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A comprehensive analysis of a novel detection scheme for SISO wireless transmis-

sion scenarios is presented in this dissertation. The scheme, which is based on

Belief-Propagation (BP) detectors, is evaluated in both a computer simulation en-

vironment and a custom-built software-defined radio test-bed. In this dissertation,

we address the design aspects of BP-based receivers, including several approaches

to minimize the bit error rate of MAP detectors. We also present the develop-

ment of an interface framework for a software defined radio platform that aims to

implement complex communication transceivers capable of prototyping the hybrid

structure with a pre-filter filter and BP detector.

Numerical simulations compared the proposed schemes with an existing ap-

proaches and showed significant performance gains without requiring great com-

putational cost at the receiver. Furthermore, experiments using GNU Radio Com-

panion and the FMCOMMS software defined radio hardware platform confirm the

correct functionality of the proposed interface, and stress tests are conducted to

assess the functionality of the interface and how it deteriorates across a range of op-

erating conditions. Finally, we present several experiments using the FMCOMMS

software defined radio platform that implement the proposed BP-based receiver

scheme and discuss its capabilities and limitations.
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Chapter 1

Introduction

The pursuit of instantaneous unlimited access to information has fueled research

into designing communication systems capable of achieving high data rate trans-

missions, great mobility and good spectral efficiency. At present, the advancement

of wireless networks is partly focused on increasing data rates in order to guarantee

the required quality of service (QoS) for activities such as real-time video stream-

ing and online gaming [6, 7]. The challenge of transmitting reliable and high-rate

data over a wireless channel is significant, since a practical communication sys-

tem has to compensate for phenomena that may prevent the correct detection of

transmitted information [8, 9].

A significant amount of wireless communications research is focused on the de-

velopment of optimal algorithms for mitigating phenomena that hinder wireless

communications. However, many of these algorithms rely on theoretical assump-

tions concerning the properties of the transmitted data or implementations that do

not necessarily translate to a real-world system. It is therefore of great importance

to be able to combine theoretical development with practical experimentation. The

ability to design and test novel theoretical schemes using practical hardware facili-

tates wireless communications research. Thus, the development of test platforms is

important for the study of theoretical schemes applied to wireless communications

systems.

1
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1.1 Motivation

The evolution of mobile communications shows the increasing importance of data

transmission in the requirements of the services provided to the users. Figure 1

illustrates achievable data rates provided by recent cellular technologies as well

as the increasing data rates requirements. According to Qualcomm [10], in 2017

two-thirds of mobile traffic is going to be related to video content. This will require

higher data rates in order to satisfy the quality of service requirements for such

applications.

Figure 1.1: The evolution of data requirements in cellular networks. Adapted

from [1]

As already mentioned, transmitting wireless information reliably is challeng-



3

ing due to the phenomena that interfere with the transmission and hinder correct

reception. The phenomena that prevent the correct detection of transmitted infor-

mation are refereed to as impairments. Three major types impairments are path

loss, shadowing and inter-symbol interference (ISI) [8]. Path loss occurs due to

the dissipation of a portion of the power of the signal when it is traveling through

space, while shadowing is a form of power attenuation that occurs from objects

that block the signal between the transmitter and the receiver. These two prob-

lems can be mitigated using power control [8] and intelligent cell-planning [11]. ISI

is a phenomenon in which one symbol interferes with subsequent symbols, making

the receiver unable to identify which symbol was transmitted. However, ISI is

an intricate problem to solve and a large body of research has investigated differ-

ent methods to overcome this impairment. Moreover, solving the ISI problem is

of great importance to enable the higher data rates required by modern mobile

communications.

The ISI phenomenon constitutes a significant challenge for wireless systems

that aim at exchanging information at very high data rates. It is usually caused

by multipath fading or the transmission of a signal through bandlimited channels.

Multipath fading is caused by the multiple reflections that may occur in the sig-

nal path between the transmitter and receiver [8]. Bandlimited channels have a

variable frequency profile which may distort the transmission of information and

prevent the receiver of recognizing what was transmitted.

As shown in Figure 1.2, trees, buildings, and the ground can serve as reflectors.

The reflected components superpose constructively and destructively at the re-

ceiver will yield a collection of copies of the signal arriving with different strengths
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and at different time instants. As the objects between the transmitter and re-

ceiver may also change location, the profile of signal copies can change with time.

Additionally, due to different propagation times, the differences in arrival time of

the responses from the longest and shortest path (related to as delay spread [12]),

may take over multiple symbol durations. When the delay spread of the wireless

channel is longer than the duration of the symbol being transmitted, the signal

suffers from inter-symbol interference. This impairment is considerable in systems

with a very high data rate, where as the rate of transmission increases, the time

duration of the symbol decreases and the ISI phenomenon becomes more severe.

Consequently, the frequency response of a channel with ISI present within the sig-

nal passband varies significantly. In this situation, the received signal suffers from

frequency selective fading, and the wireless channel can be modeled as a finite

impulse response (FIR) filter in discrete time, in which each coefficient is modeled

as a random variable [12].

To transmit over a bandlimited channel, it is necessary to shape the digital

signal with an analog pulse using a bandwidth that is limited to that of the channel

in order to not loose frequency components that are cutoff by the channel. This

process is referred to as pulse shaping [13]. If the analog pulse width is larger

than the symbol period, the adjacent symbols might overlap causing the ISI effect.

To mitigate the ISI phenomenon on bandlimited channels, pulse shaping must be

implemented with Nyquist pulses [12] that contain only values from the desired

input symbol at the sampling instants, and no interference from other symbols.

The issue of compensating for ISI has been studied extensively over the past

five decades, and a wide range of strategies are available for use by communication
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Figure 1.2: Intersymbol interference phenomenon forming the channel delay profile

system designers [14]. The seminal paper that discusses the signaling of trans-

missions over bandlimited channels was written by Nyquist [15]. Other papers

discussed the mitigation of ISI, using pulse shaping [16] and joint transmitter and

receiver designs for pulse amplitude modulation [17, 18]. For multipath channels,

linear equalizers were proposed in [19,20] and [21] to combat the resulting ISI, and

a decision-feedback structure was proposed in [22]. Even though these techniques

are not computationally complex, the achieved ISI compensation is sub-optimal

and limited.

Finally, the maximum a posteriori (MAP) [23] and maximum-likelihood (ML)

sequence estimator [24] can be employed to mitigate ISI with optimal performance.

However, one problem with these optimal approaches lies in their complexity:
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they are exponentially complex in the number of channel coefficients and thus

cannot be used to combat ISI in channels with a long delay spread, i.e. a large

number of channel coefficients. Examples of environments that produce channels

with long delay spread include underwater acoustic communication and terrestrial

communication over hilly terrain.

1.2 Problem Statement

In 2005, a MAP detector employing Belief-Propagation (BP) was proposed in [25]

for ISI compensation in sparse channels, which are mainly characterized as having

only a small fraction of nonzero coefficients. The proposed scheme is attractive

because it permits near-optimal performance with complexity that depends only on

the number of nonzero coefficients. A hybrid version of this detector was proposed

in [26], and it uses a linear pre-filter in the receiver just before the BP-based MAP

detector. In this thesis, the prefilter that precedes the BP detector is referred

to as a sparsening filter. Furthermore, in [27] a low-complexity high-throughput

architecture of this hybrid structure was presented using a digital signal processor

(DSP) and a field-programmable gate array (FPGA).

The idea presented in [26] is very interesting, since by designing the prefilter

such that the combined response of the sparse channel and prefilter has a reduced,

limited number of nonzero coefficients, the complexity of the receiver can be con-

trolled. However, in this work relatively little attention is paid to the interaction

of the sparsening filter and the BP-based detector and only a simplistic method

for designing the sparsening filter is provided. For example, the sparsening filter
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is arbitrarily designed such that the channel coefficients, or taps, of the combined

response of the sparse channel and sparsening filter coincide with the dominant

taps in the original channel. Also, most analyzes performed for BP-based struc-

tures has been provided in light of numerical simulations and only a few hardware

implementations have been attempted [27,28].

Given the level of reconfigurability required by the prefilter design, coupled with

the inherent complexity of the belief propagation algorithms, a software-defined ra-

dio (SDR) solution presents itself as a reasonable candidate for rapid testing and

prototyping. Several software defined radio (SDR) architectures have been devel-

oped and are commercially available in order to enhance the prototyping phase of

new wireless technologies as well as advance the current state-of-the-art in wireless

and networking communications systems. While there exists several well-known

SDR platforms that are commercially available [2, 29–34], many of these systems

are designed primarily for conducting fundamental research and experimentation,

and not for development of actual commercial products and prototypes. In this

sense, the existence of SDR prototyping platforms and their accompanying soft-

ware interfaces is the key for enabling continued advances in the wireless sector. In

addition, it is of utmost importance better understand both the capabilities and

limitations of SDR technology when used in real-life communications systems.

1.3 Proposed Solutions

In this thesis, we propose several novel design approaches for implementing belief

propagation (BP)-based detectors. The main idea is to design a prefilter so that
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the combined response of the sparse channel and prefilter has a reduced, limited

number of nonzero coefficients, thus controlling the complexity of the receiver. In

this work, the prefilter that precedes the BP detector has been termed a sparsening

filter. We present two different techniques for the design of sparsening filters. The

first one relies on a linear structure for the sparsening filter and uses a new metric

also proposed in this work to design it. The second technique proposes a decision

feedback structure as a sparsening filter.

Once these theoretical designs and numerical simulations have been explored,

the next step is to conduct hardware experiments in a real-world environment.

Thus, one of the contributions of this work includes the development of a custom-

built interface framework for a software defined radio platform that aims to provide

a design and testing environment for complex communication transceivers capable

of prototyping receivers such as the hybrid structure with a sparsening filter and

BP detector.

1.4 Contributions

The main contributions of this dissertation are as follows.

• Linear Sparsening Filter Design:

We propose a filter design metric called the Sparse Shortening SNR, and

showed that maximizing this quantity serves as a good proxy for minimizing

BER. We also develop a greedy algorithm for tap selection, which provides

near-optimal performance with reduced complexity. Finally, we take into
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consideration the issue of noise coloration introduced by the sparsening filter

to design the desired prefilter.

• Decision-Feedback Sparsening Filter Design:

We propose a filter design metric based on classical DFE design, which im-

proved in both performance and complexity when compared with the Linear

Sparsening Filter Design. Once again the interaction of the sparsening fil-

ter and BP detector is considered in the filter design generating better error

performance.

• Interface Architecture for Software Defined Radio Systems:

We present an interface architecture that enables software connectivity and

support for the FMCOMMS boards, a family of RF front-ends developed

by Analog Devices (ADI), and GNU Radio, a software environment for the

design systems that involve digital signal processing. We also provide experi-

ments using GNU Radio Companion and the FMCOMMS hardware platform

that attest the correct functionality of the proposed interface. Finally, we

characterize the proposed interface in terms of supported sampling frequency

and data throughput.

• Sparsening Filter experimentation in a SDR platform:

We provide different experimentation environments and results for the im-

plementation of the designed BP-based receptors in the FMCOMMS SDR

platform.
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1.5 Dissertation Organization

This dissertation is organized as follows.

Chapter 2 presents a literature survey and tutorial of several topics covered in

this dissertation with the purpose of contextualize the subsequent Chapters and

their focus of discussion. The chapters explains the different types of impairments

that hinder wireless communications transmissions, with focus on inter-symbol in-

terference (ISI). It also discuss several ISI mitigation schemes already existent in

the literature. Finally, a tutorial on software defined radio is provided contextual-

izing the usage of the technology over the years and its importance on experiments

design and prototyping.

Chapter 3 focuses on the design of linear sparsening prefilters for use with soft-

input soft-output MAP detectors of the form considered in [25,26]. While [25, 26]

primarily focused on the case where the original channel is sparse, it is noted

that even nonsparse channels can be sparsened with a simple linear, finite impulse

response (FIR) filter. Consequently, this work can be applied in general situations,

even where the original channel is not sparse. The issue of sparsening filter design

is addressed with the goal of minimizing a metric designed to be a proxy for

the detector bit error rate BER. The interaction of the sparsening filter and BP

detector has been considered to develop a practically-implementable sparsening

filter design method.

Chapter 4 focuses on the design of decision feedback sparsening filters for use

with soft-input soft-output MAP detectors of the form considered in [25, 26]. In

particular, the hybrid structure proposed by [26] is extended so that the linear
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sparsening filter which performs partial equalization is replaced by a non-linear

decision feedback sparsening filter.

Chapter 5 details the development of an interface framework between an radio

platform and the GNU Radio SDR development environment in order to enable

software support for the FMCOMMS family of RF front ends. This work ex-

pands the initial prototype interface framework started at ADI by enhancing the

functionality of the work in order to facilitate seamless connection between a FM-

COMMS SDR platform and GNU Radio. In addition to discussing the hardware

platform and the proposed software interface framework, we provide experiments

that attest the correct functionality of the SDR platform and that test the interface

performance limits.

Finally, Chapter 6 includes the description of the experiments using the FM-

COMMS SDR platforms on the implementation of the proposed linear and decision-

feedback sparsening filters, presented in Chapters 3 and 4.

In Chapter 7, the research achievements of this work are summarized and topics

for future work are presented.



Chapter 2

Inter-Symbol Interference Mitigation

and Software Defined Radio Technology

In this chapter, we present a literature survey and tutorial of several topics covered

in this dissertation. In the first section, we discuss the wireless transmissions

impairments and the different techniques used in the literature for inter-symbol

interference (ISI) compensation; these concepts are important and aid in the better

understanding of Chapters 3 and 4 of this thesis. In addition, we provide a tutorial

on software defined radio technology to complement the Chapters on software

interface implementation and experimentation.

2.1 Wireless Transmission: Impairments and Mitigation

As already mentioned in Section 1.1, transmitting reliable and high-rate data over a

wireless channel is challenging due to physical phenomena that make the reception

and recognition of the transmitted information a difficult task. In this sense, one

of the chief impairments faced by modern, high data-rate communication receivers

is called inter-symbol interference (ISI) [11].

In order to be able to correctly detect the symbols that were transmitted, it

is necessary to compensate for the ISI introduced by the channel. The role of

equalization in a digital transmission is to mitigate the inter-symbol interference

phenomenon by attempting to undo the scattering provided by the wireless channel

12
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Figure 2.1: High level digital transmission schematic with the equalizer filter.

to the received symbols [35]. By doing so, the recovery of transmitted symbols

becomes feasible and the receiver is able to detected and recognized the symbols

correctly. Figure 2.1 shows a high-level digital transmission schematic with the

equalizer filter.

The issue of compensating for ISI has been studied at length over the past five

decades, and a wide range of strategies are available for use by communication sys-

tem designers. In the following, we present several techniques for ISI compensation

and discuss their properties.

2.1.1 Optimal ISI Mitigation

Given that the ISI channel can be modeled as a FIR filter, it can also be modeled

as a finite-state machine, which can be represented by a trellis structure. In this

case, the sequence of symbols can be represented by a path through the trellis and

the problem of correctly deciding the symbol that was transmitted reduces to the

finding the correct path in this trellis. Maximum a posteriori (MAP) or maximum-

likelihood (ML) sequence estimators are algorithms that provide optimal detection

performance and are discussed next.

The maximum likelihood sequence estimation (MLSE) algorithm finds the most
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likely sequence corresponding to the received symbols [12]. In other words, the

algorithm searches through the trellis that is equivalent to the ISI channel and

finds the most probable path though the trellis. To calculate the likelihood of

a determined path, the MLSE calculates the distance between the sequences; if

the demodulator performs hard decisions, the Hamming distance metric is used,

but if the demodulator performs soft decisions, the Euclidean distance metric is

implemented.

The Viterbi algorithm [36] was developed by Andrew J. Viterbi and was origi-

nally designed to decode information coded using convolutional codes, but it was

Forney [37] and Omura [38] that proposed the use of the Viterbi algorithm as the

optimal maximum-likelihood sequence estimator for ISI mitigation. The Viterbi

algorithm is a sequential trellis algorithm that reduces the number of sequences

tested in the trellis, by eliminating sequences at each stage of the trellis. For exam-

ple, if the ISI channel has a length of L+ 1 symbols and the information symbols

are M -ary, the channel is described by an ML-state trellis. We begin with L sam-

ples, and compute ML+1 metrics and ML+1 which are divided in ML groups. In

each group, one sequence is selected (the sequence with the largest probability)

and M − 1 are discarded, generating ML surviving sequences and their metrics.

As it can be noticed, the number of computations required by each stage of the

algorithm grows exponentially with the length of the ISI channel L, limiting the

usage of the Viterbi algorithm for small L.

The BCJR algorithm [39], named after its inventors (Bahl, Cocke, Jelinek, and

Raviv), was also originally developed for convolutional codes. It uses a symbol-by-

symbol maximum a posteriori (MAP) decoding algorithm to decode each input
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symbol instead of searching for the most likely sequence as the MLSE estimators.

