization method of the z-score in

Section 5.4 (z-Transform), where all columns of the S matrix underwent the following:

[4]

x = zσ+µ
where z is the z-Transformed value of each cell in the column, and σ and µ respectively repre-

sent the standard deviation and mean of the given column. Similar to the forward z-Transform
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performed earlier, if the σ of a column was 0, the column was skipped over in the reverse z-

Transform process since it would not have been normalized in the first place. The data in these

columns would be of the same relevant scale as it was when it entered the iterative process.

If the value of σ was not zero, the entries in that column went through the above process and

returned to their original relative scale to be compared with the ground truth network data. After

the reverse z-Transformation was completed for every column in the S matrix, the new reverse

anomaly matrix was joined with the ground truth network data for cross validation purposes.

5.8 λ Tests

Once preprocessing had been done to properly reverse z-Transform our S matrices and cross

validated them with the ground truth network data, tests were run on a select number of time

slices for the features that had been generated. For the time slices described above in chapter 2,

ten different λ values were tested, and the number of iterations to convergence was record for

each test run. For each test, the non reverse z-Transformed S matrix, the reverse z-Transformed

S matrix, and the joined S matrix were all exported as csv files. The table below depicts the

results of the tests run on these four time slices:

[42]

λ= H√
max[m,n]

H Time Slice 1 Time Slice 2 Time Slice 3 Time Slice 4

Lambda 1 1 1000+ 28 20 1000+

Lambda 2 1.2 1000+ 29 28 1000+

Lambda 3 1.4 108 29 34 1000+

Lambda 4 1.6 1000+ 26 83 1000+

Lambda 5 1.8 1000+ 24 49 1000+

Lambda 6 2 1000+ 25 37 1000+

Lambda 7 2.2 1000+ 26 352 1000+

Lambda 8 2.4 1000+ 27 183 1000+

Lambda 9 2.6 1000+ 26 89 1000+

Lambda 10 2.8 1000+ 25 38 1000+

Table 5.1: Initial λ Testing

As described in Section 4.1 (λ), λ acts as the coupling constant between returned the low

dimensional L matrix and sparse anomalous S matrix from RPCA, where the two matrices
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combine to create the original matrix M. In all of these tests, the default values for µ and ρ

from Lin-Chen-Ma [41] were used, as these tests attempted to examine the parameter λ and

its relation to anomaly detection. As the integer value H was increased, the value of λ did not

linearly impact the number of iterations required for convergence of RPCA, but the entries of S

changed between each λ tested.

5.9 Training Set

These 40 tests were done to experiment with viability of the manager for future tests with

different times slices. After the tests were completed, two additional sets of features were

generated as highlighted in chapter 6, and three time slices were chosen as the training set

of the network data. The feature sets are denoted originalFeatures, sipdipIndividualColumns,

and sipDipIn. Similar to the original 40 tests that were run, the default values for µ and ρ

from Lin-Chen-Ma [41] were used, as these tests attempted to examine the parameter λ and its

relation to anomaly detection. For each test, the non reverse z-Transformed S Matrix, the reverse

z-Transformed S Matrix, and the joined S Matrix were all exported as csv files, and the resulting

tables show the results of the 90 tests run [42]:

Original H Time Slice 1 Time Slice 2 Time Slice 3

Lambda 1 1 1000+ 1000+ 1000+

Lambda 2 1.2 1000+ 1000+ 1000+

Lambda 3 1.4 108 1000+ 1000+

Lambda 4 1.6 1000+ 1000+ 1000+

Lambda 5 1.8 1000+ 25 1000+

Lambda 6 2 1000+ 25 1000+

Lambda 7 2.2 1000+ 1000+ 1000+

Lambda 8 2.4 1000+ 36 228

Lambda 9 2.6 1000+ 47 1000+

Lambda 10 2.8 1000+ 53 133

Table 5.2: Lambda Testing with Original feature set

SipDipIndividual H Time Slice 1 Time Slice 2 Time Slice 3

Lambda 1 1 1000+ 1000+ 1000+

Lambda 2 1.2 1000+ 1000+ 1000+
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Lambda 3 1.4 188 1000+ 1000+

