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1 INTRODUCTION & BACKGROUND 

Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder that 

affects 5.9% of youths (Willcutt, 2012) and 2.5% of adults worldwide (Simon et al., 2018). This 

disorder is categorized into three subtypes: predominantly inattentive presentation, 

predominantly hyperactive-impulsive presentation, and combined presentation. The first subtype 

is associated with a lack of attentiveness, meaning the affected individual will have trouble 

staying focused and keeping organized. This can cause the individual to suffer academically and 

struggle to stay employed. The second subtype is associated with a generally impulsiveness, an 

inability to stay still, and limited patients. This can lead to the individual putting themselves in 

dangerous situations, as well as negatively impacting their personal relationships. The final 

subtype is a combination of the first two (CDC, 2023). Those with ADHD generally report a 

moderate to severe negative impact to their quality of life (Lee et al., 2016). This is in line with 

many other studies including a study in Denmark that found that those with ADHD were at a 

much higher risk for suicide (Fitzgerald et al., 2019). Those with ADHD are also three times as 

likely to develop a nicotine addiction, and 50% more likely to develop a drug or alcohol 

addiction (Lee et al., 2011). ADHD has also been found to result in lower academic 

achievement, even when medicated (Fleming et al., 2017). Given how common the disorder is, 

and how it can impact the lives of affected individuals, proper diagnosis of the disorder is very 

important. 

The diagnosis of ADHD has experienced ongoing development for a very long time, with 

some of the earliest accounts of the disorder going back to 1775 (Faraone et al., 2021). Since 



then, the methods for diagnosing ADHD have become more objective, with modern diagnosis 

using a standardized self-report or parent-report questionnaire to determine whether the 

individual has ADHD, as well as the subtype, if applicable (CDC, 2023). This process is 

described in more detail in the American Psychiatric Association’s Diagnostic and Statistical 

Manual, Fifth edition (DSM-5). The questionnaire and subsequent scoring are called the ADHD 

Rating Scale or ADHD-RS. This method of diagnosis has been criticized as being subjective due 

to a lack of biological basis, however it meets the standard criteria for validity of a mental 

disorder as described by Robins and Guze (Faraone, 2005). Although, this does not mean that 

misdiagnosis does not occur. 

Treatments for ADHD often include prescriptions to drugs that, while very effective for 

those with ADHD, have a high risk of addiction for those without ADHD. One meta-analysis of 

111 studies concluded that nonmedical usage of stimulants is a significant public health problem 

(Faraone et al., 2020). Misdiagnosis of those with ADHD could exacerbate this issue and expose 

people to unnecessary risk. There are multiple potential causes of this misdiagnosis. One is that 

the ADHD tests rely on self-reporting, and as a result it’s possible that an individual could lie to 

get access to the stimulants. Another problem is that a difference in age among tested children 

can sometimes be misinterpreted as the presence of ADHD. One study found that children that 

were born in December were much more likely than those born in January to be diagnosed with 

ADHD. Because ADHD is a neurological condition, rates in diagnosis should not be affected by 

grade cutoffs. This would imply that diagnosis fails to consider potential developmental 

immaturity in children being tested. With the existence of misdiagnosis, and potential for 

substance abuse, there is great merit in finding a concrete method for diagnosis that doesn’t 

require self-reporting or subjective analysis. 

One potential avenue for diagnosis is through analysis of magnetic resonance imaging 

(MRI) scans of the brain. Both structural MRI (sMRI) and functional MRI (fMRI) data has been 

used before in exploring potential biological markers of the disorder. A basis of diagnosis 

through this avenue could provide a definitive way to diagnose ADHD and its subtypes and rule 

out misdiagnosis due to lack of testing or being confused with another disorder. It could also 

potentially open a path to understanding the biology of ADHD. Unfortunately, the differences 

found in the scans through manual comparison between those with ADHD and those without 



have been small and not clinically usable as indicators of the disorder. Standard analysis is 

restricted to pre-defined structures and excludes a significant amount of fine-grain data in favor 

of more identifying chunks of data. Rather than doing standard analysis, the most recent 

advancements in this field use deep learning to classify the existence of ADHD and its subtypes 

using MRI data. Deep learning has the advantage of being able to make use of the entirety of the 

data in an MRI scan. 

A notable example of using deep learning for diagnosis is the ADHD-200 consortium 

competition that was held in 2011. The purpose of the competition was to develop a digital tool 

that could identify biomarkers of ADHD using functional MRI (fMRI) data. The fMRI scans 

were accompanied with an identification number, some demographic data, as well as a 

classification. This classification was one of four groups: Typically Developing Children (TDC), 

ADHD-Hyperactive/Impulsive, ADHD-Inattentive, or ADHD-Combined. Correctly identifying 

TDC was referred to as specificity and was rewarded with one point. Correctly identifying the 

subtype of ADHD was referred to as sensitivity and was also rewarded with one point. 

Identifying ADHD but incorrectly identifying the subtype was rewarded with half a point. 