In this sense, the BCJR finds the most likely individual bits or symbols in addition

to values for the a posteriori probability P (x|y), where x is the desired bit or

symbol and y is the received sequence. This probability determines the level

of certainty regarding the estimation of the bit or symbol x and are called soft

outputs; for this reason, the BCJR is also called a soft-input soft-output (SISO)

decoder. As the Viterbi decoder, the BCJR algorithm’s complexity also increases

exponentially with the length of the ISI channel [12].

Belief Propagation Detector

The belief propagation (BP) algorithm is also in the class of message passing

algorithms, and is sometimes called the sum-product algorithm [25]. It can be

used as the Viterbi and BCJR algorithm as symbol detector, compensating for

ISI and allowing for correct reception of transmitted information. By representing

the ISI channel as a factor graph, we can use the BP algorithm to implement

MAP detection by estimating the sequence of symbols that maximizes the joint a

posteriori probability mass function. In Figure 2.2, we have an example in which

the channel h = [1 0 −1] is represented as a factor graph. The graph consists of

bit nodes, which represent the channel inputs (x[�]), and check nodes that represent

the channel outputs (y[�]). In this example, the output symbols can be written as:

y[0] = −1 ∗ x[0] = −x[0]

y[1] = −1 ∗ x[1] + 0 ∗ x[0] = −x[1]

y[2] = 1 ∗ x[2] + 0 ∗ x[1] +−1 ∗ x[0] = x[2]− x[0] (2.1)
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y[3] = 1 ∗ x[3] + 0 ∗ x[2] +−1 ∗ x[1] = x[3]− x[1]

y[4] = 1 ∗ x[4] + 0 ∗ x[3] +−1 ∗ x[2] = x[4]− x[2].

Note that in the graph, the connections between the channel input symbols and

the channel output symbols represent the dependencies between the received and

transmitted symbols (the negative signs are not represented in the factor graph).

For example, check node y[0] is only connected to bit node x[0], since y[0] = −x[0],

check node y[1] is connected to bit node x[1], since y[1] = −x[1], check node y[2]

is connected to bit nodes x[2] and x[0], since y[2] = x[2]− x[0] and so fourth.

The BP algorithm proceeds iteratively, exchanging information between check

nodes and bit nodes [26]. As already mentioned, the algorithm is in the class of

message passing algorithm because the probabilist information about the received

symbols is passed from check nodes to bit nodes. In this process, log likelihood

ratios of the transmitted bits are computed and become more reliable with each

iteration. After a sufficient number of iterations, the log likelihood ratios can be

used to make bit decisions. In the case of the BP detector, the order in which

these message are passed occur according the flooding schedule [25], where nodes

pass the information to their neighbors subsequently.

If the BP algorithm proceeds over N total iterations, the total complexity

requires on the order of N(µ + 1)Mµ+1 summations, where M is the size of the

source alphabet and µ is the number of significant effective channel taps used in

the detection. As such, the complexity of the BP is exponential in µ, and so the

system designer can specify the total complexity by appropriate choice of µ. This

interesting property is the main reason for this thesis to focus specifically on using

the BP algorithm as symbol detector for ISI compensation. Table 2.2 provides a
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Figure 2.2: The h = [1 0 −1] channel represented as a factor graph. The graph

is formed by bit nodes, which are the channel inputs (x[�]) and the check nodes,

which are the channel outputs (y[�]). The connections between bit nodes and check

nodes represent the dependencies between the received and transmitted symbols.

summary of the presented optimal approaches for ISI compensation.

Table 2.1: Summary of optimal algorithms for ISI compensation.

Algorithm Principle Complexity

Viterbi MLSE Exponential on the delay spread

BCJR MAP Exponential on the delay spread

BP MAP Exponential on # of non-zero taps

2.1.2 Sub-Optimal ISI mitigation

As the MLSE and MAP detectors have computational complexities grows expo-

nentially with the length of the channel time dispersion, their usage with most

real-world channels is very limited. Even for the BP detector, which has the ad-

vantage of the complexity growing only on the number of non-zero channel coeffi-

cients, the computational complexity can be prohibitively costly. For these reasons,
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suboptimum channel equalization approaches were made necessary to mitigate ISI.

Linear Equalizers, are filters designed with a linear structure. In terms of

structure, the linear transversal equalizer (LTE) is formed by tapped delay lines

and it can be implemented as a finite impulse response (FIR) filter or as an infinite

response (IIR) filter [40], which are the most used structures for linear equalizers.

Other possible linear structures are the linear transversal equalizer [41] and the

lattice equalizer [42]; these structures have good numerical stability, but also have

too complicated structures. In terms of the filter’s coefficients, there are different

ways of choosing their values, such as the peak distortion criterion and the mean

square error criterion [12].

The peak distortion criterion [19, 20] seeks the minimization of the worst-case

inter-symbol interference effect on the received symbols. This goal is achieved

when the equalizer’s transfer function is the inverse of the channel’s model; the

ISI mitigation happens because the filter completely eliminates the effect of the

channel on the symbols. This filter is called zero-forcing filter. In other words, if

we have a channel with transfer function H(z), the corresponding zero-forcing filter

is 1
H(z)

, which eliminates the channel’s filtering effects leaving only a multiplying

constant gain. Although simple to calculate, the zero-forcing presents 2 important

issues. The first one is that the inverse of a channel modeled as a FIR filter is an

IIR filter, which is not practical to build. The second is that it can potentially

enhance the additive noise; if the channel contains a null in its frequency response,

the zero-forcing equalizer produces a spike to compensate for the null and will end

up amplifying the noise which is also filtered.

For the mean square error (MSE) criterion [21], the filter is designed to minimize
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the mean square value of the error signal, which is the signal at the output of the

filter minus the transmitted signal. The calculation of the filter coefficients then

becomes an optimization problem in which the cost function is [12]:

J = E[(y[k]− x[k])2], (2.2)

where y[k] is the filter output and x[k] are the transmitted symbols. After solving

this optimization problem, the minimum of the cost function has the following

transfer function:

1

H(z) +N0

, (2.3)

which is very similar to the zero-forcing expression, with exception of the noise

spectral density N0. In this sense, the equalizer coefficients are adjusted to min-

imize both the MSE due to the ISI and the noise power at the filter’s output.

However, the minimum mean square error equalizer (MMSE) still has the same

problem as the zero-forcing regarding the infinite length required for optimal can-

cellation, which can not be implemented in practice but only approximated by FIR

filters.

Other than linear equalization, there are several non-linear structures that are

also used in the design of equalizers. The decision-feedback equalizer [22] is one

of such filters. This type of equalizer is usually formed by two components: the

feedforward and the feedback filters as showed in Figure 2.3. The received symbols

are inputed to the feedforward filter and its output is summed to the output of

the feedback filter in order for the decision device to provide hard decisions on the

symbols. These decisions are delayed and then inputed to the feedback filter; the

feedback filter removes part of the ISI on the current symbol using the decisions

on previous numbers.
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Figure 2.3: Decision-feedback equalizer structure with feedforward and feedback

filters and decision device.

In comparison, DFE are able of performing ISI compensation with reduced

noise enhancement and may thus provide significantly lower symbol error rates

(SER) than a linear equalizer. On the other hand, due to the nonlinear feedback

structure of DFE’s, symbol errors induced by high noise may cause instability due

to the feedback of wrong decisions. This phenomenon called error propagation,

although of small probability, may also lead to poor error performance.

The equalizers mentioned so far all have a static structure, which are preset to

mitigate channels that are invariant in time. Another category of equalizers are

the adaptive equalizers, in which the filter coefficients are updated while the data

is being processed [43]. In other words, the coefficients are automatically adapted

using a pre-determined optimization metric and known transmitted symbols (for

training), to be adjusted to the channel and even adapted to it if the channel is

time-varying. There are several well-known algorithms for adaptive equalization,

such as the least-mean-square (LMS) [44], the adaptive decision-feedback equalizer

[45], the recursive least-squares (RLS) [46] and the Kalman filter [47]. In addition

to traditional adaptive filtering, another technique of adaptive equalization was also

extensively studied in the literature, the blind equalization. In these algorithms,

the transmitted signal is equalized using only signal statistics, and no training
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symbols. Among many blind equalization algorithms, the most well known is the

constant-modulus algorithm (CMA) [48].

Table 2.2: Summary of sub-optimal algorithms for single carrier ISI compensation.

Equalizer Principal Characteristics

Linear Simple, has problems with noise enhancement

DFE Better performance than linear, error propagation problems

LMS, RLS and Kalman Linear adaptive filtering

CMA Blind equalization

2.1.3 Multicarrier Modulation

All the methods presented so far are associated with a single carrier modulation

scheme. This means that the information is transmitted using a single slot of

frequency; all the information is contained in a specific frequency range. However,

with single carriers, higher data rate requirements end-up resulting in problems

with ISI. Higher data rates require smaller symbol periods, which in turn result in

ISI if the symbol period is smaller than the channel’s delay spread ( see Section

1.1). Another way to deal with the ISI problem is to use a multicarrier modulation

data transmission scheme [49].

The idea behind multicarrier modulation is to subdivide the available channel

in many subchannels so the frequency response in each one of these subchannels is

approximately constant [12]. This facilitates the equalization process and provides

a solution to the ISI problem for high data rated systems. The multiple carriers
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allow the symbol period to be larger than the channel’s delay spread, still main-

taining higher effective rates distributed over non-overlapping frequency bands.

Figure 2.4 shows a multicarrier communication system. In the transmitter, the

symbols are parallelized and then modulated; after the multicarrier modulation,

the information is converted to a serial sequence to be transmitted over-the air. In

the receiver, the received symbols are parallelized to pass through demodulation

and detection.
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to-serial
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Input

data

A/D
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Figure 2.4: Block diagram representing a multicarrier transmission system. For

the transmission, the information is first parallelized to be modulated and in the

receiver, the information is also parallelized to be demodulated and detected.

The orthogonal frequency-division multiplexed (OFDM) scheme [50, 51] is a

special type of multicarrier modulation in which the subcarriers are orthogonal to

each other. In other words, the information is transmitted using multiple subcar-

riers in different frequencies; the frequency spacing of the carriers is chosen so the

modulated carriers become orthogonal and therefore do not interfere with each

other. Figure 2.5 shows the orthogonal subcarriers. Most modern communications
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systems use the OFDM scheme for digital transmission: the wireless LAN (WLAN)

radio interfaces, digital radio systems, the terrestrial digital TV systems DVB-T

and ISDB-T, ultra-wideband (UWB) and others. Moreover, the OFDMA [52], a

OFDM-based multiple access technology was also used in several cellular networks,

specially in the downlink operation.

Figure 2.5: Orthogonal subcarriers in a OFDM scheme. The subcarriers are sepa-

rated by a ∆f frequency spacing.

One of the greatest disadvantages of the OFDM scheme is the fact that it suffers

from a high peak-to-average-power-ratio (PAPR), which requires linear circuitry

in the transmitter. The problem with this type of circuit is that it is not power

efficient and it makes the power manager in small devices, such as mobile hand-

sets, very difficult. For this reason, the uplink operation of cellular communication

is implemented in a single carrier scheme; more specifically, the single-carrier fre-

quency division multiplex access (SC-FDMA) scheme [53]. It was adopted in the

uplink operation in the 3GPP Long Term Evolution (LTE) and 4G. In this work,

we focus on single-carrier schemes to combat the ISI impairment.
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2.2 Software Defined Radio Technology

Advances and innovation within the wireless sector have always been closely cou-

pled to corresponding improvements in digital technology, including computing

devices. Until the 1950s [54–56], wireless systems were exclusively operating in

the analog domain, where various communications functions such as modulation

and filtering were performed using analog circuits and components. As a result,

the process of designing a robust communication system was time-consuming and

costly since analog circuit designers were needed to devise systems that met specifi-

cations and were difficult to mass produce at a scale that could enable wide-spread

penetration within a large consumer market. With the rapid evolution of digi-

tal technology, especially analog-to-digital and digital-to-analog converters (ADCs

and DACs), it now became possible to perform these same baseband communi-

cation functions partially or entirely within the digital domain, greatly reducing

cost, enabling mass production of these transceivers, and providing a greater a

flexibility and system functionality. Consequently, when communication systems

transcended the analog/digital divide, this became a defining moment of the Infor-

mation Age and the enabler of ubiquitous wireless data access that todays society

has grown accustomed to over the years.

The first wireless devices that employed digital technology were based on non-

programmable, static designs realized using application-specific integrated circuits

(ASICs). These implementations enabled wireless devices, such as cellular tele-

phones and wireless local area networking modems, to eventually be produced on

a large, commercial scale at a cost that would make these systems reasonably

affordable in a consumer market. As various computing technologies began to
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mature, such as digital signal processors (DSPs), they also began being incorpo-

rated into the baseband digital implementation of these wireless systems. However,

these computing devices were programmed with a static set of operations to be

performed by the wireless system, such as filtering, data compression, modulation,

and other baseband operations.

Lately, the widely spread use of wireless mobile devices has presented great

potential challenges in the area of wireless services provision as different standards

can be used on the same device depending on the circumstances of use. Each of

these radio standards require their own specific access terminal and base station

infrastructure creating the need for installing and maintaining a plethora of spe-

cific equipments. The use configurable radio technologies the rises as a possibility,

requiring an evolution from static programmed operations. This new concept per-

mits providing an infrastructure from which service providers can evolve to meet

the needs of the users without heavy re-investment in infrastructure.

As mentioned, the evolving wireless networks requirements in reconfigurable

technology led in the past few years to the diffusion of the so-called Software De-

fined Radio (SDR) architectures. To conduct research in this area, it is necessary

to possess sufficient knowledge in both hardware platforms and software environ-

ments. The background needed includes the different SDR platforms as well as

some information on software development environments.
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2.2.1 A Brief History

The term software radio was introduced by Joseph Mitola in 1992 [57]. However, a

SDR prototype had already been presented in 1988 by Hoeher and Lang [58]. The

establishment of SDR as a technology came with the first publicly funded SDR

development initiative, called SpeakEasy I/II by the U.S. military [59]. The first

generation of the SpeakEasy system initially used a Texas Instruments TMS320C40

processor (40 MHz), while the SpeakEasy II platform was the first SDR platform

to involve field programmable gate array (FPGA). Later, the U.S. Navy developed

the digital modulator radio (DMR), a platform with many waveforms and modes

that could be remotely controlled with an Ethernet interface.

As Figure 2.6 shows the timeline of the evolution of both processing technology

and SDR technology, it is possible to notice the necessity of developing components

with higher computational power and flexibility to enable better SDR platforms.

It was only after the year 2000, with powerful FPGAs and DSPs, that most of the

existing platforms were developed. More recently, the ARM Cortex A9 opened

the possibility of accessible on-board processing, discarding the necessity of a host

computer for system development.

In the late 1990s SDR started to spread from the military domain to the com-

mercial sector, with cellular networks being considered the natural area of applica-

tion [60]. Several Companies such as Vanu [61], Airspan [62] and Etherstack [63]

started to develop SDR products for cellular base stations. In 2005, Vanu re-

leased in 2005 the first SDR product approved by the software radio regulation:

the AnywaveTM GSM base station. The BTS (base transceiver station), the BSC
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Figure 2.6: Processing technology vs. SDR technology. The timeline of the past

decades shows how the evolution of different types of processors had a great impact

in the development of SDR platforms.

(base station controller), and TRAU (transcoder and rate adaptation unit) mod-

ules of the BSS (base station subsystem) were implemented in software in the

Anywave base station. Although this successful implementation brought substan-

tial attention to SDR technology and it was thought at the time that SDR base

stations would be key for 3G networks, the reality regarding the commercial usage



28

of SDR technology was still somewhat distant.

One of the most commonly used SDR hardware platform is the Universal Soft-

ware Radio Peripheral (USRP) [29]. Developed by Ettus Research LLC, the USRP

is a device that turns general purpose computers into flexible SDR platforms. The

core of the USRP is a motherboard with four high-speed ADCs and DACs and a

FPGA. The ADCs/DACs are connected to the radio Front-Ends (called daugh-

terboards), while the FPGA is connected to a general purpose computer. In the

Universal Software Radio Peripheral - Version 1 (USRP1) this connection is per-

formed by a USB port, while the USRP2 (showed in Figure 2.7) includes a Gigabit

ethernet interface. The main principle behind the USRP is that the digital radio

tasks are divided between the internal FPGA and the external host CPU. The

high speed general purpose processing, like down and up conversion, decimation,

and interpolation are performed in the FPGA, while waveform-specific processing,

such as modulation and demodulation, are performed at the host CPU. The USRP

platform can be used with both GNU radio and MATLAB software development

environments. More recently, Ettus Research released the new X Series, a platform

that contains more powerful daughterboard slots, 6 GHz with up to 120 MHz of

baseband bandwidth, and a large user-programmable Kintex-7 FPGA.

