
Deep Learning Binary Neural Network on an FPGA

by

Shrutika Redkar

A Thesis

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Master of Science

in

Electrical and Computer Engineering

by

May 2017

APPROVED:

Professor Xinming Huang, Major Thesis Advisor

Professor Yehia Massoud

Professor Thomas Eisenbarth

Abstract

In recent years, deep neural networks have attracted lots of attentions in the field

of computer vision and artificial intelligence. Convolutional neural network exploits

spatial correlations in an input image by performing convolution operations in local

receptive fields. When compared with fully connected neural networks, convolu-

tional neural networks have fewer weights and are faster to train. Many research

works have been conducted to further reduce computational complexity and memory

requirements of convolutional neural networks, to make it applicable to low-power

embedded applications. This thesis focuses on a special class of convolutional neu-

ral network with only binary weights and activations, referred as binary neural

networks. Weights and activations for convolutional and fully connected layers are

binarized to take only two values, +1 and -1. Therefore, the computations and

memory requirement have been reduced significantly. The proposed architecture of

binary neural networks has been implemented on an FPGA as a real time, high

speed, low power computer vision platform. Only on-chip memories are utilized

in the FPGA design. The FPGA implementation is evaluated using the CIFAR-

10 benchmark and achieved a processing speed of 332,164 images per second for

CIFAR-10 dataset with classification accuracy of about 86.06%.

Acknowledgments

I would like to acknowledge and thank my advisor, Prof. Xinming Huang for all

of his support, guidance and patience. I would like to express my sincere thanks to

him for giving me this opportunity to be a part of Intelligent Transportation group.

I am thankful to Prof. Yehia Massaoud and Prof. Thomas Eisenbarth to be my

committee members. I would like to express my gratitude for all those, who have

supported me throughout my work. I would like to especially thank my fellow team

member, Yuteng Zhou, for his valuable thoughts and support.

At last, I would like express my sincere gratitude to my parents for believing in

me and for their constant love and encouragement throughout this journey. I would

also like to thank all my friends and family members for their wishes and support.

i

Contents

1 Introduction 1

1.1 Background . 1

1.2 Motivation. 3

1.3 Thesis Outline . 4

2 Neural Network Background: 6

2.1 Neural Network Basic Terms and Concepts 6

2.2 Convolutional Neural Network . 10

2.2.1 Convolutional layer . 10

2.2.2 Pooling Layer . 13

2.2.3 ReLU Layer . 14

2.2.4 Fully Connected Layer . 15

2.2.5 Backpropagation and Fradient Descent 15

2.3 Related Work . 17

2.3.1 Binary Neural Network[1] . 21

3 Hardware Implementation 25

3.1 FPGA Overview . 25

3.2 ZYNQ ZC706 FPGA Platform . 26

3.3 Avnet HDMI Input Output FMC Module 28

ii

3.4 Binary Neural Network Hardware Implementation 29

3.5 Top Level System Design . 35

4 Classification and Result 38

4.1 BNN Classification Result . 38

5 Conclusion and future work 43

5.1 Conclusion . 43

5.2 Future work . 44

iii

List of Figures

2.1 Single Neuron Model . 6

2.2 Forward Propagation . 8

2.3 First Convolutional Layer Operation 12

2.4 Image size reduces with 3x3 filter size without zero padding and 1

stride . 13

2.5 Image size is retained with 3x3 filter with 1 border of zeros padding

and 1 stride . 14

2.6 Pooling Layer Operation . 14

2.7 Fully Connected Layer Structure . 16

2.8 Gradient Descent Graph of Error vs Individual Weight 17

2.9 Example of Binary Neural Network 22

3.1 ZC706 FPGA Platform[2] . 27

3.2 HDMI Input Output FMC Architecture [3] 28

3.3 Architecture of Binary Neural Network 30

3.4 Line buffers to scan 3× 3 pixels at a time 31

3.5 first convolution layer . 32

3.6 First Convolution Layer, multiply accumulate implemented by addi-

tion subtraction . 32

3.7 2nd, 3rd and 4th convolution layer realization 33

iv

3.8 Fully Connected Layer Realization 34

3.9 Example of AXI4-Stream interface transmission [4] 36

3.10 Top Level System Design . 37

4.1 CIFAR-10 dataset [5] . 38

v

List of Tables

3.1 Resolutions supported by HDMI Input Output FMC Card [3] 29

4.1 Resource utilization, when weights and activations are of fixed point

8 bit . 40

4.2 Resource utilization, when weights are binarized and activations are

of fixed point 8 bits . 40

4.3 Resource utilization, when weights and activations are binarized . . . 40

4.4 Parameters required by each layer of proposed network 41

4.5 Resource utilization, when number of convolutional and fully con-

nected layers are varied in the network 42

vi

Chapter 1

Introduction

1.1 Background

In the last few years, deep neural network has become an active field of research,

because it has achieved outstanding results in the areas such as computer vision,

voice recognition, natural language processing, regression, and robotics. Deep neural

networks are originally designed to model the structure of human brains. Human

brain has a deep architecture of biological neural networks. These biological neural

networks can identify complex objects by first detecting simpler features and then

combining them to detect complex features. In a similar way, the artificial neural

network identifies different objects by distinguishing simple patterns in the object

and then combining simpler patterns to recognize the complex patterns.

Until the year of 2006, it was very difficult to train the neural network, because

whenever neural network was trained, due to the problem of vanishing gradient,

training was slow and error rate was quite high. Hinton, Lucan, and Banjio pub-

lished three papers [6, 7, 8], which solved the problem of vanishing gradient. After

that many researchers achieved breakthrough results in various neural networks ap-

1

plications. Today there are various types of deep neural networks available to handle

various applications. For many real world applications, sufficient labeled data is dif-

ficult to find. For identifying patterns from unlabeled data, Restricted Boltzmann

Machine (RBM) [9] and autoencoders [10] are often used. If patterns in the data

are changing with respect to time, then Recurrent Neural Net [11] can be a better

choice to identify patterns. When data to be trained is available in the form of

images, where spatial patterns have to be recognized, convolutional neural network

[12] can be a great choice.

In the recent years, Convolutional Neural Networks are the most widely used

neural network for deep learning. They provide very good accuracy for image clas-

sification problems. The key factor in increasing CNN accuracy over the years is

multiple stacks of convolutional layers and large training set [12]. Convolutional lay-

ers extract spatial patterns from images in hierarchical manner. First convolutional

layer extracts simple features such as lines, curves, edges and corners. The next

convolution layer extracts more abstract features such as complex shapes made up

from lines, curves, edges and corners. With more convolutional layer added in the

stack of the layers, more abstract features can be extracted. At the end, using fully

connected layers, classifier gives the scores of each class. Highest score refers to the

class of input image.

The drawbacks of convolutional nets are complex computation and large mem-

ory requirement with increasing convolutional layers in the stack. Thus, Graphic

Processing Units (GPU) are often used as hardware processor [13] to implement

convolutional nets. GPUs can perform complex repetitive operations through mas-

sive parallelism. Thus, GPUs can handle large models of convolutional nets with

large dataset. The main drawback of GPUs is that they consume a lot of power,

which makes GPUs unsuitable for low power and real-time embedded applications.

2

Embedded FPGA platforms have been widely used for real-time embedded sys-

tems. However, FPGA has limited computing resources and limited on-chip memory,

which could cause problem for implementing the convolutional neural network. In

this thesis, a binary neural network which uses significantly less memory than the

convolutional neural network is implemented on FPGA. The binary neural network

was proposed by Coubariaux in 2016[1]. This network is derived from the convolu-

tional neural network by forcing the parameters to be binary numbers. Hence, It

becomes more suitable for hardware implementation than convolutional neural nets.

