

An Investigation into the Root Causes of O-Ring Adhesion

T. Albee, K. Mims Worcester Polytechnic Institute

> C. Hart, J. Mills LL Supervisors Group 75

N. Gatsonis WPI Advisor

10 October 2012

Introduction

Test Results

Part Selection

Recommendations

The Space Terminal

- The space terminal is a space-based high data rate laser communication system
- Launch Latch and interface
 - Restrains telescope during launch
 - Contamination seal during ascent
- To ensure the Launch Latch opens in orbit, 4 Launch Latch components must be specified:
 - O-ring
 - Mating Interface
 - Lower Torsion Springs
 - Upper Vlier Spring Plunger
- Launch Latch design criteria
 - The load on the HOPAs and Pawl Arm do not yield or break during launch
 - Launch Latch opens once on orbit

Select components for Launch Latch design to ensure survival of hardware and successful opening

The Space Terminal

- The space terminal is a space-based high data rate laser communication system
- Launch Latch and interface
 - Restrains telescope during launch
 - Contamination seal during accent
- To ensure the Launch Latch opens in space, 4 Launch Latch components must be specified:
 - O-ring
 - Mating Interface
 - Lower Torsion Springs
 - Upper Vlier Spring Plunger
- Launch Latch design criteria
 - The load on the HOPAs and Pawl Arm do not yield or break during launch
 - Launch Latch opens once on orbit

Select components for Launch Latch design to ensure survival of hardware and successful opening

Problem: Ensure Latch Parts Survive

- Sum of the moments to find relations between F_F and F_H
- Selection of O-Ring, Vliers, and Lower Torsion Springs determine F_H
- F_{Load} < F_{Vibration} + F_{Preload} + F_{HOPA}

Select components for Launch Latch design to ensure survival of hardware during launch

Problem: Ensure Latch Opens

- What can prevent opening?
 - Parasitic latch pin force Pz (given)
 - Well understood and taken into account
 - O-ring adhesion
 - Fundamental mechanics not well understood
 - Time must be spent on this problem
- Method to ensuring successful opening:
 - Test O-ring adhesion
 - Quantify promising candidate O-rings and interfaces in search for a zero adhesion pairing
 - Select parts to overcome adhesion force
 - 1.25 safety factor applied to maximum adhesion force from testing

Testing of adhesion force and proper part selection will ensure successful latch opening

O-Rings and Interfaces

O-Ring	Туре	Manufacturer
V0986	Fluorocarbon	Parker
S0899	Silicone Rubber	Parker
C0267	Polychloroprene	Parker
E1100	Ethylene Propylene Rubber	Parker
LM151	Fluorosilicone	Parker
S0469	Silicone Rubber	Parker
S0820	Silicone Rubber	Parker
CV2289*	RTV	MIT LL
RTV566*	RTV	MIT LL
SCV2585*	RTV	MIT LL
JaBar	Silicone Rubber	Ja-Bar
S7440	Silicone 0.05" Inner Diameter (ID)	Parker
S7440 FEP*	Silicone 0.05" ID FEP Encapsulated	MIT LL
Creavey 030	Silicone 0.03" ID FEP Encapsulated	Creavey
Creavey 050	Silicone 0.05" ID FEP Encapsulated	Creavey

* Custom

Interface	Туре	Manufacturer
Chem Film (CFM)	AL Finish	n/a
Chem Film, Polished (CFP)	AL Finish	n/a
Chem Film, Bead Blasted (CFB)	AL Finish	n/a
Silver Teflon Tape (TAPE)	AL Coating	n/a
Nedox NH1 (NH1)	AL Coating	General Magnaplate
Sanford Hardlube (SANF)	AL Coating	General Magnaplate
Dicronite (DICR)	AL Coating	Dicronite
Tufram HTR (HTR)	AL Coating	General Magnaplate
Invar, none (INV)	Invar Finish	n/a
Invar, Bead Blasted (INB)	Invar Finish	n/a
Nedox 615 (N615)	Invar Coating	General Magnaplate
Nedox SF-2 (SF2)	Invar Coating	General Magnaplate