Another SDR hardware platform is the Kansas University Agile Radio (KUAR)

[2], showed in Figure 2.8. The KUAR platform was designed to be a low-cost exper-

imental platform targeted at the frequency range 5.25 to 5.85 GHz and a tunable

bandwidth of 30MHz. The platform contains a Xilinx Virtex-II Pro FPGA board

and a PCI Express 1.4 GHz Pentium-M microprocessor. With these features,

almost all processes can be implemented in the platform, instead of the host com-
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Figure 2.7: The Universal Software Radio Peripheral 2 (USRP2). The software

defined radio platform developed by Ettus Research.

puter, which minimizes the host-interface requirements. In addition, the KUAR

utilizes a modified form of the GNU Radio software framework to complete the

hardware platform.

With respect to compact SDR platforms, the Maynooth Adaptable Radio Sys-

tem (MARS) [31] was designed to be connected to a personal computer which

handles all of the signal processing algorithms. Another objective was to deliver

a performance equivalent to a base station and the wireless communication stan-

dards in the frequency from 1700 to 2450 MHz. The software framework selected

for initial development was the IRiS framework (Implementing Radio in Software).

Some other SDR platforms include:
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Figure 2.8: The KUAR radio. Source: [2]

• Berkeley BEE2 [64]: has five Xilinx Virtex-II Pro FPGAs on a custom-built

emulation board.

• Japanese National Institute of Information and Communications Technology

(NICT) SDR Platform [65]: contains two embedded processors, four Xilinx

Virtex2 FPGA, and RF modules that could support 1.9 to 2.4 and 5.0 to 5.3

GHz.

• Rice University Wireless Open Access Research Platform (WARP) [32]: ra-

dios include a Xilinx Virtex-II Pro FPGA board as well as a MAX2829

transceiver.

While these SDR platforms are mainly used for research and experimentation,

the final goal of developing SDR systems capable of implementing modern com-

munication protocols remains far for reality. The development of new hardware

platforms and accompanying software interfaces is key to advances in the area and

to better understand the capabilities and limitations of the SDR technology when
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used in real-life communications systems.

Lately, a few companies have also been developing different SDR solutions for

use in academia and industry. For example, Nutaq [33] developed two main SDR

products, the ZeptoSDR and the PicoSDR, both of which support RF frequencies

between 300 MHz and 3.8GHz and bandwidth of 1.5 to 28 MHz. The ZeptoSDR

uses a Xilinx Zynq-7 and an embedded ARM Cortex-A9, and the PicoSDR uses a

Xilinx Virtex-6 and an embedded Quad-Core i7. Epiq Solutions [34] also developed

two compact SDR products, the Sidekiq and the Matchstiq, as well as another

platform called Maveriq.

Analog Devices Inc. (ADI) has been in the SDR market since the 1990s, and

serves numerous customers in this area. Consequently, in order to obtain a bet-

ter understanding of the needs of both current and prospective customers, one

approach is to learn more about SDR as an application by exploring the actual

application/protocol using the product, to better understand how to optimize the

RF front-end and SDR components for a specific application, and to provide the

customers with a real working system before they employ it themselves. For these

reasons, ADI developed the FMCOMMS1 [4] and FMCOMMS2 [5] RF Front-Ends,

which are going to be the focus of this thesis.

2.2.2 Anatomy of a Software-Defined Radio

In traditional radios, all radio functionalities are performed by specialized com-

ponents that execute specific functions, such as modulators/demodulators and

coding/decoding. In this case, all signal processing is performed within these spe-
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Table 2.3: Summary of SDR platforms.

SDR Platform Processing Device Sampling and Bandwidth

USRP2 Xilinx Spartan 3A-DSP 3400 100 MS/s ADC, 400 MS/s DAC

USRP X Series Xilinx Kintex-7 120 MHz of bandwidth

Kuar Xilinx Virtex-II Pro bandwidth of 30MHz

MARS Personal Computer 1700 to 2450 MHz

BEE2 5 Xilinx Virtex-II Pro -

NICT Xilinx Virtex2 1.9 to 2.4 and 5.0 to 5.3 GHz

ZeptoSDR Zedboard 1.5 to 28 MHz

PicoSDR Virtex-6 3.8 GHz, 28 MHz BW

Maveriq Spartan 6 LX150T DAC and ADC 50 MHz

FMCOMMS1 ZedBoard 250 MSPS ADC and 1 GSPS DAC

FMCOMMS2 Zedboard 640 MSPS ADC and 320 MSPS

cialized hardware. The software-defined radio technology replaces some of the

traditional radio components with components implemented in software.

A software-defined radio transceiver is divided into two main parts: (i) an ana-

log Front-End, which performs the narrowband frequency downconversion followed

by an Analogue-to-Digital Conversion (ADC), and (ii) the digital signal processing

components, which are responsible for the remaining signal processing flow [66].

Thus, operations such as (de)modulation, filtering, and channel (de)coding are

performed in the digital domain. Figure 2.9 shows the typical data flow in a

software-defined radio system. In this case, nearly the entire baseband signal pro-

cessing on both the transmission and receiving ends is performed in the software
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domain.
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Figure 2.9: Block Diagram showing the Digital and Analog divide in a Software-

Defined Radio Platform. The digital signal processing is performed in the digital

domain in baseband, while the analog portion of the system performs the RF

operations. Based on [3], Figure 5.

Ideally, if the Analog-to-Digital/Digital-to-Analog conversion can be pushed

further into the RF block, the programmability could be extended to the RF front

end and an ideal software radio could be implemented [60]. The advantage of

having components implemented in software is flexibility, as different frequency

bands, air interface protocols, and functionalities could be upgraded through a

software download instead of having to completely replace the hardware.

Thus, the ultimate goal for software-defined radio is to move the AD/DA con-

version as close as possible to the antenna so that all signal processing can be

done digitally. However, some technical limitations make it currently infeasible to
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perform the AD/DA conversion at the antenna.

Digital Domain

Figure 2.9 shows the functional blocks that can be implemented in the digital

domain of a communication system. These blocks include modulation and demod-

ulation blocks, which perform mapping between bits and electromagnetic waveform

characteristics; coding/decoding blocks, which help mitigate impairments in the

wireless channel; source encoding and decoding blocks, which remove redundant in-

formation from the binary data; and channel encoding and decoding blocks, which

introduce redundant information to protect transmissions from potential errors.

In an SDR platform, all of these components are implemented in software and

can run in different processing venues including field programmable gate arrays

(FPGAs), graphics processing units (GPUs), digital signal processors (DSP), gen-

eral purpose processors (GPP), or a combination thereof. While FPGAs are com-

putationally powerful, they are power inefficient and inflexible, and it is difficult to

implement new modules in them. Similarly, GPUs are very computationally pow-

erful but are difficult to use and implement new modules into. DSPs are processors

that perform specialized mathematical computations. While users can implement

new modules into them with relative ease and they are relatively power efficient,

they are not well suited for computationally intensive processes and can quickly

lose speed. Finally, GPPs are a popular solution for SDR implementations and

prototypes due to their high level of flexibility with respect to reconfigurability.

However, since GPPs are not specialized for mathematical computations, they can

be very power inefficient.
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Returning to the problem of where the AD/DA conversion should happen,

there are a number of challenges presented by the transition from hardware radio

to software radio. First, transition from hardware to software processing results in

a substantial increase in computation, which results in increased power consump-

tion and reduced battery life. This large power consumption is one of the key

reasons why software-defined radios have not been deployed in end-user devices

but are instead used in base stations and access points, which can take advantage

of external power resources. Second, the question of where the AD/DA conversion

can be performed determines what radio functions can be done in software, and

hence how reconfigurable a radio can be.

Analog Domain

Figure 2.10 shows a typical RF Front-End responsible for processing the analog

portion of the digital transmission [67, 68]. In the transmission signal path, the

digital samples are converted into analog signal by the DAC to be input to the

RF Front-End; the analog signal is later mixed with high frequency carriers and

modulated to a determined RF frequency and transmitted over the air. In the

receiving signal path, the RF signal is captured by the antenna and brought back

to base band to be processed by ADC. The RF mixing and modulation is driven by

the local oscillator (LO), which generates the RF signal, which is mixed with the

incoming signal. Another very important component used in radio transmission is

the Low-noise amplifier (LNA), which is usually located close to the antenna and

is used to amplify weak signals without significantly increasing noise level.
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Figure 2.10: Block diagram of a typical RF Front-End. In the transmitter path,

the the analog signal is modulated and transmitted in RF frequencies. In the

receiver path, the analog high-frequency signal is converted to baseband before

being processed by the ADC. The local oscillator (LO) drives both transmitter

and receiver circuits.

2.2.3 Sampling

Digital transmissions are all about sampling. A continuous-time signal can be

converted to a discrete-time signal using sampling, and a discrete-time signal can

also be converted to a continuous-time signal using reconstruction [69, 70]. To

sample a signal, instantaneous measurements are taken every Ts seconds; in this

sense, Ts is the sampling period, and fs = 1/Ts is the sampling frequency. To

reconstruct the original signal from the sampled signal, it is necessary to apply a
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low-pass filter on the sampled signal. However, by the Nyquist theorem, for the

reconstruction to be successful fs needs to be higher than 2 times the analog signal’s

bandwidth, which is called the Nyquist frequency. The components responsible for

sampling and reconstructing the signal are the Digital-to-Analog converter (DAC)

and the Analog-to-digital converter (ADC).

As already mentioned, moving the analog-to-digital and digital-to-analog con-

versions closer to the antennas is the ultimate goal of software-defined radio tech-

nology. In order to do so, the major challenge lies in the DAC and ADC’s sampling

capabilities. To digitize an RF signal it is necessary to sample it at least at the

Nyquist frequency, and the higher the data rate of the signal, the higher the resolu-

tion required to capture the information. For example, an 802.11n Wi-Fi channel

is 40 MHz wide [71], which means the ADC has to digitize 80 MHz of signal

bandwidth, resulting in a sample rate of at least 160 million samples per second

(Msps).

For these reasons, the development of SDR platforms is closely related to the

development of more powerful ADCs and DACs. In Table 2.4, we provide a list

of SDR platforms and their corresponding sampling capabilities. It is possible to

note that the advent of ADCs and DACs with higher maximum sampling values

contributed to the rapid development of several SDR platforms in sequence. From

the SPEAKeasy platform in the 1990s to the FMCOMMS 2 and USRP-X Series,

the possible usable bandwidth increased 3000 times. This allows the implementa-

tion of modern wireless transmission standards in SDR platforms and pushes the

edge of the software defined radio technology applications.
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Table 2.4: Sampling Capabilities of different SDR platforms.

SDR Platform Sampling Capabilities

SPEAKeasy 200 Kb/s

USRP 1 64 MS/s dual ADC and 128 MS/s dual DAC

KUAR 105 MSPS ADC and 100 MSPS DAC

USRP 2 100 MS/s dual ADC and 400 MS/s dual DAC

FMCOMMS 1 250 MSPS ADC and 1 GSPS DAC

FMCOMMS 2 640 MSPS ADC and 320 MSPS

USRP-X Series 640 MSPS ADC and 320 MSPS

2.2.4 Current SDR Challenges

As already mentioned, the sampling capabilities of ADs and DAs converters are

a key ingredient for the implementation of SDR systems and prototypes. The

ability to digitize high frequencies is fundamental for bridging the analog domain

with the digital domain, and to leverage the flexibility made available by the

digital hardware and software. On the other hand, the software and digital logic

implementation imposes a computation burden on the platform and therefore an

increase in power consumption. This trade-off leads to the usage of different SDR

solutions for different applications thus forcing the designer has to decide which

trade-off is more important: flexibility or energy efficiency.

A second consideration concerns interface to the RF portion of the digital

transceiver [72]. It is challenging to design antennas over a wide range of fre-

quencies since the antennas propagate signals differently for different frequencies
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transmitted signals. In addition, the electronic circuits that connect the antennas

to the rest of the circuit, which are called baluns, are also optimized for different

antennas and should be matched for optimal power performance. This complicates

the radio design, and prevents the implementation of systems with very difficult

frequency ranges on the same SDR platform. Usually it is necessary to chose be-

tween baluns that have an excellent linear response on a narrow frequency band

or baluns that have reasonable response on a broad frequency range.

Another issue related to sampling rates is the timing and synchronization re-

quired within the radio [72]. It is important that the rates of the processing devices

(Microprocessors, FPGAs, DSPs) which are running the digital signal processing

blocks are synchronized with the clock of the hardware components in the analog

domain of the digital transmission. The hardware and software clocks should be

equivalent and translatable to avoid confusion and mismatch in the sampling rates

used. However, this is a major concern to software environment designers, but

should be thus transparent to the users.

Other than technical issues, a major challenge related to SDR implementations

focuses around the software environments to be used for the system design. Two

commonly used software tools for the design and prototyping of SDR implementa-

tions are MATLAB [73] and GNU Radio [74]. MATLAB is a versatile software tool

with substantial user support and many different modules and processing blocks

already available for usage. On the other hand, MATLAB is proprietary and re-

quires an initial investment in the designing process. On the other hand, GNU

Radio is a free software toolkit that provides a flexible environment for the design

of communication systems. Even though there are not as many blocks available
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as is MATLAB, it is possible to change the pre-existing and develop new ones

in C++ or Python. This increased flexibility can also be problematic since the

learning curve to utilize GNU Radio and its capabilities is steep, as it requires

considerable programming experience.

2.2.5 GNU Radio

GNU Radio [74] is a free software toolkit licensed under the GPL for implementing

software-defined radios. Initially, it was mainly used by amateur radio enthusiasts,

but it later gained significant interest from wireless researchers, and today it has

a large community of users and contributors. It supports Linux natively, and

packages are pre-compiled for the major Linux distributions.

GNU Radio provides means for performing the digital signal processing por-

tion of a communication system design. Several software algorithms include filters,

channel codes, synchronization elements, equalizers, demodulators, decoders, and

many other elements. It is possible to use these components as building blocks of

a communication system; GNU radio provides not only provides these blocks but

also a method of connecting them together. Communications systems can be im-

plemented by using the already available blocks or by developing new components

for the software platform.

In addition to be able to design applications using scripts, GNU Radio also

provides a graphical tool called GNU Radio Companion (GRC). The GRC is similar

to MATLAB’s Simulink and allows designers to develop systems using pre-made

blocks as well as designing their own if necessary. It facilitates having a system
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view of project and also diminishes the barrier of entrance for GNU radio users.

Figure 2.11 shows a communications system being designed using the GRC tool.

The data management is performed by the software environment and is trans-

parent to the user. In this sense, both the input data type for receivers and output

data type for transmitters are complex baseband samples. In general, GNU Ra-

dio applications are primarily written using the Python programming language.

The blocks, on the other hand, can be also written in Python but are mainly

implemented in C++ due to performance reasons.

Figure 2.11: The GNU Radio Companion (GRC) tool. It allows design of commu-

nication systems using pre-made and custom blocks.
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2.3 Chapter Summary

In this chapter, we discussed the impairments that hinder wireless communications,

focusing on inter-symbol interference. We explained optimal and suboptimal tech-

niques for ISI compensation and pointed to the usage of the BP algorithm as

detector with feasible computational complexity. We also discussed the evolution

of SDR technology in the past few decades some of the current challenges that

prevent the spread usage of software-defined radio in commercial applications. As

the processing technologies and the sampling components become more powerful,

higher data rates can be achieved and the implementation of modern communica-

tions standards for different applications become feasible.



Chapter 3

Linear Sparsening Filter Design

A large body of research exists around the idea of channel shortening, where a pre-

filter is designed to reduce the effective channel impulse response to some smaller

number of contiguous taps. This idea was originally conceived to reduce the com-

plexity of Viterbi-based maximum likelihood equalizers. In this chapter, we con-

sider a generalization of channel shortening which we term “channel sparsening”.

In this case, a prefilter is designed to reduce the effective channel to a small number

of nonzero taps which do not need to be contiguous. When used in combination

with belief-propagation-based maximum a posteriori (MAP) detectors, an analo-

gous complexity reduction can be realized.

In this chapter we address the design aspects of sparsening filters, including

several approaches to minimize the bit error rate of MAP detectors. We devote

attention to the interaction of the sparsening filter and detector, and demonstrate

the performance gains through simulation.

3.1 Background

We focus on the design of sparsening prefilters for use with soft-input soft-output

MAP detectors of the form considered in [25,26]. While [25,26] primarily focused

on the case where the original channel is sparse, we note that even non-sparse

channels can be sparsened with a simple linear, FIR filter. Consequently, our work

43
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can be applied in general situations, even where the original channel is not sparse.

We address the issue of sparsening filter design with the goal of minimizing the

detector BER. We consider the interaction of the sparsening filter and BP detector,

and develop a practically-implementable sparsening filter design method.

