
Applying Combinatory Logic Synthesis To Work With
Existing Software Frameworks

A Major Qualifying Project report:

Submitted to the Faculty of

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the degree of

Bachelor of Science

by

Jacob Bortell

Date: October 17 2017

Approved:
Professor George Heineman, Major Advisor

This report represents work of WPI undergraduate students submitted to the fac-
ulty as evidence of a degree requirement. WPI routinely publishes these reports
on its web site without editorial or peer review. For more information about the
projects program at WPI, see http: // www. wpi. edu/ Academics/ Projects .

http://www.wpi.edu/Academics/Projects

1 Introduction

When a developer wants to use a large and complex framework, before they
can write one line of code, what is their first step? Reading documentation,
skimming tutorials, and laboring through examples. Hours are spent trying to
understand how the application logic is embedded throughout the application
domain—how the framework’s designers took a large, abstract problem and im-
plemented a partial, subjective solution with objects, design patterns, packages,
and libraries. As the framework grew, the creators’ original vision and inten-
tion, which seemed so obvious when the framework was small, became diluted
in the name of modularity and extensibility. Now, to use it at all, its complexity
requires hours of just “catching up”, which no developer wants to do.

Typically there have been three approaches to developing large frameworks:
(1) Become an expert in the domain. As lamented, becoming an expert

requires hours of preparation. Even when finally the developer gains a mental
model, while they can explain how they understand it to another, the next
developer still cannot use it without themselves internalizing the intricacies of
the framework’s protocol and forming their own mental model.

(2) Generate extensions from logical specification. Logically specifying a
framework’s usage is far too difficult, especially when its constructs cannot be
defined mathematically.

(3) Develop units, which can be assembled. A framework of modular units
describes any object-oriented domain. However, application logic is diluted as
complexity increases.

Each approach focuses on learning code rather than on learning the abstrac-
tions of the application for which the code was written. Instead, we want to
program directly with the abstractions of the application as an interface to
the application domain, thereby completely hiding its complexity and totally
ignoring implementation details. Precisely, we want to enable developers to
program with typed abstractions, from which a compiler synthesizes into fully
working native code, compilable and runnable against the framework, without
developers becoming experts in that framework.

Combinatory Logic Synthesis (CLS) then is our solution to the large frame-
work problem. Application logic is represented and typed in a functional lan-
guage as semantic types; the developer requests synthesis of certain application
features; the compiler searches for a type safe solution and when found, un-
boxes the semantic types into native types, synthesizing a fully working native
application.

Our CLS proof-of-concept we demonstrate through the Archway variation
of Solitaire, based on a Solitaire domain [2], which allows for development of
feature-rich variations from a single product line. I will discuss CLS through ex-
ample and personal experience, offering a practical overview of its use, its power
for flexibility, and its potential for improvement. First, I will review the his-
tory of modern CLS and how the Solitaire application followed its development,
then discuss its design and how to develop, debug, and test such a program,
and conclude with benchmarks and final recommendations for future work.

1

2 Background

CLS is a type-based approach to component-oriented synthesis using types as
interface specifications [5]. It is composed by a repository of combinators, which
represent atomic parts of the application logic. Each combinator has a semantic
type which promises an implementation type. For example, a combinator may
have the semantic type Celsius and at synthesis give the native type float.
Formally, CLS has combinatory repository Γ and type assumptions x : τ , where
x is a combinator’s type and τ is the implementation type. Given a repository Γ
and type τ , CLS uses an inhabitation algorithm to find a combinatory expression
E such that Γ ` E : τ . If the inhabitation algorithm can find E, then E is an
inhabitant of type τ .

In the beginning, CLS’ Γ repository was a flat collection of combinators
whose implementation types were statically defined as strings. Combinators
were coupled to the implementation language without any ability to manipu-
late it, leaving it impossible to model adequately a large domain. To increase
flexibility, synthesis was separated into two domains. In the first domain, com-
binators are written in a functional meta-language which can manipulate native
code. In the second domain is a lightly defined object model, providing structure
but flexible for synthesis.

CLS proof-of-concepts have now been using Scala as the functional language
to synthesize Java code. Scala runs within the JVM, so it is practical for synthe-
sizing and generating Java. Combinators are represented as specially annotated
Scala objects or classes, which take arguments. Each Scala combinator returns
a semantic type, represented by an arbitrary Scala symbol like ’Celsius, and
has an apply() method, which when called returns a Java type, a Java AST
type, or void, if it just performs an action upon the Java domain.

Before beginning with the CLS design of Archway, let us look at an example
which demonstrates the construction and application of CLS in a small but
complete application.

2.1 CLS and a Temperature Interface Application

Listing 1 exemplifies the “main” file of a CLS application. The repository of
written combinators is loaded, and in order to synthesize the application, each
semantic type we want to include in the final application is requested as a
compilation unit. Listing 1 has only one, but the addJob() method, as shown
on line 14, can add compilation units.

Listing 2 shows the Scala trait TemperatureCombinators, which is this ap-
plication’s main collection of combinators. Greater explanation will come in
Section 3, but for now, notice the distinction between the return type of apply()
method and of semanticType variable. As CLS specifies, the application logic
is separated from the application domain. The semantic type represents the
application logic—Celsius, Fahrenheit, Interface—rather than the implementa-
tion type—float, class, getter method. Instead, as the inhabitation algorithm
searches for a combinatory solution, it examines the semantic types, and if it

2

1 class TemperatureApplication {

2

3 // Load an already written repository of combinators

4 lazy val repository = new TemperatureCombinators

5

6 // Instantiate a dynamic repository of combinators.