Downselection process of O-rings through rigorous testing

- Thermal Survival Testing
 - Compress and Test samples at -75°C
- Low Outgassing Testing
 - Per ASTM standards (Outsourced)
 - To protect the Optical Sensor
- Adhesion Testing
 - Using a Dynamic Mechanical Analyzer (DMA)
 - Constants:
 - Base-plate, compression, rate of applied force
 - Variables:
 - Interface plate, O-ring, coatings, treatments
 - Thermal Testing (-50°C, +50°C)
 - For promising pairs
- Stiffness Testing
 - To discover force necessary to compress O-ring
- Surface Roughness Testing
 - Correlation between interface and adhesion

Keyence microscope to analyze thermal survival samples

Downselection process of O-rings through rigorous testing

- Thermal Survival Testing
 - Test samples at -75°C
- Low Outgassing Testing
 - Per ASTM standards (Outsourced)
 - To protect the Optical Sensor
- Adhesion Testing
 - Using a Dynamic Mechanical Analyzer (DMA)
 - Constants:
 - Base-plate, compression, rate of applied force
 - Variables:
 - Interface plate, O-ring, coatings, treatments
 - Thermal Testing (-50°C, +50°C)
 - For promising pairs
- Stiffness Testing
 - To discover force necessary to compress O-ring
- Surface Roughness Testing
 - Correlation between interface and adhesion

Ja-Bar 40 O-ring Material at 125°C.

Downselection process of O-rings through rigorous testing

- Thermal Survival Testing
 - Test samples at -75°C
- Low Outgassing Testing
 - Per ASTM standards (Outsourced)
 - To protect the Optical Sensor
- Adhesion Testing
 - Using a Dynamic Mechanical Analyzer (DMA)
 - Constants:
 - Base-plate, compression, rate of applied force
 - Variables:
 - Interface plate, O-ring, coatings, treatments
 - Thermal Testing (-50°C, +50°C)
 - For promising pairs
- Stiffness Testing
 - To discover force necessary to compress O-ring
- Surface Roughness Testing
 - Correlation between interface and adhesion

Downselection process of O-rings through rigorous testing

- Thermal Survival Testing
 - Test samples at -75°C
- Low Outgassing Testing
 - Per ASTM standards (Outsourced)
 - To protect the Optical Sensor
- Adhesion Testing
 - Using a Dynamic Mechanical Analyzer (DMA)
 - Constants:
 - Base-plate, compression, rate of applied force
 - Variables:
 - Interface plate, O-ring, coatings, treatments
 - Thermal Testing (-50°C, +50°C)
 - For promising pairs
- Stiffness Testing
 - To discover force necessary to compress O-ring
- Surface Roughness Testing
 - Correlation between interface and adhesion

Downselection process of O-rings through rigorous testing

- Thermal Survival Testing
 - Test samples at -75°C
- Low Outgassing Testing
 - Per ASTM standards (Outsourced)
 - To protect the Optical Sensor
- Adhesion Testing
 - Using a Dynamic Mechanical Analyzer (DMA)
 - Constants:
 - Base-plate, compression, rate of applied force
 - Variables:
 - Interface plate, O-ring, coatings, treatments
 - Thermal Testing (-50°C, +50°C)
 - For promising pairs
- Stiffness Testing
 - To discover force necessary to compress O-ring
- Surface Roughness Testing
 - Correlation between interface and adhesion

Zygo microscope used to measure surface roughness

Outline

Introduction

Test Results

Part Selection

Recommendations

Testing Outline

Thermal Survival Testing (Pass/Fail)

Low Outgassing Testing (Pass/Fail)

Stiffness Testing (Design Related)

Adhesion Testing (Design Related)

Surface Roughness Testing (Quantitative)

Thermal Adhesion Testing (Design Related)

Thermal Survival Testing

If the O-ring does not pass the thermal survival test, it will not be considered for space flight payloads