We note that channel sparsening filters (CSF) can be seen as a generalization

of so-called channel shortening filters proposed in [75–79]. Given an FIR channel

h of length Lh, the channel shortening problem roughly amounts to designing a

filter w so that the energy in the combined response h ⋆ w is concentrated in

µ < Lh contiguous taps. Channel sparsening is nearly the same, though the µ taps

which contain the majority of the energy are not constrained to be contiguous.

Furthermore, while much of the recent interest in channel shortening has been for

application to multicarrier systems, the original idea of channel shortening [75] was

proposed for a reduced-complexity hybrid prefilter/ML detector which bears some

resemblance to the one considered here. More recent works such as [80] have con-

sidered channel shortening in conjunction with iterative MAP detectors. Again,

however, these works impose a constraint that the taps in the combined chan-

nel/filter response must be contiguous. One very recent work [81] has considered

use of matching pursuit to find a sparse, non-contiguous target impulse response

(TIR), and it is shown to yield a lower mean squared error (MSE) compared to

the conventional contiguous approach.
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3.1.1 BP detector in a Hybrid Structure

After discussing the principles of the BP detector in Chapter 2, we provide more

details about the hybrid structure containing the sparsening filter and the BP

detector. To compute the likelihood ratios, the BP detector needs to know the

effective channel impulse response. Given a finite-length filter h, it is not possible

in general to find a finite-length filter w such that the combined response is exactly

equal to some prescribed FIR response c since the problem is overdetermined1. In

other words, in designing the CSF filter w, we must accept that it is not possible

to perfectly sparsen the channel so that the effective channel c consists of only µ

nonzero taps. Consequently, the remaining Lc−µ taps of c will not be exactly equal

to zero in general unless the CSF is chosen to have infinite length. Nevertheless, to

keep computational complexity at the level prescribed by the choice of µ, we only

use the largest µ taps of c in the computation of the likelihood ratios used inside

the BP detector. As such the residual ISI contribution from the smallest Lc − µ

taps of c in (4.3) will be treated as noise by the BP detector. A sufficiently large

choice of CSF length Lw, however, can ensure arbitrarily small additional ISI.

Since the BP detector is typically implemented in the log domain, the major-

ity of its complexity is due to the many summation operations which must be

performed [25]. If the BP algorithm proceeds over N total iterations, the total

complexity requires on the order of N(µ + 1)Mµ+1 summations, where M is the

size of the source alphabet and µ is the number of significant effective channel taps

used in the detection. As already mentioned in Chapter 2, the complexity of the

1Note that a SIMO system employing either multiple receive antennas or frac-
tional sampling can perfectly sparsen the channel under certain conditions on sub-
channel roots [82].
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BP is exponential in µ, and so the system designer can specify the total complexity

by appropriate choice of µ.

We note that the BP detector performance only truly coincides with the MAP

detector when two conditions are met: 1) there are no cycles in the factor graph

corresponding to the channel, and 2) the additive noise is white and Gaussian.

In general, the first of these conditions is never satisfied. In practice cycles have

been shown to be of little concern since they are a low probability event (in the

case of potentially detrimental length 4 cycles) [83], or the cycles themselves do

not pose a noticeable performance penalty [25]. The second condition on the

noise, however, is more serious for this hybrid structure. Since the additive white

Gaussian noise (AWGN) gets colored by the CSF, the noise at the input of the BP

detector is no longer white2. We will address this issue in the sequel.

We emphasize that the CSF does not change the operation of the BP detector.

As the CSF changes the effective channel taps, however, and passes the µ largest

effective channel taps to the BP detector, the CSF obviously affects the behavior

and performance of the combined filter/detector structure. Since the BP detector

itself is unaltered from [25], it can accommodate a system employing channel codes

such as LDPC encoding considered in [25], or can readily be extended to the MIMO

case with, for example, space-time coding as in [26, 80]. Since our focus is on the

design of the CSF, we consider an uncoded system.

2While it is possible that the noise observed at the receiver front-end is not
white to begin with, we make the standard AWGN assumption throughout.
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3.2 System Model

3.2.1 Receiver Structure

We consider the system model shown in Fig. 3.1. A sequence of symbols x[n]

drawn from an M -ary alphabet is transmitted through an intersymbol interference

channel denoted h – which may or may not be sparse – and AWGN n[k] with

variance σ2
n is added. At the receiver, we employ a detector which consists of

the cascade of a CSF which we denote w, followed by a belief-propagation-based

detector [25]. As mentioned, the BP detector is exponentially complex in the

x[k]
channel

h

n[k]

y[k] z[k]sparsening
filter
w

BP
detector

estimated
bits

Figure 3.1: System Model

number of nonzero channel taps. Consequently, the purpose of the CSF is to

reduce the number of nonzero coefficients in the effective channel to some specified

quantity µ so that use of the BP detector becomes practically feasible.

Let c = h ⋆ w be the effective channel (or combined response) where the ⋆

operator denotes convolution. We assume that the channel, CSF, and effective

channel are modeled as FIR filters of lengths Lh, Lw, and Lc = Lh + Lw − 1,
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respectively. Thus, the received data is given by

y[k] =

Lh−1∑

l=0

h[l]x[k − l] + n[k]. (3.1)

After filtering by the CSF, the data is

z[k] =
Lw−1∑

l=0

w[l]y[k − l]

=
Lc−1∑

l=0

c[l]x[k − l] + v[k]. (3.2)

where the CSF output noise, which is colored, is given by v[k] = n[k] ⋆ w[k].

Finally, the output of the CSF is passed to the soft-input soft-output BP detector

which outputs likelihood values that can be used to make decisions as to what was

transmitted.

In this work, we focus our attention on the optimal design of the sparsening

filter. As such, we make the simplifying assumption that the channel h is known

perfectly to the receiver. It is rather straightforward, however, to extend our

proposed design method to adaptive implementations which can be employed in

situations where the channel is unknown and/or slowly time-varying.

3.2.2 Sparsening Filter Design

In the design of the CSF w, the goal is for the number of significant (nonzero)

taps of c to be µ or less, regardless of where they lie in c or whether they are

contiguous or not. We note that µ ∈ {1, 2, . . . , Lh} is a parameter chosen by

the system designer. If µ = 1, then the detector coincides with traditional linear

equalization since the goal of the CSF design is to make the effective channel be
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a single spike. At the other extreme, the choice µ = Lh corresponds to “pure”

BP detection as in [25] since the CSF need not do any sparsening and can be a

simple unity gain filter. Larger choices of µ will result in an exponentially more

complicated BP detector, but will also result in better BER performance.

Ideally, we would like to choose w to minimize the system BER. As no closed

form expression for the BER exists, direct minimization of BER is intractable.

Consequently, we consider choosing w to maximize a proxy for the BER which

we term the SSSNR. In the sequel, we will assess the validity of this metric by

measuring the proximity of the SSSNR-optimal filter to the BER-optimal filter for

some low-dimensional examples. Accordingly, we define the SSSNR as the ratio of

the useful signal power coming out of the µ large taps of c over the total power of

the received signal plus noise,

JS(w) =
σ2
x ‖large taps of c‖2

σ2
x ‖large taps of c‖2 + σ2

x ‖small taps of c‖2 + σ2
v

=
σ2
x

∑

k∈S |ck|
2

σ2
x

∑

k |ck|
2 + E

{
|v[k]|2

} (3.3)

where S is the set of the locations of the desired largest µ taps in c. The numerator

of (3.3) is the signal power scaled by the power of the µ significant taps in c, and

the denominator contains the total received signal power. Ideally, the energy in the

significant taps,
∑

k∈S |ck|
2, will make up almost all of the energy in the channel,

∑

k |ck|
2, since we want all other taps to be as close to zero as possible. Ignoring

noise for a moment, 0 ≤ JS ≤ 1, and the only way to force JS → 1 it to make all

but µ taps in c go to zero. Adding in the noise term to the denominator ensures

that the residual self-interference is weighted comparably to the noise, so that the

excess taps are not made small at the expense of noise amplification.
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The SSSNR in (3.3) is analogous to Melsa’s Shortening SNR (SSNR) [76], with

a few distinctions: the set of desired taps S is not contiguous, the denominator

includes the noise power, and the denominator includes both the desired and un-

desired taps (rather than just the latter). The last distinction is for numerical

reasons, and it can be shown that keeping or omitting the desired taps in the

denominator leads to the same solution in this type of problem [84, III.B].

Let H be the Lc × Lw tall convolution matrix of h, i.e. a Tœplitz matrix

with first column [hT ,01×Lw−1]
T and first row [h(0),01×Lw−1]. Then let HS be

the µ × Lw matrix obtained by extracting the µ rows of H corresponding to the

desired nonzero tap locations, k ∈ S. As an example, for Lw = 3, Lh = 3, µ = 2,

and S = {1, 3},

H =
















h0 0 0

h1 h0 0

h2 h1 h0

0 h2 h1

0 0 h2
















, HS =






h0 0 0

h2 h1 h0






With these definitions, the combined response is c = H ·w, and the values of the

desired nonzero taps are contained in the vector cS = HS ·w. Then we have

∑

k∈S

|ck|
2 = ‖HS ·w‖2

∑

k

|ck|
2 = ‖H ·w‖2 ,
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and the SSNR from (3.3) becomes

JS(w) =
wHBSw

wHCw
(3.4)

BS = σ2
xH

H
S HS

C = σ2
xH

HH + σ2
nI.

The SSSNR expression in (3.4) is a generalized Rayleigh quotient. The value of

w that maximizes this quantity, i.e. the SSSNR-optimal CSF for a given set S,

is computed by finding the generalized eigenvector of the matrix pair (BS ,C)

corresponding to the largest generalized eigenvalue. An algorithm for this general

problem is given in [85, Section 8.7.2].

The method used to compute the tap values in [26], which is based on [80], is

mathematically similar to our approach, with two key differences. Most impor-

tantly, the set S is fixed in [26]. Second, [26] uses the concept of a target impulse

response (TIR). The optimal CSF is written as a function of the TIR, and then

the TIR is optimized. (This is implicit within [26, eqn. (25)].) The choice of

CSF is “optimal” in the sense that it minimizes the MSE between the outputs of

the CSF and TIR, and the TIR is optimal in the sense that it maximizes the

signal-to-noise ratio (SNR) at the CSF output. Similar to the channel shortening

literature where the minimum MSE and the maximum SSNR channel shorteners

are equivalent [86, Section 5], the approach in [26] is mathematically equivalent to

our approach with the exception of the fixed sparse coefficient locations. However,

the minimum MSE approach is more convoluted to implement, as two filters must

be designed rather than one.

The CSF that maximizes (3.4) is only optimal for a given choice of S. As such,
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the design of w involves two issues: picking the best locations for the µ nonzero

taps in c (i.e. choosing the set S), and picking the values of the filter coefficients so

that (3.4) is maximized. The first issue is related to the problem of choosing the

optimal delay in linear minimum mean-squared error equalization, which is known

to be nontrivial since there is no known expression for the optimal delay [87]. In the

classical equalization problem, it is feasible to conduct a brute-force search over the

Lc possible delays. Here, however, the problem is considerably more challenging

since there are






Lc

µ




 = Lc!

(Lc−µ)!µ!
possible choices of S. In this paper, we consider

three methods of choosing the set S.

• Use the indices of the µ largest magnitude taps of h, as in [26]. This will be

referred to as Roy’s tap selection method.

• Try all of the possible combinations. This will be referred to as the combi-

natorial tap selection method, and it is optimal (though expensive).

• Try the heuristic approach outlined below, which will be referred to as the

greedy tap selection method.

The greedy method is as follows. First, set µ = 1, and find the location S1 of

a single tap that maximizes the SSSNR. This involves computing w for all Lc

possible tap choices. Next, set µ = 2 and S = {S1,S2}. Keep S1 from the prior

step, and find the location S2 such that the best two-tap channel is produced. This

involves computing w for each of Lc−1 values. Continue adding one tap at a time

until µ locations have been chosen.

Roy’s method requires designing a single CSF, although the tap locations are
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likely far from optimal (as will be demonstrated in 3.5). The combinatorial method

requires designing Lc!
(Lc−µ)!µ!

filters. Finally, the greedy method requires designing

1
2
µ(2Lc−µ+1) filters. It is far cheaper than the combinatorial method, although its

performance approaches that of the combinatorial method, as will be demonstrated

in 3.5. For example, with Lc = 20 and µ=2, the greedy method is 4.9 times

cheaper; and with Lc = 25 and µ=5, the greedy method is 460 times cheaper than

the combinatorial method.

3.3 Noise Coloration

As mentioned previously, even if the noise n[k] is white, the CSF outputs colored

noise. To see this, we let W be a wide Tœplitz convolution matrix corresponding

to the filter wT , and compute the covariance matrix of the noise observed by the

BP detector as

E
{
vvH

}
= E

{

(Wn) (Wn)H
}

= WE
{
nnH

}
WH

= σ2
nWWH 6= σ2

nI.

This is a problem because the BP algorithm assumes white noise. The coloration

in the noise will harm the BP performance, potentially making it worse than a

classical linear minimum mean squared error (LMMSE) equalizer followed by a

simple slicer. Thus, to avoid this pitfall, we consider a penalty term based on the
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squared autocorrelation of the output noise, or equivalently of the CSF,

JA(w) =
1

‖w‖4 σ4
n

Lw−1∑

l=1

∣
∣E
{
vkv

∗

k−l

}∣
∣
2

=
1

‖w‖4

Lw−1∑

l=1

∣
∣
∣
∣
∣

Lw−1∑

m=0

wmw
∗

m−l

∣
∣
∣
∣
∣

2

=
1

‖w‖4

Lw−1∑

l=1

Lw−1∑

m,n=0

wmw
∗

nw
∗

m−lwn−l (3.5)

It can be shown that JA is equivalent to

JA =

∫ 1

0

(

|W (f)|2
∫ 1

0
|W (f ′)|2 df ′

− 1

)2

df + 1, (3.6)

where 2πf = ω. Thus, JA penalizes non-flatness of the spectrum of w, since JA

drops to its minimum value of 1 as the spectrum W (ω) approaches any constant

value ∀f .

In order to combine JS, which should be maximized with JA, which should be

minimized, we invert the former and include a relative weighting term,

J = J−1
S + βJA. (3.7)

The weight β can be chosen to try to force the minimum of J to be in the proximity

of the BER cost surface, JE. In the next section, we look at the surfaces JS, J ,

and JE in order to visualize the effect of β.

The value of β can be set several ways. The simplest is to try various values of

β and get a sense of which values lead to good results for the class of parameter

values of interest. For example, for the parameters in our simulations, β ∈ [0.1, 0.5]

seems to yield good results. Alternatively, β can be included in the optimization

problem. One could search the objective function of (3.7) for a new value of w

(but without changing β), then occasionally adjust β (but not w) to improve the
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BER, and repeat. If β is updated on a much slower time scale than w, then the

computationally-intensive BER does not have to be evaluated very often during

the search.

For a given value of β, (3.7) can be minimized over w by any method of

unconstrained non-linear optimization. We chose to use the simplex method of [88],

since it was already available in Matlab, via the “fminsearch” function.

3.4 BER and SSSNR

To visualize the cost surfaces, consider the following example. The channel is

h = [1, 0.5, 0.9, 0.3], the target number of taps is µ = 2, the SNR is 8 dB, the CSF

w has 3 taps so Lc = 6, and we use the unit norm constraint ‖w‖ = 1. With

this constraint, the CSF lies on a unit sphere, and can be represented in spherical

coordinates: w0
△
= wx = cos(θ) sin(φ), w1

△
= wz = cos(φ), w2

△
= wy = sin(θ) sin(φ).

A contour plot of the SSSNR (inverted) is shown in Fig. 3.2; note that this is an

amalgamated surface (i.e. maximized across all choices of S). There is symmetry

of a sort due to the fact that w and −w have the same SSSNR.

The impulse response magnitudes of the channel, SSSNR-optimal CSF, and

effective channel are shown in Fig. 3.3, and the µ = 2 significant taps of c are filled

in. While the the other taps are small, they are not exactly equal to zero, and

will contribute some residual ISI that is left uncorrected by the BP detector. Note

that the impulse responses as shown have been normalized to have unit infinity

norm. In Fig. 3.4, the ith subplot (counting across the first row then the second

row) shows the regions in which that tap is used in the final design, with “dark”
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Figure 3.2: Contours of SSSNR for a three-tap unit norm filter, parameterized

by two angles in spherical coordinates. The × indicates the filter with the highest

SSSNR.

indicating that the tap is used. The axes are as in Fig. 3.2 and we see, for example,

that the 6th tap is never selected to be one of the nonzero taps in the effective

channel. Furthermore, the amalgamated cost surface is highly multimodal, with

significant shape changes at the boundaries of each tap’s usage region.
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Figure 3.3: Channel, filter, and effective channel tap magnitudes, using the

SSSNR-optimal 3-tap filter.