Lambda 4 1.6 1000+ 1000+ 1000+

Lambda 5 1.8 1000+ 1000+ 1000+

Lambda 6 2 1000+ 1000+ 1000+

Lambda 7 2.2 1000+ 33 1000+

Lambda 8 2.4 1000+ 1000+ 1000+

Lambda 9 2.6 1000+ 1000+ 1000+

Lambda 10 2.8 1000+ 1000+ 1000+

Table 5.3: Lambda Testing with AFC individual columns feature set

SipDipIn H Time Slice 1 Time Slice 2 Time Slice 3

Lambda 1 1 1000+ 1000+ 1000+

Lambda 2 1.2 1000+ 1000+ 1000+

Lambda 3 1.4 108 1000+ 1000+

Lambda 4 1.6 1000+ 1000+ 1000+

Lambda 5 1.8 1000+ 1000+ 1000+

Lambda 6 2 1000+ 1000+ 1000+

Lambda 7 2.2 1000+ 1000+ 1000+

Lambda 8 2.4 1000+ 1000+ 1000+

Lambda 9 2.6 1000+ 1000+ 1000+

Lambda 10 2.8 193 1000+ 1000+

Table 5.4: Lambda Testing with inside and outside feature set

For each joined S Matrix that was exported throughout this process that was compared with

ground truth network data for cross validation, confusion matrices were produced to compare the

True Positive, False Positive, True Negative, and False Negative results of our anomaly detection,

where positive and negative results represented anomalous and non-anomalous data respectively.

The results of these confusion matrices can be seen in chapter 6, where the increase in the value

of λ coincided with better anomaly detection results for finding True Negatives and eliminating

False Positives. In the next chapter, we focus on interpreting these results to help data analysts

prevent attacks.
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6
RESULTS

6.1 µ and ρ

As discussed in chapter 5 section 6 (µ and ρ), the default values for the RPCA parameters µ

and ρ, defined in Lin-Chen-Ma, were altered in this project in an attempt to improve the rate of

convergence for anomaly detection. The tables in chapter 5 show how RPCA fared when µ and

ρ were set to their default values, and as a means of comparing the default values with those

calculated in chapter 5 section 6, the same 90 tests were run on the same feature sets and time

slices described in chapter 5. The values of µ and ρ were set to 0.05 and 1.05, respectively, and

the results of the new µ and ρ values are shown in the tables below:

SipDipIndividual H Time Slice 1 Time Slice 2 Time Slice 3

Lambda 1 1 141+ 81+ 1000+

Lambda 2 1.2 1000+ 85 1000+

Lambda 3 1.4 143 150 1000+

Lambda 4 1.6 148+ 285 1000+

Lambda 5 1.8 1000+ 1000+ 1000+

Lambda 6 2 1000+ 1000+ 1000+

Lambda 7 2.2 304+ 329 1000+

Lambda 8 2.4 1000+ 1000+ 1000+

Lambda 9 2.6 1000+ 129 1000+

Lambda 10 2.8 1000+ 1000+ 1000+

Table 6.1: µ and ρ testing on AFC’s individual column IP address feature
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SipDipIn H Time Slice 1 Time Slice 2 Time Slice 3

Lambda 1 1 1000+ 77 1000+

Lambda 2 1.2 1000+ 1000+ 1000+

Lambda 3 1.4 1000+ 1000+ 1000+

Lambda 4 1.6 1000+ 1000+ 1000+

Lambda 5 1.8 1000+ 1000+ 1000+

Lambda 6 2 1000+ 1000+ 1000+

Lambda 7 2.2 1000+ 1000+ 1000+

Lambda 8 2.4 1000+ 1000+ 1000+

Lambda 9 2.6 1000+ 1000+ 1000+

Lambda 10 2.8 454 1000+ 1000+

Table 6.2: µ and ρ testing on inside and outside features

The changed µ and ρ values only slightly altered the number of iterations for the third

feature set (sipDipIn) for all ten λ values that were tested. However, for the second feature set

(sipdipIndividualColumns) there was noticeable improvement between the default µ and ρ values

from Lin-Chen-Ma and the ones tested in this project, particularly in the DDoS and rdp time

slices.

6.2 λ

The coupling constant ρ was prominent throughout this project, acting as the parameter that

allowed experimentation with different S matrices to improve the anomaly detection capabilities

of RPCA. As stated in chapter 5, the tests that were run on our three Feature Sets and three

Time Slices, using ten λ values per combination, produced 90 unique joined S matrices for us to

compare to the ground truth network data. Confusion matrices, as explained in chapter 5 section

9, were produced to determine the rate of success for detecting anomalies within the network

data, of which the best results can be seen below for each unique Time Slice.