Down Selection After Thermal Survival

O-Ring	Thermal Survival	Low Outgassing	Stiffness (lbf/in ²)	Adhesion (Ibf/in)	Interface	Manufacturer
V/096	Dass			(1.0.1/11.1)		Darkor
V0960	Pass					Parker
S0899 B2	Pass					Parker
S0899 B1	Pass					Parker
C0267	Pass					Parker
E1100	<u>Fail</u>					Parker
LM151	Pass					Parker
S0469	Pass					Parker
S0820	Pass					Parker
CV2289	Pass					MIT LL
RTV566	Pass					MIT LL
SCV2585	Pass					MIT LL
JaBar	<u>Fail</u>					Ja-Bar
S7440	Pass					Parker
S7440 FEP	Pass					MITLL
Creavey 030	Pass					Creavey
Creavey 050	Pass					Creavey

Testing Outline

Thermal Survival Testing (Pass/Fail)

Low Outgassing Testing (Pass/Fail)

Stiffness Testing (Design Related)

Adhesion Testing (Design Related)

Surface Roughness Testing (Quantitative)

Thermal Adhesion Testing (Design Related)

Low Outgassing Analysis

- Total Mass Loss (TML)
 - < 1% Pass
 - > 1% Fail
- Collected Volatile Condensable Materials (CVCM)
 - < 0.1% Pass
 - > 0.1% Fail

- C0267 and E1100 Fail
- LM151, S0469, S7440 initially fail but may pass after vacuum baking
- No results for S7440 FEP and Creavey

		Collected Volatile
O-Ring	Total Mass Loss	Condensable Material
V0986	0.22%	0.02%
S0899	0.10%	0.02%
C0267	8.33%	3.35%
E1100	8.82%	4.34%
LM151	1.70%	0.40%
S0469	1.66%	0.44%
S0820	0.06%	0.01%
CV2289*	0.44%	0.04%
RTV566*	0.10%	0.01%
SCV2585*	0.08%	0.01%
JaBar	0.62%	0.04%
S7440	0.31%	0.11%
S7440 FEP*		
Creavey 030		
Creavey 050		

* Custom

If the O-ring does not pass the outgassing test, it will not be considered for space flight payloads

Down Selection After Outgassing Testing

O-Ring	Thermal Survival	Low Outgassing	Stiffness (lbf/in²)	Adhesion (lbf/in)	Interface	Manufacturer
V0986	Pass	Pass				Parker
S0899 B2	Pass	Pass				Parker
S0899 B1	Pass	Pass				Parker
C0267	Pass	<u>Fail</u>				Parker
E1100	<u>Fail</u>	<u>Fail</u>				Parker
LM151	Pass	<u>Fail</u>				Parker
S0469	Pass	<u>Fail</u>				Parker
S0820	Pass	Pass				Parker
CV2289	Pass	Pass				MIT LL
RTV566	Pass	Pass				MIT LL
SCV2585	Pass	Pass				MIT LL
JaBar	<u>Fail</u>	Pass				Ja-Bar
S7440	Pass	<u>Fail</u>				Parker
S7440 FEP	Pass	n/a				MIT LL
Creavey 030	Pass	n/a				Creavey
Creavey 050	Pass	n/a				Creavey

Testing Outline

Thermal Survival Testing (Pass/Fail)

Low Outgassing Testing (Pass/Fail)

Stiffness Testing (Design Related)

Adhesion Testing (Design Related)

Surface Roughness Testing (Quantitative)

Thermal Adhesion Testing (Design Related)

Instron Analysis for Stifness

Samples placed into system and the top plate was pressed down by Instron

- Force used to compress the sample and inches of deflection were recorded simultaneously
- Plots were developed for the Force (lbf) vs. the Deflection (inches)
- Linear fits were given to the plots and the slope of these plots divided by 3 inches (length of O-rings in the sample) is the Stiffness in lbf/in²

Selecting a "soft" O-ring may be necessary in many payload applications, including ours