The corresponding amalgamated BER surface, shown in Fig. 3.5 is also highly
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Figure 3.4: Usage maps of the 6 taps of the effective channel c. Axes are identical

to Fig. 3.2. Dark areas indicate that the given tap is one of the µ largest taps in

c.

multimodal. This plot was generated via Monte-Carlo simulation by exhaustively

computing the BER at the output of the BP detector for each value of w. Here,

there are two minima with nearly equivalent BER of 0.0065 (or, four equivalent

minima if one counts symmetric pairs due to the fact that w and −w also yield

the same BER). By comparing Figs. 3.2 and 3.5, we see that the SSSNR and

BER surfaces look quite different. We note, however, that there are minima in

nearly identical locations. This provides some evidence that, at least for this low

dimensional example, the SSSNR is a good proxy for BER.

Figs. 3.6–3.8 consider the added squared autocorrelation penalizing term, and

show the amalgamated cost surface of (3.7) with β = 1, as well as various optimal

CSFs. These include the two local optima of the BER cost surface, the global

optimum of the SSSNR, the near-optimum of the SSSNR with heuristically chosen

sparse tap locations, and the weighted SSSNR solution with β = 1. We note that
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Figure 3.5: Contours of BER for a three-tap unit norm filter, parameterized by

two angles in spherical coordinates. The ▽ indicates the filters with the lowest

BER.
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in Fig. 3.6 there are two solutions with nearly identical BER; the heuristic solu-

tion is near one whereas the SSSNR solution is near the other, and the two pairs

of solutions have different active taps. The goal is to determine which optimal

solution is the best proxy for the minimum BER solution. Adding the squared

autocorrelation penalizing term moves the SSSNR heuristic solution past the min-

imum BER solution, and it appears that β should be small, say in the range of 0

to 0.2. To further investigate the affect of β, Fig. 3.9 shows the BER performance

of the weighted SSSNR scheme as a function of β at 8 dB SNR, and we see that

the optimal value of β occurs at 0.1.
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Figure 3.9: Bit error rate as a function of β for the weighted SSSNR scheme

3.5 Numeric Simulations

Having demonstrated that SSSNR is a good proxy for BER, we now compare the

BER of the various CSF design approaches. We consider a longer channel than in

the low-dimensional example of the previous sections, and we compare SSSNR and
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computational time among the different design metrics and tap selection methods.

Second, we evaluate the BER for two channels employing different sparsening filters

in conjunction with BP.

In the first example, we consider the channel h = [0.0722, 0, 0, 0.7217, 0.6495, 0,

0, 0.2165, 0, 0.0722]. We design the CSF to sparsen the channel to µ = 2 taps, we

let Lw = 25, we transmit uncoded BPSK symbols, and we use 10 iterations in the

BP detector. The BER results are shown in Fig. 3.10 for the three tap selection
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Figure 3.10: Bit error rate for different CSF design metrics

methods outlined at the end of Section 3.2.2, and for comparison we include the

performance of a 25-tap classical linear MMSE equalizer with a memoryless slicer.

The three methods employing a BP detector handily outperform the LMMSE

equalizer, and the greedy tap selection approach is able to attain performance

nearly equal to the optimal combinatorial method. In addition, we note that those

methods which attempt to pick the set of nonzero taps S to maximize the SSSNR

outperform Roy’s method by approximately 1.5 dB for this example.



62

The complexity, taps selected, and the SSNR of each tap-selection method is

displayed in Table 3.1. The combinatorial approach achieved the best SSSNR

performance, but requires the design of 561 filters. On the other hand, the greedy

approach achieved almost the same SSSNR performance with much fewer filter

designs, being more efficient than the combinatorial method. Roy’s tap selection

method needs to design only one filter, but its SSSNR result is inferior to the other

two.

Table 3.1: Computational Complexity, Taps Selected, and SSSNR Achieved at

8 dB SNR

tap-selection method number of filters designed taps selected SSSNR

combinatorial 561 {17,18} 6.9344

greedy 67 {18,19} 6.9336

Roy 1 {4,5} 5.7961

In conducting simulations, we noticed that occasionally the hybrid CSF/BP

structure yielded BER performance which was inferior to that of a simple linear

equalizer with a memoryless slicer. Upon further investigation, it became clear that

the performance degradation in such cases was due to noise coloring by the CSF,

as addressed in Section 3.3. We now consider such an example, and show that

the use of the modified cost function given in (3.7) results in flatter sparsening

filters, and improves the BER performance. We now consider the the channel

h = [−0.21,−0.36, 0.72, 0.5, 0.21], we again design the CSF to sparsen the channel

to µ = 2 taps, and we let Lw = 25. As before, we transmit uncoded BPSK symbols,

and use 10 iterations in the BP detector. We also add the squared autocorrelation

penalizing term to the combinatorial and greedy SSSNR CSF design metrics. To
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choose the β value, we performed a grid search with 10 values between 0.1 and 1

at a 14dB SNR and the best value obtained was β = 0.1.
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Figure 3.11: Bit error rate for same CSF design metrics shown in 3.10 plus the

addition of the squared autocorrelation penalizing term.

From the simulation results in Fig. 3.11, it is apparent that approaches without

the addition of the squared autocorrelation penalizing term perform worse than

a simple linear equalizer, at least at low to moderate SNR. Overall, the addition

of the squared autocorrelation penalizing term improves the BER performance for

both the combinatorial and greedy approaches, by approximately 0.7 dB. Also,

Roy’s tap-selection scheme performs significantly worse than the classical linear

MMSE equalizer for this example.

The motivation given for Roy’s tap-selection approach [26] was that by choosing

the locations of the desired nonzero taps (i.e. the set S) to match the locations of

strong arrivals of the incoming signal, there is good “spectral matching” between

the channel and the TIR which results in reduced noise enhancement. However,
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it is unclear that matching dominant tap locations between the channel and TIR

(regardless of the tap values) results in spectra with a similar shape. In fact, in

the example that intended to motivate the reduced noise enhancement of their

approach [26, Fig. 12], the CSF apparently amplifies the noise by about 40 dB in

the region of a deep channel null. Thus, while extensive simulations in [26] have

demonstrated significant error-rate improvement when compared with competing

approaches that employ decision-feedback equalizers, we note that further BER

improvement can be made by wiser design of the CSF.

Examination of the frequency responses of the CSF and combined response for

this second simulation scenario provides further evidence that does not support

Roy’s reduced noise enhancement claim. Fig. 3.12 depicts the frequency response

of each sparsening filter chosen by the combinatorial approach, the combinatorial

approach with addition of the penalizing term, and Roy’s method. Roy’s filter

amplifies the input signal over the frequencies in the center of the band. Comparing

the original channel h with the combined responses as shown in Fig. 3.13 provides

another picture showing that Roy’s chosen filter amplifies noise in the center of

the band, which contributes to the degraded performance pictured in Fig. 3.11.

Conversely, by adding the penalizing term to the combinatorial SSSNR ap-

proach, the resultant sparsening filter becomes flatter, producing an effective chan-

nel similar to the original one. This, in fact, reduces the noise enhancement.

Moreover, the flatter frequency response shown by the CSF will also reduce noise

coloring thereby improving BP detector BER performance. Both reasons explain

the error performance improvement and motivate the incorporation of the squared

penalizing term to the CSF design. The optimal choice of β however, remains an
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open issue and is likely to be channel-dependent.
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Figure 3.12: CSF frequency response for combinatorial, combinatorial with addi-

tion of penalizing term, and Roy’s approach.

In addition, to provide further evidence of the proposed method’s efficacy, we

also considered the ITU Vehicular A channel [89] that has six paths arriving at

[0, 310, 710, 1090, 1730, 2510] ns and a power-delay profile of [0,−1,−9,−10,−15,−20]

dB. In our simulations we used a square-root raised cosine pulse and a symbol du-

ration of T = 80ns, which generally resulted in a sparse equivalent discrete channel

with average length of 21 taps. Also, we transmit uncoded BPSK symbols, use 10

iterations in the BP detector and let µ = 2 non-zero taps, and Lw = 32. Again, to

calculate the β value, we used a grid search at 20dB SNR and the valued obtained

was β = 0.2.

Fig. 4.3 shows the following tap-selection methods in comparison with the linear

equalizer: Roy’s, combinatorial, greedy and greedy with squared autocorrelation

penalizing term. Once again the BP employing methods outperformed the linear

equalizer and the method with squared autocorrelation had the best performance.

Moreover, at a 10−5 SNR the greedy method with squared autocorrelation outper-
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Figure 3.13: Frequency response of original channel and effective channel frequency

responses for combinatorial, combinatorial with addition of penalizing term, and

Roy’s approach.

0 5 10 15 20 25 30
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

 

 

Roy
SSSNR comb.
SSSNR greedy
SSSNR greedy+autocorr.
Linear Eq.

Figure 3.14: Bit error rate curves for the Vehicular A channel
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forms the combinatorial method by approximately 2dB.

Finally, we again emphasize that this hybrid detector is quite flexible since its

complexity can be adjusted by the system designer. While the complexity scales

exponentially with µ, implementations are quite feasible on modern hardware in a

wide range of applications [90]. While linear and decision feedback equalizer com-

plexity scales only linearly with the channel length Lh, and are therefore attractive

for applications where hardware simplicity is at a premium, the performance ad-

vantage offered by the hybrid BP detector (reported here and in [26]) may well be

worth the additional complexity. Finally, when compared with traditional Viterbi

and BCJR detectors which scale exponentially with Lh, the hybrid BP detector

appears to have a considerable advantage in terms of complexity [25].

3.6 Chapter Summary

In this work we have considered the design of sparsening filters as a way to reduce

the complexity of iterative soft-input soft-output MAP detectors. By designing the

sparsening filter so that the combined response of the (possibly non-sparse) channel

and filter has a sparse impulse response, i.e. a response with only a handful of

significant taps, the use of a BP-based MAP detector becomes feasible for detecting

the bits. We proposed a filter design metric called the Sparse Shortening SNR, and

showed that maximizing this quantity serves as a good proxy for minimizing BER.

We developed a greedy algorithm for tap selection, and showed that this approach

yields near-optimal performance with a significant reduction in complexity when

compared to the optimal, combinatorial tap selection approach. In addition, we
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treated the issue of noise coloration introduced by the sparsening filter, and showed

that the addition of a noise penalty term to the Sparse Shortening SNR results

in solutions with a flatter frequency response, thereby limiting the amount of

noise coloration. Numerical simulations compared our scheme with an existing

approach due to Roy, and showed that significant performance gains can be had

by intelligently choosing the tap locations.



Chapter 4

Decision-Feedback Sparsening Filter

Design

In the previous chapter, the usage of linear filters in different techniques of spars-

ening filter design was investigated. In this chapter, a decision feedback filter is

designed to reduce the effective channel to a small number of nonzero taps which

do not need to be contiguous. When used in combination with belief propagation-

based maximum a posteriori detectors, a better error performance can be achieved

in comparison with the linear design methods. We address the design aspects

of decision feedback sparsening filters, devote attention to the interaction of the

sparsening filter and detector, and demonstrate the performance gains through

simulation.

4.1 Decision-Feedback vs Linear Equalizer

Since its introduction in [22], the Decision-Feedback Equalizer (DFE) receiver

structure has received considerable attention from many researchers due to its

improved performance over the linear equalizer and reduced implementation com-

plexity as compared to the nonlinear maximum-likelihood receiver.

Noise enhancement is known issue that plagues linear equalizer. This occurs

because the main objective in linear equalization is to invert the effects of the

wireless channel to the received signal. When the original channel has a deep valley

69
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in its frequency response, the correspondent equalizer will greatly amplify the noise

in the frequency band where the original valley lies. The noise enhancement effect

has a considerable impact in the linear equalizer error performance.

In comparison, DFEs are able of performing ISI compensation with reduced

noise enhancement and may thus provide significantly lower symbol error rates

(SER) than a linear equalizer. On the other hand, due to the nonlinear feedback

structure of DFE’s, symbol errors induced by high noise may cause instability due

to the feedback of wrong decisions. This phenomenon called error propagation,

although of small probability, may also lead to poor error performance.

4.2 System Model

We consider the system model shown in Fig. 4.1. A sequence of symbols x[k] drawn

from an M -ary alphabet is transmitted through an ISI channel denoted h – which

may or may not be sparse – and additive white Gaussian noise n[k] with variance

σ2
n is added. At the receiver, we employ a detector which consists of the cascade of

the proposed decision-feedback sparsening filter (DFSF) followed by a BP-based

detector [25]. The DFSF consists of a feedforward filter w, a memoryless decision

device (or slicer), a feedback (FB) filter g, as well as a modified FB filter g̃ whose

output is added to the output of the feedforward filter to serve as input to the BP

detector.

As mentioned, the BP detector is exponentially complex in the number of

nonzero channel taps. Consequently, as well as in Chapter 2, the purpose of the

DFSF is to reduce the number of nonzero coefficients in the effective channel to
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Figure 4.1: System Model

some specified quantity µ so that the use of the BP detector becomes practically

feasible. The choice of µ poses as a complexity constraint on the number of ISI

taps compensated by the BP detector. Smaller values of µ put more of the burden

in ISI compensation on the DFSF, whereas larger values put more burden on the

BP detector. We note that the DFSF includes a regular DFE comprised of the

feedback loop with filters w and g that ideally suppress all ISI, enabling the slicer

to make tentative decisions. These tentative decisions are filtered by g̃ and added

to the information corrupted by the ISI channel and the feedforward filter to result

in the controlled ISI to be mitigated by the BP detector. While we delay discussion

of the design ofw, g, and g̃ until section 4.3, we note that a structure similar to the

DFSF was considered in the classic channel-shortening literature [91], though in

that case the locations of the residual ISI taps were constrained to be contiguous.

By setting the first µ − 1 taps of g̃ to zero, the channel shortener in [91] leaves

µ contiguous uncompensated taps in the effective channel which are compensated

by a Viterbi detector.

We assume that the channel, the feedforward filter, and the feedback filters are

modeled as FIR filters of lengths Lh, Lw, Lg, and Lg̃ = Lg, respectively. Thus, the



72

received data is given by

y[k] =

Lh−1∑

l=0

h[l]x[k − l] + n[k]. (4.1)

After filtering the signal by the feedforward filter and adding the contribution of

the feedback filter, the signal input to the slicer is given by

z[k] =
Lw−1∑

l=0

w[l]y[k − l] +

Lg−1
∑

l=0

g[l]x̂[k − l − 1]

where x̂[k] are the unreliable tentative decisions output from the slicer. Similarly,

the output of the DFSF can be written as:

u[k] =
Lw−1∑

l=0

w[l]y[k − l] +

Lg−1
∑

l=0

g̃[l]x̂[k − l − 1] (4.2)

which gets passed to the soft-input soft-output BP detector that outputs likelihood

values that can be used to make decisions as to what was transmitted.

Under the optimistic assumption that the slicer makes correct symbol decisions,

the output of the slicer is equal to a delayed version of the transmitted symbols,

or x̂[k] = x[k − ∆] where ∆ is the symbol delay. In this case, the output of the

DFSF can be written as

u[k] =
Lc−1∑

l=0

c[l]x[k − l] + v[k] (4.3)

where c[k] , (h[k] ⋆ w[k]) + g̃[k −∆− 1] is the combined response of the channel

and DFSF having length Lc = Lh + Lw − 1, and the DFSF output noise, which is

colored, is given by v[k] = n[k]⋆w[k]. We use the ⋆ operator to denote convolution.

In this chapter, we focus our attention on the design of the decision-feedback

sparsening filter. As such, we make the simplifying assumption that the channel h

is known perfectly to the receiver. It is rather straightforward, however, to extend
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our proposed design method to adaptive implementations which can be employed

in situations where the channel is unknown and/or slowly time-varying.

4.3 Decision Feedback Sparsening Filter

In the design of the DFSF filters w, g, and g̃, the goal is for the number of

significant (nonzero) taps of the effective channel c to be µ or less, regardless of

where they lie in c or whether they are contiguous or not. We note that µ ∈

{1, 2, . . . , Lh} is a parameter chosen by the system designer. If µ = 1, then the

detector coincides with a traditional DFE since the goal of the DFSF design is

to make the effective channel be a single spike. At the other extreme, the choice

µ = Lh corresponds to “pure” BP detection as in [25] since the DFSF need not

do any sparsening and can be a simple unity gain filter w and a zeroed g̃. Large

choices of µ will result in an exponentially more complicated BP detector, but will

also result in better BER performance.

We now address the design of the filter coefficients w, g, and g̃. As the DFSF

contains an embedded DFE and requires tentative decisions from the memoryless

slicer, we choose w and g so that the input to the slicer is (nearly) ISI-free. Toward

that end, we adopt the popular minimum mean-squared error (MMSE) criterion

to design the feedforward and feedback filters which cancel all of the ISI in a

suboptimal manner. To shift some of the burden in ISI compensation from the

DFE to the more sophisticated BP-detector, the DFSF has another signal path

leading to the BP detector where a filter g̃ is designed so that µ taps of controlled

residual ISI are left in the effective channel. As we will discuss, we can derive g̃
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from the MMSE choice of g so that the combined response of the channel and

DFSF results in an effective channel with µ taps of residual ISI.