1.2 Motivation.

Recently, there is been a great deal of interest in designing Advanced Driver Assis-

tance System (ADAS). ADAS system is developed to assist the driver by notifying

him about the probable problems and avoiding chances of vehicle accidents. Vehicle

detection is a major task in ADAS. The result of vehicle detection can be used for

applications such as accident prevention, adaptive cruise control, and automated

headlamp dimming. In the field of computer vision, for simple pattern recognition,

logistic regression and SVM can be better choices. They give sufficiently good accu-

racy and are computationally less expensive than neural network. However, vehicles

can have a number of different shapes, angles, colors, and ambiance. This increases

pattern complexity and for such complex pattern problems, a deep neural network

performs better than the traditional classification models. For implementing clas-

sification at real time in ADAS system, reconfigurable nature of FPGA provides

an advantage over ASIC- based implementation. Additionally, the cost and power

consumption of FPGAs are relatively lower than CPUs and GPUs. By implement-

ing binary neural network on an FPGA platform, we can make an efficient vehicle

3

classification system which has the advantages of reconfigurability and better power

efficiency.

1.3 Thesis Outline

This thesis is arranged into different chapters as follows.

Chapter 1, Introduction: Introduction to the thesis objective is provided. It

explains the motivation behind the research presented. The introduction of neural

network and ADAS is also included for the readers.

Chapter 2, Background: Related background information is given to under-

stand neural networks. This chapter walks through the basic mathematical models

of artificial neurons and gives information about how convolutional neural network

evolved for finding patterns in images effectively.

Chapter 3, Literature Review: A literature review on the state of the art neu-

ral networks is provided with the real-time implementations on different hardware

platforms such as CPUs, GPUs, FPGAs, and ASICs. At the end of the chapter, it

also introduces the idea of binary neural network and provides theory and mathe-

matical background to understand the concepts behind it.

Chapter 4, Hardware Implementation: Proposed hardware architecture of

the binary neural network is included. FPGA design for each of the binary neural

network layer is presented. This chapter also specifies details about the System on

Chip (SoC) platform used for implementation of proposed design.

4

Chapter 5, Classification Results: In this section, information about the dataset

used for training and testing binary neural network is provided. Classification results

and resource utilization are also presented in this chapter.

Chapter 6, Conclusions and Future Work: This section draws the conclusions

of the thesis and explores future work in the research direction.

5

Chapter 2

Neural Network Background:

2.1 Neural Network Basic Terms and Concepts

The neural network is inspired by the structure of the human brain. Human brain

has about 1011 neurons and these neurons are connected by about 1015 synapses.

Every neuron has two types branches, the axon and the dendrites. A neuron receives

input signals from its dendrites and it outputs signals using its axons. Branches of

axons are then connected to dendrites of other neurons. In a similar way, the

artificial neural network also consists of millions of neurons and it models biological

neuron with the help of weight, bias and activation function. Fig. 2.1 describes

single neuron in an artificial neural network.

Figure 2.1: Single Neuron Model

6

This neuron receives 3 inputs x1, x2 and x3 and computes activation function

f =
∑
wixi + b, where wi corresponds to the ith weight and b corresponds to the

bias of that neuron. one of the common activation function which is used in neural

networks is the sigmoid function, as expressed mathematically in equation (2.1).

The sigmoid function takes the real valued number and converts it to a value within

0 and 1.

σ(x) =
1

1 + ex
(2.1)

Another activation function which is often used in the neural network is the

hyperbolic tangent function as shown in equation (2.2). It constrains input signal

in the range of -1 to +1.

tanh(x) =
ex − e−x

ex + e−x
= 2σ(2x)− 1 (2.2)

In recent years, Rectified Linear Unit (ReLU) has become one of the popular ac-

tivation function in the deep neural network. ReLU function is represented as shown

in the equation (2.3). ReLU function is not continuously differentiable or bounded,

unlike sigmoid and tanh functions. It works better in deep networks because it

expedites stochastic gradient descent convergence when compared to sigmoid and

tanh function.

f(x) = max(0, x) (2.3)

A generic neural network model is shown in Fig. 2.2. It consists of an input layer,

an output layer and a number of hidden layers. Every neuron receives an input, it

performs dot product between input and its weights, adds the bias and applies an

activation function and sends the output to other neurons. Input layer receives

7

input data, each neuron in the input layer does the same processing and sends the

output to the first hidden layers. The Hidden layer does the same processing and

sends the output to next hidden layer. This process is repeated until the rightmost

layer, also called as output layer is reached. At the output layer, scores for each

class is computed and the object is classified, with the highest score representing

the class of input image. The entire process of beginning from the input layer to

converting signals into output score is called forward propagation.

Figure 2.2: Forward Propagation

In this example of forward propagation model, the leftmost layer is an input

layer, the rightmost layer is an output layer and the model has only one hidden

layer in between input and output layer. Weights corresponding to ith hidden layers

are denoted as wimn, where m corresponds mth neuron in the previous (i− 1)th layer

and n corresponds to nth neuron in the current ith layer. Every neuron in the ith

hidden layer has its own bias bin. Activation from every neuron in the hidden layer

is calculated as shown in the equation (2.4), (2.5), (2.6) and (2.7).

8

ay11 = f(w1
11x1 + w1

21x2 + w1
31x3 + b11) (2.4)

ay21 = f(w1
12x1 + w1

22x2 + w1
32x3 + b12) (2.5)

ay31 = f(w1
13x1 + w1

23x2 + w1
33x3 + b13) (2.6)

ay41 = f(w1
14x1 + w1

24x2 + w1
34x3 + b14) (2.7)

In training of neural network, after the forward propagation, the loss or cost

is calculated, which is the difference between predicted output score and ground

truth table. In the training process, the next step is to tweak weights and biases so

that the loss is minimized. This process is called optimization. The gradient of the

cost with respect to weights and biases gives the rate at which weights and biases

should be changed. The process of computing gradient of the cost with respect to

weights and biases in the entire network is called backpropagation. The gradient is

computed repeatedly and parameters are updated accordingly. This process is also

known as gradient descent. In the backpropagation, the gradient at every neuron is

calculated using the gradient chain rule going from output layer backward to input

layer.

There is another kind of parameters called hyperparameters involved in machine

learning. They decide higher level settings of neural network model such as rate

of change and complexity of the model. One of the common hyperparameters used

in deep neural networks is a learning rate. Learning rate decides the step size for

the parameter update along the direction of the gradient. Learning rate has to be

chosen carefully because if learning rate is too small, the convergence of the network

for finding suitable weights will be slow and if it is too large, it may give us higher

loss because of the less precision in step size.

9

2.2 Convolutional Neural Network

The convolutional neural network works on the same principle of the neural network.

These nets also have an input layer, an output layer, and a number of hidden layers.

Similar to any other neural network, every neuron in the convolutional network

receives input data, it performs dot product between input data and weights, adds

the bias, applies the activation function and sends the output to other neurons. The

output from one layer is used as input to the next layer. At the end of propagation,

scores of the classes are computed similar to any fundamental neural network. The

concepts of backpropagation also remain the same in the convolutional network. The

main difference between convolutional neural net and any other neural net is that

convolutional neural net takes advantage of the fact that input consists of images,

by arranging its neuron in 3 dimensions corresponding to width, height, and depth

of the input image. In fact, the convolutional neural net can be used on any data

which can be arranged in the form of spatially correlated structures such as images.

In other words, if the available data is represented in the form of image structure

such that spatially closer information is more related to each other than spatially

farther information, the convolutional neural net can classify pattern among such

data with good accuracy.

2.2.1 Convolutional layer

The convolutional layer is the core building block of the convolutional network.