7 // We don't have any yet, but we'll get there.

8 lazy val Gamma = ReflectedRepository(repository,

9 classLoader = this.getClass.getClassLoader)

10

11 // Request compilation units through semantic types.

12 lazy val jobs =

13 Gamma.InhabitationBatchJob[CompilationUnit]('TemperatureInterface)

14 // .addJob[CompilationUnit]('SemanticType)

15

16 // Synthesize!

17 lazy val results = Results.addAll(jobs.run())

18 }

Listing 1: Main File of CLS Application

finds a path through a series of semantic types ending in the requested one, then
it calls all the apply() methods, receiving their implementation types in order
to construct the program.

If we synthesize the Temperature Application according to the requested
compilation unit in Listing 1 (’TemperatureInterface), then CLS will offer
two programs after the inhabitation algorithm finishes, because it will have
found two routes to TemperatureInterface:

• ’TemperatureInterface (returns temperature) ←
’TemperatureAPI (returns Celsius temperature)

• ’TemperatureInterface (returns temperature) ←
’FahrenheitToCelsius (converts Fahrenheit from Celsius) ←
’TemperatureAPI (returns Celsius temperature)

In the first program, the generated Temperature.getCurrentTemperature()

will return Celsius, and in the second it will return Fahrenheit. However, if we
change our request to (’TemperatureInterface :&: ’Fahrenheit), then the
inhabitation algorithm will return one program using all three combinators.

CLS is so powerful, because from a library of prepared combinators it auto-
matically deduces the correct sequences to produce a working native application.
However, it became apparent that having a static collection of combinators was
not sufficient to model a complex application. It also became apparent, as more
combinators were written, that between certain sets of combinators there were
only minute differences. CLS then evolved to allow dynamic combinators, pa-
rameterized Scala classes, which can be instantiated dynamically as combinators
at time of synthesis and added to the Γ repository. They can be shared easily
between repositories, saving the developer and the project from duplicate code

3

1 trait TemperatureCombinators {

2

3 @combinator object FahrenheitToCelsius {

4 def apply(expr: Expression): Expression = {

5 Java("(9.0/5.0) * $expr.toString + 32.0").expression()

6 }

7 val semanticType: Type = 'Temperature :&: 'Celsius =>:

8 'Temperature :&: 'Fahrenheit

9 }

10

11 @combinator object TemperatureAPI {

12 def apply: Expression = {

13 Java("Temperature.getCurrentTemperature()").expression()

14 }

15 val semanticType: Type = 'Temperature :&: 'Celsius

16 }

17

18 @combinator object TemperatureInterface {

19 def apply(exp: Expression): CompilationUnit = {

20 val s = exp.toString

21 Java(s"""|public class TemperatureAdapter {

22 | float getTemperature() {

23 | return $s;

24 | }

25 |}

26 """.stripMargin).compilationUnit()

27 }

28 val semanticType: Type = 'Temperature =>: 'TemperatureInterface

29 }

30

31 }

Listing 2: Temperature Combinators

and empowering CLS to model applications of greater complexity. Examples
and greater explanation on dynamic combinators come in Section 3.2.

My exercise as a proof-of-concept was to build the solitaire variation “Arch-
way” using an existing domain model and a repository of combinators. I have
built Archway before but manually. My first step? Reading the documentation,
skimming tutorials, and laboring through examples. There was a precise, incre-
mental process identical among all solitaire variations built in this framework.
The task was to form a mental model, and then just copy and paste the same
constructs in order to satisfy the requisites of the domain. I had to follow ap-
proach (1): become an expert in the domain. After 425 lines of code in eight
Java classes (not including the underlying framework from which I extended my
classes), my implementation looked like Figure 1.

There are three main physical elements of the game: the Tableau, which is
the four columns in the middle; the Reserve, which is the arch the Tableau from
2 to Queen; and the Foundation, the piles of Aces and Kings on the left- and
right-hand side of the window, respectively. The rules are few:

4

Figure 1: Original Implementation of Archway

• A card from the Reserve or the Tableau can be moved to the Aces Foun-
dation if the card has the same suit and is one rank higher.

• A card from the Reserve or the Tableau can be moved to the Kings Foun-
dation if the card has the same suit and is one rank lower.

• A card from the Reserve can be moved to the Tableau if the Tableau
column is empty.

• The game is finished when all the cards from the Reserve and the Tableau
are placed in the Foundations.

My task was to implement Archway again, this time with CLS.

3 Design

The Solitaire framework is designed after the Entity-Boundary-Controller model.
Comprising the entity model are thirty-five Java classes, which among variations
define and relate solitaire constructs constant among variations, such as cards,
decks, piles, columns, gameplay spaces (foundation, tableau, reserve, waste pile),
and moves (source, destination, moving element). Two Java classes support the
Boundary, and combinators completely synthesize the Controller. Before CLS,
when developing any new solitaire variation, the framework required that I
manually defined and associated the following model elements:

5

• Containers classes (foundation, tableau, etc.) defined.