First we define

x[k] = [x[k], x[k − 1], . . . , x[k − Lw − Lh + 2]]⊤

and

Σ∆ ,

[

0Lg×(∆+1) ILg
0Lg×(Lw+Lh−∆−Lg−2)

]

.

Also, under the assumption that the output of the slicer consists of correct decisions

delayed by an amount ∆, we have x̂[k] = x[k − ∆] and can write the vector of

symbol decisions with length Lg at time k − 1 as

x̂[k − 1] = Σ∆x[k].

Let H be the Lw×Lc wide convolution matrix of h, i.e. a Tœplitz matrix with first

row [h⊤,01×Lw−1] and first column [h[0],01×Lw−1]
⊤. As an example, for Lw = 3,

Lh = 3

H =

[
h[0] h[1] h[2] 0 0
0 h[0] h[1] h[2] 0
0 0 h[0] h[1] h[2]

]

.

Then, the slicer input can be rewritten as

z[k] = w⊤(Hx[k] + n[k]) + g⊤x̂[k − 1].

And, under the assumption of correct slicer decisions, we can write the DFSF

output as

u[k] = c⊤x[k] + v[k],

as in (4.3), where c = H⊤w+Σ⊤
∆g̃ and v[k] = w⊤n[k]. To find the MMSE DFE,
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we minimize the cost function

Jmse(w, g) = E
[
|z[k]− x[k −∆]|2

]

= w⊤(HH⊤ + σ2
nILw

)w + 2w⊤HΣ⊤

∆g

+g⊤g − 2w⊤He∆ + 1

over w and g, where

e∆ =



0, . . . , 0
︸ ︷︷ ︸

∆

, 1, 0, . . . , 0
︸ ︷︷ ︸

Lw+Lh−∆−2





⊤

and x[k−∆] = e⊤
∆x[k]. Note that we assume that the source has unit power, and

that the data is uncorrelated with the noise. This results in the classic finite-length

MMSE DFE design equations:

wopt = [H(ILc
−Σ⊤

∆Σ∆)H
⊤ + σ2

nILw
]−1He∆

gopt = −Σ∆H
⊤w

We now turn to the design of g̃, which is chosen so that µ taps of controlled ISI

are left uncanceled by the DFSF. In [91] the µ non-zero taps in the effective channel

were required to be contiguous, and consequently g̃ was chosen to be equal to g but

with the first µ− 1 taps set to zero. Here, since we are employing a BP detector,

we have the flexibility of choosing the µ nonzero taps to appear anywhere in a non-

contiguous fashion, giving us






Lc

µ




 = Lc!

(Lc−µ)!µ!
possible choices. As such, the

design of the DFSF involves two issues: picking the best locations for the µ nonzero

taps in c, and picking the values of the filter coefficients for best performance. As

discussed in [92], large taps in the feedback portion of DFEs have a tendency to

enhance the effects of error propagation. As such, we propose to zero the µ − 1
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largest taps in g to create the filter g̃ which has equal length. Thus, we leave

the large taps in the effective impulse response c to be compensated by the more

effective BP detector.

To illustrate the design of w, g and g̃, Fig. 4.2 provides an example showing

the calculated impulse responses of the filters for the channel h = [0.5, 0.2, 1, 0.3]

at 5 dB SNR, with ∆ = 5 and µ = 2.
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Figure 4.2: Impulse responses



77

4.4 Numerical Results

In order to provide evidence of the efficacy of the decision feedback sparsening fil-

ter design, we simulate two fading environments and compare their performance to

Roy’s sparsening filter design [26], a classical linear MMSE equalizer with a memo-

ryless slicer and a classical DFE. In addition, to assess the performance degradation

due to noise coloring, we include in the simulation a modified DFSF that mini-

mizes the cost function given in (3.7), by adding the squared autocorrelation term

that penalizes non-flatness of the spectrum of w. To analyze the impact of the

noise coloration in the DFSF scheme, we also compare it to the greedy Sparse

Shortening SNR (SSSNR) [93], discussed in Chapter 2, that also uses the squared

autocorrelation penalizing term. We choose β = 0.2 for both schemes.

We first consider the ITU Vehicular A channel [89] that has six paths arriving at

[0, 310, 710, 1090, 1730, 2510] ns and a power-delay profile of [0,−1,−9,−10,−15,−20]

dB. In our simulations we used a square-root raised cosine pulse and a symbol du-

ration of T = 80ns, which generally resulted in a sparse equivalent discrete channel

with average length of 21 taps. Also, we transmit uncoded BPSK symbols and use

10 iterations in the BP detector. We design the DFSF to sparsen the channel to

µ = 3 taps, we let Lw = 32, Lg = 40 and the delay to be equal to ∆ = 18. For

this simulation, the classical DFE also has Lw = 32 and Lg = 40 and the linear

equalizer has length equal to 32.

The BER results are shown in Fig. 4.3. It is apparent that DFSF-based schemes

employing a BP detector have the best performance among the simulated equal-

ization methods. Notice that at a 10−4 BER the DFSF-based schemes outperform
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Figure 4.3: Bit error rates for the Vehicular A channel

the classical DFE by approximately 4 dB, indicating a significant improvement

in relation to Roy’s and the other methods that do not employ the BP detector.

When comparing to the greedy SSSNR design technique with the squared autocor-

relation term, the improvement is about 1 dB at 10−5 BER. However, the greedy

SSSNR algorithm requires the calculation of 93 sparsening filters, while the DFSF

design requires the calculation of only one filter. This suggests that the DFSF de-

sign improves BER performance when compared to existing equalization-detection

methods while reducing receiver complexity.

We also note that the use of the squared autocorrelation term does not pro-

vide great improvement in the DFSF BER performance for the vehicular channel.

At 10−5 BER, the difference is only 0.5 dB. When comparing with the SSSNR

greedy approach in [93] for the same channel, we verify that the difference between

SSSNR greedy and SSSNR greedy+autocorrelation is approximately 2 dB before

the saturation. This contrast arises from the fact that in the feedforward filter in
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Figure 4.4: Bit error rates for 5-tap channel with equal power delay profile

the DFSF scheme already tends to be approximately flat for the vehicular channel

and the addition of the penalizing term does not result in drastic noise-coloring

improvement.

In addition, to show that the proposed scheme can also be employed successfully

to mitigate non-sparse channels, we consider next a 5-tap fading channel with equal

power delay profile of [0.2, 0.2, 0.2, 0.2, 0.2]. For this simulation environment, we

transmit uncoded BPSK symbols, and we use 15 iterations in the BP detector. We

design the DFSF to sparsen the channel to µ = 3 non-zero taps, Lw = 15, Lg = 5

and the delay to be equal to (ν +Lw)/2, where ν is the position of the largest tap

in the channel. The length of the pre-filter for Roy’s and SSSNR scheme is equal

to 15 and both are also designed to use µ = 3 non-zero taps. For this simulation,

the classical DFE and the linear equalizer have Lw = 15 and the feedback filter for

the DFE has length Lg = 5.

Fig. 4.4 shows the simulation results for the 5-tap fading channel with equal
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power delay profile. Once again the DFSF method with squared autocorrelation

has the best performance among all simulated schemes. We also note that the ad-

dition of the squared autocorrelation term increased the performance improvement

in relation to the Vehicular A channel.

4.5 Chapter Summary

In this work we have considered the design of decision feedback sparsening filters as

a way to reduce the complexity of iterative soft-input soft-output MAP detectors.

By designing the sparsening filter so that the combined response of the (possibly

non-sparse) channel and filter has a sparse impulse response, i.e. a response with

only a handful of significant taps, the use of a BP-based MAP detector becomes

feasible for detecting the bits. We proposed a filter design metric based on classical

DFE design, but where we allow the largest µ−1 taps in the feedback filter to be left

as residual ISI which is compensated by the BP detector. Numerical simulations

showed that the proposed scheme can be employed satisfactorily to both sparse and

non-sparse channels without requiring great computational cost in the receiver.



Chapter 5

Interface Architecture for Software

Defined Radio Systems

In this chapter we present a novel interface framework between an IIO-based radio

platform and the GNU Radio SDR development environment in order to enable

connectivity and software support for the FMCOMMS1 module. Specifically, we

expanded the initial hardware interface framework developed at Analog Devices

by enhancing the functionality of the libraries, facilitating seamless connectivity

between the IIO-based radio platform and GNU Radio.

5.1 Background

The FMCOMMS1 high-speed analog module [4] was designed to demonstrate the

latest generation of high-speed data converters. The FMCOMMS1 module dis-

plays sampling-level processing capabilities of 1GS/s and enables radio frequency

(RF) applications across a wide frequency range. In addition, it is customizable

across software, and without any hardware changes it is possible to use different

configurations that can be applied in many different communications applications.

Following the FMCOMMS1, ADI also developed the another RF Front-End: the

AD-FMCOMMS2-EBZ [5]. The FMCOMMS2 is a high-speed analog module in-

corporating the AD9361, a high performance, integrated, RF agile transceiver. It

is intended for use in applications, such as 3G and 4G base stations and soft-

81
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ware defined radio systems. The device integrates a RF front-end portion with a

mixed-signal baseband section and frequency synthesizers.

Although ADI’s FMCOMMS modules are currently available to the community,

there does not presently exist substantial software support for these products in

terms of a software environment for communications system design and prototyp-

ing, e.g., GNU Radio [74], that can enable the community to use these platforms

for over-the-air experimentation.

5.1.1 FMCOMMS 1 RF Front End

The FMCOMMS1 board (Figure 5.1) consists of two main functional partitions,

namely, the transmit path and receive path [4]. In Table 5.1, the main components

of the board in both paths, as well as their specifications, are presented.

In the transmit direction, the system converts complex in-phase (I) and quadra-

ture (Q) signals into a corresponding RF signal. In the first stage, the digital-analog

converter (DAC) interpolates the complex samples and translates the signal to

baseband signal. From the DAC output, the signal is sent to a quadrature modu-

lator and again translated to the specified RF output frequency. The analog filter

still passes an image rejection filter and an amplifier for +20dB gain. Finally, the

RF output power can be controlled by adjusting the baseband data.

In the receive direction, the RF signal is demodulated by the direct-conversion

quadrature and brought back to baseband frequency. The resulting I and Q base-

band signals are filtered and amplified to obtain 4.5 dB to 20.25 dB of gain. Before
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(a) Top view
(b) Bottom view

Figure 5.1: The FMCOMMS1 module is a RF front-end (RFFE) board. Here we

have the board and markers highlighting important components of the platform,

such as the ADC, DAC, (de)modulators and amplifiers. Source: [4], used with

permission.

the ADC, there is an anti-alias filter, which removes harmonics and other out-of-

band signals. Finally, the samples are converted to the digital domain by the ADC

and the complex samples are processed by the DMA interface.

5.1.2 FMCOMMS 2 RF Front End

Since the AD9361 chip operates in the 70 MHz to 6 GHz range, it covers most of

the frequency bands used for most radio standards. As mentioned previously, by

changing the sample rate, digital filters, and decimation and interpolation factors
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Table 5.1: Listing of the FMCOMMS1 module hardware components present in

both transmit and receive paths, with respective specifications. We show the part

numbers for each component and the descriptions and specifications. Source: [4]

Components Specifications

AD9122 Dual, 16-Bit, 1200 MSPS,

Digital-to-Analog Converter

ADL5375 400 MHz to 6 GHz Broadband

Quadrature Modulator

ADF4351 Wideband Synthesizer with Integrated

VCO (35MHz to 4400MHz)

ADL5602 50 MHz to 4.0 GHz RF/IF

Gain (20dB) Block

ADL5380 400 to 6000 MHz Quadrature Demodulator,

500MHz bandwidth

AD8366 DC to 600 MHz, Dual-Digital Variable Gain

( 4.5dB to 20.5dB) Amplifiers

AD9643 14-Bit, 250 MSPS, Dual Analog-to-Digital Converter

(ADC)

ADF4351 Wideband Synthesizer with Integrated VCO

(35MHz to 4400MHz)

inside the AD9361, the system is capable of supporting channel bandwidths up to

56 MHz. The data path consists of a LNA (Low Noise Amplifier), a demodulator,

a LPF (Low-Pass Filter), an ADC (Analog-to-Digital Converter) and digital filters

in the receiver portion and digital filters, a DAC (Digital-to-Analog Converter) and



85

modulators in the transmitter portion. The key features of receive and transmit

paths are shown in Table 5.2.

Figure 5.2: The FMCOMMS2 is a high-speed analog module designed by Analog

Devices. Source: [5], used with permission.

The AD9361 transmit signal path receives 12-bit 2’s complement data in I-

Q format from the AD9361 digital interface, and each channel passes this data

through four digital interpolating filters to a 12-bit DAC. In order to obtain dif-

ferent data rates, each of the four interpolating filters can be bypassed. Fig. 5.3a

shows a block diagram for the AD9361 TX signal path. The TX FIR filter is a

programmable poly-phase FIR filter. Its number of taps is configurable for a mini-

mum of 16 and a maximum of 128 taps, and its gains can be set to values between

-6dB and 0dB. The filters HB1 and HB2 are fixed-coefficient half-band interpo-
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lating filters, while HB3/INT3 provides two different choices of fixed-coefficient

interpolating filters; it can interpolate by a factor of 2 or 3. After the DAC, there

are two analog filters: the BB LPF, a third-order Butterworth low-pass filter, and

the secondary LPF, a single-pole low-pass filter. Both analog filters possess a pro-

grammable 3dB corner frequency and are responsible for reducing spurious outputs

Table 5.2: Listing of the FMCOMMS2 key features [5].

Receive Path Specifications

NF 2.5dB @1GHz

ADC Continuous time sigma-delta, 640MSPS

Digital Filters 128 complex taps,

decimation between 2 and 48

Gain 1dB step size, 80dB analog range,

30dB digital range (post ADC scaling)

Transmit Path Specifications

DAC 320MSPS

Digital Filters 128 complex taps,

decimation between 2 and 48

Gain 0.25dB step size, 86dB range

Clocking & Power Specifications

Clock 40MHz crystal

ADP1755 Low dropout, linear regulator, 1.2A, 1.6 to 3.6V

ADP7104 High accuracy, 500mA LDO

ADP190 High side power switch, 1.1 V to 3.6V input range
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(a) Transmitter (TX) signal path. The input data for this block diagram is in 12-bit 2s

complement in I/Q format and its output goes to the RF mixer.
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(b) Receiver (RX) signal path. The input data for this block diagram is an IF signal

and it outputs downconverted I and Q signals to the baseband section.

Figure 5.3: Signal paths in the FMMCOMMS2 software-defined radio platform.

Inside the AD9361, both TX and RX sections are composed by two signal paths,

one for each channel (I and Q).

and providing general low pass filtering prior to up-conversion. Note that both the

I and the Q paths are schematically identical to each other.

The AD9361 RX signal path passes downconverted signals (I and Q) to the

baseband receiver section. The baseband RX signal path is composed of two

programmable analog low-pass filters, a 12-bit ADC, and four stages of digital

decimating filters. Each of the four decimating filters can be bypassed. Figure

5.3b shows a block diagram for the AD9361 RX signal path. The RX LPF is a

single-pole low-pass filter and the BB LPF is a third-order Butterworth low-pass

filter. As in the TX signal path, they are responsible for reducing spurious signal

levels and for providing low pass filtering prior to upconversion. The digital filters

HB3/DEC3, HB2, HB1 and RX FIR are equivalent to the digital filters present in

the TX signal path. Note that both the I and Q paths are schematically identical

to each other.
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As already mentioned, the four blocks leading up to the DAC in Fig. 5.3a form

the digital filtering section of the transmit path, while the four blocks following

the ADC in Fig. 5.3b comprise the digital filtering for the receive path. These

programmable filters provide the bandwidth limiting required prior to conversion

from digital to analog in the transmitter section and bandwidth limiting and out

of band noise and spurious signal reduction after digitalization in the receiver

section. They also provide interpolation/decimation to generate the correct data

rates. In each filter, interpolation/decimation is performed first, followed by the

filter transfer function.

5.1.3 ZedBoard and the SDR Platform

As already mentioned, the FMCOMMS modules are analog front-end hardware

platforms [66] that are responsible for dealing with the RF portion of a wireless

transmission. In addition to the front-end, a digital communication system also

requires a radio back-end, which is responsible for the remaining signal processing

operations in a receiving or transmitting chain [94]. It is in the back-end that op-

erations such as (de)modulation, filtering, and channel (de)coding are performed,

already in the digital domain. The main idea of a SDR system is to implement

the digital radio back-end in software in order to provide some degree of reconfig-

urability.