6.3 Final Features

To help with the final selection of our features, we created a confusion matrix for each type of

attack and specific time time slice for each of our IP addresses choices. These confusion matrices

are produced using the S matrix from the output of RPCA. As explained in chapter 4, we chose to
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create a feature for every distinct port, similar to the first iteration of our IP address feature set.

An important note, is that after much deliberation, we realized that our destination port feature

that listed each port below 1024 was causing several false positives, and we decided to omit it

during the creation of these confusion matrices. Given more time we would have created more

iterations of different port feature set in order to avoid omitting the S values in the resulting

confusion matrices.

6.3.1 Detecting Denial of Service Attack

As explained in chapter 2, DDoS attacks occur when one machine attempts to disrupt services

through means of enormous amounts of calls to a network. The VAST dataset challenge outlines

this attack in the solution manual. The attack occurred on the first day of the dataset, April

13th, 2011 at 11:39:00 and ended at 12:51:00 that same day. The time slice chosen for this attack

was from 11:33:47 to 11:39:57, which accounted for roughly one minute of the attack. This slice

ensures that we have enough log data that is considered normal and enough data that is out of

the ordinary and can be malicious. As with the other attack results, we ran the time slice and

tested three different feature sets and produced confusion matrices for each run cycle. In order to

help us solidify our feature choices.

Original Features

True False
Positive 145 841
Negative 0 644

AFC Columns

True False
Positive 145 841
Negative 0 644

Inside and Outside Ranges

True False
Positive 145 226
Negative 615 644

Table 6.3: Confusion Matrices of Original Features for DDoS

From the tables above, we see that the first two feature sets functioned the same and returned

the same results. The reasoning for this is that this time slice is relatively small and as a result

of the nature of the two feature sets they created similar feature matrices. The first set has a

distinct column for each IP address and the second has a column for each feature in the AFC

network and two columns for any outside source or destination IP addresses. As stated before,

this time slice is small relative to the data set and may only include one IP address that is outside

of AFC’s network and as a result, would create a nearly identical feature matrix.

The third feature set, however yields different results. With this set there were the same

number of true positives but it also detects 615 true negatives. This eliminates several of the

false positives that the other two feature sets included. There are still however, the same number

of false negatives. This could be a result of the time slice being too small and not having enough

rows to accurately determine what is a true negative and what is a false negative. Regardless, we

see an increase in correct results with the third feature set. Therefore it is determined that the

third feature set is more accurate in detecting denial of service attacks.
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6.3.2 Detecting Socially Engineered Attack

A socially engineered attack occurs when humans curiosity are to enable malicious activity.

In the solutions manual, a socially engineered attack that results in an unauthorized remote

desktop protocol begins on April 14th, 2011 13:31. As stated in chapter 2, this attack comes from

a computer that is outside of AFC’s network and uses the common port 3389 in order to make the

unauthorized connection that can be used to harm AFC’s network. This port is among security

concern ports we examined since in the past several companies have been victimized by this

exploit. For a full table of ports examines in this feature and reasons why, refer to the ports

section in chapter 4. Similar to before, we chose another time slice to have a proof of concept that

our feature functions properly. Our time slice begins at April 14th, 2011 at 13:30:55 and ends at

13:32:00 a few minutes after. Again, below are the confusion matrices for our three main feature

sets.

Original Features

True False
Positive 2 5506
Negative 0 0

AFC Columns

True False
Positive 2 300
Negative 5206 0

Inside and Outside Ranges

True False
Positive 2 236
Negative 5270 0

Table 6.4: Confusion Matrices of AFC individual column Features

For detecting attacks that can happen among ports, our features were progressively more

accurate. In the first feature set we detect the attack; however, there are an unacceptable amount

of false positives. These false positives most likely are derived from the amount of IP addresses it

detected as anomalous. The second feature set had much more true negatives rather than false

positives. This feature set was much more accurate at determining what was an attack and what

was considered in the realm of normal in the slice. Finally, the last set was the most accurate

with finding attacks and reducing the amount of false positives. Again, the third feature set gives

us more reasoning for choosing it into our final feature library.