Neurons in this layer are not connected to every neuron in the previous layer. In-

stead, every neuron is connected to the local region in the previous layer. Neurons

in the convolutional layer are like a set of filters. Every filter is very small along

the width and height, but every filter extends along the full depth of the input acti-

10

vation. During forward propagation, every filter slides across the entire image, and

performs convolution between filter elements and the corresponding local regions in

the input activation and produces two-dimensional output activation which is the

convolutional output of the filter at every spatial position of the input activation.

When filter slides across the image, it gets activated, when it is convolved with the

certain type of image features such as line, curve, edge, corner or a certain combi-

nation of colors. Every filter tries to identify different features from given input and

stores the result in one 2-D activation map. N number of filters generates N 2-D

feature maps. These N feature maps are joined along the depth to make one 3-D

output activation map, which is then used as input for the next layer.

In other words, convolutional layer receives input feature map and weights for

that layer and it performs the 3-D convolutional operation, as described mathemat-

ically by equation (2.8).

Y [n, i, j] =
D−1∑
d=0

K−1∑
y=0

K−1∑
x=0

W [n, d, 2− x, 2− y] ∗X[d, i+ x, j + y] (2.8)

In this expression, input feature map is of size D ×W ×H and output feature

map is of size N ×W ×H, where N is the number of feature maps. K ×K is the

kernel size. Above expression gives(i, j) the value of nth feature map. For example,

in our first layer implementation, input feature map is an image of size 3× 32× 32

and the kernel is of size 3× 3 and there are 128 weights of size 3× 3 and depth 3,

which then generates output feature map of size 128× 32× 32. This convolutional

operation is shown in Fig. 2.3.

Important hyperparameters in the convolutional layers are a number of filters,

the size of the filter, stride, and zero-padding. The number of filters corresponds to

the depth of the output activation. Each filter looks for some different visual feature

11

Figure 2.3: First Convolutional Layer Operation

in the input. A number of filters determine the number of features that convolutional

layer is extracting. The size of the filter is also called as the receptive field of the

neuron. It can be anything like 3×3, 5×5, 7×7 etc. The size of the filter is always

smaller in width and height as compared to width and height of input activation.

But, depth of the receptive field is always same as that of input activation. Stride

controls how the filter slides across the input volume. Stride decides the amount by

which filter shifts. If the stride is 1, then the filter shifts every time by one pixel.

If the stride is 2, then the filter shifts by 2 pixels every time. The amount of stride

also determines how much output volume would shrink. If the stride is increased,

then overlap between two adjacent filters decreases. Zero padding is basically used

to control the size of output activation with respect to input activation.

For example, consider if we have 32×32×3 input image, if we use a filter of size

3 × 3 × 3 with a stride of 1 without zero padding, it would give output activation

of 30 × 30 × 3. Thus, the output volume has shrunk. If it is necessary to keep the

output activation size same as the input activation, zero padding of one border can

be used. Then, it would keep the output activation size to 32× 32× 3. Figure 2.4

and 2.5 demonstrate the significance of zero padding and stride with 2-D input and

output activations

12

Figure 2.4: Image size reduces with 3x3 filter size without zero padding and 1 stride

2.2.2 Pooling Layer

Another layer, which is often used in between successive convolutional layers is

a pooling layer. Pooling layer is used to reduce the spatial dimension of input

activation layer. There are different kind of pooling layers used such as average

pooling layer. In this paper, max pooling layer is used to reduce the dimension

of input activation by applying simple maximum function. The example of max

pooling layer application is shown in the Fig. 2.6.

Important hyperparameters involved in pooling layer is window size and window

stride. The window of constant size is applied to each 2-D map in the input acti-

vation independently and maximum operation is carried out. Figure 2.6 shows an

example of max pooling, where window size was 2 × 2 and stride was 2. Pooling

reduces dimension of input image from 4× 4 to 2× 2. Reduction in spatial dimen-

sions reduces the number of parameters required in the next convolutional layers,

which in turns, reduces memory requirement and computation cost for next convo-

lutional layers. Additionally, pooling layer also helps in controlling overfitting. In

the case, when trained neural network gives very good accuracy on trained data, but

13

Figure 2.5: Image size is retained with 3x3 filter with 1 border of zeros padding and
1 stride

Figure 2.6: Pooling Layer Operation

gives a way lesser accuracy for test data, that occurrence is referred as overfitting of

the neural network. Applying pooling layer in between other neural network layers

provides distortion and scale invariance which helps in controlling overfitting.

2.2.3 ReLU Layer

The non-linear activation function is applied after almost every convolutional and

fully connected layer in most of the neural networks. There are different types of

non-linear functions used by different convolutional networks. Some of the impor-

14

tant non-linear functions are discussed in Section 2.1. Rectified Linear Unit function

has been proven to give better results in the neural network than other non-linear

function[14], because it requires lesser computational time and it also gives perfor-

mance improvement when used along with some regularization scheme like dropout

[15]. Regularization schemes are used to control overfitting of the neural network.

In the dropout, during the training process, randomly some activation units are

set to zero. This breaks up the co-adaptation of units, which results in preventing

overfitting.

2.2.4 Fully Connected Layer

Each neuron in the fully connected layer has connections to all the neurons in the

previous layer. However, the fully connected layer does not take into account spatial

properties of images. Fully connected layer converts a list of the feature maps into

a list of class scores. So, there can’t be any convolutional layer after fully connected

layer. The Fig. 2.7 shows an example of several fully connected layers connected

to each other. Hyperparameter involved in fully connected layers is a number of

neurons in the fully connected layer. Generally, a stack of fully connected layers is

used at the end of the neural network.

2.2.5 Backpropagation and Fradient Descent

Backpropagation is a common method [16] which is used along with some opti-

mization method such as gradient descent to train the neural network. In other

words, backpropagation is a way by which weights and biases in the convolutional

and fully connected layers are adjusted so that neural network is trained to identify

a particular object. When training the neural network for the first time, weights

are randomly initialized. In the forward propagation, image from training dataset is

15

Figure 2.7: Fully Connected Layer Structure

passed through neural network to generate the class score with the randomly initial-

ized weights. Then, the loss function is calculated by comparing generated output

with the targeted output. The loss is usually high for the first couple of training

data. The aim of backpropagation is to minimize the loss by tweaking the weights

and biases.

To find the direction in which weight should be changed to minimize the cost,

the gradient of loss function with respect to that weight is calculated. Thus, in

the backpropagation, the gradient of loss function with respect to every weight is

computed using the chain rule. Once derivatives with respect to every weight are

computed, then weights are changed in the direction of gradient descent. This last

step is referred as parameter update. Gradient descent process is depicted in the

graph as shown in Fig 2.8, where weight is adjusted down in the direction of the

gradient to minimize the error.

16

Figure 2.8: Gradient Descent Graph of Error vs Individual Weight

The hyperparameter involved in the backpropagation is the learning rate (η).

The choice of the learning rate decides how far along the gradient direction, weight

should change. Learning rate is a tricky parameter and should be chosen carefully.

Because, if learning step is too high, then bigger steps are taken in parameter up-

date and the network will converge fast, but this also could result in insufficient

precision to reach the optimal value of weight or it could lead to higher loss due to

overstepping. If learning rate is too slow, that means weight training will be slower.

The network will take more time to reach to the optimal values of weight.