Down Selection After Stiffness Testing

	Thermal	Low	Stiffness	Adhesion		
O-Ring	Survival	Outgassing	(lbf/in²)	(lbf/in)	Interface	Manufacturer
V0986	Pass	Pass	245			Parker
S0899 B2	Pass	Pass	279			Parker
S0899 B1	Pass	Pass	208			Parker
C0267	Pass	<u>Fail</u>	258			Parker
E1100	<u>Fail</u>	<u>Fail</u>	<u>358</u>			Parker
LM151	Pass	<u>Fail</u>	207			Parker
S0469	Pass	<u>Fail</u>	167			Parker
S0820	Pass	Pass	209			Parker
CV2289	Pass	Pass	157			MIT LL
RTV566	Pass	Pass	<u>469</u>			MIT LL
SCV2585	Pass	Pass	142			MIT LL
JaBar	<u>Fail</u>	Pass	254			Ja-Bar
S7440	Pass	<u>Fail</u>	127			Parker
S7440 FEP	Pass	n/a	<u>317</u>			MIT LL
Creavey 030	Pass	n/a	<u>426</u>			Creavey
Creavey 050	Pass	n/a	<u>338</u>			Creavey

Testing Outline

Thermal Survival Testing (Pass/Fail)

Low Outgassing Testing (Pass/Fail)

Stiffness Testing (Design Related)

Adhesion Testing (Design Related)

Surface Roughness Testing (Quantitative)

Thermal Adhesion Testing (Design Related)

Adhesion Testing

- 5-25 samples tested for each O-ring (depending on availability, previous tests, time...etc.)
- Bar represents 95% confidence level
- FEP Encapsulated O-rings resulted in practically 0 adhesion

Some O-rings show adhesion values very close to 0 on our "typical" interface

Down Selection After Adhesion Testing

O-Ring	Thermal Survival	Low Outgassing	Stiffness (lbf/in²)	Adhesion (lbf/in)	Interface	Manufacturer
V0986	Pass	Pass	245	0.2895		Parker
S0899 B2	Pass	Pass	279	0.1991		Parker
S0899 B1	Pass	Pass	208	<u>0.4211</u>		Parker
C0267	Pass	<u>Fail</u>	258	0.1694		Parker
E1100	<u>Fail</u>	<u>Fail</u>	<u>358</u>	<u>0.5771</u>		Parker
LM151	Pass	<u>Fail</u>	207	<u>0.4274</u>		Parker
S0469	Pass	<u>Fail</u>	167	0.0992		Parker
S0820	Pass	Pass	209	0.1036		Parker
CV2289	Pass	Pass	157	0.0593		MIT LL
RTV566	Pass	Pass	<u>469</u>	0.0168		MIT LL
SCV2585	Pass	Pass	142	0.0108		MIT LL
JaBar	<u>Fail</u>	Pass	254	0.1114		Ja-Bar
S7440	Pass	<u>Fail</u>	127	0.1978		Parker
S7440 FEP	Pass	n/a	<u>317</u>	0.0011		MIT LL
Creavey 030	Pass	n/a	<u>426</u>	0.0011		Creavey
Creavey 050	Pass	n/a	<u>338</u>	0.0010		Creavey

Testing Outline

Thermal Survival Testing (Pass/Fail)

Low Outgassing Testing (Pass/Fail)

Stiffness Testing (Design Related)

Adhesion Testing (Design Related)

Surface Roughness Testing (Quantitative)

Thermal Adhesion Testing (Design Related)

- Zero adhesion not strictly possible from these interfaces
- CFM, CFB, N615, and SF2 all performed around 0.2 lbf/in
- Coatings are logistically complicated so a simple finish may be best