• View classes defined and associated with Containers.

• Controller classes defined and associated with Views.

• Move classes defined and associated with Controllers.

The framework still requires these definitions and associations, but because
CLS separates the application logic from its domain implementation, the devel-
oper need not learn any of the domain classes or their members. Only in my
development of Archway, which featured a card layout with a custom input of
x-y positions, did I add about fifteen lines to one Java domain class. Instead
of interfacing with the underlying framework, I needed only to write four Scala
files (Figure 2):

• Archway: Loads repository of combinators, specifies compilation units to
include in synthesis, and requests synthesis.

• game: Defines containers and move rules.

• gameDomain: Defines literal field members, their views, their views’ place-
ments, and any extra methods.

• controllers: Defines controllers.

Once Archway.scala requests synthesis, combinators generate all the classes,
fields, definitions, associations, instantiations, and logic necessary to the model
in real Java code.

Archway is a solitaire variation with many edge-case features:

• Two foundations for Aces and Kings respectively (framework allows defi-
nition of only one foundation).

• Non-rectangular card layout. Around the Tableau arches the Reserve,
where at its left base is the Aces Foundation and at its right base is the
Kings Foundation.

• Cards can be moved to and from the Tableau, but not to or from itself.

In section 4, I will cover each edge-case in more detail, as they demonstrate
combinators’ versatility in overcoming domain-stretching features.

3.1 Combinators

To represent and to process the application logic, the Solitaire CLS Framework
uses Scala combinators, which generate compilable Java code with Twirl tem-
plates and static strings and which perform actions upon the Java domain in
order to construct a runnable Java program.

6

Figure 2: Directory structure in IntelliJ.

Every combinator has a semantic type, which the inhabitation algorithm
inspects as it searches for a solution, and an apply() method, which returns a
Java type, Java AST type, Scala type, or void if just performs an action upon
the Java domain. If the inhabitation algorithm can use the combinator, then
it calls the combinator’s apply() method, which provides the concrete type or
action promised by the semantic type. Listing 3 shows an example of a basic
combinator.

@combinator object RootPackage {

def apply: Name = Java("org.combinators.solitaire.archway").name()

val semanticType: Type = 'RootPackage

}

Listing 3: Combinator to Provide Root Package of Variation

The semantic type is ’RootPackage, an arbitrary Scala symbol that has
no official declaration or specification. When the user requests synthesis of
the Archway variation, the inhabitation algorithm along the way realizes that
it needs something called a ’RootPackage, and it will look for a combinator that
promises ’RootPackage until it finds this one. It then calls RootPackage.apply()
and receives org.combinators.solitaire.archway, which is passed to a Twirl
template with the line

7

package @Java(rootPackage);

where rootPackage is the parameter, and @Java(...) indicates a real Java
statement, expression, or compilation unit. The synthesized Java line becomes

package org.combinators.solitaire.archway;

Listing 4 shows a more complex example by using a class of two combinators.
When we pass "archway" to ArchwayDomain, together the combinators give

package org.combinators.solitaire.archway;

public class Archway extends Solitaire {/*...*/ }

1 class ArchwayDomain(gameName: String) {

2

3 // Normalize string: Package name should be lower case,

4 // and class name should be capitalized.

5 val gameNamePackage = gameName.toLowerCase

6 val gameNameClass = gameName.toLowerCase.capitalize

7

8 @combinator object RootPackage {

9 def apply: Name = Java("org.combinators.solitaire.$gameNamePackage").name()

10 val semanticType: Type = 'RootPackage

11 }

12

13 @combinator object GameName {

14 def apply: SimpleName = Java(gameNameClass).simpleName()

15 val semanticType: Type = 'GameName

16 }

17 }

Listing 4: Combinator Class to Provide Root Package and Game Name

The Aces Foundation requires a different action than the Kings Foundation,
so they both must be defined as subclasses of Foundation. Listing 5 shows a
class combinator which generates a subclass with a Java string block. The se-
mantic type on line 16 means that this combinator, when given a ’RootPackage

can give an outSymbol, which is whatever symbol the developer specifies, such
as ’AcesUpPileClass. All that I need to write in order to create the subclass
is in the following line:

@combinator object AcesUpPile

extends ExtendModel("Pile", "AcesUpPile", 'AcesUpPileClass)

When I request in Archway.scala the synthesis of ’AcesUpPileClass, it
will produce AcesUpPile.java as shown in Listing 6.

Therefore, instead of creating and writing two model classes for Aces and
Kings Foundation and two more view classes to represent their views, I wrote
four lines in gameDomain.scala like the single-line combinator above and an-
other four in Archway.scala to request their synthesis.