Although it was not explicitly required, machine learning models dominated the competition, and 

the competition culminated in the John Hopkins University team winning (ADHD-200 

Consortium, 2012). Their model had a specificity of 94% but a sensitivity 24%, meaning it could 

correctly classify 94% of cases as TDC or ADHD, but could only correctly identify 24% of the 

ADHD subtypes. This model is an insight into how machine learning could be used to identify 

ADHD diagnosis, however it also makes clear a pitfall of the competition’s scoring system. A 

significant emphasis was placed on specificity over sensitivity. This issue is also mentioned by 

the John Hopkins team themselves (Eloyan et al., 2012).  

Another team was able to use exclusively demographic data to identify diagnosis and 

produced a higher accuracy than all other teams. Although they were disqualified due to this 

strategy being out-of-line for the general spirit of the competition, this indicated that the data 

provided by the consortium may have been biased. Other models may unintentionally have 

leveraged this bias despite the goal of identifying biomarkers for ADHD. Gender was a 

significant indicator of diagnosis, as the data set had disproportionately more male ADHD cases 

than female ADHD cases. This discrepancy in diagnosis between genders coincides with 



findings from other studies as well, as is described by meta-analysis from Willcutt (2012) and 

Simon et al. (2018). IQ also had a role in this, as the IQ of the those diagnosed with ADHD was 

7-10 points lower on average to those who were not (ADHD-200 Consortium, 2012), which is 

consistent with findings from Frazier et al. (2004). However, these indicators are just one part of 

a large and complex system and cannot be reliably used for diagnosis. 

Our goal is to use deep learning to identify ADHD and its subtypes. We propose that instead 

of using one network to do all the above, it may be more efficient to use two separate networks 

that perform different functions. Specifically, one that can identify between typically developing 

individuals and individuals with ADHD, and one that can identify subtypes of ADHD. By 

separating out the classification groups like this, we hope to achieve higher accuracy overall. We 

will not be using demographic data in the hopes that the model produced will only use the 

biological data in its classifications. This should aid in preventing some biases from affecting our 

results. 

The deep learning model we will be using is the convolutional neural network used in the 

more recent Alzheimer’s disease study (Liu et al., 2022). This model was used to identify 

Alzheimer’s in the hopes that it would be possible to predict the development of Alzheimer’s 

early on. Our plan is to use the pretrained network for our own training, with the hopes that some 

of the patterns in the data might be transferable. There are major differences between the data 

used for the Alzheimer’s study and our own data. These differences include a large gap in the 

age ranges between the two studies, differences between using fMRI and sMRI data, and an 

overall difference in classification goals. These differences might affect our training and 

effectiveness of our model, but it could also provide new insight into how well pre-trained CNNs 

can adapt to a change in environment. 

2 METHODS 

2.1 DATA 

We will be using the publicly available data set from ADHD-200 consortium for this 

study. The ADHD-200 consortium data is organized into a set of MRI anatomical and resting-

state functional scans, as well as top-level tsv files that contains information about each of the 



subjects, including ADHD presence and type, as well as other collected information such as 

gender, handedness, and IQ. For the purposes of this study, we decided to use anatomical scans, 

rather than the functional scans. The reasoning for this is described in more detail in section 2.3. 

This data is split between many different institutions, and so for the purposes of this 

project the scans will be pooled together in one folder and the tsv files will be combined into one 

file, ALL.tsv, using an automated python script, fileMover.py. ALL.tsv, was then split into two 

parts using TSVSplitter.py: ALL_val.tsv and ALL_train.tsv. These files contained a random 

selection of 10% and 90% of ALL.tsv respectively. This was done to isolate a set of training data 

and validation data. We also made another file that included only positive ADHD diagnosis with 

the goal of training two separate networks with specialized jobs. One would use binary 

classification between controls and ADHD subtypes, and the other would use trinary 

classification of the ADHD subtypes themselves. 

The tsv files were also cleaned using TSVFixer.py, which would remove entries from the 

files whose anatomical scans didn’t meet the minimum size requirements of 96x96x96. Finally, 

there was also a problem with duplicate entries, which were removed from the tsv file manually. 

This entry duplication is assumed to be an issue with fileMover.py, and if there are no duplicate 

entries in the tsv files, the CNN will ignore any duplicate scans. 

2.2 DEEP LEARNING MODEL 

A 3D CNN, composed of convolutional layers, instance normalization (Ulyanov et al., 

2017), ReLUs and max-pooling layers, was designed by Liu’s team to perform classification of 

Alzheimer’s disease and mild cognitive impairment and normal cognition cases. In a preliminary 

work they showed that the proposed architecture is superior to state-of-the-art CNNs for image 

classification (Beekly et al. 2004). The proposed architecture contains several design choices that 

are different from the standard convolutional neural networks for classification of natural 

images: (1) instance normalization, an alternative to batch normalization (Ioffe and Szegedy, 

2015), which is suitable for small batch sizes and is empirically observed to achieve better 

performance; (2) small kernel and stride in the initial layer for preventing losing information in 

small regions; (3) wider network architecture with more filters and less layers for the diversity of 



the features and ease of training. These techniques all independently contribute to boosting 

performance. 