There is no correlation between any surface roughness parameters and adhesion

Down Selection to Thermal Testing Pairs

O-Ring	Thermal Survival	Low Outgassing	Stiffness (lbf/in²)	Adhesion (lbf/in)	Interface	Manufacturer
V0986	Pass	Pass	245	<u>0.2895</u>	CFM	Parker
S0899 B2	Pass	Pass	279	0.1991	CFM	Parker
S0899 B1	Pass	Pass	208	<u>0.4211</u>	CFM	Parker
C0267	Pass	<u>Fail</u>	258	0.1694	CFM	Parker
E1100	<u>Fail</u>	<u>Fail</u>	<u>358</u>	<u>0.5771</u>	CFM	Parker
LM151	Pass	<u>Fail</u>	207	<u>0.4274</u>	CFM	Parker
S0469	Pass	<u>Fail</u>	167	0.0992	CFM	Parker
S0820	Pass	Pass	209	0.1036	CFM	Parker
CV2289	Pass	Pass	157	0.0593	CFM	MIT LL
RTV566	Pass	Pass	<u>469</u>	0.0168	CFM	MIT LL
SCV2585	Pass	Pass	142	0.0108	CFM	MIT LL
JaBar	<u>Fail</u>	Pass	254	0.1114	CFM	Ja-Bar
S7440	Pass	<u>Fail</u>	127	0.1978	CFM	Parker
S7440 FEP	Pass	n/a	<u>317</u>	0.0011	CFM	MIT LL
Creavey 030	Pass	n/a	<u>426</u>	0.0011	CFM	Creavey
Creavey 050	Pass	n/a	<u>338</u>	0.0010	CFM	Creavey

Testing Outline

Thermal Survival Testing (Pass/Fail)

Low Outgassing Testing (Pass/Fail)

Stiffness Testing (Design Related)

Adhesion Testing (Design Related)

Surface Roughness Testing (Quantitative)

Thermal Adhesion Testing (Design Related)

- Only 5 samples were tested at -50°C and +50°C
- Adhesion force increased as temperature decreased
- · We project that it will increase as temperature increases as well

Temperature has a large effect on the adhesion force of O-rings

Introduction

Test Results

Part Selection

Recommendations

- To ensure the Launch Latch opens in orbit, 4 Launch Latch components must be specified:
- Interface Chem Film Machined AL
- O-Ring SCV2585 Vacuum Baked
 - Adhesion Force = 3 lbf
 - Compression Force = 27 lbf
- Upper Vlier Spring Plungers = 4.5 lbf

• Lower Torsion Springs = 5 lbf-inch

- To ensure the Launch Latch opens in orbit, 4 Launch Latch components must be specified:
- Interface Chem Film Machined AL
- O-Ring SCV2585 Vacuum Baked
 - Adhesion Force = 3 lbf
 - Compression Force = 27 lbf
- Upper Vlier Spring Plungers = 4.5 lbf

Lower Torsion Springs = 5 lbf-inch

- To ensure the Launch Latch opens in orbit, 4 Launch Latch components must be specified:
- Interface Chem Film Machined AL
- O-Ring SCV2585 Vacuum Baked
 - Adhesion Force = 3 lbf
 - Compression Force = 27 lbf
- Upper Vlier Spring Plungers = 4.5 lbf

• Lower Torsion Springs = 5 lbf-inch

- To ensure the Launch Latch opens in orbit, 4 Launch Latch components must be specified:
- Interface Chem Film Machined AL
- O-Ring SCV2585 Vacuum Baked
 - Adhesion Force = 3 lbf
 - Compression Force = 27 lbf
- Upper Vlier Spring Plungers = 4.5 lbf

• Lower Torsion Springs = **5 lbf-inch**

- To ensure the Launch Latch opens in orbit, 4 Launch Latch components must be specified:
- Interface Chem Film Machined AL
- O-Ring SCV2585 Vacuum Baked
 - Adhesion Force = 3 lbf
 - Compression Force = **27 lbf**
- Upper Vlier Spring Plungers = 4.5 lbf

Lower Torsion Springs = 5 lbf-inch

- O-Ring adhesion force must be lower than the opening force
- After part selection all parameters are known