8

1 class ExtendModel(parent: String, subclass: String, outSymbol: Symbol) {

2

3 def apply(rootPackage: Name): CompilationUnit = {

4 val name = rootPackage.toString()

5 Java(

6 s"""

7 |package $name;

8 |import ks.common.model.*;

9 |public class $subclass extends $parent {

10 | public $subclass (String name) {

11 | super(name);

12 | }

13 |}

14 """.stripMargin).compilationUnit()

15 }

16 val semanticType : Type = 'RootPackage =>: outSymbol

17 }

Listing 5: Class Combinator to Generate Subclass

1 package org.combinators.solitaire.archway;

2 import ks.common.model.*;

3

4 public class AcesUpPile extends Pile {

5 public AcesUpPile (String name) {

6 super(name);

7 }

8 }

Listing 6: Generated Java Subclass

3.2 Dynamic Combinators

When the Solitaire/CLS proof-of-concept was first developed, there were only
static combinators in a given Γ repository, processed at time of synthesis by the
inhabitation algorithm in search of a solution. As certain sets of combinators
were written, it was discovered that there were only minor differences between
them, observed much in the same way as in the differences between solitaire
variations. For example, two combinators would have to been written in order
to synthesize one controller which handled Pile objects, and another to handle
Column objects. To abstract the similarities, dynamic combinators were created,
which can take parameters to dynamically define new combinators. Listing
7 demonstrates how the WidgetController dynamic combinator, which when
given a Scala symbol, can at synthesis create a previously undefined combinator.

9

1 // Given a Scala symbol, construct a Controller.

2 class WidgetController(elementType: Symbol) {

3 def apply(

4 rootPackage: Name,

5 designate: SimpleName,

6 nameOfTheGame: SimpleName,

7 mouseClicked: Seq[Statement],

8 mouseReleased: Seq[Statement],

9 mousePressed: (SimpleName, SimpleName) => Seq[Statement]

10): CompilationUnit = {

11 // Call/render the Twirl template, generating these statements.

12 shared.controller.java.Controller.render(

13 RootPackage = rootPackage,

14 Designate = new SimpleName(elementType.name),

15 NameOfTheGame = nameOfTheGame,

16 AutoMoves = Seq.empty,

17 MouseClicked = mouseClicked,

18 MousePressed = mousePressed,

19 MouseReleased = mouseReleased

20).compilationUnit()

21 }

22 val semanticType: Type =

23 'RootPackage =>:

24 'NameOfTheGame =>:

25 elementType (elementType, 'ClassName) =>:

26 elementType (elementType, 'Released) =>:

27 elementType (elementType, 'Clicked) :&: 'NonEmptySeq =>:

28 elementType (elementType, 'Pressed) :&: 'NonEmptySeq) =>:

29 ('Pair ('WidgetVariableName, 'IgnoreWidgetVariableName) =>:

30 'Controller (elementType)

31 }

Listing 7: Dynamic Combinator to Create Controllers

WidgetController requires from the developer only a Scala symbol rep-
resenting the controller to create, such as ’AcesController. The parame-
ters to apply() are passed from the repository. Note line 12: the call to
render is referencing a Twirl template, in which all of apply()’s parameters are
added. Recall that each controller requires three actions to be satisfied: Click,
Press, and Release. The semantic type specifies explicitly the root package, the
variation name, and that Click/Press/Release were satisfied, finally returning
’Controller(’AcesController), a symbol which the developer can request for
synthesis in Archway.scala.

Note that this dynamic combinator is missing the @combinator annotation
seen in other combinators. Without the annotation, this class is not considered
as a combinator in the Γ repository. To earn its name, a WidgetController

object is instantiated at time of synthesis and added to the Γ repository. There-
fore, instead of being statically defined, the Γ repository can be updated inside
Scala traits which have an init method taking the Γ repository as input and
updating it (Listing 8).

10

1 trait ArchwayControllers {

2 // Receive and update the Gamma Repository at time of synthesis

3 override def init[G <: SolitaireDomain](gamma : ReflectedRepository[G],

4 s: Solitaire) : ReflectedRepository[G] = {

5

6 // Add new combinator to Repository.

7 val gamma = super.init(gamma, s)

8 val updatedGamma = gamma.addCombinator(

9 new WidgetController('AcesController)

10)

11

12 // Return updated Repository.

13 updatedGamma

14 }

Listing 8: Scala trait receives and updates Γ repository.

3.3 Scala Functions

In addition to combinators, Scala functions can easily generate commonly used
Java blocks, such as associating model elements with view elements. In Listing
9, loopConstructorGen() takes a Java container object, the type of the model
element, its name, and the view’s name, and it constructs a loop which associates
all container elements with a view, generated as shown in Listing 10.

1 val reserve = loopConstructGen(reserve, "Pile", "fieldReservePiles",

2 "fieldReservePileViews")

3

4 def loopConstructGen(cont: Container, modelName: String,

5 viewName : String, typ:String): Seq[Statement] = {

6 Java(

7 s"""

8 |for (int j = 0; j < $cont.size(); j++) {

9 | $modelName[j] = new $typ(${modelName}Prefix + (j+1));

10 | addModelElement ($modelName[j]);

11 | $viewName[j] = new ${typ}View($modelName[j]);

12 |}""".stripMargin).statements()

Listing 9: Scala function to construct a Java loop.

4 Development

Here I will describe the application environment and the development cycle
which I used to code Archway, to synthesize the project, to view the results, to
debug, and to fix errors.