2.3 Related Work

Simonyan and Zisserman investigated the performance of the convolutional network

by increasing the depth of the network [17]. They have shown that by increasing

depth of the convolutional network to 16-19 weight layers, the performance of the

network can be increased substantially. But, with increasing depth of convolutional

layers, computational cost and memory requirement of the neural network also in-

crease. Graphic processing units (GPUs) have become solutions to implement con-

volutional nets at high speed and to meet such heavy computational requirements

17

[18]. However, for many real-time embedded applications, high power consumption

of GPU is not feasible. For low-power neural network applications, implementation

of the pre trained convolutional neural network on embedded FPGA is a promising

solution. But, FPGAs have limited on-chip memory resources. Thus, implemen-

tation of all of the convolutional network will require external memory to store

pre-trained weights and biases. But, even if the external memory is used, the lim-

ited bandwidth of FPGA could lower the speed of the neural network. This makes

the state of the art convolutional nets unsuitable for real-time embedded systems

such as robots and automated driverless cars. To compensate for limited comput-

ing and memory resources of the real-time embedded system, many researchers have

proposed convolutional nets acceleration techniques on different hardware platforms.

In the Farabet’s paper [19], he presented performance comparison between CPU,

FPGA, and ASIC for computation of convolutional neural network. He used a neural

network composed of 3 convolutional layers and 2 pooling layers. His results dictate

that his convolutional system is capable of running in real-time on FPGA and ASIC

with the performance better than CPU. Additionally, with ASIC and FPGA, he

reported very low power consumption as low as 1W and 15W respectively.

In Dundar’s paper [20], he proposed memory access optimization scheme for

convolutional neural network implemented on real-time hardware accelerator. At

the input of the deep convolutional network, 3D input has to be passed to the

hardware accelerator for convolution operation. However, due to the bandwidth

limitation of the hardware accelerator, streaming of entire input data in and out is

limited. In this paper, weight and node parallelism which occurs in 3D convolution

is exploited. In his work, processes are scheduled in the hardware accelerator to

calculate partial multiple outputs instead of one output. This allows optimization

of hardware resources by utilizing all the available hardware resources. This achieved

18

110% better performance than when the routing scheme was not used.

Jiantao Qiu in his paper [21] evaluated different data quantization techniques.

When the VGG16 model was used for convolution, he got only 0.4% accuracy loss

with 8/4 bit dynamic precision quantization as compared to 16-bit quantization.

8/4 bit quantization also reduced three-fourths memory footprint and increased

bandwidth significantly as compared to 16-bit quantization. This paper also pro-

posed convolutional neural network accelerator design. This design was verified

on VGG16-SVD neural network model and achieved system performance of 136.97

GOP/s.

Recently, Daniel Soudry developed Expectation Backpropagation, an algorithm

using which multilayer neural network can be trained without tuning learning pa-

rameters such as learning rate an can be made insensitive to the magnitude of the

input. Additionally, they restricted weights to have discrete values. This makes

them useful for implementing multi-layer neural network on embedded hardware

with low precision. When tested on deep neural networks, Expectation Backpropa-

gation outperforms the standard backpropagation with optimal learning rate. They

achieved the best performance using Bayes estimate of the output multi-layer neural

network with binary weights.

In the recent papers by Hwang and Sung [22, 23], they proposed a technique

to use lower precision weights and lower precision signals to implement the deep

neural network. In their proposed method, initially trained floating point weights are

trained to obtain fixed point weight directly. But, direct quantization for fixed point

network does not produce good results. Thus, they proposed weight quantization

strategy to retrain weight after direct quantization using backpropagation based

retraining. Their fixed point network with ternary weights (+∆, 0 and −∆) showed

negligible performance loss when compared with the network with floating point

19

weights.

Courbariaux in 2015 proposed BinaryConnect method [24], which allows the

deep neural network to be trained and tested with binary weights. Arithmetic

operations, which are involved in deep learning are mainly convolutions and ma-

trix multiplications. The most repetitive arithmetic operation in deep learning is

multiply-accumulate operation. Because each neuron is nothing but a multiply-

accumulator. BinaryConnect method constraints weights to be either +1 or -1. As

a result, all the multiply-accumulate operations are replaced by series additions and

subtractions. This brings great benefit when implementing neural network on spe-

cialized hardware by removing the need of around 2/3 of multiplications. Around

1/3 of multiplications are still required while updating parameters in backpropa-

gation. Because good precision weights are required to apply stochastic gradient

descent for updating parameters. However, since around 2/3 of multiplications can

be replaced by fixed point adders, this method can bring benefits in terms of area

and power efficiency, when implementing neural network on specialized hardware

platforms.

Later in 2016, Courbariaux proposed binary neural network [1], which is a convo-

lutional neural network with binary weights and activations. During training binary

neural network, he used binary weights and activations to compute parameter gra-

dients. These parameter gradients are then used to update weights to minimize loss

function. During the testing phase of the binary neural network, he used binary

weights and activations to generate the class score. To analyze binary neural net-

work, two different frameworks, Torch7 and Theano were used. When tested on

three different datasets, CIFAR-10[5], MNIST[25] and SVHN[26], the binary neural

network showed small accuracy loss as compared to state of the art results. More

details about the working of the binary neural network are given in the next section.

20

2.3.1 Binary Neural Network[1]

Binarization Methods

In the binary neural network, weights and activations for each of the convolutional

layer are constrained to be either +1 or -1. To transform floating point weights

and activations into these two binary values, two different binarization methods are

proposed by Courbariaux. One of them is deterministic binarization method, which

is a simple sign operation as shown in equation (2.9), where x is the floating point

number and xb is the binarized variable of x.

xb = sign(x) =

+1 x ≥ 0

−1 otherwise

(2.9)

Another way to binarize floating point weights is stochastic binarization as shown

in the equation (2.10). This is a more precise way of binarization than deterministic

binarization.

xb =

+1 with probability p = σ(x)

−1 with probability 1− p
(2.10)

where σ is the hard sigmoid function, computed as shown in the equation (2.11).

σ(x) = clip(
x+ 1

2
, 0, 1) = max(0,min(1,

x+ 1

2
)) (2.11)

For implementing binarization on hardware, deterministic binarization is re-

quired less computation and less memory space. Because stochastic binarization

requires hardware to generate random bits while quantizing. Additionally, results

are comparable in both cases. Thus, the deterministic method is chosen in this

21

Figure 2.9: Example of Binary Neural Network

thesis.

Forward and Backward Propagation

The binary neural network consists of convolutional layer, batch normalization layer,

pooling layer, binarization layer and fully connected layer. The example of a binary

neural network is shown in the Fig. 2.9.

Using the forward propagation, only binary weights are used for convolutional

and fully connected layer. The output from one layer is connected as an input

to another layer. For the first convolutional layer, the input is 8 bit fixed point

value from each of the red, green and blue channels of colored image input. Thus,

convolution is performed between 8 bit fixed point input and binary weight of the

first convolutional layer. Since one of the arguments in the convolution is constrained

to be either +1 or -1, multiply-accumulate operations in the convolution are replaced

by series of additions and subtractions. For example, if x is the 8 bit fixed point

input and wb is the binary weight corresponding to that input, output terms for

that multiplication can be computed as shown in the equation (2.12).

22

s =
8∑

n=1

2n−1(x[n− 1] · wb) (2.12)

where x[7]will be most significant bit of input x. Since x[n] value is a binary num-

ber and wbis either +1 or -1, convolution is performed by simple additions and/or

subtractions. Thus, convolution performed at every neuron in the first convolu-

tional layer is basically series of additions and subtractions. For all the remaining

convolutional layers, input activations are binarized and weights are also binarized.

Thus, all the multiply-accumulate operations will be XNOR-addition operations.

This makes the computation simpler than in the case of first convolutional layers.

Similarly, for fully connected layers all the arithmetic operations are replaced by bit-

wise operations. Pooling layers are not shown in the Fig. 2.9. But, they are inserted

at regular intervals in the binary neural networks to reduce the spatial dimension

of activations.