Although false positives are not as critical as false negatives, a good anomaly detection system

should reduce that amount of false positives wherever possible. Our third feature set does this,

and with this time slice it achieved a 95.7% success rate at determining anomalous behavior.

6.3.3 Detecting Undocumented Computer Attack

As mentioned in the previous sections, we ran three different set of features for detecting the

undocumented computer attack. The time slice chosen for this feature was from April 15th, 2011

14:05:00 to April 15th, 2011 14:08:00. The feature which detected the undocumented computer

relied on knowledge of the system architecture that the company outlined in the VAST dataset

description. This helped outline how critical it is to consider the security contracts a company

has in place while detecting attacks. Violation of these rules are an indication that something in

the system is off, or that an employee does not understand them clearly. In this particular time
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slice, there were two features that highlighted the undocumented computer attack within our

three features.

The Original and SIP and DIP individual columns features identified computers that breached

the security contract. However, the column that identified each unique IP address highlighted

every row in the S matrix as an anomaly. This signaled that this feature was the wrong data for

RPCA since every point was considered an outlier. The source IP and destination IP feature that

classified an IP address as inside or outside the contract significantly decreased the amount of

false negatives, while still being able to find the attack.

Original Features

True False
Positive 4 983
Negative 0 0

AFC Columns

True False
Positive 4 983
Negative 0 0

Inside and Outside Ranges

True False
Positive 4 2
Negative 981 0

Table 6.5: Confusion matrices of inside and outside Features

In summary, we believe that detecting an undocumented computer attack depends upon a

security contract that must be established by the company. Overly describing the network caused

issues because every IP address was unique enough to cause RPCA to evaluate them as an

anomaly. Even though it accurately describes the data, it had adverse consequences – similarly to

the effect of using a timestamp as a feature. This pattern shows promise towards future analysts

as learning the specific domain of their company can be used to generate features.

6.4 Case Study: Reducing Number of False Positives

One of the dilemmas regarding our security concert port, was the sheer number of false

positives that it could generate. How does an analyst distinguish between a port that can be

used for a daily function to when that port is being exploited? What can characterize an attack

differently than its proper use?

We investigated using AFC’s Network on top of the security concern port to capture the idea

that an exploited port would most likely come from outside the internal network. This helps

us distinguish workers using a port for a task, such as transferring files, to an external user

attempting to exploit it, such as steal information from the file system. With this in mind, we

only considered a port as concerning if either the destination or source port is not in the expected

network.

42



6.4. CASE STUDY: REDUCING NUMBER OF FALSE POSITIVES

SIP and DIP Ranges

True False
Positive 145 226
Negative 615 644

AFC and Port Join Feature

True False
Positive 145 155
Negative 686 644

Table 6.6: The table to the right shows a decrease in false positive due to considering ports that
are used commonly but can be used maliciously

As shown in the above tables, the number of false positives for this slice was reduced by 5%.

In a bigger time slice, this could significantly impact the number of concerns that the security

analyst needs to be aware of. This emphasizes that there is a need to have a structured security

contract that can be applied to customize features that will describe the system.
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PROTOTYPE TO EXPLORE AND EVALUATE ANOMALY DETECTION

Visualizing any domain in an easily understood way is a challenge in itself, additional dimen-

sions of data inherently makes this much more difficult. Fisseha Gidey and Charles Awono Onana

argue in their paper on computer visualization, High Dimensional Data Visualization: Advances

and Challenges that, “...the ever increasing dimensions of datasets, the physical limitations of

the display screen (2D/3D), and the relatively small capacity of our mind to process complex data

at a time pose a challenge in the process of visualization” [33].

There are various options for visualizing anomaly detection. The Nokia Group Research

Center models their anomaly detection system using a self-organizing map which functioned as

as a way to detect when a feature is acting abnormally while reducing the amount of data that

needs to be monitored [36]. Another example includes generalizing the anomaly detection system

as a time-series monitoring system. This allows an analyst to notice alarming data points in real

time and functions for all different types of domains [65]. Some visualizations include utilizing

machine learning techniques to classify and cluster anomalies in their visualizations [20].

In this MQP, we had the challenge of visualizing high dimensional data while perceiving and

detecting anomalies. For this reason, we found it best to experiment with several different visual-

ization technologies and techniques. Among the technologies used are d3 [15], and MatPlotLib’s

Singular Value Decomposition (SVD) graphs [26].