JetBrain’s “IntelliJ IDEA” is a professional IDE which has a Scala plugin al-
lowing seamless integration between Java and Scala, providing sbt-compilation,
auto-completion, symbol lookup, and reverse symbol lookup. In any Scala file,

11

1 for (int j = 0; j < 11; j++) {

2 fieldReservePiles[j] = new Pile(fieldReservePilesPrefix + (j + 1));

3 addModelElement(fieldReservePiles[j]);

4 fieldReservePileViews[j] = new PileView(fieldReservePiles[j]);

5 }

Listing 10: Generated Loop Block

Figure 3: IntelliJ Reverse Lookup of Scala Function

I could instantly find the definition of a combinator, Scala function, or Java
class, as well as all of their usages in the project (Figure 3). One of our original
project goals was to find a way to view and to organize combinators, however
it seemed largely fulfilled once we began using IntelliJ. Additionally, a second
goal was to visualize the project’s collection of semantic types, which are Scala
symbols. Scala symbols are arbitrarily defined, so it is important that when the
developer means to use a certain symbol, they can find it if already exists and
which combinators use it.

IntelliJ has a “Find-all” search, which can reveal all instances of any symbol
in the project 4), but the convenience is just a partial solution. Development
in CLS revolves around semantic types, and how they are used among combi-
nators. It would be useful, especially for large frameworks, to have a special
organization and visualization of combinators, besides their location on disk,
where the developer could see which combinators return what Scala symbols
and implementation types, as well as the Scala symbols required for input.

To synthesize Archway, I would open a session in iTerm, a MacOS teriminal

12

Figure 4: IntelliJ can find all instances of a symbol.

emulator, start sbt, run the CLS application (Figure 5), and request synthesis
in the Safari browser with localhost:9000/archway.

The next step would be to clone the git repository of the native code, which
I then would review in the Atom text editor (Figure 6), and compile and run in
the terminal.

One can see that CLS intuits a new iterative development cycle. In a tradi-
tional project the cycle might be Edit, Compile, Run. In CLS the cycle is Edit
Scala, Synthesize, Generate, Compile, Run, Edit Java (Figure 9).

(1) Edit Scala combinatory logic. In CLS, applications are built not from the
top-down, but from the bottom-up. Already in place are the domain abstrac-
tions and methods necessary for a full-featured variation to function. Instead,
programming is more like configuration than construction. Configure the con-
trollers, the move rules, the cards’ positions in the window, and CLS will write
the classes, statements, loops, and methods to fulfill the configuration.

• Controllers in controllers.scala: specify their names and types, and
whether the user will Click/Press/Release this controller.

• Moves in game.scala: specify their names and logical constraints, and to
which Containers they belong.

• Views in gameDomain.scala: associate Containers with views and specify
their x-y coordinates.

• Extra Fields and Methods in gameDomain.scala: specify any helper meth-
ods or fields not provided by default. Archway has a particular card setup,
so I had to write a helper method, generated at synthesis, to place and or-
der the cards. When writing helper methods, I made the most Java syntax

13

Figure 5: Running CLS in the terminal.

Figure 6: Native code in Atom text editor.

14

Figure 7: Failed Synthesis

mistakes, which CLS only reports after synthesis, when code generation
is requested, a problem described in step (3) below.

• Feature selection in Archway.scala. Each Controller, Move, and extra
class must be requested for synthesis as shown in Listing 11.

1 class Archway {

2

3 lazy val jobs =

4 Gamma.InhabitationBatchJob[CompilationUnit]('AcesUpPileClass)

5 .addJob[CompilationUnit]('Controller('AcesUpPile)

6 .addJob[CompilationUnit]('Controller('Reserve))

7 .addJob[CompilationUnit]('Controller('Tableau))

8 .addJob[CompilationUnit]('Move('ReserveToTableau))

9 .addJob[CompilationUnit]('Move('ReserveToAcesFoundation))

10 // ... more combinators to request...

11 // Find solution.

12 lazy val results = Results.addAll(jobs.run())

13 }

Listing 11: Request Synthesis of Components

(2) Synthesize project. First the CLS application is started with SBT and
run with nextgen-solitaire/run. The application waits for a request through
localhost:9000, such as localhost:9000/archway, then begins the synthesis
process, usually taking about two minutes for a feature-rich variation such as
Archway. If synthesis fails, the reason usually a missing combinatory inhabitant,
then the missing compilation unit is reported and synthesis is cancelled (Figure
7). then the developer has to pull back features and return to step (1) until
synthesis succeeds.

If synthesis is successful, then a page will open displaying the requested
compilation units, a list of available variations with an option to generate a git

15

Figure 8: Successful synthesis returns the requested compilation units, the avail-
able variations, and the contents of the Γ repository.

repository of the native code, and the contents of the Γ combinatory repository
(Figure 8).

Looking through the repository, one can find the names of the requested
compilation units and the sequence of semantic types and combinators which
produce combinatory types. When synthesis fails from a missing Controller in-
habitant, the developer, after pulling back features until it succeeds, can deduce
what inhabitant combinatory type is missing. For example, if the repository
shows that it satisfied a controller’s Click and Press but not release, then the
developer can narrow the debugging scope.

(3) Request generation of Java code (middle figure in Figure 8). If generation
fails, then there was a parsing error when constructing the Java AST (Figure
10). The developer must return to fix the violating Java string in the project
and synthesize again.

(4) Compile and run the project. If compilation fails, it is most likely due to a

16

1. Edit Scala

2. Synthesize Success

3. CompileSuccess

Edit Java

4. RunSuccess

No

Yes

NO

Yes

Yes

No

Figure 9: CLS Development Cycle

misspelled, generated Java name. Another common reason is that a field may be
successfully generated before its type is defined in a class. In my development, I
generated the necessary associations between View and Controller must sooner
than successfully synthesizing the Controllers.