Once the forward propagation is completed and loss is computed, gradient with

respect to every parameter is calculated by moving backward in the binary neural

network. The real-valued gradients are calculated because the good precision of

gradients is required for Stochastic Gradient Descent (SGD) process [27]. SGD is

an optimization algorithm for deep learning. SGD typically uses smaller learning

rate. SGD takes small noisy step sizes in modifying the parameter until it reaches

the optimized parameter value. The real-valued gradients are added to real-valued

weights to compute updated weights as shown in the equation (2.13).

wt = clip(wt−1 − η
∂c

∂wb
) (2.13)

where, wt−1 is the old real-valued weight, η is the learning rate, ∂c
∂wb

is the gradient

of cost with respect to weight and wt is the updated weight. Generated weights are

23

clipped to be in the range of -1 to +1. Because, if the weight is beyond the range

of -1 to +1, it may grow very large with each weight update. Since binarization

anyways constrains the weight to be in the range of -1 to +1, the larger magnitude

of weights will not affect the neural network.

The one issue with the sign function is that derivative of sign function is always

zero. This causes a problem in backpropagation. While propagating backward,

gradients are calculated using the chain rule. When the gradients of the cost with

respect to weights are computed, sign function makes gradients to be zero. This is

harmful in network learning process. Hinton introduced straight through estimator

in 2012 [28], which can be used here to solve zero gradient issue. Straight through

estimator applies simple hard threshold function to calculate the gradient. For

example, consider sign quantization function, y = sign(x). g is computed as shown

in expression (2.14). Straight through estimator performs backpropagation through

sign function by treating derivative of sign function as an identity function. This

cancels the gradient, only when x is too large. Straight through estimator has proven

to give good results [28] and it is simpler to implement in hardware.

gx =

gy |x| ≤ 1

0 otherwise

(2.14)

24

Chapter 3

Hardware Implementation

3.1 FPGA Overview

Field Programmable Gate Arrays (FPGAs) are semiconductor devices, which can be

electrically programmed to implement any digital circuit. FPGA consists of an array

of programmable logic blocks, which are linked using programmable interconnects.

Their reconfigurability distinguishes them from Application Specific Integrated Cir-

cuits (ASICs), which are custom build for a specific design. Similar to ASICs, FPGA

designs are modeled using Hardware Description Languages (HDLs) like Verilog and

VHDL. Once the design is described in HDL, then it is compiled and implemented to

create a configuration file, also known as bitstream file. This bitstream file contains

information about how different components of FPGAs should be wired. Once this

bitstream file is downloaded on FPGA, it is configured to run the design until the

FPGA is powered off.

From the very beginning, when FPGAs were introduced, they have become a

popular choice for engineers to prototype ASICs, ASSPs, and SoCs design to test

various aspects of design. The main reason behind this is their reconfigurability. If

25

the design is found to be faulty, then the design can be corrected just by changing

the HDL code and downloading new bitstream onto FPGAs. Being re-configurable,

FPGAs can always keep pace with future modification. Another major advantage

of FPGA is the time taken to fully develop a functional design. A design can be

made functional and verified for different cases on FPGAs without going through

long fabrication process and unusual silicon respins of custom ASIC design. FPGAs

are often used to demonstrate an idea to customers and to give them assurance

that the design is functioning as expected. Parallel processing allows FPGAs to

build complex designs with multiple parallel executions. They used as accelerators

along with CPUs in my applications because unlike CPU they can execute multiple

instructions at the same time giving very high throughput. FPGAs do have some

disadvantages over ASICs such as reconfigurability of FPGAs make them slower in

clock speed than ASICs because ASIC designs are optimized for a specific design

to get the best routing and interconnection for that design. Power consumption in

FPGA designs is more as compare to custom ASICs. FPGAs have limited resources.

Overall, FPGAs are preferred for lower speed designs and for lower quantity produc-

tion. Additionally, FPGAs also have special in-built hardware such as block RAMs,

digital clock managers, high-speed I/Os, soft-core embedded CPU, DSP blocks etc.,

which can be used to built almost any type of design.

3.2 ZYNQ ZC706 FPGA Platform

In this thesis, Xilinx ZC706 evaluation board is used to implement neural network.

The ZYNQ 7000 family is based on Xilinx All Programmable SoC (AP SoC) archi-

tecture [2]. The ZYNQ 7000 AP SoC combines the software programmability of the

ARM-based processor with hardware programmability of FPGA along with CPU,

26

DSP, ASSP and mixed signal designing on a single silicon. ZC706 board has dual

core ARM cortex-A9 processor as the heart of the processing system and 28 nm

fabrication technology based ZC7Z045 FPGA as a heart of programming logic. Fig.

3.1 shows ZC706 FPGA board and its different parts. The processing system also

includes on-chip memory, external memory interfaces, 8-channel DMA controller, a

variety of I/O peripheral interfaces. Programming logic mainly consists of config-

urable logic blocks (CLBs), Block RAMs (BRAMs), Digital Signal Processing blocks

(DSP blocks), programmable I/O blocks, PCIe blocks, high-speed transceivers and

Analog to Digital Converters (ADCs). For this thesis, we used Vivado 2015.2 en-

vironment for rapid development of hardware and software designs. A broad range

of IPs, provided by Xilinx and other 3rd party companies are used to simplify the

process of designing.

Figure 3.1: ZC706 FPGA Platform[2]

Dual core ARM based processing system, on-chip memory or DDR, I/O pe-

ripherals and programmable logic are connected to each other via ARM AMBA

27

AXI interconnects. AMBA AXI interconnect supports multiple master-slave trans-

actions. This interconnect is designed in such a way that it provides the shortest

path from latency sensitive ARM CPU to memory and it provides high throughput

connection from bandwidth critical master such as programmable logic to its slaves.

ZC7045 has up to 8 clock management tiles (CMTs), each consisting of one mixed

mode clock manager (MMCM) and one phase locked loop (PLL). Both of them are

used as frequency synthesizers to generate a wide range of frequencies. They also

act as jitter reducers for incoming clocks.

3.3 Avnet HDMI Input Output FMC Module

The FMC-HDMI-CAM-G [3] is a low pin count (LPC) FPGA mezzanine card

(FMC). This module itself doesn’t have processing intelligence. It is rather a plug-in

module, compatible with FPGA platforms with LPC connector. In this thesis, FMC

HDMI CAM is used along with Xilinx ZC706 FPGA platform for interfacing video

input and output. Carrier board ZC706 received video data from FMC-HDMI-

CAM-G board. ZC706 provides data, control and power processing for this FMC

module. Fig. 3.2 shows the architecture of FMC-HDMI-CAM-G module.

Figure 3.2: HDMI Input Output FMC Architecture [3]

FMC-HDMI-CAM-G has HDMI input, HDMI output, and camera interface.

28

Either HDMI input port or camera can be selected as a video input and video output

is connected to HDMI output port. HDMI input port has ADV7611 integrated

circuit as HDMI receiver and HDMI output port has ADV7511 integrated circuit as

HDMI transmitter. The FMC module supports video input and output transmission

in YCbCr 4:2:2 format. It supports a variety of resolution at the HDMI input as

shown in the Table 3.1.

Resolution Pixel Rate Frame Dimension Frame Rate

1080P60 148.5 MHz 1920 x 1080 60 Hz
SXGA 110 MHz 1280 x 1024 60 Hz
720P60 74.5 MHz 1280 x 720 60 Hz
XGA 65 MHz 1024 x 768 60 Hz
SVGA 40 MHz 800 x 600 60 Hz
576P50 27 MHz 720 x 576 60 Hz
480P60 27 MHz 720 x 480 60 Hz
VGA 25.175 MHz 640 x 480 60 Hz

Table 3.1: Resolutions supported by HDMI Input Output FMC Card [3]

3.4 Binary Neural Network Hardware Implemen-

tation

In this thesis, GPU is used to train the neural network with binary weights and acti-

vations. During training time, real time weights and real-time parameter gradients

are used to perform parameter updates. Once the training is finished, updated real

time weights are converted into the binary form using deterministic binarization and

then pre-trained weights are stored in the on-chip memory of an FPGA. Since all

the pre-trained weights are in binary format, this step saves the significant amount

of memory. Since now, instead of 8 bit/16 bit weights, 1-bit weights are saved into

the on-chip memory of FPGA, memory usage reduces by 8/16 times.