7.1 Requirements for Visualization

To develop our visualization, we chose requirements that would encompass a flexible system

to run different analyses on the dataset, compute different features dynamically, and validate

the different anomalies found in the VAST dataset challenge. Our requirements are as follows:
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1. Viewing the Regular Log Data

a) Upload the original firewall logs data with server-side pagination in order for an

analyst to observe what is happening in the system.
b) Allow the analyst themselves to use their own knowledge of networks to be able to

observe if any logs appear curious or out of the normal.

2. Allow Flexibility in Choosing Time Slices to Analyze and Run RPCA Dynamically

a) Allowing a user to select which time-slices to analyze by providing a way to select

which logs to examine given a specific date and time.
b) Computes features dynamically to allow for less memory storage being used and

incorporate the ability to compute new features if more data is added.

3. Ability to Observe Ground Truth

a) Since the answers for this particular challenge is available, the ability to cross-validate

the answers in the front-end will allow to receive live-feedback on both our feature

generation and the mathematical analysis being ran.
b) Ensure that your features tell a story within your modeling of data.

4. Ability to Quickly Detect Abnormal Behavior.

a) Alert a user if a log is anomalous, it is critical to include a way to warn the user that

something requires their immediate attention.
b) This feature will also reduce the amount of analysis an analyst needs to do, as they can

focus their primary attention to those values that we highlight as potential threats.

5. Exploring More Information About RPCA Values

a) Provide the full-picture of the mathematical analysis by providing a way to recover

more detailed information on the results from RPCA.
b) It is imperative to balance showing enough information for an analyst to comfortably

observe data and allowing further exploration without it becoming overwhelming.

Finalizing these requirements lead us to think critically about the different visualization

tools available to create this product. In our implementation section, we consider the different

aspects of libraries, user interactivity, and how to frame our web application in an effective and

user-friendly manner.

7.2 Overview of Web Application and Implementation

Our visualization system is comprised of a simple interface where users can choose a time

slice of the VAST dataset to run anomaly detection. The firewall logs are displayed for a user to

examine any raw logs before choosing a slice. Following the selection, the application displays an
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anomaly matrix visualization, and a tSNE component which depicts our features with and without

RPCA. In this section, we focus on the primary function of the web application – dynamically

running features on time-slices and the anomaly matrix visualization and its implementation.

7.2.1 Web Application Components

1. Home Page

Figure 7.1: Home page that display original raw logs.

Upon entering the web application, a user will see the raw firewall logs in the VAST dataset.

We used a React data mapping to display the firewall logs on the home page through server

side pagination. A user can start our anomaly detection system here after pciking a time

slice.
2. Anomaly Matrix Table

Figure 7.2: Anomaly matrix table produced by RPCA.
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After a user has ran our anomaly detection system on a specified time slice, the anomaly

matrix will be displayed. The matrix has is comprised of S values from RPCA. By hovering

over cells a tool tip with M and M - S values will appear. Along with RPCA relevant values

are the raw firewall log information. In doing so, if a row is determined to be anomalous an

analyst can quickly see information regarding that entry.

3. tSNE Exploration

Figure 7.3: tSNE visualizations. Left is tSNE ran on our feature set. Right is tSNE ran on the S
matrix produced by RPCA.

By navigating to the tSNE tab, a user can run our tSNE visualization. To the left is tSNE

ran on our feature matrix and to the right is tSNE ran with the RPCA anomaly matrix. Our

results with tSNE are preliminary and we explain how tSNE can be leveraged in chapter 8.

7.2.2 Choosing a Visualization Library

The first step on creating a visualization system was examining how much customization

was needed to create the different perspectives we wanted to highlight in our web application.

Although several libraries exist to create graphs, such as c3 [62], recharts [71], nvd3 [61], etc,

they tend to limit the flexibility of creating unique and specific purpose visualizations. Our final

decision rested tbetween d3 and Recharts due to their ability to create compelling results. Table

7.1 depicts our final analysis on these libraries.