(5) Edit combinatory logic which produced the errors. Fixes usually include
fixing Java strings and missing-inhabitant errors. Once errors are fixed, then
the developer continues with new features to the project.

CLS has no complimentary IDE plugin or any UI features which would ease
and quicken the cycle. Such helpful features would be:

• Synthesis directly requested from and displayed in IntelliJ.

• Reverse-lookup from synthesized Java code to Scala combinator.

• Inhabitation trace on failure.

4.1 Refactoring

There are three types of refactorings typical of CLS:

4.1.1 Static Combinator Object to Dynamic Combinator Class

When a combinator’s logic can be abstracted to produce many combinators
useful to other domains, then it is refactored to become its own class with
parameters for variation. As a small example, review the the static combinator
in Listing 12.

17

1 @combinator object ArchwayReserve {

2 def apply(): Reserve = {

3 val reserve = new Reserve()

4 for (_ <- 1 to 11)

5 reserve.add(new Pile())

6 reserve

7 }

8 val semanticType: Type = 'Reserve ('Valid :&: 'Eleven :&: 'Pile)

9 }

Listing 12: Scala code to instantiate Piles for the Reserve

The ArchwayReserve static combinator merely instantiates Pile’s in the
Reserve Container. However, because it is a static combinator, defined for one
variation’s repository, combinators initializing the Reserve would have to be
written for each variation. The only difference would be the number of Pile’s
in the Reserve. We can refactor this combinator to a dynamic combinator, as
shown in Listing 13

1 class NPileReserve(n: Int, nAsType: Type) {

2 def apply(): Reserve = {

3 val reserve = new Reserve()

4 for (_ <- 1 to n)

5 reserve.add(new Pile())

6 reserve

7 }

8 val semanticType: Type = 'Reserve ('Valid :&: nAsType :&: 'Pile)

9 }

10 // Combinator specific for Archway

11 @combinator object ElevenPileReserve extends NPileReserve(11, 'Eleven)

Listing 13: Static to Dynamic Combinator

Now, any variation can extend NPileReserve and instantiate the Reserve
in synthesis without rewriting the full combinator.

4.1.2 Scala Code to Scala Method

loopConstructGen (Listing 9), is a primary example of Scala code moving to
a method. It is called four times in the Archway variation, for each container,
and many more times in other variations. Refactoring code to methods is not
only for convenience but to assure correctness. Developing solitaire variations
requires much string manipulation, so the less copying-and-pasting, the less
likely a Java AST error will stall actual development.

4.1.3 Framework Edit

To produce the Archway variation, I added about 15 lines to a Java domain class
and added one Scala method to provide a completely custom layout for solitaire

18

elements, when previously, elements could only be laid out in iteratively defined
rectangles. Editing the underlying framework is rarely necessary. Nearly all
the of the application logic, as CLS specifies, is separated to Scala combina-
tors. However, for domain-stretching variations such as Archway, it could be
necessary.

5 Debugging

There is no mechanism to debug combinators directly by stepping through the
synthesized code. Instead, debugging is an iterative process focused around
synthesis. If synthesis is unsuccessful, then the developer debugs the Scala code
until it is successful. Then they debug any errors in the Java code, return to
the combinator producing the errors, and resynthesize to confirm the fix.

In developing Archway, I frequently made the following types of mistakes
and errors:

(1) Misspelled Java name, which produces an undefined reference. For
example, in order to synthesize a model element, such as the Aces Founda-
tion, correctly associating itself with controllers and views, and defining their
placement, the string fieldAcesFoundationPileViews is passed to three Scala
methods, and the string fieldAcesFoundationPiles is passed to one Scala
method and referenced three times in a generated Java block. A misspelling
anywhere will produce undefined references after synthesis. Although annoy-
ing, it is not too difficult to correct the problem. If I had misspelled the former
string as fieldAcesFoundtionPileViews in a certain Scala method, and after
synthesizing the project, found an undefined reference in the following block:

1 for (int j = 0; j < 4; j++) {

2 fieldAcesFoundationPiles[j] =

3 new AcesUpPile(fieldAcesFoundationPilesPrefix + (j + 1));

4 addModelElement(fieldAcesFoundationPiles[j]);

5 // Uh oh... undefined reference.

6 fieldAcesFoundtionPileViews[j] =

7 new AcesUpPileView(fieldAcesFoundationPiles[j]);

8 }

First I would correct the string and compile the project to verify the fix. I
would then copy the undefined reference and in IntelliJ open a Find-All window,
locating the string as a parameter to loopConstructGen(), which associates
model elements with their views. Correcting the string in the Scala method and
resynthesizing the project would fix the error.

(2) Grammar mistake in a Java string block, which produces an AST er-
ror, still allowing synthesis but preventing code generation. When the user
selects Compute to generate the Java code and the git repository, as in Figure
8, generation will fail, and CLS will return the AST error in the terminal as
in Figure 10. The only solution really is to return to the most recently added
Java string block, and look for syntax mistakes. An on-the-fly Java AST parser

19

Figure 10: Java AST error after synthesis.

as an IntelliJ plugin would save many round-trips and much stress over missing
semi-colons and parentheses.