29

The small BNN architecture implemented on ZYNQ ZC706 platform is as shown

in figure 3.3. This architecture consists of only 2 convolutional layers and 3 fully

connected layers.

Figure 3.3: Architecture of Binary Neural Network

For the first layer of BNN, input is CIFAR-10 RGB image of dimensions 3×32×32

and each pixel is of 8-bit precision. Since weights to this layer are binarized, the

convolution operation is no longer multiply accumulations. Instead, it will be series

of addition (when corresponding weight is +1) and subtraction (when corresponding

weight is -1). Then, equation (1) for convolution can be rewritten as in (3.1),

where Wb = sign(W). In other words, Wb is the stored binary weight obtained by

binarizing real time weight W .

Y [n, i, j] =
D−1∑
d=0

K−1∑
y=0

K−1∑
x=0

Wb[n, d, 2− x, 2− y] ∗X[d, i+ x, j + y] (3.1)

Input for testing phase is an image of size 32× 32× 3. An image is sent to the

binary neural network through AXI4-Stream interface. Each pixel in R, G and B

components of images of 8-bit size. Thus, the data width of AXI4-Stream interface

is 24 bits. The pixels are received in a raster scanning order. Output image from the

binary neural network is also sent to the AXI4-Stream interface in raster scanning

30

order. The kernel size of the 3D convolutional filter is 3 × 3 × 3. 3D convolution

is performed by first computing 2D convolutions with kernel size of 3× 3 and then

adding the results from three 2D convolutions. The hardware module needs to buffer

the image pixels to perform 3D convolution. To perform convolution with kernel

size of 3× 3, an image needs to be buffered up to at least 2 rows of the pixels. For

the mask 3× 3, output sample is a function of 9 pixels, each of 8 bits corresponding

to the pixel in each component of RGB image. To retain width× height of output

volume to be 32× 32, zero padding of one order is applied to an image. With stride

of 1, each pixel is read 9 times as the window is scanned through the image. Pixels

adjacent horizontally are required in successive clock cycles, so are buffered and

delayed in registers. A row buffer caches the value of previous rows to avoid having

to read the pixel values again. A filter of 3 × 3 spans three rows, the current row

and two previous rows as shown in Fig. 3.4. Each buffer delays the input by one

row. To implement such delay, N stage shift register is used, where N is the width

of the image, which is 34 in this case with 1 level of zero padding.

Figure 3.4: Line buffers to scan 3× 3 pixels at a time

Architecture realization of the first layer is as shown in following Fig. 3.5. Input

here is a test image from CIFAR-10 dataset of size32 × 32 × 3. This figure shows

computation of N feature maps when N kernels of size 3 × 3 × 3 convolves with

RGB input image of size 128× 128× 3. A number of output feature maps are equal

31

to the number of kernels. Since Wb can only take two values +1 or -1, multiply-

accumulation operations of convolution changes to series of additions (when Wb is

+1) and series of subtractions (when Wb is -1) as shown in Fig. 3.6.

Figure 3.5: first convolution layer

Figure 3.6: First Convolution Layer, multiply accumulate implemented by addition
subtraction

All other convolution layers except first layer have binarized weights as well

as binarized inputs. Hence, the realization of all other convolution layer is same as

shown in Fig. 3.7. This figure shows the computation of N output feature maps when

input feature maps and N number of 3D kernels are applied to the convolutional

32

layer. In this realization, all the multiply operations in the convolutional layer

are replaced by xnor operations. Since 2D convolution operation occupies 90% of

computation cost in CNN, replacing most of the multipliers by xnor gate reduces the

complexity of computations by a significant amount. In other words, replacing most

of the 32-bit floating point multiply accumulations by 1-bit xnor count operations

reduces hardware usage by an orders of magnitudes.

Figure 3.7: 2nd, 3rd and 4th convolution layer realization

For fully connected layers, inputs are binary feature maps from previous layers

and binary weights are stored in the registers of an FPGA. Again, fully connected

layers in CNN consist of mainly multiplication operations. Hence, all the multipli-

cation operations in the fully connected layer are replaced by XNOR operations.

The usual problem faced with the fully connected layer in any CNN model is a large

number of weights, which require large memory for storage. However, in the binary

neural network, since weights are binary, they are easily stored into the on-chip

memory of FPGA. Full connected realizations are shown in Fig. 3.8. This figure

33

shows computation of output class score of N classes.

Figure 3.8: Fully Connected Layer Realization

Realization of batch normalization requires four fixed point stored parameters,

µ, σ, γ, β for each of the input activation layer, according to equation (3.2) [27]. In

this expression, x is the input data , y is the output data. During traing, µ and σ2

are mean and variance of current input minibatch x, and during testing they are

replaced by avreage statistical mean and variance over training data.

y =
x− µ√
σ2 + ε

γ + β (3.2)

However, in binary neural network implementation, we have reduced requirement

of stored parameters to two (one fixed point parameter and one binary parameter),

for each input activation layer. This is possible due to shifting and scaling of ex-

pression (3.2) to (3.3), as follows. After every batch normalization operation, sign

function is applied to quantize input to the value of +1 or -1. We have taken ad-

34

vantage of this, by neglecting magnitude of scaling function γ
β

and only storing sign

of scaling function as a binary parameter. Because only sign of the scaling func-

tion will have a contribution in quantizing final batch normalized output. In our

implementation, we have batch normalization layer after every convolutional and

fully connected layer. By using this shift and scale operation, now memory require-

ment for storing batch normalization parameter reduces from 32 bits (8 bits * 4

parameters) to 9 bits (8 bit + 1 bit), for each activation layer.

y = qb(x+ p) (3.3)

where p =

(
βσ

γ
− µ

)
, q =

γ

σ
and qb = sign(q)

3.5 Top Level System Design

Avnet HDMI I/O FMC module is connected to Xilinx ZC706 platform via LPC

connector. Input video stream of 720p at 60 fps is given to HDMI input port

of Avnet HDMI I/O FMC. Avnet FMC has ADV7611 IC integrated on it, which

receives an incoming video signal and then pass it to programmable logic design

for further processing. In programmable logic design, video input is converted into

AXI4-Stream format using Video In to AXI4-Stram IP provided by Xilinx. The

video is in YCbCr 4:2:2 format when streamed out of this IP. Chroma Resampler

IP and YCbCr to RGB Color Space Converter IP is used to convert YCbCr 4:2:2

video into RGB 4:4:4 format pixel by pixel.

AXI4-Stream interface streams one pixel per clock cycle. It has different signals

for tracking positions of input frame pixels. Some of the common AXIS signals are

data signal of 24-bit width, start of frame (SOF), end of line (EOL), valid signal

35

Figure 3.9: Example of AXI4-Stream interface transmission [4]

and ready signal. SOF signal is active high for every first pixel of the video frame.

It acts as a frame synchronizer for all of the cores streaming in AXIS video input.

EOL signal marks the last pixel of every scanned line. The valid signal is active

high for every active high video data. Ready and valid signals are used together for

handshaking, whenever data is transmitted between 2 IP core. An example of AXIS

interface signals is shown in the form of the waveform in Fig. 3.9.

Once the video is converted into RGB AXI4-Stream format, an encoder is used

to store exactly 32 × 32 pixels each of 24 bit width out of 720p frame inside dual

port block RAM. At the same time, a decoder is used to read the data stored in

block RAM. The data read by the decoder is used as input for binary neural network

module. Neural network uses pre-trained weights stored into registers of FPGA and

pass 32×32 RGB frame through several layers of neural network and outputs one bit

determining whether the class is detected or not. The output is synchronized with

input video stream to send signal whether the particular object is detected or not.