•
$$F_{Adhesion} * 1.25 < \frac{2M_{LT} + (2F_{Vlier} - P_z)r_3}{r_1}$$

• $3lbf * 1.25 < \frac{2(5lbf*in) + (2(4.5lbf) - 5.6lbf)7.73ir}{5.4in}$

• 3.75 lbf < 4.87 lbf

Ensuring HOPAs and Pawl Arm Survive

- HOPA Survival
 - F_{Load-MAX} = (260 lbf/1.25)*2 = 416lbf
 - $F_{Load-MAX} > F_{Vibration} + F_{Preload} + F_{HOPA}$
 - 416 lbf > 53 lbf + 256 lbf + 86 lbf
 - 416 lbf > 395 lbf
- Pawl Arm Survival
 - Finite Element Analysis
 - Max allowable stress = 150 ksi/1.25 = **120,000 psi**
 - Our system = 97,100 psi

High Output Paraffin Actuator (HOPA)

Ensuring HOPAs and Pawl Arm Survive

- HOPA Survival
 - F_{HOPA-MAX} = 520lbf/1.25 = 416lbf
 - $F_{HOPA-MAX} > F_{Vibration} + F_{Preload} + F_{Close}$
 - 416 lbf > 53 lbf + 256 lbf + 86 lbf
 - 416 lbf > 395 lbf
- Pawl Arm Survival
 - Finite Element Analysis
 - Max allowable stress = 150 ksi/1.25 = **120,000 psi**
 - Our system = 97,100 psi

Introduction

Test Results

Part Selection

Recommendations

- Look into different treatments
 - Interface Thin layer of carbon
 - O-Ring SiOx
- Look into teflon coatings that are much softer
 - Teflon gave us zero adhesion
 - Teflon coated samples tested so far too stiff
- Test different O-rings on the interfaces
 - V0986 resulted in uneven lifts
 - No clear trend with adhesion and coatings
- Perform more thermal tests
 - Be more confident in our adhesion results
 - Potentially find equation for adhesion in terms of temperature

We would like to acknowledge and thank the following persons for all their help in making this project a success:

From Worcester Polytechnic Institute:

- Professor Gatsonis Project Advisor
- Professor Clancy Site Coordinator

From MIT Lincoln Laboratory:

- Carl Hart Supervisor, Group 71
- Jesse Mills Supervisor, Group 75
- Todd Mower Technical Staff, Group 75
- Sharon Hardiman Secretary, Group 75
 - Carol Mullinax Secretary, Group 75
- **Peter Anderson** Technician, Group 72
- Russ Goodman Technician, Group 81
- **Scott Hillis** Clean Room Technician, Group 72
- **Glenn Matot** Clean Room Technician, Group 72
- **Tasha Naylor** Clean Room Technician, Group 72

Questions?

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Residue's Effect on Adhesion

 S7740 and S0899-New (B2) have a similar adhesion force, but a large range in residue thickness

PTV/566 and S0820 have residue values of zero, but a large range in adhesion force. There does not appear to be any correlation between residue thickness and adhesion

Surface Roughness: AL 6061

- Used Zygo to test for average surface roughness among other surface parameters
- Range from 2 µm (TAPE) to 105 µm (CFB)

The interface surface roughness of our interfaces may have an effect on the adhesion of the O-

Surface Roughness: Invar 36

- Range from 11 μ m (Machined) to 99 μ m (SF2)
- Parameters of RMS, and Max Height show a similar order in increasing values for both Invar 36 and AL 6061

Other surface roughness parameters of our interfaces may have an effect on the O-ring adhesion

Durometer Testing

- Durometer taken before and after vacuum baking
- Most O-ring has slight increase in durometer
- C0267 increased by 12 while no others increased by more than 4
 - Equivalent of changing from the hardness of a rubber stamp to wiper blades

Adhesion on HTR and CFM

Adhesion (lbs/inch) vs. O-ring and Surface Type

Adhesion of CFM and N615

S0899 Adhesion

S0899 Adhesion for Different O-ring Batches

Stiffness vs. Durometer