(3) Unclear use of string in combinator, which at its best produces an unde-
fined reference and at its worst halts synthesis. In a combinator, a string:

• May reference a Java field, class, or type which exists in the Solitaire
domain or in a Twirl template. In

val sameSuit = new SameSuit("movingCard", "destination.peek()")

SameSuit() is a Constraint object, used in defining moves, which expects
the user to reference real field names defined in the Controller Twirl tem-
plate. Unfortunately, this breaks the fourth wall of the domain, requiring
the user to have some understanding of existing fields and their Java types.

• May become a class or field itself. For example, when defining moves,
the first argument to SingleCardMove() becomes the class name of that
move.

• May reference a field or class which will be created as specified in another
combinator. See paragraph (1) for an example.

While versatile, string synthesis can have unexpected manifestations, but with
documentation and IntelliJ’s symbol-lookup, I learned its usages. As the Soli-
taire CLS domain is under development, its maintainers are actively refactoring
combinators to remove ambiguity by synthesizing more elements with fewer
user-specified strings.

(4) Missing inhabitant, which prevents synthesis (Figure 7). This is the
most common CLS-specific error. It means that in the inhabitation algorithm’s

20

search for a path of semantic types, it failed to find the final requested type.
The developer then has to pull pack iteratively the requests, combinators, and
expressions related to the final type until synthesis succeeds, then add them
back until finding the suspect combinator.

(5) Domain modeling gap. For edge-case variations such as Stalactites or
Archway, there are features which force the developer to either refactor the
underlying Java domain or to find a solution through the Scala domain. These
features which expose modeling gaps are like those in a traditional software
project: a user finds an error at runtime exposing a use case not articulated
earlier in development.

In Archway I encountered two domain modeling gaps. In the first, I had ex-
plicitly defined move rules between all containers: from Reserve to Aces/Kings
Foundation, Tableau to Aces/Kings Foundation, and Reserve to Tableau. For
each controller, CLS generates a Java expression which casts the source con-
tainer, passed in as the base class, to its actual class. For example, when a card
is moved from the Reserve, the variable referencing the reserve is casted to Pile.
At runtime, I found that when a card was moved from the Tableau and then
released on the Tableau, the card disappeared: there was no Tableau-to-Tableau
rule, because there is no such move in Archway Solitaire. Because I had not
explicitly defined a rule where the Tableau was a source and the destination, the
logic fell through to another Java block which threw an exception when trying
to cast the Tableau, a Column, to a Pile. Normally, in a non-CLS project, I
would have to add additional logic somewhere: maybe refactoring the controller
logic, the move classes, or hard-coding a hack to ignore the problem. However,
with CLS, the problem was completely solved in two lines of code: one to add
a rule specifying that any move from Tableau to Tableau always returned false,
and another to request synthesis of this move.

I found a similar problem when developing the Reserve, from which cards are
never moved, only placed. Recall that each controller must have satisfied three
actions: Click, Press, and Release. Archway has no deck, so the combinator
IgnoreClickedHandler is added to all controllers. If a container should not
have cards removed from itself, such as the Aces/Kings Foundation, then it gets
the IgnorePressedHandler. However, for the Reserve, I needed a combinator
which denied the player from releasing the card on the container. Before, there
had been no need for this combinator, but adding it only required five lines of
code for the new combinator. I associated it with the Reserve, resynthesized,
and the feature was immediately present.

6 Testing

In IntelliJ we can unit test CLS combinators with coverage on both Scala and
Java code. Variations are constructed and tested piece-wise: a feature is added,
such as a controlle,r synthesis is requested, and then on success, the test checks
the existence of the generated controller class. As shown in Listing 14, Archway
is synthesized iteratively, first testing the existence of domain model elements

21

such as the Reserve, then after adding the controllers, their existence as gener-
ated classes.

Because dynamic combinators are shared between applications, it is impor-
tant to know that when one is changed, other applications or variations of
a single application correctly synthesize after the change. IntelliJ makes this
easy, as all test suites can be run after any change by the developer.

1 class ArchwayTests {

2

3 // Initiate synthesis.

4 describe("Inhabitation") {

5 lazy val domainModelRepository = new Archway

6

7 lazy val GammaDomainModel =

8 ReflectedRepository(domainModelRepository,

9 classLoader = this.getClass.getClassLoader)

10

11 lazy val possibleDomainModels: InhabitationResult[Solitaire] =

12 GammaDomainModel.inhabit[Solitaire]('Variation('Archway))

13

14 // Synthesis successful?

15 it("Not infinite.") {

16 assert(!possibleDomainModels.isInfinite)

17 }

18

19 // Now test existence of model elements.

20 describe("Domain Model") {

21 lazy val domainModel = possibleDomainModels.interpretedTerms.index(0)

22 it("Reserve is size 11.") {

23 assert(domainModel.getReserve.size == 11)

24 }

25 // ... test existence of other elements...

26

27 // Add controllers, synthesize them, and test for existence.

28 lazy val archway_repository = new gameDomain(domainModel) with ArchwayControllers

29 lazy val Gamma = archway_repository.init(

30 ReflectedRepository(archway_repository,

31 classLoader = this.getClass.getClassLoader), domainModel)

32

33 checkExistence(Gamma, domainModel, 'SolitaireVariation :&: 'Solvable, "Archway")

34 checkExistence(Gamma, domainModel, 'Controller ('Pile), "ReserveController")

35 // ...