This system is shown in Fig. 3.10. Output AXI4-Stream is then again converted

to YCbCr 4:2:2 format using proper IPs and then to appropriate video format and

transmitted out from Avnet FMC HDMI output port for displaying.

36

Figure 3.10: Top Level System Design

37

Chapter 4

Classification and Result

4.1 BNN Classification Result

The CIFAR-10 dataset is used for training and testing binary neural network for

automobile classification. All the images in the CIFAR-10 are 32× 32 color images.

CIFAR-10 dataset can be distinguished into 10 different classes. Some examples of

images from every class in shown in the following Fig. 4.1.

Figure 4.1: CIFAR-10 dataset [5]

38

50,000 images are used to train binary neural network on GPU. The distribution

of the images is such that 5,000 images belong to every class. The testing dataset

contains 10,000 images with exactly 1,000 randomly ordered images belonging to

every class. The proposed design of the neural network is trained and tested for

automobile classification.

The architecture used for binary neural network layer is inspired by convolution

neural network of VGG Net [29]. When 1-bit binary weights are used in the convo-

lutional network instead of fixed point representation, the memory required to store

weights decreases by an order of magnitude. In addition to that, resources required

to conduct the multiplication-addition operation at every neuron also reduces by a

significant amount. Furthermore, if input activations are quantized to 1 bit along

with weights for convolutional and fully connected layers, complex arithmetic op-

erations are replaced by bitwise operations leading to further decline in resource

usage.

For an instance, consider a case when input activation for a convolutional layer is

of size 32×32×16 and neurons have a receptive field of size 3×3×16 with depth 16,

sliding with stride 1. Input activation is surrounded by one layer of zero padding.

Then, the output volume would be of size 32 × 32 × 16, same as input activation.

In other words, this is the case of convolutional layer with 32 ∗ 32 ∗ 16 = 16, 384

neurons, each having 3 ∗ 3 ∗ 16 = 144 weights. Table 4.1 shows resource utilization

on Virtex -7 FPGA when this convolution layer is implemented. For implementing

this convolutional layer, weights and activations are defined to be of fixed point 8

bits.

To carry out 8-bit multiplications at every neuron, DSPs are employed. All

other connections are realized using registers and LUTs. When the same convolu-

tional layer is implemented using binarized weights and 8-bit activations, resource

39

Resource Utilization Available Utilization%

Slice Registers 22016 607200 3.63
Slice LUTs 24263 303600 7.99

DSP48 2304 2800 82.29

Table 4.1: Resource utilization, when weights and activations are of fixed point 8
bit

utilization is as shown in Table 4.2.

Resource Utilization Available Utilization

Slice Registers 8592 607200 1.42
Slice LUTs 8698 303600 2.86

Table 4.2: Resource utilization, when weights are binarized and activations are of
fixed point 8 bits

Since now all the weights are binarized, DSPs are no longer needed to carry out

multiplications at every neuron. Because one of the arguments of multiplication

is binarized (+1 or -1) and other is of fixed point 8 bit, multiply operation is no

longer required. Output at every neuron can be calculated by just executing series

of additions and/or subtractions. In addition to this, registers required decreases by

60.97% and LUTs required decreases by 64.15% , as can be seen from the utilization

tables. Table 4.3 shows the utilization of resources when the same convolutional

layer is implemented with binarized weights and binarized activations.

Resource Utilization Available Utilization

Slice Registers 2141 607200 0.35
Slice LUTs 2507 303600 0.83

Table 4.3: Resource utilization, when weights and activations are binarized

As can be seen from the table, resource usage further reduces, when both weights

and activations are binarized. When both the arguments of multiplications are bi-

narized, multiplication output can be carried out by using simple bitwise XNOR

gates. Thus, register usage further reduces by 75.08% and LUT usage further re-

40

duces by 71.17%, as compared to the implementation with only binarized weights.

When this convolution layer implementation with binarized weights and activations

is compared with fixed point weights and activations implementation, the require-

ment of resources has decreased by 90.27% for registers and 89.66% for LUTs. This

is a huge improvement on resource utilization. This implementation saves a good

amount of FPGA resources, which can be used to implement other digital system

or another network layer on FPGA.

This thesis proposes a binary neural network implementation with 5 convolu-

tional layers and 3 fully connected layers. Table 4.4 shows a number of parameters

required by this network architecture.

Network layer Weights required for given layer

Convolutional layer 3 ∗ 3 ∗ 3 ∗ 128 = 3, 456
Convolutional layer 3 ∗ 3 ∗ 128 ∗ 128 = 147, 456

Pooling layer 0
Convolutional layer 3 ∗ 3 ∗ 128 ∗ 256 = 294, 912
Convolutional layer 3 ∗ 3 ∗ 256 ∗ 256 = 589, 824

Pooling layer 0
Convolutional layer 3 ∗ 3 ∗ 256 ∗ 512 = 1, 179, 648

Pooling layer 0
Fully connected layer 4 ∗ 4 ∗ 512 ∗ 1024 = 8, 388, 608
Fully connected layer 1024 ∗ 1024 = 1, 048, 576
Fully connected layer 1024 ∗ 10 = 10, 240

Table 4.4: Parameters required by each layer of proposed network

When the parameters required for all the layers are added, total number of

parameters would be ∼ 11.6Millions. If this architecture is implemented with

convolutional layers with fixed point 8-bit weights, then memory required would be

11.6MB. On the other hand, if this architecture is implemented with binary neural

network with binarized weights, memory required would be 11.6M/8 =∼ 145.7KB.

Thus, binary neural network reduces memory requirement by 98.75%.

The performance of the proposed system architecture is evaluated on Xilinx

41

Virtex-7 980T FPGA platform. Xilinx Vivado 2015.2 environment is used to perform

synthesis and implementation on the design. Mainly registers and LUTs are used

in this design. Table 4.5 shows resource utilization when the binary neural network

is implemented with a different number of layers.

no. of convolution layers 1 2 3 4 5
no. of fully connected layers 1 1 2 2 3

Slice Registers 24195 178391 213095 350713 499874
Slice LUTs 3563 507905 650126 888927 1113205

Table 4.5: Resource utilization, when number of convolutional and fully connected
layers are varied in the network

When a binary neural network with 5 convolutional layers and 3 fully con-

nected layers is implemented on Virtex-7 980T FPGA, maximum frequency of

340.13MHzis recorded. When tested on CIFAR-10 test dataset, the accuracy

achieved is 86.06%. This neural network also has several pooling layers and a batch

normalization layer after every convolutional and fully connected layer. Total la-

tency of this system is 1670 clock cycles or 4.9µs. Maximum throughput of this

design can reach is 332,164 images per second with 32× 32 resolution.

42

Chapter 5

Conclusion and future work

5.1 Conclusion

Over the last few years, Advanced Driving Assistance System (ADAS) is one of the

fastest evolving research division in academia and automobile industry. The aim

of ADAS is to provide assistance to the driver by alerting him about the poten-

tial danger and reducing chances of accidents due to driver’s negligence. Accurate

environment perception is essential for ADAS implementation. One of the key tech-

nology involved in environment monitoring is computer vision. Computer vision is

useful in a variety of applications of ADAS such as lane detection, road sign detec-

tion, vehicle detection, automotive cruise control and driver monitoring. To address

all these different applications, various computer vision algorithms are studied and

discovered. Among those, the deep convolutional neural network has achieved break-

through results in the field of image recognition in last few years. The convolutional

neural network was then followed by many other modified networks for improving

performance further or to make network optimized for specific pattern recognition

problem. The binary neural network is one of those modified convolutional neu-

43

ral network designed to address pattern recognition problems for real-time and low

power embedded applications.