We can observe in Figures 5.4 and 5.5 that the FMCOMMS board is attached to

the fabric portion of the SDR platform. This fabric can be represented by various

FPGA development boards, where the software is loaded in order to perform the
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digital signal processing methods to implement the communications algorithms.

Originally, the FPGA boards combined with FMCOMMS boards can use different

microprocessors: ML605, KC705, ZC702, ZC706 and the ZED (Zync). For each

one of these devices, ADI provides Linux support by developing drivers for the

different parts on the FMCOMMS board. In this work, the software portion of the

SDR platform is implemented through the usage of Xilinx’s ZedBoard [95]. The

Zedboard is a development kit based on the Zync-7000 SoC and can be combined

with the FMCOMMS boards to form a complete SDR platform

Figure 5.4: Functional Schematics of the hardware of the SDR Platform. On left,

we have the ZedBoard and on right we have the FMCOMMS1 RF Front-End. The

figure illustrates the transmit and receive chain as well as the functional blocks

that are in radio transmission using this platform. Source: [4], used with permission.

The connection between the two boards is performed through a FMC (LPC)

connector, which delivers and receives the complex samples to the DAC and to

the ADC at a signaling speed supported of up to 10GB/s. Note that the complex

samples in this platform can be generated from an internal DDS or an external

memory. The internal DDS is formed by four independent signal generators. These
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four signal generators are combined to create two tones (the I and Q signals) that

are delivered to the DAC. Additionally, the Zedboard includes a Gigabit ethernet

interface that allows remote access to the onboard system. It also provides a 4GB

SD Card that can be used to boot a Linux environment. With this feature in

mind, Analog Devices provides Linux images built for the FMCOMMS modules

that complete and enable the development environment.

The industrial I/O subsystem [96] in the Linux kernel provides a unified frame-

work for drivers for many different types of converters, sensors, RF devices, etc

Figure 5.5: Schematic of the software-defined radio hardware. On left, we have

the FPGA development board and on right we have the FMCOMMS2 RF Front-

End. The figure illustrates the transmit and receive chain. Source: [5], used with

permission.
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using a number of different physical interfaces (i2c, spi, parallel, high speed se-

rial, etc). It does this by provide a common user space API for these types of

devices. Originally targeted at analog to digital (ADCs) and digital to analog

converters (DACs), it has expanded to accelerometers, digitally controlled ampli-

fiers (DVGAs), capacitance to digital converters, direct digital synthesis, frequency

synthesizers/phase-locked loop, gyroscopes, impedance converters and network an-

alyzers, and inertial measurement units, which are natively supported by Linux.

Consequently, the forced abstraction between hardware devices, and userspace

algorithms, ensures that hardware can be swapped out, and algorithm development

stays exactly the same. Changing hardware is no longer an task of pouring through

semiconductor vendor datasheets to write a new driver, but a simple matter of

recompiling the Linux kernel. The IIO subsystem was accepted into the mainline

Linux kernel (in ./drivers/iio/) as of April 2012, and over the last years it has

been going through numerous improvements, and iterations, similar to the others

pieces of the Linux kernel.

The IIO Command Server [97] is a library that was developed to allow to

communicate with the components in the board through the network, and runs

on the embedded target and translates a set of simple human readable commands

into more complex sysfs and device node interactions. This allows network clients

(Matlab, GNURadio, Labview, etc) access to the data available from the real

hardware, and makes it a low cost, low overhead networked based data acquisition

platform. The IIO Command Server is also referenced as IIO lib 1.0. Its later

version, IIO lib 2.0, was released in 2014 and it unifies the network and local

accesses.
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5.1.4 Interface with GNU Radio

Once the libraries and drivers that directly interface with the FMCOMMS compo-

nents are installed on the ZedBoard, communications with the RF-front end can

be performed by the user. To assist the user, a software development environment

such as GNU Radio can be used to implement communications systems that uti-

lize the FMCOMMS1 module for real wireless transmission. However, in order to

access and communicate with the components on the SDR platform, it is necessary

to access the IIO-lib from inside GNU Radio.

As already mentioned, GNU Radio works by using flow graphs. This means

that each digital signal processing (DSP) component is represented by a block and

systems can be built by connecting the blocks according to a determined signal

flow. For the GNU Radio user, it is important that the communication with the

hardware portion of the radio transmission to be transparent since the user is

mainly interested in the digital portion of the signal processing. Consequently, the

objective is to deliver or collect the complex samples to be processed or generated

by the DSP blocks in a flow graph from within a GNU Radio application.

To address this problem, we developed both sink and source blocks in GNU

Radio in order to collect and deliver the I/Q samples to other blocks in a flow

graph. When necessary, it is also possible to control certain parameters of the

components in FMCOMMS1 module, such as transmission power, center frequency

and bandwidth. The sink block functions as an information sink: it absorbs the

samples from the output of flow graph and manages the transmitting process in

the hardware. On the other hand, the source block manages the receiving process
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in the RF-Front End and delivers the complex samples to the other blocks in the

flow graph. In a lower level, the blocks communicate directly to the DAC and

ADC buffers. Using the drivers and libraries (IIO lib) made available by ADI,

it is possible to write and read directly to and from the buffers of the hardware

components, taking into consideration the used data types (offset binary in the

FMCOMMS1 case).

In this work, we present two ways of accessing and driving the components

in the RF front-end: from a GNU Radio environment running inside the Zync,

or from a remote host running GNU Radio, communicating through the Ethernet

connection. Figures 5.7 and 5.6 illustrate these two different options.

SDR PlatformRemote Host

Flow 

Graph

IIO

Sink/

Source

HW

Components

FMCOMMS1
Ethernet User

IIO

Lib
IIO

Server

IIO

Drivers

GNU Radio
ZedBoard

Kernel

FMC 

Connector

Figure 5.6: High level illustration of the transmitting/receiving processes using

the Ethernet connection in the ZedBoard. The sink/source blocks in GNU Radio

communicate with the IIO drivers in the Zedboard.

Figure 5.7 shows the signal flow of the transmitting/receiving processes when

the application implemented in GNU Radio is running inside the SDR Platform.

The flow graph of the application delivers or collects complex samples to the sink

block or from the source block, respectively. The sink/sources blocks communi-

cate with the FMCOMMS1 hardware components using the IIO Lib and the IIO

Drivers.

Figure 5.6 shows the signal flow of the transmitting/receiving processes when
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Figure 5.7: High level illustration of the onboard transmitting/receiving processes.

The sink/source blocks in GNU Radio communicate with the IIO drivers inside

the same platform.

the application implemented in GNU Radio is running in a remote host computer.

In this case, the interactions between the GNU Radio blocks and the IIO Lib

remains identical to the former case, but now they happen on a remote host com-

puter instead of the ZedBoard. To communicate with the SDR platform a network

interface is used to access the IIO-Server running on the Zynq processor. The

IIO-Server program is then used to communicate with the IIO Drivers and later

to the FMCOMMS1 board. In this setup, the bottleneck becomes the ethernet

connection, which limits greatly the speed of processing when compared to the

previous option.

5.2 Interface Development

To validate the interface between GNU Radio and the FMCOMMS RF front-ends

we provide a suite experiments to test the correct functioning of the developed GNU

Radio blocks. The objective is to demonstrate the exchange of information between

a GNU Radio application and the SDR platform as well as the potential use of the

new hardware on the implementation of advanced and practical communications
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systems with this development environment.

5.2.1 Source Block

To test the interface with GNU Radio, we start with the source block by guaran-

teeing the correct reception of a known signal. We thus use the DDS component

from the ZedBoard, a loop connecting the transmitting and the receiving chains

and simple python application in GNU Radio. A sinusoid is generated from the

DDS component in the development kit and is passed through the transmit chain.

The signal is fed back to the receiving chain and then is sampled from the ADC.

Figure 5.8 shows the experiment’s signal path.

DDS

Component DAC Ampli�erModulator

Demodula-

tor
Ampli�erADCGNU

Radio

(a)

(b)

(c)

Figure 5.8: Experiment Set-Up. The points (a), (b) and (c) show the probing

positions for the obtained measured signals in the Results subsection

After sampling the ADC, the samples are fed into the GNU Radio environment

and processed to be displayed using two different python applications. The corre-

sponding setup can be visualized by the flow graph represented in Figure 5.9. With

this figure, it is possible to understand the data path in the user space. The ADC’s

buffer is sampled and the samples are processed inside the IIO Source to generate

the I/Q information which is required as input for GNU Radio. The processed

samples then feed python blocks created as GUI elements [98] used to visualize the



96

received signal. We provide visualizations in both time and frequency domains.

I/Q

ADC
IIO

Source
Python

Block

GNU Radio

Figure 5.9: GNU Radio Flow Graph

As can be observed, in Figure 5.1, the FMCOMMS1 board presents various

probing points that can be used to measure the flowing signal and help on debug-

ging any kind of system implemented using this platform. With the aid of this

probe points, it is possible to analyze the hardware’s signal path and to confirm

the expected behavior of the SDR Platform as well as to compare it with the re-

sults obtained in the software platform. Figure 5.10 presents plots of the signal

measured in the points indicated in Figure 5.8.

In Figure 5.10, it is possible to visualize the transmitted/received signal at

three different points: right after the DAC component, when the signal has been

converted to the analog domain, at the receiving/transmitting RF antennas and

right before the ADC component, which will convert the analog signal back to

the digital domain. The first two pictures show the transmitted and received

sinusoids in the time domain. We note that the frequencies for both sinusoids

match the frequency designated in the DDS (4MHz), but the signals differ in

amplitude and DC gain from each other. While the signal measured in (a) presents

an amplitude of approximately 180 mVpp and a DC gain of 482 mV, the signal in

(b) presents 1 Vpp of amplitude and 1.56 mV of DC gain. This discrepancy can be

explained by the gains and amplifiers stages between the two measurements and

the different voltage levels required by each analog component. In this regard, the
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(a) Signal measured in a oscilloscope right

after the DAC component. The measure

point is indicated as (a) in Fig. 5.8.

(b) Signal measured in a oscilloscope right

before the ADC component. The measure

point is indicated as (b) in Fig. 5.8.

(c) Frequency Response of the RF signal ob-

tained with a spectrum analyzer. The mea-

sure point is indicated as (c) in Fig. 5.8

Figure 5.10: Plots obtained by probing the FMCOMMS1 board as indicated in

Figure 5.8. The transmitted/received signal is shown at different stages of the

radio transmission.

most important feature of the signal, which is the frequency, is conserved.

The last plot shows the RF signal frequency spectrum. As the RF frequency

is in the GHz range, the time domain information looses relevance and a spec-

trum analyzer becomes the ideal measurement tool. It can be observed that the

signal spikes at approximately the expected frequency: 2.404 MHz. Some other
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harmonics can be observed around it, but at the maximum level of -30dBm. In

summary, the analog information guarantees the preservation of the characteristics

of the digitally generated signal and provide a strong base of comparison with the

desired results in the software environment.

Figures 5.11 and 5.12 are images of the GUIs created in python to aid the

analysis of the received sinusoid. The GUI provides basic information usually

common in real-life oscilloscopes and spectrum analyzers. In Figure 5.11, it is

possible to visualize the received sinusoid in the time domain. In this case, the

signal’s amplitude is being represented in counts, in relation to the quantization

levels of the ADC component. The time scale is represented in µs. With the

two datatips, it is possible to calculate the signal’s period, which is 0.25286µs.

The frequency is calculated to be ≈3.9447 MHz, matching the digitally generated

sinusoid’s frequency and the measured analog signal in hardware.

Finally, Figure 5.12 shows the frequency response of the received signal. The

datatip shows the frequency of the signal at ≈3.96753MHz as expected, and the

noise floor at approximately -10dB. The noise floor indicates precision problems

in the FFT calculation and requires further investigation in terms of consistent

visualization. Being able to obtain frequency information is essential to any com-

munications system design and marks the first step toward more complex system

implementations.
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Figure 5.11: View of the oscilloscope application in GNU Radio. The GUI shows

the signal sampled from the ADC and processed to be compatible with the GNU

Radio environment. In this figure, we see a time domain plot of the signal with a

measured frequency of 3.9447 MHz

5.2.2 Sink Block

The next step to validate the interface was to test the functionality of the sink

block. We use the GNU Radio environment to generate a sinusoid in the digital

domain and to transmit over the SDR platform. The complex samples are delivered

to the sink block and written to the buffer of the DAC component in the RF board;

the signal passes through the transmit chain, is fed back to the receive chain and

later sampled by the ADC. Fig. 5.13 shows the test environment in GNU Radio

and Fig. 5.14 shows the complete test set-up.

After the signal is sampled by the ADC, the complex samples are collected

by the DMA interface and can be processed by applications running in Linux in

the ARM processor. The ADI IIO Oscilloscope is an example application, which

enables plotting of the data captured from the ADC in three different modes (time

domain, frequency domain and constellation). We use the IIO oscilloscope to verify
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Figure 5.12: View of the spectrum analyzer application in GNU Radio. The GUI

shows the signal sampled from the ADC and processed to be compatible with the

GNU Radio environment. In this picture we see a frequency domain plot of the

signal with a measured frequency of 3.96753MHz MHz

Figure 5.13: GNU Radio environment for test of the sink block.

DAC Ampli�erModulator

Demodula-

tor
Ampli�erADCIIO

Osc.

GNU

Radio

Figure 5.14: Test set-up for the sink block. The signal is generated in GNU

Radio, passed through the RF front-end board and then analyzed using ADI IIO

oscilloscope tool.

the received signal and to compare it with the signal that was generated by the

application in the GNU Radio environment. Fig. 5.15 shows the signal in the IIO

Oscilloscope.
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Figure 5.15: ADI IIO Oscilloscope measurement.

As it can be noticed, the signal measured by the IIO Oscilloscope in the fre-

quency domain matches the generated sinusoid of 4MHz. It is possible to see

that the fundamental component lies at approximately 2403.999MHz, where the

LO frequency is of 2400MHz. As expected, the sink block is capable of correctly

transmitting a sinusoid generated inside the GNU Radio environment.

5.2.3 Complete Interface Experimentation

To provide a complete test for developed the interface with GNU Radio, we again

use a loop connecting the transmitting and the receiving chains and a flow graph

in GNU Radio. A signal is generated using digital signal processing blocks in

GNU Radio companion and its I and Q samples are written to the DAC buffer and

passed through the transmit chain. The signal is then fed back to the receiving

chain and sampled from the ADC. After sampling the ADC, the samples are fed

into the GNU Radio environment to be processed and analyzed. The ADC’s buffer

is sampled and the samples are processed inside the IIO Source to generate the
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I/Q information which is required as input for GNU Radio.

In this sense, we provide an experiment where DBPSK symbols are transmit-

ted using the developed interface. Fig. 5.16 shows the digital blocks used in GNU

Radio to generate, transmit, receive and the analyze the digital symbols. The

transmitter and receiver flow-graphs appear together in this picture for illustra-

tion purposes only; during the experiment each portion is executed by a different

instance of the GNU Radio Companion tool. The ”Random Source” block gener-

ates random bits which are encapsulated in blocks of 2 by the ”Packet Encoder”

block. The information is then modulated and pulse-shaped using the ”DPSK

Mod” block. For this experiment, we used 2 samples per symbol and a root-raised

cosine filter with an excess bandwidth of 0.35. The ”Throttle” block used in both

the transmitter and receives serves as rate-limiting for resource management in

GNU Radio. The I and Q samples are then delivered to the ”Fmcomms sink”

block, which interfaces with the DAC component in the RF front-end. In the

receiver portion, the samples are collected from the ADC into the GNU Radio

environment using the ”Fmcomms Source” block.

Fig. 5.17 shows the DBPSK symbols in different at different stages during

the transmission. The transmitted symbols can be visualized in the ”QT GUI

Constellation Sink” block in the transmitter portion of GNU Radio flow graph.

It is possible to see the DBPSK symbols spread over the In-phase axis given the

pulse-shaping operation. The received symbols can be visualized in two manners:

using the ADI IIO Oscilloscope tool running in the Linux from the ZedBoard or

the other ”QT GUI Constellation Sink” block in the receiver portion of the GNU

Radio flow-graph. It can be noticed that the received symbols present a phase
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Figure 5.16: Transmitter and Receiver configurations in GNU Radio. The signal is

generated and modulated in DBPSK symbols before being sent to the ”Fmcomms

sink”. The signal goes through the transmitting and receiving paths in the hard-

ware platform and the received I/Q are delivered back to GNU Radio through the

”Fmcomms source” block.

rotation in comparison to the transmitted symbols. This rotation is introduced by

the RF cable used to connect the RF in and RF out of the FMCOMMS1 board.

But more importantly, it is possible to compare the received constellations outside

and inside the GNU Radio environment and guarantee perfect match, which shows

the correct functioning of the developed interface for GNU Radio.