We concluded that d3 would fit our application the best since d3 is a flexible and powerful

visualization system. Although it does have a steep learning curve, there are several examples

that we could follow along and it has a big online community available to ask questions. In

addition, its flexibility makes it easy to adapt its visualizations if the set of features change. For

47
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d3 Recharts
Pros Cons Pros Cons

• Customization

• Large commu-
nity and several
resources

• Interactive compo-
nents

• Steep learning
curve

• Renders Quickly
and Smoothly

• Fairly extensible
library

• Responsive

• Intuitive

• Depends on Re-
act.js

• Limited examples
available

Table 7.1: Pros and cons of d3 and Recharts [7], [71]. These were the last two libraries that we
were evaluating for our visualization system.

our application, we created a table using d3 and color coded it based on the values in the S-Matrix

produced by rPCA. We highlighted anomalies in red, and allowed user analysts to explore the M

and M-S values by using a tooltip to avoid the cluttering of data.

7.2.3 Web Framework

With the creation of each visualization it was important to consider the presentation of the

graphs, or techniques. We designed a React application, using Flask as the backend framework.

Flask’s microframework nature allowed us to quickly set up the skeleton of our application while

focusing more on the front end aspects of the React app.

In order to create an easy to use and intuitive application we start the web application loading

the original user logs with server-side pagination. After visualizing the log activity, in order by

date, the user can select a date range that includes the date, hour, minutes and even seconds in

which they want to run the feature analysis. In a real world system, one could imagine current

log activity display in a similar fashion. After a user examines the data set and have chosen a

time slice for feature analysis, the Flask backend sets in motion a series of backend API calls to

our manager. Our web app takes advantage of quick mySQL queries and creates a table called

working set which includes the specific log files selected by the user. The working set table is

redefined whenever a user chooses a time slice. Then, we create features based on that slice, and

finally, we ran RPCA to create an anomaly csv that depicts the features and the original data.

The csv is hosted and read with d3. As mentioned in the previous section, we display a table with

the anomaly csv information and highlight those anomalies that have an S value greater than

one with different shades of red to indicate how severe we think it is and include interactive

tooltips for the M and M-S matrix.
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Figure 7.4: Depicts the tooltip for M and M-S Values. M is the original values and M-S is the
predicted value of the cell examined.

7.2.4 Data for Table

As outlined in chapter 4, we had upwards of 100 columns in our features. A table that

contains that much information would completely overwhelm the user as they would have to

scroll horizontally to be able to see them, and would never be able to get the full scope of each row.

Therefore, we decided to consolidate the destination and source ip/port features into one column

to reduce the amount of columns. To do this, we paired up each row’s actual port or address to the

feature that was provided in RPCA. In other words, we took the maximum value in the S matrix

corresponding to each row and feature pair and displayed it to the user. This made a significant

impact in the number of columns as it reduced it to around 30.

In addition, we wanted to display the original data (M) and the predicted value (M-S matrix)

so the analyst could explore the original data and compare RPCA’s prediction to what the actual

values were. At first, we played with idea of displaying them in the same table cell if S was greater

than a certain threshold that signaled an anomaly. However, that made each cell inconsistent

and it seemed to display more information that was necessary. We created a tooltip for each cell

in the row that was related to an S matrix. This would allow an analyst to decide which values

he or she is curious about and selectively view the M and M-S values as depicted in Figure 7.4.

Finally, we created a color scale to highlight S matrix values according to the level of severity.

Currently, the scale darkens as the number gets bigger towards a dark red. We picked red since

it unequivocally has a sense of urgency attached to it. We used ColorBrewer [16] to find other

colors that would meld nicely with the red. Figure 7.5, is the table with its full ranges, with light

yellow representing a neutral value.

7.3 Case Studies

In order to explain how our system would work if an analyst used it. We created case studies

of how the work flow of the application functions and highlight the different attacks that our

anomaly detection system was able to find. This section illustrates the specific steps a system

analyst can do to find potential anomalies and how it is currently cross validated.
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Figure 7.5: Color scale that portrays warnings, here the larger the S value, the darker the
background color.

7.3.1 System Analyst Explores Web Framework to Detect Remote Desktop
Protocol

1. Viewing Log Data

Figure 7.6: Viewing VAST firewall log data in our web application

The process of analyzing data would begin with our home screen depicting the firewall logs.

In a real time environment this could update as different firewall logs come in.
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2. Using Date Selector

Figure 7.7: Date Selectors in application. Here you would choose dates to run RPCA on a specified
time slice.

After the user decides which data to run feature analysis on, they select a date, hour,

minutes, and seconds in which to generate the features. To view the Remote Desktop

Protocol attack, the selected time would be April 14th 13:30:45, and April 14th 13:32:10.