As is standard in deep learning for image classification (Goodfellow et al., 2016), they 

performed data augmentation via Gaussian blurring with mean zero and standard deviation 

randomly chosen between 0 and 1.5, and via random cropping (using patches of size 

96 × 96 × 96). 

The model was trained using stochastic gradient descent with momentum 0.9 (as 

implemented in the torch.optim package) to minimize a cross-entropy loss function. They used a 

batch size of 4 due to computational limitations. They used a learning rate of 0.01 with a total of 

60 epochs of training which were chosen by grid search based on validation set performance. 

During training, the model with the lowest validation loss was selected. 

2.3 STUDY STRUCTURE 

This study was conducted as a child to an overhead study run by Dr. Benjamin Nephew at 

WPI. The main goal of the study was to replicate the findings in the Liu et al. (2022) study, and 

multiple subgroups were created based on student interests to apply the modified deep learning 

pipelines to different topics chosen by those groups. Each group was tasked with collecting data 

and applying the modified pipeline to it. This is what is being referred to when other groups are 

mentioned. 

2.4 MODEL USAGE 

We used the pretrained model described above with the hopes of transferring its learning 

over to our model. We did this in the hopes that the model would retain what it had learned from 

training on anatomical scans and repurpose its existing knowledge for new classifications. 

Because the model was trained on anatomical data, we decided to use anatomical scans for our 

own training to maximize the amount of transferrable data patterns. Our plan was to train each of 

our proposed neural networks for about 100 epochs with a learning rate of 0.01 and a batch size 

of 16. We would then observe the results and tweak values to maximize the model’s 

effectiveness. 



We faced some immediate problems while configuring the model to do binary 

classification of ADHD vs control. The first was that all the tsv files provided different 

categories with different information, which meant that only some data was reliably present in all 

files. These categories were participant_id, gender, age, and participant_category, where the first 

and last variables are the ones necessary for running the pipeline. Another problem we 

encountered was with the naming schemes of the files. The pipeline required all scan files to 

have the same naming structure. There were only a handful of variations, so the pipeline was 

modified to just search for all potential file names for any specific scan file. 

As was mentioned previously, we also encountered an issue where some of the scan files 

were not large enough for the pipeline, which resulted in the scan being skipped and eventually 

the program terminating due to different resulting batch sizes. The first change made to try to fix 

this problem was to have the program that moved files and merged the tsv files exclude scans 

that weren’t marked as “pass” in quality control, although this didn’t seem to fix the issue. Due 

to inconsistencies in the labels for the quality control columns, as well as complications in how 

they were organized, we finally decided to manually remove any scans that were not large 

enough. This happened to only include one scan. 

The final problem that we encountered was that the validation accuracy of the network 

would not improve at all throughout training, no matter how many epochs it trained for. The 

validation accuracy would always come out to about 50% every epoch, and batch accuracy 

would remain about the same throughout. Another group with the same problem identified this 

behavior as the model always predicting all positive or all negative while training. A variety of 

approaches were attempted to fix this issue, such as modifying the learning rate to be higher and 

lower than 0.001, changing the batch size, as well as some general fixes to different parts of the 

code. In the end, none of these changes had an effect, which was also reported by the other 

groups working on their own projects. 

2.5 ETHICS 

All the data used in this study is publicly available and de-identified. 



3 RESULTS 

Due to time constraints, we were unable to get the deep learning pipeline to produce results. 

With more time, we could have tried more approaches to fixing the program, applied the fMRI 

scans instead of the anatomical scans, or even tried using the random forest machine learning 

model instead of the CNN. As for why the networks seemed to be unable to learn, there are a 

couple of potential reasons behind this. 

The first explanation behind the lack of learning is that anatomical data cannot be used to 

identify classify ADHD vs controls in deep learning. The John Hopkins team in the ADHD-200 

consortium, for example, only used fMRI data. It’s possible that brain structure is not useful 

enough for identifying ADHD. Extending from this, transferring the learning from the 

Alzheimer’s study could also have caused pipeline to fail. The data may have been too different, 

resulting in the training process struggling. This could explain why the network would classify 

all scans as ADHD or all scans as TPC while training, though it wouldn’t explain the lack of 

improvement. 

The next explanation is that the data used in this study was not adequate, or that it wasn’t 

filtered or handled correctly. This is our first experience working with deep learning, and as a 

result it’s possible the data was not separated or cleaned properly resulting in noise that 

inhibiting the learning process.  

The final explanation is that modifications made to the original CNN program in creation of 

the binary and multiclass pipelines resulted in erroneous behavior. This is reinforced by the fact 

that multiple other groups seemed to have the same issue as us. Their models would only 

produce 50% validation accuracy and didn’t seem to learn at all. This could also explain the 

behavior of classifying scans as either all positive or all negative. 

Given the fact that other groups experienced the same issue, we conclude that the most 

likely explanation is that the pretrained model could not translate what it had learned to other 

functions such as ADHD classification. This issue was potentially compounded by inefficiencies 

in using anatomical MRI scans over fMRI scans for identifying ADHD. 
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