In addition to check the correct transmission and reception of digital symbols, it

is important to stress the developed interface to verify the limits in which it starts

to deteriorate. In this sense, we tested different sampling frequencies allowed by

the hardware components (ADC and DAC) and verified the percentage of lost

samples. The test consisted of writing I and Q samples directly to the DAC buffer,

feeding them back to the receiver chain, without passing through the RF portion
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Figure 5.17: Transmitted and received DBPSK symbols sent through the platform.

The transmitted symbols are generated and modulated in GNU Radio and sent

through the transmit chain. The symbols are then fed back to the receive chain

and can be visualized using the ADI IIO oscilloscope tool in the ZedBoard and

inside the GNU Radio environment.
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Table 5.3: Percentage of samples lost during the transmission of 107 samples

Frequencies(MHz) Lost samples(%)

10.31 0.07

30.72 0.16

61.44 0.28

81.30 0.57

98.22 1.34

122.88 2.62

163.54 2.73

245.76 14.29

if the FMCOMMS board, and collecting them in the GNU Radio environment. As

such, we seek to provide an upper bound for the sampling frequencies that can be

supported by the use this software interface with the FMCOMMS SDR platform.

Table 5.3 shows the tested sampling frequencies and the respective percentages of

samples lost during the GNU Radio processing. For each frequency tested, 107

samples were analyzed.

It is easy to note that the interface starts to deteriorate when the sampling

frequency of 245.76 is reached. At this sampling frequency, the ADC buffer fills

up quicker than the GNU radio block is capable of deal with. For future works,

the implementation of a buffer in the GNU Radio blocks should help with accom-

modating higher sampling frequency values. However, in this cases, the trade-of

between throughput and delay needs also to be analyzed.
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5.3 Chapter Summary

In this chapter, we presented an interface architecture that enables software con-

nectivity and support for the FMCOMMS1 board and the GNU Radio develop-

ment environment. We also provided experiments using GNU Radio Companion

and the FMCOMMS hardware platform that attest the correct functionality of the

proposed interface. Finally, we provide a stress test for the developed interface de-

termining that its functioning deteriorates when reaching the sampling frequency

of 245.76 MHz.



Chapter 6

Sparsening Filter Experimentation in

SDR Platform

In order to demonstrate the capability of implementing more complex communi-

cations algorithms and schemes in software and being able of experimenting using

the FMCOMMS SDR platform, different experiments were designed and performed

using the platform. In this paper, we present the SDR experimentation of the BP-

based receptor discussed in Chapter 3 and Chapter 4. As already mentioned, the

pre-filter show-cased in these experiments was first presented in literature in [99]

in its linear version and a decision-feedback structure was later proposed in [100].

We then provide different experimentation set-ups and results for the experi-

mentation of the BP-based receptors with the greedy SSSNR algorithm and the

DFSF in the FMCOMMS SDR platform. In this case, the experiments are not

executed in real-time given the complexity of the BP detector and the number

of interactions necessary to guarantee reasonable performance; the symbols are

collected at base-band and later fed to the detection algorithm.

In addition, to provide error-performance results for the designed detector,

such as BER curves, it is imperative to perform the experiments in controlled

environments for repeatability and accuracy. In this work we show two sets of

experiments executed with the platform running BP-based receptors: experiments

in base-band and experiments in RF frequencies.

107
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Figure 6.1: Experiment using the SDR platform with simulated wireless channel

6.1 Experimentation in Baseband

In Fig. 6.1, we show a block diagram that illustrates the experimentation envi-

ronment. In a host computer, BPSK symbols are generated and loaded to the

SDR platform. The I and Q samples then pass through the transmit chain and

are fed-back to the receive chain without passing the RF portion of the digital

transmissions; the samples are transmitted and received in baseband in a digital

loop-back enabled by software. The received samples are then collected and are

used as input to a wireless channel model also simulated in software in another

host computer before being delivered for processing and detection to the hybrid

structure formed by the sparsening filters and the BP detector.

6.1.1 Experiment Set-Up

In order to perform baseband experimentation with the FMCOMMS1 board, it

was necessary to change the board configuration and re-solder jumps to disconnect

the RF portion of the board as illustrated in Figure 6.2. The FMCOMMS1 board

in baseband configuration is shown in Figure 6.3, where the output of the DAC is

connected to the input of the ADC using SMB cables. The next step is to verify

the signal received in baseband to determine if it is possible to proceed with the

software simulation portion of the experiment. However, as Figure 6.4 shows, the
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Figure 6.2: Schematics for the baseband experiment with the FMCOMMS1 board.

The RF portion of the board is disconnected from the DAC and ADC outputs and

the signal is redirected to go from the DAC output to the ADC input.

Figure 6.3: FMCOMMS1 board in baseband configuration. The output of the

DAC is connected to the input of the ADC using SMB cables.

symbols received in baseband get scattered due to an antenna effect provided by

the connecting cables. In this sense, the detection operation to be performed in

software is hindered and a reasonable error performance becomes infeasible.
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Figure 6.4: The baseband signal received at the ADC. The BPSK symbols are

scattered along the X axis making the detection operation unfeasible.

To perform baseband experimentation with the FMCOMMS2 board, the change

in the configuration can be done by software. As the entire front end is implemented

in a single ship, it is possible to change the value of the configuration registers to

create a digital loopback and obtain the baseband transmission-reception. The dig-

ital back can be implemented by using the FMComms2 Advanced plug-in, in the

”BIST” table, selecting the ”TX-¿RX loopback option. Figure 6.5 shows the re-

ceived BPSK signal for the FMCOMMS2 board, looking as a BPSK constellation,

as expected. In this manner, we can assure that the baseband experimentation will

not hinder the performance of the detection portion to be executed in hardware.
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Figure 6.5: The baseband signal received at the ADC. The BPSK symbols are

showed as expected and the constellation can be easily identified.

For these reasons, we decided to use the FMCOMMS2 board for the rest of the

experiments.

6.1.2 Numerical Simulations

In the first example, we consider the channel h = [0.0722, 0, 0, 0.7217, 0.6495,

0,0, 0.2165, 0, 0.0722]. We design the sparsening filters to leave µ = 2 taps in

the effective channel perceived by the BP detector, we let length of the linear

sparsening filter (greedy SSSNR) and the feedforward portion of the DFSF to

be equal to 15, Lw = 15. Also, we let the feedback portion of the DFSF to be

equal to 5, Lg = 5, and the delay to be equal to ∆ = 10. We transmit uncoded

BPSK symbols, and we use 10 iterations in the BP detector. The BER results
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Figure 6.6: Symbol error rates for multipath channel.
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Figure 6.7: Symbol error rates for vehicular channel.

are shown in Fig. 6.6 and we compare the obtained result with the same scenario

completely simulated in software. We note that the BER performance of the SDR

implementations is very close to the numerical simulations, showing only a minor

degradation, as expected, due to non-linearities in the hardware components and

sampling errors.

In addition, we also considered the ITU Vehicular A channel [89] that has six

paths arriving at [0, 310, 710, 1090, 1730, 2510] ns and a power-delay profile of
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[0,.1,.9,.10,.15,.20] dB. In our simulations we used a square-root raised cosine pulse

and a symbol duration of T = 80ns, which generally resulted in a sparse equivalent

discrete channel with average length of 21 taps. Also, we transmit uncoded BPSK

symbols and use 10 iterations in the BP detector. We design the DFSF to sparsen

the channel to µ = 2 taps, we let Lw = 32, Lg = 40 and the delay to be equal

to ∆ = 18. It is possible to note that in this scenario the SDR implementations

also have error performance similar to the ideal simulated case, which shows the

correct implementation of the proposed scheme.

6.2 Experimentation in RF Frequencies

The baseband experiment is important to guarantee a sanity check for the inte-

gration of the software defined radio platform and the software environment that

is running the digital signal processing portion of the communication system to

be implemented. For a experiment more similar to a real-world situation, it is

necessary to transmit and receive the information in RF frequencies, which is used

in all wireless systems.

As already mentioned, for obtaining error performance analysis, such as BER

curves, the experiments should be conducted using controlled environments for

repeatability and accuracy. In addition, for the BP detector function correctly,

the channel must be known by the algorithm, in order to build the factor graph

used to calculate the a posteriori probabilities. One option is to include a channel

estimator to the system, but the BP detector performance would be limited by the

channel estimation performance and it would no be possible to analyze separately
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Figure 6.8: Experiment using the SDR platform with channel emulator.

the sparsening filter + BP detector structure performance as desired. One second

option would be to use a channel emulator. Radio channel emulators or simulators

are equipments designed to provide a test environment for air interface of wireless

communications systems [101].

6.2.1 Proposed Experiment with Channel Emulators

In Fig. 6.8, we show the proposed experiment set-up. In a host computer, BPSK

symbols are generated and loaded to the SDR platform. The samples are con-

verted to an analog signal by the DAC and is later modulated to a determined RF

frequency by the RF portion of the SDR platform. The signal is then fed to the

channel emulator, which simulates the environment of a wireless channel in RF

domain. The output of the channel emulator is then fed-back to the receive chain

of the SDR platform, passing through the demodulation and sampling processes.

After being sampled by the ADC, the signal is stored and finally used as input to

the SF+BP structure that is executed in another host computer.

The PropSim [102] equipment is a radio channel emulator that enables recreat-

ing the wireless channel propagation effects in a controlled laboratory environment.

It performs a realistic and accurate emulation of typical radio channel propaga-

tion effects, such as multipath and fading and also supports multiple channels for
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Figure 6.9: PropSim channel emulator at the Center for Wireless Information

Network (CWIN) Lab.

MIMO experimentations. The physical radio channel characteristics can all be

emulated independently on Propsim, allowing the repeatability necessary for gen-

eration of BER curves and other error performance metrics. Figure 6.9 shows the

equipment.

We initially proposed the use of the PropSim channel emulator for the experi-

ment in RF frequencies because the Center for Wireless Information Network Lab

(http://www.cwins.wpi.edu/) at WPI possessed the equipment. However, at the

http://www.cwins.wpi.edu/
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moment this dissertation was being produced, the equipment was not functional,

needing specialized technicians to repair it. Thus, an alternative route was made

necessary for the experimentation in RF Frequencies, the experimentation with a

simulated channel.

6.2.2 Experiment with Simulated Channel

In Figure 6.10 the set-up for the experiment with Simulated Channel is shown.

BPSK symbols are generated in a host computer and loaded to the DAC buffer

at the transmit chain. The signal is then transformed to the analog domain,

modulated to a determined RF frequency and amplified to be transmitted over-

the-air using the RF out antenna. In the following, the signal is fed back to the

receive chain using a SMA cable to pass through amplification, be brought back

to baseband and transformed in digital samples by the ADC. The samples are

then collected from the ADC buffer and delivered to the host computer. In the

computer the samples are processed and filtered by a channel model simulated in

software. After the channel, the samples are delivered to the sparsening filter + BP

detector to be detected. With the RF transmission followed by a channel simulated

in software, we are able to identify and analyze impairments and nonlinearities

inherent to wireless transmission maintaining the controlled environment that a

channel modeled in software provides.

As we are now transmitting over RF frequencies, it is necessary to implement

pulse shaping to transmit in a finite bandwidth, so a square root raised cosine is

added in both the transmitter and receiver. Also, some phase is usually added
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Figure 6.10: Experiment using the SDR platform with simulated channel.

when transmitted over the SMA cable and the constellation is rotated. Thus, a

phase compensation is also made necessary in the receiver pre-processing. Figure

6.11 shows the pre-processing required in both transmission and reception.

In this experiment, we use in the transmitter a square root raised cosine filter

with a length of 16 symbols, a rolloff factor of 0.25 and 4 output samples per

symbol; generating a bandwidth of approximately 20 MHz. For the FMCOMMS2

parameters, we chose a RF frequency of 2.4 GHz, a sampling rate of 61.44 MSPS

and a RF bandwidth of 25 MHz. At the receiver we used a square root raised

cosine filter with 16 symbols of length, 0.25 of rolloff factor, 2 input samples per

symbol and decimation factor of 2. Figure 6.12 shows the received constellation.

In (a) we show the symbols collected from the ADC buffer; note the rotation in

the constellation. Part (b) shows the received symbols after the phase compen-

sation and Part (c) shows the symbols after the square root raised cosine filter.

Note that even though it is possible to recognize the BPSK constellation, the RF

transmission introduced noise in the process resulting the smearing of the BPSK

symbols, specially in the real axis. The symbols collected after the receiver filter

are delivered to the simulated channel + detection portion of the experiment.
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Figure 6.11: Pre-processing required for experiment. At the top we have the

pre-processing that occurs in the transmission. At the bottom we have the pre-

processing in the reception.

6.2.3 Numerical Simulations

For the error performance evaluation in the experiments with RF frequencies, we

once more first consider the channel h = [0.0722, 0, 0, 0.7217, 0.6495, 0,0, 0.2165,

0, 0.0722]. As the previous experiment, µ = 2, Lw = 15, Lg = 5, ∆ = 10 and

10 iterations in the BP detector. We also considered the same model for the ITU

Vehicular A channel with µ = 2 taps, Lw = 32, Lg = 40 and ∆ = 18. The BER

results are shown in Figures 6.13 and 6.14. For comparison, BER curves of the

ideal completely simulated scenario are also included.
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Figure 6.12: The received BPSK symbols. In (a) the received constellation col-

lected from the ADC’s buffer. In (b) we have the constellation after the phase

compesantion and in (c) after the square root raised cosine filter.
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Figure 6.13: Symbol error rates for multipath channel.

As expected, the additional noise process added by the RF transmission (an-

tenna effects, non-linearities in the RF modulation process and transmission over

the SMA cables) had a significant impact on the performance of the sparsening fil-

ter + BP detector structure. At higher SNR’s, the performance loss was of 2dB for

the h = [0.0722, 0, 0, 0.7217, 0.6495, 0,0, 0.2165, 0, 0.0722] and 3 dB for the ITU

Vehicular A channel. However, although the proposed hybrid structure showed a

degraded error performance in the experiment with RF frequencies, it still showed

a monotonically decreasing error behavior in terms of SNR, showing encouraging
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Figure 6.14: Symbol error rates for vehicular channel.

potential for real-world applications.

6.3 Chapter Summary

In this chapter we presented experiments on a SDR platform of the sparsening

filters discussed in Chapters 3 and 4. The experiments with the simulated channel

show that the ideal and SDR implementations error performances are similar in

both multipath and vehicular channels. In the RF frequencies experiments case,

the RF transmission showed to have significant impact on the error performance

of the proposed BP-based receivers.



Chapter 7

Conclusions and Future Work

7.1 Concluding Remarks

In this dissertation, several contributions have been made in the area of pre-filtering

design for BP-based receivers and Software-Defined radio technology. The research

achievements of this thesis are the following:

• A filter design metric called the Sparse Shortening SNR and linear sparsening

filter design techniques that reduce the complexity of BP-based receivers.

In addition, we incorporated a solution to the noise coloring issue in the

design of the sparsening filters. The proposed schemes showed a better error

performance than other schemes previously proposed.

• A filter design metric based on Decision-Feedback equalizers to reduce the

complexity of BP-based receivers. The proposed scheme showed a satisfac-

tory error performance with great computational gain.

• A novel interface architecture that allows connectivity between the FM-

COMMs SDR platform and the GNU Radio environment. Experiments

showed the correct functionality of the proposed platform and a through-

put performance characterization was also provided.

• Experimentation of BP-based receivers in a Software-Defined radio environ-

ment.
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7.2 Future Work

There also exists several topics resulted from this research that could be continued.

• In the design presented in 4.3, the tentative decisions that are fed back in

the sparsening filters structure are executed by a simple slicer. A next step

is to replace the tentative decisions in the feedback filter with more reliable

decisions output by the BP detector.

• Both schemes proposed in 3.2.2 and 4.3 are static. An interesting next step

is to consider fractionally-spaced or adaptive versions of the filter design.

• Analog Devices developed an updated version of the libraries used to connect

to the FMCOMMs boards. Future work should include incorporating the new

library to the GNU Radio blocks and get the blocks incorporated to the GNU

Radio Tree.

• The utilization of channel emulators for experiments in RF frequencies would

be valuable for obtaining more test results regarding the proposed sparsening

filter + BP detector structure. A natural next step is using channel emulators

such as PropSim for further analysis.

7.3 Peer Review Publications

The work presented in this thesis is based on the following articles:

R. G. Machado and A. M. Wyglinski., “Software-Defined Radio: Bridging the

Analog-Digital Divide,” Proceedings of IEEE, Submitted.
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R. G. Machado and A. M. Wyglinski., “Experimentation of BP-based receivers

in a SDR platform,” IET Electronics Letters, to be submitted in November 2014.

R. Machado, A. Klein, and R. Martin., “Decision feedback sparsening filter

design for belief-propagation detectors,” in 46th Annual Conference on Information

Sciences and Systems, March, 2012.

R. Machado, A. Klein, and R. Martin, “Sparsening filter design for iterative

soft-input soft-output detectors,” EURASIP Journal on Wireless Communications

and Networking, February 2012.
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