3. Observing the Anomaly Matrix

Figure 7.8: Visualization of RPCA anomaly matrix in web application.

We used our visualization system in order to cross validate attacks with the ground truth

data. As mentioned in chapter 2, the remote desktop protocol attack was socially engineered

from an external IP address of AFC’s network. In Figure ?? we examined a subset of data

with both anomalous and normal data.

4. Exploring M and M-S Values

Figure 7.9: Example of how M and M-S values are depicted.

If an analyst is further interested in the M and M - S values it is easily accessible by

hovering over the S values. This will display a tooltip that shows both values and could be
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examined further. Although in this MQP we did not explore these values, it could expand

the anomaly detection process.

The features that captured this attack were the security concern port and the source and

destination outside features. Our cross validation was simple because the solution manual pro-

vided all anomalous data. However, one could imagine a network analyst using our visualization

system, noticing the red scale color warning, and making an informed observation of this attack.

7.3.2 System Analyst Explores Web Framework to Detect UDC

Another example of using our visualization system to detect attack is the undocumented

computer attack. As mentioned in chapter 2, the attack stemmed from suspicious activity from a

computer outside of AFC’s network. To generate this result, the start and end time entered were

April 15th 14:05:52 and April 15th 14:06:53, respectively. The feature that flagged the attack

here is the destination outside network feature. Again, we used the ground truth data to cross

validate this attack, but in a real world system the red color scale warning would notify a system

analyst to further examine the log and make an informed observation.

Figure 7.10: Undocumented computer attack shown in anomaly matrix. Here we cross validated
that our features found this attack by referencing the ground truth.

7.4 High Dimensional Visualization with tSNE

Beyond validation, we went further and explored the use of an algorithm that could handle

high-dimensional data. In particular, we decided to explore the use of tSNE [44], an award

winning technique to visualize these types of data sets.

In Figure 7.11, tSNE is ran on two different sets of data. The left most visualization incor-

porates the final features created in our back-end as outlined in chapter 4, while the rightmost

shows the S values for the same feature set to compare the clustering results. This allows further

analysis into the possibilities of using tSNE or other high visualization algorithms combined with

RPCA to find anomalies promptly. An interesting result to note was that in the tSNE visualization

without RPCA, we observe that the ground-truth anomalies (in purple) are very distinctly in

two different clusters – yet in the visualization with RPCA, the anomalies (pictured in red) are

considered less different. This highlights the impact tSNE and RPCA could have in an anomaly

detection process. It is important to note that in order to confirm that the anomalies are in the
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Figure 7.11: tSNE visualization using our features. To the left is the visualization with our
features and to the right is post-RPCA

clusters mentioned above, it would require a clustering algorithm such as K-means [49], which is

highlighted in our recommendations.

Figure 7.12: Flowchart of tSNE result creation. One of our goals in closing the loop in an anomaly
detection system and running tSNE dynamically is another example of this.

Detailed in Figure 7.12 is the process that an analyst would follow to recreate the example in

Figure 7.11. To continue providing exploratory grounds for the analyst, the tSNE visualization

is ran in the user-defined time-slice. The workflow of an analyst would include observing which

data-points or clusters are distinguishable from regular data and further investigate in the S

matrix values table if those data points show a concerning value. This would provide a way to

further close the loop of anomaly detection.
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8
FUTURE WORK/RECOMMENDATIONS

8.1 Limitations

Our project had several, important to note limitations. In our case, we were examining a

limited 4-day dataset. In one hand, it contained a significant amount of data (12 million rows)

because of the DDoS. Nevertheless, in a real-world system that tracked cyber security logs, this

would steadily increase and would create difficulties in both memory and performance. If a project

in the future continued using time-slices to calculate features, it would be feasible to manage

more data. However, analyzing it would take a more scalable system.

Due to the time-constraints in the length of the project, there are certain characteristics of

the current project that could not be generalized. For example, when we run our RPCA code, we

provide every row in our feature generation, which includes some data that must be ignored. We

currently ignore it explicitly in our code, but in the future a solution that can provide analysis

and be able to identify which columns are anomalies without having to hard code those columns

would be extremely valuable.

Currently, the code that has been written for our application is both in Python 2.7 and 3.6.