In this thesis, FPGA-based SoC design for the binary neural network is pro-

posed. Since FPGA has reconfigurable and parallel architecture, it is a powerful

platform for the deep neural network. Reconfigurability of FPGA allows neural

network architecture to be scalable and adaptable to change. When looked deep

down, neural network is nothing but millions of neuron performing the same arith-

metic operation. Since the same repetitive operation is performed at every neuron

independently, parallel computing architecture of FPGA can be utilized to execute

independent operations concurrently. The drawbacks of using FPGA platform are

limited on-chip memory size and limited bandwidth if the external memory is used

for storing weights. Since FPGA implementation of binary neural network uses

pre-trained binary weights, storing weights into only on-chip memory is feasible and

limited bandwidth is no longer an issue. This proposed architecture provides very

high throughput, since there is no latency due to external memory access and limit

on the external memory bandwidth. This design provides processing capacity of

332,164 images per second. This design achieved maximum accuracy is 86.06%, by

optimizing usage of memory resources on the FPGA platform. Due to low power

and small memory requirements, proposed design can be a suggested solution for

many embedded system applications.

5.2 Future work

In this thesis, binary neural network implementation was only targeted for vehicle

detection task. In the future work, the binary neural network can be used to ad-

dress other real-time computer vision tasks in ADAS such as traffic sign detection,

44

automotive cruise control and driver drowsiness monitoring tasks.

FPGAs have parallel processing architecture. Thus, it is possible to run multiple

computer vision applications of ADAS at the same time on single FPGA if there are

enough computational and memory resources. Higher end FPGAs like Ultrascale

family FPGAs can be employed to meet more computational and memory resource

demand. With the Ultrascale family of FPGA, a deeper neural network can also be

realized, which can achieve higher accuracy. In fact, FPGA can be used for entire

ADAS designing, because FPGA can provide benefit from parallel processing which

will be used in sensor data processing. Simultaneously, it can also be used to handle

serial processing task like system control, system monitoring, alerting system etc

with the help of ARM processor.

With this FPGA implementation, 86.06% accuracy is achieved for object classi-

fication task with 5 convolutional and 3 dense layer architecture. ASIC implementa-

tion of the same binary neural network design can further improve the performance

per power consumption. Though FPGA provides an advantage of reconfigurabil-

ity, ASIC will also allow more depth in the neural network, thus identifying more

complex patterns efficiently with the greater accuracy.

45

Bibliography

[1] Matthieu Courbariaux, Itay Hubara, COM Daniel Soudry, Ran El-Yaniv, and

Yoshua Bengio. Binarized neural networks: Training neural networks with

weights and activations constrained to+ 1 or-.

[2] Zynq-7000 all Programmable SoC Overview.

[3] Avnet FMC-HDMI-CAM-G Hardware Design Guide.

https://www.avnet.com/shop/us/p/kits-and-tools/development-kits/avnet-

engineering-services-ade–1/aes-fmc-hdmi-cam-g-3074457345628965509.

[4] AXIStream Data Interface Signal Descriptions.

[5] CIFAR-10 and CIFAR-100 datasets.

[6] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algo-

rithm for deep belief nets. Neural computation, 18(7):1527–1554, 2006.

[7] Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle, et al. Greedy

layer-wise training of deep networks. Advances in neural information processing

systems, 19:153, 2007.

[8] Marc’Aurelio Ranzato, Christopher Poultney, Sumit Chopra, and Yann LeCun.

Efficient learning of sparse representations with an energy-based model. In Pro-

46

ceedings of the 19th International Conference on Neural Information Processing

Systems, pages 1137–1144. MIT Press, 2006.

[9] George Dahl, Abdel-rahman Mohamed, Geoffrey E Hinton, et al. Phone recog-

nition with the mean-covariance restricted boltzmann machine. In Advances in

neural information processing systems, pages 469–477, 2010.

[10] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-

Antoine Manzagol. Stacked denoising autoencoders: Learning useful represen-

tations in a deep network with a local denoising criterion. Journal of Machine

Learning Research, 11(Dec):3371–3408, 2010.

[11] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recog-

nition with deep recurrent neural networks. In Acoustics, speech and signal

processing (icassp), 2013 ieee international conference on, pages 6645–6649.

IEEE, 2013.

[12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification

with deep convolutional neural networks. In Advances in neural information

processing systems, pages 1097–1105, 2012.

[13] Adam Coates, Paul Baumstarck, Quoc Le, and Andrew Y Ng. Scalable learn-

ing for object detection with gpu hardware. In 2009 IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 4287–4293. IEEE, 2009.

[14] George E Dahl, Tara N Sainath, and Geoffrey E Hinton. Improving deep

neural networks for lvcsr using rectified linear units and dropout. In Acoustics,

Speech and Signal Processing (ICASSP), 2013 IEEE International Conference

on, pages 8609–8613. IEEE, 2013.

47

[15] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and

Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks from

overfitting. Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[16] Paul J Werbos. Backpropagation through time: what it does and how to do it.

Proceedings of the IEEE, 78(10):1550–1560, 1990.

[17] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-

scale image recognition. CoRR, abs/1409.1556, 2014.

[18] Adam Coates, Paul Baumstarck, Quoc Le, and Andrew Y Ng. Scalable learning

for object detection with gpu hardware. In Intelligent Robots and Systems,

2009. IROS 2009. IEEE/RSJ International Conference on, pages 4287–4293.

IEEE, 2009.

[19] Clément Farabet, Berin Martini, Polina Akselrod, Selçuk Talay, Yann LeCun,

and Eugenio Culurciello. Hardware accelerated convolutional neural networks

for synthetic vision systems. In Circuits and Systems (ISCAS), Proceedings of

2010 IEEE International Symposium on, pages 257–260. IEEE, 2010.

[20] Aysegul Dundar, Jonghoon Jin, Vinayak Gokhale, Berin Martini, and Eugenio

Culurciello. Memory access optimized routing scheme for deep networks on

a mobile coprocessor. In High Performance Extreme Computing Conference

(HPEC), 2014 IEEE, pages 1–6. IEEE, 2014.

[21] Jiantao Qiu, Jie Wang, Song Yao, Kaiyuan Guo, Boxun Li, Erjin Zhou,

Jincheng Yu, Tianqi Tang, Ningyi Xu, Sen Song, et al. Going deeper with

embedded fpga platform for convolutional neural network. In Proceedings of

the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate

Arrays, pages 26–35. ACM, 2016.

48

[22] Kyuyeon Hwang and Wonyong Sung. Fixed-point feedforward deep neural

network design using weights+ 1, 0, and- 1. In Signal Processing Systems

(SiPS), 2014 IEEE Workshop on, pages 1–6. IEEE, 2014.

[23] Jonghong Kim, Kyuyeon Hwang, and Wonyong Sung. X1000 real-time phoneme

recognition vlsi using feed-forward deep neural networks. In Acoustics, Speech

and Signal Processing (ICASSP), 2014 IEEE International Conference on,

pages 7510–7514, May 2014.

[24] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect:

Training deep neural networks with binary weights during propagations. In

Advances in Neural Information Processing Systems, pages 3123–3131, 2015.

[25] THE MNIST DATABASE of handwritten digits.

[26] The Street View House Numbers dataset.

[27] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propa-

gating gradients through stochastic neurons for conditional computation. arXiv

preprint arXiv:1308.3432, 2013.

[28] Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville. Estimating or

propagating gradients through stochastic neurons for conditional computation.

CoRR, abs/1308.3432, 2013.

[29] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition. CoRR, abs/1409.1556, 2014.

49