36 }

37 }

38 }

Listing 14: Unit Testing in CLS

6.1 CLS and Correct-by-Construction

With dynamically generated Java code from Twirl templates and static strings,
in addition to the semantic type specification of CLS, the question is, “Can we
verify that the synthesized product is correct if we verify the combinators are

22

correct?” At this time the answer is no, for the following reasons:

1. Java strings are not verifiable, syntactically or otherwise, before synthesis.
Many times compilation failed because I referenced a field incorrectly or
missed a semicolon. One solution might be to integrate the Twirl template
system with IntelliJ, then reference field names as components instead of
as strings. However, for dynamically specified fields, prior reference is
impossible.

2. Scala symbols have infinite semantic flexibility, but they have no real asso-
ciation with real Java types. A combinator may promise a semantic type
of ’Integer or even more imprecisely ’Temperature, but it may actually
give a method returning String. Should the final, concrete type be an
integer or a string telling the temperature? Allowing a tighter specifica-
tion between application logic and the domain model might improve the
development cycle.

7 Conclusion

Combinatory Logic Synthesis is a novel way of separating a domain’s application
logic from its object model, allowing the synthesizing of application variations
with minimal edits to the underlying framework. Dynamic combinators enable
the developer to model complex applications and code duplication by instanti-
ating Scala classes as combinators at time of synthesis. Although at this time
developing with CLS involves more steps than in a typical development cycle,
with improved IDE integration, CLS can become a serious and powerful tool
for software engineering.

7.1 Archway

To synthesize the Archway variation, I wrote about 450 lines of code in 5 scala
files, added two Java class placeholders, and refactored one Java class, to pro-
duce a Solitaire variation with 963 lines of code in 20 Java class files. With a 2.5
GHz Intel Core i5 and 4GB of RAM, synthesis took about 1 minute 38 seconds,
and computing the Java AST took about 11 seconds.

As shown in Figure 11, synthesized Archway is identical to the original.
Notice, that there is an additional button next to New... called Solve. Unim-
plemented originally but in synthesized Archway, availableMoves() was added
as an extra method to find the sequence of moves which would win the game.
All that was necessary was to write the method, and synthesis properly inte-
grated it into the application. Unfortunately, after attempting in several new
games, the depth-first search found no solutions, suggesting that Archway is not
the solitaire game to play if you are interested in winning.

23

Figure 11: Synthesized Archway

7.2 Future Work

To produce one variation, CLS is a tool too complex to use, but to produce four,
ten, fifty variations — it is indispensable. Pairing with an IntelliJ plugin, CLS
could become a serious software engineering tool. The most needed features are
organization of combinatory symbols and linting for Java strings in Scala code.

Because CLS separates synthesis between a functional language and the
native object-oriented language, CLS is under development to fully decouple
the languages from each other. Abstracting out the Γ repository as an interface
to a concrete repository would allow seamless swapping of the native language.
In other words, one of the components requested for synthesis could be the native
language itself. The application logic would become completely independent of
the domain, such that the domain could be Java, Python, C++, or Rust, but
the developer would write combinators in just a single repository.

References

[1] Boris Düdder, Moritz Martens, and Jakob Rehof. Staged composition syn-
thesis. In ESOP, pages 67–86, 2014.

[2] George Heineman, Armend Hoxha, Boris Düdder, and Jakob Rehof. Towards
migrating object-oriented frameworks to enable synthesis of product line
members. In Proceedings of the 19th International Conference on Software
Product Line, pages 56–60. ACM, 2015.

24

[3] Dan Li, Xiaoshan Li, Zhiming Liu, and Volker Stolz. Interactive Transfor-
mations from Object-Oriented Models to Component-Based Models, pages
97–114. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[4] David J Pearce. A calculus for constraint-based flow typing. In Proceedings
of the 15th Workshop on Formal Techniques for Java-like Programs, page 7.
ACM, 2013.

[5] Jakob Rehof and Moshe Y. Vardi. Design and Synthesis from Components
(Dagstuhl Seminar 14232). Dagstuhl Reports, 4(6):29–47, 2014.

List of Listings

1 Main File of CLS Application . 3
2 Temperature Combinators . 4
3 Combinator to Provide Root Package of Variation 7
4 Combinator Class to Provide Root Package and Game Name . . 8
5 Class Combinator to Generate Subclass 9
6 Generated Java Subclass . 9
7 Dynamic Combinator to Create Controllers 10
8 Scala trait receives and updates Γ repository. 11
9 Scala function to construct a Java loop. 11
10 Generated Loop Block . 12
11 Request Synthesis of Components 15
12 Scala code to instantiate Piles for the Reserve 18
13 Static to Dynamic Combinator 18
14 Unit Testing in CLS . 22

25

	Introduction
	Background
	CLS and a Temperature Interface Application

	Design
	Combinators
	Dynamic Combinators
	Scala Functions

	Development
	Refactoring
	Static Combinator Object to Dynamic Combinator Class
	Scala Code to Scala Method
	Framework Edit

	Debugging
	Testing
	CLS and Correct-by-Construction

	Conclusion
	Archway
	Future Work