We have a script that depends upon certain environments existing (as detailed in our readme)

[59], which switches between Python versions. In an ideal world, both of these applications would

be written in the same version of Python.

8.2 Build Application on one Python Version

Throughout this project we continued feature engineering work that was written in Python

2.7. Given time, we would try to port our code base to exclusively using Python 3. Although, there

is no limit to the documentation of Python 2 code, it would be better for efficiency and flexibility
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to build the anomaly detection system exclusively in Python 3 [54]. This would eliminate the

necessity of having two virtual environments and using a bash script to change Python versions

in the middle of a run cycle. If a team were to continue our work, a first step would be to ensure

that the code repository is translated into Python 3 or start from scratch in Python 3 and use our

code and paper as a starting point. Python 3 should be used for the infrastructure of this MQP

considering that most Python 2 code is now legacy code.

If the next team would like to use our code and not rewrite the entire repository it could be

worthwhile to translate the code with Python’s Futurize library, as stated in chapter 5.

8.3 Explore clustering with tSNE to visualize features

We created a tSNE visualization using d3 to explore how reducing the dimensionality of our

feature set would translate in our anomaly detection system and its usability to further explore

the concerns. In an interview with David Beach [12], we discussed the meaning of Figure 7.11 and

the possibilities of using tSNE for this project. In tSNE, it is critical to understand the feature

space, since it focuses on clusters and distances become meaningless. In Beach’s work, he used

the firewall logs to detect connections between machines and calculate the probability that a node

will communicate with another. With his work, he was able to visualize the different instances

in which attacks were occurring in the dataset. To be able to use these features, think in terms

of the manifold, and define what it means for two points to be close to each other could help

increase the analysis of a dataset to help prevent attacks [12]. An interesting angle to explore

would be to classify the clusters using an algorithm such as k-means [49]. This would allow color

coding on the front-end and exploring different parameters in tSNE to observe the different

results and highlight clusters that might be anomalous. Finally, it would be interesting to add

more interactivity so that an analyst can decide which tSNE parameters they would like to run

themselves and analyze the outliers more carefully.

8.4 Data Smoothing

One could imagine some form of data smoothing being applied to the dataset to reduce noisy

information and allowing outliers to become more apparent. Data smoothing has not been applied

in this project, but from a mathematical perspective, it would be interesting to see how smoothing

would affect the anomaly detection system for this dataset. In financial investment software

smoothing has been used to explain the behavior of stocks and determine patterns in the market

[39].

55



CHAPTER 8. FUTURE WORK/RECOMMENDATIONS

8.5 Rule Generation Interface

In this report, we have outlined several feature sets to detect attacks in the VAST dataset.

These feature sets could be modified and made into rules that could be toggled. In the future,

it would be interesting to apply rule generation for this dataset challenge, and extend the

generalization solution we have proposed. A network administrator could use rules with a

firewall log file to detect certain instances of possibly malicious behavior. There can be a system

where a set of rules exist for a data set. These rules could then be generated in a web platform

by a user depending on what they are interested in. For example, a network administrator may

be interested in detecting IP addresses from untrusted clients. In this instance, they may only

want to apply a rule set that corresponds to that case. The problem with this is an increasing

amount of rule sets that would require constant updating. However through a learning algorithm,

there could be an anomaly detection system that generates rules for a set. Such an algorithm

is explored in Learning Rules for Anomaly Detection of Hostile Network Traffic by Matthew V.

Mahoney and Philip K. Chan [45].
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CONCLUSION

Anomaly detection is devised of several components that make it complex and hard to

standardize. Engineering features that can be applied in various situations and ensuring that a

data analyst can generate features on demand is a stepping stone towards facilitating the process.

In this Major Qualifying Project, we used feature engineering and Robust Principal Component

Analysis to detect anomalous behavior in the 2011 VAST dataset challenge. Throughout this

project we were able to detect multiple attacks in the dataset including: denial of service, socially

engineered remote desktop infiltration, and undocumented computers appearing in a company’s

network. Through our web application, we connected the loop between a system analyst and

mathematician. A user can quickly query the dataset and choose exactly which times they would

like to examine and run features on. From here, it is simple to see which rows can be out of

the normal trend. Through several iterations of the feature engineering process we found a

feature library that RPCA agreed with and is also generalized. Without much effort we could

ingest another company’s network architecture, mainly IP address and ports information and

find behavior out of the realm of that network.
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